WorldWideScience

Sample records for chemical cement metals

  1. Content of heavy metals and chemical composition of the hydraulic cement marketed in Costa Rica

    International Nuclear Information System (INIS)

    Venegas Padilla, Jimmy; Calderon Jimenez, Bryan; Sibaja Brenes, Jose Pablo; Salazar Delgado, Jorge; Rodriguez Castro, Ellen

    2017-01-01

    The concentration of heavy metals, specifically lead (Pb), chromium (Cr), and mercury (Hg), and also the chemical composition (CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 among others) were quantified of the hydraulic cement marketed in Costa Rica. The physical parameters of density and fineness confirmed the homogeneity of the samples to determinate accurately the content of the major components and heavy metals in the cements. The mineralogical constitution was determined by X-ray Fluorescence (XRF). Specifically, the cements showed a mass fraction in the range of (61.22 - 63.12) % of CaO, (18.10 - 26.14) % of SiO 2 , (3.70 - 6.05) % of Al 2 O 3 , (2.57 - 3.36) % Fe 2 O 3 and (0.60 - 4.09) % de MgO. Other components such as MgO, TiO 2 , K 2 O, P 2 O 5 , Na 2 O and Mn 2 O 3 were found on an average mass fraction lower than 1%. Moreover, using the ignition test results and assuming a complete decomposition of the limestone, it was possible to estimate (indirectly) the content of CaCO 3 and CaO given by the raw materials. The metal content of the heavy metals was determined using Flame Atomic Absorption Spectroscopy (FAAS), Electrothermal Atomic Absorption Spectroscopy (ETAAS), and Cold Vapor Atomic Absorption Spectroscopy (CVAAS). The analysis demonstrated that the Pb in cements is present in different concentrations ranging the (2.45 ± 0.72) mg kg -1 to the (8.95 ± 1.34) mg kg -1 . Chromium (Cr) was presented in higher concentrations of (10.69 ± 0.92) mg kg-1. The Hg concentration was below 0.141 ± 0.021 mg kg -1 . In general terms, the hydraulic cements marketed and used in Costa Rica have a suitable chemical composition compared with some cements marketed in Germany. The results of the content of heavy metals presented in this study provide significant information for future studies in the area of toxicology, ecotoxicology, standardization and national regulation. (author) [es

  2. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review

    International Nuclear Information System (INIS)

    Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P.

    2009-01-01

    Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C 3 S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H + attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C 3 S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29 Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique

  3. Solidification of metallic aluminum on magnesium phosphate cements

    International Nuclear Information System (INIS)

    Lahalle, Hugo

    2016-01-01

    This work deals with the stabilization/solidification of radioactive waste using cement. More particularly, it aims at assessing the chemical compatibility between metallic aluminum and mortars based on magnesium phosphate cement. The physical and chemical processes leading to setting and hardening of the cement are first investigated. X-ray diffraction (XRD), thermogravimetry (TGA) and nuclear magnetic resonance spectroscopy ("3"1P and "1"1B MAS-NMR) are first used to characterize the solid phases formed during hydration, while inductively coupled plasma atomic emission spectroscopy analysis (ICP-AES), electrical conductometry and pH measurements provide information on the pore solution composition. Then, the corrosion of metallic aluminum in magnesium phosphate mortars is studied by monitoring the equilibrium potential and by electrochemical impedance spectroscopy (EIS). Magnesium phosphate cement is prepared from a mix of magnesium oxide (MgO) and potassium dihydrogen orthophosphate (KH_2PO_4). In the presence of water, hydration occurs according to a dissolution - precipitation process. The main hydrate is K-struvite (MgKPO_4.6H_2O). Its precipitation is preceded by that of two transient phases: phosphorrosslerite (MgHPO_4.7H_2O) and Mg_2KH(PO_4)_2.15H_2O. Boric acid retards cement hydration by delaying the formation of cement hydrates. Two processes may be involved in this retardation: the initial precipitation of amorphous or poorly crystallized minerals containing boron and phosphorus atoms, and/or the stabilization of cations (Mg"2"+, K"+) in solution. As compared with a Portland cement-based matrix, corrosion of aluminum is strongly limited in magnesium phosphate mortar. The pore solution pH is close to neutrality and falls within the passivation domain of aluminum. Corrosion depends on several parameters: it is promoted by a water-to-cement ratio (w/c) significantly higher than the chemical water demand of cement (w/c = 0.51), and by the addition of boric

  4. Radionuclide and metal sorption on cement and concrete

    CERN Document Server

    Ochs, Michael; Wang, Lian

    2016-01-01

    Cementitious materials are being widely used as solidification/stabilisation and barrier materials for a variety of chemical and radioactive wastes, primarily due to their favourable retention properties for metals, radionuclides and other contaminants. The retention properties result from various mineral phases in hydrated cement that possess a high density and diversity of reactive sites for the fixation of contaminants through a variety of sorption and incorporation reactions. This book presents a state of the art review and critical evaluation of the type and magnitude of the various sorption and incorporation processes in hydrated cement systems for twenty-five elements relevant for a broad range of radioactive and industrial wastes. Effects of cement evolution or ageing on sorption/incorporation processes are explicitly evaluated and quantified. While the immobilisation of contaminants by mixing-in during hydration is not explicitly addressed, the underlying chemical processes are similar. A quantitativ...

  5. 21 CFR 888.3550 - Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial polymer/metal/metal... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a device...

  6. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Science.gov (United States)

    Brondani, Lucas Pradebon; Pereira-Cenci, Tatiana; Wandsher, Vinicius Felipe; Pereira, Gabriel Kalil; Valandro, Luis Felipe; Bergoli, César Dalmolin

    2017-04-10

    Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding) and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding), resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation) for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  7. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  8. A Study of Metal-Cement Composites with Additives

    Directory of Open Access Journals (Sweden)

    Mironov Victor

    2014-12-01

    Full Text Available The application of small-sized metal fillers (SMF provides a combination of high bulk density, increased durability and ferromagnetic properties of composite materials on the cement basis. However, the total strength of the composite can be compromised by poor adhesion of metal particles with the cement matrix. The use of versatile additives like microsilica and metakaolin is able to improve the structural integrity and mechanical properties of heavy concretes. The paper considers the results of a study using specimens of heavy concretes with SMF aiming to estimate its strength, structural features and ultrasonic parameters. It was found that the contact of SMF particles with the cement was not perfect, since the voids appeared between them and the cement matrix during the cement hydration process (exothermal reaction. Due to the border porosity, the specimens with the metal fillers have lower compressive strength, lower ultrasound velocity and increased frequency slope of attenuation. Microsilica and metakaolin additives facilitate better contact zone between the cement matrix and metal fillers.

  9. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Directory of Open Access Journals (Sweden)

    Lucas Pradebon BRONDANI

    2017-04-01

    Full Text Available Abstract Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding, resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  10. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    Science.gov (United States)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  11. Elution behavior of heavy metals from cement solidified products of incinerated ash waste - 59102

    International Nuclear Information System (INIS)

    Meguro, Yoshihiro; Kawato, Yoshimi; Nakayama, Takuya; Tomioka, Osamu; Mitsuda, Motoyuki

    2012-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose radioactive incinerated ash waste. In order to bury the solidified product, it is required that elution of hazardous heavy metals included in the ash from the solidified products is inhibited. In this study, the elution behavior of the heavy metals from the synthetic solidified products, which included Pb(II), Cd(II), and Cr(VI) and were prepared using ordinary portland cement (OPC), blast furnace slag cement (BFS), or a cement material that showed low alkalinity (LA-Cement), was investigated. Several chemicals and materials were added as additive agents to prevent the elution of the heavy metals. When OPC was used, Cd elution was inhibited, but Pb and Cr were not enough even using the additive agent examined. FeSO 4 and Na 2 S additive agents worked effective to inhibit elution of Cr. When BFS was used, the elution of Pb, Cd and Cr was inhibited for the all products prepared. In the case of LA-Cement, the elution of Pb and Cd was inhibited for the all products, but only the product that was added FeSO 4 showed good result of the elution of Cr. (authors)

  12. Characteristics of Cement Solidification of Metal Hydroxide Waste

    Directory of Open Access Journals (Sweden)

    Dae-Seo Koo

    2017-02-01

    Full Text Available To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

  13. Characteristics of cement solidification of metal hydroxide waste

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae Seo; Sung, Hyun Hee; Kim, Seung Soo; Kim, Gye Nam; Choi, Jong Won [Dept. of Decontemination Decommission Technology Development, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

  14. Analysis of Chemical Composition of Portland Cement in Ghana: A Key to Understand the Behavior of Cement

    OpenAIRE

    Bediako, Mark; Amankwah, Eric Opoku

    2015-01-01

    The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC) and Portland limestone cement (PLC), CSIR-BRRI Pozzomix, Dangote OPC, a...

  15. 21 CFR 888.3320 - Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/metal semi-constrained, with a... Devices § 888.3320 Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. (a) Identification. A hip joint metal/metal semi-constrained, with a cemented acetabular...

  16. In vitro tensile strength of luting cements on metallic substrate.

    Science.gov (United States)

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.

  17. Influence of Temporary Cements on the Bond Strength of Self-Adhesive Cement to the Metal Coronal Substrate.

    Science.gov (United States)

    Peixoto, Raniel Fernandes; De Aguiar, Caio Rocha; Jacob, Eduardo Santana; Macedo, Ana Paula; De Mattos, Maria da Gloria Chiarello; Antunes, Rossana Pereira de Almeida

    2015-01-01

    This research evaluated the influence of temporary cements (eugenol-containing [EC] or eugenol-free [EF]) on the tensile strength of Ni-Cr copings fixed with self-adhesive resin cement to the metal coronal substrate. Thirty-six temporary crowns were divided into 4 groups (n=9) according to the temporary cements: Provy, Dentsply (eugenol-containing), Temp Cem, Vigodent (eugenol-containing), RelyX Temp NE, 3M ESPE (eugenol-free) and Temp Bond NE, Kerr Corp (eugenol-free). After 24 h of temporary cementation, tensile strength tests were performed in a universal testing machine at a crosshead speed of 0.5 mm/min and 1 kN (100 kgf) load cell. Afterwards, the cast metal cores were cleaned by scraping with curettes and air jet. Thirty-six Ni-Cr copings were cemented to the cast metal cores with self-adhesive resin cement (RelyX U200, 3M ESPE). Tensile strength tests were performed again. In the temporary cementation, Temp Bond NE (12.91 ± 2.54) and Temp Cem (12.22 ± 2.96) presented the highest values of tensile strength and were statistically similar to each other (p>0.05). Statistically significant difference (pcementation of Ni-Cr copings with self-adhesive resin cement. In addition, Temp Cem (120.68 ± 48.27) and RelyX Temp NE (103.04 ± 26.09) showed intermediate tensile strength values. In conclusion, the Provy eugenol-containing temporary cement was associated with the highest bond strength among the resin cements when Ni-Cr copings were cemented to cast metal cores. However, the eugenol cannot be considered a determining factor in increased bond strength, since the other tested cements (1 eugenol-containing and 2 eugenol-free) were similar.

  18. Analyses of heavy metals in mineral trioxide aggregate and Portland cement.

    Science.gov (United States)

    Schembri, Matthew; Peplow, George; Camilleri, Josette

    2010-07-01

    Portland cement is used in the construction industry as a binder in concrete. It is manufactured from chalk, limestone, and clay, which are clinkered at very high temperatures and ground with gypsum to form Portland cement. The raw materials and the manufacturing process can result in the inclusion of heavy metals in Portland cement. Portland cement with a four to one addition of bismuth oxide is marketed as mineral trioxide aggregate (MTA), which is used mainly as a dental material. Heavy metal inclusion can be of concern because MTA is in contact with hard and soft tissues. Measurements of arsenic, lead, and chromium in hydrated gray and white Portland cement, ProRoot MTA, and MTA Angelus were conducted with graphite furnace atomic absorption spectrophotometry after acid digestion on the hydrated material. The leaching of the metal ions from the solid material in water and simulated body fluid (SBF) was also determined. All cement types showed high relative values of leached chromium compared with arsenic and lead in both the total metal content and leached species. The gray Portland cement showed the highest total amount of metal. The white Portland and both MTAs had lower values for all the leached metal ions. Both MTAs released more arsenic than the amount specified in ISO 9917-1 (2007). Portland cements and MTAs showed evidence of heavy metals in the acid-soluble form as well as leaching in deionized water and SBF. MTA contained levels of arsenic higher than the safe limit specified by the ISO 9917-1 (2007). Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Characterization and chemical activity of Portland cement and two experimental cements with potential for use in dentistry.

    Science.gov (United States)

    Camilleri, J

    2008-09-01

    To evaluate the chemical activity of Portland cement and two other cement types with similar chemical composition to mineral trioxide aggregate with the aim of developing these cements for further applications in dentistry. The chemical composition of the three cement types namely Portland cement, calcium sulpho-aluminate cement and calcium fluoro-aluminate cement was evaluated by elemental analysis using energy dispersive analysis with X-ray under the scanning electron microscope and by X-ray diffraction analysis (XRD) to determine the phases. The constituents of the hydration reaction by-products were evaluated by XRD analysis of the set cements at 1, 7, 28 and 56 days and by analysis of the leachate by ion chromatography. The pH of both cements and leachate was determined at different time intervals. Cements admixed with micro-silica were also tested to determine the effect of micro-silica on the reaction by-products. All three cement types were composed of tricalcium silicate as the main constituent phase. The hydration reaction of Portland cement produced calcium hydroxide. However, this was not present in the other cements tested at all ages. Admixed micro-silica had little or no effect on the cements with regard to reaction by-products. The pH of all cements tested was alkaline. Both the experimental calcium sulpho-aluminate cement and calcium fluoro-aluminate cement had different hydration reactions to that of Portland cement even though calcium silicate was the major constituent element of both cement types. No calcium hydroxide was produced as a by-product to cement hydration. Micro-silica addition to the cement had no effect on the hydration reaction.

  20. Chemical alteration of cement hydrates by dissolution

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Nakanishi, Kiyoshi

    2000-01-01

    Cementitious material is a potential waste packaging and backfilling material for the radioactive waste disposal, and is expected to provide both physical and chemical containment. In particular, the sorption of radionuclides onto cementitious material and the ability to provide a high pH condition are very important parameters when considering the release of radionuclides from radioactive wastes. For the long term, in the geological disposal environment, cement hydrates will be altered by, for example, dissolution, chemical reaction with ions in the groundwater, and hydrothermal reaction. Once the composition or crystallinity of the constituent minerals of a cement hydrate is changed by these processes, the pH of the repository buffered by cementitious material and its sorption ability might be affected. However, the mechanism of cement alteration is not yet fully understood. In this study, leaching experiments of some candidate cements for radioactive waste disposal were carried out. Hydrated Ordinary Portland Cement (OPC), Blast Furnace Slag blended cement (OPC/BFS) and Highly containing Flyash and Silicafume Cement (HFSC) samples were contacted with distilled water at liquid:solid ratios of 10:1, 100:1 and 1000:1 at room temperature for 200 days. In the case of OPC, Ca(OH) 2 dissolved at high liquid:solid ratios. The specific surface area of all cement samples increased by leaching process. This might be caused by further hydration and change of composition of constituent minerals. A model is presented which predicts the leaching of cement hydrates and the mineral composition in the hydrated cement solid phase, including the incongruent dissolution of CSH gel phases and congruent dissolution of Ca(OH) 2 , Ettringite and Hydrotalcite. Experimental results of dissolution of Ca-O-H and Ca-Si-O-H phases were well predicted by this model. (author)

  1. Cement for oil well developed from ordinary cement: characterization physical, chemical and mineralogical

    International Nuclear Information System (INIS)

    Oliveira, D.N.S.; Neves, G. de A.; Chaves, A.C.; Mendonca, A.M.G.D.; Lima, M.S. de; Bezerra, U.T.

    2012-01-01

    This work aims to characterize a new type of cement produced from the mixture of ordinary Portland cement, which can be used as an option in the cementing of oil wells. To enable this work we used the method of lineal programming for the new cement composition, then conducted tests to characterize through particle size analysis by laser diffraction, chemical analysis by EDX, TGA, X-ray diffraction, time grip, resistance to compression. The overall result showed that the new cement had made low-C3A, takes more time to the CPP, thermal stability up to 500 ° C, the kinetics of hydration and low levels of major components consistent with the specifications of ABNT. (author)

  2. Particulate metallic debris in cemented total hip arthroplasty.

    Science.gov (United States)

    Salvati, E A; Betts, F; Doty, S B

    1993-08-01

    Several studies conducted by the authors in the last six years demonstrate that the generation of metallic debris is more severe with titanium alloy than with cobalt-chrome alloy femoral components in cemented total hip arthroplasty (THA). The debris is generated from the articulating surface, particularly if entrapped acrylic debris produces three-body wear, and from the stem surface when the component loosens and abrades against fragmented cement. In selected cases in which the titanium metallic debris is copious, premature failure and severe progressive bone loss occurs. Electron microscopy demonstrates that the particles of metallic debris can be extremely small (a few hundredths of 1 micron). They are phagocytized by the macrophages and transported to the phagolysosomes. In this highly corrosive environment, the very high surface area of the particles may release toxic concentrations of the constituents of the alloy intracellularly, probably leading to progressive cell degeneration and death, with subsequent release of intracellular enzymes and ingested metallic debris. This cycle most likely repeats itself, leading to tissue necrosis. The results presented do not support the use of titanium alloy femoral components for cemented THA, particularly for the articulating surface.

  3. Sulfur polymer cement encapsulation of RCRA toxic metals and metal oxides

    International Nuclear Information System (INIS)

    Calhoun, C.L. Jr.; Nulf, L.E.; Gorin, A.H.

    1995-06-01

    A study was conducted to determine the suitability of Sulfur Polymer Cement (SPC) encapsulation technology for the stabilization of RCRA toxic metal and metal oxide wastes. In a series of bench-scale experiments, the effects of sodium sulfide additions to the waste mixture, residence time, and temperature profile were evaluated. In addition, an effort was made to ascertain the degree to which SPC affords chemical stabilization as opposed to physical encapsulation. Experimental results have demonstrated that at the 25 wt % loading level, SPC can effectively immobilize Cr, Cr 2 O 3 , Hg, Pb, and Se to levels below regulatory limits. SPC encapsulation also has been shown to significantly reduce the leachability of other toxic compounds including PbO, PbO 2 , As 2 O 3 , BaO, and CdO. In addition, data has confirmed sulfide conversion of Hg, Pb, PbO, PbO 2 , and BaO as the product of their reaction with SPC

  4. Properties of cemented carbides alloyed by metal melt treatment

    International Nuclear Information System (INIS)

    Lisovsky, A.F.

    2001-01-01

    The paper presents the results of investigations into the influence of alloying elements introduced by metal melt treatment (MMT-process) on properties of WC-Co and WC-Ni cemented carbides. Transition metals of the IV - VIll groups (Ti, Zr, Ta, Cr, Re, Ni) and silicon were used as alloying elements. It is shown that the MMT-process allows cemented carbides to be produced whose physico-mechanical properties (bending strength, fracture toughness, total deformation, total work of deformation and fatigue fracture toughness) are superior to those of cemented carbides produced following a traditional powder metallurgy (PM) process. The main mechanism and peculiarities of the influence of alloying elements added by the MMT-process on properties of cemented carbides have been first established. The effect of alloying elements on structure and substructure of phases has been analyzed. (author)

  5. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    International Nuclear Information System (INIS)

    Patel, Hema; Pandey, Suneel

    2012-01-01

    Highlights: ► Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. ► Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. ► Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. ► There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10–25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62–33.62 MPa) and block density (1222.17–1688.72 kg/m 3 ) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  6. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.

    Science.gov (United States)

    Lederer, Jakob; Trinkel, Verena; Fellner, Johann

    2017-02-01

    A number of studies present the utilization of fly ashes from municipal solid waste incineration (MSWI) in cement production as a recycling alternative to landfilling. While there is a lot of research on the impact of MSWI fly ashes utilization in cement production on the quality of concrete or the leaching of heavy metals, only a few studies have determined the resulting heavy metal content in cements caused by this MSWI fly ashes utilization. Making use of the case of Austria, this study (1) determines the total content of selected heavy metals in cements currently produced in the country, (2) designs a scenario and calculates the resulting heavy metal contents in cements assuming that all MSWI fly ashes from Austrian grate incinerators were used as secondary raw materials for Portland cement clinker production and (3) evaluates the legal recyclability of demolished concretes produced from MSWI fly ash amended cements based on their total heavy metal contents. To do so, data from literature and statistics are combined in a material flow analysis model to calculate the average total contents of heavy metals in cements and in the resulting concretes according to the above scenario. The resulting heavy metal contents are then compared (i) to their respective limit values for cements as defined in a new technical guideline in Austria (BMLFUW, 2016), and (ii) to their respective limit values for recycling materials from demolished concrete. Results show that MSWI fly ashes utilization increases the raw material input in cement production by only +0.9%, but the total contents of Cd by +310%, and Hg, Pb, and Zn by +70% to +170%. However these and other heavy metal contents are still below their respective limit values for Austrian cements. The same legal conformity counts for recycling material derived from concretes produced from the MSWI fly ash cements. However, if the MSWI fly ash ratio in all raw materials used for cement production were increased from 0.9% to 22

  7. 21 CFR 888.3350 - Hip joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer semi-constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3350 Hip joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/polymer semi...

  8. 21 CFR 888.3300 - Hip joint metal constrained cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal constrained cemented or uncemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3300 Hip joint metal constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal constrained...

  9. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer non-constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3120 Ankle joint metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non...

  10. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    form of the dispersion model. The development of hydration varied between the investigated cements; based on the measured data the degree of hydration after 24 h hydration at 20 C varied between 40 and 50%. This should be taken into account when comparing properties of concrete made from the different......Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...

  11. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  12. 21 CFR 888.3360 - Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint femoral (hemi-hip) metallic cemented or... Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis. (a) Identification. A hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis is a device intended to be implanted...

  13. Chloride Ingress in Chemically Activated Calcined Clay-Based Cement

    Directory of Open Access Journals (Sweden)

    Joseph Mwiti Marangu

    2018-01-01

    Full Text Available Chloride-laden environments pose serious durability concerns in cement based materials. This paper presents the findings of chloride ingress in chemically activated calcined Clay-Ordinary Portland Cement blended mortars. Results are also presented for compressive strength development and porosity tests. Sampled clays were incinerated at a temperature of 800°C for 4 hours. The resultant calcined clay was blended with Ordinary Portland Cement (OPC at replacement level of 35% by mass of OPC to make test cement labeled PCC35. Mortar prisms measuring 40 mm × 40 mm × 160 mm were cast using PCC35 with 0.5 M Na2SO4 solution as a chemical activator instead of water. Compressive strength was determined at 28th day of curing. As a control, OPC, Portland Pozzolana Cement (PPC, and PCC35 were similarly investigated without use of activator. After the 28th day of curing, mortar specimens were subjected to accelerated chloride ingress, porosity, compressive strength tests, and chloride profiling. Subsequently, apparent diffusion coefficients (Dapp were estimated from solutions to Fick’s second law of diffusion. Compressive strength increased after exposure to the chloride rich media in all cement categories. Chemically activated PCC35 exhibited higher compressive strength compared to nonactivated PCC35. However, chemically activated PCC35 had the least gain in compressive strength, lower porosity, and lower chloride ingress in terms of Dapp, compared to OPC, PPC, and nonactivated PCC35.

  14. 3.4. Chemical additives and granulometric composition influence on soils armed by cement

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    Purpose of this work was to evaluate an influence of various chemical additives on soils armed by portland cement. Experimental research of kinetics of soil cements structure formation after adding the chemicals was carried out. According to the investigations it was determined that structure formation process of soil cements depended on granulometric composition of armed soil, cement quantity, type and quantity of chemical additives.

  15. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a device...

  16. 21 CFR 888.3530 - Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer semi... § 888.3530 Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer semi-constrained cemented prosthesis is a device intended...

  17. 21 CFR 888.3540 - Knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemoral polymer/metal semi... § 888.3540 Knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis. (a) Identification. A knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis is a two-part...

  18. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite semi... § 888.3500 Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite semi-constrained cemented prosthesis is a two-part...

  19. 21 CFR 888.3520 - Knee joint femorotibial metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer non... § 888.3520 Knee joint femorotibial metal/polymer non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer non-constrained cemented prosthesis is a device intended to...

  20. Sustainable Blended Cements-Influences of Packing Density on Cement Paste Chemical Efficiency.

    Science.gov (United States)

    Knop, Yaniv; Peled, Alva

    2018-04-18

    This paper addresses the development of blended cements with reduced clinker amount by partial replacement of the clinker with more environmentally-friendly material (e.g., limestone powders). This development can lead to more sustainable cements with reduced greenhouse gas emission and energy consumption during their production. The reduced clicker content was based on improved particle packing density and surface area of the cement powder by using three different limestone particle diameters: smaller (7 µm, 3 µm) or larger (70 µm, 53 µm) than the clinker particles, or having a similar size (23 µm). The effects of the different limestone particle sizes on the chemical reactivity of the blended cement were studied by X-ray diffraction (XRD), thermogravimetry and differential thermogravimetry (TG/DTG), loss on ignition (LOI), isothermal calorimetry, and the water demand for reaching normal consistency. It was found that by blending the original cement with limestone, the hydration process and the reactivity of the limestone itself were increased by the increased surface area of the limestone particles. However, the carbonation reaction was decreased with the increased packing density of the blended cement with limestone, having various sizes.

  1. Retention of metal-ceramic crowns with contemporary dental cements.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Zhang, Hai; Wataha, John C

    2009-09-01

    New types of crown and bridge cement are in use by practitioners, and independent studies are needed to assess their effectiveness. The authors conducted a study in three parts (study A, study B, and study C) and to determine how well these new cements retain metal-ceramic crowns. The authors prepared teeth with a 20-degree taper and a 4-millimeter length. They cast high-noble metal-ceramic copings, then fitted and cemented them with a force of 196 newtons. The types of cements they used were zinc phosphate, resin-modified glass ionomer, conventional resin and self-adhesive modified resin. They thermally cycled the cemented copings, then removed them. They recorded the removal force and calculated the stress of dislodgment by using the surface area of each preparation. They used a single-factor analysis of variance to analyze the data (alpha = .05). The mean stresses necessary to remove crowns, in megapascals, were 8.0 for RelyX Luting (3M ESPE, St. Paul, Minn.), 7.3 for RelyX Unicem (3M ESPE), 5.7 for Panavia F (Kuraray America, New York) and 4.0 for Fuji Plus (GC America, Alsip, Ill.) in study A; 8.1 for RelyX Luting, 2.6 for RelyX Luting Plus (3M ESPE) and 2.8 for Fuji CEM (GC America) in study B; and 4.9 for Maxcem (Kerr, Orange, Calif.), 4.0 for BisCem (Bisco, Schaumburg, Ill.), 3.7 for RelyX Unicem Clicker (3M ESPE), 2.9 for iCEM (Heraeus Kulzer, Armonk, N.Y.) and 2.3 for Fleck's Zinc Cement (Keystone Industries, Cherry Hill, N.J.) in study C. Powder-liquid versions of new cements were significantly more retentive than were paste-paste versions of the same cements. The mean value of crown removal stress for the new self-adhesive modified-resin cements varied appreciably among the four cements tested. All cements retained castings as well as or better than did zinc phosphate cement. Powder-liquid versions of cements, although less convenient to mix, may be a better clinical choice when crown retention is an issue. All cements tested will retain castings

  2. 21 CFR 888.3370 - Hip joint (hemi-hip) acetabular metal cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint (hemi-hip) acetabular metal cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3370 Hip joint (hemi-hip) acetabular metal cemented prosthesis. (a) Identification. A hip joint (hemi-hip) acetabular...

  3. Assessment of Pollution Potentialities of some Portland Cement ...

    African Journals Online (AJOL)

    Chemical analysis of some Portland cement commonly used in Nigeria was carried out. All the cement studies were found to be good for concrete work especially where no special property is required. The concentration levels of heavy metals in all the cement samples were above the tolerance limit and therefore need to ...

  4. Chemical composition, radiopacity, and biocompatibility of Portland cement with bismuth oxide.

    Science.gov (United States)

    Hwang, Yun-Chan; Lee, Song-Hee; Hwang, In-Nam; Kang, In-Chol; Kim, Min-Seok; Kim, Sun-Hun; Son, Ho-Hyun; Oh, Won-Mann

    2009-03-01

    This study compared the chemical constitution, radiopacity, and biocompatibility of Portland cement containing bismuth oxide (experimental cement) with those of Portland cement and mineral trioxide aggregate (MTA). The chemical constitution of materials was determined by scanning electron microscopy and energy-dispersive X-ray analysis. The radiopacity of the materials was determined using the ISO/6876 method. The biocompatibility of the materials was tested by MTT assay and tissue reaction. The constitution of all materials was similar. However, the Portland cement and experimental cement were more irregular and had a larger particle size than MTA. The radiopacity of the experimental cement was similar to MTA. The MTT assay revealed MTA to have slightly higher cell viability than the other materials. However, there were no statistically significant differences between the materials, with the exception of MTA at 24 h. There was no significant difference in the tissue reaction between the experimental groups. These results suggest that the experimental cement may be used as a substitute for MTA.

  5. Chemical environment in cements

    International Nuclear Information System (INIS)

    Glasser, F.B.; Angus, M.J.; McCulloch, C.E.; Macphee, D.; Rahman, A.A.

    1984-01-01

    The alkalinity of Portland cements is responsible for precipitation and low solubility of many radwastes species. The sources of alkalinity are evaluated and two chemical models, based on experimental and theoretical data presented enabling the effect of blending agents (PFA, silica fume, etc.) to be evaluated and the alkalinity of the system at longer ages predicted. The data take the form of a solubility model which is applicable to non-heat generating wastes. 7 refs., 10 figs

  6. Marginal Fit of Metal-Ceramic Copings: Effect of Luting Cements and Tooth Preparation Design.

    Science.gov (United States)

    de Almeida, Juliana Gomes Dos Santos Paes; Guedes, Carlos Gramani; Abi-Rached, Filipe de Oliveira; Trindade, Flávia Zardo; Fonseca, Renata Garcia

    2017-12-22

    To evaluate the effect of the triad finish line design, axial wall convergence angle, and luting cement on the marginal fit of metal copings used in metal-ceramic crowns. Schematic dies and their respective copings were cast in NiCr alloy. The dies exhibited the following finish line/convergence angle combinations: sloping shoulder/6°, sloping shoulder/20°, shoulder/6°, shoulder/20°. Marginal fit was evaluated under a stereomicroscope, before and after cementation. Copings were air-abraded with 50 μm Al 2 O 3 particles and cemented with Cimento de Zinco, RelyX U100, or Panavia F cements (n = 10/group). Data were square-root transformed and analyzed by 3-way factorial random effect model and Tukey's post hoc test (α = 0.05). Statistical analysis showed significance for the interactions finish line and convergence angle (p marginal discrepancy when compared to the other finish line/convergence angle combinations, which were statistically similar among each other. For both convergence angles and for all luting cements, the marginal discrepancy was significantly higher after cementation. Before and after cementation, 6° provided better marginal fit than 20°. After cementation, Panavia F provided higher marginal discrepancy than Cimento de Zinco. Lower convergence angle combined with shoulder and a low-consistency luting cement is preferable to cement metal copings. © 2017 by the American College of Prosthodontists.

  7. 21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint... replace a hip joint. The device prevents dislocation in more than one anatomic plane and has components...

  8. The effect of chemically adjusting cement compositions on leachabilities of waste ions

    International Nuclear Information System (INIS)

    Barnes, M.W.; Scheetz, B.E.; Roy, D.M.

    1986-01-01

    The chemical composition of both portland and aluminate cements was adjusted by adding amorphous silica. In the case of portland cement, the object was to react with excess portlandite and obtain an overall composition compatible with C-S-H gel or C-S-H gel + silica at low temperatures, and to obtain the tobermorite composition in order to be in equilibrium with this phase at temperatures above normal ambient. In the case of aluminate cement, the object was to be in equilibrium with more silica-rich phases. These silica-adjusted cements were used to make composites with nuclear waste forms. Leach tests showed that the silica-adjusted composites were chemically more stable than those made with as-received cement. Leach rates were lower in the case of the adjusted cements for Rb, Cs, Ca, Sr, Ba, La, Ce, Nd, Gd, Al, and Si. Only Na in the case of both portland and aluminate cements, and Mg and U in the case of aluminate cements, had greater leach rates in adjusted cements. Adjusting the composition of cements with silica is concluded to be beneficial when making composites to encapsulate nuclear waste forms

  9. 21 CFR 888.3390 - Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint femoral (hemi-hip) metal/polymer... § 888.3390 Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis. (a) Identification. A hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis is a two-part...

  10. Leaching of heavy metals from cementitious composites made of new ternary cements

    Science.gov (United States)

    Kuterasińska-Warwas, Justyna; Król, Anna

    2017-10-01

    The paper presents a comparison of research methods concerning the leaching of harmful substances (selected heavy metal cations ie. Pb, Cu, Zn and Cr) and their degree of immobilization in cement matrices. The new types of ternary cements were used in the study, where a large proportion of cement clinker was replaced by other non-clinker components - industrial wastes, ie. siliceous fly ash from power industry and granulated blast furnace slag from the iron and steel industry. In studied cementitious binders also ground limestone was used, which is a widely available raw material. The aim of research is determining the suitability of new cements for neutralizing harmful substances in the obtained matrices. The application of two research methods in accordance with EN 12457-4 and NEN 7275 intends to reflection of changing environmental conditions whom composite materials may actually undergo during their exploitation or storing on landfills. The results show that cements with high addition of non-clinker components are suitable for stabilization of toxic substances and the obtained cement matrices retain a high degree of immobilization of heavy metals at the level of 99%.

  11. Chemical constitution, physical properties, and biocompatibility of experimentally manufactured Portland cement.

    Science.gov (United States)

    Hwang, Yun-Chan; Kim, Do-Hee; Hwang, In-Nam; Song, Sun-Ju; Park, Yeong-Joon; Koh, Jeong-Tae; Son, Ho-Hyun; Oh, Won-Mann

    2011-01-01

    An experimental Portland cement was manufactured with pure raw materials under controlled laboratory conditions. The aim of this study was to compare the chemical constitution, physical properties, and biocompatibility of experimentally manufactured Portland cement with those of mineral trioxide aggregate (MTA) and Portland cement. The composition of the cements was determined by scanning electron microscopy (SEM) and energy-dispersive x-ray analysis (EDAX). The setting time and compressive strength were tested. The biocompatibility was evaluated by using SEM and XTT assay. SEM and EDAX revealed the experimental Portland cement to have a similar composition to Portland cement. The setting time of the experimental Portland cement was significantly shorter than that of MTA and Portland cement. The compressive strength of the experimental Portland cement was lower than that of MTA and Portland cement. The experimental Portland cement showed a similar biocompatibility to MTA. The experimental Portland cement might be considered as a possible substitute for MTA in clinical usage after further testing. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Assessing Metal Exposures in a Community near a Cement Plant in the Northeast U.S.

    Directory of Open Access Journals (Sweden)

    Zhao Dong

    2015-01-01

    Full Text Available Cement production is a major source of metals and metalloids in the environment, while exposures to metals and metalloids may impact human health in the surrounding communities. We recruited 185 participants living in the vicinity of a cement plant in the northeast U.S., and measured the levels of aluminum (Al, arsenic (As, cadmium (Cd, lead (Pb, mercury (Hg, and selenium (Se in blood and Hg in hair samples from them. A questionnaire was used to assess potential sources of Hg exposure. Multivariate regressions and spatial analyses were performed to evaluate the relative importance of different routes of exposures. The metal concentrations in blood or hair samples of our study participants were comparable to the U.S. general or regional population. Smoking contributed significantly to Cd and Pb exposures, and seafood consumption contributed significantly to Hg and As exposures, while variables related to the cement plant were not significantly associated with metal concentrations. Our results suggest that our study population was not at elevated health risk due to metal exposures, and that the contribution of the cement plant to metal exposures in the surrounding community was minimal.

  13. Modelling of chemical evolution of low pH cements at long term

    International Nuclear Information System (INIS)

    El Bitouri, Y.; Buffo-Lacarriere, L.; Sellier, A.; Bourbon, X.

    2015-01-01

    In the context of the underground radioactive waste repository, low-pH cements were developed to reduce interactions between concrete and clay barrier. These cements contain high proportions of mineral additions like silica fume, fly ash or blast furnace slag for example. The high ratio of cement replacement by pozzolanic additions allows to reduce the pH by a global reduction of Ca/Si ratio of the hydrates (according to the one observed on CEM I pastes). In order to predict the short term development of the hydration for each component of this cement, a multiphasic hydration model, previously developed, is used. The model predicts the evolution of hydration degree of each anhydrous phase and consequently the quantity of each hydrate in paste (CH, aluminates, CSH with different Ca/Si ratios). However, this model is not suitable to determine the long term mineralogical and chemical evolution of the material, due to the internal change induced by chemical imbalance between initial hydrates. In order to evaluate the chemical characteristics of low pH cement based materials, and thus assess its chemical stability in the context of radioactive waste storage, a complementary model of chemical evolution at long term is proposed. This original model is based on 'solid-solution' principles. It assumes that the microdiffusion of calcium plays a major role to explain how the different Ca/Si ratio of initial C-S-H tends together toward a medium stabilized value. The main mechanisms and full development of the model equations are presented first. Next, a comparison of the model with experimental data issue from EDS (Energy Dispersive X-ray Spectroscopy) analysis on low pH cement allows to test the model. (authors)

  14. Statistical study of chemical additives effects in the waste cementation

    International Nuclear Information System (INIS)

    Tello, Cledola C.O. de; Diniz, Paula S.; Haucz, Maria J.A.

    1997-01-01

    This paper presents the statistical study, that was carried out to analyse the chemical additives effect in the waste cementation process. Three different additives from two industries were tested: set accelerator, set retarder and super plasticizers, in cemented pates with and without bentonite. The experiments were planned in accordance with the 2 3 factorial design, so that the effect of each type of additive, its quantity and manufacturer in cemented paste and specimens could be evaluated. The results showed that the use of these can improve the cementation process and the product. The admixture quantity and the association with bentonite were the most important factors affecting the process and product characteristics. (author). 4 refs., 9 figs., 4 tabs

  15. 21 CFR 888.3380 - Hip joint femoral (hemi-hip) trunnion-bearing metal/polyacetal cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint femoral (hemi-hip) trunnion-bearing... Devices § 888.3380 Hip joint femoral (hemi-hip) trunnion-bearing metal/polyacetal cemented prosthesis. (a) Identification. A hip joint femoral (hemi-hip) trunnion-bearing metal/polyacetal cemented prosthesis is a two...

  16. Analysis of metal contents in Portland Type V and MTA-based cements.

    Science.gov (United States)

    Dorileo, Maura Cristiane Gonçales Orçati; Bandeca, Matheus Coelho; Pedro, Fábio Luis Miranda; Volpato, Luiz Evaristo Ricci; Guedes, Orlando Aguirre; Dalla Villa, Ricardo; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique

    2014-01-01

    The aim of this study was to determine, by Atomic Absorption Spectrometry (AAS), the concentration levels of 11 metals in Type V gray and structural white PC, ProRoot MTA, and MTA Bio. Samples, containing one gram of each tested cement, were prepared and transferred to a 100 mL Teflon tube with a mixture of 7.0 mL of nitric acid and 21 mL of hydrochloric acid. After the reaction, the mixture was filtered and then volumed to 50 mL of distilled water. For each metal, specific patterns were determined from universal standards. Arsenic quantification was performed by hydride generator. The analysis was performed five times and the data were statistically analyzed at 5% level of significance. Only the cadmium presented concentration levels of values lower than the quantification limit of the device. The AAS analysis showed increased levels of calcium, nickel, and zinc in structural white PC. Type V PC presented the greatest concentration levels of arsenic, chromium, copper, iron, lead, and manganese (P cements, and the lowest concentration levels were observed in Portland cements, while the highest were observed in ProRoot MTA. Both PC and MTA-based cements showed evidence of metals inclusion.

  17. Corrosion of metal containers containing cemented radioactive wastes

    International Nuclear Information System (INIS)

    Duffo, G.S.; Farina, S.B.; Schulz, F.M.; Marotta, F

    2010-01-01

    Nuclear activities generate different kinds of radioactive wastes. In the case of Argentina, wastes classified as low and medium level are conditioned in metal drums for final disposal in a repository whose design is based on the use of multiple and independent barriers. Nuclear energy plants generate a large volume of mid-level radioactive wastes, consisting mainly of ion-exchange resins contaminated by fission products. Other contaminated products such as gloves, papers, clothing, rubber and plastic tubing, can be incinerated and the ashes from the combustion also constitute wastes that must be disposed of. These wastes (resins and ashes) must be immobilized in order to avoid the release of radionuclides into the environment. The wastes usually undergo a process of cementing to immobilize them. This work aims to systematically study the process of degradation by corrosion of the steel drums in contact with the cemented resins and with the ashes cemented with the addition of different types and concentrations of aggressive compounds (chloride and sulfate). The specimens are configured so that the parameters of interest for the steel in contact with the cemented materials can be measured. The variables of corrosion potential, electric resistivity of the matrix and polarization resistance (PR) were monitored and show that the presence of chloride increases the susceptibility to corrosion of the drum steel that is in contact with the cement resin matrix

  18. 21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/composite semi-constrained... Hip joint metal/composite semi-constrained cemented prosthesis. (a) Identification. A hip joint metal... hip joint. The device limits translation and rotation in one or more planes via the geometry of its...

  19. The role of chemical admixtures in the formation of the structure of cement stone

    Directory of Open Access Journals (Sweden)

    Sopov Viktor

    2017-01-01

    Full Text Available The influence of sulfates and carbonates of potassium and sodium on the character of the formation of the microstructure of cement stone was studied. The role of cations in the structure formation of cement stone is shown. The efficiency of chemical additives, hardening accelerators, was estimated from the ratio of the volumes of gel and capillary micropores. The ratio of gel and capillary pores allows to determine the efficiency coefficient of the action of chemical additives. It is shown that the potassium carbonate for Portland cement is the most effective additive for hardening in terms of microstructure modification, and potassium sulfate for slag Portland cement.

  20. Study of commercial chemical additives for cementation of radioactive waste

    International Nuclear Information System (INIS)

    Mota Vieira, V.; Oliveira, C.C. de

    2015-01-01

    In this research it has been studied the effects of chemical additives (admixtures) in the cementation process of radioactive wastes, which are used to improve the properties of waste cementation process, both of the paste and of the solidified product. However there are a large variety of these materials that are frequently changed or taken out of the market, then it is essential to know the commercially available materials and their effects. The tests were carried out with a solution simulating the evaporator concentrate waste coming from PWR nuclear reactors. It was cemented using two formulations, A and B, incorporating higher or lower amount of waste, respectively. It was added chemical admixtures from two manufacturers (S and H), which were: accelerators, set retarders and superplasticizers. The experiments were organized by a factorial design 23. The measured parameters were the viscosity, the setting time, the paste and product density and the compressive strength. In this study we performed comparative analyzes of the results of compressive strength at age of 28 and 90 days and between the densities of the samples at the same ages. The compressive strength test at age of 28 days is considered a parameter essential issues related to security handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented product, but presented lower values density products. (authors)

  1. Waiting Time for Coronal Preparation and the Influence of Different Cements on Tensile Strength of Metal Posts

    Directory of Open Access Journals (Sweden)

    Ilione Kruschewsky Costa Sousa Oliveira

    2012-01-01

    Full Text Available This study aimed to assess the effect of post-cementation waiting time for core preparation of cemented cast posts and cores had on retention in the root canal, using two different luting materials. Sixty extracted human canines were sectioned 16 mm from the root apex. After cast nickel-chromium metal posts and cores were fabricated and luted with zinc phosphate (ZP cement or resin cement (RC, the specimens were divided into 3 groups (n = 10 according to the waiting time for core preparation: no preparation (control, 15 minutes, or 1 week after the core cementation. At the appropriate time, the specimens were subjected to a tensile load test (0.5 mm/min until failure. Two-way ANOVA (time versus cement and the Tukey tests (P < 0.05 showed significantly higher (P < 0.05 tensile strength values for the ZP cement groups than for the RC groups. Core preparation and post-cementation waiting time for core recontouring did not influence the retention strength. ZP was the best material for intraradicular metal post cementation.

  2. Study of chemical additives in the cementation of radioactive waste of PWR reactors

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Cledola Cassia Oliveira de

    2011-01-01

    Cementation is a very useful process to solidify radioactive wastes. Depending on the waste it can be necessary to use of chemical additives (admixtures) to improve the cementation process and its product. Admixtures are materials, other than cement, aggregate and water, that are added either before or during the mixing to alter some properties, such as workability, curing temperature range, and setting time. However there are a large variety of these materials that are frequently changed or taken out of the market. In this changeable scenario it is essential to know the commercially available materials and their characteristics. In this research the effects of chemical admixtures in the solidification process has been studied. For the tests it was prepared a solution simulating the evaporator concentrate waste, cemented by two different formulations, and three chemical admixtures from two manufacturers. The tested admixtures were accelerators, set retarders and super plasticizers. The experiments were organized by a planning factorial 23 to quantify the effects of formulations, of the admixtures, its quantity and manufacturer in properties of the paste and products. The measured parameters were the density, the viscosity and the setting time of the paste, and the product compressive strength. The parameter evaluated in this study was the compressive strength at age of 28 days, is considered essential security issues relating to the handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented products. (author)

  3. The influence of organic cement additives on radionuclide mobility. A literature survey

    International Nuclear Information System (INIS)

    Hakanen, M.; Ervanne, H.

    2006-02-01

    This review evaluates the influence of organic cement additives on radionuclide mobility. The work outlines evaluations under cement conditions where report drafts were available, and an evaluation under groundwater conditions (non-cement conditions) based on the chemical structures of the main components in polyelectrolyte additives and on recent results of metal-humic bounding. Literature of effects of plasticizers on copper and bentonite are reviewed. (orig.)

  4. Characterization of surrogate radioactive cemented waste: a laboratory study

    International Nuclear Information System (INIS)

    Fiset, J.F.; Lastra, R.; Bilodeau, A.; Bouzoubaa

    2011-01-01

    Portland cement is commonly used to stabilize intermediate and low level of radioactive wastes. The stabilization/solidification process needs to be well understood as waste constituents can retard or activate cement hydration. The objectives of this project were to prepare surrogate radioactive cemented waste (SRCW), develop a comminution strategy for SRCW, determine its chemical characteristics, and develop processes for long term storage. This paper emphasizes on the characterization of surrogate radioactive cemented waste. The SRCW produced showed a high degree of heterogeneity mainly due to the method used to add the solution to the host cement. Heavy metals such as uranium and mercury were not distributed uniformly in the pail. Mineralogical characterization (SEM, EDS) showed that uranium is located around the rims of hydrated cement particles. In the SRCW, uranium occurs possibly in the form of a hydrated calcium uranate.The SEM-EDS results also suggest that mercury occurs mainly in the form of HgO although some metallic mercury may be also present as a result of partial decomposition of the HgO. (author)

  5. Development of a Zero-Cement Binder Using Slag, Fly Ash, and Rice Husk Ash with Chemical Activator

    Directory of Open Access Journals (Sweden)

    M. R. Karim

    2015-01-01

    Full Text Available The increasing demand and consumption of cement have necessitated the use of slag, fly ash, rice husk ash (RHA, and so forth as a supplement of cement in concrete construction. The aim of the study is to develop a zero-cement binder (Z-Cem using slag, fly ash, and RHA combined with chemical activator. NaOH, Ca(OH2, and KOH were used in varying weights and molar concentrations. Z-Cem was tested for its consistency, setting time, flow, compressive strength, XRD, SEM, and FTIR. The consistency and setting time of the Z-Cem paste increase with increasing RHA content. The Z-Cem mortar requires more superplasticizer to maintain a constant flow of 110±5% compared with OPC. The compressive strength of the Z-Cem mortar is significantly influenced by the amounts, types, and molar concentration of the activators. The Z-Cem mortar achieves a compressive strength of 42–44 MPa at 28 days with 5% NaOH or at 2.5 molar concentrations. The FTIR results reveal that molecules in the Z-Cem mortar have a silica-hydrate (Si-H bond with sodium or other inorganic metals (i.e., sodium/calcium-silica-hydrate-alumina gel. Therefore, Z-Cem could be developed using the aforementioned materials with the chemical activator.

  6. 21 CFR 888.3510 - Knee joint femorotibial metal/polymer constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer constrained... Knee joint femorotibial metal/polymer constrained cemented prosthesis. (a) Identification. A knee joint... of a knee joint. The device limits translation or rotation in one or more planes and has components...

  7. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint... ankle joint. The device limits translation and rotation: in one or more planes via the geometry of its...

  8. 21 CFR 888.3560 - Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial polymer/metal... Devices § 888.3560 Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/polymer semi-constrained...

  9. Fracture resistance of metal-free composite crowns-effects of fiber reinforcement, thermal cycling, and cementation technique.

    Science.gov (United States)

    Lehmann, Franziska; Eickemeyer, Grit; Rammelsberg, Peter

    2004-09-01

    The improved mechanical properties of contemporary composites have resulted in their extensive use for the restoration of posterior teeth. However, the influence of fiber reinforcement, cementation technique, and physical stress on the fracture resistance of metal-free crowns is unknown. This in vitro study evaluated the effect of fiber reinforcement, physical stress, and cementation methods on the fracture resistance of posterior metal-free Sinfony crowns. Ninety-six extracted human third molars received a standardized tooth preparation: 0.5-mm chamfer preparation and occlusal reduction of 1.3 to 1.5 mm. Sinfony (nonreinforced crowns, n=48) and Sinfony-Vectris (reinforced crowns, n=48) crowns restoring original tooth contour were prepared. Twenty-four specimens of each crown type were cemented, using either glass ionomer cement (GIC) or resin cement. Thirty-two crowns (one third) were stored in humidity for 48 hours. Another third was exposed to 10,000 thermal cycles (TC) between 5 degrees C and 55 degrees C. The remaining third was treated with thermal cycling and mechanical loading (TCML), consisting of 1.2 million axial loads of 50 N. The artificial crowns were then vertically loaded with a steel sphere until failure occurred. Significant differences in fracture resistance (N) between experimental groups were assessed by nonparametric Mann-Whitney U-test (alpha=.05). Fifty percent of the Sinfony and Sinfony-Vectris crowns cemented with glass ionomer cement loosened after thermal cycling. Thermal cycling resulted in a significant reduction in the mean fracture resistance for Sinfony crowns cemented with GIC, from 2037 N to 1282 N (P=.004). Additional fatigue produced no further effects. Fiber reinforcement significantly increased fracture resistance, from 1555 N to 2326 N (P=.001). The minimal fracture resistance was above 600 N for all combinations of material, cement and loading. Fracture resistance of metal-free Sinfony crowns was significantly increased by

  10. Chemical processes causing cementation in heat-affected smectite - the Kinnekulle bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden); Takase, Hiroyasu; Benbow, S. [Quantisci Ltd., Oxfordshire (United Kingdom)

    1998-12-01

    Numerical calculation of silica migration and precipitation that can cause cementation of smectite buffer clay has been made using the Grindrod/Takase chemical model. It is used here to investigate whether the silicification of the bentonite and surrounding sediments at Kinnekulle, southwestern Sweden, can be explained by the heat pulse caused by the diabase intrusion that took place in Permian time. Compilation of data concerning silica cementation and associated microstructural and rheological changes showed that significant silica precipitation should have occurred in the Kinnekulle case and this is also documented. Thus, precipitation of quartz has taken place to an extent that can be explained by the chemical model, which also showed conversion of smectite to illite by neoformation of the latter mineral but only for the 3000 years long heating period. Introduction of a criterion for non-reversible illitization is hence a necessary improvement of the model for explaining the actual presence of neoformed illite, which may in fact be wholly or partly responsible for the cementation. (The report is made up of two articles: `Cementation processes in smectite clay associated with conversion of smectite to illite as exemplified by the Kinnekulle bentonites` and `Nonisothermal modelling of geochemical evolution in the Kinnekulle bentonite layer. Mathematical modelling and simulation`) 33 refs, 40 figs.

  11. Chemical processes causing cementation in heat-affected smectite - the Kinnekulle bentonite

    International Nuclear Information System (INIS)

    Pusch, R.; Takase, Hiroyasu; Benbow, S.

    1998-12-01

    Numerical calculation of silica migration and precipitation that can cause cementation of smectite buffer clay has been made using the Grindrod/Takase chemical model. It is used here to investigate whether the silicification of the bentonite and surrounding sediments at Kinnekulle, southwestern Sweden, can be explained by the heat pulse caused by the diabase intrusion that took place in Permian time. Compilation of data concerning silica cementation and associated microstructural and rheological changes showed that significant silica precipitation should have occurred in the Kinnekulle case and this is also documented. Thus, precipitation of quartz has taken place to an extent that can be explained by the chemical model, which also showed conversion of smectite to illite by neoformation of the latter mineral but only for the 3000 years long heating period. Introduction of a criterion for non-reversible illitization is hence a necessary improvement of the model for explaining the actual presence of neoformed illite, which may in fact be wholly or partly responsible for the cementation. (The report is made up of two articles: 'Cementation processes in smectite clay associated with conversion of smectite to illite as exemplified by the Kinnekulle bentonites' and 'Nonisothermal modelling of geochemical evolution in the Kinnekulle bentonite layer. Mathematical modelling and simulation')

  12. Cermet cements.

    Science.gov (United States)

    McLean, J W

    1990-01-01

    Cermet ionomer cements are sintered metal/glass powders, which can be made to react with poly(acids). These new cements are significantly more resistant to abrasion than regular glass ionomer cements and are widely accepted as core build-up materials and lining cements. They can strengthen teeth and provide the clinician with an opportunity to treat early dental caries.

  13. Crown and bridge cements: clinical applications.

    Science.gov (United States)

    Bunek, Sabiha S; Powers, John M

    2012-12-01

    Cement selection can be confusing because factors such as substrate, the type of restoration, and patient needs must be considered. Some substrates require additional treatment before cementation. This article describes the most commonly used traditional crown and bridge cements (GI and RMGI) used for metal and metal-ceramic restorations, and resin cements used for all-ceramic restorations. Advantages, disadvantages, indications, and contraindications of cements have been reviewed. Recommended uses of cements for metal, ceramic, and laboratory composite restorations have been presented. General guidelines for surface treatment ot silica- and zirconia-based restorations when using resin cements have been discussed.

  14. Assessing Metal Exposures in a Community near a Cement Plant in the Northeast U.S.

    OpenAIRE

    Zhao Dong; Michael S. Bank; John D. Spengler

    2015-01-01

    Cement production is a major source of metals and metalloids in the environment, while exposures to metals and metalloids may impact human health in the surrounding communities. We recruited 185 participants living in the vicinity of a cement plant in the northeast U.S., and measured the levels of aluminum (Al), arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg), and selenium (Se) in blood and Hg in hair samples from them. A questionnaire was used to assess potential sources of Hg exposure...

  15. Evaluation of physico-chemical properties of Portland cements and MTA

    Directory of Open Access Journals (Sweden)

    Jorge Luis Gonçalves

    2010-09-01

    Full Text Available The purpose of this study was to evaluate the hydrogenionic potential and electrical conductivity of Portland cements and MTA, as well as the amount of arsenic and calcium released from these materials. In Teflon molds, samples of each material were agitated and added to plastic flasks containing distilled water for 3, 24, 72 and 168 h. The results were analyzed with a Kruskal-Wallis non-parametric test for global comparisons and a Dunn-Tukey test for pairwise comparisons. The results revealed no significant differences in the pH of the materials (p > 0.05. The electrical conductivity of the cements were not statistically different (p > 0.05. White non-structural cement and MTA BIO released the largest amount of calcium ions into solution (p 0.05. The results indicated that the physico-chemical properties of Portland cements and MTA were similar. Furthermore, all materials produced an alkaline environment and can be considered safe for clinical use because arsenic was not released. The electrical conductivity and the amount of calcium ions released into solution increased over time.

  16. Evaluation of physico-chemical properties of Portland cements and MTA.

    Science.gov (United States)

    Gonçalves, Jorge Luis; Viapiana, Raqueli; Miranda, Carlos Eduardo Saraiva; Borges, Alvaro Henrique; Cruz Filho, Antônio Miranda da

    2010-01-01

    The purpose of this study was to evaluate the hydrogenionic potential and electrical conductivity of Portland cements and MTA, as well as the amount of arsenic and calcium released from these materials. In Teflon molds, samples of each material were agitated and added to plastic flasks containing distilled water for 3, 24, 72 and 168 h. The results were analyzed with a Kruskal-Wallis non-parametric test for global comparisons and a Dunn-Tukey test for pairwise comparisons. The results revealed no significant differences in the pH of the materials (p > 0.05). The electrical conductivity of the cements were not statistically different (p > 0.05). White non-structural cement and MTA BIO released the largest amount of calcium ions into solution (p 0.05). The results indicated that the physico-chemical properties of Portland cements and MTA were similar. Furthermore, all materials produced an alkaline environment and can be considered safe for clinical use because arsenic was not released. The electrical conductivity and the amount of calcium ions released into solution increased over time.

  17. Study of chemical additives in the cementation of radioactive waste of PWR reactors

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Cledola Cassia Oliveira de

    2012-01-01

    In this research it has been studied the effects of chemical admixtures in the cementation process of radioactive wastes. These additives are used to improve the properties of waste cementation process, both of the paste and of the solidified product. However there are a large variety of these materials that are frequently changed or taken out of the market. Then it is essential to know the commercially available materials and their effects. The tests were carried out with a solution simulating the evaporator concentrate waste coming from PWR nuclear reactors. It was cemented using two formulations, A and B, incorporating higher or lower amount of waste, respectively. It was added chemical admixtures from two manufacturers (S and H), which were: accelerators, set retarders and superplasticizers. The experiments were organized by a factorial design 23. The measured parameters were: the viscosity, the setting time, the paste and product density and the compressive strength. The parameter evaluated in this study was the compressive strength at age of 28 days, is considered essential security issues relating to the handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented products. (author)

  18. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Science.gov (United States)

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737

  19. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Directory of Open Access Journals (Sweden)

    Mehmet Serkan Kirgiz

    2014-01-01

    Full Text Available Effects of chemical compositions changes of blended-cement pastes (BCPCCC on some strength gains of blended cement mortars (BCMSG were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP or 6%, 20%, 21%, and 35% brick powder (BP for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min. Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS and flexural strengths (FS of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2, sodium oxide (Na2O, and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2 at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM in comparison with reference mortars (RM at whole cure days as MP up to 6% or BP up to 35% was blended for cement.

  20. Influence of chemical composition of civil construction waste in the cement paste

    International Nuclear Information System (INIS)

    Cunha, G.A.; Andrade, A.C.D.; Souza, J.M.M.; Evangelista, A.C.J.; Almeida, V.C.

    2009-01-01

    The construction and demolition waste when disposed inappropriately might cause serious public health problems. Its reutilization focusing on the development of new products using simple production techniques, assuring a new product life cycle and not damaging the environment is inserted in sustainable concept. The aim of this work was identifying the characteristics of types of waste generated in a residential reform (glassy ceramic and fill dirt leftovers) verifying separately its influence on cement pastes mechanical behavior. Cement pastes + wastes were prepared in 25% and 50% proportions with an approximately 0,35 water/cement relation and, glue time determination, water absorption, resistance to compression and X-ray fluorescence assays were taken. The results indicate that the chemical composition of the waste causes changes in the behavior of cement pastes, reflecting on their resistance to compression. (author)

  1. 21 CFR 888.3410 - Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...

  2. Synthesis and characterisation of pack cemented aluminide coatings on metals

    International Nuclear Information System (INIS)

    Houngninou, C.; Chevalier, S.; Larpin, J.P.

    2004-01-01

    The exposition of metallic materials to high temperature environments leads to their corrosion because of oxidation or sulphidation. One way to protect such materials is to produce an Al 2 O 3 layer which needs to be continuous enough to limit diffusion of oxygen or metallic elements, and withstand this corrosion. Since a few years, it has been proved that aluminide compounds are one of the most effective materials to achieve this goal. Indeed, they possess sufficient Al and many beneficial mechanical properties when exposed to high temperature conditions to make possible the formation of a protective Al 2 O 3 scale. This study is aimed at the elaboration of iron, nickel and molybdenum aluminides by modification of the surface of the base materials by a pack cementation process. The as-cemented alloys were analysed by means of SEM coupled with EDX and by XRD. Cross-section examinations showed, in each case, a progressive diffusion of aluminium through the substrates. The diffusion thickness layer was more or less important depending on the base material and on the coating conditions

  3. Utilization of flotation wastes of copper slag as raw material in cement production

    International Nuclear Information System (INIS)

    Alp, I.; Deveci, H.; Suenguen, H.

    2008-01-01

    Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe 2 O 3 mainly in the form of fayalite (Fe 2 SiO 4 ) and magnetite (Fe 3 O 4 ). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials

  4. Utilization of flotation wastes of copper slag as raw material in cement production.

    Science.gov (United States)

    Alp, I; Deveci, H; Süngün, H

    2008-11-30

    Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe(2)O(3) mainly in the form of fayalite (Fe(2)SiO(4)) and magnetite (Fe(3)O(4)). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials.

  5. Coupling between cracking and chemical degradation in cement based materials: characterisation and modelling

    International Nuclear Information System (INIS)

    Tognazzi, C.

    1998-01-01

    The aim of this work is to study the durability of concretes used for radioactive waste storage. It has already been shown that the concrete degradation during a storage phenomenon is due to the attack of the cement barrier by the water of the host rock, at ambient temperature. The modelling of this chemical degradation is now validated for un-cracked materials. However, a concrete preexisting crack can exist. In this work, has then been particularly studied the influence of a crack on the long term chemical degradation. The studies have been carried out on a mortar cracked mechanically (in compression or traction) and chemically degraded by leaching (reference degradation) and by accelerated degradations (with ammonium nitrate or under electric field). The diffusion properties have been measured at each step of the experiment. They have been confronted with transfer models. Results have revealed the existence of a coupling between the preexisting crack and the chemical degradation. At last, a modelling of the chemical degradation for cement materials has been proposed and validated both for pure cement and for mortars, in the cases of simple leaching and of leaching with ammonium nitrate. Its application to cracked materials by a microscopic approach (crack described in the lattice) has allowed to specify the interpretation of the experimental results. (O.M.)

  6. Influence of porcelain firing and cementation on the marginal adaptation of metal-ceramic restorations prepared by different methods.

    Science.gov (United States)

    Kaleli, Necati; Saraç, Duygu

    2017-05-01

    Marginal adaptation plays an important role in the survival of metal-ceramic restorations. Porcelain firings and cementation may affect the adaptation of restorations. Moreover, conventional casting procedures and casting imperfections may cause deteriorations in the marginal adaptation of metal-ceramic restorations. The purpose of this in vitro study was to compare the marginal adaptation after fabrication of the framework, porcelain application, and cementation of metal-ceramic restorations prepared by using the conventional lost-wax technique, milling, direct metal laser sintering (DMLS), and LaserCUSING, a direct process powder-bed system. Alterations in the marginal adaptation of the metal frameworks during the fabrication stages and the precision of fabrication methods were evaluated. Forty-eight metal dies simulating prepared premolar and molar abutment teeth were fabricated to investigate marginal adaptation. They were divided into 4 groups (n=12) according to the fabrication method used (group C serving as the control group: lost-wax method; group M: milling method; group LS: DMLS method; group DP: direct process powder-bed method). Sixty marginal discrepancy measurements were recorded separately on each abutment tooth after fabrication of the framework, porcelain application, and cementation by using a stereomicroscope. Thereafter, each group was divided into 3 subgroups according to the measurements recorded in each fabrication stage: subgroup F (framework), subgroup P (porcelain application), and subgroup C (cementation). Data were statistically analyzed with univariate analysis of variance (followed by 1-way ANOVA and Tamhane T2 test (α=.05). The lowest marginal discrepancy values were observed in restorations prepared by using the direct process powder-bed method, and this was significantly different (Pdirect process powder-bed method is quite successful in terms of marginal adaptation. The marginal discrepancy increased after porcelain application

  7. The suitability of a supersulfated cement for nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Collier, N.C.; Milestone, N.B.; Gordon, L.E.; Ko, S.-C.

    2014-01-01

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste

  8. The suitability of a supersulfated cement for nuclear waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Callaghan Innovation, 69 Gracefield Road, PO Box 31310, Lower Hutt 5040 (New Zealand); Gordon, L.E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Geopolymer and Minerals Processing Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ko, S.-C. [Holcim Technology Ltd, Hagenholzstrasse 85, CH-8050 Zurich (Switzerland)

    2014-09-15

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  9. A simulator study of adverse wear with metal and cement debris contamination in metal-on-metal hip bearings.

    Science.gov (United States)

    Halim, T; Clarke, I C; Burgett-Moreno, M D; Donaldson, T K; Savisaar, C; Bowsher, J G

    2014-03-01

    Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt-chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA). Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their yellow colour. Addition of metal particles at 0.8 Mc turned lubricants black within the first hour of the test and remained so for the duration, while PMMA particles did not change the colour of the lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged 0.3 mm(3)/Mc, 4.1 mm(3)/Mc and 6.4 mm(3)/Mc, respectively. Metal particles turned simulator lubricants black with rates of wear of MOM bearings an order of magnitude higher than with control PMMA particles. This appeared to model the findings of black, periarticular joint tissues and high CoCr wear in failed MOM replacements. The amount of wear debris produced during a 500 000-cycle interval of gait was 30 to 50 times greater than the weight of triggering particle allotment, indicating that MOM bearings were extremely sensitive to third-body wear. Cite this article: Bone Joint Res 2015;4:29-37. ©2015 The British Editorial Society of Bone & Joint Surgery.

  10. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Glasser, F.P.

    2013-01-01

    nature of Portland cement is explained. Portland cement is the most widely used cement type and benefits from technology transfer from civil engineering research; also of the more than 150 years of experience of its durability and performance in a range of service environments. The origin of the chemical binding potential of cement arises from a combination of mechanisms: chemisorption on cement solids, incorporation by solid solution in cement solids and, at higher concentrations, precipitation of a solubility-limiting phase or phases in a calcium rich, high pH environment. These favourable potentials, especially pH conditioning, are, as noted, essentially sacrificial: cement must dissolve or react to maintain these conditions in the course of its service life. However the immobilisation potential will also change with time, even in isolation, because cement minerals undergo internal aging and slow reaction with other materials in the near field. Much research has been conducted, often on an empirical basis, leading to the characterisation of these potentials and of their time dependence. Yet the picture which emerges is incomplete and of variable quality. New research is described which, it is expected, will lead to a more scientific basis for the extrapolation of present-day cement performance into the future. The high pH of Portland cement matrices has advantages but also, disadvantages. For example, Portland cement gives excellent protection against corrosion to embedded steel but, on the other hand, it corrodes electropositive metals with evolution of hydrogen. Formation of a high pH 'plume' may also spread from the concrete to the near field, degrading other barriers such as bentonite and affecting the sorptive potential of the near field for radionuclides. These considerations have led to the search for alternative lower pH cements which are less alkaline than Portland cement. A description of some common types is given. However alternative choices present a

  11. Cements in Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, F. P. [University of Aberdeen, Scotland (United Kingdom)

    2013-09-15

    nature of Portland cement is explained. Portland cement is the most widely used cement type and benefits from technology transfer from civil engineering research; also of the more than 150 years of experience of its durability and performance in a range of service environments. The origin of the chemical binding potential of cement arises from a combination of mechanisms: chemisorption on cement solids, incorporation by solid solution in cement solids and, at higher concentrations, precipitation of a solubility-limiting phase or phases in a calcium rich, high pH environment. These favourable potentials, especially pH conditioning, are, as noted, essentially sacrificial: cement must dissolve or react to maintain these conditions in the course of its service life. However the immobilisation potential will also change with time, even in isolation, because cement minerals undergo internal aging and slow reaction with other materials in the near field. Much research has been conducted, often on an empirical basis, leading to the characterisation of these potentials and of their time dependence. Yet the picture which emerges is incomplete and of variable quality. New research is described which, it is expected, will lead to a more scientific basis for the extrapolation of present-day cement performance into the future. The high pH of Portland cement matrices has advantages but also, disadvantages. For example, Portland cement gives excellent protection against corrosion to embedded steel but, on the other hand, it corrodes electropositive metals with evolution of hydrogen. Formation of a high pH 'plume' may also spread from the concrete to the near field, degrading other barriers such as bentonite and affecting the sorptive potential of the near field for radionuclides. These considerations have led to the search for alternative lower pH cements which are less alkaline than Portland cement. A description of some common types is given. However alternative choices present a

  12. Cement for Oil Well Cementing Operations in Ghana

    African Journals Online (AJOL)

    Michael

    For Portland cement to qualify as oil well cement, the chemical and physical properties must meet ..... Reservoir Engineering, Stanford University,. Stanford, California, pp. ... Construction”, PhD Thesis, Kwame Nkrumah. University of Science ...

  13. Utilisation of fly ash for the management of heavy metal containing primary chemical sludge generated in a leather manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G.; Rao, B.P.; Ghanamani, A.; Rajamani, S. [Central Leather Research Institute, Chennai (India). Dept. of Environmental Technology

    2003-07-01

    The present study aims at disposal of primary chemical sludge generated in the tanning industry by solidification and stabilization process using flyash generated from thermal power plant along with binders and also on evaluating the leachability of heavy metal from the solidified product. The primary chemical sludge containing heavy metals iron and chromium were obtained from a garment leather manufacturing company at Chennai in India. The sludge was dried in open environment and it was powdered to fine size in a grinder. Binding increases stabilization of heavy metal in calcined sludge with refractory binders such as clay, fly ash, lime and ordinary Portland cement. Fly ash can be considered as the additional binder for producing stronger bricks, with high metal fixation efficiency, and minimum rate of removal of heavy metal and minimum diffusion co-efficient. 15 refs., 5 figs., 5 tabs.

  14. Release kinetics and mechanisms of trace heavy metals from cement based material; Cinetiques et mecanismes de relargage des metaux lourds presents en traces dans les matrices cimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Moudilou, E.

    2002-12-15

    Chemical species contained in a solid matrix may be transferred to the environment through water leaching. Previous studies of trace metals released from building materials (particularly cement-based ones) highlight an important analytical difficulty. The aim of this study is to determine the kinetics and the mechanisms involved in the release of trace heavy metals (Cr, Cu, Ni, Pb, V and Zn) from industrial cement pastes (usually ranging from 20 to 300 ppm). The development of a dynamic leaching system, named CTG-LEACHCRETE, (used at pH=5, 20 C) which permits the evaluation of the kinetics of trace heavy metals is presented in the first part. Also, innovative solid analysis techniques (ICP-MS-Laser Ablation, local and Grazing Incidence X-rays Diffraction (GIXD) technique) were used to characterise the cement-degraded layers formed during leaching experiments. These techniques enable to monitor the mineralogical evolution and the distribution of trace metals in these areas. The confrontation of these two approaches, kinetic and solid analysis, coupled with a thorough investigation of previously developed models, lead to proposals concerning the mechanisms of release of the trace heavy metals studied. In all the cement pastes studied (CPA-CEM I, CPJ-CEM II/A and CLC-CEM V/A), chromium is trapped in ettringite by substitution SO{sub 4}{sup 2-}(U)CrO{sub 4}{sup 2-} and its release is then controlled by the dissolution of this hydrate. The behaviour of copper, nickel and zinc in degraded areas and in leachates, are correlated to the silicon of the hydrated calcium silicate (CSH), which imply that they are localised there. Lead, was never detected in the leachates. But it is also correlated to the silicon in the degraded layers. (author)

  15. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  16. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge.

    Science.gov (United States)

    Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming

    2009-02-01

    Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

  17. Physico-Chemical Studies Involving Incorporation of Radioactive and Industrial Waste In Cement-Epoxy Resin Matrix

    International Nuclear Information System (INIS)

    Sayed, M.S.; Hafez, N.

    1999-01-01

    Cement and epoxy resin as chemical additives are proposed to incorporate different types of wastes. The study was extended to prepare different mixtures of cement and epoxy resin in presence of some toxic ions. The studied ions were Cd II, Ni II, Cu II, Fe III, Ce IV, 154+152 Eu, phenol and toluene. The physical, mechanical and leaching properties of the mixtures were studied. The thermal analysis and infrared spectra were also investigated. It was observed that all the studied properties of the epoxy modified cement as a disposal matrix was improved

  18. Physical and chemical characterization of pastes of bone cements with ZrO2

    International Nuclear Information System (INIS)

    Quinto H, A.; Pina B, M.C.

    2003-01-01

    Setting times and temperature of sixteen calcium phosphate cements added with ZrO 2 were evaluated. Their behaviors were analysed to be used like injectable formulations in surgery of bone. Two cements of calcium phosphates enriched with ZrO 2 with the best characteristics in setting times and temperature, were mechanically tested after 1 and 7 days of prepared. Density was determined using a pycnometer, chemical composition was determined by X-ray diffraction and the molecular structure was determined by infrared spectroscopy. (Author)

  19. Mechanical and chemical properties of polyvinyl alcohol modified cement mortar with silica fume used as matrix including radioactive waste

    International Nuclear Information System (INIS)

    Dakroury, A. M.

    2007-01-01

    This paper discussed the mechanical and chemical properties of polyvinyl alcohol - modified cement mortar with silica fume to assess the safety for disposal of radioactive waste. The modified cement mortars containing polyvinyl alcohol (PVA) in the presence of 10 % silica fume (SF) .The chemical reaction between polymer and cement - hydrated product were investigated by the Infrared Spectral Technology, Differential Thermal Analysis and X-ray diffraction. The leaching of 137Cs from a waste composite into a surrounding fluid has been studied .The results shown that PVA increases the strength and decreases the porosity. The increase in strength duo to the interaction of PVA with cement , may be forming some new compound that fill the pores or improve the bond between the cement . The pozzolanic reaction of the SF increases the calcium silicate hydrates in the hardening matrix composites. There is distinct change in the refinement of the pore structure in cement composites giving fewer capillary pores and more of the finer gel pores

  20. Metals and dioxins on the air in a cement plant; Niveles ambientales de metales y dioxinas en las proximidades de una planta cementera

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, J. L.

    2001-07-01

    In May 2000, the levels of a number of metals (As, Cd, Pb, Hg, Zn, Co, Cu, Mn, Sn, Tl, Cr, Ni, and V) were determined in soil and herbage samples taken from 16 sites in the vicinity of a cement plant (Sta. Margarita i els Monjos, Barcelona). During 2000, metal concentrations were also analyzed quarterly in filters from three stations placed near the facility. In soil and herbage samples, Mn and Zn showed the highest levels. However, most metal concentrations were similar or even lower than previously reported values for other areas in Catalonia. On the other hand, the levels of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) were also determined in 4 soil and 16 herbage samples. In comparison with the concentrations found in other places, the present levels are rather low. The current results show that the cement plant has a low impact on the metal and PCDD/PCDF levels in the environment under influence of the facility. (Author) 19 refs.

  1. Lithological and land-use based assessment of heavy metal pollution in soils surrounding a cement plant in SW Europe.

    Science.gov (United States)

    Cutillas-Barreiro, Laura; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos

    2016-08-15

    We study the influence of phasing out a cement plant on the heavy metal (Hg, Pb and Cr) content in the surrounding soils, taking into account factors often neglected, such as contributions due to local lithology or land use. The range of total Hg was 10-144µg kg(-1), reaching up to 41 and 145mgkg(-1) for total contents of Pb and Cr, respectively. Forest soils showed higher concentration of Hg than prairie soils, indicating the importance of land use on the accumulation of volatile heavy metals in soils. In forest soils, total Hg showed a trend to decrease with soil depth, whereas in prairie soils the vertical pattern of heavy metal concentrations was quite homogeneous. In most cases, the distance to the cement plant was not a factor of influence in the soils content of the analyzed heavy metals. Total Pb and Cr contents in soils nearby the cement plant were quite similar to those found in the local lithology, resulting in enrichment factor values (EF's) below 2. This suggests that soil parent material is the main source of these heavy metals in the studied soils, while the contribution of the cement plant to Pb and Cr soil pollution was almost negligible. On the contrary, the soils surrounding the cement plant accumulate a significant amount of Hg, compared to the underlying lithology. This was especially noticeable in forest soils, where Hg EF achieved values up to 36. These results are of relevance, bearing in mind that Hg accumulation in soils may be an issue of environmental concern, particularly in prairie soils, where temporal flooding can favor Hg transformation to highly toxic methyl-Hg. In addition, the concurrence of acid soils and total-Cr concentrations in the range of those considered phytotoxic should be also stressed. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cement-free Binders for Radioactive Waste Produced from Blast-furnace Slag using Vortex Layer Activation Technology

    Directory of Open Access Journals (Sweden)

    Mazov Ilya

    2017-01-01

    Full Text Available The paper addresses the issue of recycling granulated blast-furnace slag (gBFS as a source for production of cement-free binder materials for further usage in rare-earth metals production for radioactive waste disposal. The use of the vortex layer activator was provided as main technique allowing to produce high-dispersed chemically activated binders. The paper examines the effect of processing conditions on the physical-chemical and mechanical properties of the resulting BFS-based cement-free materials and gBFS-based concretes.

  3. Effects of Co-Processing Sewage Sludge in the Cement Kiln on PAHs, Heavy Metals Emissions and the Surrounding Environment.

    Science.gov (United States)

    Lv, Dong; Zhu, Tianle; Liu, Runwei; Li, Xinghua; Zhao, Yuan; Sun, Ye; Wang, Hongmei; Zhang, Fan; Zhao, Qinglin

    2018-04-08

    To understand the effects of co-processing sewage sludge in the cement kiln on non-criterion pollutants emissions and its surrounding environment, the flue gas from a cement kiln stack, ambient air and soil from the background/downwind sites were collected in the cement plant. Polycyclic aromatic hydrocarbons (PAHs) and heavy metals of the samples were analyzed. The results show that PAHs in flue gas mainly exist in the gas phase and the low molecular weight PAHs are the predominant congener. The co-processing sewage sludge results in the increase in PAHs and heavy metals emissions, especially high molecular weight PAHs and low-volatile heavy metals such as Cd and Pb in the particle phase, while it does not change their compositions and distribution patterns significantly. The concentrations and their distributions of the PAHs and heavy metals between the emissions and ambient air have a positive correlation and the co-processing sewage sludge results in the increase of PAHs and heavy metals concentrations in the ambient air. The PAHs concentration level and their distribution in soil are proportional to those in the particle phase of flue gas, and the co-processing sewage sludge can accelerate the accumulation of the PAHs and heavy metals in the surrounding soil, especially high/middle molecular weight PAHs and low-volatile heavy metals.

  4. The effect of portland cement for solidification of soils contaminated by mine tailings containing heavy metals

    Science.gov (United States)

    Jian-Jun, Chen; Zheng-Miao, Xie

    2010-05-01

    Portland cement(PC) was used to solidify the lead-zinc mine tailings contaminated soils(CS) in this work. The soils were heavily polluted by heavy metals with lead(up to 19592 mg/kg), zinc(up to 647mg/kg), Cd(up to 14.65mg.kg) and Cu(up to 287mg/kg). Solidified/stabilized(s/s)forms with a range of cement contents, 40-90 wt%, were evaluated to determine the optimal binder content. Unconfined compression strength test(UCS), Chinese solid waste-extraction procedure for leaching toxicity - Horizontal vibration method, toxicity characteristic leaching procedures(TCLP) were used for physical and chemical characterization of the s/s forms. The procedure of Tessier et al.(1979) was used to separate S/S forms Pb, Zn, Cd, Cu into different fractions. The results show that addition of 50% cement was enough for the s/s forms to satisfy the MU10 requirements (0.10 MPa). Under the 50% addition, the content of the water-exchangeable fraction of Pb reduced from 2.25% to 0.2%, the carbonate-bound fraction and organic-bound fraction reduced by about half, while the Fe-Mn oxide-bound fraction was more than doubled. The residual fraction decreased 8% on the contrary. For Zn, except for the carbonate-bound fraction increased slightly, the features of other items were same as that of Pb. For Cd, the water-exchangeable fraction was reduced largely, the residual fraction and Fe-Mn oxide-bound fraction increased 2-3%. For Cu, A distinct feature is the organic-bound fraction reduced with the reduction in consumption of cement, at the same time, the residual fraction increased corresponding. Leaching test results indicate that the leaching contents of Pb2+ of the six specimens are quite different at low pH value(

  5. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  6. Assessment of metal loads in watersheds affected by acid mine drainage by using tracer injection and synoptic sampling: Cement Creek, Colorado, USA

    Science.gov (United States)

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.; Bencala, K.E.

    2002-01-01

    Watersheds in mineralized zones may contain many mines, each of which can contribute to acidity and the metal load of a stream. In this study the authors delineate hydrogeologic characteristics determining the transport of metals from the watershed to the stream in the watershed of Cement Creek, Colorado. Combining the injection of a chemical tracer, to determine a discharge, with synoptic sampling, to obtain chemistry of major ions and metals, spatially detailed load profiles are quantified. Using the discharge and load profiles, the authors (1) identified sampled inflow sources which emanate from undisturbed as well as previously mined areas; (2) demonstrate, based on simple hydrologic balance, that unsampled, likely dispersed subsurface, inflows are significant; and (3) estimate attenuation. For example, along the 12-km study reach, 108 kg per day of Zn were added to Cement Creek. Almost half of this load came from 10 well-defined areas that included both mined and non-mined parts of the watershed. However, the combined effect of many smaller inflows also contributed a substantial load that could limit the effectiveness of remediation. Of the total Zn load, 58.3 kg/day came from stream segments with no visible inflow, indicating the importance of contributions from dispersed subsurface inflow. The subsurface inflow mostly occurred in areas with substantial fracturing of the bedrock or in areas downstream from tributaries with large alluvial fans. Despite a pH generally less than 4.5, there was 58.4 kg/day of Zn attenuation that occurred in mixing zones downstream from inflows with high pH. Mixing zones can have local areas of pH that are high enough for sorption and precipitation reactions to have an effect. Principal component analysis classified inflows into 7 groups with distinct chemical signatures that represent water-rock interaction with different mineral-alteration suites in the watershed. The present approach provides a detailed snapshot of metal load

  7. Physico-chemical studies of gamma-irradiated polyester. Impregnated cement mortar composite

    International Nuclear Information System (INIS)

    Ismail, M.R.; Afifi, M.S.

    1998-01-01

    The effect of impregnation time on the physico-chemical and mechanical properties of polyester-cement mortar composite has been investigated. The samples were soaked in unsaturated polyester resin containing 40% styrene monomer at impregnation times ranging from 1-15 hours and then exposed to 50 kGy of γ-irradiation. The effects on polymer loading, compressive strength, apparent porosity, and water absorption in addition to IR spectra and TGA of the samples were studied. It was found that, the polymer loading and compressive strength increase with the increased of soaking time up to 4 hours and there is no significant improvement of the polymer loading and strength. Whereas, the apparent porosity and water absorption behave in an opposite direction. These are attributed to the presence of polymer in the pores of the samples. IR spectra showed that, new bands appeared as result of the reaction between polyester and set cement. TGA showed that, the polyester cement composite has higher thermal stability as a compared to irradiated polyester. (author)

  8. Pore size distribution, strength, and microstructure of portland cement paste containing metal hydroxide waste

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Z.A.; Mahmud, H.; Shaaban, M.G.

    1996-12-31

    Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} for a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.

  9. The effects of cement-based and cement-ash-based mortar slabs on indoor air quality

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Kolarik, Jakub; Wargocki, Pawel

    2018-01-01

    The effects of emissions from cement-based and cement-ash-based mortar slabs were studied. In the latter, 30% of the cement content had been replaced by sewage sludge ash. They were tested singly and together with either carpet or linoleum. The air exhausted from the chambers was assessed by means...... of odour intensity and chemical characterization of emissions. Odour intensity increased with the increased exposed area of the slabs. It did not differ significantly between cement-based or cement-ash-based mortar and neither did the chemical composition of the exhaust air. A significant sink effect...

  10. Cement for oil well developed from ordinary cement: characterization physical, chemical and mineralogical; Cimento para poco de petroleo desenvolvido a partir de cimento comum: caracterizacao fisica, quimica e mineralogica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, D.N.S.; Neves, G. de A.; Chaves, A.C.; Mendonca, A.M.G.D.; Lima, M.S. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Bezerra, U.T., E-mail: daninascimento.eng@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia da Paraiba (IFPB), Campina Grande, PB (Brazil)

    2012-07-01

    This work aims to characterize a new type of cement produced from the mixture of ordinary Portland cement, which can be used as an option in the cementing of oil wells. To enable this work we used the method of lineal programming for the new cement composition, then conducted tests to characterize through particle size analysis by laser diffraction, chemical analysis by EDX, TGA, X-ray diffraction, time grip, resistance to compression. The overall result showed that the new cement had made low-C3A, takes more time to the CPP, thermal stability up to 500 ° C, the kinetics of hydration and low levels of major components consistent with the specifications of ABNT. (author)

  11. The emission of particulate matters and heavy metals from cement kilns – case study: co-incineration of tires in Serbia

    Directory of Open Access Journals (Sweden)

    Dušan Todorović

    2010-09-01

    Full Text Available Co-incineration of wastes started more than 20 years ago. In the last 10 years, the use of alternative fuels in the cement industry is continuously increasing. The use of solid wastes in cement kilns is one of the best technologies for a complete and safe destruction of these wastes, due to the fact that there is a simultaneous benefit of destroying wastes and getting the energy. However, particulate matters (PM and gaseous chemicals emitted from a source into the environment could be directly transmitted to humans through air inhalation. Therefore, for accurate health risk estimation, the emission of pollutants must be determined. In this work, the analysis of the emission of different pollutants when replacing partially the fuel type used in a cement kiln is done. PM, PM10, heavy metals and inorganic pollutants are analyzed. The methods used for sampling and analysis are the standard methods suggested by the EU regulations for stack analysis. Experimental results have shown the encouraging results: in particular clinker characteristics were unmodified, and stack emissions (NOx, SO2 and CO mainly were in the case of tires, slightly incremented but remaining almost always below the law imposed limits, and in some cases were even decreased.

  12. Leaching Behavior of Heavy Metals from Cement Pastes Using a Modified Toxicity Characteristic Leaching Procedure (TCLP).

    Science.gov (United States)

    Huang, Minrui; Feng, Huajun; Shen, Dongsheng; Li, Na; Chen, Yingqiang; Shentu, Jiali

    2016-03-01

    As the standard toxicity characteristic leaching procedure (TCLP) can not exhaust the acid neutralizing capacity of the cement rotary kiln co-processing solid wastes products which is particularly important for the assessment of the leaching concentrations of heavy metals. A modified TCLP was proposed. The extent of leaching of heavy metals is low using the TCLP and the leaching performance of the different metals can not be differentiated. Using the modified TCLP, however, Zn leaching was negligible during the first 180 h and then sharply increased (2.86 ± 0.18 to 3.54 ± 0.26 mg/L) as the acidity increased (pH leaching is enhanced using the modified TCLP. While Pb leached readily during the first 126 h and then leachate concentrations decreased to below the analytical detection limit. To conclude, this modified TCLP is a more suitable method for these cement rotary kiln co-processing products.

  13. Early age volume changes in concrete due to chemical shrinkage of cement paste

    Directory of Open Access Journals (Sweden)

    Ebensperger, L.

    1991-12-01

    Full Text Available Unrestrained early age volume changes due to chemical shrinkage in cement pastes, mortars and concretes have been determined. The measurements were performed on sealed and unsealed samples which were stored under water. The chemical shrinkage of unsealed specimens represents the amount of absorbed water due to the chemical reaction of the cement It depends only on the cement content of the sample and does not lead to changes of the external dimensions. However the chemical shrinkage of sealed specimens is connected with a real volume change due to self-desiccation and the effect of internal pressures. The shrinkage depends in this case on the restraining effect of coarse aggregates as well as the cement content. The chemical shrinkage measured on sealed concretes was much higher than the one expected to ocurr on concretes, because normally an equalization of pressure takes place to some extent in the interior of the concrete. The use of expansive additives showed that they may compensate the chemical shrinkage, but its dosage is very sensitive and should be defined exactly for each case particularly.

    Se han determinado los cambios volumétricos que ocurren en pastas de cemento, morteros y hormigones a edad temprana debido al efecto de la retracción química. Las mediciones se realizaron en probetas selladas y no selladas sumergidas bajo agua. La retracción química en probetas no selladas representa la cantidad de agua absorbida debido a la reacción química del cemento. Depende solamente del contenido de cemento de la probeta y no produce ningún cambio en las dimensiones de la probeta. Por el contrario, la retracción química en probetas selladas está relacionada con un cambio volumétrico real debido al efecto de la autodesecación y presiones internas. La retracción en este caso depende tanto de la restricción que imponen los áridos, como del contenido de cemento. La retracción química medida en hormigones sellados

  14. Effects of abutment diameter, luting agent type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments.

    Science.gov (United States)

    Safari, Sina; Hosseini Ghavam, Fereshteh; Amini, Parviz; Yaghmaei, Kaveh

    2018-02-01

    The aim of this study was to evaluate the effects of abutment diameter, cement type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. Sixty abutments with two different diameters, the height of which was reduced to 3 mm, were vertically mounted in acrylic resin blocks with matching implant analogues. The specimens were divided into 2 diameter groups: 4.5 mm and 5.5 mm (n=30). For each abutment a CAD/CAM metal coping was manufactured, with an occlusal loop. Each group was sub-divided into 3 sub-groups (n=10). In each subgroup, a different cement type was used: resin-modified glass-ionomer, resin cement and zinc-oxide-eugenol. After incubation and thermocycling, the removal force was measured using a universal testing machine at a cross-head speed of 0.5 mm/min. In zinc-oxide-eugenol group, after removal of the coping, the cement remnants were completely cleaned and the copings were re-cemented with resin cement and re-tested. Two-way ANOVA, post hoc Tukey tests, and paired t-test were used to analyze data (α=.05). The highest pulling force was registered in the resin cement group (414.8 N), followed by the re-cementation group (380.5 N). Increasing the diameter improved the retention significantly ( P =.006). The difference in retention between the cemented and recemented copings was not statistically significant ( P =.40). Resin cement provided retention almost twice as strong as that of the RMGI. Increasing the abutment diameter improved retention significantly. Re-cementation with resin cement did not exhibit any difference from the initial cementation with resin cement.

  15. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  16. Studies on physico-chemical and mechanical properties of the irradiated latex modified mortar

    International Nuclear Information System (INIS)

    Yassene, A.A.M.A.

    2009-01-01

    This thesis contains three chapter; chapter(I): Introduction and literature review on:- Introduction to polymer. - Mechanism of polymer-cement co-matrix formation.-Sulphate attack. - Solidification /stabilization of heavy metal in cement mortar. chapter(II): Materials and experimental techniques that include: 1- Preparation of latex polymer films from different polymer latices of styrene butadine rubber latex (SBR), poly (styrene-acrylic ester) latex (SAE) and vinylacetate /versatic -ester copolymer latex (C2A). The effect of γ-irradiation dose on the physico - chemical and mechanical properties of different latex polymer films was studied.2- Preparation of latex polymer-modified cement mortar with different ratios of cement: latex polymer and different curing method.3- Solidification /stabilization (S/S) of electroplating heavy metal precipitate in latex polymer- modified mortar with different cement /electroplating heavy metal sludge ratio. chapter(III) results and discussion

  17. Potential use of pyrite cinders as raw material in cement production: results of industrial scale trial operations.

    Science.gov (United States)

    Alp, I; Deveci, H; Yazici, E Y; Türk, T; Süngün, Y H

    2009-07-15

    Pyrite cinders, which are the waste products of sulphuric acid manufacturing plants, contain hazardous heavy metals with potential environmental risks for disposal. In this study, the potential use of pyrite cinders (PyCs) as iron source in the production of Portland cement clinker was demonstrated at the industrial scale. The chemical and mineralogical analyses of the PyC sample used in this study have revealed that it is essentially a suitable raw material for use as iron source since it contains >87% Fe(2)O(3) mainly in the form of hematite (Fe(2)O(3)) and magnetite (Fe(3)O(4)). The samples of the clinkers produced from PyC in the industrial scale trial operation of 6 months were tested for the conformity of their chemical composition and the physico-mechanical performance of the resultant cement products. The data were compared with the clinker products of the iron ore, which is used as the raw material for the production Portland cement clinker in the plant. The chemical compositions of all the clinker products of PyC appeared to conform to those of the iron ore clinker, and hence, a Portland cement clinker. The mechanical performance of the mortars prepared from the PyC clinker was found to be consistent with those of the industrial cements e.g. CEM I type cements. It can be inferred from the leachability tests (TCLP and SPLP) that PyC could be a potential source of heavy metal pollution while the mortar samples obtained from the PyC clinkers present no environmental problems. These findings suggest that the waste pyrite cinders can be readily used as iron source for the production of Portland cement. The availability of PyC in large quantities at low cost provides further significant benefits for the management/environmental practices of these wastes and for the reduction of mining and processing costs of cement raw materials.

  18. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    Science.gov (United States)

    Chen, Irvin Allen

    Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate

  19. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  20. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-01-01

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W_2CoB_2. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W_2CoB_2 with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  1. Effects of abutment diameter, luting agent type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments

    Science.gov (United States)

    Safari, Sina; Amini, Parviz; Yaghmaei, Kaveh

    2018-01-01

    PURPOSE The aim of this study was to evaluate the effects of abutment diameter, cement type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. MATERIALS AND METHODS Sixty abutments with two different diameters, the height of which was reduced to 3 mm, were vertically mounted in acrylic resin blocks with matching implant analogues. The specimens were divided into 2 diameter groups: 4.5 mm and 5.5 mm (n=30). For each abutment a CAD/CAM metal coping was manufactured, with an occlusal loop. Each group was sub-divided into 3 sub-groups (n=10). In each subgroup, a different cement type was used: resin-modified glass-ionomer, resin cement and zinc-oxide-eugenol. After incubation and thermocycling, the removal force was measured using a universal testing machine at a cross-head speed of 0.5 mm/min. In zinc-oxide-eugenol group, after removal of the coping, the cement remnants were completely cleaned and the copings were re-cemented with resin cement and re-tested. Two-way ANOVA, post hoc Tukey tests, and paired t-test were used to analyze data (α=.05). RESULTS The highest pulling force was registered in the resin cement group (414.8 N), followed by the re-cementation group (380.5 N). Increasing the diameter improved the retention significantly (P=.006). The difference in retention between the cemented and recemented copings was not statistically significant (P=.40). CONCLUSION Resin cement provided retention almost twice as strong as that of the RMGI. Increasing the abutment diameter improved retention significantly. Re-cementation with resin cement did not exhibit any difference from the initial cementation with resin cement. PMID:29503708

  2. Analysis of heavy metal contents in gray and white MTA and 2 kinds of Portland cement: a preliminary study.

    Science.gov (United States)

    Chang, Seok Woo; Shon, Won Jun; Lee, WooCheol; Kum, Kee Yeon; Baek, Seung Ho; Bae, Kwang Shik

    2010-04-01

    The levels of 10 heavy metals (arsenic, bismuth, cadmium, chromium, copper, iron, lead, manganese, nickel, and zinc) in gray Portland cement (GPC), white Portland cement (WPC), gray MTA (GMTA), and white MTA (WMTA) were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). One gram of each material was digested with 80 degrees C "aqua-regia" (7 mL of 60% HNO3 and 21 mL of 35% HCl), filtered, and analyzed by ICP-AES. The analysis was performed 6 times and the data were analyzed statistically. Arsenic and lead concentrations were the highest in GPC (P cements (P Portland cement versus MTA, the differences in purity may be considered. Copyright 2010 Mosby, Inc. All rights reserved.

  3. Prediction of hydroxyl concentrations in cement pore water using a numerical cement hydration model

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    2000-01-01

    In this paper, a 3D numerical cement hydration model is used for predicting alkali and hydroxyl concentrations in cement pore water. First, this numerical model is calibrated for Dutch cement employing both chemical shrinkage and calorimetric experiments. Secondly, the strength development of some

  4. Solidification/stabilization of technetium in cement-based grouts

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Bostick, W.D.; Spence, R.D.; Shoemaker, J.L.

    1990-01-01

    Mixed low-level radioactive and chemically hazardous process treatment wastes from the Portsmouth Gaseous Diffusion Plant are stabilized by solidification in cement-based grouts. Conventional portland cement and fly ash grouts have been shown to be effective for retention of hydrolyzable metals (e.g., lead, cadmium, uranium and nickel) but are marginally acceptable for retention of radioactive Tc-99, which is present in the waste as the highly mobile pertechnate anion. Addition of ground blast furnace slag to the grout is shown to reduce the leachability of technetium by several orders of magnitude. The selective effect of slag is believed to be due to its ability to reduce Tc(VII) to the less soluble Tc(IV) species. 12 refs., 4 tabs

  5. Durability of cement-based materials: modeling of the influence of physical and chemical equilibria on the microstructure and the residual mechanical properties

    International Nuclear Information System (INIS)

    Guillon, E.

    2004-09-01

    A large part of mechanical and durability characteristics of cement-based materials comes from the performances of the hydrated cement, cohesive matrix surrounding the granular skeleton. Experimental studies, in situ or in laboratory, associated to models, have notably enhanced knowledge on the cement material and led to adapted formulations to specific applications or particularly aggressive environments. Nevertheless, these models, developed for precise cases, do not permit to specifically conclude for other experimental conclusions. To extend its applicability domain, we propose a new evolutive approach, based on reactive transport expressed at the microstructure scale of the cement. In a general point of view, the evolution of the solid compounds of the cement matrix, by dissolutions or precipitations, during chemical aggressions can be related to the pore solution evolution, and this one relied to the ionic exchanges with the external environment. By the utilization of a geochemical code associated to a thermodynamical database and coupled to a 3D transport model, this approach authorizes the study of all aggressive solution. The approach has been validated by the comparison of experimental observations to simulated degradations for three different environments (pure water, mineralized water, seawater) and on three different materials (CEM I Portland cement with 0.25, 0.4 and 0.5 water-to cement ratio). The microstructural approach permits also to have access to mechanical properties evolutions. During chemical aggressions, the cement matrix evolution is traduced in a microstructure evolution. This one is represented from 3D images similarly to the models developed at NIST (National Institute of Standards and Technology). A new finite-element model, validated on previous tests or models, evaluates the stiffness of the cement paste, using as a mesh these microstructures. Our approach identifies and quantifies the major influence of porosity and its spatial

  6. Influence of Cement Particle-Size Distribution on Early Age Autogenous Strains and Stresses in Cement-Based Materials

    DEFF Research Database (Denmark)

    Bentz, Dale P.; Jensen, Ole Mejlhede; Hansen, Kurt Kielsgaard

    2001-01-01

    The influence of cement particle-size distribution on autogenous strains and stresses in cement pastes of identical water-to-cement ratios is examined for cement powders of four different finenesses. Experimental measurements include chemical shrinkage, to quantify degree of hydration; internal r...

  7. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  8. Chemical stability of seven years aged cement-PET composite waste form containing radioactive borate waste simulates

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.M., E-mail: hosamsaleh70@yahoo.com [Radioisotope Department, Atomic Energy Authority, Dokki (Egypt); Tawfik, M.E. [Department of Polymers and Pigments, National Research Center, Dokki (Egypt); Bayoumi, T.A. [Radioisotope Department, Atomic Energy Authority, Dokki (Egypt)

    2011-04-15

    Different samples of radioactive borate waste simulate [originating from pressurized water reactors (PWR)] have been prepared and solidified after mixing with cement-water extended polyester composite (CPC). The polymer-cement composite samples were prepared from recycled poly (ethylene terephthalate) (PET) waste and cement paste (water/cement ratio of 40%). The prepared samples were left to set at room temperature (25 deg. C {+-} 5) under humid conditions. After 28 days curing time the obtained specimens were kept in their molds to age for 7 years under ambient conditions. Cement-polymer composite waste form specimens (CPCW) have been subjected to leach tests for both {sup 137}Cs and {sup 60}Co radionuclides according to the method proposed by the International Atomic Energy Agency (IAEA). Leaching tests were justified under various factors that may exist within the disposal site (e.g. type of leachant, surrounding temperature, leachant behavior, the leachant volume to CPCW surface area...). The obtained data after 260 days of leaching revealed that after 7 years of aging the candidate cement-polymer composite (CPC) containing radioactive borate waste samples are characterized by adequate chemical stability required for the long-term disposal process.

  9. Effect of irradiation on acrylic cement with special reference to fixation of pathological fractures

    International Nuclear Information System (INIS)

    Eftekhar, N.S.; Thurston, C.W.

    1975-01-01

    Self-curing cement is generally used in conjunction with conventional metallic devices. If the acrylic cement was supplemented, the primary goal would be a rigid immobiliztion of the fracture to alleviate the pain; usually, however, the final aim is toward osteosynthesis. During the course of rehabilitation, it is often desirous to supplement the treatment by irradiation. Although the industrial, dental and surgical literature has adequately dealt with many aspects of bone cement; for example, physical and chemical properties in joint replacement, and so on, the effects of irradiation on the acrylic cement have not been previously reported. It is the purpose of this paper to analyze the experimental studies conducted to evaluate the mechanical properties of the polymethylmethacrylate when subjected to irradiation within a maximum range of a therapeutic dose

  10. Preparation, physical-chemical characterisation and cytocompatibility of calcium carbonate cements.

    Science.gov (United States)

    Combes, C; Miao, Baoji; Bareille, Reine; Rey, Christian

    2006-03-01

    The feasibility of calcium carbonate cements involving the recrystallisation of metastable calcium carbonate varieties has been demonstrated. Calcium carbonate cement compositions presented in this paper can be prepared straightforwardly by simply mixing water (liquid phase) with two calcium carbonate phases (solid phase) which can be easily obtained by precipitation. An original cement composition was obtained by mixing amorphous calcium carbonate and vaterite with an aqueous medium. The cement set and hardened within 2h at 37 degrees C in an atmosphere saturated with water and the final composition of the cement consisted mostly of aragonite. The hardened cement was microporous and showed poor mechanical properties. Cytotoxicity tests revealed excellent cytocompatibility of calcium carbonate cement compositions. Calcium carbonates with a higher solubility than the apatite formed for most of the marketed calcium phosphate cements might be of interest to increase biomedical cement resorption rates and to favour its replacement by bone tissue.

  11. Bitumen coating as a tool for improving the porosity and chemical stability of simulated cement-waste forms

    International Nuclear Information System (INIS)

    Saleh, H.M.

    2010-01-01

    Coating process of simulated cement-based waste form with bitumen was evaluated by performing physical and chemical experimental tests. X-ray diffraction (X-RD), Fourier transform infrared spectroscopy (FT-IR) and electron microscope investigations were applied on coated and non-coated simulated waste forms. Experimental results indicated that coating process improved the applicable properties of cement-based waste form such as porosity and leachability. Diffusion coefficients and leach indecies of coated specimens were calculated and show acceptable records. It could be stated that coating cemented waste form by bitumen emulsion, isolate the radioactive contaminants, thus reduces their back release to surrounding and in consequently save the environment proper and safe

  12. Chemical and physical properties of bone cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    Po-Liang Lai

    2013-08-01

    Full Text Available Vertebral compression fracture is the most common complication of osteoporosis. It may result in persistent severe pain and limited mobility, and significantly impacts the quality of life. Vertebroplasty involves a percutaneous injection of bone cement into the collapsed vertebrae by fluorescent guide. The most commonly used bone cement in percutaneous vertebroplasty is based on the polymerization of methylmethacrylate monomers to polymethylmethacrylate (PMMA polymers. However, information on the properties of bone cement is mostly published in the biomaterial sciences literature, a source with which the clinical community is generally unfamiliar. This review focuses on the chemistry of bone cement polymerization and the physical properties of PMMA. The effects of altering the portions and contents of monomer liquid and polymer powders on the setting time, polymerization temperature, and compressive strength of the cement are also discussed. This information will allow spine surgeons to manipulate bone cement characteristics for specific clinical applications and improve safety.

  13. Mechano-Chemical Interactions at Cement-Geomaterial Interfaces in Repository and Borehole Scenarios

    Science.gov (United States)

    Mohagheghi, J. R.; Dewers, T. A.; Matteo, E. N.; Heath, J. E.; Jove Colon, C. F.; Fuller, T.

    2017-12-01

    A number of factors negatively affect wellbore integrity including interactions at boundaries between cement and surrounding geomaterial. These include mechanical and chemical mechanisms that can lead to wellbore failure. To examine these interactions, potential coupling, and pathways to failure, we discuss progress on an experimental and modeling study involving cement-clay and cement-salt interfaces. A sample shotcrete-bentonite interface from the FEBEX heater test at the Grimsel Test Site in Switzerland is examined using multi-beam scanning electron microscopy (mSEM) at 4 nm resolution over an area 10's of square millimeters. We examine changes in alteration as manifested by pore structural changes as a function of distance from the interface. A parallel effort examines time-dependent changes in interface structure in cement cores in a triaxial coreholder. Cores are exposed to conditions of 70oC, 14 MPa pressure, and small differential loads, with degradation being monitored by effluent pH, pulse-echo ultrasonics, and piston displacement (measuring sample shortening). We will measure the mechanical consequences of interface alteration using nano-indentation. Experimental results are being incorporated as a validation effort in a coupled reactive-transport mechanics model linking the Sandia ALBANY finite element code, the KAYENTA elasto-plastic constitutive model, with the reactive transport code PFLOTRAN. Plans call to apply the model to understanding the evolution of the FEBEX sample, as well as a cement-salt sample from the Waste Isolation Pilot Plant in Carlsbad, New Mexico. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND 2017-8277 A

  14. Behaviour of a cement stone with chemical additions under short high temperature effects

    International Nuclear Information System (INIS)

    Falikman, V.R.; Veselova, V.I.; Ershov, V.Yu.; Muzalevskij, L.P.

    1987-01-01

    The purpose of the paper is to investigate the influence of different chemical additions used in NPP construction on thermal stability of a cement stone under short- and high-temperature effects. S-3 and dihydroxyphenyl utilized as peptizing agents for increase of placeability of concrete mixtures as well as sodium nitrite utilized as an antifreezing addition at conccreting at low temperatures are used as additions. The investigations were conducted in the 0-900 deg C temperature range divided into 4 ranges. Shrinkage and mass losses of specimens were determined. The obtained data show that specimens with additions are subjected to smaller shrinkage and mass losses as compared with specimens without additions. The highest positive effect is attained in portland cements with active mineral additions

  15. Determination of Heavy Metal in Agricultural Soils near and Far From the Cement Factory in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaeian

    2016-08-01

    Full Text Available Background: Heavy metals (HMs are one of the most important polluting substances emitted to the environment during cement production. Tehran Cement Factory located in the southeastern of Tehran, Iran, closer to agricultural lands cultivates alfalfa, barley, and maize as feed. The objective of the study was to determine the concentration of HMs in agricultural soils. Methods: Thirty six soil samples were collected from two regions of Aminabad (close to the cement factory and Varamin (far from cement factory in 2015. The samples were taken from a depth of 0-15 cm and analyzed to determine their HM (zinc, lead, cadmium and chromium by atomic absorption spectrophotometry. Other relevant parameters of soil were evaluated, such as; pH, EC, TOM. Results: The concentration of HMs in both regions was as follows: Pb> Zn > Cr > Cd. Generally, the soil alfalfa, barley and maize, there was no significant difference. Conclusion: These data provide information on HM accumulations in agricultural soils and allow us to identify sources of pollution. In the industrial area due to the proximity to cement factory, concentration of zinc, lead, chromium, pH and EC were more than non-contaminated areas.

  16. Effect of Cement Type on Autogenous Deformation of Cement-Based Materials

    DEFF Research Database (Denmark)

    Pietro, Lura; Ye, Guang; van Breugel, Klaas

    2004-01-01

    In this paper, measurements of non-evaporable water content, chemical shrinkage, autogenous deformation, internal relative humidity (RH), pore solution composition, and early-age elastic modulus are presented and discussed. All experiments were performed on Portland cement and blast-furnace slag...... (BFS) cement pastes. Self-desiccation shrinkage of the BFS cement paste was modeled based on the RH measurements, following the capillary-tension approach. The main findings of this study are: 1) self-desiccation shrinkage can be related to self-desiccation both for Portland and for BFS cement pastes......, taking into account the influence of the dissolved salts in the pore solution, 2) the BFS cement paste studied shows pronounced self-desiccation and self-desiccation shrinkage, mainly caused by its very fine pore structure....

  17. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties.

    Science.gov (United States)

    Sun, Hongfang; Li, Zishanshan; Bai, Jing; Memon, Shazim Ali; Dong, Biqin; Fang, Yuan; Xu, Weiting; Xing, Feng

    2015-02-13

    Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)₂, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP). The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength) with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement) pastes was also examined through SEM (scanning electron microscope). Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  18. Basic Chemistry for the Cement Industry.

    Science.gov (United States)

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  19. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: I. Chemical analysis

    International Nuclear Information System (INIS)

    Neji, M.; Bary, B.; Le Bescop, P.; Burlion, N.

    2015-01-01

    This paper presents the first part of a theoretical and experimental work aiming at modeling the chemo-mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C_3S). Because of ion exchange processes, the volume change of the IER may cause internal pressures leading to the degradation of the material. In this study, a predictive modeling is developed for describing the chemical behavior of such material. It is based on thermodynamic equilibria to determine the evolution of the ion exchange processes, and the potential precipitation of portlandite in the composite. In parallel, a phenomenological study has been set up to understand chemical phenomena related to the swelling mechanisms. The model created has been finally implemented in a finite elements software; the simulation of a laboratory test has been performed and the results compared to experimental data. - Highlights: • Ion exchange theory to model the swelling behavior of Ion exchange resin. • Experimental phenomenon analysis about Chemo-mechanical interaction between IER and cement paste matrix. • Chemo-Transport modeling on a composite material made with IER embedded into cement paste matrix.

  20. Influence of the mineralogical composition of cement in the diffusion of chemical species

    International Nuclear Information System (INIS)

    Galicia A, E.

    2015-01-01

    , color and others. Portland cements commonly used in the construction industry, they are based primarily on the mineral phases of limestone and silica. In conventional cement admixtures the chemical reactivity depends on the ratio of tricalcium and dicalcium silicate (C 3 S/C 2 S), the tricalcium aluminate (C 3 A) influences in the setting time and tetra calcium ferro aluminate (C 4 AF) gives a different color to the cement. In this research the mineralogical composition of two commercial cements is studied and its influence on the phenomenon of radionuclides retention. For this particular concrete discs were manufactured with water, sand and two commercial cements: Tolteca Extra CPC 30-RRS and Cruz Azul CPC Type II 30-R. The solid observation techniques used for analysis of the cement paste and concrete they are: X-ray Diffraction and Scanning Electron Microscopy, as well as the nuclear analytic techniques of Moessbauer and X-ray Fluorescence. (Author)

  1. Structural-chemical characteristics of implanted metals

    International Nuclear Information System (INIS)

    Kozejkin, B.V.; Pavlov, P.V.; Pitirimova, E.A.; Frolov, A.I.

    1988-01-01

    Corrosion and structural characteristics of metallic layers implanted by ions of chemically active impurities and noble gases are studied. Dependence of experimental results on parameters of initial materials and technological conditions of implantation is established. In studying corrosion characteristics of implanted metals a strong dependence of chemical passivation effect on technological conditions of ion-implantation and structure of initial material is stated. On the basis of developed mathematical model of chemical passivation effect it is shown that increase of corrosion characteristics of implanted metals is defined by superposition of surface and volumetric mechanisms

  2. Additional chemical polymerization of dual resin cements: reality or a goal to be achieved?

    Directory of Open Access Journals (Sweden)

    Luzia Sakaguti UMETSUBO

    Full Text Available Abstract Introduction This study serves as a warning to dentists and researchers that dual-cured resin cements may not polymerize completely under some prosthetic crowns. Objective The aim of this study was to analyse the polymerization degree of dual-cured resin cements under prosthetic barrier, by microhardness test. Material and method Three cements (Bistite II, RelyX ARC and Variolink II were light-cured through different barriers, placed between the cement and the light source: G1: without barrier; G2: composite resin (Cesead; G3: Inceram alumina; G4: IPS Empress; G5: Inceram zirconia; G6: tooth fragment. Photopolymerization was carried out using a halogen light unit (650 mW/cm2; microhardness was evaluated using the Microhardness Tester FM 700, under a load of 50gf with a dwell time of 15s, at two evaluation times (30min and 24h. Result The results were submitted to ANOVA and Tukey tests (5%. Both Inceram alumina and Inceram zirconia ceramic barriers hindered polymerization. Bistite, followed by RelyX and Variolink, exhibited the highest microhardness values (p<0.05. As the highest values were obtained without a barrier, it was determined that the barrier, followed by the tooth, influenced microhardness. Both Empress and Cesead had the smallest microhardness values but with no statistically significant difference between them. Conclusion The barrier negatively affected the microhardness of dual-cured resin cements; evaluation time did not affect microhardness values for most of the conditions tested. There is a limited effect of the chemical activator on the polymerization of some dual-cured cements, and their performance is product specific.

  3. Corrosion resistant cemented carbide

    International Nuclear Information System (INIS)

    Hong, J.

    1990-01-01

    This paper describes a corrosion resistant cemented carbide composite. It comprises: a granular tungsten carbide phase, a semi-continuous solid solution carbide phase extending closely adjacent at least a portion of the grains of tungsten carbide for enhancing corrosion resistance, and a substantially continuous metal binder phase. The cemented carbide composite consisting essentially of an effective amount of an anti-corrosion additive, from about 4 to about 16 percent by weight metal binder phase, and with the remaining portion being from about 84 to about 96 percent by weight metal carbide wherein the metal carbide consists essentially of from about 4 to about 30 percent by weight of a transition metal carbide or mixtures thereof selected from Group IVB and of the Periodic Table of Elements and from about 70 to about 96 percent tungsten carbide. The metal binder phase consists essentially of nickel and from about 10 to about 25 percent by weight chromium, the effective amount of an anti-corrosion additive being selected from the group consisting essentially of copper, silver, tine and combinations thereof

  4. Study of the Microstructure Evolution of Low-pH Cements Based on Ordinary Portland Cement (OPC by Mid- and Near-Infrared Spectroscopy, and Their Influence on Corrosion of Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Juan García Olmo

    2013-06-01

    Full Text Available Low-pH cements are designed to be used in underground repositories for high level waste. When they are based on Ordinary Portland Cements (OPC, high mineral admixture contents must be used which significantly modify their microstructure properties and performance. This paper evaluates the microstructure evolution of low-pH cement pastes based on OPC plus silica fume and/or fly ashes, using Mid-Infrared and Near-Infrared spectroscopy to detect cement pastes mainly composed of high polymerized C-A-S-H gels with low C/S ratios. In addition, the lower pore solution pH of these special cementitious materials have been monitored with embedded metallic sensors. Besides, as the use of reinforced concrete can be required in underground repositories, the influence of low-pH cementitious materials on steel reinforcement corrosion was analysed. Due to their lower pore solution pH and their different pore solution chemical composition a clear influence on steel reinforcement corrosion was detected.

  5. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    OpenAIRE

    Auday A Mehatlaf

    2017-01-01

    Cement Klin Dust (CKD) was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40) had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28) d...

  6. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    Science.gov (United States)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  7. Spectroscopic investigation of Ni speciation in hardened cement paste.

    Science.gov (United States)

    Vespa, M; Dähn, R; Grolimund, D; Wieland, E; Scheidegger, A M

    2006-04-01

    Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system.

  8. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs

  9. The Long-Term Study of Some mechanical and Chemical Properties of Polymer Modified Cement Waste Forms

    International Nuclear Information System (INIS)

    Shatta, H.A.; Eskander, S.B.

    2002-01-01

    The present work is a new experimental trend to study the long-term durability of polymer/cement/borate waste forms in storage and disposal sites during the long period of time. The data obtained indicate that all the samples of polymer modified cement waste forms immersed in both distilled and ground water (for more than 2700 days) show a slight increase in the compressive strength values. The chemical stability of the immobilized borate waste forms in distilled and ground water was studied. The cumulative leach fraction in percentage, of Cs-137 isotope from the final solidified waste forms in case of using ground water was lower than that in distilled water for all samples used and the presence of polymer lowered the percent release of radioactive Cs-137 isotope in all samples studied . The leach coefficients (Lc) and the leach indices (Li) of radioactive cesium-137 isotope for cement borate and polymer modified cement waste forms were also calculated. It was found that the leach indices values greater than 6

  10. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-02-01

    Full Text Available Calcium carbide residue (CCR is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP. The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement pastes was also examined through SEM (scanning electron microscope. Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  11. 21 CFR 888.3353 - Hip joint metal/ceramic/polymer semi-constrained cemented or nonporous uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... linkage across-the-joint. The two-part femoral component consists of a femoral stem made of alloys to be... ceramic (aluminium oxide, A1203) head of the femoral component. The acetabular component is made of ultra... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...

  12. Development of high-performance blended cements

    Science.gov (United States)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  13. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; McCulloch, C.E.; Angus, M.J.

    1984-01-01

    Model studies of the behaviour of cement systems have been advanced by considering the nature of the phases formed during hydration and deriving pH-composition models for the CaO-SiO 2 -H 2 O system. Preliminary results of Esub(h) measurements are also reported. Leach tests on Sr from cements are interpreted in terms of Sr retention mechanisms. Present results indicate that the aluminate phases in OPC contribute to the chemical retentivity. Studies on cement-clinoptilolite reactions, made using coarse grained clinoptilolite are reported: ferrierite also reacts chemically with cement. Two critical surveys are presented, together with new data: one on the potential of blended cements, the other on cement durability in CO 2 -containing environments. (author)

  14. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  15. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  16. Characterization of cement-stabilized Cd wastes

    International Nuclear Information System (INIS)

    Maria Diez, J.; Madrid, J.; Macias, A.

    1996-01-01

    Portland cement affords both physical and chemical immobilization of cadmium. The immobilization has been studied analyzing the pore fluid of cement samples and characterizing the solid pastes by X-ray diffraction. The influence of cadmium on the cement hydration and on its mechanical properties has been also studied by isothermal conduction calorimetry and by the measure of strength and setting development. Finally, the effect of cement carbonation on the immobilization of cadmium has been analyzed

  17. Recent Advances in the Deposition of Diamond Coatings on Co-Cemented Tungsten Carbides

    Directory of Open Access Journals (Sweden)

    R. Polini

    2012-01-01

    Full Text Available Co-cemented tungsten carbides, namely, hard metals are largely used to manufacture high wear resistant components in several manufacturing segments. Coating hard metals with superhard materials like diamond is of utmost interest as it can further extend their useful lifespan. The deposition of diamond coatings onto WC-Co can be extremely complicated as a result of poor adhesion. This can be essentially ascribed to (i the mismatch in thermal expansion coefficients between diamond and WC-Co, at the typical high temperatures inside the chemical vapour deposition (CVD chamber, generates large residual stresses at the interface; (ii the role of surface Co inside the WC-Co matrix during diamond CVD, which promotes carbon dissolution and diffusion. The present investigation reviews the techniques by which Co-cemented tungsten carbides can be treated to make them prone to receive diamond coatings by CVD. Further, it proposes interesting ecofriendly and sustainable alternatives to further improve the diamond deposition process as well as the overall performance of the coated hard metals.

  18. Effects of cement particle size distribution on performance properties of Portland cement-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, D.P.; Garboczi, E.J.; Haecker, C.J.; Jensen, O.M.

    1999-10-01

    The original size, spatial distribution, and composition of Portland cement particles have a large influence on hydration kinetics, microstructure development, and ultimate properties of cement-based materials. In this paper, the effects of cement particle size distribution on a variety of performance properties are explored via computer simulation and a few experimental studies. Properties examined include setting time, heat release, capillary porosity percolation, diffusivity, chemical shrinkage, autogenous shrinkage, internal relative humidity evolution, and interfacial transition zone microstructure. The effects of flocculation and dispersion of the cement particles in the starting microstructures on resultant properties are also briefly evaluated. The computer simulations are conducted using two cement particle size distributions that bound those commonly in use today and three different water-to-cement ratios: 0.5, 0.3, and 0.246. For lower water-to-cement ratio systems, the use of coarser cements may offer equivalent or superior performance, as well as reducing production costs for the manufacturer.

  19. Hydration and leaching characteristics of cement pastes made from electroplating sludge.

    Science.gov (United States)

    Chen, Ying-Liang; Ko, Ming-Sheng; Lai, Yi-Chieh; Chang, Juu-En

    2011-06-01

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the (29)Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic β-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The influence of prefabricated pipe cement coatings and those made during pipe renovation on drinking water quality

    Directory of Open Access Journals (Sweden)

    Młyńska Anna

    2017-01-01

    Full Text Available Nowadays, cement coatings are often used as an anticorrosion protection of the internal surfaces of manufactured ductile iron water pipes. The protective cement linings are also commonly used for old water pipe renovation. In both cases, the cement lining is an excellent anticorrosion protection of the pipelines, effectively separating the pipe wall from the flowing water. Moreover, cement linings protect the pipelines not only by a mechanical barrier, but also by a chemical barrier creating a highly alkaline environment in water contact with the metal pipe wall. In addition, cement coatings have an ability for so-called self-regeneration and provide the improvement of hydraulic conditions inside the pipelines. In turn, the differences between the analysed cement coatings mainly depend on the types of cements used and techniques of cement mortar spraying. As was expected, they influence the quality of water having contact with the coating. A comparison of the impact of cement coatings manufactured in factories and sprayed on building sites during the renovation on drinking water quality parameters was performed in the study. The experiments were conducted in laboratory conditions, using the test stands prepared for this purpose. The results include analysis of selected water quality parameters for the samples contacting with cement mortar and collected during the investigation.

  1. Application of Neutron imaging in pore structure of hydrated wellbore cement: comparison of hydration of H20 with D2O based Portland cements

    Science.gov (United States)

    Dussenova, D.; Bilheux, H.; Radonjic, M.

    2012-12-01

    Wellbore Cement studies have been ongoing for decades. The studies vary from efforts to reduce permeability and resistance to corrosive environment to issues with gas migration also known as Sustained Casing Pressure (SCP). These practical issues often lead to health and safety problems as well as huge economic loss in oil and gas industry. Several techniques have been employed to reduce the impact of gas leakage. In this study we purely focus on expandable liners, which are introduced as part of oil well reconstruction and work-overs and as well abandonment procedures that help in prevention of SCP. Expandable liner is a tube that after application of a certain tool can increase its diameter. The increase in diameter creates extra force on hydrated cement that results in reducing width of interface fractures and cement-tube de-bonding. Moreover, this also causes cement to change its microstructure and other porous medium properties, primarily hydraulic conductivity. In order to examine changes before and after operations, cement pore structure must be well characterized and correlated to cement slurry design as well as chemical and physical environmental conditions. As modern oil well pipes and tubes contain iron, it is difficult to perform X-ray tomography of a bulk measurement of the cement in its wellbore conditions, which are tube wall-cement-tube wall. Neutron imaging is a complementary technique to x-ray imaging and is well suited for detection of light elements imbedded in metallic containers. Thus, Neutron Imaging (NI) is investigated as a tool for the detection of pore structure of hydrated wellbore cement. Recent measurements were conducted at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) neutron imaging facility. NI is is highly sensitive to light elements such as Hydrogen (H). Oil well cements that have undergone a full hydration contain on average 30%-40% of free water in its pore structure. The unreacted water is the main

  2. physico-chemical studies on polymer impregnated blending cement mortar composite

    International Nuclear Information System (INIS)

    Abdel-Rahman, H.A.

    2001-01-01

    as the increasing of the demand on a specific performance characteristics in concrete such as improved strength, low heat, sulfate resistance, improved impermeability and certain other applications. some of the industrial waste materials such as the blast-furnace slag, silica fume and fly ash were mixed with the cement clinker to produce blended cement . the use of these materials modifies the strength, pore structure and permeability of hardened cement mortar or concrete. the incorporation of blast furnace slag and silica fume in the hardened blended cement mortar or concrete is a common practice recently due to technological, economical and environmental benefits

  3. Chemical and morphological characteristics of mineral trioxide aggregate and Portland cements.

    Science.gov (United States)

    Khan, Shahbaz; Kaleem, Muhammad; Fareed, Muhammad Amber; Habib, Amir; Iqbal, Kefi; Aslam, Ayesha; Ud Din, Shahab

    2016-01-01

    The purpose of this study was to investigate the chemical composition and particle morphology of white mineral trioxide aggregate (WMTA) and two white Portland cements (CEM 1 and CEM 2). Compositional analysis was performed by energy dispersive X-ray spectroscopy, X-ray fluorescence spectrometry and X-ray diffraction whereas, morphological characteristics were analyzed by scanning electron microscope and Laser scattering particle size distribution analyzer. The elemental composition of WMTA, CEM 1 and CEM 2 were similar except for the presence of higher amounts of bismuth in WMTA. Calcium oxide and silicon oxide constitute the major portion of the three materials whereas, tricalcium silicate was detected as the major mineral phase. The particle size distribution and morphology of WMTA was finer compared to CEM 1 and CEM 2. The three tested materials had relatively similar chemical composition and irregular particle morphologies.

  4. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; McCulloch, C.E.; Angus, M.J.

    1985-06-01

    The kinetics of reaction between cement and clinoptilolite are elucidated and rate equations containing temperature dependent constants derived for this reaction. Variations in clinoptilolite particle size and their consequences to reactivity are assessed. The presence of pozzolanic agents more reactive than clinoptilolite provides sacrificial agents which are partially effective in lowering the clinoptilolite reactivity. Blast furnace slag-cements have been evaluated and the background literature summarized. Experimental studies of the pore fluid in matured slag-cements show that they provide significantly more immobilization for Cs than Portland cement. The distribution of Sr in cemented waste forms has been examined, and it is shown that most of the chemical immobilization potential in the short term is likely to be associated with the aluminate phases. The chemical and structural nature of these are described. Carbonation studies on real cements are summarized. (author)

  5. The behavior of implant-supported dentures and abutments using the cemented cylinder technique with different resinous cements

    Directory of Open Access Journals (Sweden)

    Ivete Aparecida de Mathias Sartori

    2008-01-01

    Full Text Available Objective: Evaluate the behavior of implant-supported dentures and their components, made by cemented cylinder technique, using threetypes of resin cements. Methods: Fifty three patients, of whom 26 were women and 27 men, aged between 25 and 82 years. Results: With partial (54.43% and total (45.57% implant-supported dentures, of the Cone Morse, external and internal hexagon types (Neodent®, Curitiba, Brazil, totaling 237 fixations, were analyzed. The resin cements used were Panavia® (21.94%, EnForce® (58.23% and Rely X® (19.83% and the components were used in accordance with the Laboratory Immediate Loading - Neodent® sequence. The period of time of denture use ranged between 1 and 5 years. The results reported that 5(2.1% cylinders were loosened from metal structure (both belonging to Rely X group, 2(0.48% implants were lost after the first year of use, 16(6.75% denture retention screws wereloosened and 31(13.08% abutment screws were unloosened.Conclusion: The reasons for these failures probably are: metal structure internal retention failure, occlusal pattern, cementation technique and loading conditions. The cemented cylinder technique was effective when used in partial and total implant-supported rehabilitations, keeping prosthetic components stable, despite the resin cement utilized. However, further clinical studies must be conducted.

  6. Cementation and solidification of miscellaneous mixed wastes at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Phillips, J.A.; Semones, G.B.

    1995-01-01

    The Rocky Flats Environmental Technology Site produces a variety of wastes which are amenable to micro-encapsulation in cement Portland cement is an inexpensive and readily available material for this application. The Waste Projects (WP) group at Rocky Flats evaluated cementation to determine its effectiveness in encapsulating several wastes. These included waste analytical laboratory solutions, incinerator ash, hydroxide precipitation sludge, and an acidic solution from the Delphi process (a chemical oxidation technology being evaluated as an alternative to incineration). WP prepared surrogate wastes and conducted designed experiments to optimize the cement formulation for the waste streams. These experiments used a Taguchi or factorial experimental design, interactions between the variables were also considered in the testing. Surrogate waste samples were spiked with various levels of each of six Resource Conservation and Recovery Act (RCRA) listed metals (Cd, Cr, Ba, Pb, Ni, and Ag), cemented using the optimized formulation, and analyzed for leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP). The metal spike levels chosen were based on characterization data, and also based on an estimate of the highest levels of contaminants suspected in the waste. This paper includes laboratory test results for each waste studied. These include qualitative observations as well as quantitative data from TCLP analyses and environmental cycling studies. The results from these experiments show that cement stabilization of the different wastes can produce final waste forms which meet the current RCRA Land Disposal Restriction (LDR) requirements. Formulations that resulted in LDR compliant waste forms are provided. The volume increases associated with cementation are also lower than anticipated. Future work will include verification studies with actual mixed radioactive waste as well as additional formulation development studies on other waste streams

  7. Encapsulation, solid-phases identification and leaching of toxic metals in cement systems modified by natural biodegradable polymers

    International Nuclear Information System (INIS)

    Lasheras-Zubiate, M.; Navarro-Blasco, I.; Fernández, J.M.; Álvarez, J.I.

    2012-01-01

    Highlights: ► Speciation of Zn, Pb and Cr has been studied in chitosan-modified cement mortars. ► Metal retention mechanisms have been clarified by newly identified crystalline forms. ► Native chitosan induced and stabilized newly characterized Pb (IV) species. ► Dietrichite is responsible for the Zn immobilization in the polymer-modified mortar. ► Leaching of Zn decreased by 24% in the presence of low molecular weight chitosan. - Abstract: Cement mortars loaded with Cr, Pb and Zn were modified by polymeric admixtures [chitosans with low (LMWCH), medium (MMWCH) and high (HMWCH) molecular weight and hydroxypropylchitosan (HPCH)]. The influence of the simultaneous presence of the heavy metal and the polymeric additive on the fresh properties (consistency, water retention and setting time) and on the compressive strength of the mortars was assessed. Leaching patterns as well as properties of the cement mortars were related to the heavy metals-bearing solid phases. Chitosan admixtures lessened the effect of the addition of Cr and Pb on the setting time. In all instances, chitosans improved the compressive strength of the Zn-bearing mortars yielding values as high as 15 N mm −2 . A newly reported Zn phase, dietrichite (ZnAl 2 (SO 4 ) 4 ·22H 2 O) was identified under the presence of LMWCH: it was responsible for an improvement by 24% in Zn retention. Lead-bearing silicates, such as plumalsite (Pb 4 Al 2 (SiO 3 ) 7 ), were also identified by XRD confirming that Pb was mainly retained as a part of the silicate network after Ca ion exchange. Also, the presence of polymer induced the appearance and stabilization of some Pb(IV) species. Finally, diverse chromate species were identified and related to the larger leaching values of Cr(VI).

  8. Influence of various amount of diatomaceous earth used as cement substitute on mechanical properties of cement paste

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert

    2016-06-01

    Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.

  9. Heat of hydration measurements on cemented radioactive wastes. Part 1: cement-water pastes

    International Nuclear Information System (INIS)

    Lee, D.J.

    1983-12-01

    This report describes the hydration of cement pastes in terms of chemical and kinetic models. A calorimetric technique was used to measure the heat of hydration to develop these models. The effects of temperature, water/cement ratio and cement replacements, ground granulated blast furnace slag (BFS) and pulverised fuel ash (PFA) on the hydration of ordinary Portland cement (OPC) is reported. The incorporation of BFS or PFA has a marked effect on the hydration reaction. The effect of temperature is also important but changing the water/cement ratio has little effect. Results from cement pastes containing only water and cement yield total heats of reaction of 400, 200 and 100 kJ/kg for OPC, BFS and PFA respectively. Using the results from the models which have been developed, the effect of major salts present in radioactive waste streams can be assessed. Values of the total heat of reaction, the time to complete 50 percent reaction, and the energy of activation, can be compared for different waste systems. (U.K.)

  10. Preparation, physical-chemical characterisation and cytocompatibility of calcium carbonate cements

    OpenAIRE

    Combes, Christèle; Miao, Baoji; Bareille, Reine; Rey, Christian

    2006-01-01

    The feasibility of calcium carbonate cements involving the recrystallisation of metastable calcium carbonate varieties has been demonstrated. Calcium carbonate cement compositions presented in this paper can be prepared straightforwardly by simply mixing water (liquid phase) with two calcium carbonate phases (solid phase) which can be easily obtained by precipitation. An original cement composition was obtained by mixing amorphous calcium carbonate and vaterite with an aqueous medium. The cem...

  11. Contact damage failure analyses of fretting wear behavior of the metal stem titanium alloy-bone cement interface.

    Science.gov (United States)

    Zhang, Lanfeng; Ge, Shirong; Liu, Hongtao; Wang, Qingliang; Wang, Liping; Xian, Cory J

    2015-11-01

    Although cemented titanium alloy is not favored currently in the Western world for its poor clinical and radiography outcomes, its lower modulus of elasticity and good biocompatibility are instrumental for its ability supporting and transforming physical load, and it is more suitable for usage in Chinese and Japanese populations due to their lower body weights and unique femoral characteristics. Through various friction tests of different cycles, loads and conditions and by examining fretting hysteresis loops, fatigue process curves and wear surfaces, the current study investigated fretting wear characteristics and wear mechanism of titanium alloy stem-bone cement interface. It was found that the combination of loads and displacement affected the wear quantity. Friction coefficient, which was in an inverse relationship to load under the same amplitude, was proportional to amplitudes under the same load. Additionally, calf serum was found to both lubricate and erode the wear interface. Moreover, cement fatigue contact areas appeared black/oxidative in dry and gruel in 25% calf serum. Fatigue scratches were detected within contact areas, and wear scars were found on cement and titanium surfaces, which were concave-shaped and ring concave/ convex-shaped, respectively. The coupling of thermoplastic effect and minimal torque damage has been proposed to be the major reason of contact damage. These data will be important for further studies analyzing metal-cement interface failure performance and solving interface friction and wear debris production issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Barium aluminate cement: its application

    International Nuclear Information System (INIS)

    Drozdz, M.; Wolek, W.

    1975-01-01

    The technology of manufacturing barium aluminate cement from barium sulfate and alumina, using a rotary kiln for firing the clinker is described. The method of granulation of the homogenized charge was used. Conditions of using the ''to mud'' method in industry were indicated. The physical and chemical properties of barium aluminate cement are determined and the quality of several batches of cement prepared on a semi-industrial scale and their suitability for making highly refractory concretes are tested. The optimal composition of the concretes is determined as a function of the mixing water and barium aluminate cement contents. Several experimental batches of concretes were used in the linings of furnaces in the steel industry. The suitability of these cements for use in fields other than steelmaking is examined. It is established that calcium aluminate cement has certain limited applications [fr

  13. Leaching of hazardous substances from a composite construction product – An experimental and modelling approach for fibre-cement sheets

    Energy Technology Data Exchange (ETDEWEB)

    Lupsea, Maria [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Paris–Est University, CSTB–Scientific and Technical Centre for the Building Industry, DEE/Environmentand Life Cycle Engineering Team, 24 rue Joseph Fourier, F–38400 Saint Martin d’Hères (France); Tiruta-Barna, Ligia, E-mail: ligia.barna@insa-toulouse.fr [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Schiopu, Nicoleta [Paris–Est University, CSTB–Scientific and Technical Centre for the Building Industry, DEE/Environmentand Life Cycle Engineering Team, 24 rue Joseph Fourier, F–38400 Saint Martin d’Hères (France)

    2014-01-15

    Highlights: • Biocide and heavy metals leaching from fibre-cement sheet was investigated. • Equilibrium and dynamic leaching tests were used as modelling support. • The chemical-transport model identifies the main fixation/solubilisation mechanisms. • Biocides as terbutryn and boron were released by the commercial product. • FCS exhibit a cement-like leaching behaviour with high organic carbon release. -- Abstract: The leaching behaviour of a commercial fibre-cement sheet (FCS) product has been investigated. A static pH dependency test and a dynamic surface leaching test have been performed at lab scale. These tests allowed the development of a chemical-transport model capable to predict the release of major and trace elements over the entire pH range, in function of time. FCS exhibits a cement-type leaching behaviour with respect to the mineral species. Potentially hazardous species are released in significant quantities when compared to their total content. These are mainly heavy metals commonly encountered in cement matrixes and boron (probably added as biocide). Organic compounds considered as global dissolved carbon are released in significant concentrations, originating probably from the partial degradation of the organic fibres. The pesticide terbutryn (probably added during the preservative treatment of the organic fibres) was systematically identified in the leachates. The simulation of an upscaled runoff scenario allowed the evaluation of the cumulative release over long periods and the distribution of the released quantities in time, in function of the local exposure conditions. After 10 years of exposure the release reaches significant fractions of the species’ total content – going from 4% for Cu to near 100% for B.

  14. In vitro evaluation of microleakage of various types of dental cements

    Directory of Open Access Journals (Sweden)

    Medić Vesna

    2010-01-01

    Full Text Available Introduction. Microleakage is defined as the clinically undetectable seepage of oral fluids containing bacteria and debris between cement layer and tooth restoration. Objective. This in vitro study investigated the effect of different dental cements (zinc-phosphate, polycarboxylate, glass-ionomer and resin cement on microleakage in different ceramic crown systems (metal ceramic crown, metal ceramic crown with a porcelain margin, Empress 2 and In Ceram all-ceramic crowns fixed on extracted human teeth. Methods. One hundred and sixty intact human premolars were randomized to four groups of forty teeth each, according to the different ceramic crown systems. They were prepared in a standardized manner for metal-ceramic and all-ceramic crowns. Crowns were made following a standard laboratory technique, and each group of crowns were divided into four groups according to the different cement agents and cemented on their respective abutments. The specimens were subjected to thermocycling, placed in methylene blue solutions, embedded in resin blocks and vertically cut in the bucco-oral and meso-distal direction. The microleakage in the area of tooth-cement interface was defined as linear penetration of methylene blue and was determined with a microscope to assign microleakage scores using a five-point scale. Results. A significant association was found between a cement type and degree of microleakage (p=0.001. No statistically significant differences were found among the different ceramic crown systems luted with the same dental cement. The smallest degree of microleakage was observed in specimens luted with resin cement (X=1.73, followed by glass-ionomer cement (X=2.45 and polycarboxylate cement (X=3.20. The greatest degree of microleakage was detected in the crowns fixed with zincphosphate cement (X=3.33. Conclusion. The investigated dental cements revealed different sealing abilities. The use of resin cement resulted in the percentage of 0

  15. A comparison of the marginal vertical discrepancies of zirconium and metal ceramic posterior fixed dental prostheses before and after cementation.

    Science.gov (United States)

    Gonzalo, Esther; Suárez, Maria J; Serrano, Benjamin; Lozano, Jose F L

    2009-12-01

    Marginal discrepancies of zirconia posterior fixed dental prostheses (FDPs) fabricated using various systems have been assessed to determine the quality of the restorations and facilitate clinical use; however, studies are limited and results are ambiguous because of the sample sizes and measurement methods. The purpose of this in vitro study was to compare changes in marginal fit of posterior fixed dental prostheses of 3 zirconia systems manufactured using CAD/CAM technology and metal ceramic posterior fixed dental protheses fabricated with the conventional lost-wax technique, before and after cementation. Forty standardized master steel dies with 2 abutments simulating first mandibular premolars were fabricated to receive a posterior 3-unit FDP (from first molar to first premolar) and divided into 4 groups (n=10): Lava All-Ceramic System, Procera Bridge Zirconia, VITA In-Ceram 2000 YZ, and metal ceramic (control group). All FDPs were prepared for an internal space of 50 microm. The external marginal gap of the restorations was investigated by measuring 30 points in the middle of the buccal and lingual surfaces; therefore, 60 measurements per abutment were recorded. Measurements were made with an image analysis program on the master steel model before and after conventional cementation with a glass ionomer agent (Ketac Cem Easymix). The data obtained were statistically analyzed using 1-way ANOVA, Duncan's multiple range post hoc test, and Student's paired t test (alpha=.05). No significant differences in the vertical marginal fit before and after cementation were recorded for the analyzed groups. The marginal discrepancy of Procera abutments before and after cementation (9 +/-10 microm and 12 +/-9 microm, respectively) was less than that of the other groups. Significant differences (P=.001) were observed in marginal adaptation between Procera Bridge Zirconia and the other groups. The results of this study showed that cementation did not cause a significant

  16. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work to investigate acoustic emission as a non-intrusive monitor of corrosion and degradation of cemented wasteforms where the waste is a potentially reactive metal. The acoustic data collected shows good correlation with the corrosion rate as measured by hydrogen gas evolution rates and the electrochemically measured corrosion rates post cement hardening. The technique has been shown to be sensitive in detecting stress caused by expansive corrosion product within the cemented wasteform. The attenuation of the acoustic signal by the wasteform reduced the signal received by the monitoring equipment by a factor of 10 over a distance of approximately 150-400 mm, dependent on the water level in the cement. Full size packages were successfully monitored. It is concluded that the technique offers good potential for monitoring cemented containers of the more reactive metals, for example Magnox and aluminium. (author)

  17. Nanoparticulate fillers improve the mechanical strength of bone cement.

    Science.gov (United States)

    Gomoll, Andreas H; Fitz, Wolfgang; Scott, Richard D; Thornhill, Thomas S; Bellare, Anuj

    2008-06-01

    Polymethylmethacrylate (PMMA-) based bone cement contains micrometer-size barium sulfate or zirconium oxide particles to radiopacify the cement for radiographic monitoring during follow-up. Considerable effort has been expended to improve the mechanical qualities of cements, largely through substitution of PMMA with new chemical structures. The introduction of these materials into clinical practice has been complicated by concerns over the unknown long-term risk profile of these new structures in vivo. We investigated a new composite with the well characterized chemical composition of current cements, but with nanoparticles instead of the conventional, micrometer-size barium sulfate radiopacifier. In this study, we replaced the barium sulfate microparticles that are usually present in commercial PMMA cements with barium sulfate nanoparticles. The resultant "microcomposite" and "nanocomposite" cements were then characterized through morphological investigations such as ultra-small angle X-ray scattering (USAXS) and scanning electron microscopy (SEM). Mechanical characterization included compression, tensile, compact tension, and fatigue testing. SEM and USAXS showed excellent dispersion of nanoparticles. Substitution of nanoparticles for microparticles resulted in a 41% increase in tensile strain-to-failure (p = 0.002) and a 70% increase in tensile work-of-fracture (p = 0.005). The nanocomposite cement also showed a two-fold increase in fatigue life compared to the conventional, microcomposite cement. In summary, nanoparticulate substitution of radiopacifiers substantially improved the in vitro mechanical properties of PMMA bone cement without changing the known chemical composition.

  18. Cements in radioactive waste management. Characterization requirements of cement products for acceptance and quality assurance purposes

    International Nuclear Information System (INIS)

    Rahman, A.A.; Glasser, F.P.

    1987-01-01

    Cementitious materials are used as immobilizing matrices for low (LLW) and medium-level wastes (MLW) and are also components of the construction materials in the secondary barriers and the repositories. This report has concerned itself with a critical assessment of the quality assurance aspects of the immobilization and disposal of MLW and LLW cemented wastes. This report has collated the existing knowledge of the use and potential of cementitious materials in radioactive waste immobilization and highlighted the physico-chemical parameters. Subject areas include an assessment of immobilization objectives and cement as a durable material, waste stream and matrix characterization, quality assurance concepts, nature of cement-based systems, chemistry and modelling of cement hydration, role and effect of blending agents, radwaste-cement interaction, assessment of durability, degradative and radiolytic processes in cements and the behaviour of cement-based matrices and their near-field interactions with the environment and the repository conditions

  19. Electrical Current Flow and Cement Hydration : Implications on Cement-Based Microstructure

    NARCIS (Netherlands)

    Susanto, A.; Peng, G; Koleva, D.A.; van Breugel, K.

    2016-01-01

    Stray current is an electrical current “leakage” from metal conductors and electrical installations. When it flows through cement-based materials, electrical energy is converted to thermal energy that causes increasing temperature due to Joule heating phenomena. The aim of this paper is to shed

  20. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    Directory of Open Access Journals (Sweden)

    Auday A Mehatlaf

    2017-12-01

    Full Text Available Cement Klin Dust (CKD was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40 had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28 day. In addition, mechanical properties included the coefficient of thermal conductivity and compressive strength had also observed with different age (3,7, and 28 for all prepared specimens. From the obtained the experimental results and their discussion, it was clear that the addition (20% of CKD had the good results in cement mortars.  

  1. Thermodynamic modelling of alkali-activated slag cements

    International Nuclear Information System (INIS)

    Myers, Rupert J.; Lothenbach, Barbara; Bernal, Susan A.; Provis, John L.

    2015-01-01

    Highlights: • A thermodynamic modelling analysis of alkali-activated slag cements is presented. • Thermodynamic database describes zeolites, alkali carbonates, C–(N–)A–S–H gel. • Updated thermodynamic model for Mg–Al layered double hydroxides. • Description of phase assemblages in Na 2 SiO 3 - and Na 2 CO 3 -activated slag cements. • Phase diagrams for NaOH-activated and Na 2 SiO 3 -activated slag cements are simulated. - Abstract: This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO 2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH-ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg–Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na 2 SiO 3 -activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na 2 SiO 3 -activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na 2 CO 3 -activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags

  2. Interactions between cement grouts and sulphate bearing ground water

    International Nuclear Information System (INIS)

    Walton, P.L.; Duerden, S.L.; Atkins, K.M.; Majumdar, A.J.

    1989-01-01

    The physical, chemical and mineralogical properties of mixtures of Ordinary Portland cement and blastfurnace slag or pulverized fuel ash, exposed to a sulphate-bearing ground water at different temperatures and pressures, were investigated in order to assess the long term durability of cements for encapsulating radioactive waste and backfilling a repository. The effect of the ground water on the chemical and mineralogical characteristics of the cements is minimal. Calcite and C-S-H are present in all the samples and are durable throughout the test. Dimensional changes in the cements during setting and curing may cause weaknesses in the materials which may increase the effects of a percolating ground water. (author)

  3. Evaluation of the CDTN's cementation facility using the results obtained in two different sizes: laboratory and facility

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Calabria, Jaqueline A. Almeida; Tello, Cledola Cassia O.; Candido, Francisco Donizete; Seles, Sandro Rogerio Novaes

    2011-01-01

    At CDTN R and D activities generate low-level radioactive wastes, among them the aqueous liquid ones, which need special attention due to their volumes. The usual treatment for these wastes is the volume reduction process using chemicals in order to change the radionuclides of the waste to an insoluble form. The resultant sludge is incorporated into cement in 200-liter drums using an in-line batch mixing system (CDTN Cementation Facility). The process parameters and solidified product quality are evaluated at the Cementation Laboratory (LABCIM), where tests are carried out to determine the viscosity, set time and density of the paste. In addition of the visual examination, compressive strength test and density are also established in the solidified product. In the cementation facility some pastes are also prepared for the immobilization of non-compactable waste, such as dump, scrap metal, wood, and other ones. This paper aims to present the study comparing the results of tests done in the pastes and products prepared in LABCIM and the ones obtained in CDTN's cementation facility, in order to check the efficiency of the cementation system. (author)

  4. Evaluation of the CDTN cementation facility using the results obtained in two different sizes: laboratory and facility

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Calabria, Jaqueline A. Almeida; Tello, Cledola Cassia O.; Candido, Francisco Donizete; Seles, Sandro Rogerio Novaes

    2011-01-01

    At CDTN R and D activities generate low-level radioactive wastes, among them the aqueous liquid ones, which need special attention due to their volumes. The usual treatment for these wastes is the volume reduction process using chemicals in order to change the radionuclides of the waste to an insoluble form. The resultant sludge is incorporated into cement in 200-liter drums using an in-line batch mixing system (CDTN Cementation Facility). The process parameters and solidified product quality are evaluated at the Cementation Laboratory (LABCIM), where tests are carried out to determine the viscosity, set time and density of the paste. In addition of the visual examination, compressive strength test and density are also established in the solidified product. In the cementation facility some pastes are also prepared for the immobilization of non-compactable waste, such as dump, scrap metal, wood, and other ones. This paper aims to present the study comparing the results of tests done in the pastes and products prepared in LABCIM and the ones obtained in CDTN's cementation facility, in order to check the efficiency of the cementation system. (author)

  5. Development of an Improved Cement for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  6. Short-time leaching behaviour of a cement-matrix incorporating soluble radioactive aggregates

    International Nuclear Information System (INIS)

    Daniels, H.; Kalitz, C.; Kuhne, L.; Steinhardt, T.; Caspary, G.; Printz, R.; Scherer, U.W.

    2015-01-01

    As the chemical characterisations of certain cement-based radioactive waste-forms produced by the Nuclear-Services of Juelich Research Centre were not yet fully available, a related study was conducted. In this work the interaction of a specific cement-matrix with incorporated radioactive aggregates, so-called drum-dryer product, was investigated. Therefore, representative cement-samples containing the radioactive waste were taken. The main focus was laid on these samples' behaviour under leaching conditions to quantify soluble and insoluble compounds. Additionally, possible chemical interactions of cement components with drum-dryer product were evaluated. For these purposes, chemical analytics as well as physical methods for characterisation and structural evaluation of the waste-form' s behaviour were used. The leaching experiments lasted for up to 39 days. A comparison of the results of the elementary and ion-chromatographic analysis before and after leaching of the samples was carried out. This lead to the deduction that the majority of the drum-dryer product is not incorporated in the cement matrix in the form of insoluble compounds like a solid solution. Although structural examinations showed the formation of an Apatite-phase that is not characteristic for portland cement, they also supported the measured overall high leachability of the cemented drum-dryer products. It can be concluded that the chemical interaction between the cement matrix and drum-dryer product during and after cementation plays a subordinate, yet not negligible, role with respect to solubility of the drum dryer product under aqueous leaching conditions. Additionally, it can be postulated that the drum-dryer product did not undergo substantial chemical alteration in the environment created by the cement-matrix and the respective leaching experiments. (authors)

  7. Methods and Production of Cementation Materials for Immobilisation into Waste Form. Research of Cementation Processes for Specific Liquid Radioactive Waste Streams of Radiochemical Plants

    International Nuclear Information System (INIS)

    Sukhanov, L.P.

    2013-01-01

    In the near future Russian Federation is planning to use industrial cementation facilities at two radiochemical combines - PA 'Mayak' and Mountain Chemical Combine. Scope of the research within the IAEA CRP contact No. 14176 included the development of cementation processes for specfic liquid radioactive waste streams that are present in these enterprisers. The research on cementation of liquid waste from spent nuclear fuel reprocessing at PA 'Mayak' allowed obtaining experimental data characterizing the technological process and basic characteristics of the produced cement compounds (e.g. mechanical strength, water resistance, frost resistance, flowability, etc.) immobilizing different streams of waste (e.g. hydrated-salt sludges, filter material pulps, mixture of hydrated salt slurries and filter material pulps, tritium liquid waste). Determined optimum technological parameters will allow industrial scale production of cement compound with required quality and higher flowability that is necessary for providing uniform filling of compartments of storage facilities at these sites. The research has been also carried out for the development of cementation technology for immobilization of pulps from storage tanks of Mountain Chemical Combine radiochemical plant. Cementation of such pulps is a difficult technological task because pulps are of complex chemical composition (e.g. hydroxides of manganese, iron, nickel, etc., as well as silicon oxide) and a relatively high activity. The research of cementation process selection for these pulps included studies of the impact of sorbing additive type and content on cement compounds leachability, flowability, impact of cement compound age to its mechanical strength, heat generation of cement compounds and others. The research results obtained allowed testing of cementation facility with a pulse type mixer on the full-scale. Use of such mixer for pulp cementation makes possible to prepare a homogeneous cement compound with the

  8. Micropore characteristics of organic matter pools in cemented and non-cemented podzolic horizons

    NARCIS (Netherlands)

    Catoni, M.; D'amico, M.E.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.; Bonifacio, E.

    2014-01-01

    In Podzols, organic matter (OM) is stabilized mainly by interaction with minerals, as a direct consequence of pedogenic processes. Metal-organic associations strongly affect OM surface features, particularly microporosity. Cemented ortstein horizons (CM) may form during podzolization, accompanied by

  9. Use of alternative fuels in cement manufacture. Effect on clinker and cement characteristics and properties

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2004-06-01

    Full Text Available This paper compares industrial clinker and cement produced using conventional and alternative fuels (animal meal, tyres or a mixture of the two. The results show no relevant differences in terms of mineralogical composition between the clinker manufactured with alternative fuels and the product obtained using conventional fuel. Clinker produced with alternative fuels at any one factory have a very similar or even lower content in heavy metals than the product manufactured with conventional fuel in the same plant (with the sole exception of Zn when the alternative fuel used is shredded tyres. Mineralogical and morphological analyses reveal no significant differences between the two types of products that can be attributed to the type of fuel used in their manufacture. All six types of cement studied are compliant with the existing legislation as regards both physical and chemical properties. Cement compressive strength is found to be to legal standards regardless of the type of fuel used. Finally, the rheological properties of the cement paste are observed to be unaffected by the type of fuel.

    Se han estudiado clínkeres y cementos obtenidos en procesos industriales que han utilizado combustibles convencionales y combustibles alternativos (harinas cárnicas, neumáticos usados y mezclas de ambos. Los resultados obtenidos han demostrado que los clínkeres fabricados con los combustibles alternativos no presentan diferencias significativas en la composición mineralógica respecto a los obtenidos con combustibles convencionales. Los contenidos de metales pesados en los clínkeres procedentes de la misma fábrica (a excepción de los contenidos en Zn en aquéllos que utilizan neumáticos son muy similares o incluso inferiores a los fabricados con combustibles convencionales. Los análisis mineralógico y morfológico de los clínkeres no evidencian diferencias asignables al tipo de combustible utilizado. Todos los cementos estudiados cumplen

  10. Physical and chemical durability of cement impregnated epoxy resin

    International Nuclear Information System (INIS)

    Suryantoro

    1997-01-01

    Immobilization of simulation radioactive waste contains Cs and Sr with cement impregnated epoxy resin has been done. Low level liquid waste in 30% weight mixed cement homogeneously and then set in its curing time about 28 days. Waste from was impregnated with epoxy resin (Bisphenol-A-diglycidylether) and use Triethylenteramin as catalyst. the sample of cement impregnated epoxy resin 2.5 cm x 2.5 cm in diameter and length was tested by Paul Weber. The compressive strength was obtained of 4.08 kN.cm - 2. The sochxlet apparatus was run on flow rate of 300 ml/hour at 100 o C and during 24 hours. The leaching rate of Cs was round on 5.5 x 10 - 4 g.cm - 2.d - 1 and Sr was 6.1 x 10 - 4 g.cm - 2.d - 1 (author)

  11. Chemically reducing decontamination method for radioactive metal

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Sato, Hitoshi.

    1994-01-01

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  12. Modelling the effects of waste components on cement hydration

    NARCIS (Netherlands)

    van Eijk, R.J.; Brouwers, Jos

    2000-01-01

    Ordinary Portland Cement (OPC) is often used for the Solidification/Stabilization (S/S) of waste containing heavy metals and salts. These waste componenents will precipitate in the form of insoluble compounds onto unreacted cement clinker grains preventing further hydration. In this study the long

  13. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Yamazaki, Sei; Miura, Haruki.

    1993-01-01

    The present invention provides a chemical decontamination method for radioactive metal wastes, which are generated from radioactive material handling facilities and the surfaces of which are contaminated by radioactive materials. That is, it has a feature of applying acid dissolution simultaneously with mechanical grinding. The radioactive metal wastes are contained in a vessel such as a barrel together with abrasives in a sulfuric acid solution and rotated at several tens rotation per minute. By such procedures for the radioactive metal wastes, (1) cruds and passive membranes are mechanically removed, (2) exposed mother metal materials are uniformly brought into contact with sulfuric acid and further (3) the mother metal materials dissolve the cruds and the passive membranes also chemically by a reducing dissolution (so-called local cell effect). According to the method of the present invention, stainless steel metal wastes having cruds and passive membranes can rapidly and efficiently be decontaminated to a radiation level equal with that of ordinary wastes. (I.S.)

  14. Characterization of polymer-modified cement as a solidification agent for the radwaste

    International Nuclear Information System (INIS)

    Ji, Young-Yong; Kwak, Kyung-Kil; Hong, Dae-Seok; Ryu, Woo-Seog

    2012-01-01

    Highlights: ► Polymer-modified cement (PMC) by modification with water-based resins. ► Determination of the optimized polymer content. ► Evaluation of the improved chemical resistance of the PMC. ► Decrease of the amount of ions released into the demineralized water. ► Highly improved property for the nuclide diffusivity at the Co-60. - Abstract: Polymer-modified cement can be produced by partially replacing cement hydrate binders in ordinary Portland cement with polymeric compounds. It is known that the addition of the polymer to the cement paste leads to improved quality, which would be expected to have a high chemical resistance. In order to investigate the application as a solidification agent for the radwaste, polymer-modified cement specimens, by modification with water-based resins, were prepared according to the polymer content from 0% to 30%. The optimized polymer content in the cement pastes was then determined through the compressive strength and the porosity test. Finally, the improved chemical resistance of the polymer-modified cement with the optimized polymer content was evaluated by the thermal cycling, the immersion, and the leaching tests. From the test results, the amount of ions released into the water showed lower values of about 20% at the polymer-modified cement. Especially, a highly improved nuclide diffusivity of Co-60 was observed in the polymer-modified cement.

  15. Metal-composite adhesion based on diazonium chemistry.

    Science.gov (United States)

    Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2017-11-01

    Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. A review on seashells ash as partial cement replacement

    Science.gov (United States)

    Mohammad, Wan Ahmad Soffian Bin Wan; Hazurina Othman, Nor; Ibrahim, Mohd Haziman Wan; Rahim, Masazurah A.; Shahidan, Shahiron; Rahman, Raha Abd

    2017-11-01

    This review paper emphasis on various sea shells ash such as cockle, clam, oyster, mollusc, periwinkle, snail, and green mussel shell ash as partial cement replacement and its objective is to create sustainable environment and reduce problems of global warming. Cement production give huge impact to environment in every stage of its production. These include air pollution in form of dust and, gases, sound and vibration during quarry crushing and milling. One of the solutions to solve this problem is by using modified cement. The modified cement is a cementitious material that meets or exceeds the Portland cement performance by combining and optimizes the recycle and wasted materials. This will indirectly reduce the use of raw materials and then, become a sustain construction materials. Therefore, the replacement of cement in concrete by various sea shell ash may create tremendous saving of energy and also leads to important environmental benefits. This study includes previous investigation done on the properties of chemical and mechanical such as specific gravity, chemical composition, compressive strength, tensile strength and flexural strength of concrete produced using partial replacement of cement by seashells ash. Results show that the optimum percentage of seashells as cement replacement is between 4 - 5%.

  17. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  18. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-02-01

    Over the last seven years, Low Oxidation State Metal Ion reagents (LOMI) have been used to decontaminate the 100 MW(e) Steam Generating Heavy Water Ractor (SGHWR) at Winfrith. The use of these reagents has resulted in a dilute ionic solution containing activation products which are produced by corrosion of metallic components in the reactor. It has been demonstrated that the amount of activity in the solution can be reduced using organic ion exchanger resins. These resins consist of a cross linked polystyrene with sulphonic acid or quaternary ammonium function groups and can be successfully immobilised in blended cement systems. The formulation which has been developed is produced from a 9 to 1 blend of ground granulated blast furnace slag (BFS) and ordinary Portland cement (OPC) containing 28% ion exchange resin in the water saturated form. If 6% Microsilica is added to the blended cement the waste loading can be increased to 36 w/o. (author)

  19. STOCHASTIC MODELING OF COMPRESSIVE STRENGTH OF PHOSPHORUS SLAG CONTENT CEMENT

    Directory of Open Access Journals (Sweden)

    Ali Allahverdi

    2016-07-01

    Full Text Available One of the common methods for quick determination of compressive strength as one of the most important properties for assessment of cement quality is to apply various modeling approaches. This study is aimed at finding a model for estimating the compressive strength of phosphorus slag content cements. For this purpose, the compressive strengths of chemically activated high phosphorus slag content cement prepared from phosphorus slag (80 wt.%, Portland cement (14 wt.% and a compound chemical activator containing sodium sulfate and anhydrite (6 wt.% were measured at various Blaine finenesses and curing times. Based on the obtained results, a primary stochastic model in terms of curing time and Blaine fineness has been developed. Then, another different dataset was used to incorporate composition variable including weight fractions of phosphorus slag, cement, and activator in the model. This model can be effectively used to predict the compressive strength of phosphorus slag content cements at various Blaine finenesses, curing times, and compositions.

  20. Self-healing polymer cement composites for geothermal wellbore applications

    Science.gov (United States)

    Rod, K. A.; Fernandez, C.; Childers, I.; Koech, P.; Um, W.; Roosendaal, T.; Nguyen, M.; Huerta, N. J.; Chun, J.; Glezakou, V. A.

    2017-12-01

    Cement is vital for controlling leaks from wellbores employed in oil, gas, and geothermal operations by sealing the annulus between the wellbore casing and geologic formation. Wellbore cement failure due to physical and chemical stresses is common and can result in significant environmental consequences and ultimately significant financial costs due to remediation efforts. To date numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This research investigates novel polymer-cement composites which could function at most geothermal temperatures. Thermal stability and mechanical strength of the polymer is attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. It has been demonstrated that the bonding between cement and casing is more predictable when polymer is added to cement and can even improve healing of adhesion break when subjected to stresses such as thermal shock. Fractures have also been healed, effectively reducing permeability with fractures up to 0.3-0.5mm apertures, which is two orders of magnitude larger than typical wellbore fractures. Additionally, tomography analysis was used to determine internal structure of the cement polymer composite and imaging reveals that polymers fill fractures in the cement and between the cement and casing. By plugging fractures that occur in wellbore cement, reducing permeability of fractures, both environmental safety and economics of subsurface operations will be improved for geothermal energy and oil and gas production.

  1. Stabilization and solidification of Pb in cement matrices

    International Nuclear Information System (INIS)

    Gollmann, Maria A.C.; Silva, Marcia M. da; Santos, Joao H. Z. dos; Masuero, Angela B.

    2010-01-01

    Pb was incorporated to a series of cement matrices, which were submitted to different cure time and pH. Pb content leached to aqueous solution was monitored by atomic absorption spectroscopy. The block resistance was evaluated by unconfined compressive strength at 7 and 28 ages. Data are discussed in terms of metal mobility along the cement block monitored by X-ray fluorescence (XRF) spectrometry. The Pb incorporated matrices have shown that a long cure time is more suitable for avoiding metal leaching. For a longer cure period the action of the metal is higher and there is a decreasing in the compressive strength. The XRF analyses show that there is a lower Ca concentration in the matrix in which Pb was added. (author)

  2. Effect of modified cementation technique on marginal fit and apical spread of excess cement for implant restorations: An in vitro study

    Directory of Open Access Journals (Sweden)

    Brijesh Patel

    2016-01-01

    Full Text Available Aim: To investigate and compare the vertical marginal discrepancy and spread of excess cement after cementation with modified cementation technique and conventional technique. Materials and Methods: Ten implant analogs with prefabricated standard abutments of similar dimensions were mounted individually in self-cure acrylic blocks subcrestally. Forty ideal metal coping specimens were prepared by conventional lost wax technique. Measurement of the marginal discrepancy at the implant-crown interface was done using a stereomicroscope before cementation. Abutment replicas (ARs were prepared for twenty specimens using cast copings and pattern resin. All forty copings were cemented according to the following cementation techniques and cement types, with ten specimens in each group. (1 Group 1: Half filling (HF cementation technique using provisional cement. (2 Group 2: HF cementation technique using permanent cement. (3 Group 3: AR technique using provisional cement. (4 Group 4: AR technique using permanent cement. Specimens were subjected to measurement of marginal discrepancy and spread of excess cement using stereomicroscope after cementation procedure. Data were analyzed using paired t-test and unpaired t-test. Results: AR technique showed significantly less marginal discrepancy (P = 0.000 and apical spread of excess cement (P = 0.002 than conventional HF technique. Provisional cement showed significantly more marginal discrepancy (HF-P = 0.000 and AR-P = 0.001 and less apical spread of excess cement (HF-P = 0.023 and AR-P = 0.002 and among both technique. Statistical Analysis: Unpaired t-test. Conclusion: An alternative technique of using AR is effective technique to prevent peri-implant diseases.

  3. Enhancement of cemented waste forms by supercritical CO2 carbonation of standard portland cements

    International Nuclear Information System (INIS)

    Rubin, J.B.; Carey, J.; Taylor, C.M.V.

    1997-01-01

    We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous or radioactive waste requiring transport and long-term storage. The standard practice for the stabilization of radioactive salts and residues is to mix them with cements, which may include additives to enhance immobilization. Many of these wastes do not qualify for underground disposition, however, because they do not meet disposal requirements for free liquids, decay heat, head-space gas analysis, and/or leachability. The treatment method alters the bulk properties of a cemented waste form by greatly accelerating the natural cement-aging reactions, producing a chemically stable form having reduced free liquids, as well as reduced porosity, permeability and pH. These structural and chemical changes should allow for greater actinide loading, as well as the reduced mobility of the anions, cations, and radionuclides in aboveground and underground repositories. Simultaneously, the treatment process removes a majority of the hydrogenous material from the cement. The treatment method allows for on-line process monitoring of leachates and can be transported into the field. We will describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of solid and semi-solid waste forms. some of the issues concerning the economic feasibility of industrial scale-up will be addressed, with particular attention to the engineering requirements for the establishment of on-site processing facilities. Finally, the initial results of physical property measurements made on portland cements before and after supercritical fluid processing will be presented

  4. Concrete research using blended cements

    International Nuclear Information System (INIS)

    Butler, W.B.

    2001-01-01

    Concrete research increasingly involves the use of mixes containing one or more of the supplementary cementitious materials (SCMs), often in conjunction with chemical admixtures. The influence of materials is commonly evaluated on the basis of water/ cement or water/ binder ratio and SCM content as a percentage of total binder, with dosage level of chemical admixture varied to maintain workability. As a result, more than one variable is introduced at a time and the objectives of the research may not be achieved. The significance of water/ cement ratio and addition rates of admixtures are examined from a practical standpoint with suggestions for more appropriate means of evaluation of the influence of individual materials. Copyright (2001) The Australian Ceramic Society

  5. Polymer-Cement Composites with Self-Healing Ability for Geothermal and Fossil Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Childers, M. Ian; Nguyen, Manh-Thuong; Rod, Kenton A.; Koech, Phillip K.; Um, Wooyong; Chun, Jaehun; Glezakou, Vassiliki-Alexandra; Linn, Diana; Roosendaal, Timothy J.; Wietsma, Thomas W.; Huerta, Nicolas John; Kutchko, Barbara G.; Fernandez, Carlos A.

    2017-05-18

    Sealing of wellbores in geothermal and tight oil/gas reservoirs by filling the annulus with cement is a well-established practice. Failure of the cement as a result of physical and/or chemical stress is a common problem with serious environmental and financial consequences. Numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This work reports on a novel polymer-cement composite with remarkable self-healing ability that maintains the required properties of typical wellbore cements and may be stable at most geothermal temperatures. We combine for the first time experimental analysis of physical and chemical properties with density functional theory simulations to evaluate cement performance. The thermal stability and mechanical strength are attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. Self-healing was demonstrated by sealing fractures with 0.3–0.5 mm apertures, 2 orders of magnitude larger than typical wellbore fractures. This polymer-cement composite represents a major advance in wellbore cementing that could improve the environmental safety and economics of enhanced geothermal energy and tight oil/gas production.

  6. Use of rubber crumbs in cement concrete

    Science.gov (United States)

    Longvinenko, A. A.

    2018-03-01

    Rubber crumb obtained from worn out tires has been increasingly used over the last 15-20 years, especially in manufacture of asphalt and cement concrete mixtures. This review pays principal attention to application of the rubber crumb to cement concrete mixtures. Use of the rubber crumb in cement concrete is not as successful as in asphalt concrete mixtures, due to incompatibility problems linked to chemical composition and a significant difference in rigidity between the rubber crumb and concrete mixture aggregates. Different methods are proposed and studied to mitigate the adverse influence and increase the beneficial effects of the rubber crumb when added to cement concrete.

  7. BiOBr@SiO2 flower-like nanospheres chemically-bonded on cement-based materials for photocatalysis

    Science.gov (United States)

    Wang, Dan; Hou, Pengkun; Yang, Ping; Cheng, Xin

    2018-02-01

    Endowment of photocatalytic property on the surface of concrete structure can contribute to the self-cleaning of the structure and purification of the polluted environment. We developed a nano-structured BiOBr@SiO2 photocatalyst and innovatively used for surface-treatment of cement-based materials with the hope of attaining the photocatalytic property in visible-light region and surface modification/densification performances. The SiO2 layer on the flower-like BiOBr@SiO2 helps to maintain a stable distribution of the photocatalyst, as well as achieving a chemical bonding between the coating and the cement matrix. Results showed that the color fading rate of during the degradation of Rhodamine B dye of the BiOBr-cem sample is 2 times higher compared with the commonly studied C, N-TiO2-cem sample. The photo-degradation rates of samples BiOBr-cem and BiOBr@SiO2-cem are 93 and 81% within 150 min, respectively, while sample BiOBr@SiO2-cem reveals a denser and smoother surface after curing for 28 days and pore-filling effect at size within 0.01-0.2 μm when compared with untreated samples. Moreover, additional C-S-H gel can be formed due to the pozzolanic reaction between BiOBr@SiO2 and the hardened cement matrix. Both advantages of the BiOBr@SiO2 favor its application for surface-treatment of hardened cement-based material to acquire an improved surface quality, as well as durable photocatalytic functionality.

  8. Thermal and Electrical Characterization of the Carbon Nanofibers Based Cement Composites

    Directory of Open Access Journals (Sweden)

    Agnieszka ŚLOSARCZYK

    2017-08-01

    Full Text Available The paper describes the influence of chemical modification of vapor grown carbon nanofibers (VGCnFs on the thermal and electrical properties of the cement composites. The surface modification of nanofibers was performed by means of ozone and nitric acid treatments. It was shown that the oxidized carbon nanofibers surface plays an important role in shaping the mechanical and especially electrical properties of cement composite. For cement matrix modified with carbon nanofibers subjected to oxidized treatment, the slightly increase of cement paste resistivity was observed. It confirms the better adhesion of carbon nanofibers to cement paste. However, independently of carbon nanofibers modification, the occurrence of VGCnFs in cement paste increased the electrical conductivity of the composite in comparison to the cement paste without fibers. The obtained values of electrical resistivity were comparable with values of cement composites modified with 4 mm long carbon fibers. Moreover, it was shown that the chemical modification of carbon nanofibers surface does not influence on the thermal properties of cement composites. In case of cement paste with unmodified and modified carbon nanofibers, the Seebeck voltage was proportional to the temperature difference and was independent of the oxidation degree of carbon nanofibers.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.14993

  9. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  10. Study on cement mortar and concrete made with sewage sludge ash.

    Science.gov (United States)

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  11. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    Laterite obtained from Ikpayongo was stabilized with 2-10 % cement and 2-10 % Calcium Carbide waste, for use .... or open dumping which have effect on surface and ... Table 1: Chemical Composition of Calcium Carbide Waste and Cement.

  12. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement

    International Nuclear Information System (INIS)

    Aubert, J.E.; Husson, B.; Sarramone, N.

    2006-01-01

    This paper is the first of a series of two articles dealing with the processes applied to MSWI fly ash with a view to reusing it safely in cement-based materials. Part 1 presents two stabilization processes and Part 2 deals with the use of the two treated fly ashes (TFA) in mortars. Two types of binder were used: an Ordinary Portland Cement (OPC) containing more than 95% clinker (CEM I 52.5R) and a binary blend cement composed of 70% ground granulated blast furnace slag and 30% clinker (CEM III-B 42.5N). In this first part, two stabilization processes are presented: the conventional process, called 'A', based on the washing, phosphation and calcination of the ash, and a modified process, called 'B', intended to eliminate metallic aluminum and sulfate contained in the ash. The physical, chemical and mineralogical characteristics of the two TFA were comparable. The main differences observed were those expected, i.e. TFA-B was free of metallic aluminum and sulfate. The mineralogical characterization of the two TFAs highlighted the presence of large amounts of a calcium aluminosilicate phase taking two forms, a crystalline form (gehlenite) and an amorphous form. Hydration studies on pastes containing mixed TFA and calcium hydroxide showed that this phase reacted with calcium hydroxide to form calcium aluminate hydrates. This formation of hydrates was accompanied by a hardening of the pastes. These results are very encouraging for the reuse of such TFA in cement-based materials because they can be considered as pozzolanic additions and could advantageously replace a part of the cement in cement-based materials. Finally, leaching tests were carried out to evaluate the environmental impact of the two TFAs. The elements which were less efficiently stabilized by process A were zinc, cadmium and antimony but, when the results of the leaching tests were compared with the thresholds of the European landfill directive, TFA-A could nevertheless be accepted at landfills for non

  13. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J.E. [Laboratoire Materiaux et Durabilite des Constructions (L.M.D.C.), INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France)]. E-mail: aubert@insa-toulouse.fr; Husson, B. [Laboratoire Materiaux et Durabilite des Constructions (L.M.D.C.), INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France); Sarramone, N. [Laboratoire Materiaux et Durabilite des Constructions (L.M.D.C.), INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France)

    2006-08-25

    This paper is the first of a series of two articles dealing with the processes applied to MSWI fly ash with a view to reusing it safely in cement-based materials. Part 1 presents two stabilization processes and Part 2 deals with the use of the two treated fly ashes (TFA) in mortars. Two types of binder were used: an Ordinary Portland Cement (OPC) containing more than 95% clinker (CEM I 52.5R) and a binary blend cement composed of 70% ground granulated blast furnace slag and 30% clinker (CEM III-B 42.5N). In this first part, two stabilization processes are presented: the conventional process, called 'A', based on the washing, phosphation and calcination of the ash, and a modified process, called 'B', intended to eliminate metallic aluminum and sulfate contained in the ash. The physical, chemical and mineralogical characteristics of the two TFA were comparable. The main differences observed were those expected, i.e. TFA-B was free of metallic aluminum and sulfate. The mineralogical characterization of the two TFAs highlighted the presence of large amounts of a calcium aluminosilicate phase taking two forms, a crystalline form (gehlenite) and an amorphous form. Hydration studies on pastes containing mixed TFA and calcium hydroxide showed that this phase reacted with calcium hydroxide to form calcium aluminate hydrates. This formation of hydrates was accompanied by a hardening of the pastes. These results are very encouraging for the reuse of such TFA in cement-based materials because they can be considered as pozzolanic additions and could advantageously replace a part of the cement in cement-based materials. Finally, leaching tests were carried out to evaluate the environmental impact of the two TFAs. The elements which were less efficiently stabilized by process A were zinc, cadmium and antimony but, when the results of the leaching tests were compared with the thresholds of the European landfill directive, TFA-A could nevertheless be accepted at

  14. Physical, chemical and mineralogical characterization of water treatment plant waste for use in soil-cement brick

    International Nuclear Information System (INIS)

    Pessin, L.R.; Destefani, A.Z.; Holanda, J.N.F.

    2011-01-01

    The water treatment plants (WTP) for human consumption generate huge amounts of waste in the form of sludge (sludge) that have been over the years mostly inadequately prepared in water resources and the environment. Moreover, traditional methods of disposal of waste water treatment plants commonly used are generally costly activities. An alternative method for disposal of this waste abundant is its incorporation in ceramic products. This work is focused on the physical-chemical and mineralogical composition of a sample of waste water treatment plants from the region of Campos dos Goytacazes-RJ to their use in the manufacture of soil-cement brick. Several characterization techniques were used including X-ray diffraction, X-ray fluorescence, scanning electron microscopy, picnometry, particle size analysis and plasticity. The experimental results indicate that the waste water treatment plants have the potential to be used in the manufacture of ecologic soil-cement bricks. (author)

  15. Comparative analysis of compressive strength tests at age of 28 and 90 days and density of products using chemical additives in cementing radioactive waste

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Cledola Cassia Oliveira de

    2013-01-01

    In this research it has been studied the effects of chemical additives (admixtures) in the cementation process of radioactive wastes, which are used to improve the properties of waste cementation process, both of the paste and of the solidified product. However there are a large variety of these materials that are frequently changed or taken out of the market, then it is essential to know the commercially available materials and their effects. The tests were carried out with a solution simulating the evaporator concentrate waste coming from PWR nuclear reactors. It was cemented using two formulations, A and B, incorporating higher or lower amount of waste, respectively. It was added chemical admixtures from two manufacturers (S and H), which were: accelerators, set retarders and superplasticizers. The experiments were organized by a factorial design 2 3 . The measured parameters were the viscosity, the setting time, the paste and product density and the compressive strength. In this study we performed comparative analyzes of the results of compressive strength at age of 28 and 90 days and between the densities of the samples at the same ages.The compressive strength test at age of 28 days is considered a parameter essential issues related to security handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented product, but presented lower values density products. (author)

  16. Preparation, Physical-Chemical Characterization, and Cytocompatibility of Polymeric Calcium Phosphate Cements

    Directory of Open Access Journals (Sweden)

    Rania M. Khashaba

    2011-01-01

    Full Text Available Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control. Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications.

  17. Effect of uniaxially pressing ordinary Portland cement pastes containing metal hydroxides on porosity, density, and leaching

    International Nuclear Information System (INIS)

    Cheeseman, C.R.; Asavapisit, S.; Knight, J.

    1998-01-01

    Synthetic metal hydroxide wastes containing Zn and Pb have been mixed with partially hydrated cement and uniaxially pressed. The effect on porosity, pore size distribution, and bulk and skeletal densities has been characterized using mercury intrusion porosimetry. Ca(OH) 2 formation has been determined using differential thermal analysis and metal leaching has been assessed in a series of static leach tests completed on monolithic samples. Pressed solidified materials have increased density, reduced porosity, and reduced Ca(OH) 2 . They exhibit increased resistance to acid attack in terms of sample weight loss during leaching due to reduced release of alkalis. Leaching of Zn and Pb is primarily determined by pH. A peak observed in Zn leaching from pressed samples is due to the effect of changing leachate pH on the dominant Zn species present

  18. Durability of cermet ionomer cement conditioned in different media.

    Science.gov (United States)

    el-Din, I M

    1992-01-01

    The glass ionomer cement has exhibited significant adhesion to hard tooth structures, and good cariostatic properties. The sintering of the silver alloy powder and glass ionomer cement "cermet cement" has provided additional improvement in the physical properties of the restorative material. These were flexural resistance, wear resistance, increased radio-opacity, hardness and porosity. The improvement in the physical properties of the cermet glass cements has provided an extension in their clinical use as core build up, lining for inlays, amalgam and composite restoratives, fissure filling, restoration of primary teeth, class II tunnel preparation, treatment of root caries and repair of defective metal margins in crown and inlays.

  19. Removal of Heavy Metal Ions by Using Composite of Cement Kiln Dust/Ethylene Glycol co Acrylic Acid Prepared by y-Irradiation

    International Nuclear Information System (INIS)

    Sokker, H.H.; Abdel-Rahman, H.A.; Khattab, M.M.; Ismail, M.R.

    2010-01-01

    Various composites of cement kiln dust (CKD) and poly(ethylene glycol co acrylic acid) using y-irradiation was investigated. The samples were prepared using three percentages of cement kiln dust namely, 20, 50 and 75 by wt % and mixed with an equimolar ratio (1:1) of ethylene glycol and acrylic acid then irradiated at doses; 10,20 and 30 kGy of gamma-irradiation. The results showed that (CKD) and poly(ethylene glycol co acrylic acid) composites were formed only at 30 kGy. In addition, CKD alone has the lowest degree of removal of heavy metal ions compared with the prepared composites. A composite containing 75% cement kiln dust by weight percentage, showed the highest degree of removal of cobalt ions, whereas, a composite of 20% CKD showed the highest degree for cadmium ion removal. While the composite of 75% CKD showed a higher selectivity of cobalt ion than cadmium ion in their mixed solution.

  20. Physicochemical changes of cements by ground water corrosion in radioactive waste storage

    International Nuclear Information System (INIS)

    Contreras R, A.; Badillo A, V. E.; Robles P, E. F.; Nava E, N.

    2009-10-01

    Knowing that the behavior of cementations materials based on known hydraulic cement binder is determined essentially by the physical and chemical transformation of cement paste (water + cement) that is, the present study is essentially about the cement paste evolution in contact with aqueous solutions since one of principal risks in systems security are the ground and surface waters, which contribute to alteration of various barriers and represent the main route of radionuclides transport. In this research, cements were hydrated with different relations cement-aqueous solution to different times. The pastes were analyzed by different solid observation techniques XRD and Moessbauer with the purpose of identify phases that form when are in contact with aqueous solutions of similar composition to ground water. The results show a definitive influence of chemical nature of aqueous solution as it encourages the formation of new phases like hydrated calcium silicates, which are the main phases responsible of radionuclides retention in a radioactive waste storage. (Author)

  1. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    Science.gov (United States)

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  2. Nickel speciation in cement-stabilized/solidified metal treatment filtercakes

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: reroy@lsu.edu [J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806, USA (United States); Stegemann, Julia A., E-mail: j.stegemann@ucl.ac.uk [Centre for Resource Efficiency & the Environment, Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK (United Kingdom)

    2017-01-05

    Highlights: • XAS shows the same Ni speciation in untreated and stabilized/solidified filtercake. • Ni solubility is the same for untreated and stabilized/solidified filtercake. • Leaching is controlled by pH and physical encapsulation for all binders. - Abstract: Cement-based stabilization/solidification (S/S) is used to decrease environmental leaching of contaminants from industrial wastes. In this study, two industrial metal treatment filtercakes were characterized by X-ray diffractometry (XRD), thermogravimetric and differential thermogravimetric analysis (TG/DTG) and Fourier transform infrared (FTIR); speciation of nickel was examined by X-ray absorption (XAS) spectroscopy. Although the degree of carbonation and crystallinity of the two untreated filtercakes differed, α-nickel hydroxide was identified as the primary nickel-containing phase by XRD and nickel K edge XAS. XAS showed that the speciation of nickel in the filtercake was unaltered by treatment with any of five different S/S binder systems. Nickel leaching from the untreated filtercakes and all their stabilized/solidified products, as a function of pH in the acid neutralization capacity test, was essentially complete below pH ∼5, but was 3–4 orders of magnitude lower at pH 8–12. S/S does not respeciate nickel from metal treatment filtercakes and any reduction of nickel leaching by S/S is attributable to pH control and physical mechanisms only. pH-dependent leaching of Cr, Cu and Ni is similar for the wastes and s/s products, except that availability of Cr, Cu and Zn at decreased pH is reduced in matrices containing ground granulated blast furnace slag.

  3. Sisal organosolv pulp as reinforcement for cement based composites

    OpenAIRE

    Joaquim, Ana Paula; Tonoli, Gustavo Henrique Denzin; Santos, Sérgio Francisco Dos; Savastano Junior, Holmer

    2009-01-01

    The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressin...

  4. Study of glass alteration mechanisms in cement waters

    International Nuclear Information System (INIS)

    Depierre, S.

    2012-01-01

    In the French deep geological repository concept, intermediate-level vitrified waste packages could be disposed of concrete medium. Chemical composition and pH of the interstitial leaching water are expected to influence the chemical durability of glass. Investigations have thus been carried out to study glass dissolution mechanisms and kinetics in contact with cement waters. Three cement pore waters were studied: the first two correspond to two stages of the Portland cement aging and the third corresponds to equilibrium with a low pH concrete. The S/V ratio (glass-surface-area-to-solution-volume ratio) and the chemistry of cement waters are the two main parameters that control glass alteration mechanisms. If the leaching flow from the glass allows a degree of supersaturation to be reached and maintained which leads to nucleation of secondary phases, then precipitation of these phases drives glass dissolution. At a very low S/V ratio, the calcium uptake into the alteration layer increases its passivating properties. Conversely, at a high S/V ratio, the calcium precipitates as cementitious phases consuming elements which form the alteration layer. The glass dissolution is maintained at a high rate. This study contributes to highlighting the beneficial role of low pH cement in glass alteration, and is a first step towards understanding the mechanisms between the glass and the cement medium. (author) [fr

  5. Influence of chemical composition of civil construction waste in the cement paste; Influencia da composicao quimica dos residuos da construcao civil a pasta de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, G.A.; Andrade, A.C.D.; Souza, J.M.M.; Evangelista, A.C.J.; Almeida, V.C., E-mail: valeria@eq.ufrj.b [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2009-07-01

    The construction and demolition waste when disposed inappropriately might cause serious public health problems. Its reutilization focusing on the development of new products using simple production techniques, assuring a new product life cycle and not damaging the environment is inserted in sustainable concept. The aim of this work was identifying the characteristics of types of waste generated in a residential reform (glassy ceramic and fill dirt leftovers) verifying separately its influence on cement pastes mechanical behavior. Cement pastes + wastes were prepared in 25% and 50% proportions with an approximately 0,35 water/cement relation and, glue time determination, water absorption, resistance to compression and X-ray fluorescence assays were taken. The results indicate that the chemical composition of the waste causes changes in the behavior of cement pastes, reflecting on their resistance to compression. (author)

  6. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  7. Study of hydrated Portland cement composition in regard to leaching resistance

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    1997-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  8. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure

    International Nuclear Information System (INIS)

    Lin Feng; Meyer, Christian

    2009-01-01

    A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.

  9. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker.

    Science.gov (United States)

    Liu, De-Gang; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Liang, Yan-Jie; Li, Yuan-Cheng; Yao, Li-Wei; Wang, Zhong-Bing

    2018-03-01

    Flotation waste of copper slag (FWCS), neutralization sludge (NS), and arsenic-containing gypsum sludge (GS), both of which are difficult to dispose of, are major solid wastes produced by the copper smelting. This study focused on the co-treatment of FWCS, NS, and GS for solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Firstly, the preparation parameters of binder composed of FWCS, NS, and cement clinker were optimized to be FWCS dosage of 40%, NS dosage of 10%, cement clinker dosage of 50%, mill time of 1.5 h, and water-to-binder ratio of 0.25. On these conditions, the unconfined compressive strength (UCS) of the binder reached 43.24 MPa after hydration of 28 days. Then, the binder was used to solidify/stabilize the As-containing GS. When the mass ratio of binder-to-GS was 5:5, the UCS of matrix can reach 11.06 MPa after hydration of 28 days, meeting the required UCS level of MU10 brick in China. Moreover, arsenic and other heavy metals in FWCS, NS, and GS were effectively solidified or stabilized. The heavy metal concentrations in leachate were much lower than those in the limits of China standard leaching test (CSLT). Therefore, the matrices were potential to be used as bricks in some constructions. XRD analysis shows that the main hydration products of the matrix were portlandite and calcium silicate hydrate. These hydration products may play a significant role in the stabilization/solidification of arsenic and heavy metals.

  10. Physical and chemical characterization of 50 pulverized coal ashes with respect to partial cement replacement in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H A; Weijers, E G

    1986-04-01

    Physical and chemical characterization of 50 pulverized coal ashes from Dutch, Belgian and German installations has been carried out to identify the parameters that have to be kept under control, when pulverized coal ashes are to be used as partial cement replacement in concrete. For a good workability of fly ash/cement mortars the particle size and the carbon content are important. By performing a mortar flow test (Heagermann) upon delivery exterme ashes can be easily eliminated. The compressive strength is largely determined by the fineness of the ash (weight fraction below 20 micron). A direct effect of carbon content on strength development is not observed, but a reduction in mortar slow due to carbon leads to loss in strength, while the workability has to be adjusted. Size distribution measurement by optical methods is recommended as the relevant part of the ash size distribution cannot be properly assessed by sieve methods. The net contribution of fly ash to the compressive strength of a fly ash/cement (20/80) mortar exhibits a minimum at 14 days curing, which is common to all 50 ashes studied. Improvements in ash quality as obtained from pulverized-coal fired installations can be achieved by improvements in coal milling and optimizing ash collection. 6 figs., 4 tabs., 19 refs.

  11. Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions

    Directory of Open Access Journals (Sweden)

    S. P. Dunuweera

    2018-01-01

    Full Text Available We first discuss cement production and special nomenclature used by cement industrialists in expressing the composition of their cement products. We reveal different types of cement products, their compositions, properties, and typical uses. Wherever possible, we tend to give reasons as to why a particular cement type is more suitable for a given purpose than other types. Cement manufacturing processes are associated with emissions of large quantities of greenhouse gases and environmental pollutants. We give below quantitative and qualitative analyses of environmental impact of cement manufacturing. Controlling pollution is a mandatory legal and social requirement pertinent to any industry. As cement industry is one of the biggest CO2 emitters, it is appropriate to discuss different ways and means of CO2 capture, which will be done next. Finally, we give an account of production of nanocement and advantages associated with nanocement. Nanofillers such as nanotitania, nanosilica, and nanoalumina can be produced in large industrial scale via top-down approach of reducing size of naturally available bulk raw materials to those in the nanorange of 1 nm–100 nm. We mention the preparation of nanotitania and nanosilica from Sri Lankan mineral sands and quartz deposits, respectively, for the use as additives in cement products to improve performance and reduce the amount and cost of cement production and consequent environmental impacts. As of now, mineral sands and other treasures of minerals are exported without much value addition. Simple chemical modifications or physical treatments would add enormous value to these natural materials. Sri Lanka is gifted with highly pure quartz and graphite from which silica and graphite nanoparticles, respectively, can be prepared by simple size reduction processes. These can be used as additives in cements. Separation of constituents of mineral sands is already an ongoing process.

  12. The Influence of Abutment Surface Treatment and the Type of Luting Cement on Shear Bond Strength between Titanium/Cement/Zirconia

    Directory of Open Access Journals (Sweden)

    Beata Śmielak

    2015-01-01

    Full Text Available Objectives. The objectives of this study were to evaluate the shear bond strength of zirconia cylinders on a modified titanium surface using different luting cement types. Material and Methods. Eighty titanium disks were divided into two groups (n=40, which were treated with either grinding or a combination of sandblasting and grinding. Then, each group was subdivided into 4 groups (n=10 and the disks were bonded to disks of sintered zirconia using one of four cement types (permanent: composite cement; temporary: polycarboxylate cement, zinc-oxide-eugenol cement, and resin cement. Shear bond strength (SBS was measured in a universal testing machine. Fracture pattern and site characteristic were recorded. A fractographic analysis was performed with SEM. The chemical analysis of the composition of the fractures was performed using energy-dispersive X-ray spectroscopy (EDS. The results of the experiment were analyzed with two-way analysis of variance and Tukey post hoc test. Results. The highest mean values of SBS were achieved when grinding was combined with sandblasting and when composite cement was used (18.18 MPa. In the temporary cement group, the highest mean values of SBS were for polycarboxylate cement after grinding (3.57 MPa. Conclusion. The choice of cement has a crucial influence on the titanium-cement-zirconia interface quality.

  13. Literature survey on phase composition of hardened cement paste containing fly ash

    International Nuclear Information System (INIS)

    Otsuka, Taku; Yamamoto, Takeshi

    2015-01-01

    The purpose of this literature survey is to collect the knowledge on the effect of fly ash in hardened cement paste and the information about evaluation of physicochemical performance based on phase composition of hardened cement paste. The performance of hardened cement paste containing fly ash is affected by the property of fly ash, hydration of cement and pozzolanic reaction of fly ash. Some properties of fly ash such as density and chemical composition are reflected in phase composition, showing the progress of cement hydration and pozzolanic reaction. Therefore clarification of the relationship of phase composition and performance will lead to appropriate evaluation of the property of fly ash. The amount of pore, chemical shrinkage, pore solution, compressive strength, Young modulus and alkali silica reaction have relations to the phase composition of hardened cement paste. It is considered as future subject to clarify the relationship of phase composition and performance for various properties of fly ash. (author)

  14. Conditioning of radioactive waste solutions by cementation

    International Nuclear Information System (INIS)

    Vejmelka, P.; Rudolph, G.; Kluger, W.; Koester, R.

    1992-02-01

    For the cementation of the low and intermediate level evaporator concentrates resulting from the reprocessing of spent fuel numerous experiments were performed to optimize the waste form composition and to characterize the final waste form. Concerning the cementation process, properties of the waste/cement suspension were investigated. These investigations include the dependence of viscosity, bleeding, setting time and hydration heat from the waste cement slurry composition. For the characterization of the waste forms, the mechanical, thermal and chemical stability were determined. For special cases detailed investigations were performed to determine the activity release from waste packages under defined mechanical and thermal stresses. The investigations of the interaction of the waste forms with aqueous solutions include the determination of the Cs/Sr release, the corrosion resistance and the release of actinides. The Cs/Sr release was determined in dependence of the cement type, additives, setting time and sample size. (orig./DG) [de

  15. Tri-metallic ferrite oxygen carriers for chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-10-25

    The disclosure provides a tri-metallic ferrite oxygen carrier for the chemical looping combustion of carbonaceous fuels. The tri-metallic ferrite oxygen carrier comprises Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta., where Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta. is a chemical composition. Generally, 0.5.ltoreq.x.ltoreq.2.0, 0.2.ltoreq.y.ltoreq.2.5, and 0.2.ltoreq.z.ltoreq.2.5, and in some embodiments, 0.8.ltoreq.x.ltoreq.1.2, y.ltoreq.1.2, and z.gtoreq.0.8. The tri-metallic ferrite oxygen carrier may be used in various applications for the combustion of carbonaceous fuels, including as an oxygen carrier for chemical looping combustion.

  16. Anomalous dissolution of metals and chemical corrosion

    Directory of Open Access Journals (Sweden)

    DRAGUTIN M. DRAZIC

    2005-03-01

    Full Text Available An overview is given of the anomalous behavior of some metals, in particular Fe and Cr, in acidic aqueous solutions during anodic dissolution. The anomaly is recognizable by the fact that during anodic dissolutionmore material dissolves than would be expected from the Faraday law with the use of the expected valence of the formed ions. Mechanical disintegration, gas bubble blocking, hydrogen embrittlement, passive layer cracking and other possible reasons for such behavior have been discussed. It was shown, as suggested by Kolotyrkin and coworkers, that the reason can be, also, the chemical reaction in which H2O molecules with the metal form metal ions and gaseous H2 in a potential independent process. It occurs simultaneously with the electrochemical corrosion process, but the electrochemical process controls the corrosion potential. On the example of Cr in acid solution itwas shown that the reason for the anomalous behavior is dominantly chemical dissolution, which is considerably faster than the electrochemical corrosion, and that the increasing temperature favors chemical reaction, while the other possible reasons for the anomalous behavior are of negligible effect. This effect is much smaller in the case of Fe, but exists. The possible role of the chemical dissolution reacton and hydrogen evolution during pitting of steels and Al and stress corrosion cracking or corrosion fatigue are discussed.

  17. Descriptions of the Animas River-Cement Creek confluence and mixing zone near Silverton, Colorado, during the late summers of 1996 and 1997

    Science.gov (United States)

    Schemel, Laurence E.; Cox, Marisa H.

    2005-01-01

    Acidic waters from Cement Creek discharge into the circum-neutral Animas River in a high-elevation region of the San Juan Mountains near Silverton, Colorado. Cement Creek is acidic and enriched in metals and sulfate because it is fed by discharges from abandoned mines and natural mineral deposits. Mixing with the Animas River raises the pH and produces precipitates of iron and aluminum (oxy)hydroxides, which in turn can adsorb other metals. This confluence was studied in 1996 and 1997 to better understand mixing and sorption processes which are common during the neutralization of acidic streams. The photographs in this report show flow braiding and other features that influenced the way the two streams mixed during the late summers of the two years. They also show 'banding' due to incomplete mixing and 'opalescence' due to chemical reactions and the formation of colloidal-size particles in the mixing zone.

  18. Comparative study of physico-chemical properties of MTA-based and Portland cements.

    Science.gov (United States)

    Borges, Alvaro H; Pedro, Fábio L M; Miranda, Carlos E S; Semenoff-Segundo, Alex; Pécora, Jesus D; Filho, Antônio M Cruz

    2010-01-01

    The purpose of this investigation was to evaluate the physicochemical properties of gray and white structural and nonstructural Portland cement, gray and white ProRoot MTA and MTA BIO. The water/powder ratio, setting time, solubility and pH (hydrogen-ion potential) changes of the materials were evaluated. Tests followed specification #57 from the American National Standard Institute/American Dental Association (2000) for endodontic sealing materials and pH was determined by a digital pH meter. The test results were statistically analyzed by variance analyses for global comparison and by the complementary Tukey's test for pairwise comparisons (5%). Considering the water/powder ratio, no significant difference (p > 0.05) was observed among the cements. MTA BIO (33.10 +/- 2.30) had the lowest setting time (p Portland cement (2.55 +/- 0.08) had the highest solubility (p 0.05) was observed among materials when considering pH evaluation. The pH levels were highly alkaline immediately after immersion in solution, remaining stable throughout the test period. The authors conclude that the cements had similar water/powder proportions. MTA BIO had the shortest setting time and gray ProRoot MTA had the lowest solubility. All cements had similar behavior in the pH analysis.

  19. Microbial-influenced cement degradation: Literature review

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; McConnell, J.W. Jr.

    1993-03-01

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews literature which addresses the effect of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are identified, which are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with concrete and can ultimately lead to structural failure. Mechanisms inherent in microbial-influenced degradation of cement-based material are the focus of this report. This report provides sufficient evidence of the potential for microbial-influenced deterioration of cement-solidified LLW to justify the enumeration of the conditions necessary to support the microbiological growth and population expansion, as well as the development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbiological-induced degradation that could impact the stability of the waste form

  20. Nanoscale studies of cement chemistry with 15N resonance reaction analysis

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Livingston, Richard A.; Rolfs, Claus; Becker, Hans-Werner; Kubsky, Stefan; Spillane, Timothy; Castellote, Marta; Viedma, Paloma G. de

    2005-01-01

    Analyses of materials with ion beams have proven to be a valuable technique for describing the spatial distributions of specific elements in host materials. We have applied this technique using the 15 N(p, αγ) 12 C reaction to study the time dependence of the chemical reactions involved in the curing of cement. By using the Dynamitron Tandem accelerator at the Ruhr Universitaet, Bochum, Germany, we have been able to achieve a few nanometer spatial resolution at the surface of cement grains and to study the hydrogen distributions to a depth of about 2 μm. By applying a technique for stopping the chemical reactions at arbitrary times, the time dependence of the chemical reactions involving specific components of cement can be investigated. In addition, the effects of additives on the chemical reactions have been studied, as have materials that are components of concrete

  1. Improved cement solidification of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    1993-01-01

    Cementation was the first and is still the most widely applied technique for the conditioning of low and intermediate level radioactive wastes. Compared with other solidification techniques, cementation is relatively simple and inexpensive. However, the quality of the final cemented waste forms depends very much on the composition of the waste and the type of cement used. Different kinds of cement are used for different kinds of waste and the compatibility of a specific waste with a specific cement type should always be carefully evaluated. Cementation technology is continuously being developed in order to improve the characteristics of cemented waste in accordance with the increasing requirements for quality of the final solidified waste. Various kinds of additives and chemicals are used to improve the cemented waste forms in order to meet all safety requirements. This report is meant mainly for engineers and designers, to provide an explanation of the chemistry of cementation systems and to facilitate the choice of solidification agents and processing equipment. It reviews recent developments in cementation technology for improving the quality of cemented waste forms and provides a brief description of the various cement solidification processes in use. Refs, figs and tabs

  2. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. Because hydraulic cement requires a chemical hydration reaction for setting and hardening, it is subject to potential interactions between elements in the waste and binder that can retard or prevent solidification. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above its melting point, combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991

  3. Portland-pfa cement: a comparison between intergrinding and blending

    Energy Technology Data Exchange (ETDEWEB)

    Monk, M

    1983-09-01

    Portland-pfa cements containing 20-40% (by weight) pfa have been prepared in the laboratory both by intergrinding the ashes with clinker and by blending with cement. Cement properties have been assessed according to BS 4550 and scanning electron microscopy was used to examine the effects of grinding upon the pfa particles. The work has shown that intergrinding leads to an improvement in the water-reducing properties of coarse pfas and also in their pozzolanic activity as indicated by compressive strength development at later ages. Setting times have been found to be essentially the same for blended and interground cements, both being considerably longer than for typical ordinary Portland cements. Thus the results of this investigation indicate that, provided pfa's are chemically acceptable, they can be used for Portland-pfa cement manufacture by intergrinding irrespective of their coarseness.

  4. Optimization and validation of a chemical process for uranium, mercury and cesium leaching from cemented radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Reynier, N.; Lastra, R.; Laviolette, C.; Bouzoubaa, N., E-mail: nicolas.reynier@canada.ca [Natural Resources Canada, CanmetMINING, Ottawa, Ontario (Canada); Chapman, M. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    Canadian Nuclear Laboratories (CNL) is developing a treatment and long-term management strategy for a legacy cemented radioactive waste that contains uranium, mercury, and fission products. Extracting the uranium would be advantageous for decreasing the waste classification and reducing the cost of long-term management. The chemical leachability of 3 key elements (U, Hg, and Cs) from a surrogate cemented waste (SCW) was studied with several lixiviants. The results showed that the most promising approach to leach and recover U, Hg, and Cs is the direct leaching of the SCW with H{sub 2}SO{sub 4} in strong saline media. Operating parameters such as particle size, temperature, pulp density, leaching time, acid and salt concentrations, number of leaching/washing steps, etc. were optimized to improve key elements solubilization. Sulfuric leaching in saline media of a SCW (U5) containing 1182 ppm of U, 1598 ppm of Hg, and 7.9 ppm of Cs in the optimized conditions allows key elements solubilisation of 98.5 ± 0.4%, 96.6 ± 0.1%, and 93.8 ± 1.1% of U, Hg, and Cs, respectively. This solubilization process was then applied in triplicate to 7 other SCWs prepared with different cements, liquid ratios, and at different aging times and temperatures. Concentrated sulfuric acid is added to the slurry until the pH is about 2, which causes the complete degradation of cement and the formation of CaSO{sub 4}. Sulfuric acid is particularly useful because it produces a leachate that is amenable to conventional ion exchange technology for the separation and recovery of uranium. (author)

  5. Study of the relation between hydrated portland cement composition and leaching resistance

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    1998-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  6. Fabrication of Phosphate Cement with High Integrity

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Lee, Chang Hwa; Heo, Cheol Min; Jeon, Min Ku; Kang, Kweon Ho

    2011-01-01

    As the development of industrial society has accelerated, hazardous wastes are generated as well. According to the 1986 statistics of U.S.A, each person made 40 tons of waste in America that year. Treatment of radioactive waste is one of the most important and serious problems related to waste treatments, because its radioactivity and decaying heat have harmful effects to human and environment for a long time. Nuclear developed countries have used conventional method of treatment such as vitrification or cementation in order to stabilize and solidify radioactive waste. Although the former guarantees the formation of high leaching resistant and durable waste form, it requires several hundred (or even more than one thousand) temperature to melt glass frit. This process generates secondary waste volatilized, as well as being non-economical. Cement technology played a role of immobilizing low and middle class wastes. It has advantages of low temperature setting, low cost, easy process, etc. The alkalinity of ordinary cement, however, constrains the utility of cement to the solidification of alkaline waste. In addition, leachability and mechanical strength of cements are not quite appropriate for the stabilization of high level waste. In this regard, chemically bonded phosphate cement(CBPC), which sets by an acid-base reaction, is a potentially expectable material for immobilization of radioactive waste. CBPC not only sets at room temperature, but also encapsulates various isotopes chemically. The performance of CBPC can be enhanced by the addition of fly ash, sand, wollastonite, etc. This study aims at fabricating the CBPC containing fly ash with high integrity. Morphology, microstructure, and compressive strength are evaluated using SEM, and digital compressing machine

  7. Micropore Structure of Cement-Stabilized Gold Mine Tailings

    Directory of Open Access Journals (Sweden)

    Joon Kyu Lee

    2018-03-01

    Full Text Available Mine tailings have often to be stabilized by mixing them with cementing agents. In this study, the pore structure of gold tailings stabilized with Portland cement was evaluated by means of mercury intrusion porosimetry. The investigation was conducted on samples prepared with different fractions of tailings and cement as well as on samples activated with elevated temperature curing and chemical (CaCl2 addition. It was observed that all mixed samples exhibit a mono-modal pore size distribution, indicating that the cement-stabilized tailings are characterized by a single-porosity structure. The results also showed that the higher fraction of tailings and cement leads to a dense and finer pore structure. The total porosity of mixture samples decreases with increasing curing temperature and CaCl2 concentration due to the acceleration of hydration reaction.

  8. A critical analysis of the degree of conversion of resin-based luting cements

    Science.gov (United States)

    NORONHA FILHO, Jaime Dutra; BRANDÃO, Natasha Lamego; POSKUS, Laiza Tatiana; GUIMARÃES, José Guilherme Antunes; da SILVA, Eduardo Moreira

    2010-01-01

    Objective This study analyzed the degree of conversion (DC%) of four resin-based cements (All Ceram, Enforce, Rely X ARC and Variolink II) activated by two modes (chemical and dual), and evaluated the decrease of DC% in the dual mode promoted by the interposition of a 2.0-mm-thick IPS Empress 2 disc. Material and Methods In the chemical activation, the resin-based cements were prepared by mixing equal amounts of base and catalyst pastes. In the dual activation, after mixing, the cements were light-activated at 650 mW/cm2 for 40 s. In a third group, the cements were lightactivated through a 2.0-mm-thick IPS Empress 2 disc. The DC% was evaluated in a FT-IR spectrometer equipped with an attenuated total reflectance crystal (ATR). The data were analyzed by two-way ANOVA and Tukey's HSD test. Results For all resin-based cements, the DC% was significantly higher with dual activation, followed by dual activation through IPS Empress 2, and chemical activation (pEmpress 2 disc (pEmpress 2. PMID:21085798

  9. Pollutants emitted by a cement plant: health risks for the population living in the neighborhood

    International Nuclear Information System (INIS)

    Schuhmacher, Marta; Domingo, J.L.; Garreta, Josepa

    2004-01-01

    The aim of this study was to investigate the health risks due to combustor emissions in the manufacturing of Portland cement for the population living in the neighborhood of a cement kiln in Catalonia, Spain. Pollutants emitted to the atmosphere in the course of cement production were modeled. The ISC3-ST model was applied to estimate air dispersion of the contaminants emitted by the cement plant. Air concentrations of NO 2 , SO 2 , PM 10 , metals, and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), as well as the potential exposure in the vicinity of the facility, were assessed via models based on US EPA guidance documents. PCDD/F and metal concentrations were also modeled for soil and vegetation. Based on these concentrations, the levels of human exposure were calculated. Individual cancer and noncancer risks for the emissions of the cement kiln were assessed. Health effects due to NO 2 , SO 2 , and PM 10 emissions were also evaluated. Risk assessment was performed as a deterministic analysis. The main individual risk in the population was evaluated in a central-tendency and a high-end approach. The results show that the incremental individual risk due to emissions of the cement plant is very low not only with regard to health effects, but also in relation to toxicological and cancer risks produced by pollutants such as metals and PCDD/Fs emitted by the cement kiln

  10. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    the oxide layers are chemically bonded to graphene (Zhang ... sists of three glass chambers, one to contain the metal halide. (TiCl4, SiCl4 ... In this step, the metal halide reacts with the oxygen function- ... 1·0 g of FeCl3 were vigorously stirred in 30 ml of ethylene ... Reaction with water vapour results in hydrolysis of the un-.

  11. Adherent diamond coatings on cemented tungsten carbide substrates with new Fe/Ni/Co binder phase

    International Nuclear Information System (INIS)

    Polini, Riccardo; Delogu, Michele; Marcheselli, Giancarlo

    2006-01-01

    WC-Co hard metals continue to gain importance for cutting, mining and chipless forming tools. Cobalt metal currently dominates the market as a binder because of its unique properties. However, the use of cobalt as a binder has several drawbacks related to its hexagonal close-packed structure and market price fluctuations. These issues pushed the development of pre-alloyed binder powders which contain less than 40 wt.% cobalt. In this paper we first report the results of extensive investigations of WC-Fe/Ni/Co hard metal sintering, surface pretreating and deposition of adherent diamond films by using an industrial hot filament chemical vapour deposition (HFCVD) reactor. In particular, CVD diamond was deposited onto WC-Fe/Ni/Co grades which exhibited the best mechanical properties. Prior to deposition, the substrates were submitted to surface roughening by Murakami's etching and to surface binder removal by aqua regia. The adhesion was evaluated by Rockwell indentation tests (20, 40, 60 and 100 kg) conducted with a Brale indenter and compared to the adhesion of diamond films grown onto Co-cemented tungsten carbide substrates, which were submitted to similar etching pretreatments and identical deposition conditions. The results showed that diamond films on medium-grained WC-6 wt.% Fe/Ni/Co substrates exhibited good adhesion levels, comparable to those obtained for HFCVD diamond on Co-cemented carbides with similar microstructure

  12. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration.

    Science.gov (United States)

    Weibel, Gisela; Eggenberger, Urs; Schlumberger, Stefan; Mäder, Urs K

    2017-04-01

    This study focusses on chemical and mineralogical characterization of fly ash and leached filter cake and on the determination of parameters influencing metal mobilization by leaching. Three different leaching processes of fly ash from municipal solid waste incineration (MSWI) plants in Switzerland comprise neutral, acidic and optimized acidic (+ oxidizing agent) fly ash leaching have been investigated. Fly ash is characterized by refractory particles (Al-foil, unburnt carbon, quartz, feldspar) and newly formed high-temperature phases (glass, gehlenite, wollastonite) surrounded by characteristic dust rims. Metals are carried along with the flue gas (Fe-oxides, brass) and are enriched in mineral aggregates (quartz, feldspar, wollastonite, glass) or vaporized and condensed as chlorides or sulphates. Parameters controlling the mobilization of neutral and acidic fly ash leaching are pH and redox conditions, liquid to solid ratio, extraction time and temperature. Almost no depletion for Zn, Pb, Cu and Cd is achieved by performing neutral leaching. Acidic fly ash leaching results in depletion factors of 40% for Zn, 53% for Cd, 8% for Pb and 6% for Cu. The extraction of Pb and Cu are mainly limited due to a cementation process and the formation of a PbCu 0 -alloy-phase and to a minor degree due to secondary precipitation (PbCl 2 ). The addition of hydrogen peroxide during acidic fly ash leaching (optimized acidic leaching) prevents this reduction through oxidation of metallic components and thus significantly higher depletion factors for Pb (57%), Cu (30%) and Cd (92%) are achieved. The elevated metal depletion using acidic leaching in combination with hydrogen peroxide justifies the extra effort not only by reduced metal loads to the environment but also by reduced deposition costs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Industrial Wastes as Auxiliary Additives to Cement/Lime Stabilization of Soils

    OpenAIRE

    James, Jijo; Pandian, P. Kasinatha

    2016-01-01

    Chemical stabilization involves the use of chemical agents for initiating reactions within the soil for modification of its geotechnical properties. Cement and lime stabilization have been the most common stabilization methods adopted for soil treatment. Cement stabilization results in good compressive strengths and is preferred for cohesionless to moderately cohesive soil but loses effectiveness when the soil is highly plastic. Lime stabilization is the most preferred method for plastic clay...

  14. Effect of Gipan addition on the rheologic properties of cement slurries

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, L N; Solovev, E M

    1966-08-01

    The objective of this study was to determine the effectiveness of Gipan in controlling cement rheology. The chemical nature of Gipan is not disclosed in the article; however it is said to be a plasticizer (perhaps an acrylic polymer). The consistency and rheological properties of Gipan-cement mixtures were studied at 20$C. It was shown that as the concentration of Gipan increased from 0.1 to 1%, cement gel strength decreased, while viscosity increased. Calculations indicated that on adding 1% Gipan to cement, the amount of hydraulic power required to produce turbulent flow in a well is one-half that required for cement without the additive. The Gipan also reduces cement water-loss tremendously.

  15. Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lian-Kui; Li, Ying-Ying; Cao, Hua-Zhen; Zheng, Guo-Qu, E-mail: zhenggq@zjut.edu.cn

    2015-12-15

    Highlights: • Antimony can be efficiently removed by cementation with copper powder. • Cemented antimony is in the form of Cu{sub 2}Sb. • Consumed copper powder is transformed to CuCl. • The cementation is a chemically controlled step. • No toxic stibine generates during the cementation process. - Abstract: A new method of recovering antimony in hydrochloric acid system by cementation with copper powder was proposed and carried out at laboratory scale. Thermodynamic analysis and cyclic voltammetry test were conducted to study the cementation process. This is a novel antimony removal technology and quite meets the requirements of green chemistry. The main cement product Cu{sub 2}Sb is a promising anodic material for lithium and sodium ion battery. And nearly all consumed copper powder are transformed into CuCl which is an important industrial material. The effect of reaction temperature, stoichiometric ratio of Cu to Sb(III), stirring rate and concentration of HCl on the cementation efficiency of antimony were investigated in detail. Optimized cementation condition is obtained at 60 °C for 120 min and stirring rate of 600 rpm with Cu/Sb(III) stoichiometric ratio of 6 in 3 mol L{sup −1} HCl. At this time, nearly all antimony can be removed by copper powder and the cementation efficiency is over 99%. The structure and morphologies of the cement products were characterized by X-ray diffraction and scanning electron microscopy, respectively. Results show that the reaction temperature has little influence on the morphology of the cement products which consist of particles with various sizes. The activation energy of the cementation antimony on copper is 37.75 kJ mol{sup −1}, indicating a chemically controlled step. Inductively coupled plasma mass spectrometry results show that no stibine generates during the cementation process.

  16. Use of residual wood in the cement manufacturing process

    International Nuclear Information System (INIS)

    Gue, R.

    2005-01-01

    This PowerPoint presentation discussed the use of wood residuals in the cement manufacturing process. An outline of the cement manufacturing process was presented. Raw materials are combined in exact proportions to create a chemically correct mix, which is then pulverized in a mill. The mix is then burned in a kiln. The end product is cooled to form the pellet sized material known as clinker, which is then milled to form cement. The combustion and destruction characteristics of a cement kiln were presented. Modern cement kilns require approximately 3.2 Gj of energy to produce one tonne of cement. It was noted that wood residuals do not contain halogens, sulfur or other materials detrimental to the cement manufacturing process. Possible injection points for kilns were presented. Various studies have shown that wood residuals can be safely used as a fuel in the manufacture of cement. Environmental benefits derived from using wood included the complete destruction of organic portions, and the fact that residual ash becomes an indistinguishable part of the final product. It was concluded that wood residual materials are a satisfactory alternative fuel for the cement industry. tabs., figs

  17. Physico-chemical characteristics and Heavy metal levels in Drinking ...

    African Journals Online (AJOL)

    Physico-chemical characteristics and Heavy metal levels in Drinking Water ... composition was analysed using X-ray Fluorescence spectroscopy. Majority of the water samples had neutral pH (6.80 – 7.20) few were slightly alkaline and one was acidic. ... Heavy metals (copper and lead), rare earth metals (gallium, rubidium, ...

  18. Mechanism of alkalinity lowering and chemical equilibrium model of high fly ash silica fume cement

    International Nuclear Information System (INIS)

    Hoshino, Seiichi; Honda, Akira; Negishi, Kumi

    2014-01-01

    The mechanism of alkalinity lowering of a High Fly ash Silica fume Cement (HFSC) under liquid/solid ratio conditions where the pH is largely controlled by the soluble alkali components (Region I) has been studied. This mechanism was incorporated in the chemical equilibrium model of HFSC. As a result, it is suggested that the dissolution and precipitation behavior of SO 4 2- partially contributes to alkalinity lowering of HFSC in Region I. A chemical equilibrium model of HFSC incorporating alkali (Na, K) adsorption, which was presumed as another contributing factor of the alkalinity lowering effect, was also developed, and an HFSC immersion experiment was analyzed using the model. The results of the developed model showed good agreement with the experiment results. From the above results, it was concluded that the alkalinity lowering of HFSC in Region I was attributed to both the dissolution and precipitation behavior of SO 4 2- and alkali adsorption, in addition to the absence of Ca(OH) 2 . A chemical equilibrium model of HFSC incorporating alkali and SO 4 2- adsorption was also proposed. (author)

  19. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    International Nuclear Information System (INIS)

    Voglar, Grega E.; Lestan, Domen

    2011-01-01

    Highlights: → We assess the feasibility of using soil S/S for industrial land reclamation. → Retarders, accelerators, plasticizers were used in S/S cementitious formulation. → We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg -1 of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm -2 achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  20. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    Energy Technology Data Exchange (ETDEWEB)

    Voglar, Grega E. [RDA - Regional Development Agency Celje, Kidriceva ulica 25, 3000 Celje (Slovenia); Lestan, Domen, E-mail: domen.lestan@bf.uni-lj.si [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia)

    2011-08-30

    Highlights: {yields} We assess the feasibility of using soil S/S for industrial land reclamation. {yields} Retarders, accelerators, plasticizers were used in S/S cementitious formulation. {yields} We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg{sup -1} of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm{sup -2} achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  1. Metal organic frameworks for the catalytic detoxification of chemical warfare nerve agents

    Science.gov (United States)

    Hupp, Joseph T.; Farha, Omar K.; Katz, Michael J.; Mondloch, Joseph E.

    2017-04-18

    A method of using a metal organic framework (MOF) comprising a metal ion and an at least bidendate organic ligand to catalytically detoxify chemical warfare nerve agents including exposing the metal-organic-framework (MOF) to the chemical warfare nerve agent and catalytically decomposing the nerve agent with the MOF.

  2. Nanoscale studies of cement chemistry with {sup 15}N resonance reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Jeffrey S. [University of Connecticut, Department of Physics, Unit 3046, Storrs, CT 06269-3046 (United States)]. E-mail: schweitz@phys.uconn.edu; Livingston, Richard A. [Federal Highway Administration, HRDI-05, 6300 Georgetown Pike McLean, VA 22101 (United States); Rolfs, Claus [Institut fuer Physik mit Ionenstrahlen, Ruhr-Universitaet, Bochum Universitaetsstr. 150, Gebaeude NB 3, 44780 Bochum (Germany); Becker, Hans-Werner [Institut fuer Physik mit Ionenstrahlen, Ruhr-Universitaet, Bochum Universitaetsstr. 150, Gebaeude NB 3, 44780 Bochum (Germany); Kubsky, Stefan [Institut fuer Physik mit Ionenstrahlen, Ruhr-Universitaet, Bochum Universitaetsstr. 150, Gebaeude NB 3, 44780 Bochum (Germany); Spillane, Timothy [University of Connecticut, Department of Physics, Unit 3046, Storrs, CT 06269-3046 (United States); Castellote, Marta [Institute of Construction Science ' Eduardo Torroja' (CSIC), Serrano Galvache no. 4, 28033 Madrid (Spain); Viedma, Paloma G. de [Institute of Construction Science ' Eduardo Torroja' (CSIC), Serrano Galvache no. 4, 28033 Madrid (Spain)

    2005-12-15

    Analyses of materials with ion beams have proven to be a valuable technique for describing the spatial distributions of specific elements in host materials. We have applied this technique using the {sup 15}N(p, {alpha}{gamma}){sup 12}C reaction to study the time dependence of the chemical reactions involved in the curing of cement. By using the Dynamitron Tandem accelerator at the Ruhr Universitaet, Bochum, Germany, we have been able to achieve a few nanometer spatial resolution at the surface of cement grains and to study the hydrogen distributions to a depth of about 2 {mu}m. By applying a technique for stopping the chemical reactions at arbitrary times, the time dependence of the chemical reactions involving specific components of cement can be investigated. In addition, the effects of additives on the chemical reactions have been studied, as have materials that are components of concrete.

  3. Structural degradation of acrylic bone cements due to in vivo and simulated aging.

    Science.gov (United States)

    Hughes, Kerry F; Ries, Michael D; Pruitt, Lisa A

    2003-05-01

    Acrylic bone cement is the primary load-bearing material used for the attachment of orthopedic devices to adjoining bone. Degradation of acrylic-based cements in vivo results in a loss of structural integrity of the bone-cement-prosthesis interface and limits the longevity of cemented orthopedic implants. The purpose of this study is to investigate the effect of in vivo aging on the structure of the acrylic bone cement and to develop an in vitro artificial aging protocol that mimics the observed degradation. Three sets of retrievals are examined in this study: Palacos brand cement retrieved from hip replacements, and Simplex brand cement retrieved from both hip and knee replacement surgeries. In vitro aging is performed using oxidative and acidic environments on three acrylic-based cements: Palacos, Simplex, and CORE. Gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) are used to examine the evolution of molecular weight and chemical species within the acrylic cements due to both in vivo and simulated aging. GPC analysis indicates that molecular weight is degraded in the hip retrievals but not in the knee retrievals. Artificial aging in an oxidative environment best reproduces this degradation mechanism. FTIR analysis indicates that there exists a chemical evolution within the cement due to in vivo and in vitro aging. These findings are consistent with scission-based degradation schemes in the cement. Based on the results of this study, a pathway for structural degradation of acrylic bone cement is proposed. The findings from this investigation have broad applicability to acrylic-based cements and may provide guidance for the development of new bone cements that resist degradation in the body. Copyright 2003 Wiley Periodicals, Inc.

  4. Cu{sup 2+}, Co{sup 2+} and Cr{sup 3+} doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Schamel, Martha [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Bernhardt, Anne; Quade, Mandy; Würkner, Claudia [Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden (Germany); Gbureck, Uwe; Moseke, Claus [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Gelinsky, Michael [Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden (Germany); Lode, Anja, E-mail: anja.lode@tu-dresden.de [Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden (Germany)

    2017-04-01

    The application of biologically active metal ions to stimulate cellular reactions is a promising strategy to accelerate bone defect healing. Brushite-forming calcium phosphate cements were modified with low doses of Cu{sup 2+}, Co{sup 2+} and Cr{sup 3+}. The modified cements released the metal ions in vitro in concentrations which were shown to be non-toxic for cells. The release kinetics correlated with the solubility of the respective metal phosphates: 17–45 wt.-% of Co{sup 2+} and Cu{sup 2+}, but < 1 wt.-% of Cr{sup 3+} were released within 28 days. Moreover, metal ion doping led to alterations in the exchange of calcium and phosphate ions with cell culture medium. In case of cements modified with 50 mmol Cr{sup 3+}/mol β-tricalcium phosphate (β-TCP), XRD and SEM analyses revealed a significant amount of monetite and a changed morphology of the cement matrix. Cell culture experiments with human mesenchymal stromal cells indicated that the observed cell response is not only influenced by the released metal ions but also by changed cement properties. A positive effect of modifications with 50 mmol Cr{sup 3+} or 10 mmol Cu{sup 2+} per mol β-TCP on cell behaviour was observed in indirect and direct culture. Modification with Co{sup 2+} resulted in a clear suppression of cell proliferation and osteogenic differentiation. In conclusion, metal ion doping of the cement influences cellular activities in addition to the effect of released metal ions by changing properties of the ceramic matrix. - Highlights: • A brushite-forming calcium phosphate cement was modified by doping with bioactive Cu{sup 2+}, Co{sup 2+} and Cr{sup 3+} ions. • The metal ions were integrated in the cement matrix, setting was not affected. • The modified cements released the metal ions in doses non-toxic for cells. • Modification with Cr{sup 3+} ions enhanced the biocompatibility of the cement.

  5. Macroscopic and spectroscopic investigations on the immobilization of radionuclides by hardened cement paste

    International Nuclear Information System (INIS)

    Wieland, E.; Bonhoure, I.; Tits, J.; Scheidegger, A.M.; Bradbury, M.H.

    2002-01-01

    The uptake of safety-relevant radionuclides was studied using a combination of macroscopic (wet chemistry) and spectroscopic (X-ray absorption fine structure (XAFS) spectroscopy) techniques with the aim of gaining a mechanistic understanding of the uptake processes on hardened cement paste (HCP) and deducing robust sets of sorption values. HCP contains impurities of metal cations in the ppb to ppm concentration range. As a consequence, the inventories of stable isotopes are expected to be significant in a cementitious near-field and may even exceed the radionuclide inventories of the waste matrix for many safety-relevant radioelements. In view of the significant inventories of stable isotopes, it is suggested that isotopic exchange - replacement of stable isotopes by their radioactive counterparts in the cement matrix - is an important immobilisation process in HCP. However, it is not a priori known what proportion of each elemental inventory is available for isotopic exchange. Wet chemistry studies with Cs and Sr show that the total inventory of these elements is reversibly bound and that their partitioning between HCP and pore water can be modelled using the distribution values deduced from studies of the corresponding tracers ( 137 Cs and 85 Sr). This finding corroborates the relevance of isotopic exchange in cementitious systems. Wet chemistry investigations need to be complemented by spectroscopic techniques, e.g., XAFS, in order to gain a mechanistic understanding of the chemical processes by which waste ions become immobilised in cement-based matrices. XAFS can be used to obtain information at the atomic/molecular level, i.e., the type, number and distance of neighbouring atoms. XAFS studies on cementitious systems are still rather rare, and therefore information on the potential and limitations of this technique is sparse. Mechanistic aspects of the immobilisation processes are discussed for some safety-relevant radionuclides (e.g. Ni and Sr) using the

  6. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  7. [PVD-silicoating before cementation of zirconia-based knee prostheses effects better cement adhesion and lower aseptic loosening rates].

    Science.gov (United States)

    Marx, R; Faramarzi, R; Oberbach, T; Begand, S; Grätz, N; Wirtz, D C

    2012-02-01

    CoCrMo alloys are contraindicated for allergy patients. For these patients, cemented or uncemented prostheses made of titanium alloy are indicated. Uncemented prostheses, however, have low primary retention, particularly the tibial components of knee joint prostheses because of the lack of a positive locking. Therefore, for knee replacement cemented CoCrMo prostheses may be suitable also for allergy sufferers if these are masked by ZrN or TiNbN layers. Alternatively the CoCrMo alloy may be replaced by high-strength oxide ceramics. For adhesion of bone cement to the ceramic surface, however, only inefficient mechanical retention spots are exposed as compared with a metal surface. Undercuts generated by corundum blasting, although highly efficient on a CoCrMo surface, are not such efficient centres on a ceramic surface due to its brittleness. Therefore, the mechanical component of retention is significantly reduced. When specific adhesion between bone cement and surface does not exist due to physical and chemical forces, the hydrolytic stability will be insufficient. Micromotions are promoted and early aseptic loosening is predictable. Silicoating of the ceramic surface will allow specific adhesion and can result in better hydrolytic stability of bonding. In order to evaluate the effectiveness of silicoating the bond strengths of blasted (mean size of corundum grains 50 µm) and silicate layered alumina-toughened zirconia (ATZ) surfaces were compared with "as fired" surfaces by utilising TiAlV probes (diameter 6 mm) for traction-adhesive strength testing. Samples machined out of CoCrMo alloy were utilised for reference. After preparing the samples for traction-adhesive strength testing (sequence: substrate, silicate and silane, protective lacquer [PolyMA], bone cement, TiAlV probe) they were aged up to 360 days at 37 °C in Ringer's solution. The bond strengths observed for all ageing intervals were well above 20 MPa and much higher and more hydrolytically

  8. Cement encapsulation of low-level radioactive slurries of complex chemistry

    International Nuclear Information System (INIS)

    Cau Dit Coumes, C.

    2000-01-01

    Investigations have been carried out to solidify in cement a low-level radioactive waste of complex chemistry which should be produced in a new plant designed to process radioactive effluents from CEA Cadarache Research Center. Direct cementation comes up against a major problem: a very long setting time of cement due to strong inhibition by borates from the waste. A two-stage process, including a chemical treatment prior to immobilization, has been elaborated and the resulted material characterized. (authors)

  9. Utilization of waste glass in ECO-cement: Strength properties and microstructural observations

    International Nuclear Information System (INIS)

    Sobolev, Konstantin; Tuerker, Pelin; Soboleva, Svetlana; Iscioglu, Gunsel

    2007-01-01

    Waste glass creates a serious environmental problem, mainly because of the inconsistency of the waste glass streams. The use of waste glass as a finely ground mineral additive (FGMA) in cement is a promising direction for recycling. Based on the method of mechano-chemical activation, a new group of ECO-cements was developed. In ECO-cement, relatively large amounts (up to 70%) of portland cement clinker can be replaced with waste glass. This report examines the effect of waste glass on the microstructure and strength of ECO-cement based materials. Scanning electron microscopy (SEM) investigations were used to observe the changes in the cement hydrates and interface between the cement matrix and waste glass particles. According to the research results, the developed ECO-cement with 50% of waste glass possessed compressive strength properties at a level similar to normal portland cement

  10. Radiation effects on metals, alloys and cement

    International Nuclear Information System (INIS)

    Lucki, G.; Sciani, V.

    1988-12-01

    High - energy particle irradiation of materials brings as a consequence changes in their atomic structures that alter the electrical, magnetic and mechanical properties which are the most important characteristics for practical applications of metals and alloys. A review is made on experimental results of in-pile (IEA-RI reactor) and CV-28 cyclotron irradiated materials. Resistivity measurements on CuPd and FeNi alloys showed different behaviour during fast neutron irradiation. While CuPd had almost coincidental relaxation curves, FeNi presented a distinguishable short and long-range ordering with the critical order-disorder temperature at 515 0 C. Vacancy supersaturation curves of FeNiSi (49-49-2 at %), FeNiCr (49-95-49, 95-0,1 at. %), FeNiMo (50-50 at.% + 50 ppm) and pure FeNi (50-50 at.%), determined by means of the Magnetic After Effect are presented as an effective pre-selection method of nuclear materials before the destructive stage of void formation and swelling. A displacement of damage peak from 480 to 500 and 570 0 C was detected on pure AISI 321 stainless steel and with 0,05 wt.% and 0,10 wt.% of Nb additions by means of resistivity and micro-hardness. Ultrasound techniques applied to fast neutron irradiated portland cement paste (fluence 7,2 x 10 18 n/cm 2 ) showed a 24% decrease in its dynamic elasticity modulus. Helium diffusion on Au, Ag and Al foils irradiated in cyclotron was studied, suggesting a vacancy mechanism for single He atom diffusion. Embrittlement by Alpha particle implantation in cyclotron to simulate in-pile (n,α) reaction-was measured by high temperature creep on AISI 316 stainles steel. (author) [pt

  11. Incinerated sewage sludge ash as alternative binder in cement-based materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Goltermann, Per; Hodicky, Kamil

    2013-01-01

    Sewage sludge ash is characterized by its pozzolanic properties, as cement is. This predetermines its use in a substitution of cement and cementitious materials. Utilization of sewage sludge ash does not only decrease the consumption of cement, one of the largest cause of CO2 emissions, but also...... it can minimize the need of ash landfill disposal. The objective of this study is to show potential use of incinerated sewage sludge ash (ISSA), an industrial byproduct, as possible binder in cement-based materials. Chemical and mechanical characteristics are presented and compared with results obtained...

  12. Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement.

    Science.gov (United States)

    Wang, Yan-Shuai; Dai, Jian-Guo; Wang, Lei; Tsang, Daniel C W; Poon, Chi Sun

    2018-01-01

    Inorganic binder-based stabilization/solidification (S/S) of Pb-contaminated soil is a commonly used remediation approach. This paper investigates the influences of soluble Pb species on the hydration process of two types of inorganic binders: ordinary Portland cement (OPC) and magnesium potassium phosphate cement (MKPC). The environmental leachability, compressive strength, and setting time of the cement products are assessed as the primary performance indicators. The mechanisms of Pb involved in the hydration process are analyzed through X-ray diffraction (XRD), hydration heat evolution, and thermogravimetric analyses. Results show that the presence of Pb imposes adverse impact on the compressive strength (decreased by 30.4%) and the final setting time (prolonged by 334.7%) of OPC, but it exerts much less influence on those of MKPC. The reduced strength and delayed setting are attributed to the retarded hydration reaction rate of OPC during the induction period. These results suggest that the OPC-based S/S of soluble Pb mainly depends on physical encapsulation by calcium-silicate-hydrate (CSH) gels. In contrast, in case of MKPC-based S/S process, chemical stabilization with residual phosphate (pyromorphite and lead phosphate precipitation) and physical fixation of cementitious struvite-K are the major mechanisms. Therefore, MKPC is a more efficient and chemically stable inorganic binder for the Pb S/S process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of saliva contamination on cementation of orthodontic brackets using different adhesive systems.

    Science.gov (United States)

    Robaski, Aliden-Willian; Pamato, Saulo; Tomás-de Oliveira, Marcelo; Pereira, Jefferson-Ricardo

    2017-07-01

    The enamel condition and the quality of surface are points that need to be considered for achieving optimal efficiency in the treatment with orthodontic brackets. The aim of this study was to assess the immediate bond strength of metallic brackets cemented to dental. Forty human premolars were double-sectioned, placed in PVC matrices and randomly divided into 10 groups (n=8). They received artificial saliva contamination before or after the application of adhesive systems, except for the control groups. The metallic brackets were cemented using two orthodontic cements (Transbond™ Plus Color Change, 3M Unitek e Transbond™ XT Light, 3M Unitek). The specimens were subjected to mechanical shear bond strength testing and classified according to the fracture pattern. The results were analyzed using a two-way ANOVA and Tukey's test for multiple comparisons ( p brackets cemented on the dental enamel. Key words: Bonding, orthodontic brackets, shear bond strength, saliva, adhesive systems.

  14. Accurate quantitative XRD phase analysis of cement clinkers

    International Nuclear Information System (INIS)

    Kern, A.

    2002-01-01

    Full text: Knowledge about the absolute phase abundance in cement clinkers is a requirement for both, research and quality control. Traditionally, quantitative analysis of cement clinkers has been carried out by theoretical normative calculation from chemical analysis using the so-called Bogue method or by optical microscopy. Therefore chemical analysis, mostly performed by X-ray fluorescence (XRF), forms the basis of cement plan control by providing information for proportioning raw materials, adjusting kiln and burning conditions, as well as cement mill feed proportioning. In addition, XRF is of highest importance with respect to the environmentally relevant control of waste recovery raw materials and alternative fuels, as well as filters, plants and sewage. However, the performance of clinkers and cements is governed by the mineralogy and not the elemental composition, and the deficiencies and inherent errors of Bogue as well as microscopic point counting are well known. With XRD and Rietveld analysis a full quantitative analysis of cement clinkers can be performed providing detailed mineralogical information about the product. Until recently several disadvantages prevented the frequent application of the Rietveld method in the cement industry. As the measurement of a full pattern is required, extended measurement times made an integration of this method into existing automation environments difficult. In addition, several drawbacks of existing Rietveld software such as complexity, low performance and severe numerical instability were prohibitive for automated use. The latest developments of on-line instrumentation, as well as dedicated Rietveld software for quantitative phase analysis (TOPAS), now make a decisive breakthrough possible. TOPAS not only allows the analysis of extremely complex phase mixtures in the shortest time possible, but also a fully automated online phase analysis for production control and quality management, free of any human interaction

  15. Formulation of criteria for pollution control on cement products produced from solid wastes in China.

    Science.gov (United States)

    Yang, Yufei; Huang, Qifei; Yang, Yu; Huang, Zechun; Wang, Qi

    2011-08-01

    The process of producing cement products from solid waste can increase the level of pollutants in the cement products. Therefore, it is very important to establish a pollution control standard for cement products to protect the environment and human health. This paper presents acceptance limits for the availability of heavy metals in cement products which have been produced from solid wastes and explains how the limits have been calculated. The approach and method used to formulate these criteria were based on EN 12920. The typical exposure scenarios used in this paper involve concrete being used for drinking water supply pipelines and concrete pavements and are based on an analysis of typical applications of cement in China, and the potential for contact with water. The parameters of a tank test which was based on NEN 7375 were set in accordance with the environmental conditions of typical scenarios in China. Mechanisms controlling the release of heavy metals in concrete and a model for that release were obtained using the leaching test. Finally, based on acceptance criteria for drinking water and groundwater quality in China, limit values for the availability of heavy metals in concrete were calculated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Influence of superplasticizers on the long-term properties of cement pastes and possible impact on radionuclide uptake in a cement-based repository for radioactive waste

    International Nuclear Information System (INIS)

    Wieland, E.; Lothenbach, B.; Glaus, M.A.; Thoenen, T.; Schwyn, B.

    2014-01-01

    Highlights: • We investigate the hydration of different cement mixes containing concrete admixtures. • The concentration of concrete admixtures decreases with time due to sorption on cement phases. • We observe no influence on the phase composition of cement paste and the ion composition of pore fluids. • Uptake of 63 Ni, 152 Eu and 228 Th by cement paste is not affected by the concrete admixtures. - Abstract: Cementitious materials will be used for the construction of the engineered barrier of the planned repositories for radioactive waste in Switzerland. Superplasticizers (SPs) are commonly used to improve the workability of concretes and, along with a set accelerator (Acc), to produce shotcrete. In this study the influence of a polycarboxylate- (PCE) and a polynaphthalene-sulphonate-based (PNS) SP on the hydration process, mineral composition and the sorption behaviour of metal cations has been investigated using an ordinary Portland cement (OPC), a low-alkali cement mix (LAC) consisting of CEM III-type cement and nanosilica, and a shotcrete-type cement mix (ESDRED) consisting of a CEM I-type cement and silica fume prepared in the presence of an alkali-free set accelerator. Both the PCE and PNS SP do not significantly influence the amount and quantity of hydrates formed during hydration. The concentration of both SPs decreased rapidly in the early stage of the hydration process for all cements due to sorption onto cement phases. After 28 days of hydration and longer, the concentration of the PNS SP in the pore fluids of all cements was generally lower than that of the PCE SP, indicating stronger uptake of the PNS SP. The formate present in the Acc sorbs only weakly onto the cement phases, which led to higher aqueous concentration of organics in the ESDRED cement than in OPC and LAC. Sorption experiments with 63 Ni, 152 Eu and 228 Th on a cation exchange resin indicate that, at concentrations above 0.1 g L −1 , the two SPs could reduce sorption of metal

  17. Influence of dunite mineral additive on strength of cement

    Science.gov (United States)

    Vasilyeva, A. A.; Moskvitina, L. V.; Moskvitin, S. G.; Lebedev, M. P.; Fedorova, G. D.

    2017-12-01

    The work studies the applicability of dunite rocks from Inagli massif (South Yakutia) for the production of mixed (composite) cement. The paper reviews the implementation of dunite for manufacturing materials and products. The chemical and mineral compositions of Inagli massif dunite rocks are presented, which relegate the rocks to magnesia-silicate rocks of low-quality in terms of its application as refractory feedstock due to appreciable serpentinization of dunite. The work presents the results of dunite study in terms of its applicability as an additive to Portland cement. The authors have established that dunite does not feature hydraulicity and can be used as a filling additive to Portland cement in the amount of up to 40%. It was unveiled that the mixed grinding of Portland cement and dunite sand with specific surface area of 5500 cm2/g yields the cement that complies with GOST 31108-2016 for CEM II and CEM V normal-cured cements with strength grades of 32.5 and 42.5. The work demonstrates the benefits of the studies of dunite as a filling additive for producing both Portland cement with mineral component and composite (mixed) cement.

  18. Effect of mechanical activation of fly ash added to Moroccan Portland cement

    Directory of Open Access Journals (Sweden)

    Ez-zaki H.

    2018-01-01

    This study aims to investigate the influence of grinding fly ash on the physico-chemical and mechanical properties of fly ash blended CPJ45 cement. The addition of the fly ash particles to the grinder leads respectively to the breakage of the particles and to reduce the agglomeration effect in the balls of cement grinder. Fly ash milling was found to improve particles fineness, and increase the silica and alumina content in the cement. Furthermore, milled fly ash blended cements show higher compressive strength compared to unmilled fly ash blended cements, due to improved fly ash reactivity through their mechanical activation.

  19. Cement materials for cesium and iodine confinement

    International Nuclear Information System (INIS)

    Nicolas, G.; Lequeux, N.; Boch, P.; Prene, S.

    2001-01-01

    The following topics were dealt with: radioactive waste storage, cement materials reacting with radioactive cesium and iodine, chemical barrier formation against radioactive pollution, ceramization, long term stability, XRD, PIXE analysis

  20. Effect of amorphous silica ash used as a partial replacement for cement on the compressive and flexural strengths cement mortar.

    Science.gov (United States)

    Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura

    2018-04-01

    This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar

  1. Characterization of some etalon matrices obtained by cement conditioning of the radioactive sludge

    International Nuclear Information System (INIS)

    Nicu, M.; Mihai, F.

    1998-01-01

    The aim of this work was to establish new ways of investigation of some compounds which are important for studying physico-mechanical mechanisms, nature and structure of the intermediate and final products oc curing in reactions of the technological conditioning processes of the radioactive wastes by cementation after their treatment by precipitation or sorption process. Cement conditioning is, presently, the most used technology for the low and intermediate level waste treatment. Besides many advantages it also presents some disadvantages which limit the utilization area depending, firstly, on the chemical composition of the conditioned radioactive waste. In this work, the influence of different iron precipitates on cement structure is studied and assessed by changes in phase composition and mechanical resistance. Using mechanical resistance data, X-rays diffraction spectra and Moessbauer spectroscopy for iron precipitates and cement-iron precipitate samples, we obtained an image concerning chemical reactions and modifications which appear when iron precipitate is included in cement, between major components of cement and the added one. Moessbauer spectroscopy and X-rays diffraction were proved to be very useful to establish composition and structure of iron compounds used in treatment technology by chemical precipitation. Precipitation mechanism may be elucidated only by a thoroughgoing study of intermediate compounds obtained in successive precipitation phases. Depending on precipitation procedure, initial iron cations and order of adding of reactants, it was observed that the structure of finally obtained precipitates is different. Obtained results at compression tests on cement-iron precipitate samples are similarly with those obtained for reference cement matrix. These results demonstrate that iron precipitate in the sample with precipitate/cement ratio of 1/2 does not influence the mechanical resistance of the obtained matrix The presented results are in

  2. Cytotoxicity Comparison of Harvard Zinc Phosphate Cement Versus Panavia F2 and Rely X Plus Resin Cements on Rat L929-fibroblasts.

    Science.gov (United States)

    Mahasti, Sahabi; Sattari, Mandana; Romoozi, Elham; Akbar-Zadeh Baghban, Alireza

    2011-01-01

    Resin cements, regardless of their biocompatibility, have been widely used in restorative dentistry during the recent years. These cements contain hydroxy ethyl methacrylate (HEMA) molecules which are claimed to penetrate into dentinal tubules and may affect dental pulp. Since tooth preparation for metal ceramic restorations involves a large surface of the tooth, cytotoxicity of these cements would be more important in fixed prosthodontic treatments. The purpose of this study was to compare the cytotoxicity of two resin cements (Panavia F2 and Rely X Plus) versus zinc phosphate cement (Harvard) using rat L929-fibroblasts in vitro. In this experimental study, ninety hollow glass cylinders (internal diameter 5-mm, height 2-mm) were made and divided into three groups. Each group was filled with one of three experimental cements; Harvard Zinc Phosphate cement, Panavia F2 resin cement and Rely X Plus resin cement. L929- Fibroblast were passaged and subsequently cultured in 6-well plates of 5×10(5) cells each. The culture medium was RPMI_ 1640. All samples were incubated in CO2. Using enzyme-linked immune-sorbent assay (ELISA) and (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) (MTT) assay, the cytotoxicity of the cements was investigated at 1 hour, 24 hours and one week post exposure. Statistical analyses were performed via two-way ANOVA and honestly significant difference (HSD) Tukey tests. This study revealed significant differences between the three cements at the different time intervals. Harvard cement displayed the greatest cytotoxicity at all three intervals. After 1 hour Panavia F2 showed the next greatest cytotoxicity, but after 24-hours and oneweek intervals Rely X Plus showed the next greatest cytotoxicity. The results further showed that cytotoxicity decreased significantly in the Panavia F2 group with time (pHarvard cement group failed to showed no noticeable change in cytotoxicity with time. Although this study has limitations, it provides

  3. Effectiveness of the Top-Down Nanotechnology in the Production of Ultrafine Cement (~220 nm

    Directory of Open Access Journals (Sweden)

    Byung-Wan Jo

    2014-01-01

    Full Text Available The present investigation is dealing with the communition of the cement particle to the ultrafine level (~220 nm utilizing the bead milling process, which is considered as a top-down nanotechnology. During the grinding of the cement particle, the effect of various parameters such as grinding time (1–6 h and grinding agent (methanol and ethanol on the production of the ultrafine cement has also been investigated. Performance of newly produced ultrafine cement is elucidated by the chemical composition, particle size distribution, and SEM and XRD analyses. Based on the particle size distribution of the newly produced ultrafine cement, it was assessed that the size of the cement particle decreases efficiently with increase in grinding time. Additionally, it is optimized that the bead milling process is able to produce 90% of the cement particle <350 nm and 50% of the cement particle < 220 nm, respectively, after 6.3 h milling without affecting the chemical phases. Production of the ultrafine cement utilizing this method will promote the construction industries towards the development of smart and sustainable construction materials.

  4. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  5. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  6. Studies on Cementation of Tin on Copper and Tin Stripping from Copper Substrate

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2016-06-01

    Full Text Available Cementation of tin on copper in acid chloride-thiourea solutions leads to the formation of porous layers with a thickness dependent on the immersion time. The process occurs via Sn(II-Cu(I mechanism. Chemical stripping of tin was carried out in alkaline and acid solutions in the presence of oxidizing agents. It resulted in the dissolution of metallic tin, but refractory Cu3Sn phase remained on the copper surface. Electrochemical tin stripping allows complete tin removal from the copper substrate, but porosity and complex phase composition of the tin coating do not allow monitoring the process in unambiguous way.

  7. The Mechanism of Disintegration of Cement Concrete at High Temperatures

    Directory of Open Access Journals (Sweden)

    Jocius Vytautas

    2016-10-01

    Full Text Available Concrete is a composite material composed of a binder, aggregates, water and additives. Mixing of cement with water results in a number of chemical reactions known as cement hydration. Heating of concrete results in dehydration processes of cement minerals and new hydration products, which disintegrate the microstructure of concrete. This article reviews results of research conducted with Portland and alumina cement with conventional and refractory concrete aggregates. In civic buildings such common fillers as gravel, granite, dolomite or expanded clay are usually used. It is important to point out the differences between fillers because they constitute the majority of the concrete volume.

  8. Copper Powder and Chemicals: edited proceedings of a seminar

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Various papers are presented covering the following topics: Status of Copper Chemical Industry in India, Copper Powder from Industrial Wastes, Manufacture of Copper Hydroxide and High Grade Cement Copper from Low Grade Copper Ore, Manufacture of Copper Sulphate as a By-Product, Hydrometallurgical Treatments of Copper Converter and Smelter Slage for Recovering Copper and other Non-Ferrous Metals, Recovery of Copper from Dilute Solutions, Use of Copper Compounds as Fungicides in India, Copper in Animal Husbandry, and Use of Copper Powder and Chemicals for Marine Applications. The keynote paper given at the Seminar was on Conservation of Copper for Better Use.

  9. Optimization and validation of a chemical process for uranium, mercury and cesium leaching from cemented radioactive wastes

    International Nuclear Information System (INIS)

    Reynier, N.; Riveros, P.; Lastra, R.; Laviolette, C.; Bouzoubaa, N.; Chapman, M.

    2015-01-01

    Atomic Energy of Canada Limited (AECL) is developing a treatment and long-term management strategy for a legacy cemented radioactive waste that contains uranium, mercury and fission products. Extracting the uranium would be advantageous for decreasing the waste classification and reducing the cost of long-term management. Consequently, there are safety and economic and environmental incentives for the extraction of uranium, mercury and cesium before subjecting the cemented waste to a stabilization process. The mineralogical analysis of the surrogate cemented waste (SCW) indicated that uranium forms calcium uranate, CaUO 4 , occurring as layers of several millimeters or as grains of 20 μm. Hg is found mostly as large (∼50 μm) and small grains (5-8 μm) of HgO. The chemical leachability of three key elements (U, Hg, and Cs) from a SCW was studied with several leaching materials. The results showed that the most promising approach to leach and recover U, Hg, and Cs is the direct leaching of the SCW with H 2 SO 4 in strong saline media. Operating parameters such as particle size, temperature, pulp density, leaching time, acid and salt concentrations, number of leaching/rinsing step, etc. were optimized to improve key elements solubilization. Sulfuric leaching in saline media of a SCW (U5) containing 1182 ppm of U, 1598 ppm of Hg, and 7.9 ppm of Cs in the optimized conditions allows key elements recovery of 98.5 ± 0.4%, 96.6 ± 0.1%, and 93.8 ± 1.1% of U, Hg, and Cs respectively. This solubilization process was then applied in triplicate to seven other SCW prepared with different cement, liquid ratio and at different aging time and temperature. Concentrated sulfuric acid is added to the slurry until the pH is about 2, which causes the complete degradation of cement and the formation of CaSO 4 . At this pH, the acid consumption is moderate and the formation of amorphous silica gel is avoided. Sulfuric acid is particularly useful because it produces a leachate that

  10. Cu2+, Co2+ and Cr3+ doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells.

    Science.gov (United States)

    Schamel, Martha; Bernhardt, Anne; Quade, Mandy; Würkner, Claudia; Gbureck, Uwe; Moseke, Claus; Gelinsky, Michael; Lode, Anja

    2017-04-01

    The application of biologically active metal ions to stimulate cellular reactions is a promising strategy to accelerate bone defect healing. Brushite-forming calcium phosphate cements were modified with low doses of Cu 2+ , Co 2+ and Cr 3+ . The modified cements released the metal ions in vitro in concentrations which were shown to be non-toxic for cells. The release kinetics correlated with the solubility of the respective metal phosphates: 17-45 wt.-% of Co 2+ and Cu 2+ , but calcium and phosphate ions with cell culture medium. In case of cements modified with 50mmol Cr 3+ /mol β-tricalcium phosphate (β-TCP), XRD and SEM analyses revealed a significant amount of monetite and a changed morphology of the cement matrix. Cell culture experiments with human mesenchymal stromal cells indicated that the observed cell response is not only influenced by the released metal ions but also by changed cement properties. A positive effect of modifications with 50mmol Cr 3+ or 10mmol Cu 2+ per mol β-TCP on cell behaviour was observed in indirect and direct culture. Modification with Co 2+ resulted in a clear suppression of cell proliferation and osteogenic differentiation. In conclusion, metal ion doping of the cement influences cellular activities in addition to the effect of released metal ions by changing properties of the ceramic matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions

    International Nuclear Information System (INIS)

    Kurudirek, Murat; Aygun, Murat; Erzeneoglu, Salih Zeki

    2010-01-01

    The trommel sieve waste (TSW) which forms during the boron ore production is considered to be a promising building material with its use as an admixture with Portland cement and is considered to be an alternative radiation shielding material, also. Thus, having knowledge on the chemical composition and radiation interaction properties of TSW as compared to other building materials is of importance. In the present study, chemical compositions of the materials used have been determined using a wavelength dispersive X-ray fluorescence spectrometer (WDXRFS). Also, TSW, some commonly used building materials (Portland cement, lime and pointing) and their admixtures with TSW have been investigated in terms of total mass attenuation coefficients (μ/ρ), photon interaction cross sections (σ t ), effective atomic numbers (Z eff ) and effective electron densities (N e ) by using X-rays at 22.1, 25 keV and γ-rays at 88 keV photon energies. Possible conclusions were drawn with respect to the variations in photon energy and chemical composition.

  12. Comparative study on the tensile bond strength and marginal fit of complete veneer cast metal crowns using various luting agents: An in vitro study

    Directory of Open Access Journals (Sweden)

    B Devi Parameswari

    2016-01-01

    Full Text Available Introduction: Several commercially available luting agents are used to cement the dental restorations such as intra-coronal, extra-coronal, and fixed partial dentures. Tensile bond strength (TBS and accurate marginal fit are the essential factors to determine the good clinical results in fixed prosthesis. The retentivity of the luting cements is assessed by their adhesive capacity over the tooth surface and metal surface. Generally, the adhesive ability has been evaluated with in vitro testing, with tensile bond tests. The failure of fixed prosthesis may be happened as a result of incomplete seating during cementation. Most research on cementation of crowns relates seating failure to the thickness of the cement film. Materials and Methods: The study is divided into four groups with 10 samples for each of the luting cement taken up for testing TBS and four groups with 5 samples for each luting agent chosen for assessing marginal fit. The results were tabulated and statistically analyzed. Results: In this in vitro study, the TBS of luting cements, and marginal fit in relation to luting cements were tested by using appropriate testing devices. The TBS of cement is measured using universal testing machine, and the results are tabulated. The marginal gap that exists between the margin of the cast metal crown, and the finish line is measured using travelling microscope before and after cementation. The difference between these two values gives the discrepancy that is due to the film thickness of cement used for luting the restoration. Summary and Conclusion: The TBS value of zinc phosphate cement and glass ionomer cement were found to be almost same. The chemical adhesiveness of the glass ionomer with calcium ions of enamel and dentin may be the attributed reason (ionic bonding. In this study, the polycarboxylate is the one that showed low TBS, and it may be attributed to the weakness of the cement due to reduced film thickness, though this cement has

  13. On the occurrence of metallic character in the periodic table of the chemical elements.

    Science.gov (United States)

    Hensel, Friedrich; Slocombe, Daniel R; Edwards, Peter P

    2015-03-13

    The classification of a chemical element as either 'metal' or 'non-metal' continues to form the basis of an instantly recognizable, universal representation of the periodic table (Mendeleeff D. 1905 The principles of chemistry, vol. II, p. 23; Poliakoff M. & Tang S. 2015 Phil. Trans. R. Soc. A 373: , 20140211). Here, we review major, pre-quantum-mechanical innovations (Goldhammer DA. 1913 Dispersion und Absorption des Lichtes; Herzfeld KF. 1927 Phys. Rev. 29: , 701-705) that allow an understanding of the metallic or non-metallic status of the chemical elements under both ambient and extreme conditions. A special emphasis will be placed on recent experimental advances that investigate how the electronic properties of chemical elements vary with temperature and density, and how this invariably relates to a changing status of the chemical elements. Thus, the prototypical non-metals, hydrogen and helium, becomes metallic at high densities; and the acknowledged metals, mercury, rubidium and caesium, transform into their non-metallic forms at low elemental densities. This reflects the fundamental fact that, at temperatures above the absolute zero of temperature, there is therefore no clear dividing line between metals and non-metals. Our conventional demarcation of chemical elements as metals or non-metals within the periodic table is of course governed by our experience of the nature of the elements under ambient conditions. Examination of these other situations helps us to examine the exact divisions of the chemical elements into metals and non-metals (Mendeleeff D. 1905 The principles of chemistry, vol. II, p. 23). © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    Science.gov (United States)

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  15. The long-term in vivo behavior of polymethyl methacrylate bone cement in total hip arthroplasty.

    Science.gov (United States)

    Oonishi, Hiroyuki; Akiyama, Haruhiko; Takemoto, Mitsuru; Kawai, Toshiyuki; Yamamoto, Koji; Yamamuro, Takao; Oonishi, Hironobu; Nakamura, Takashi

    2011-10-01

    The long-term success of cemented total hip arthroplasty (THA) has been well established. Improved outcomes, both radiographically and clinically, have resulted mainly from advances in stem design and improvements in operating techniques. However, there is concern about the durability of bone cement in vivo. We evaluated the physical and chemical properties of CMW1 bone cements retrieved from patients undergoing revision THA. CMW1 cements were retrieved from 14 patients who underwent acetabular revision because of aseptic loosening. The time in vivo before revision was 7-30 years. The bending properties of the retrieved bone cement were assessed using the three-point bending method. The molecular weight and chemical structure were analyzed by gel permeation chromatography and Fourier-transform infrared spectroscopy. The porosity of the bone cements was evaluated by 3-D microcomputer tomography. The bending strength decreased with increasing time in vivo and depended on the density of the bone cement, which we assume to be determined by the porosity. There was no correlation between molecular weight and time in vivo. The infrared spectra were similar in the retrieved cements and in the control CMW1 cements. Our results indicate that polymer chain scission and significant hydrolysis do not occur in CMW1 cement after implantation in vivo, even in the long term. CMW1 cement was stable through long-term implantation and functional loading.

  16. Immobilization of cesium in cement containing reactive silica and pozzolans

    International Nuclear Information System (INIS)

    McCulloch, C.E.; Angus, M.J.; Glasser, F.P.; Rahman, A.A.

    1984-01-01

    High surface area silicas, ground blast furnace slag, fly ash, and natural pozzolan markedly enhance the sorption of Cs in cement-based systems. Fly ash low in alkali and silicas are considered to be most suitable for Cs immobilization. Since these materials are chemically reactive with the cement components, the optimal level of addition must be sufficiently high, probably 20-30 wt%, to provide a permanent excess of sorbent. The sorptive mechanism is demonstrated and shown to be enhanced by the alkaline cement environment

  17. Studies on cement matrix materials used at the Radioactive Waste Treatment Plant for radwaste conditioning

    International Nuclear Information System (INIS)

    Dragolici, Felicia; Lungu, Laura; Nicu, Mihaela; Rotarescu, Gheorghe; Turcanu, Corneliu

    2003-01-01

    The research activities performed by Department of Radioactive Waste Management is focused on the treatment of LLAW products obtained by chemical precipitation and on the conditioning of these products by cementation. The individual mechanisms implied in the chemical precipitation processes are directly dependent on the precipitate properties and structure, which in turn are connected with the initial system composition and the precipitation procedure, i.e. reagent concentration, rate and orders of chemical addition, mixing rate and time and ageing conditions. In case of conditioning by cementation, the chemical nature and proportion of the sludges or concentrates affect both the hydrolysis of the initial cement components and the reactions of metastable hydration constituents, as well as the mechanical strength and chemical resistance of the hardened cemented matrix.Generally, the study of the precipitation products and their behaviour during cementation and the long-term disposal is extremely difficult because of the system complexity (phase composition and structure) and the lack of the non-destructive analytical methods. The experience accumulated by the countries who advanced nuclear programmes in military and socio-economic fields and which produced important volumes of radioactive wastes, leads us to study some of mineral additives to be used in the conditioning and disposal technology. Is well known that some mineral additives can diminish the leaching rate of the radionuclides in the disposal environment.The studies have the purpose to obtain the most propitious mixture of cement-bentonite and cement-volcanic tuff, which have the mechanical properties similar to the cement paste used for the conditioning of radioactive waste.Taking into account the characteristics of these mineral binders, namely a very good plasticity and capacity of adsorption, which lead at the decrease of porosity, the mixture is planned to be used in the future, at the Radioactive

  18. Influence of cement film thickness on the retention of implant-retained crowns.

    Science.gov (United States)

    Mehl, Christian; Harder, Sönke; Steiner, Martin; Vollrath, Oliver; Kern, Matthias

    2013-12-01

    The main goal of this study was to establish a new, high precision procedure to evaluate the influence of cement film thickness on the retention of cemented implant-retained crowns. Ninety-six tapered titanium abutments (6° taper, 4.3 mm diameter, Camlog) were shortened to 4 mm. Computer-aided design was used to design the crowns, and selective laser sintering, using a cobalt-chromium alloy, was used to produce the crowns. This method used a focused high-energy laser beam to fuse a localized region of metal powder to build up the crowns gradually. Before cementing, preset cement film thicknesses of 15, 50, 80, or 110 μm were established. Glass ionomer, polycarboxylate, or resin cements were used for cementation. After 3 days storage in demineralized water, the retention of the crowns was measured in tension using a universal testing machine. The cement film thicknesses could be achieved with a high level of precision. Interactions between the factors cement and cement film thickness could be found (p ≤ 0.001). For all cements, crown retention decreased significantly between a cement film thickness of 15 and 50 μm (p ≤ 0.001). At 15 μm cement film thickness, the resin cement was the most retentive cement, followed by the polycarboxylate and then the glass ionomer cement (p ≤ 0.05). The results suggest that cement film thickness has an influence on the retentive strength of cemented implant-retained crowns. © 2013 by the American College of Prosthodontists.

  19. Modified water-cement ratio law for compressive strength of rice ...

    African Journals Online (AJOL)

    This work examines the modification of age long water – cement ratio law of Ordinary Portland Cement (OPC) concrete to cater for concrete with Rice Husk Ash (RHA). Chemical analysis of RHA produced under controlled temperature of 600°C was carried out. A total of one hundred and fifty (150) RHA concrete cubes at ...

  20. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    Science.gov (United States)

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  1. Surface metallurgy of cemented carbide tools

    International Nuclear Information System (INIS)

    Chopra, K.L.; Kashyap, S.C.; Rao, T.V.; Rajagopalan, S.; Srivastava, P.K.

    1983-01-01

    Transition metal carbides, owing to their high melting point, hardness and wear resistance, are potential candidates for specific application in rockets, nuclear engineering equipment and cutting tools. Tungsten carbide sintered with a binder (either cobalt metal or a mixture of Co + TiC and/or TaC(NbC)) is used for cutting tools. The surface metallurgy of several commercially available cemented carbide tools was studied by Auger electron spectroscopy and X-ray photoelectron spectroscopy techniques. The tool surfaces were contaminated by adsorbed oxygen up to a depth of nearly 0.3 μm causing deterioration of the mechanical properties of the tools. Studies of fractured samples indicated that the tool surfaces were prone to oxygen adsorption. The fracture path passes through the cobalt-rich regions. The ineffectiveness of a worn cutting tool is attributed to the presence of excessive iron from the steel workpiece and carbon and oxygen in the surface layers of the tool. The use of appropriate hard coatings on cemented carbide tools is suggested. (Auth.)

  2. A critical analysis of the degree of conversion of resin-based luting cements

    Directory of Open Access Journals (Sweden)

    Jaime Dutra Noronha Filho

    2010-10-01

    Full Text Available OBJECTIVE: This study analyzed the degree of conversion (DC% of four resin-based cements (All Ceram, Enforce, Rely X ARC and Variolink II activated by two modes (chemical and dual, and evaluated the decrease of DC% in the dual mode promoted by the interposition of a 2.0-mm-thick IPS Empress 2 disc. MATERIAL AND METHODS: In the chemical activation, the resin-based cements were prepared by mixing equal amounts of base and catalyst pastes. In the dual activation, after mixing, the cements were light-activated at 650 mW/cm² for 40 s. In a third group, the cements were light-activated through a 2.0-mm-thick IPS Empress 2 disc. The DC% was evaluated in a FT-IR spectrometer equipped with an attenuated total reflectance crystal (ATR. The data were analyzed by two-way ANOVA and Tukey's HSD test. RESULTS: For all resin-based cements, the DC% was significantly higher with dual activation, followed by dual activation through IPS Empress 2, and chemical activation (p<0.05. Irrespective of the activation mode, Rely X presented the highest DC% (p<0.05. Chemically activated Variolink and All Ceram showed the worst results (p<0.05. The DC% decreased significantly when activation was performed through a 2.0-mm-thick IPS Empress 2 disc (p<0.05. CONCLUSION: The results of the present study suggest that resin-based cements could present low DC% when the materials are dually activated through 2.0 mm of reinforced ceramic materials with translucency equal to or less than that of IPS-Empress 2.

  3. Applications of radioactive methods in cement concrete testing

    International Nuclear Information System (INIS)

    Dinakaran, M.; Vijayaraghavan, S.R.

    1979-01-01

    Basic principles regarding the neutron moderation technique and the successful application of this technique for determining the moisture and cement content in hardened concrete are briefly discussed. Since fast neutrons are converted into slow thermal neutrons by elastic scattering in the presence of hydrogen nuclei, it is possible to determine the moisture content in hardened cement concrete using precalibrated relationships. Also since most of the hydrogenous matter in concrete pertains to non-fixed water and hydrated cement compounds, an analysis of slow neutron counts on a sample at different non-fixed moisture contents make the estimation of cement content possible using the mathematical relationship between cement content, degree of hydration and the equivalent moisture content. The method developed is quick, non-destructive, and repeatable at the same time giving better accuracy when compared to conventional chemical methods. Use was also made of gamma ray transmission method for determining the differential density at various depths in a cement concrete pavement making use of cores cut from the pavement. Further, development proposed for determination of density at different depths of pavement in situ is also discussed. (auth.)

  4. Solidification/Stabilization of High Nitrate and Biodenitrified Heavy Metal Sludges with a Portland Cement/Flyash System

    International Nuclear Information System (INIS)

    Canonico, J.S.

    1995-01-01

    Pond 207C at Rocky Flats Environmental Technology Site (RFETS) contains process wastewaters characterized by high levels of nitrates and other salts, heavy metal contamination, and low level alpha activity. The purpose of this research was to investigate the feasibility of treating a high-nitrate waste, contaminated with heavy metals, with a coupled dewateriug and S/S process, as well as to investigate the effects of biodenitrification pretreatment on the S/S process. Pond 207C residuals served as the target waste. A bench-scale treatability study was conducted to demonstrate an S/S process that would minimize final product volume without a significant decrease in contaminant stabilization or loss of desirable physical characteristics. The process formulation recommended as a result a previous S/S treatability study conducted on Pond 207C residuals was used as the baseline formulation for this research. Because the actual waste was unavailable due to difficulties associated with radioactive waste handling and storage, a surrogate waste, of known composition and representative of Pond 207C residuals, was used throughout this research. The contaminants of regulatory concern added to the surrogate were cadmium, chromium, nickel, and silver. Product volume reduction was achieved by dewatering the waste prior to S/S treatment. The surrogate was dewatered by evaporation at 60 to 80 C to total solids contents from 43% to 78% by weight, and treated with Portland cement and fly ash. Two cement to flyash ratios were tested, 2:1 and 1:2, by weight. Contaminant leachability testing was conducted with a 0.5 water to pozzolan (the cement/flyash mixture) ratio and both cement to flyash ratios. Each product was tested for unconfined compressive strength (UCS) and for contaminant leachability by the Toxicity Characteristics Leaching Procedure (TCLP). At the highest solids content achieved by dewatering, 78% solids by weight, the predicted final waste form volume f or Pond 207C

  5. Selenium recovery from kiln powder of cement manufacturing by chemical leaching and bioreduction.

    Science.gov (United States)

    Soda, S; Hasegawa, A; Kuroda, M; Hanada, A; Yamashita, M; Ike, M

    2015-01-01

    A novel process by using chemical leaching followed by bacterial reductive precipitation was proposed for selenium recovery from kiln powder as a byproduct of cement manufacturing. The kiln powder at a slurry concentration of 10 w/v% with 0.25 M Na2CO3 at 28°C produced wastewater containing about 30 mg-Se/L selenium. The wastewater was diluted four-fold and adjusted to pH 8.0 as preconditioning for bioreduction. A bacterial strain Pseudomonas stutzeri NT-I, capable of reducing selenate and selenite into insoluble elemental selenium, could recover about 90% selenium from the preconditioned wastewater containing selenium of 5 mg-Se/L when supplemented with lactate or glycerol. The selenium concentrations in the treated wastewater were low around the regulated effluent concentration of 0.1 mg-Se/L in Japan.

  6. The rim zone of cement based materials - barrier or fast lane for chemical degradation?

    International Nuclear Information System (INIS)

    Schwotzer, M.; Kaltenbach, J.; Heck, P.F.; Konno, K.; Gerdes, A.

    2015-01-01

    This contribution focuses exemplarily on the chemical and mineralogical changes in the rim zone of cement paste samples exposed to different chloride solutions (NaCl, KCl, MgCl 2 and CaCl 2 ), to hard tap water and to demineralized water. The determination of the Ca(OH) 2 and Mg(OH) 2 content of the solid phases was performed by means of thermogravimetry with pulverized samples (TGA/SDTA 851, Mettler-Toledo). A potential relation between temperature and the time dependant development of the material due to reactive transport processes will also be addressed. The experiments with tap water showed that the contact between the cement paste samples and hard tap water did not lead to significant changes in the composition of the solid samples or of the reaction solution. This can be attributed to a rapid formation of a protective calcium carbonate layer on the surface of the cement paste. The slight decrease of the Ca 2+ content in the solution indicates that the growth of this layer occurs within the first few hours. In contrast to the tap water exposure, the results of the experiments with the MgCl 2 solutions show features of an intense attack despite the presence of crystalline covering layers. The quick formation of a thick and dense Mg(OH) 2 layer does not provide any protection against reactive transport processes. In this experiment, the degradation rate of Ca(OH) 2 as well as the Ca 2+ release was higher than in all other experiments. In addition the rapid formation of a Mg(OH) 2 layer starting already during the first hour of the experiment did not prevent the chloride ingress compared to the other experiments with chloride solutions. The pH value of the reaction solution remains stable and relatively low which indicates a crystallisation process. In the other experiments, performed with demineralized water, alkali chloride solutions, and the CaCl 2 solution, no significant formation of potentially protective covering layers and no development of transport

  7. The long-term stability of cement - Leaching tests

    International Nuclear Information System (INIS)

    Engkvist, I.; Albinsson, Y.; Johansson Engkvist, W.

    1996-06-01

    The concrete construction in the Swedish repository for long-lived low and intermediate level waste will give a stable chemical near field environment for 10 5 years. The pH is expected to exceed 12 for the life time for most of the radionuclides in the repository in both saline and non-saline groundwaters. This is shown by static leaching experiments performed in saline and non-saline granitic groundwater conditions. Five gram portions of crushed ordinary Portland cement paste were equilibrated with 20 ml of synthetic saline or non-saline groundwater in a nitrogen atmosphere. Each week 12 ml (60%) of the water was replaced. The withdrawn water was used for chemical analyses and the results were used to monitor the degradation of the cement paste. After eighty weeks, some samples were analysed for mineral composition and compared with the original unleached paste. The results indicated no secondary ettringite or calcite formation. The results also supported the conclusion that the salinity of the contacting water is of minor importance for the long-term performance of the cement paste. 18 refs, 32 figs

  8. Electrodialytically treated MSWI APC residue as substitute for cement in mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Geiker, Mette Rica; Jensen, Pernille Erland

    2014-01-01

    Air pollution control (APC) residues from municipal solid waste incineration (MSWI) are considered hazardous waste and need pretreatment prior to possible reuse. Here, two MSWI APC residues, from which the most mobile fraction of heavy metals and salts has been removed by carbonation and/or elect......Air pollution control (APC) residues from municipal solid waste incineration (MSWI) are considered hazardous waste and need pretreatment prior to possible reuse. Here, two MSWI APC residues, from which the most mobile fraction of heavy metals and salts has been removed by carbonation and....../or electrodialytic remediation, were used in Portland cement mortar. Mortar bars with 15 % weight replacement of cement by APC residues showed compressive strengths up to 40 MPa after 28/32 days. Heavy metal and salt leaching from both crushed and monolithic mortars with APC residues was generally similar...

  9. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work carried out to investigate acoustic emission as a monitor of corrosion and degradation of wasteforms where the waste is potentially reactive metal. Electronic monitoring equipment has been designed, built and tested to allow long-term monitoring of a number of waste packages simultaneously. Acoustic monitoring experiments were made on a range of 1 litre cemented Magnox and aluminium samples cast into canisters comparing the acoustic events with hydrogen gas evolution rates and electrochemical corrosion rates. The attenuation of the acoustic signals by the cement grout under a range of conditions has been studied to determine the volume of wasteform that can be satisfactorily monitored by one transducer. The final phase of the programme monitored the acoustic events from full size (200 litre) cemented, inactive, simulated aluminium swarf wastepackages prepared at the AEA waste cementation plant at Winfrith. (Author)

  10. Encapsulation of ILW raffinate in the Dounreay cementation plant

    International Nuclear Information System (INIS)

    Sinclair, G.F.

    1998-01-01

    The Dounreay Cementation Plant has been designed and constructed to encapsulate the first cycle liquid raffinate arising from the reprocessing of irradiated Research Reactor fuel into a cementitious matrix. The acidic liquid waste is conditioned with sodium hydroxide prior to mixing with the cement powders (a 9:1 ratio of Blast Furnace Slag / Ordinary Portland Cement with 5% Lime). The complete cement mixing process is performed within the 500-liter drum, which provides the waste package primary containment. The plant has recently been commissioned and has commenced routine operation, processing stocks of existing raffinate that has been stored at Dounreay for up to 30 years. The waste loading per drum has been optimised within the constraints of the chemical composition of the raffinate, with an expected plant throughput of 2.5 m 3 /week. (author)

  11. Metal Distribution and Mobility under alkaline conditions

    International Nuclear Information System (INIS)

    Dario, Maarten

    2004-01-01

    The adsorption of an element, expressed as its distribution between liquid (aquatic) and solid phases in the bio geosphere, largely determines its mobility and transport properties. This is of fundamental importance in the assessment of the performance of e.g. geologic repositories for hazardous elements like radionuclides. Geologic repositories for low and intermediate level nuclear waste will most likely be based on concrete constructions in a suitable bedrock, leading to a local chemical environment with pH well above 12. At this pH metal adsorption is very high, and thus the mobility is hindered. Organic complexing agents, such as natural humic matter from the ground and in the groundwater, as well as components in the waste (cleaning agents, degradation products from ion exchange resins and cellulose, cement additives etc.) would affect the sorption properties of the various elements in the waste. Trace element migration from a cementitious repository through the pH- and salinity gradient created around the repository would be affected by the presence and creation of particulate matter (colloids) that may serve as carriers that enhance the mobility. The objective of this thesis was to describe and quantify the sorption of some selected elements representative of spent nuclear fuel (Eu, Am) and other heavy metals (Zn, Cd, Hg) in a clay/cement environment (pH 10-13) and in the pH-gradient outside this environment. The potential of organic complexing agents and colloids to enhance metal migration was also investigated. It was shown that many organic ligands are able to reduce trace metal sorption under these conditions. It was not possible to calculate the effect of well-defined organic ligands on the metal sorption in a cement environment by using stability constants from the literature. A simple method for comparing the effect of different complexing agents on metal sorption is, however, suggested. The stability in terms of the particle size of suspended

  12. Modelling of Pb release during Portland cement alteration

    Energy Technology Data Exchange (ETDEWEB)

    Benard, A. [INERIS Mediterrannee, F-13545 Aix En Provence 04 (France); Rose, J.; Borschneck, D.; Bottero, J.Y. [Univ Paul Cezanne, CNRS, UMR 6635, CEREGE, IFR PMSE 112, F-13545 Aix En Provence, (France); Hazemann, J.L. [CNRS, Cristallog Lab, F-38042 Grenoble 09 (France); Proux, O. [Univ Grenoble 1, CNRS, UMR, LGIT, F-38400 St Martin Dheres (France); Trotignon, L. [CEA Cadarache, DTN, SMTM, Lab Modelisat Transferts Environm, 13 - Saint Paul lez Durance (France); Nonat, A. [Univ Bourgogne, CNRS, UMR 5613, Fac Sci Mirande, Lab Rech Reactivite Solides, F-21078 Dijon (France); Chateau, L. [ADEME, F-49004 Angers (France)

    2009-07-01

    Complex cementitious matrices undergo weathering with environmental exchange and can release metallic pollutants during alteration. The molecular mechanisms responsible for metal release are difficult to identify, though this is necessary if such processes are to be controlled. The present study determines and models the molecular mechanisms of Pb release during Portland cement leaching. As Pb release is strongly related to its speciation (i.e. atomic environment and the nature of bearing phases), the first objective of the present study was to investigate the evolution of Pb retention sites together with the evolution of the cement mineralogy during leaching. Complementary and efficient investigation tools were used, namely X-ray diffraction, micro-X-ray fluorescence and X-ray absorption fine structures. The second objective was to reproduce our results with a reactive transport code (CHESS/HYTEC) in order to test the proposed speciation model of Pb. Combined results indicate that in both the unaltered core and the altered layer of the leached cement, Pb(II) would be retained through C-S-H 'nano-structure', probably linked to a Q(1) or Q(2P) silicate tetrahedra. Moreover in the altered layer, the presence of Fe atoms in the atomic environment of Pb is highly probable. Unfortunately little is known about Fe phases in cement, which makes the interpretation difficult. Can Fe-substituted hydrogranet (C(3)AH(6)) be responsible for Pb retention? Modelling results were consistent with Pb retention through C-S-H in layers and also in an additional, possibly Fe-containing, Pb-retention phase in the altered layer. (authors)

  13. Chemical and mineralogical characterization of silicon manganese iron slag as railway ballast

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ralph Werner Heringer; Barreto, Rairane Aparecida, E-mail: ralph@em.ufop.br, E-mail: rairanebarreto@hotmail.com [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Fernandes, Gilberto, E-mail: gilberto@unicerp.edu.br [Centro Universitário do Cerrado Patrocínio (UNICERP), Patrocínio, MG (Brazil); Sousa, Fabiano Carvalho, E-mail: fabiano.carvalho.sousa@vale.com [Vale, Belo Horizonte, MG (Brazil)

    2017-10-15

    In nature, metal ores such as iron, lead, aluminum and others are found in an impure state, sometimes oxidized and mixed with silicates of other metals. During casting, when the ore is exposed to high temperatures, these impurities are separated from the molten metal and can be removed. The mass formed by these compounds is slag. Slag is the co-product of the smelting of ore to purify metals. It may be considered a mixture of metal oxides, but may also contain metal sulphites and metal atoms in their elemental form. After it is reprocessed to separate the metals contained, the co-products of this process can be used in cement, rail ballast, road paving and various other purposes. The objective of this research work is the presentation of the chemical and mineralogical characterization tests of the silicon-manganese iron slag with the purpose of reusing the coproduct as rail ballast. X-ray diffraction tests, quantitative chemical analyzes, scanning electron microscopy and free lime content were prepared for these characterizations. The results of these tests showed the technical feasibility of using slag as rail ballast. (author)

  14. Chemical and mineralogical characterization of silicon manganese iron slag as railway ballast

    International Nuclear Information System (INIS)

    Oliveira, Ralph Werner Heringer; Barreto, Rairane Aparecida; Fernandes, Gilberto; Sousa, Fabiano Carvalho

    2017-01-01

    In nature, metal ores such as iron, lead, aluminum and others are found in an impure state, sometimes oxidized and mixed with silicates of other metals. During casting, when the ore is exposed to high temperatures, these impurities are separated from the molten metal and can be removed. The mass formed by these compounds is slag. Slag is the co-product of the smelting of ore to purify metals. It may be considered a mixture of metal oxides, but may also contain metal sulphites and metal atoms in their elemental form. After it is reprocessed to separate the metals contained, the co-products of this process can be used in cement, rail ballast, road paving and various other purposes. The objective of this research work is the presentation of the chemical and mineralogical characterization tests of the silicon-manganese iron slag with the purpose of reusing the coproduct as rail ballast. X-ray diffraction tests, quantitative chemical analyzes, scanning electron microscopy and free lime content were prepared for these characterizations. The results of these tests showed the technical feasibility of using slag as rail ballast. (author)

  15. Studies Involving Immobilization Of Hazardous Wastes In Cement-ilmenite Matrix

    International Nuclear Information System (INIS)

    El-Dakrory, A.M.; Sayed, M.S.; Adham, K.

    1999-01-01

    Ilmenite was added to Ordinary Portland Cement to Modify the characteristic properties of the matrix as density, compressive strength and thermal stability . Coal tar and radiocesium were solidified as hazardous waste in cement-ilmenite matrix. The physical properties as density, sitting times and porosity were studied. The mechanical properties as compressive strength values and the chemical properties as leaching were measured

  16. Processing method for cleaning water waste from cement kneader

    International Nuclear Information System (INIS)

    Soda, Kenzo; Fujita, Hisao; Nakajima, Tadashi.

    1990-01-01

    The present invention concerns a method of processing cleaning water wastes from a cement kneader in a case of processing liquid wastes containing radioactive wastes or deleterious materials such as heavy metals by means of cement solidification. Cleaning waste wastes from the kneader are sent to a cleaning water waste tank, in which gentle stirring is applied near the bottom and sludges are retained so as not to be coagulated. Sludges retained at the bottom of the cleaning water waste tank are sent after elapse of a predetermined time and then kneaded with cements. Thus, since the sludges in the cleaning water are solidified with cement, inhomogenous solidification products consisting only of cleaning sludges with low strength are not formed. The resultant solidification product is homogenous and the compression strength thereof reaches such a level as capable of satisfying marine disposal standards required for the solidification products of radioactive wastes. (I.N.)

  17. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  18. Use of radiation-induced polymers in cement slurries

    International Nuclear Information System (INIS)

    Knight, B.L.; Rhudy, J.S.; Gogarty, W.B.

    1976-01-01

    Water loss from cement slurries is reduced by incorporating within a cement slurry a polymer obtained as a product of radiation-induced polymerization of acrylamide and/or methacrylamide and acrylic acid, methacrylic acid, and/or alkali metal salts thereof. The polymerization is preferably carried out in 10-60 percent aqueous monomer solution with gamma radiation. The aqueous monomer solution preferably contains 25-99 percent acrylamide and 75-1 percent sodium acrylate. The polymer can be present in concentration of about 0.001 to about 3.0 weight percent, based on the aqueous phase of the slurry

  19. Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar

    Science.gov (United States)

    2018-01-01

    This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed. PMID:29439431

  20. Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar.

    Science.gov (United States)

    Lee, Dongkyoung; Pyo, Sukhoon

    2018-02-10

    This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed.

  1. Mineralogy and chemistry of cement paste in borehole radioactive waste repository

    International Nuclear Information System (INIS)

    Ferreira, Eduardo G.A.; Isiki, Vera L.K.; Miyamoto, Hissae; Marumo, Julio T.; Vicente, Roberto

    2009-01-01

    Results of chemical characterization of cement paste samples after irradiation and immersion in salt solutions are presented. This is part of a research on cement paste behavior aiming at investigating the durability of cementitious materials in the environment of repositories for radioactive waste. Portland cement paste is intended to be used as a backfill in a deep borehole for disposal of sealed radiation sources which concept is under development. The service life of the engineered barrier materials plays an important role in the long term safety of such facilities. Accelerated tests in laboratory are being used to evaluate the performance of cement paste under the temperature expected at some hundred meters below grade, under exposure to the radiation emitted by the sources, and under the attack of aggressive chemicals dissolved in the groundwater, during the millennia necessary for the decay of the most active and long-lived radionuclides present in the waste. ICP-OES, Ion chromatography, X-ray diffraction, SEM and TGA are some techniques being employed in this research project. (author)

  2. Low level radwaste packaging: why not cement

    International Nuclear Information System (INIS)

    Wilson, R.B.

    1978-01-01

    Over the past several years many words have been expended in a quest to define a variety of competing radioactive waste immobilization technologies. With the more recent recognition of the technical pitfalls of urea-formaldehyde (UF) a liquid chemical binder considered as optimum less than two years ago, utilities, architect-engineers and systems vendors find themselves in a technology void, awaiting the inevitable breakthrough which will identify the perfect immobilization agent. The culmination of these pressures has brought about the introduction of new immobilization technologies including: one which offers both volume reduction and immobilization in yet another new binder agent; the costly development of highly sophisticated volume reduction systems, the highly-concentrated products from which may pose as-yet unknown immobilization problems; and, the marketing of several new more expensive liquid chemical binders which are reputed to have eliminated the kinds of problems associated with urea-formaldehyde. This paper addresses these issues by coming full circle and arriving back at the initial approach employed for low level radwaste immobilization, the use of cement. Based on an evaluation of the three principal competing immobilization approaches, liquid chemical, bitumen and cement, the merits and drawbacks of each is examined. As will be described, an objective assessment of these competing technologies has resulted in a somewhat surprising conclusion that, while none of the approaches is without disadvantages, cement can be shown to offer the most reliable, versatile long-term solution to today's needs

  3. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    Science.gov (United States)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  4. Normal and refractory concretes for LMFBR applications. Volume 1. Review of literature on high-temperature behavior of portland cement and refractory concretes. Final report

    International Nuclear Information System (INIS)

    Bazant, Z.P.; Chern, J.C.; Abrams, M.S.; Gillen, M.P.

    1982-06-01

    The extensive literature on the properties and behavior at elevated temperature of portland cement concrete and various refractory concretes was reviewed to collect in concise form the physical and chemical properties of castable refractory concretes and of conventional portland cement concretes at elevated temperature. This survey, together with an extensive bibliography of source documents, is presented in Volume 1. A comparison was made of these properties, the relative advantages of the various concretes was evaluated for possible liquid metal fast breeder reactor applications, and a selection was made of several materials of interest for such applications. Volume 2 concludes with a summary of additional knowledge needed to support such uses of these materials together with recommendations on research to provide that knowledge

  5. Immobilization and leaching mechanisms of radwaste in cement-based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Crawford, R.W.; McCullough, C.E.; Angus, M.J.

    1982-03-01

    The components of anhydrous cement clinkers and their adsorptive properties for Cs has been determined. The efficiency of different analytical methods are compared, and it is shown that only radiochemical methods afford a true picture of the quantitative extent of adsorption. Hydrothermal studies have been undertaken to assess the interactions between the Ca(OH) 2 component of cement and radioactive waste constituents. In most cases, chemical reaction occurs due to the strongly alkaline nature of the medium: the potential of hydrothermal methods for predicting the behaviour and performance of cement-radwaste systems is assessed and the relevant solution chemistry described. Cement-zeolite interactions have been studied: these interactions are revealed by a variety of physical techniques, and begin to afford some insight into the reaction mechanism. (author)

  6. Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    J. V. Rau

    2016-04-01

    Full Text Available Calcium phosphate bone cements (CPCs with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag through the preparation of solid dispersed active powder phase. Real-time monitoring of structural transformations and kinetics of several CPCs-Ag formulations (Ag = 0 wt %, 0.6 wt % and 1.0 wt % was performed by the Energy Dispersive X-ray Diffraction technique. The partial conversion of β-tricalcium phosphate (TCP phase into the dicalcium phosphate dihydrate (DCPD took place in all the investigated cement systems. In the pristine cement powders, Ag in its metallic form was found, whereas for CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, CaAg(PO33 was detected and Ag (met. was no longer present. The CPC-Ag 0 wt % cement exhibited a compressive strength of 6.5 ± 1.0 MPa, whereas for the doped cements (CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % the reduced values of the compressive strength 4.0 ± 1.0 and 1.5 ± 1.0 MPa, respectively, were detected. Silver-ion release from CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, measured by the Atomic Emission Spectroscopy, corresponds to the average values of 25 µg/L and 43 µg/L, respectively, rising a plateau after 15 days. The results of the antibacterial test proved the inhibitory effect towards pathogenic Escherichia coli for both CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, better performances being observed for the cement with a higher Ag-content.

  7. CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-08-01

    Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical

  8. Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement.

    Science.gov (United States)

    Yamamoto, S; Han, L; Noiri, Y; Okiji, T

    2017-12-01

    To evaluate the Ca 2+ -releasing, alkalizing and apatite-like surface precipitate-forming abilities of a prototype tricalcium silicate cement, which was mainly composed of synthetically prepared tricalcium silicate and zirconium oxide radiopacifier. The prototype tricalcium silicate cement, white ProRoot MTA (WMTA) and TheraCal LC (a light-cured resin-modified calcium silicate-filled material) were examined. The chemical compositions were analysed with a wavelength-dispersive X-ray spectroscopy electron probe microanalyser with an image observation function (SEM-EPMA). The pH and Ca 2+ concentrations of water in which the set materials had been immersed were measured, and the latter was assessed with the EDTA titration method. The surface precipitates formed on the materials immersed in phosphate-buffered saline (PBS) were analysed with SEM-EPMA and X-ray diffraction (XRD). Kruskal-Wallis tests followed by Mann-Whitney U-test with Bonferroni correction were used for statistical analysis (α = 0.05). The prototype cement contained Ca, Si and Zr as major elemental constituents, whereas it did not contain some metal elements that were detected in the other materials. The Ca 2+ concentrations and pH of the immersion water samples exhibited the following order: WMTA = prototype cement > TheraCal LC (P prototype cement and WMTA. The prototype tricalcium silicate cement exhibited similar Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities to WMTA. The Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities of TheraCal LC were lower than those of the other materials. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Kinetics of strength gain of biocidal cements

    Directory of Open Access Journals (Sweden)

    Rodin Aleksandr Ivanovich

    Full Text Available Biocorrosion becomes the determinative durability factor of buildings and constructions. Damages of construction materials caused by bacteria, filamentous fungi, actinomycetes constitute a serious danger to the constructions of a building or a structure and to the health of people. Biodeteriorations are typical both in old and new constructions. A great quantity of destruction factors of industrial and residential buildings under the influence of microorganisms was established in practice. Providing products and constructions based on concretes fungicidal and bactericidal properties is an important direction of modern construction material science. The most efficient way to solve this task is creation of biocidal cements. The article presents the results of experimental studies of kinetic dependences of strength gain by biocidal cements by physico-mechanical and physico-chemical analysis methods. The identical velocity character of initial hydration of the developed compositions of biocidal cements is set, as well as a more calm behavior of hardening processes at later terms. It has been established that the compositions of biocidal cements modified by sodium sulfate and sodium fluoride possess the greatest strength.

  10. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  11. Durability of cement-based materials: modeling of the influence of physical and chemical equilibria on the microstructure and the residual mechanical properties; Durabilite des materiaux cimentaires: modelisation de l'influence des equilibres physico-chimiques sur la microstructure et les proprietes mecaniques residuelles

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E

    2004-09-15

    A large part of mechanical and durability characteristics of cement-based materials comes from the performances of the hydrated cement, cohesive matrix surrounding the granular skeleton. Experimental studies, in situ or in laboratory, associated to models, have notably enhanced knowledge on the cement material and led to adapted formulations to specific applications or particularly aggressive environments. Nevertheless, these models, developed for precise cases, do not permit to specifically conclude for other experimental conclusions. To extend its applicability domain, we propose a new evolutive approach, based on reactive transport expressed at the microstructure scale of the cement. In a general point of view, the evolution of the solid compounds of the cement matrix, by dissolutions or precipitations, during chemical aggressions can be related to the pore solution evolution, and this one relied to the ionic exchanges with the external environment. By the utilization of a geochemical code associated to a thermodynamical database and coupled to a 3D transport model, this approach authorizes the study of all aggressive solution. The approach has been validated by the comparison of experimental observations to simulated degradations for three different environments (pure water, mineralized water, seawater) and on three different materials (CEM I Portland cement with 0.25, 0.4 and 0.5 water-to cement ratio). The microstructural approach permits also to have access to mechanical properties evolutions. During chemical aggressions, the cement matrix evolution is traduced in a microstructure evolution. This one is represented from 3D images similarly to the models developed at NIST (National Institute of Standards and Technology). A new finite-element model, validated on previous tests or models, evaluates the stiffness of the cement paste, using as a mesh these microstructures. Our approach identifies and quantifies the major influence of porosity and its spatial

  12. Possibilities of special cements in ceramic applications

    International Nuclear Information System (INIS)

    Capmas, A.; Bier, T.A.

    1993-01-01

    About 25 years ago, the only way to have confinement material for high temperature applications was to prepare a ceramic by sintering or fusion at high temperature. A new technology came, with the production of Low Cement Castables. This new product was obtained by a careful choice of the granulometry of the aggregates, an optimization of the defloculation of fine particles, including the cement (Calcium Aluminate Cement) and the addition of silica fume. Silica fume brought two improvements: a) a fluidifying effect, due partly to the low sensitivity of viscosity to pH, and partly to the geometric effect of the nicely spherical particle, b) a chemical effect, brought by the reaction of silica and Calcium Aluminate Cement to give a coherent zeolithic structure, through which water could escape during the first firing. From a ceramist point of view, it is interesting to understand how this components, nearly colloidal system mixed in water can be heated up to ceramization without any noticeable change in mechanical characteristics and shrinkage. From a more practical point of view, it is also interesting to realize that some characteristics, usually attributed only to ceramics, also apply with low cement castables technology: high compressive strength, flexural strength, corrosion resistance, abrasion resistance, impact resistance. (orig.)

  13. Radon exhalation study from cement, cement slabs and concrete slabs with variation in fly ash

    International Nuclear Information System (INIS)

    Sharma, Nisha; Singh, Jaspal

    2012-01-01

    Fly ash is a waste product from coal-fired power plants. Fly ash has become a subject of world-wide interest in recent years because of its diverse uses, e.g. in the manufacture of concrete for building purposes, for the filling of underground cavities, or as a component of building material. The fly ash may contain enhanced levels of the natural radionuclides in the uranium and thorium series and by using the fly ash in building materials, the radiation levels in houses may thus be technologically enhanced. Because of its relatively high radionuclide contents (including 226 Ra), fly ash may, however, present a potential hazard to the population through its radon emanation, which would be highly undesirable. Since fly ash is frequently used as a building material, the idea of the experiment was to mix fly ash in different proportions in the cement in the powder form, cemented slabs and concrete slabs to study the combined behaviors. Alpha sensitive LR-115 type II plastic track detector, commonly known as Solid State Nuclear Track Detectors (SSNTDs), were used to measure the radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The chemical etching in NaOH at 60°C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon concentrations were determined. In case of cement in the powder form and in cemented slab, starting from the pure cement, fly ash was added up to 70% by weight. In this case the radon exhalation rate has increased by addition of fly ash in the cement and in case of concrete slabs by the addition of fly ash in the cement the radon exhalation increases up to 60% and then decreases. Therefore, on the basis of our investigations we concluded that in general radon exhalation rate increases with the addition of fly ash. (author)

  14. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  15. Physical and chemical characterization of pastes of bone cements with ZrO{sub 2}; Caracterizacion fisica y quimica de pastas de cementos oseos con ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Quinto H, A. [Instituto Tecnologico de Zacatepec, A.P. 45, 62900 Zacatepec, Morelos (Mexico); Pina B, M.C. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, 04510 Mexico D.F. (Mexico)

    2003-07-01

    Setting times and temperature of sixteen calcium phosphate cements added with ZrO{sub 2} were evaluated. Their behaviors were analysed to be used like injectable formulations in surgery of bone. Two cements of calcium phosphates enriched with ZrO{sub 2} with the best characteristics in setting times and temperature, were mechanically tested after 1 and 7 days of prepared. Density was determined using a pycnometer, chemical composition was determined by X-ray diffraction and the molecular structure was determined by infrared spectroscopy. (Author)

  16. Effects of lithium nitrate admixture on early-age cement hydration

    International Nuclear Information System (INIS)

    Millard, M.J.; Kurtis, K.E.

    2008-01-01

    Although the benefits of lithium admixtures for mitigation of alkali-silica reaction (ASR) have been well documented, the potential ancillary effects of lithium compounds on cement and concrete remain largely uncharacterized. To examine the effects of the most common lithium admixture - lithium nitrate - on early-age behavior, the admixture was introduced at dosages of 0% to 400% of the recommended dosage to six cements of varying composition and to a cement-fly ash blend. Behavior was examined by isothermal calorimetry and measurements of chemical shrinkage, autogenous shrinkage, and setting time. Results indicate that lithium nitrate accelerates the early hydration of most cements but may retard hydration after 24 h. In the lowest alkali cement tested, set times were shortened in the presence of lithium nitrate by 15-22%. Higher dosages appeared to increase autogenous shrinkage after 40 days. The replacement of cement by Class F fly ash at 20% by weight appeared to diminish the early acceleration effects, but later hydration retardation and autogenous shrinkage were still observed

  17. Surface Modification of α-Fe Metal Particles by Chemical Surface Coating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The structure of α-Fe metal magnetic recording particles coated with silane coupling agents have been studied by TEM, FT-IR, EXAFS, Mossbauer. The results show that a close, uniform, firm and ultra thin layer, which is beneficial to the magnetic and chemical stability, has been formed by the cross-linked chemical bond Si-O-Si. And the organic molecule has chemically bonded to the particle surface, which has greatly affected the surface Fe atom electronic structure. Furthermore, the covalent bond between metal particle surface and organic molecule has obvious effect on the near edge structure of the surface Fe atoms.

  18. An alternative approach to the management of reactive metals: tolerant cementitious systems

    International Nuclear Information System (INIS)

    Swift, P.; Cox, J.; Wise, M.; McKinney, J.; Rhodes, C.

    2015-01-01

    In recent years research has focused on preventing or minimising corrosion of reactive metals to ensure long-term waste package integrity. An alternative approach to the encapsulation of reactive metals is being explored. The approach will identify a cementitious-based encapsulating material that will allow corrosion of reactive metals to occur in a controlled and predictable manner, rather than seeking to limit or prevent the corrosion, whilst retaining waste package integrity. A low strength grout will be developed that will be 'tolerant' to the expansive forces generated by the corrosion products of reactive metals. Novel cementitious systems (e.g. foamed cements, rubber composite cements, cenosphere composite cements, lime mortars, bentonite cements etc.) that may be tolerant to potentially expansive waste products, such as reactive metals will be considered and assessed in a series of small-scale preliminary trials (compressive strength, porosity, permeability, pore solution pH, etc.)

  19. Advanced technologies of production of cemented carbides and composite materials based on them

    International Nuclear Information System (INIS)

    Bondarenko, V.; Pavlotskaya, E.; Martynova, L.; Epik, I.

    2001-01-01

    The paper presents new technological processes of production of W, WC and (Ti, W)C powders, cemented carbides having a controlled carbon content, high-strength nonmagnetic nickel-bonded cemented carbides, cemented carbide-based composites having a wear-resistant antifriction working layer as well as processes of regeneration of cemented carbide waste. It is shown that these technological processes permit radical changes in the production of carbide powders and products of VK, TK, VN and KKhN cemented carbides. The processes of cemented carbide production become ecologically acceptable and free of carbon black, the use of cumbersome mixers is excluded, the power expenditure is reduced and the efficiency of labor increases. It becomes possible to control precisely the carbon content within a two-phase region -carbide-metal. A high wear resistance of parts of friction couples which are lubricated with water, benzine, kerosene, diesel fuel and other low-viscosity liquids, is ensured with increased strength and shock resistance. (author)

  20. Assessment of heavy metal removal technologies for biowaste by physico-chemical fractionation

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    2003-01-01

    In the Netherlands, the heavy metal content of biowaste-compost frequently exceeds the legal standards for heavy metals. In order to assess heavy metal removal technologies, a physico-chemical fractionation scheme was developed to gain insight into the distribution of heavy metals (Cd, Cu, Pb and

  1. Hydration kinetics of cements by Time-Domain Nuclear Magnetic Resonance: Application to Portland-cement-derived endodontic pastes

    International Nuclear Information System (INIS)

    Bortolotti, Villiam; Fantazzini, Paola; Mongiorgi, Romano; Sauro, Salvatore; Zanna, Silvano

    2012-01-01

    Time-Domain Nuclear Magnetic Resonance (TD-NMR) of 1 H nuclei is used to monitor the maturation up to 30 days of three different endodontic cement pastes. The “Solid–liquid” separation of the NMR signals and quasi-continuous distributions of relaxation times allow one to follow the formation of chemical compounds and the build-up of the nano- and subnano-structured C–S–H gel. 1 H populations, distinguished by their different mobilities, can be identified and assigned to water confined within the pores of the C–S–H gel, to crystallization water and Portlandite, and to hydroxyl groups. Changes of the TD-NMR parameters during hydration are in agreement with the expected effects of the different additives, which, as it is known, can substantially modify the rate of reactions and the properties of cementitious pastes. Endodontic cements are suitable systems to check the ability of this non-destructive technique to give insight into the complex hydration process of real cement pastes.

  2. Use of waste brick as a partial replacement of cement in mortar.

    Science.gov (United States)

    Naceri, Abdelghani; Hamina, Makhloufi Chikouche

    2009-08-01

    The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.

  3. Use of waste brick as a partial replacement of cement in mortar

    International Nuclear Information System (INIS)

    Naceri, Abdelghani; Hamina, Makhloufi Chikouche

    2009-01-01

    The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.

  4. Evaluation of the physical properties of an endodontic Portland cement incorporating alternative radiopacifiers used as root-end filling material.

    Science.gov (United States)

    Camilleri, J

    2010-03-01

    To investigate the physical and chemical properties of Portland cement (PC) loaded with alternative radiopacifying materials for use as root-end filling materials in a mineral trioxide aggregate (MTA)-like system. Portland cement loaded with barium sulphate, gold and silver/tin alloy was mixed with water, and the physical and chemical properties of the hydrated cements were evaluated. MTA and intermediate restorative material (IRM) were used as controls. The radiopacity was compared to the equivalent thickness of aluminium, and the setting time of the cements was assessed using an indentation technique. The compressive strength and the stress-strain relationship were determined at 28 days. The stress-strain relationship was determined by monitoring the strain generated when the cement was subjected to compressive load. In addition, the pH was determined in water and simulated body fluid for a period of 28 days. The radiopacity of the cements using alternative radiopacifiers was comparable to MTA (P > 0.05). IRM demonstrated a higher radiopacity than all the materials tested (P cements with the exception of IRM exhibited an alkaline pH and had an extended setting time when compared to IRM. MTA had a longer setting time than the PC (P cement (P = 0.159). The addition of a radiopacifier retarded the setting time (P cements had comparable strength to PC (P > 0.05). IRM was the weakest cement tested (P cement loaded with gold radiopacifier had comparable strength to MTA (P = 1). The stress-strain relationship was linear for all the cements with IRM generating more strain on loading. Within the parameters set in this study, bismuth oxide in MTA can be replaced by gold or silver/tin alloy. The physical, mechanical and chemical properties of the cement replaced with alternative radiopacifiers were similar and comparable to ProRoot MTA.

  5. Fracture prevention by prophylactic femoroplasty of the proximal femur--metallic compared with cemented augmentation.

    Science.gov (United States)

    Springorum, Hans-Robert; Gebauer, Matthias; Mehrl, Alexander; Stark, Olaf; Craiovan, Benjamin; Püschel, Klaus; Amling, Michael; Grifka, Joachim; Beckmann, Johannes

    2014-07-01

    To compare 2 different femoral neck augmentation techniques at improving the mechanical strength of the femoral neck. Twenty pairs of human cadaveric femora were randomly divided into 2 groups. In 1 group, the femora were augmented with a steel spiral; the other group with the cemented technique. The untreated contralateral side served as an intraindividual control. Fracture strength was evaluated using an established biomechanical testing scenario mimicking a fall on the greater trochanter (Hayes fall). The peak load to failure was significantly higher in the steel spiral group (P = 0.0024) and in the cemented group (P = 0.001) compared with the intraindividual controls. The peak load to failure showed a median of 3167 N (1825-5230 N) in the spiral group and 2485 N (1066-4395 N) in the spiral control group. The peak load to failure in the cemented group was 3698 N (SD ± 1249 N) compared with 2763 N (SD ± 1335 N) in the cement control group. Furthermore, fracture displacement was clearly reduced in the steel spiral group. Femoral augmentations using steel spirals or cement-based femoroplasty are technically feasible procedures. Our results demonstrate that a prophylactic reinforced proximal femur has higher strength when compared with the untreated contralateral limb. Prophylactic augmentation has potential to become an auxiliary treatment option to protect the osteoporotic proximal femur against fracture.

  6. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    International Nuclear Information System (INIS)

    Bayat, Belgin; Sari, Bulent

    2010-01-01

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric acid

  7. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Belgin, E-mail: bbayat@cu.edu.tr [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey); Sari, Bulent [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey)

    2010-02-15

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric

  8. Biosensor and chemical sensor probes for calcium and other metal ions

    Science.gov (United States)

    Vo-Dinh, Tuan; Viallet, Pierre

    1996-01-01

    The present invention relates to chemical sensor and biosensor probes for measuring low concentration of metals and metal ions in complex samples such as biological fluids, living cells, and environmental samples. More particularly the present invention relates to a gel-based Indo-1 and Fura-2 chemical sensor probes for the measurement of low concentrations of calcium, cadmium, magnesium and the like. Also disclosed is a detector device using the sensors of the present invention.

  9. Influence of chloride admixtures on cement matrix durability

    International Nuclear Information System (INIS)

    Sheikh, I.A.; Zamorani, E.; Serrini, G.

    1989-01-01

    The influence of various inorganic salts, as chloride admixtures to Portland cement, on the mechanical properties and the durability of the matrix has been studied. The salts used in this study are chromium, nickel and cadmium chlorides. Improved compressive strength values are obtained which have been correlated to the stable metal hydroxide formation in high pH environment. Under static water conditions at 50 0 C, hydrolyzed chloride ions exhibit adverse effects on the matrix durability through rapid release of calcium as calcium chloride in the initial period of leaching. On the contrary, enhanced matrix durability is obtained on long term leaching in the case of cement containing chromium chloride

  10. Alpha radioactivity in Indian cement samples

    International Nuclear Information System (INIS)

    Nain, M.; Chauhan, R. P.; Chakarvarti, S. K.

    2006-01-01

    The essential constituents of radioactive and each of cements like lime, silica and alumina are derived from earth's crust in which radioactive elements like uranium, thorium etc are also present in varying amounts almost everywhere. These two elements are considered as the parent elements of uranium and thorium radioactive decay series in which radon and thoron are produced respectively as decay products. In the present study the samples of ordinary Portland cement , Portland pozzolana cement and some other cementious finishing materials like white cement, Plaster of Paris , cement putty etc were collected and analysed for radium and radon concentrations along with radon exhalation rates. Materials and Methods: Alpha sensitive LR-115 Type II plastic track detectors commonly known as S olid State Nuclear Track Detectors w ere used to measure the radium and radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The Chemical etching in NaOH at 60 C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon and radium concentrations along with exhalation rate of radon, were determined using required formulae. Results: The radon and radium concentration in various brands of cements found to vary from 333±9.9 to 506±13.3 Bq m-3 and from 3.7±0.1 to 5.6±0.2 Bq k g-1 while in various cementious finishing materials used in the construction, these were found to vary from 378±19.7 to 550±9.8 Bq m-3 and from 4.2±0.2 to 6.1±0.1 Bq Kg-1, respectively. Based on the data the mass and surface exhalation rates were also calculated Conclusion: The measurements indicate that there is marginal variation of the concentration of radium and radon in various brands of cements in India with lower levels in the cement samples having red oxide and higher levels in fly ash based cement

  11. Solidification of low-level radioactive wastes in masonry cement

    International Nuclear Information System (INIS)

    Zhou, H.; Colombo, P.

    1987-03-01

    Portland cements are widely used as solidification agents for low-level radioactive wastes. However, it is known that boric acid wastes, as generated at pressurized water reactors (PWR's) are difficult to solidify using ordinary portland cements. Waste containing as little as 5 wt % boric acid inhibits the curing of the cement. For this purpose, the suitability of masonry cement was investigated. Masonry cement, in the US consists of 50 wt % slaked lime (CaOH 2 ) and 50 wt % of portland type I cement. Addition of boric acid in molar concentrations equal to or less than the molar concentration of the alkali in the cement eliminates any inhibiting effects. Accordingly, 15 wt % boric acid can be satisfactorily incorporated into masonry cement. The suitability of masonry cement for the solidification of sodium sulfate wastes produced at boiling water reactors (BWR's) was also investigated. It was observed that although sodium sulfate - masonry cement waste forms containing as much as 40 wt % Na 2 SO 4 can be prepared, waste forms with more than 7 wt % sodium sulfate undergo catastrophic failure when exposed to an aqueous environment. It was determined by x-ray diffraction that in the presence of water, the sulfate reacts with hydrated calcium aluminate to form calcium aluminum sulfate hydrate (ettringite). This reaction involves a volume increase resulting in failure of the waste form. Formulation data were identified to maximize volumetric efficiency for the solidification of boric acid and sodium sulfate wastes. Measurement of some of the waste form properties relevant to evaluating the potential for the release of radionuclides to the environment included leachability, compression strengths and chemical interactions between the waste components and masonry cement. 15 refs., 19 figs., 9 tabs

  12. Radiobiological waste treatment-ashing treatment and immobilization with cement

    Energy Technology Data Exchange (ETDEWEB)

    Shengtao, Feng; Li, Gong; Li, Cheng; Benli, Wang; Lihong, Wang [China Inst. for Radiation Protection, Taiyuan, Shanxi (China)

    1997-02-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 {+-} 5 wt% cement, 29 {+-} 2 wt% water, and 36 {+-} 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH{sub 4A} flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH{sub 4A} flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH{sub 4A} and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and {<=} 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs.

  13. Radiobiological waste treatment-ashing treatment and immobilization with cement

    International Nuclear Information System (INIS)

    Feng Shengtao; Gong Li; Cheng Li; Wang Benli; Wang Lihong

    1997-01-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 ± 5 wt% cement, 29 ± 2 wt% water, and 36 ± 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH 4A flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH 4A flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH 4A and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and ≤ 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs

  14. The Optimization of Calcareous Fly Ash-Added Cement Containing Grinding Aids and Strength-Improving Additives

    Directory of Open Access Journals (Sweden)

    Gökhan Kaplan

    2018-01-01

    Full Text Available This is an experimental study which explores the physical, mechanical, and economic factors involved in the production of type CEM II A-B/W cement. In this context, 4 cement additives were used in two different dosages (200 and 800 g/t. Class C fly ash was used for composite cement production at ratios of 5%, 20%, and 35%. It was shown that Blaine fineness increases with the increasing fly ash content. The use of fly ash at ratios of 5% and 20% was not found to have any unfavorable effects on the compressive strength at the early days. It is found that the use of additive for improving the early-age strength is preferable when fly ash is used. It is possible to produce Class 52.5 N cement using additives to improve early strength and 20% fly ash. Loss in strength was observed in cement mortars produced using glycol-based grinding aid. Increasing the dosage of chemical additive also led to loss in strength due to nonhomogeneous distribution of hydration products. As a result, grinding fly ash with clinker and the use of cement chemicals contribute to the cement sector in terms of sustainability. It is possible to produce cements with improved mechanical properties especially with the use of 20% fly ash.

  15. The Effect of Various Finish Line Configurations on the Marginal Seal and Occlusal Discrepancy of Cast Full Crowns After Cementation - An In-vitro Study.

    Science.gov (United States)

    Nemane, Vaishali; Akulwar, Ravikumar Suryakanth; Meshram, Suresh

    2015-08-01

    The marginal fit of crowns is of clinical importance. It is found that marginal and occlusal discrepancies are commonly increased following cementation. The resistance of cementing materials is a factor that prevents cast restorations from being correctly seated. Different finish lines behave differently in facilitating the escape of the cement. When the escape path of the cement decreases, the crown fails to seat further. This study was planned with an aim to evaluate the effect of various finish lines on the marginal seal and occlusal seat of full crown preparations. Six stainless steel metal dies were machined to simulate molar crown preparations. The diameter was 10 mm and height was 6mm. The occlusal surface was kept flat and a small circular dimple was machined for reorientation of the wax pattern and metal copings, margins of various designs were machined accurately. The margins prepared were Group A- 90(0)C shoulder, Group B- Rounded shoulder, Group C- 45 degree sloped shoulder, Group D- Chamfer, Group E- Long chamfer, Group F- Feather edge. Full cast metal crowns of base metal alloy were fabricated over the metal dies. Zinc phosphate luting cement was used for the cementation. After twenty four hours, the cemented crown and die assembly were embedded in clear acrylic resin so as to hold the assembly together while sectioning. Twenty four hours later, all the samples were sectioned sagitally. The sectioned halves were focused under a stereomicroscope and the cement spaces were measured to the nearest micron. The cement thickness was measured at two points on the occlusal surface and one at each margin. Significant differences were observed in the occlusal seat and marginal seal of all the finish line configurations. The rounded shoulder had the best occlusal seat, followed by 90(0)C shoulder. The occlusal seat and marginal seal afforded by the shoulder finish lines were similar whereas there was a vast difference in the seating and sealing of long chamfer

  16. Chemical compatibility of structural materials in alkali metals

    International Nuclear Information System (INIS)

    Natesan, K.; Rink, D.L.; Haglund, R.

    1995-01-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments

  17. On chemical activity of heavy metal oxides

    International Nuclear Information System (INIS)

    Mechev, V.V.

    1994-01-01

    Interaction of solid oxides of heavy nonferrous metals with sulfur and carbon is investigated. The results are discussed. Direct dependence of chemical activity of oxides on disordering of their crystal lattice at heating is established. Beginning of interaction in the systems studied is accompanied by change of oxide conductivity type

  18. Study of Zn-Pb ore tailings and their potential in cement technology

    Science.gov (United States)

    Nouairi, J.; Hajjaji, W.; Costa, C. S.; Senff, L.; Patinha, C.; Ferreira da Silva, E.; Labrincha, J. A.; Rocha, F.; Medhioub, M.

    2018-03-01

    This paper describes the synthesis of sulfobelite clinkers incorporating mining rejects. The targeted Zn-Pb tailing wastes generated in the diapiric zone (NW Tunisia) were tested in clinker/cement compositions to ensure the inertization of existing hazardous heavy metals. Mineralogical composition of the two selected samples revealed calcite, dolomite, quartz, kaolinite, galena, pyrite and gypsum as crystalline phases. Vertical distributions of dominant heavy metals (Pb, Zn and Cu) in soil profiles show enrichment in the surface layers and decrease towards the depth. In sintered clinkers powders, the presence of the targeted crystalline phases (trialuminate sulphate (C4A3Š), belite (C2S), and ferrite (C4AF)) are in the predicted desirable amounts. Heat flow generated during the hydration of different cement pastes showed a slower reaction for clinkers with higher amounts of C4A3Š or constituted by coarser particles. After 28 days curing, the best mechanical resistance (24.34 MPa under compression) was obtained for the clinker calcined at 1350 °C and showing a suitable particle size distribution. Concerning heavy metals, immobilisation of 75-85% of Pb, Zn and Cu was assessed in the mortars formulated with the produced clinker/cement, posing no hazardous risks to the environment.

  19. Influence of chemical bonding of chlorides with aluminates in cement hidratation process on corrosion steel bars in concrete

    Directory of Open Access Journals (Sweden)

    Bikić Farzet H.

    2010-01-01

    Full Text Available The presence of chlorides in concrete is a permanent subject of research because they cause corrosion of steel bars. Chlorides added to the concrete during preparation, as accelerators of the bonding of cement minerals process, enter into reaction with aluminates, creating a phase known as chloroaluminate hydrates. In everyday conditions the product of chemical bonding between chlorides and aluminates is usually monochloridealuminate C3A·CaCl2·Hx, better known as Friedel's salt. In this paper, the influence of chemical bonding of chlorides with aluminates during the process of cement hydration on corrosion of steel bars in concrete was investigated. The process of chlorides bonding with aluminates yielding monochloride aluminate is monitored by XRD analyses. It was found that the amount of chlorides bonding with aluminates increases with an increase of temperature, and as a result, reduces the amount of 'free' chlorides in concrete. Potentiodynamic measurements have shown that increase in temperature of the heat treatment of working electrodes by chlorides leads to a reduction of steel bars corrosion as a result of either the increase of the monochloride-aluminate content or the decrease of free chlorides amount. Chlorides bound in chloroaluminate hydrates do not cause activation of steel bars corrosion in concrete. It was also proven that the increase of free chlorides concentration in the concrete leads to intensification of steel bars corrosion. This additionally approves that free chlorides are only the activators of process of steel bars corrosion in the concrete.

  20. E-modulus evolution and its relation to solids formation of pastes from commercial cements

    International Nuclear Information System (INIS)

    Maia, Lino; Azenha, Miguel; Geiker, Mette; Figueiras, Joaquim

    2012-01-01

    Models for early age E-modulus evolution of cement pastes are available in the literature, but their validation is limited. This paper provides correlated measurements of early age evolution of E-modulus and hydration of pastes from five commercial cements differing in limestone content. A recently developed methodology allowed continuous monitoring of E-modulus from the time of casting. The methodology is a variant of classic resonant frequency methods, which are based on determination of the first resonant frequency of a composite beam containing the material. The hydration kinetics — and thus the rate of formation of solids — was determined using chemical shrinkage measurements. For the cements studied similar relationships between E-modulus and chemical shrinkage were observed for comparable water-to-binder ratio. For commercial cements it is suggested to model the E-modulus evolution based on the amount of binder reacted, instead of the degree of hydration.

  1. FY 1974 Report on results of Sunshine Project. Research and development of cement serviceable under geothermal conditions; 1974 nendo chinetsu kankyoka de shiyo kanona cement kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-30

    Researches are conducted for the (research and development of cement serviceable under geothermal conditions). The research items include (1) surveys on test apparatuses, (2) basic surveys on cement, additives and cement slurry, (3) R and D of cement, and (4) researches on cement additives and slurry. For the item (1), bright prospects are obtained that US's Chandler can supply a thickening time tester serviceable at up to 750 degrees F and 40,000 psi, and a cement curing device serviceable at up to 750 degrees F and 5,000 psi. For the item (2), the surveys are conducted on the existing techniques for curing reactions and chemical resistance of cement at elevated temperature and pressure. For the item (3), the researches are conducted to develop cement resistant to heat and sulfates for geothermal development purposes, where portland cement and mixed portland cement are used as the bases which are incorporated with silica powder. As a result, it is found that the optimum Ca/SiO{sub 2} and CaO/SiO{sub 2}+Al{sub 2}O{sub 3} molar ratios are around 1.0 to 0.9 and 0.9 to 0.8, respectively. For the item (4), the tests are conducted to determine adequate conditions of conductor pipe cementing and cement slurry for 1,500m deep geothermal wells, and the standard composition is established. (NEDO)

  2. FY 1974 Report on results of Sunshine Project. Research and development of cement serviceable under geothermal conditions; 1974 nendo chinetsu kankyoka de shiyo kanona cement kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-30

    Researches are conducted for the (research and development of cement serviceable under geothermal conditions). The research items include (1) surveys on test apparatuses, (2) basic surveys on cement, additives and cement slurry, (3) R and D of cement, and (4) researches on cement additives and slurry. For the item (1), bright prospects are obtained that US's Chandler can supply a thickening time tester serviceable at up to 750 degrees F and 40,000 psi, and a cement curing device serviceable at up to 750 degrees F and 5,000 psi. For the item (2), the surveys are conducted on the existing techniques for curing reactions and chemical resistance of cement at elevated temperature and pressure. For the item (3), the researches are conducted to develop cement resistant to heat and sulfates for geothermal development purposes, where portland cement and mixed portland cement are used as the bases which are incorporated with silica powder. As a result, it is found that the optimum Ca/SiO{sub 2} and CaO/SiO{sub 2}+Al{sub 2}O{sub 3} molar ratios are around 1.0 to 0.9 and 0.9 to 0.8, respectively. For the item (4), the tests are conducted to determine adequate conditions of conductor pipe cementing and cement slurry for 1,500m deep geothermal wells, and the standard composition is established. (NEDO)

  3. EVALUATION OF CEMENT-BONDED PARTICLE BOARD PRODUCED FROM AFZELIA AFRICANA WOOD RESIDUES

    Directory of Open Access Journals (Sweden)

    OLUFEMI A. SOTANNDE

    2012-12-01

    Full Text Available The study was design to evaluate the physical and mechanical properties of cement-bonded particleboards produced from Afzelia africana wood residues. The production variables investigated were three wood particle types (flakes, flake-sawdust mix and sawdust, three chemical accelerators (CaCl2, MgCl2 and AlCl3 and four wood-cement ratios (1:2.0, 1:2.5, 1:3.0 and 1:3.5. The accelerators were based on 2% by weight of cement used. The boards produced were subjected to physical tests such as density, percentage water absorption and thickness swelling. Mechanical properties evaluated were modulus of rupture, internal bonding strength and compressive strength. The results revealed that the type of particle used, wood-cement ratio and chemical additives had a marked influence on the physical and mechanical properties of the boards (p < 0.05. From quality view point, flake-sawdust composite ranked best while flake boards ranked least. Similarly, CaCl2 had the best influence on the setting of the boards followed by MgCl2 and AlCl3. Finally, it has been shown that particle boards that satisfied the BISON type HZ requirement and ISO 8335 can be produced from Afzelia africana particularly at wood-cement of 1:2.5 and above.

  4. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles.

    Science.gov (United States)

    Slane, Josh; Vivanco, Juan; Rose, Warren; Ploeg, Heidi-Lynn; Squire, Matthew

    2015-03-01

    Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (0.25, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Peach leaf responses to soil and cement dust pollution.

    Science.gov (United States)

    Maletsika, Persefoni A; Nanos, George D; Stavroulakis, George G

    2015-10-01

    Dust pollution can negatively affect plant productivity in hot, dry and with high irradiance areas during summer. Soil or cement dust were applied on peach trees growing in a Mediterranean area with the above climatic characteristics. Soil and cement dust accumulation onto the leaves decreased the photosynthetically active radiation (PAR) available to the leaves without causing any shade effect. Soil and mainly cement dust deposition onto the leaves decreased stomatal conductance, photosynthetic and transpiration rates, and water use efficiency due possibly to stomatal blockage and other leaf cellular effects. In early autumn, rain events removed soil dust and leaf functions partly recovered, while cement dust created a crust partially remaining onto the leaves and causing more permanent stress. Leaf characteristics were differentially affected by the two dusts studied due to their different hydraulic properties. Leaf total chlorophyll decreased and total phenol content increased with dust accumulation late in the summer compared to control leaves due to intense oxidative stress. The two dusts did not cause serious metal imbalances to the leaves, except of lower leaf K content.

  6. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter

  7. THERMOCHEMISTRY OF INTERACTION REACTIONS FOR SODIUM AND ALUMINUM SULPHATES WITH COMPONENTS OF HYDRATING PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    P. I. Yukhnevskiy

    2018-01-01

    Full Text Available Chemical additives are widely used in the technology of concrete with the purpose to solve various problems and sulphate-containing additives-electrolytes are also used as accelerators for setting and hardening of cement. Action mechanism of additive accelerators for setting and hardening of cement is rather complicated and can not be considered as well-established. An influence of sulfate-containing additives such as sodium sulfate is reduced to acceleration of cement silicate phase hydration by increasing ionic strength of the solution. In addition to it, exchange reactions of anion additive with portlandite phase (Ca(OH2 and aluminate phases of hardening cement have a significant effect on hardening process that lead to formation of readily soluble hydroxides and hardly soluble calcium salts. The influence of sulfate-containing additives on properties of water cement paste and cement stone is quite diverse and depends on salt concentration and cation type. For example, the action of the aluminum sulphate additive becomes more complicated if the additive is subjected to hydrolysis in water, which is aggravated in an alkaline medium of the water cement paste. Formation of hydrolysis products and their reaction with aluminate phases and cement portlandite lead to a significant acceleration of setting. Thus, despite the similarity of additives ensuring participation of anions in the exchange reactions, the mechanism of their influence on cement setting and hardening varies rather significantly. The present paper considers peculiar features concerning the mechanism of interaction of sodium and aluminum sulfate additives in cement compositions from the viewpoint of thermochemistry. Thermochemical equations for reactions of sulfate-containing additives with phases of hydrated cement clinker have been given in the paper. The paper contains description how to calculate thermal effects of chemical reactions and determine an influence of the formed

  8. Synthesis and characterization of cement slurries additives with epoxy resins - kinetics, thermodynamic and calorimetric analysis

    International Nuclear Information System (INIS)

    Tavares, A.M.G.; Andrade Junior, M.A.S.; Cestari, A.R.; Vieira, E.F.S.

    2010-01-01

    Cement has been used in the world, presenting a wide versatility. However, due to its chemical nature, it is subject to several types of chemical damages, especially for agents of acidic nature. With the purpose of increase its life-time, new cement slurries have been modified with the addition of specific additives. The objective of this work is to modify cement slurries with epoxy resins, which promote higher resistance of those materials in relation to acid attacks. Three cement slurries were synthesized with epoxy resins and a standard slurries, which was composed by cement and water. After 30 days of hydration, the samples were characterized by XDR, FTIR and thermal analysis (TG and DSC). The hydration processes of the cement slurries were studied by heat-conduction microcalorimetry. A kinetic study of HCl interaction with the new slurries were performed by the batch methodology at 25, 35, 45 e 55 deg C. It was verified that the addition of the polymers delayed the processes of hydration of the slurries, decreasing the flow of heat released as a function of the amount of added resin and, increased the resistance of those slurries to the acid attack. (author)

  9. Hospital waste ashes in Portland cement mortars

    International Nuclear Information System (INIS)

    Genazzini, C.; Zerbino, R.; Ronco, A.; Batic, O.; Giaccio, G.

    2003-01-01

    Nowadays, most concretes incorporate mineral additions such as pozzolans, fly ash, silica fume, blast furnace slag, and calcareous filler among others. Although the technological and economical benefits were the main reasons for the use of mineral additions, the prevention of environmental contamination by means of proper waste disposal becomes a priority. The chance of incorporating hospital waste ashes in Portland cement-based materials is presented here. Ash characterization was performed by chemical analysis, X-ray diffraction, radioactive material detection, and fineness and density tests. Conduction calorimetry and setting time tests were developed on pastes including ash contents from 0% to 100%. Mortars were prepared including ash contents up to 50% of cement. The results of setting time, temperature development, flexural and compressive strengths, water absorption, density, and leachability are analyzed. Results indicate that Portland cement systems could become an alternative for the disposal of this type of ashes

  10. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  11. Cement-latex grouting mortar for cementing boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Kateev, I S; Golyshkina, L A; Gorbunova, I V; Kurochkin, B M; Vakula, Ya V

    1980-01-01

    The need for the development of cement-latex grouting mortar for the purpose of separating strata when reinforcing boreholes at deposits in the Tatar Associated SSR is evaluated. Results of studies of the physical and mechanical properties of cement-latex grouting mortar systems (mortar plus brick) are presented. Formulas for preparing cement-latex grouting mortor are evaluated and results of industrial tests of such mortars shown.

  12. Evolution of cement based materials in a repository for radioactive waste and their chemical barrier function

    International Nuclear Information System (INIS)

    Kienzler, Bernhard; Metz, Volker; Schlieker, Martina; Bohnert, Elke

    2015-01-01

    The use of cementitious materials in nuclear waste management is quite widespread. It covers the solidification of low/intermediate-level liquid as well as solid wastes (e.g. laboratory wastes) and serves as shielding. For both high-level and intermediate-low level activity repositories, cement/concrete likewise plays an important role. It is used as construction material for underground and surface disposals, but more importantly it serves as barrier or sealing material. For the requirements of waste conditioning, special cement mixtures have been developed. These include special mixtures for the solidification of evaporator concentrates, borate binding additives and for spilling solid wastes. In recent years, low-pH cements were strongly discussed especially for repository applications, e.g. (Celine CAU DIT COUMES 2008; Garcia-Sineriz, et al. 2008). Examples for relevant systems are Calcium Silicate Cements (ordinary Portland cement (OPC) based) or Calcium Aluminates Cements (CAC). Low-pH pore solutions are achieved by reduction of the portlandite content by partial substitution of OPC by mineral admixtures with high silica content. The blends follow the pozzolanic reaction consuming Ca(OH) 2 . Potential admixtures are silica fume (SF) and fly ashes (FA). In these mixtures, super plasticizers are required, consisting of polycarboxilate or naphthalene formaldehyde as well as various accelerating admixtures (Garcia-Sineriz, et al. 2008). The pH regime of concrete/cement materials may stabilize radionuclides in solution. Newly formed alteration products retain or release radionuclides. An important degradation product of celluloses in cement is iso-saccharin acid. According to Glaus 2004 (Glaus and van Loon 2004), it reacts with radionuclides forming dissolved complexes. Apart from potentially impacting radionuclide solubility limitations, concrete additives, radionuclides or other strong complexants compete for surface sites for sorbing onto cement phases. In

  13. Physico-Chemical studies on irradiated polymer-reinforcement cement mortar composites

    International Nuclear Information System (INIS)

    Younes, M.M.

    2001-01-01

    The reinforced concrete suffers from corrosion by several salts, acids or alkalies and physico-mechanical properties are greatly affected. This leads to reduce the life of reinforced concrete structure. The present investigation deals with a comparison of corrosion presentation efficiency and passivity retention of reinforcement steel coated with methylethyl and propyl inhibitors which are prepared by using γ radiation and non-coated steel embedded in γ -induced polyester cement mortar composites. From the results of these studies several conclusions could be derived and these are summarized as follows: 1- The time required to reach passivation for coated steel embedded in the mortar after soaking in tap water for 28 days lies within the range 5-15 minutes; whereas, the time required to reach passivation for steel embedded in the polyester cement mortar composites is very short (1 minute). This result is related to the presence of copolymerized polyester in the pore system of the specimens. 2- The time required to reach passivation for steel coated by inhibitors in the mortar specimens after curing in tap water for 6 months is lower than that of non -coated steel embedded in the mortar specimens cured at the same conditions. 3- A relatively high degree of corrosion inhibition was obtained for the steel embedded in polyester-cement mortar composites after curing in sea water for 28 days, the time required to reach passivation is considered as moderate in the case of methyl and ethyl inhibitors the time to passivation (T.T.P.) = 9 minutes and the degree of inhibition of steel coated with the propyl inhibitor is comparatively low (T.T.P.=21 minutes)

  14. Modelling of the degradation of cement in a nuclear waste repository

    International Nuclear Information System (INIS)

    Haworth, A.; Sharland, S.M.; Tweed, C.J.

    1989-01-01

    The current UK concept for a low- or intermediate-level nuclear waste repository includes a largely cementitious backfill. The cement provides a high pH environment in which the general corrosion rate of the metal canisters is reduced and the solubilities of many nuclides low. It has previously been assumed that this high pH will exist for a period of 10 7 years, however cement will degrade due to leaching of the solid components and attack from aqueous species in groundwater. In this paper the authors describe the preliminary stages of a model of the degradation of cement in a repository. The modelling involves the incorporation of a thermodynamic description of cement into the static code PHREEQE. This is then used in a coupled chemistry-transport model of simple leaching of cement using the code CHEQMATE. This preliminary modelling also provides a useful verification of CHEQMATE as a direct comparison with a THCCDM (a coupled code based on CHEMTRN) model is possible. Results from this preliminary model suggest that the fall in pH due to leaching is slow

  15. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement

    Directory of Open Access Journals (Sweden)

    Augusto Bodanezi

    2008-04-01

    Full Text Available This study investigated the solubility of mineral trioxide aggregate (MTA and Portland cement since its mixture until 672 hours, by means of two complimentary methods. Metal ring molds filled with the cements were covered with distilled water and, at each experimental time (3, 24, 72, 168, 336 and 672 hours, were weighed as soon as the plates in which the samples have been placed. Empty rings served as the control group (n=8. Mean weight gain and loss was determined and analyzed statistically by two-way ANOVA and Tukey's test for all pairwise comparisons. Only Portland cement showed less than 3% weight loss through 24 hours. Detached MTA residues were heavier than those of Portland cement over the 3 to 168 hours. The weight of MTA rings increased more than that of Portland rings within 672 hours (p=0.05. The findings of the present study indicate that, in an aqueous environment MTA is more soluble than Portland cement and exceeds the maximum weight loss considered acceptable by ISO 6876 standard (2001.

  16. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement.

    Science.gov (United States)

    Bodanezi, Augusto; Carvalho, Nara; Silva, Daniela; Bernardineli, Norberti; Bramante, Clovis Monteiro; Garcia, Roberto Brandão; de Moraes, Ivaldo Gomes

    2008-01-01

    This study investigated the solubility of mineral trioxide aggregate (MTA) and Portland cement since its mixture until 672 hours, by means of two complimentary methods. Metal ring molds filled with the cements were covered with distilled water and, at each experimental time (3, 24, 72, 168, 336 and 672 hours), were weighed as soon as the plates in which the samples have been placed. Empty rings served as the control group (n=8). Mean weight gain and loss was determined and analyzed statistically by two-way ANOVA and Tukey's test for all pairwise comparisons. Only Portland cement showed less than 3% weight loss through 24 hours. Detached MTA residues were heavier than those of Portland cement over the 3 to 168 hours. The weight of MTA rings increased more than that of Portland rings within 672 hours (p=0.05). The findings of the present study indicate that, in an aqueous environment MTA is more soluble than Portland cement and exceeds the maximum weight loss considered acceptable by ISO 6876 standard (2001).

  17. Study on Cr(VI) Leaching from Cement and Cement Composites

    Science.gov (United States)

    Palascakova, Lenka; Kanuchova, Maria

    2018-01-01

    This paper reports an experimental study on hexavalent chromium leaching from cement samples and cement composites containing silica fume and zeolite additions that were subjected to various leaching agents. The water-soluble Cr(VI) concentrations in cements ranged from 0.2 to 3.2 mg/kg and represented only 1.8% of the total chromium content. The presence of chromium compounds with both chromium oxidation states of III and VI was detected in the cement samples by X-ray photoelectron spectroscopy (XPS). Leaching tests were performed in a Britton-Robinson buffer to simulate natural conditions and showed increased dissolution of Cr(VI) up to 6 mg/kg. The highest amount of leached hexavalent chromium was detected after leaching in HCl. The findings revealed that the leaching of chromium from cements was higher by 55–80% than that from the cement composites. A minimum concentration was observed for all cement samples when studying the relationship between the soluble Cr(VI) and the cement storage time. PMID:29690550

  18. Effects of toxic metals and chemicals on biofilm and biocorrosion.

    Science.gov (United States)

    Fang, Herbert H P; Xu, Li-Chong; Chan, Kwong-Yu

    2002-11-01

    Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92% proteins and 8-16% polysaccharides, accelerated the corrosion of the mild steel. However, there was no quantitative relationship between the degree of increased corrosion and the toxicity of metals/chemicals towards sulfate-reducing bacteria, or the increased EPS production.

  19. Natural and active chemical remediation of toxic metals and radionuclides in the aquatic environment

    International Nuclear Information System (INIS)

    McPherson, G.; Pintauro, P.; O'Connor, S.; Zhang, J.; Gonzales, R.; Flowers, G.

    1993-01-01

    The focus of this research is the non-biological, chemical remediation of toxic heavy metals and radionuclides in aquatic environments. This Tulane/Xavier group includes researchers from Chemistry, Chemical Engineering, and Geology. Active methods using novel zeolites and ion exchange membranes are currently being evaluated for use in removing heavy metals from natural waters. In addition, field and laboratory studies of metal ion exchange reactions and competitive, heavy metal adsorption on clay substrates are underway to determine sediment metal sequestering capacity. A summary of progress to date and future work is presented

  20. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    Science.gov (United States)

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  1. Morphology of root canal surface: A reflection on the process of cementation of the composite relined glass fiber post

    Directory of Open Access Journals (Sweden)

    Yasmine Mendes Pupo

    2017-01-01

    Full Text Available Background: The present study was conducted to evaluate the bond strength in the different root thirds (premolars and maxillary central incisors of composite relined glass fiber posts compared to untreated glass fiber posts cemented with dual- or chemical-cure cements. Materials and Methods: Sixty human single-rooted premolars (flat canal (n = 15 and 12 maxillary central incisors were used (round canal (n = 3. The teeth were sectioned, and the roots received endodontic treatment. The standardized preparation of the canals was carried out, and the roots were randomly divided into four groups according to the cementation systems: G1: cemented posts (dual: Ambar/Allcem; G2: relined posts (dual: Ambar/Allcem; G3: cemented posts (chemical: Fusion Duralink/Cement Post; and G4: relined posts (chemical: Fusion Duralink/Cement Post. The roots were cut to give two slices of each third of the root canal per specimen. Push-out test was conducted at a speed of 0.5 mm/min. Data were analyzed by analysis of variance and Tukey's post hoc test (α = 0.05. Results: There was no statistically significant difference between groups for the premolars (flat canal (P = 0.959. There was a significant difference in the central incisors between the middle and apical thirds in the cemented group when using the dual system (P = 0.04 and between the middle and apical thirds (P = 0.003 and cervical and apical thirds (P = 0.033 when using the chemical system. Conclusion: Due to the anatomy of the root canal, flat canal of the premolars does not require relining, but round canal of the maxillary central incisors demands it for more secure in the bond strength.

  2. Tracing the Chemical Evolution of Metal-rich Galactic Bulge Globular Clusters

    Science.gov (United States)

    Munoz Gonzalez, Cesar; Saviane, Ivo; Geisler, Doug; Villanova, Sandro

    2018-01-01

    We present in this poster the metallicity characterization of the four metal rich Bulge Galactic Gobular Clusters, which have controversial metallicities. We analyzed our high-resolution spectra (using UVES-580nm and GIRAFFE-HR13 setups) for a large sample of RGB/AGB targets in each cluster in order to measure their metallicity and prove or discard the iron spread hypothesis. We have also characterized chemically stars with potentially different iron content by measuring light (O, Na, Mg, Al), alpha (Si, Ca, Ti), iron–peak (V, Cr, Ni, Mn) and s and r process (Y, Zr, Ba, Eu) elements. We have identified possible channels responsible for the chemical heterogeneity of the cluster populations, like AGB or massive fast-rotating stars contamination, or SN explosion. Also, we have analyzed the origin and evolution of these bulge GCs and their connection with the bulge itself.

  3. Leachability of Arsenic (As) Contaminated Landfill Soil Stabilised by Cement and Bagasse Ash

    Science.gov (United States)

    Azhar, A. T. S.; Azim, M. A. M.; Aziman, M.; Nabila, A. T. A.

    2016-11-01

    Contaminated soil with heavy metals, especially Arsenic (As) has become a major issue worldwide. As is reported to be a metal that affects human health and is related to have caused serious diseases that interrupts the nervous system, blood vessels and kidneys. However, proper treatment techniques such as Stabilization/Solidification (S/S) method can be employed and is capable of controlling these heavy metals from contaminating the soil strata and groundwater resources. This study is to investigate the leachability of Arsenic (As) in S/S method when bagasse ash (BA) is added to remedy contaminated Landfill soil. Cement is added at a proportion of 5%, 10%, 15% and 20% in sample weights without BA while in another sample; the cement replaces BA at a proportion of 2.5%, 5%, 7.5%. and 10%. All samples were allowed to harden and cured at room temperature for 7, 14 and 28 days. The effectiveness of the treatment was assessed by conducting Synthetic Precipitation Leaching Procedure (SPLP). Results indicate that pH and leachability are found to have major influence on metal release. The final pH after leaching tests showed improvements especially samples containing BA. In addition, the concentration of As in the SPLP test after the curing period of 28 days were detected to be below the leachability limit as regulated by WHO's Guidelines for Drinking-water Quality. As a whole, the results obtained from testing showed that sample containing 10% cement with 10% BA is the most effective and is the optimum mix since this proportion succeeded in minimising the leachability of As at total reduction by 100%, In conclusion, partial replacement of cement with BA in the binder system has been successful in reducing the leachability.

  4. Fluidized-bed-combustion ash for the solidification and stabilization of a metal-hydroxide sludge.

    Science.gov (United States)

    Knoll, K L; Behr-Andres, C

    1998-01-01

    Fluidized-bed-combustion (FBC) ash is a by-product from a developing technology for coal-fired power plants that will economically reduce air emissions to meet requirements of the Clean Air Act. FBC ash has physical and chemical properties similar to Portland cement, but only has moderate success as a pozzolan in concrete applications due to low compressive strengths. However, FBC ash has proven effective for use as a binder for the solidification and stabilization (S/S) of metal-bearing sludges. Physical and chemical characterization procedures were used to analyze FBC ash and a metal-bearing sludge obtained from a hazardous waste treatment facility to develop 12 different S/S mix designs. The mix designs consist of four binder designs to evaluate sludge-to-binder ratios of approximately 0, 0.5, and 1. Portland cement is used as a control binder to compare unconfined compressive strengths and Toxicity Characteristic Leaching Procedure (TCLP) analyses from different ratios of the FBC ash streams: fly ash, char, and spent bed material (SBM). Compressive strengths ranging from 84 lbs per square inch (psi) to 298 psi were obtained from various mix designs containing different sludge-to-ash ratios cured for 28 days. All the mix designs passed the TCLP. Recoveries from leaching for each metal were less than 5% for most mix designs. Results of unconfined compressive strengths, TCLP, and percent recovery calculations indicate that the mix design containing approximately a 1:1 ratio of fly ash to char-and-sludge is the best mix design for the S/S of the metal-bearing sludge.

  5. Front line of cement technolgy and control. Part 5. ; Baking process and chemical reactions. Cement saisentan sono gijutsu to kanri 5. ; Shosei katei to kagaku hanno

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, M. (Ube Industries, Ltd., Yamaguchi (Japan))

    1990-06-01

    The baking process in cement production means the process that the raw materials which were mixed and pulverized in the raw material preparation process are charged into a reaction furnace which is called kiln, and clinders (intermediate product of cement) are generated. It is the process which affects quality as well as production cost of cement more significantly than anything else. In this article, an outline of the above baking facilities, how the raw materials change and clinkers are generated therein, and how they are controlled are introduced. Clinkers are composed of such products as alite, belite, aluminate and ferrite, etc. which were generated after decomposition reactions of such raw materials as lime stone, clay, silica rock and iron oxide in the above kiln. The essential ponts of the process control which makes the generation reactions of clinker compounds efficiently are such two points as well balanced raw materials to be charged into the baking facilities and stable operation of such facilities. The quality of cement which is required as finished goods is achieved by the quality control at each intermediate process and the quality tests of cement. 5 refs., 10 figs., 2 tabs.

  6. Cement-in-cement acetabular revision with a constrained tripolar component.

    Science.gov (United States)

    Leonidou, Andreas; Pagkalos, Joseph; Luscombe, Jonathan

    2012-02-17

    Dislocation of a total hip replacement (THR) is common following total hip arthroplasty (THA). When nonoperative management fails to maintain reduction, revision surgery is considered. The use of constrained acetabular liners has been extensively described. Complete removal of the old cement mantle during revision THA can be challenging and is associated with significant complications. Cement-in-cement revision is an established technique. However, the available clinical and experimental studies focus on femoral stem revision. The purpose of this study was to present a case of cement-in-cement acetabular revision with a constrained component for recurrent dislocations and to investigate the current best evidence for this technique. This article describes the case of a 74-year-old woman who underwent revision of a Charnley THR for recurrent low-energy dislocations. A tripolar constrained acetabular component was cemented over the primary cement mantle following removal of the original liner by reaming, roughening the surface, and thoroughly irrigating and drying the primary cement. Clinical and radiological results were good, with the Oxford Hip Score improving from 11 preoperatively to 24 at 6 months postoperatively. The good short-term results of this case and the current clinical and biomechanical data encourage the use of the cement-in-cement technique for acetabular revision. Careful irrigation, drying, and roughening of the primary surface are necessary. Copyright 2012, SLACK Incorporated.

  7. Chemically synthesized metal-oxide-metal segmented nanowires with high ferroelectric response

    International Nuclear Information System (INIS)

    Herderick, Edward D; Padture, Nitin P; Polomoff, Nicholas A; Huey, Bryan D

    2010-01-01

    A chemical synthesis method is presented for the fabrication of high-definition segmented metal-oxide-metal (MOM) nanowires in two different ferroelectric oxide systems: Au-BaTiO 3 -Au and Au-PbTiO 3 -Au. This method entails electrodeposition of segmented nanowires of Au-TiO 2 -Au inside anodic aluminum oxide (AAO) templates, followed by topotactic hydrothermal conversion of the TiO 2 segments into BaTiO 3 or PbTiO 3 segments. Two-terminal devices from individual MOM nanowires are fabricated, and their ferroelectric properties are measured directly, without the aid of scanning probe microscopy (SPM) methods. The MOM nanowire architecture provides high-quality end-on electrical contacts to the oxide segments, and allows direct measurement of properties of nanoscale volume, strain-free oxide segments. Unusually high ferroelectric responses, for chemically synthesized oxides, in these MOM nanowires are reported, and are attributed to the lack of residual strain in the oxides. The ability to measure directly the active properties of nanoscale volume, strain-free oxides afforded by the MOM nanowire architecture has important implications for fundamental studies of not only ferroelectric nanostructures but also nanostructures in the emerging field of multiferroics.

  8. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  9. Chemical sensors based on molecularly modified metallic nanoparticles

    International Nuclear Information System (INIS)

    Haick, Hossam

    2007-01-01

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  10. Impacts of cement industries on environment and control measure

    International Nuclear Information System (INIS)

    Hashmi, H.N.; Malik, H.N.; Naushad, Z.

    2005-01-01

    Utilization of cement as building material is gaining more importance. Cement industries around the world are contributing in global and as well as local pollution. In Pakistan most of the cement industries are constructed in remote areas without any proper environmental impact assessment. Unawareness of peoples toward sustainable environment and due to lack of job opportunities, dwellers are demanding employment rather than clean environment from title-holder of the industry. Air pollution caused by cement industries is harmful to the human's health, spoils and erodes building surface, corrodes metals, weakens textiles, deteriorates atmospheric visibility, affects plant life and leads to ecological imbalances. To investigate environmental impact of cement industries in Pakistan, environmental conditions around and inside the five cement industries in the vicinity of Taxila city are studied. To inspect the whole scenario, air pollution control devices in these industries were also examined in detail. These industries are using Electrostatic Precipitators and Baghouses to control air pollution (dust particulates). Proper caring of these equipment is necessary for better results. Detailed study shows that emissions from their stacks and dust particulates are causing problems. Health consultants in study area are much worry about the health of workers and environmental degradation in the vicinity of these industries. The comparison of air pollution control devices shows that Baghouses are environmental friendly. Considering the field conditions it is also concluded that involvement of government and environmental pollution control agencies is much more necessary. (author)

  11. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid......−liquid reactions are discussed, as are the influences of particles sizes on clinker phase formation. Furthermore, a mechanism for clinker phase formation in an industrial rotary kiln reactor is outlined....

  12. Chemical and topological short-range order in metallic glasses

    International Nuclear Information System (INIS)

    Vincze, I.; Schaafsma, A.S.; Van der Woude, F.; Kemeny, T.; Lovas, A.

    1980-10-01

    Moessbauer spectroscopy is applied to the study of chemical short-range order in (Fe,Ni)B metallic glasses. It is found that the atomic arrangement in melt-quenched glasses closely resembles that of the crystalline counterparts (Fe 3 B is tetragonal, Ni 3 B is orthorombic). The distribution of transition metal atoms is not random at high Ni concentrations: Ni atoms prefer a neighbourhood with a higher boron coordination. (P.L.)

  13. The influence of prefabricated pipe cement coatings and those made during pipe renovation on drinking water quality

    OpenAIRE

    Młyńska Anna; Zielina Michał

    2017-01-01

    Nowadays, cement coatings are often used as an anticorrosion protection of the internal surfaces of manufactured ductile iron water pipes. The protective cement linings are also commonly used for old water pipe renovation. In both cases, the cement lining is an excellent anticorrosion protection of the pipelines, effectively separating the pipe wall from the flowing water. Moreover, cement linings protect the pipelines not only by a mechanical barrier, but also by a chemical barrier creating ...

  14. The effect of polymerization mode on monomer conversion, free radical entrapment, and interaction with hydroxyapatite of commercial self-adhesive cements.

    Science.gov (United States)

    D'Alpino, Paulo Henrique Perlatti; Silva, Marília Santos; Vismara, Marcus Vinícius Gonçalves; Di Hipólito, Vinicius; Miranda González, Alejandra Hortencia; de Oliveira Graeff, Carlos Frederico

    2015-06-01

    This study evaluated the degree of conversion, the free radical entrapment, and the chemical interaction of self-adhesive resin cements mixed with pure hydroxyapatite, as a function of the polymerization activation mode among a variety of commercial self-adhesive cements. Four cements (Embrace WetBond, MaxCem Elite, Bifix SE, and RelyX U200) were mixed, combined with hydroxyapatite, dispensed into molds, and distributed into three groups, according to polymerization protocols: IP (photoactivation for 40s); DP (delayed photoactivation, 10 min self-curing plus 40s light-activated); and CA (chemical activation, no light exposure). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=10). The free radical entrapment values of the resin cements were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) calculated (n=3). Values were compared using two-way ANOVA and Tukey's post-hoc test (α=5%). X-ray diffraction (XRD) characterized the crystallinity of hydroxyapatite as a function of the chemical interactions with the resin cements. The tested parameters varied as a function of resin cement and polymerization protocol. Embrace WetBond and RelyX U200 demonstrated dependence on photoactivation (immediate or delayed), whereas MaxCem Elite exhibited dependence on the chemical activation mode. Bifix SE presented the best balance based on the parameters analyzed, irrespective of the activation protocol. Choice of polymerization protocol affects the degree of conversion, free radical entrapment, and the chemical interaction between hydroxyapatite and self-adhesive resin cement mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Chemical probes of metal cluster structure--Fe, Co, Ni, and Cu

    International Nuclear Information System (INIS)

    Parks, E.K.; Zhu, L.; Ho, J.; Riley, S.J.

    1992-01-01

    Chemical reactivity is one of the few methods currently available for investigating the geometrical structure of isolated transition metal clusters. In this paper we summarize what is currently known about the structures of clusters of four transition metals, Fe, Co, Ni, and Cu, in the size range from 13 to 180 atoms. Chemical probes used to determine structural information include reactions with H 2 (D 2 ), H 2 0, NH 3 and N 2 . Measurements at both low coverage and at saturation are discussed

  16. Correlation between clinical performance and degree of conversion of resin cements: a literature review

    Directory of Open Access Journals (Sweden)

    Grace DE SOUZA

    2015-08-01

    Full Text Available AbstractResin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used.

  17. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    Science.gov (United States)

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  18. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  19. Physico Mechanical Properties of Irradiated Waste Rubber Cement Mortar

    International Nuclear Information System (INIS)

    Younes, M.M.

    2010-01-01

    In the present study a partial replacement of aggregate with two different ratios of waste rubber (5%, 10%) with the addition of a constant ratio of rice husk ash (RHA), 5% was carried out. The hardened cement mortar used the optimum water of consistency. The specimens were molded into 1 inch cubic moulds .The specimens were first cured for 24 hours, at 100% relative humidity and then cured under tap water for 3, 7 and 28 days followed by irradiation at different doses of gamma irradiation namely 5 and 10 kGy. The physico-chemical and mechanical properties such as compressive strength, total porosity and bulk density were studied for the three types of specimens. The results showed that the values of the compressive strength, bulk density and chemically combined water of the blended cement mortar paste (OPC-RHA) increase ,while blended cement mortar paste with 5% RHA and 5, 10% waste rubber decrease. The results were confirmed by scanning electron microscopy and thermal behavior of the specimens. Also, it was observed that the irradiated sample was thermally more stable than the unirradiated one

  20. Comparison of electrocoagulation and chemical coagulation for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Akbal, F.; Camci, S. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, Kurupelit, Samsun (Turkey)

    2010-10-15

    Copper (Cu), chromium (Cr), and nickel (Ni) removal from metal plating wastewater by electrocoagulation and chemical coagulation was investigated. Chemical coagulation was performed using either aluminum sulfate or ferric chloride, whereas electrocoagulation was done in an electrolytic cell using aluminum or iron electrodes. By chemical coagulation, Cu-, Cr-, and Ni-removal of 99.9 % was achieved with aluminum sulfate and ferric chloride dosages of 500, 1000, and 2000 mg L{sup -1}, respectively. Removal of metals by electrocoagulation was affected by the electrode material, wastewater pH, current density, number of electrodes, and electrocoagulation time. Electrocoagulation with iron electrodes at a current density of 10 mA cm{sup -2}, electrocoagulation time of 20 min, and pH 3.0 resulted in 99.9 % Cu-, 99.9 % Cr-, and 98 % Ni-removal. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends.

    Science.gov (United States)

    Onori, Roberta; Polettini, Alessandra; Pomi, Raffaella

    2011-02-01

    In the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl(2) or CaSO(4), which were selected for the experimental campaign on the basis of the results from previous studies. The results indicated that CaCl(2) exhibited by far the best effects on the evolution of the hydration process in the mixtures; a positive effect on mechanical strength was also observed when CaSO(4) was used as the activator, while the gain in strength produced by KOH and NaOH was irrelevant. Geochemical modeling of the leaching solutions provided information on the mineral phases responsible for the release of major elements from the hardened materials and also indicated the important role played by surface sorption onto amorphous Fe and Al minerals in dictating the leaching of Pb. The leaching of the other trace metal cations investigated (Cu, Ni and Zn) could not be explained by any pure mineral included in the thermodynamic database used, suggesting they were present in the materials in the form of complex minerals or phase assemblages for which no consistent thermodynamic data are presently available in the literature. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation.

    Science.gov (United States)

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-12-15

    To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation.

  3. The influence of chemical composition and fineness on the performance of alkali activated cements obtained from blast furnace slags

    International Nuclear Information System (INIS)

    Langaro, Eloise Aparecida; Matoski, Adalberto; Luz, Caroline Angulski da; Buth, Islas Stein; Moraes, Maryah Costa de; Pereira Filho, Jose Ilo

    2017-01-01

    New binders are being developed for concrete in order to reduce the environmental impact mainly related to CO_2 emissions. Alkali -activated cements (CATs) are obtained from lime-aluminosilicate materials and an alkali activator and can reduce by 80% the emission of CO_2 compared to Portland Cement (PC). Papers have also shown physical and mechanical properties similar or higher than those presented by the PC, however, the activation of raw material is complex. Recent papers have also have showed a strong influence of the characteristics of raw material on the performance of CAT, however, little mentioned in the literature.. Therefore, this paper aimed to analyze the influence of characteristics of blast furnace slag (fineness and chemical composition) on the behavior of activated alkali cements. For this purpose, two slags were used, A and B, which were submitted to different milling times; and activated using 5% of NaOH. Mortars and pastes were prepared for compressive strength testing (7 and 28 days), measurements of heat of hydration and investigation of microstructure (XRD and DSC) were made. The results showed that the mortar made with slag A reached a very good mechanical performance, close to 48MPa at 28 days, and higher formation of CSH, in opposite of slag B. The probable hypothesis of this study is that the system formed in CAT made with slag A (containing more Al_2O_3) could provide CSH with a greater incorporation of Al and a lower crystallinity, increasing the mechanical strength. (author)

  4. Heavy metal recovery from contaminated biomass ashes by chemical leaching, bioleaching and biosorption

    International Nuclear Information System (INIS)

    Pirker, K.

    2000-01-01

    Ashes from biomass combustion plants contain plant nutrients which makes their application as fertilizers economically interesting. The possibility of recycling the ash can be looked upon as a contribution to obtain a sustainable energy utilization from biomass. The ash contains heavy metals which have to be removed. The possibility of decontaminating the ash by chemical and biological leaching was investigated. The leaching capacity of commercially available organic and inorganic acids and of citric acid produced by the fungus Penicillium simplicissimus were determined. A process for heavy metal recovery from biomass ashes consisting of four steps was designed. All environmentally relevant heavy metals (except lead) were removed from contaminated biomass ashes by chemical leaching. The heavy metals were recovered and enriched by precipitation and subsequent biosorption. Inactivated bacteria and fungi were used as biosorbents. The overall costs and the washing-out of plant nutrients from the ashes by chemical leaching were drawbacks of the metal recovering process. Biosorption in combination with existing processes of waste water treatment would offer another promising possibility for achieving the low Austrian limiting values for heavy metals in waste water. (author)

  5. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  6. Metal-contaminated soil remediation by means of paper mill sludges addition: chemical and ecotoxicological evaluation

    International Nuclear Information System (INIS)

    Calace, N.; Campisi, T.; Iacondini, A.; Leoni, M.; Petronio, B.M.; Pietroletti, M.

    2005-01-01

    Metal pollution of soils is a great environmental problem. The major risks due to metal pollution of soil consist of leaching to groundwater and potential toxicity to plants and/or animals. The objective of this study is to evaluate by means of chemical and ecotoxicological approach the effects of paper mill sludge addition on the mobile metal fraction of polluted metal soils. The study was carried out on acidic soil derived from mining activities and thus polluted with heavy metals, and on two paper mill sludges having different chemical features. The results obtained by leaching experiments showed that the addition of a paper mill sludge, consisting mainly of carbonates, silicates and organic matter, to a heavy-metal polluted soil produces a decrease of available metal forms. The carbonate content seems to play a key role in the chemical stabilisation of metals and consequently in a decrease of toxicity of soil. The leached solutions have a non-toxic effect. The mild remediation by addition of sludge has moreover a lasting effect. - Paper mill sludge decreased available metals

  7. Cement solidification of spent ion exchange resins produced by the nuclear industry

    International Nuclear Information System (INIS)

    Jaouen, C.; Vigreux, B.

    1988-01-01

    Cement solidification technology has been applied to spent ion exchange resins for many years in countries throughout the world (at reactors, research centers and spent fuel reprocessing plants). Changing specifications for storage of radioactive waste have, however, confronted the operators of such facilities with a number of problems. Problems related both to the cement solidification process (water/cement/resin interactions and chemical interactions) and to its utilization (mixing, process control, variable feed composition, etc.) have often led waste producers to prefer other, polymer-based processes, which are very expensive and virtually incompatible with water. This paper discusses research on cement solidification of ion exchange resins since 1983 and the development of application technologies adapted to nuclear service conditions and stringent finished product quality requirements

  8. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The invention relates to a decontamination method for radioactive metal waste products derived from equipment that handles radioactive materials whose surfaces have been contaminated; in particular it concerns a decontamination method that reduces the amount of radioactive waste by decontaminating radioactive waste substances to a level of radioactivity in line with normal waste products. In order to apply chemical decontamination to metal waste products whose surfaces are divided into carbon steel waste and stainless steel waste; the carbon steel waste is treated using only a primary process in which the waste is immersed in a sulfuric acid solution, while the stainless steel waste must be treated with both the primary process and then electrolytically reduces it for a specific length of time and a secondary process that uses a solution of sulfuric acid mixed with oxidizing metal salts. The method used to categorize metal waste into carbon steel waste and stainless steel waste involves determining the presence, or absence, of magnetism. Voltage is applied for a fixed duration; once that has stopped, electrolytic reduction repeats the operative cycle of applying, then stopping voltage until the potential of the radioactive metal waste is retained in the active region. 1 fig. 2 tabs

  9. A multiphysics-viscoplastic cap model for simulating blast response of cemented tailings backfill

    Directory of Open Access Journals (Sweden)

    Gongda Lu

    2017-06-01

    Full Text Available Although a large number of previous researches have significantly contributed to the understanding of the quasi-static mechanical behavior of cemented tailings backfill, an evolutive porous medium used in underground mine cavities, very few efforts have been made to improve the knowledge on its response under sudden dynamic loading during the curing process. In fact, there is a great need for such information given that cemented backfill structures are often subjected to blast loadings due to mine exploitations. In this study, a coupled thermo-hydro-mechanical-chemical (THMC-viscoplastic cap model is developed to describe the behavior of cementing mine backfill material under blast loading. A THMC model for cemented backfill is adopted to evaluate its behavior and evolution of its properties in curing processes with coupled thermal, hydraulic, mechanical and chemical factors. Then, the model is coupled to a Perzyna type of viscoplastic model with a modified smooth surface cap envelope and a variable bulk modulus, in order to reasonably capture the nonlinear and rate-dependent behaviors of the cemented tailings backfill under blast loading. All of the parameters required for the variable-modulus viscoplastic cap model were obtained by applying the THMC model to reproducing evolution of cemented paste backfill (CPB properties in the curing process. Thus, the behavior of hydrating cemented backfill under high-rate impacts can be evaluated under any curing time of concern. The validation results of the proposed model indicate a good agreement between the experimental and the simulated results. The authors believe that the proposed model will contribute to a better understanding of the performance of hydrating cemented backfill under blasting, and also to practical risk management of backfill structures associated with such a dynamic condition.

  10. The use of mexican cements in the low and medium radioactive wastes confinement

    International Nuclear Information System (INIS)

    Badillo A, V.E.; Almazan T, M.G.; Alonso V, G.; Palacios H, J.C.

    2008-01-01

    Inside the relative mark to the radioactive waste confinement, minerals of great fixation capacity like clays, apatites and diverse oxides are studied as matrixes, components and/or additives of the active barriers that separate the barrier geologic and the nuclear wastes. In this case, the cements intervene in those different stages of the waste management, since its are used for the immobilization of radioactive waste in the container, for the production of containers as well as filler of the spaces among the containers of the vaults, and also as engineering barrier and construction material in the civil work. For the above mentioned, it is particularly useful to characterize the Portland cements with at least 97% of clinker, since they are most recommended for this type of applications. Presently investigation work is carried out a preliminary chemical characterization, based on the mineralogical composition, of the Portland Mexican cement. Results are shown by the X-ray Diffraction technique when immobilizing a rich solution in sulfates to 5%, using two Portland commercial cements APASCO and TOLTECA, without observing the significant appearance of new phases. The cements besides incorporating the chemical species in the breast of the matrix, are also present as barriers of civil engineering in the facilities located only some meters deep for the storage of radioactive waste of low and intermediate level, for that the study of the radionuclides fixation, in the cements is of supreme importance to evaluate the safety of a nuclear repository with the help of cements; the retention of the iodine-131 in a limited interval of pH in the commercial APASCO and TOLTECA it was studied, being observed a scarce retention of this homologous of fission products, what indicates the necessity to use additives to improve the retention properties of the Mexican commercial cements for some radionuclides. (Author)

  11. Mechanisms of cement leaching and degradation - integration of neutron imaging techniques

    International Nuclear Information System (INIS)

    Payne, Timothy E.; Aldridge, Laurence P.; Brew, Daniel R.M.; McGlinn, Peter J.; De Beer, Frikkie C.; Radebe, Mabuti J.; Nshimirimana, Robert

    2012-01-01

    Cementitious material is a commonly used wasteform for low and intermediate level radioactive waste, and comprises a major part of both structural components and barriers in many repository concepts. When exposed to water, cement-based barriers and waste-forms are expected to degrade by mechanisms involving both chemical and structural changes. The research program addresses several aspects of these processes, including the leaching of the waste-forms, water transport properties, as well as the effect of high pH cement leachates on the chemical and physical properties of surrounding materials (including clay barriers and host regolith materials). Chemical leaching tests and analyses by techniques such as electron microscopy can be augmented by neutron radiography and tomography. These methods provide a useful non-destructive method of determining properties related to water transport in cementitious materials, in particular the sorptivity and pore size distribution

  12. Chemical vapor deposition of refractory metals and ceramics III

    International Nuclear Information System (INIS)

    Gallois, B.M.; Lee, W.Y.; Pickering, M.A.

    1995-01-01

    The papers contained in this volume were originally presented at Symposium K on Chemical Vapor Deposition of Refractory Metals and Ceramics III, held at the Fall Meeting of the Materials Research Society in Boston, Massachusetts, on November 28--30, 1994. This symposium was sponsored by Morton International Inc., Advanced Materials, and by The Department of Energy-Oak Ridge National Laboratory. The purpose of this symposium was to exchange scientific information on the chemical vapor deposition (CVD) of metallic and ceramic materials. CVD technology is receiving much interest in the scientific community, in particular, to synthesize new materials with tailored chemical composition and physical properties that offer multiple functionality. Multiphase or multilayered films, functionally graded materials (FGMs), ''smart'' material structures and nanocomposites are some examples of new classes of materials being produced via CVD. As rapid progress is being made in many interdisciplinary research areas, this symposium is intended to provide a forum for reporting new scientific results and addressing technological issues relevant to CVD materials and processes. Thirty four papers have been processed separately for inclusion on the data base

  13. Chemical speciation of heavy metals in sandy soils in relation to availability and mobility

    NARCIS (Netherlands)

    Temminghoff, E.J.M.

    1998-01-01

    The environmental risk of heavy metals which are present in soil at a certain total content is highly dependent on soil properties. Chemical speciation is a comprehensive term for the distribution of heavy metals over all possible chemical forms (species) in soil solution and in the solid

  14. Comparison of cemented and uncemented fixation in total knee arthroplasty.

    Science.gov (United States)

    Brown, Thomas E; Harper, Benjamin L; Bjorgul, Kristian

    2013-05-01

    As a result of reading this article, physicians should be able to :1. Understand the rationale behind using uncemented fixation in total knee arthroplasty.2.Discuss the current literature comparing cemented and uncemented total knee arthroplasty3. Describe the value of radiostereographic analysis in assessing implant stability.4. Appreciate the limitations in the available literature advocating 1 mode of fixation in total knee arthroplasty. Total knee arthroplasty performed worldwide uses either cemented, cementless, or hybrid (cementless femur with a cemented tibia) fixation of the components. No recent literature review concerning the outcomes of cemented vs noncemented components has been performed. Noncemented components offer the potential advantage of a biologic interface between the bone and implants, which could demonstrate the greatest advantage in long-term durable fixation in the follow-up of young patients undergoing arthroplasty. Several advances have been made in the backing of the tibial components that have not been available long enough to yield long-term comparative follow-up studies. Short-term radiostereographic analysis studies have yielded differing results. Although long-term, high-quality studies are still needed, material advances in biologic fixation surfaces, such as trabecular metal and hydroxyapatite, may offer promising results for young and active patients undergoing total knee arthroplasty when compared with traditional cemented options. Copyright 2013, SLACK Incorporated.

  15. Evaluation of the amount of excess cement around the margins of cement-retained dental implant restorations: the effect of the cement application method.

    Science.gov (United States)

    Chee, Winston W L; Duncan, Jesse; Afshar, Manijeh; Moshaverinia, Alireza

    2013-04-01

    Complete removal of excess cement from subgingival margins after cementation of implant-supported restorations has been shown to be unpredictable. Remaining cement has been shown to be associated with periimplant inflammation and bleeding. The purpose of this study was to investigate and compare the amount of excess cement after cementation with 4 different methods of cement application for cement-retained implant-supported restorations. Ten implant replicas/abutments (3i) were embedded in acrylic resin blocks. Forty complete veneer crowns (CVCs) were fabricated by waxing onto the corresponding plastic waxing sleeves. The wax patterns were cast and the crowns were cemented to the implant replicas with either an interim (Temp Bond) or a definitive luting agent (FujiCEM). Four methods of cement application were used for cementation: Group IM-Cement applied on the internal marginal area of the crown only; Group AH-Cement applied on the apical half of the axial walls of the crown; Group AA-Cement applied to all axial walls of the interior surface of the crown, excluding the occlusal surface; and Group PI-Crown filled with cement then seated on a putty index formed to the internal configuration of the restoration (cementation device) (n=10). Cement on the external surfaces was removed before seating the restoration. Cement layers were applied on each crown, after which the crown was seated under constant load (80 N) for 10 minutes. The excess cement from each specimen was collected and measured. One operator performed all the procedures. Results for the groups were compared, with 1 and 2-way ANOVA and the Tukey multiple range test (α=.05). No significant difference in the amount of excess/used cement was observed between the 2 different types of cements (P=.1). Group PI showed the least amount of excess cement in comparison to other test groups (P=.031). No significant difference was found in the amount of excess cement among groups MI, AH, and AA. Group AA showed the

  16. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Science.gov (United States)

    2011-12-08

    ... and Cement Clinker From Japan Determination On the basis of the record \\1\\ developed in the subject... duty order on gray Portland cement and cement clinker from Japan would be likely to lead to... and Cement Clinker from Japan: Investigation No. 731- TA-461 (Third Review). By order of the...

  17. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.

    Science.gov (United States)

    Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan

    2018-01-01

    Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may

  18. Chemically synthesized metal-oxide-metal segmented nanowires with high ferroelectric response

    Energy Technology Data Exchange (ETDEWEB)

    Herderick, Edward D; Padture, Nitin P [Department of Materials Science and Engineering, Center for Emergent Materials, Ohio State University, Columbus, OH 43210 (United States); Polomoff, Nicholas A; Huey, Bryan D, E-mail: padture.1@osu.edu [Department of Chemical, Materials, and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States)

    2010-08-20

    A chemical synthesis method is presented for the fabrication of high-definition segmented metal-oxide-metal (MOM) nanowires in two different ferroelectric oxide systems: Au-BaTiO{sub 3}-Au and Au-PbTiO{sub 3}-Au. This method entails electrodeposition of segmented nanowires of Au-TiO{sub 2}-Au inside anodic aluminum oxide (AAO) templates, followed by topotactic hydrothermal conversion of the TiO{sub 2} segments into BaTiO{sub 3} or PbTiO{sub 3} segments. Two-terminal devices from individual MOM nanowires are fabricated, and their ferroelectric properties are measured directly, without the aid of scanning probe microscopy (SPM) methods. The MOM nanowire architecture provides high-quality end-on electrical contacts to the oxide segments, and allows direct measurement of properties of nanoscale volume, strain-free oxide segments. Unusually high ferroelectric responses, for chemically synthesized oxides, in these MOM nanowires are reported, and are attributed to the lack of residual strain in the oxides. The ability to measure directly the active properties of nanoscale volume, strain-free oxides afforded by the MOM nanowire architecture has important implications for fundamental studies of not only ferroelectric nanostructures but also nanostructures in the emerging field of multiferroics.

  19. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  20. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael

    2017-03-14

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  1. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth.The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests.The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect.Our findings suggested a new bioactive

  2. Conditioning of inorganic ion exchangers based on cerium (IV) antimonate in cement matrix. Vol. 3

    International Nuclear Information System (INIS)

    Aly, H.F.; Zakareia, N.; El-Dessouky, M.I.; Abo-Mosallem, N.M.; EL-Naggar, I.M.

    1996-01-01

    The use of inorganic adsorbents for treatment of aqueous radioactive waste has many advantages; namely; better resistance to chemical action, thermal stability, compatibility with immobilization matrices and resistance to radiation. Inorganic ion exchangers process many properties which make them more suitable for rad waste treatment than organic exchange resins. Inorganic ion exchange materials can be immobilized using cement matrix to obtain good solidified waste form. In this work, the removal of radioactive nuclides from radioactive waste is carried out by chemical in-situ precipitation. The addition of cerium (IV) antimonate (cesb) to cement mixture enhances the compressive strength more than plain cement. Waste package containing cesb increased the compressive strength relative to original ordinary portland cement (OPC) matrix for waste products immersed in tap water for one month. The compressive strength increases in the order; st Ce Sb> mix Ce Sb> Na Ce Sb> Co Ce Sb> Cs Ce Sb> OPC> Eu Ce Sb> Ce Sb; (mix refers to all the radionuclides used here). The cumulative leached fractions of 60 Co and 134 Cs decreased for solidified waste products containing Ce Sb in comparison to plain cement. 2 figs., 9 tabs

  3. Conditioning of inorganic ion exchangers based on cerium (IV) antimonate in cement matrix. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Aly, H F; Zakareia, N; El-Dessouky, M I; Abo-Mosallem, N M; EL-Naggar, I M [Hot Laboratory and Waste Management Centre, Atomic Energy Authority, P.O. Box 13759, Cairo (Egypt)

    1996-03-01

    The use of inorganic adsorbents for treatment of aqueous radioactive waste has many advantages; namely; better resistance to chemical action, thermal stability, compatibility with immobilization matrices and resistance to radiation. Inorganic ion exchangers process many properties which make them more suitable for rad waste treatment than organic exchange resins. Inorganic ion exchange materials can be immobilized using cement matrix to obtain good solidified waste form. In this work, the removal of radioactive nuclides from radioactive waste is carried out by chemical in-situ precipitation. The addition of cerium (IV) antimonate (cesb) to cement mixture enhances the compressive strength more than plain cement. Waste package containing cesb increased the compressive strength relative to original ordinary portland cement (OPC) matrix for waste products immersed in tap water for one month. The compressive strength increases in the order; st Ce Sb> mix Ce Sb> Na Ce Sb> Co Ce Sb> Cs Ce Sb> OPC> Eu Ce Sb> Ce Sb; (mix refers to all the radionuclides used here). The cumulative leached fractions of {sup 60} Co and {sup 134} Cs decreased for solidified waste products containing Ce Sb in comparison to plain cement. 2 figs., 9 tabs.

  4. Chemical and mineralogical characterization of two commercial cements and its evolution in function of time

    International Nuclear Information System (INIS)

    Gutierrez B, O.

    2014-01-01

    Mineralogical evolution of Portland cement is studied during hydration process using materials characterization techniques as X-ray diffraction (XRD) and scanning electron microscopy (Sem) in order to analyze the changes in the various cement minerals as alite, belite, celite, during processing to the hydrated phases of tobermorite gel, portlandite and ettringite, respectively, in the cement paste setting at different ages (3, 7 and 28 days). It was found that the hydration process occurs differently in each mineral because of their reaction rates or changes they experience in their crystals during processing of anhydrous to hydrated phase. You may notice changes in the appearance of the dough as you go hydration and the formation of tobermorite gel, portlandite and ettringite. (Author)

  5. Natural cement as the precursor of Portland cement: Methodology for its identification

    International Nuclear Information System (INIS)

    Varas, M.J.; Alvarez de Buergo, M.; Fort, R.

    2005-01-01

    When cements appeared in the 19th century, they took the place of traditional binding materials (lime, gypsum, and hydraulic lime) which had been used until that time. Early cements can be divided into two groups, natural and artificial (Portland) cements. Natural cements were introduced first, but their widespread usage was short-lived as they were quickly replaced by artificial cements (Portland), still the most important and predominant today. The main differences between natural and artificial cements arise during the manufacturing process. The final properties of the cements are greatly influenced by differences in the raw materials and burning temperatures employed. The aim of this paper is to assess the efficiency of traditional analytical techniques (petrographic microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR)) used to differentiate natural and artificial cements

  6. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    Science.gov (United States)

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  7. Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature

    International Nuclear Information System (INIS)

    Ye, G.; Liu, X.; De Schutter, G.; Taerwe, L.; Vandevelde, P.

    2007-01-01

    Self-compacting concrete, as a new smart building material with various advanced properties, has been used for a wide range of structures and infrastructures. However little investigation have been reported on the properties of Self-compacting when it is exposed to elevated temperatures. Previous experiments on fire test have shown the differences between high performance concrete and traditional concrete at elevated temperature. This difference is largely depending on the microstructural properties of concrete matrix, i.e. the cement paste, especially on the porosity, pore size distribution and the connectivity of pores in cement pastes. In this contribution, the investigations are focused on the cement paste. The phase distribution and microstructural changes of self-compacting cement paste at elevated temperatures are examined by mercury intrusion porosimetry and scanning electron microscopy. The chemical decomposition of self-compacting cement paste at different temperatures is determined by thermogravimetric analysis. The experimental results of self-compacting cement paste are compared with those of high performance cement paste and traditional cement paste. It was found that self-compacting cement paste shows a higher change of the total porosity in comparison with high performance cement paste. When the temperature is higher than 700 deg. C, a dramatic loss of mass was observed in the self-compacting cement paste samples with addition of limestone filler. This implies that the SCC made by this type of self-compacting cement paste will probably show larger damage once exposed to fire. Investigation has shown that 0.5 kg/m 3 of Polypropylene fibers in the self-compacting cement paste can avoid the damage efficiently

  8. Catalyst and processing effects on metal-assisted chemical etching for the production of highly porous GaN

    International Nuclear Information System (INIS)

    Geng, Xuewen; Grismer, Dane A; Bohn, Paul W; Duan, Barrett K; Zhao, Liancheng

    2013-01-01

    Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal–semiconductor interface. (paper)

  9. Solidification of low-level radioactive liquid waste using a cement-silicate process

    International Nuclear Information System (INIS)

    Grandlund, R.W.; Hayes, J.F.

    1979-01-01

    Extensive use has been made of silicate and Portland cement for the solidification of industrial waste and recently this method has been successfully used to solidify a variety of low level radioactive wastes. The types of wastes processed to date include fuel fabrication sludges, power reactor waste, decontamination solution, and university laboratory waste. The cement-silicate process produces a stable solid with a minimal increase in volume and the chemicals are relatively inexpensive and readily available. The method is adaptable to either batch or continuous processing and the equipment is simple. The solid has leaching characteristics similar to or better than plain Portland cement mixtures and the leaching can be further reduced by the use of ion-exchange additives. The cement-silicate process has been used to solidify waste containing high levels of boric acid, oils, and organic solvents. The experience of handling the various types of liquid waste with a cement-silicate system is described

  10. Nano-Inclusions Applied in Cement-Matrix Composites: A Review

    Directory of Open Access Journals (Sweden)

    Guillermo Bastos

    2016-12-01

    Full Text Available Research on cement-based materials is trying to exploit the synergies that nanomaterials can provide. This paper describes the findings reported in the last decade on the improvement of these materials regarding, on the one hand, their mechanical performance and, on the other hand, the new properties they provide. These features are mainly based on the electrical and chemical characteristics of nanomaterials, thus allowing cement-based elements to acquire “smart” functions. In this paper, we provide a quantitative approach to the reinforcements achieved to date. The fundamental concepts of nanoscience are introduced and the need of both sophisticated devices to identify nanostructures and techniques to disperse nanomaterials in the cement paste are also highlighted. Promising results have been obtained, but, in order to turn these advances into commercial products, technical, social and standardisation barriers should be overcome. From the results collected, it can be deduced that nanomaterials are able to reduce the consumption of cement because of their reinforcing effect, as well as to convert cement-based products into electric/thermal sensors or crack repairing materials. The main obstacle to foster the implementation of such applications worldwide is the high cost of their synthesis and dispersion techniques, especially for carbon nanotubes and graphene oxide.

  11. Feasibility of producing nano cement in a traditional cement factory in Iraq

    Directory of Open Access Journals (Sweden)

    Sada Abdalkhaliq Hasan Alyasri

    2017-12-01

    Full Text Available This study investigates the economic feasibility of producing nano cement through the establishment of a production line within an existing cement factory. Creating a nano cement production line within the Alkufa Cement factory in Iraq is selected as a case study. Evaluation measures including internal rate of return (IRR, net present value (NPV and breakeven point (BEP are used to evaluate the possible gain that can be achieved from this option. The results demonstrated a positive NPV. The IRR is found to be 26.8% and BEP is reached within 3 years after the establishment of the line. This indicates that producing nano cement in the existing cement factory is economically feasible and can be more advantageous than the ordinary cement.

  12. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    Science.gov (United States)

    Keeling, Parnell; Lennon, Alexander B; Kenny, Patrick J; O'Reilly, Peter; Prendergast, Patrick J

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct. Primary cement mantles were formed by cementing a polished stem into sections of tubular steel. If in the test group, the mantle underwent conditioning in saline to simulate ageing and was subject to a fatigue of 1 million cycles. If in the control group no such conditioning or fatigue was carried out. The cement-in-cement procedure was then undertaken. Both groups underwent a fatigue of 1 million cycles subsequent to the revision procedure. Application of a Mann-Whitney test on the recorded subsidence (means: 0.51, 0.46, n=10+10, P=0.496) and inducible displacement (means: 0.38, 0.36, P=0.96) revealed that there was no statistical difference between the groups. This study represents further biomechanical investigation of the mechanical behaviour of cement-in-cement revision constructs. Results suggest that pre-revision fatigue and ageing of the cement may not be deleterious to the mechanical performance of the revision construct. Thus, this study provides biomechanical evidence to back-up recent successes with this useful revision technique. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. A medicated polycarboxylate cement to prevent complications in composite resin therapy

    International Nuclear Information System (INIS)

    Okamoto, Y.; Shintani, H.; Yamaki, M.

    1990-01-01

    Preparative treatment is the preferred method to protect the dentin and pulp from complications in composite resin therapy. This study investigated the in vivo effects of the polycarboxylate cement containing zinc fluoride and tannic acid in composite resin restorations. Scanning electron micrographs established that the composite resin failed to contact the axial wall. The gaps varied from 10 to 60 microns. However, this polycarboxylate cement was shown to provide excellent adaptation to dentin when used as a base and its chemical adhesion allowed it to make close contact with the unetched dentin. The newly developed electron probe x-ray microanalyzer revealed that the in vivo penetration of fluoride and zinc occurred through the dentinal tubules. When this polycarboxylate cement was used, the orifices of dentinal tubules were partially occluded, possibly with the smear layer fixed by tannic acid. In addition, by releasing the components, this polycarboxylate cement adds acid resistance to dentin and increases the resistance of dentin collagen to proteolytic enzymes. As such this polycarboxylate cement offers advantages as a base to composite resin therapy

  14. Size-controlled synthesis of transition metal nanoparticles through chemical and photo-chemical routes

    Science.gov (United States)

    Tangeysh, Behzad

    The central objective of this work is developing convenient general procedures for controlling the formation and stabilization of nanoscale transition metal particles. Contemporary interest in developing alternative synthetic approaches for producing nanoparticles arises in large part from expanding applications of the nanomaterials in areas such as catalysis, electronics and medicine. This research focuses on advancing the existing nanoparticle synthetic routes by using a new class of polymer colloid materials as a chemical approach, and the laser irradiation of metal salt solution as a photo-chemical method to attain size and shape selectivity. Controlled synthesis of small metal nanoparticles with sizes ranging from 1 to 5nm is still a continuing challenge in nanomaterial synthesis. This research utilizes a new class of polymer colloid materials as nano-reactors and protective agents for controlling the formation of small transition metal nanoparticles. The polymer colloid particles were formed from cross-linking of dinegatively charged metal precursors with partially protonated poly dimethylaminoethylmethacrylate (PDMAEMA). Incorporation of [PtCl6]2- species into the colloidal particles prior to the chemical reduction was effectively employed as a new strategy for synthesis of unusually small platinum nanoparticles with narrow size distributions (1.12 +/-0.25nm). To explore the generality of this approach, in a series of proof-of-concept studies, this method was successfully employed for the synthesis of small palladium (1.4 +/-0.2nm) and copper nanoparticles (1.5 +/-0.6nm). The polymer colloid materials developed in this research are pH responsive, and are designed to self-assemble and/or disassemble by varying the levels of protonation of the polymer chains. This unique feature was used to tune the size of palladium nanoparticles in a small range from 1nm to 5nm. The procedure presented in this work is a new convenient room temperature route for synthesis of

  15. Micromechanical performance of interfacial transition zone in fiber-reinforced cement matrix

    Science.gov (United States)

    Zacharda, V.; Němeček, J.; Štemberk, P.

    2017-09-01

    The paper investigates microstructure, chemical composition and micromechanical behavior of an interfacial transition zone (ITZ) in steel fiber reinforced cement matrix. For this goal, a combination of scanning electron microscopy (SEM), nanoindentation and elastic homogenization theory are used. The investigated sample of cement paste with dispersed reinforcement consists of cement CEM I 42,5R and a steel fiber TriTreg 50 mm. The microscopy revealed smaller portion of clinkers and larger porosity in the ITZ. Nanoindentation delivered decreased elastic modulus in comparison with cement bulk (67%) and the width of ITZ (∼ 40 μm). The measured properties served as input parameters for a simple two-scale model for elastic properties of the composite. Although, no major influence of ITZ properties on the composite elastic behavior was found, the findings about the ITZ reduced properties and its size can serve as input to other microstructural fracture based models.

  16. Immobilization of citric acid solutions in portland cement

    International Nuclear Information System (INIS)

    Lopes, Valdir M.; Rzyski, Barbara M.

    1997-01-01

    Decontamination processes by using citric acid on certain items used in the nuclear area, can result in large volumes of liquid wastes with low activity or effluents, contaminated with uranium and some elements dangerous to the environment. A great number of installations that have decontamination processes adopt the zero discharge philosophy. So, one of the forms to isolate the solutions is by reducing its volume through the evaporation process. The generated must can be neutralized and encapsulated or immobilized in Portland cement. This work propose a chemical technique to destroy the citric acid in the decontamination solutions instead of neutralization and, depending on the installation convenience, a direct cement immobilization of these solutions or of the evaporation mud. The results obtained in this work involve data about the workability, setting time and mechanical resistance, after 28 days of sealed cure, for samples with water-cement ratios of 4, 0.5 and 0.6, by weight. (author). 5 refs., 2 tabs

  17. Metal accumulation by stream bryophytes, related to chemical speciation

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)], E-mail: et@ceh.ac.uk; Vincent, C.D.; Lawlor, A.J.; Lofts, S. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2008-12-15

    Metal accumulation by aquatic bryophytes was investigated using data for headwater streams of differing chemistry. The Windermere Humic Aqueous Model (WHAM) was applied to calculate chemical speciation, including competitive proton and metal interactions with external binding sites on the plants. The speciation modelling approach gives smaller deviations between observed and predicted bryophyte contents of Cu, Zn, Cd and Pb than regressions based on total filtered metal concentrations. If all four metals, and Ni, are considered together, the WHAM predictions are superior at the 1% level. Optimised constants for bryophyte binding by the trace metals are similar to those for humic substances and simple carboxylate ligands. Bryophyte contents of Na, Mg and Ca are approximately explained by binding at external sites, while most of the K is intracellular. Oxide phases account for some of the Al, and most of the Mn, Fe and Co. - Speciation modelling can be used to interpret the accumulation of Ni, Cu, Zn, Cd and Pb by bryophytes, supporting its use to quantify trace metal bioavailability in the field.

  18. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    Science.gov (United States)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  19. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    Directory of Open Access Journals (Sweden)

    Konstantin Sobolev

    2003-01-01

    Full Text Available The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and - at the same time - uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  20. Tunisian gypsums: Characteristics and use in cement

    Science.gov (United States)

    Mahmoudi, Salah; Bennour, Ali; Chalwati, Youssef; Souidi, Khouloud; Thabet, Manel; Srasra, Ezzedine; Zargouni, Fouad

    2016-09-01

    Gypsum materials of hundred meters thickness and interbedded with marine claystones and limestones from different paleogeographic sectors in the Tunisian territory are studied to assess their suitability for cement production. For this reason, thirty representative samples are analysed by chemical, physical and geotechnical tests. The obtained results for the studied gypsum materials are compared to Tunisian and European norms and with the local cements, currently marketed and which obey international norms. Indeed, for all samples hydraulic modulus HM, silica modulus SM and alumina modulus AM vary from (2.37-2.44), (2.48-2.68) and (1.45-2.5), respectively; whereas the required values for these modulus are (1.5-2.5), (2-3) and (1.5-2.5). The same behavior is observed for mineralogical analyses of C3S, C2S, C3A and C4AF and compressive strength at different ages. Briefly, Tunisia contains important reserves of gypsum scattered and spread over the Tunisian territory and can be used for cement production.

  1. Low force cementation.

    Science.gov (United States)

    Wilson, P R

    1996-07-01

    The marginal adaptation of full coverage restorations is adversely affected by the introduction of luting agents of various minimum film thicknesses during the cementation process. The increase in the marginal opening may have long-term detrimental effects on the health of both pulpal and periodontal tissues. The purpose of this study was to determine the effects of varying seating forces (2.5, 12.5, 25 N), venting, and cement types on post-cementation marginal elevation in cast crowns. A standardized cement space of 40 microns was provided between a machined gold crown and a stainless steel die. An occlusal vent was placed that could be opened or closed. The post-cementation crown elevation was measured, following the use of two commercially available capsulated dental cements (Phosphacap, and Ketac-cem Applicap). The results indicate that only the combination of Ketac-Cem Applicap and crown venting produced post-cementation crown elevation of less than 20 microns when 12.5 N seating force was used. Higher forces (25 N) and venting were required for comparable seating when using Phosphacap (19 microns). The amount of force required to allow maximum seating of cast crowns appears to be cement specific, and is reduced by effective venting procedures.

  2. Some Mechanical Properties of Concrete by using Manufactured Blended Cement with Grinded Local Rocks

    Directory of Open Access Journals (Sweden)

    Zena K. Abbas Al-Anbori

    2016-03-01

    Full Text Available he use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20 % of grinded local rocks (limestone, quartzite and porcelinite from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements. The percentage of the compressive strength for blended cement with 10% replacement are (20, 11 and 5 % , (2 , 12 and, 13 % and (18, 15 and 16 % for limestone , quartzite and porcelinite respectively at (7,28 and 90days for each compare to the reference mix, while blended cement with 20% replacement are (-3, -5 and -11 ,(6, -4% and -5 and (6, 4 and 6 % for limestone , quartzite and porcelinite respectively at (7, 28 and 90days compare to the reference mix .The other mechanical properties (flexural tensile strength and splitting tensile strength are the same phenomena of increase and decrease in compressive strength. The results indicated that the manufacture Portland-limestone cement, Portland-quartzite cement and Portland-porcelinite cement with 10% replacement of cement with improvable mechanical properties while the manufacture Portland-porcelinite cement with 20% replacement of cement with slight improvable mechanical properties and more economical cost.

  3. Organic complexation of radionuclides in cement pore water: a case study

    International Nuclear Information System (INIS)

    Hummel, W.

    1993-01-01

    The influence of the organic ligands EDTA (ethylenediaminetetraacetate), NTA (nitrilotriacetate), citrate and oxalate on the speciation of Cs, Sr, Ra, Ni, Pd, Tc, Sn, Zr, Th, U, Np, Pu, Am and Cm in cement pore waters is studied by means of chemical equilibria. Emphasis is laid on the development of a complete and consistent thermodynamic data base for the high pH range beyond pH 11. Missing data are estimated using free-energy relationships derived from a large number of experimentally determined stability constants compiled from the literature. In case where a sound estimation of stability constants is not possible due to the scarcity of quantitative information, at least upper limits are assessed for the stability of all possibly important species. Chemical equilibria were computed within the range of pH 11 to 13 and a range of Ca concentrations from 0.001 to 0.1 mol -1 (M). ETDA complexes predominate only in the case of Ni. In all other cases, the competition of Ca-organic or metal-hydroxo complexes successfully prevent any significant influence of EDTA, NTA, citrate or oxalate on the speciation of these radionuclides. (author) 10 figs., 9 refs

  4. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes

    International Nuclear Information System (INIS)

    Qin, Lang; Cheng, Zhuo; Guo, Mengqing; Fan, Jonathan A.; Fan, Liang-Shih

    2017-01-01

    Transition metal are heavily used in chemical looping technologies because of their high oxygen carrying capacity and high thermal reactivity. These oxygen activities result in the oxide formation and oxygen vacancy formation that affect the nanoscale crystal phase and morphology within these materials and their subsequent bulk chemical behavior. In this study, two selected earlier transition metals manganese and cobalt as well as two selected later transition metals copper and nickel that are important to chemical looping reactions are investigated when they undergo cyclic redox reactions. We found Co microparticles exhibited increased CoO impurity presence when oxidized to Co_3O_4 upon cyclic oxidation; CuO redox cycles prefer to be limited to a reduced form of Cu_2O and an oxidized form of CuO; Mn microparticles were oxidized to a mixed phases of MnO and Mn_3O_4, which causes delamination during oxidation. For Ni microparticles, a dense surface were observed during the redox reaction. The atomistic thermodynamics methods and density functional theory (DFT) calculations are carried out to elucidate the effect of oxygen dissociation and migration on the morphological evolution of nanostructures during the redox processes. Our results indicate that the earlier transition metals (Mn and Co) tend to have stronger interaction with O_2 than the later transition metals (Ni and Cu). Also, our modified Brønsted−Evans−Polanyi (BEP) relationship for reaction energies and total reaction barriers reveals that reactions of earlier transition metals are more exergonic and have lower oxygen dissociation barriers than those of later transition metals. In addition, it was found that for these transition metal oxides the oxygen vacancy formation energies increase with the depth. The oxide in the higher oxidation state of transition metal has lower vacancy formation energy, which can facilitate forming the defective nanostructures. The fundamental understanding of these metal

  5. Characterization of Cement Particles Found in Peri-implantitis-Affected Human Biopsy Specimens.

    Science.gov (United States)

    Burbano, Maria; Wilson, Thomas G; Valderrama, Pilar; Blansett, Jonathan; Wadhwani, Chandur P K; Choudhary, Pankaj K; Rodriguez, Lucas C; Rodrigues, Danieli C

    2015-01-01

    Peri-implantitis is a disease characterized by soft tissue inflammation and continued loss of supporting bone, which can result in implant failure. Peri-implantitis is a multifactorial disease, and one of its triggering factors may be the presence of excess cement in the soft tissues surrounding an implant. This descriptive study evaluated the composition of foreign particles from 36 human biopsy specimens with 19 specimens selected for analysis. The biopsy specimens were obtained from soft tissues affected by peri-implantitis around cement-retained implant crowns and compared with the elemental composition of commercial luting cement. Nineteen biopsy specimens were chosen for the comparison, and five test cements (TempBond, Telio, Premier Implant Cement, Intermediate Restorative Material, and Relyx) were analyzed using scanning electron microscopy equipped with energy dispersive x-ray spectroscopy. This enabled the identification of the chemical composition of foreign particles embedded in the tissue specimens and the composition of the five cements. Statistical analysis was conducted using classification trees to pair the particles present in each specimen with the known cements. The particles in each biopsy specimen could be associated with one of the commercial cements with a level of probability ranging between .79 and 1. TempBond particles were found in one biopsy specimen, Telio particles in seven, Premier Implant Cement particles in four, Relyx particles in four, and Intermediate Restorative Material particles in three. Particles found in human soft tissue biopsy specimens around implants affected by peri-implant disease were associated with five commercially available dental cements.

  6. Ultrafine portland cement performance

    Directory of Open Access Journals (Sweden)

    C. Argiz

    2018-04-01

    Full Text Available By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.

  7. Evaluation of Heat Transfer to the Implant-Bone Interface During Removal of Metal Copings Cemented onto Titanium Abutments.

    Science.gov (United States)

    Cakan, Umut; Cakan, Murat; Delilbasi, Cagri

    2016-01-01

    The aim of this investigation was to measure the temperature increase due to heat transferred to the implant-bone interface when the abutment screw channel is accessed or a metal-ceramic crown is sectioned buccally with diamond or tungsten carbide bur using an air rotor, with or without irrigation. Cobalt-chromium copings were cemented onto straight titanium abutments. The temperature changes during removal of the copings were recorded over a period of 1 minute. The sectioning of coping with diamond bur and without water irrigation generated the highest temperature change at the cervical part of the implant. Both crown removal methods resulted in an increase in temperature at the implant-bone interface. However, this temperature change did not exceed 47°C, the potentially damaging threshold for bone reported in the literature.

  8. Influence of the mineralogical composition of cement in the diffusion of chemical species; Influencia de la composicion mineralogica del cemento en la difusion de especies quimicas

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, E.

    2015-07-01

    , setting time, color and others. Portland cements commonly used in the construction industry, they are based primarily on the mineral phases of limestone and silica. In conventional cement admixtures the chemical reactivity depends on the ratio of tricalcium and dicalcium silicate (C{sub 3}S/C{sub 2}S), the tricalcium aluminate (C{sub 3}A) influences in the setting time and tetra calcium ferro aluminate (C{sub 4}AF) gives a different color to the cement. In this research the mineralogical composition of two commercial cements is studied and its influence on the phenomenon of radionuclides retention. For this particular concrete discs were manufactured with water, sand and two commercial cements: Tolteca Extra CPC 30-RRS and Cruz Azul CPC Type II 30-R. The solid observation techniques used for analysis of the cement paste and concrete they are: X-ray Diffraction and Scanning Electron Microscopy, as well as the nuclear analytic techniques of Moessbauer and X-ray Fluorescence. (Author)

  9. Metal-assisted chemical etch porous silicon formation method

    Science.gov (United States)

    Li, Xiuling; Bohn, Paul W.; Sweedler, Jonathan V.

    2004-09-14

    A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a silicon surface. The surface is then etched in a solution including HF and an oxidant for a brief period, as little as a couple seconds to one hour. A preferred oxidant is H.sub.2 O.sub.2. Morphology and light emitting properties of porous silicon can be selectively controlled as a function of the type of metal deposited, Si doping type, silicon doping level, and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.

  10. A study on super-sulfated cement using Dinh Vu phosphogypsum

    Science.gov (United States)

    Lam, Nguyen Ngoc

    2018-04-01

    Super-sulfated cement (SSC) is a newly developed unburnt cementitious material. It is a kind of environmental-friendly cementitious material due to its energy-saving, carbon emission reducing, and waste-utilization. It mainly composes of phosphogysum (PG) and ground granulated blast furnace slag (GFS), with a small amount of cement. In Vietnam, the Diammonium Phosphate DAP – Dinh Vu fertilizer plant in Dinh Vu industrial zone in the northern port city of Hai Phong – has discharged millions of tons of solid waste containing gypsum after 9 years of operation. The waste has changed the color of the water, eroded metal and destroyed fauna and floral systems in the surrounding area. Notably, according to the environmental impact assessment, the gypsum landfill area is supposed to be 13 hectares and the storage time reaches up to five years. This paper presents the experimental results on SSC using a high amount of Dinh Vu phosphogypsum and GFS in comparison with those of ordinary Portland cement (PC). The results show that the setting time of SSC is much longer than that of Portland cement but the compressive strength of SSC can be obtained 45-50 MPa at the age of 28 days, similar to that of the control sample using 100% PC40, and 69MPa at the age of 90 days. This value even exceeds the compressive strength of the PC40 cement.

  11. A thermodynamic approach to the hydration of sulphate-resisting Portland cement

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Wieland, Erich

    2006-01-01

    A thermodynamic approach is used to model changes in the hydrate assemblage and the composition of the pore solution during the hydration of calcite-free and calcite-containing sulphate-resisting Portland cement CEM I 52.5 N HTS. Modelling is based on thermodynamic data for the hydration products and calculated hydration rates for the individual clinker phases, which are used as time-dependent input parameters. Model predictions compare well with the composition of the hydrate assemblage as observed by TGA and semi-quantitative XRD and with the experimentally determined compositions of the pore solutions. The calculations show that in the presence of small amounts of calcite typically associated with Portland cement, C-S-H, portlandite, ettringite and calcium monocarbonate are the main hydration products. In the absence of calcite in the cement, however, siliceous hydrogarnet instead of calcium monocarbonate is observed to precipitate. The use of a higher water-to-cement ratio for the preparation of a calcite-containing cement paste has a minor effect on the composition of the hydrate assemblage, while it significantly changes the composition of the pore solution. In particular, lower pH value and higher Ca concentrations appear that could potentially influence the solubility and uptake of heavy metals and anions by cementitious materials

  12. Equilibrium leach tests with cobalt in the system cemented waste form/container material/aqueous solution

    International Nuclear Information System (INIS)

    Vejmelka, P.; Koester, R.; Lee, M. J.; Han, K. W.

    1991-01-01

    The equilibrium concentrations of Co in the system of cemented waste form/aqueous solutions were determined including the effect of the container material and its corrosion products under the respective conditions. The chemical conditions in the near field of the waste form were characterized by measurement of the pH and E h value. As disposal relevant solutions, saturated sodium chloride, Q-brine (main constituent MgCl 2 ) and a granitic type groundwater were used. For comparison, also experiments using deionized water were performed. In all systems investigated the cemented waste form itself has a strong influence on the chemical conditions in the near field. The pH and E h values are affected in all cases by the addition of the cemented waste form. There is no or only a slight difference between the E h values if iron powder or iron hydroxide is added to the cemented waste form/solution systems, but the E h is markedly decreased when iron powder is added to the solution free of cement. The Co concentration is decreased in all solutions by the addition of the cemented waste form, the largest effect is observed in Q-brine and this can be attributed either to the sorption of the Co-ions on the corrosion products of the cement or to the coprecipitation of Co-hydroxide and Mg-hydroxide. In the other solutions the Co concentration is decreased by precipitation of Co-hydroxide due to the high pH value of 12.5, and the concentrations are comparable for the different solutions

  13. Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete

    International Nuclear Information System (INIS)

    Shi Huisheng; Kan Lili

    2009-01-01

    The characteristics of municipal solid waste incineration (MSWI) fly ash, surface leaching toxicity and successive leaching concentration of heavy metals from MSWI fly ash-cement hardened pastes were studied. And, the relationships between leaching concentrations of heavy metals and leaching time were also discussed. Experimental results showed that immobilization effect of cement on MSWI fly ash is good. Even if MSWI fly ash-cement hardened pastes were damaged, the leaching toxicity is still in a safety range. In early leaching stage, the surface leaching rate is relatively a little high, up to 10 -5 -10 -4 cm d -1 order of magnitude, in the later time of leaching, its rate rapidly declined, down to 10 -7 . Most of leached heavy metals are produced at early ages. The leaching concentration of heavy metals and leaching time has strong positive relationships. In factual utilizing circumstances, heavy metals' leaching from MSWI fly ash-cement hardened pastes is a very slow and gradually diluting process. The leaching toxicity of heavy metals is far lower than that of the National Standard of China, and minimum harmful matters can be contained and released in the environment. Reusing of MSWI fly ash as partial replacement for cement in concrete mixes is potentially feasible.

  14. Radioactive waste cementation

    International Nuclear Information System (INIS)

    Soriano B, A.

    1996-01-01

    This research was carried out to develop the most adequate technique to immobilize low and medium-activity radioactive waste. different brands of national cement were used, portland and pozzolanic cement. Prismatic and cylindrical test tubes were prepared with different water/cement (W/C) relationship. Additives such a as clay and bentonite were added in some other cases. Later, the properties of these test tubes were evaluated. Properties such as: mechanical resistance, immersion resistance, lixiviation and porosity resistance. Cement with the highest mechanical resistance values, 62,29 MPa was pozzolanic cement for a W/C relationship of 0,35. It must be mentioned that the other types of cements reached a mechanical resistance over 10 MPa, a value indicated by the international standards for transportation and storage of low and medium-activity radioactive waste at a superficial level. However, in the case of immersion resistance, Sol cement (portland type I) with a W/C relationship of 0,35 reached a compression resistance over 61,92 MPa; as in the previous cases, the other cements reached a mechanical resistance > 10 MPa. Regarding porosity, working with W/C relationships = 0,35 0,40 and 0,45, without additives and with additives, the percentage of porosity found for all cements is lower than 40% percentage indicated by international standards. With regard to the lixiviation test, pozzolanic cement best retained Cesium-137 and Cobalt-60, and increased its advantages when bentonite was added, obtaining a lixiviation rate of 2,02 x E-6 cm/day. Sol cement also improved its properties when bentonite was added and obtained a lixiviation rate of 2,84 x E-6 cm/day for Cesium-137. However, Cobalt-60 is almost completely retained with the 3 types of cement with or without additives, reaching the limits indicated by the international standards for the lixiviation rate of beta-gamma emitter < 5,00E-4 cm/day. Characterizing the final product involves the knowledge of its

  15. Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment.

    Science.gov (United States)

    Clancy, Tara M; Snyder, Kathryn V; Reddy, Raghav; Lanzirotti, Antonio; Amrose, Susan E; Raskin, Lutgarde; Hayes, Kim F

    2015-12-30

    Cement stabilization of arsenic-bearing wastes is recommended to limit arsenic release from wastes following disposal. Such stabilization has been demonstrated to reduce the arsenic concentration in the Toxicity Characteristic Leaching Procedure (TCLP), which regulates landfill disposal of arsenic waste. However, few studies have evaluated leaching from actual wastes under conditions similar to ultimate disposal environments. In this study, land disposal in areas where flooding is likely was simulated to test arsenic release from cement stabilized arsenic-bearing iron oxide wastes. After 406 days submersed in chemically simulated rainwater, wastes. Presenting the first characterization of cement stabilized waste using μXRF, these results revealed the majority of arsenic in cement stabilized waste remained associated with iron. This distribution of arsenic differed from previous observations of calcium-arsenic solid phases when arsenic salts were stabilized with cement, illustrating that the initial waste form influences the stabilized form. Overall, cement stabilization is effective for arsenic-bearing wastes when acidic conditions can be avoided. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Physico-chemical parameters and heavy metal contents of Ibuya ...

    African Journals Online (AJOL)

    The physico-chemical parameters and heavy metal contents of Ibuya River were investigated between September 2012 and August 2013 from four stations using standard methods to etermine acceptable water quality standards and evaluate possible sustainability of a thriving fisheries cum tourist sport fishing venture.

  17. Parameters of Alumina Cement and Portland Cement with Addition of Chalcedonite Meal

    Science.gov (United States)

    Kotwa, Anna

    2017-10-01

    Aluminous cement is a quick binder with special properties. It is used primarily to make non-standard monolithic components exposed to high temperatures, + 1300°C. It is also a component of adhesives and mortars. It has a very short setting time. It is characterized by rapid increase in mechanical strength and resistance to aggressive sulphates. It can be used in reinforced concrete structures. Laying of concrete, construction mortar made of alumina cement can be carried out even at temperatures of -10°C. This article discusses a comparison of the parameters of hardened mortar made of alumina cement GÓRKAL 40 and Portland cement CEM I 42.5R. The mortars contain an addition of chalcedonite meal with pozzolanic properties, with particle size of less than 0.063μm. The meal was added in amounts of 5% and 20% of cement weight. Chalcedonite meal used in the laboratory research is waste material, resulting from chalcedonite aggregate mining. It has the same properties as the rock from which it originates. We have compared the parameters of hardened mortar i.e. compressive strength, water absorption and capillarity. The addition of 20% chalcedonite meal to mortars made from aluminous cement will decrease durability by 6.1% relative to aluminous cement mortar without addition of meal. Considering the results obtained during the absorbency tests, it can be stated that the addition of chalcedonite meal reduces weight gains in mortars made with cement CEM I 42.5 R and alumina cement. Use of alumina cement without addition of meal in mortars causes an increase of mass by 248% compared to Portland cement mortars without additions, in the absorption tests. The addition of chalcedonite meal did not cause increased weight gain in the capillary action tests. For the alumina cement mortars, a lesser weight gains of 24.7% was reported, compared to the Portland cement mortar after 28 days of maturing.

  18. Influence of chemical pretreatment of hard metal substrates for diamond deposition

    International Nuclear Information System (INIS)

    Buck, V.; Kluwe, H.; Schmiler, B.; Deuerler, F.

    2001-01-01

    Diamond coated cutting tools are of increasing importance in the fields of high speed cutting, dry machining or machining of special materials such as metal-matrix-composites. A well known problem is the poor adhesion of diamond films on hard metals due to the Co- or Ni-binder that catalyzes the formation of graphite. Several methods - such as the application of intermediate layers or mechanical or chemical pretreatment of the hard metal substrate - have been developed to overcome this effect. Usually chemical pretreatment is used in order to reduce the concentration of binder phase on the surface that is to be coated. Surprisingly pretreatment with agents such as Murakami's solution result in improved adhesion and nucleation of diamond films while the concentration of the binder phase on the surface is enhanced. This 'contradiction' can be explained by proving that the surface is converted into a very thin oxide/hydroxide film. (author)

  19. Biomonitoring in California firefighters: metals and perfluorinated chemicals.

    Science.gov (United States)

    Dobraca, Dina; Israel, Leslie; McNeel, Sandra; Voss, Robert; Wang, Miaomiao; Gajek, Ryszard; Park, June-Soo; Harwani, Suhash; Barley, Frank; She, Jianwen; Das, Rupali

    2015-01-01

    To assess California firefighters' blood concentrations of selected chemicals and compare with a representative US population. We report laboratory methods and analytic results for cadmium, lead, mercury, and manganese in whole blood and 12 serum perfluorinated chemicals in a sample of 101 Southern California firefighters. Firefighters' blood metal concentrations were all similar to or lower than the National Health and Nutrition Examination Survey (NHANES) values, except for six participants whose mercury concentrations (range: 9.79 to 13.42 μg/L) were close to or higher than the NHANES reporting threshold of 10 μg/L. Perfluorodecanoic acid concentrations were elevated compared with NHANES and other firefighter studies. Perfluorodecanoic acid concentrations were three times higher in this firefighter group than in NHANES adult males. Firefighters may have unidentified sources of occupational exposure to perfluorinated chemicals.

  20. Effect of various amounts of nanosilver incorporation on the mechanical properties of resin modified glass-ionomer cement

    Directory of Open Access Journals (Sweden)

    Roza Haghgoo

    2013-08-01

    Full Text Available   Background and Aims: Metallic nano-particles show exclusive biological, chemical and physical characteristic. The purpose of this research was to evaluate the effect of various amounts of nanosilver incorporation (0 (as control, 20, 40, 80, 120, 200 ppm on the mechanical Properties ( compressive and flexural strength of resin modified Glass ionomer Cement.   Materials and Methods: Based on ISO 4049 and ISO 9971 for polyalkenoid cements, 90 cases in each group were prepared for the flexural and compressive strength. Specimens in 6 groups with different amounts of nanosilver (20, 40, 80, 120 and 200 ppm and control (Fuji II LC improved, stored in distilled water at 37 ° C for 1 day and 30 days. Flexural strength, using a three-point bending method, Modulus of elasticity and the compressive strength were measured by universal testing machine (Zwick with crosshead speed of 0.5 mm/min. Data were analyzed using two-way ANOVA and Tukey post HOC test.   Results: The flexural strength and modulus of various amounts of nanosilver incorporation of resin modified glass-ionomer cement were not significantly different (P>0.05. The compressive strength of incorporating of20 ppm compared with control (P=0.01, 40 ppm (P=0.02 and 80 ppm compared with control (P<0.001 were increased. The flexural strength and compressive strength of Fuji II LC, containing nanosilver particles were increased after 1 day and 1 month significantly (P<0.001.   Conclusion: Incorporation of 20 to 80 ppm nanosilver into Fuji II LC had increased mechanical properties compared to the original cement.

  1. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Lambertin, D.; Lahalle, H.; Antonucci, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Cannes, C.; Delpech, S. [Institut de Physique Nucléaire, CNRS, Univ. Paris-Sud 11, 91406 Orsay Cedex (France)

    2014-10-15

    Highlights: • Binders capable of reducing the pore solution pH compared with Portland cements are reviewed. • The binders are then tested against aluminum corrosion. • Corrosion of aluminum metal is minimal with magnesium phosphate cement. • The H{sub 2} release can be reduced still further by adding LiNO{sub 3} to the mixing solution. • Electrochemical characterizations show that aluminum tends to a passive state. - Abstract: In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder.

  2. Characterization of different types of ceramic waste and its incorporation to the cement paste

    International Nuclear Information System (INIS)

    Cunha, G.A.; Evangelista, A.C.J.; Almeida, V.C. de

    2009-01-01

    The porcelain tike is a product resulting from the technological development of ceramic plating industry. Its large acceptation by the consumer market is probably linked with certain properties, such as low porosity, high mechanical resistance, facility in maintenance, besides being a material of modern and versatile characteristics. The aim of this work was characterizing the different ceramic wastes (enameled and porcelain tike) and evaluating its influence on the mechanical behavior in cement pastes. The wastes were characterized through the determination of its chemical composition, size particle distribution and X-ray diffraction. Cement pastes + wastes were prepared in 25% and 50% proportions and glue time determination, water absorption and resistance to compression assays were taken. The results indicate that although the wastes don't show any variation in the elementary chemical composition, changes in the cement paste behavior related to the values of resistance to compression were observed. (author)

  3. Radioactive waste-Portland cement systems: I, radionuclide distribution

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Glasser, F.P.; Lachowski, E.E.

    1984-01-01

    Crystal chemical stabilization of radioactive wastes can be achieved during clinkering of, or with, ordinary portland cement. Waste loadings of 20 to 30 wt% are achieved by dilute solid solution of waste ions into cementitious host lattices. Higher waste loadings result in compatible noncementitious radiophases. The cementitious phases hydrate without loss of compressive strength. Crystallochemical relationships predict that the radionuclide partitioning in the anhydrous clinkered phases will be maintained in the hydration products. These cementitious hydroxylated radiophases would be in internal equilibrium under anticipated repository conditions. The radionuclide distributions observed are described in the context of established phase equilibria for commercial waste cement systems, but are applicable to transuranic, medium- and low-level wastes

  4. Study of chloride ion transport of composite by using cement and starch as a binder

    Energy Technology Data Exchange (ETDEWEB)

    Armynah, Bidayatul; Halide, Halmar; Zahrawani,; Reski, Nurhadi; Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are depending on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.

  5. Medium-active waste form characterization: the performance of cement-based systems. Task 3. Characterization of radioactive waste forms. A series of final reports (1985-89) No 1

    International Nuclear Information System (INIS)

    Atkins, M.; Beckley, N.; Carson, S.; Cowie, J.; Glasser, F.P.; Kindness, A.; Macphee, D.; Pointer, C.; Rahman, A.; Jappy, J.G.; Evans, P.A.; McHugh, G.; Natingley, N.J.; Wilding, C.

    1991-01-01

    The properties of cement systems which contribute to their immobilization potential for radwastes are characterized. In the short term, both physical and chemical properties of the matrix contribute to the immobilization potential, but in the longer term, chemical effects dominate. Before the interactions of cement with wastes can be fully assessed and data extrapolated into the future, it is necessary to be able to describe quantitatively the behaviour of cements themselves. A rigorous framework, based for the development on accessible physico-chemical variables, has been constructed. The model, as presently developed, is capable of describing the future performance of cements when leached at ∼ 20 0 C by relatively pure water. It embraces mainly six chemical components - Na 2 O, K 2 O, CaO, MgO, SiO 2 and water - together with limited data on the effect of sulphate, SO 4 -2 . The interaction of cements with inactive waste-stream constituents is described, principally sulphate and nitrate. The interaction between steel and cement is also re-examined. As a consequence of these studies, a firm scientific basis has been laid for modelling the behaviour of cemented systems at long ages, i.e., those beyond the period for which test data can be obtained

  6. Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey

    International Nuclear Information System (INIS)

    Damla, N.; Cevik, U.; Kobya, A.I.; Celik, A.; Celik, N.; Van Grieken, R.

    2010-01-01

    Different cement samples commonly used in building construction in Turkey have been analyzed for natural radioactivity using gamma-ray spectrometry. The mean activity concentrations observed in the cement samples were 52, 40 and 324 Bq kg -1 for 226 Ra, 232 Th and 40 K, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and world average limits. The radiological hazard parameters such as radium equivalent activities (Ra eq ), gamma index (I γ ) and alpha index (I α ) indices as well as terrestrial absorbed dose and annual effective dose rate were calculated and compared with the international data. The Ra eq values of cement are lower than the limit of 370 Bq kg -1 , equivalent to a gamma dose of 1.5 mSv y -1 . Moreover, the mass attenuation coefficients were determined experimentally and calculated theoretically using XCOM in some cement samples. Also, chemical compositions analyses of the cement samples were investigated.

  7. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    Directory of Open Access Journals (Sweden)

    Stefan L.

    2013-07-01

    Full Text Available In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+. Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement and CEM III (Portland cement + blastfurnace slag cements at early age and an explanation is proposed for the better stability of CEM III material.

  8. Evaluation of cement composites for tritiated water fixation, 1

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Sakuma, Youichi; Okamoto, Tadashi; Utsunomiya, Toru; Moriya, Toshio; Shimbo, Takashi; Higuchi, Masanori.

    1985-01-01

    The integrity of a waste package of tritiated waste is one of the most important parameters in proceeding safety assessments of tritiated waste disposal systems. Of the many terms governing the integrity of a waste package, the one that is directly connected with safety assessment is the leach rate of tritium from the solidified object. Experiments focusing on measurements of leach rates were therefore conducted. These experiments consisted of three stages, in the first stage experiment, types of cement and mix proportions were selected on the bases of (1) weight reduction, (2) micro-structure, (3) compressive strength, (4) ignition loss, and (5) chemical analysis. And two mix proportions each, for normal portland cement and special cement, were chosen for further testing. In the second stage, as a preliminary experiment for measuring the leach rate of tritium, the leach rate of deuterium was studied by measuring densities of immersed liquid. The examination of the relations between the leach rates and the beforementioned properties ((1) to (4) in the first stage experiment) clearly showed that the lower leach rate were achieved with the lower water-cement ratio which represented the higher density of the cement form. In the third stage experiment, it is planned hereafter to confirm the above results by carrying out leach tests for tritium. (author)

  9. Characterization of cement paste as engineered barrier of borehole repository

    International Nuclear Information System (INIS)

    Ferreira, Eduardo G.A.; Isiki, Vera L. K.; Miyamoto, Hissae; Marumo, Julio T.; Vicente, Roberto

    2009-01-01

    Results of axial rupture by compression of cylindrical cement paste samples are presented. This is part of a research on cement paste behavior aiming at investigating the durability of cementitious materials in the environment of repositories for radioactive waste. Portland cement paste is intended to be used as a backfill in a deep borehole for disposal of sealed radiation sources which concept is under development. The service life of the engineered barrier materials plays an important role in the long term safety of such facilities. Accelerated tests in laboratory are being used to evaluate the performance of cement paste under the temperature expected at some hundred meters below grade, under exposure to the radiation emitted by the sources, and under the attack of aggressive chemicals dissolved in the groundwater, during the millennia necessary for the decay of the most active and long-lived radionuclides present in the waste. The large variability in results of mechanical strength as measured by axial compression of cylindrical samples is the subject of this short communication. (author)

  10. Effects of Nanosilica on Early Age Stages of Cement Hydration

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2017-01-01

    Full Text Available Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydration are investigated. Isothermal calorimetry results show that at early ages (initial 72 hours the effects of nanosilica depend on the phenomenon by which the hydration is governed: when the hydration is chemically controlled, that is, during initial reaction, dormant period, and acceleratory period, the hydration rate is accelerated by adding nanosilica; when the hydration is governed by diffusion process, that is, during postacceleratory period, the hydration rate is decelerated by adding nanosilica. The Thermal Gravimetric Analysis on the samples at the hardened state (after 28 days of curing reveals that, after adding nanosilica, the hydration degree slightly increased compared to the plain paste.

  11. Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Sinicropi, Maria Stefania; Caruso, Anna [University of Calabria, Department of Pharmaceutical Sciences, Rende (Italy); Amantea, Diana [University of Calabria, Department of Pharmacobiology, Rende (Italy); Saturnino, Carmela [University of Salerno, Department of Pharmaceutical Sciences, Fisciano (Italy)

    2010-07-15

    Exposure to toxic metals is a well-known problem in industrialized countries. Metals interfere with a number of physiological processes, including central nervous system (CNS), haematopoietic, hepatic and renal functions. In the evaluation of the toxicity of a particular metal it is crucial to consider many parameters: chemical forms (elemental, organic or inorganic), binding capability, presence of specific proteins that selectively bind metals, etc. Medical treatment of acute and chronic metal toxicity is provided by chelating agents, namely organic compounds capable of interacting with metal ions to form structures called chelates. The present review attempts to provide updated information about the mechanisms, the cellular targets and the effects of toxic metals. (orig.)

  12. Recycling Jorf Lasfar fly ash as an additive to cement

    Directory of Open Access Journals (Sweden)

    Hamadi A

    2012-09-01

    Full Text Available Recycling fly ash is a good example of valorization of waste. It gives a solution the environmental problem by avoiding land filling, and reducing CO2 emission in the atmosphere. In this work we studied the physical-chemical characteristics of Jorf Lasfar fly ash. The parameters investigated were particle size, density, specific surface Blaine, chemical and mineralogical compositions. The techniques used are scanning electronic microscope (SEM, transmission electronic microscope (TEM, X-rays fluorescence (XRF, X-rays diffraction (XRD and atomic spectrometry emission coupled with inductive plasma ICP. We also conducted a study on the mechanical behavior of type CPJ45 cements produced from a combined grinding of clinker, limestone and gypsum. The substitution of a portion of the clinker by different percentages of fly ash was conducted. We noticed that the compression and bending resistances for these mixtures went through a maximum at 28 days with the addition of 7% (by mass of ash. This result showed that the mineral and chemical compositions of this ash conferred a Pozzoulanic power to the cement studied.

  13. Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production

    Science.gov (United States)

    Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.

    2017-06-01

    Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.

  14. Comparative Studies of Physico-chemical Properties of Some ...

    African Journals Online (AJOL)

    The aim of this study was to evaluate some physico-chemical properties of four major general purpose cement (As, Br, De and Sk) sold in Nigerian market using standard methods; due to the persistent collapse of buildings. The results showed that Br cement recorded the least CaO content (56.17%) while De cement had ...

  15. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.; Patzek, Tadeusz; van Oort, Eric

    2017-01-01

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  16. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.

    2017-10-02

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  17. Sisal organosolv pulp as reinforcement for cement based composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Joaquim

    2009-09-01

    Full Text Available The present work describes non-conventional sisal (Agave sisalana chemical (organosolv pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.

  18. Metal fractionation of atmospheric aerosols via sequential chemical extraction: a review

    Energy Technology Data Exchange (ETDEWEB)

    Smichowski, Patricia; Gomez, Dario [Unidad de Actividad Quimica, Comision Nacional de Energia Atomica, San Martin (Argentina); Polla, Griselda [Unidad de Actividad Fisica, Comision Nacional de Energia Atomica, San Martin (Argentina)

    2005-01-01

    This review surveys schemes used to sequentially chemically fractionate metals and metalloids present in airborne particulate matter. It focuses mainly on sequential chemical fractionation schemes published over the last 15 years. These schemes have been classified into five main categories: (1) based on Tessier's procedure, (2) based on Chester's procedure, (3) based on Zatka's procedure, (4) based on BCR procedure, and (5) other procedures. The operational characteristics as well as the state of the art in metal fractionation of airborne particulate matter, fly ashes and workroom aerosols, in terms of applications, optimizations and innovations, are also described. Many references to other works in this area are provided. (orig.)

  19. Low-level waste cement solidification design, installation, and start-up

    International Nuclear Information System (INIS)

    Jezek, G.R.

    1988-08-01

    This report describes the design, installation, and start-up activities of the Cement Solidification System (CSS) at the West Valley Demonstration Project (WVDP), West Valley, New York. The CSS, designed to operate within an existing process cell, automatically and remotely solidifies low-level nuclear waste by mixing it with Portland Type I cement. The qualified waste form mixture is placed into square, 270-litre (71-gallon) metal drums. The drums have an integral polyethylene liner to protect the carbon-steel material from potential corrosion. The CSS produces drums at a continuous operation rate of four drums per hour. All system processing data is monitored by a computerized Data Acquisition System (DAS). 6 figs

  20. Selection of a mineral binder for the stabilization - solidification of waste containing aluminum metal

    International Nuclear Information System (INIS)

    Lahalle, H.; Cau Dit Counes, C.; Lambertin, D.; Antonucci, P.; Delpech, S.

    2015-01-01

    The dismantling of nuclear facilities produces radioactive waste materials, some of which may contain aluminum metal. In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal becomes corroded, with a continued production of dihydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution

  1. Synthesis of transfer-free graphene on cemented carbide surface.

    Science.gov (United States)

    Yu, Xiang; Zhang, Zhen; Liu, Fei; Ren, Yi

    2018-03-19

    Direct growth of spherical graphene with large surface area is important for various applications in sensor technology. However, the preparation of transfer-free graphene on different substrates is still a challenge. This study presents a novel approach for the transfer-free graphene growth directly on cemented carbide. The used simple thermal annealing induces an in-situ transformation of magnetron-sputtered amorphous silicon carbide films into the graphene matrix. The study reveals the role of Co, a binding phase in cemented carbides, in Si sublimation process, and its interplay with the annealing temperature in development of the graphene matrix. A detailed physico-chemical characterisation was performed by structural (XRD analysis and Raman spectroscopy with mapping studies), morphological (SEM) and chemical (EDS) analyses. The optimal bilayer graphene matrix with hollow graphene spheres on top readily grows at 1000 °C. Higher annealing temperature critically decreases the amount of Si, which yields an increased number of the graphene layers and formation of multi-layer graphene (MLG). The proposed action mechanism involves silicidation of Co during thermal treatment, which influences the existing chemical form of Co, and thus, the graphene formation and variations in a number of the formed graphene layers.

  2. Chemical Abundances of Metal-poor stars in Dwarf Galaxies

    NARCIS (Netherlands)

    Venn, Kim A.; Jablonka, Pascale; Hill, Vanessa; Starkenburg, Else; Lemasle, Bertrand; Shetrone, Matthew; Irwin, Mike; Norris, John; Yong, David; Gilmore, Gerry; Salvadori, Stephania; Skuladottir, Asa; Tolstoy, Eline; Bragaglia, A.; Arnaboldi, M.; Rejkuba, M.; Romano, D.

    2016-01-01

    Stars in low-mass dwarf galaxies show a larger range in their chemical properties than those in the Milky Way halo. The slower star formation efficiency make dwarf galaxies ideal systems for testing nucleosynthetic yields. Not only are alpha-poor stars found at lower metallicities, and a higher

  3. The cement recycling of the earthquake disaster debris by Hachinohe Cement Co., Ltd

    International Nuclear Information System (INIS)

    Kataoka, Masayuki

    2015-01-01

    A tremendous quantity of earthquake disaster debris and tsunami sediment was resulted by the Great East Japan Earthquake on March 11, 2011. Hachinohe Cement Co., Ltd., a Sumitomo Osaka Cement subsidiary, was the first cement industry company to receive and process such waste materials outside of their usual prefecture area, while the company is performing their treatment and recycling services locally in Hachinohe City and Aomori Prefecture. This report provides an explanation about the recycling mechanism of waste materials and by-products in cement manufacturing process, and introduces an example of actual achievements for the disaster debris treatment by utilizing the cement recycling technologies at the Hachinohe Cement Plant. (author)

  4. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yu Shengwang, E-mail: bkdysw@yahoo.cn; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-11-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH{sub 3}){sub 4}) diluted in H{sub 2} as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co{sub 2}Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  5. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    International Nuclear Information System (INIS)

    Yu Shengwang; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-01-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH 3 ) 4 ) diluted in H 2 as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co 2 Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  6. Effect of electric arc, gas oxygen torch and induction melting techniques on the marginal accuracy of cast base-metal and noble metal-ceramic crowns.

    Science.gov (United States)

    Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús

    2013-09-01

    The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Mechanism and Modelling for Sorption of Toxic Ion on Cement Kiln Dust

    International Nuclear Information System (INIS)

    EI- Dakroury, A.; Sayed, M.S.; EL- Sherif, E.

    2009-01-01

    Cement manufacturing is a critically important industry in Egypt. These industrial by-product and waste materials must be managed responsibly to insure a clean and safe environment. Cement kiln dust (CKD) is a significant by-product material of the cement manufacturing process. Cement kiln dust is a waste residue composed chiefly of oxidized, anhydrous, micron - sized particles generated as a by product of the manufacture of Portland cement. The use of cement kiln dust as adsorbent in wastewater treatment has a great attention as cheap material and clay structure. This work will discuss the basic characteristics of CKD physical and chemical properties and regulatory requirements: The batch removal of Cr(VI) from aqueous solution using low cost adsorbents such as cement kiln dust under different experimental conditions. The influences of initial Cr (VI) ion concentration (20 to 300 mg1-1) and ph (1 to 4) were investigated in this study. Adsorption of Cr (VI) is highly ph-dependent and the results indicate that the optimum ph for the removal was found to be 1 for CKD. A comparison of kinetic models applied to the adsorption of Cr (VI) ions on the CKD was evaluated for the pseudo first order, the pseudo second-order, Elovich and intra particle diffusion kinetic models, respectively. The results showed that the pseudo second-order kinetic model was found to correlate the experimental data well

  8. Foamed cement for squeeze cementing low-pressure, highly permeable reservoirs

    International Nuclear Information System (INIS)

    Chmllowski, W.; Kondratoff, L.B.

    1992-01-01

    Four different cement squeezing techniques have been used on wells producing from the Keg River formation in the Rainbow Lake area of Alberta, Canada. This paper evaluates 151 cement squeeze treatments performed at 96 wellsites and compares the use of foam cement vs. conventional squeeze treatments and techniques. Discussion includes key aspects, such as candidate selection, slurry design, treatment design, economic evaluation, and operational considerations

  9. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides

    International Nuclear Information System (INIS)

    Biesinger, M C; Payne, B P; McIntryre, N S; Hart, B R; Lau, L Wm; Grosvenor, A P; Smart, R StC

    2008-01-01

    Practical quantitative chemical state X-ray photoelectron spectroscopy (XPS) analysis of first row transition metals, oxides and hydroxides is challenging due to the complexity of their M 2p spectra. Complex multiplet splitting, shake-up and plasmon loss structure can play a role in the interpretation of the chemical states present. This paper will show practical curve fitting procedures for the quantitative measurement of different chemical states for metal oxides and hydroxides from a survey of transition metals. It will also discuss some of the limitations and pitfalls present as well as give practical examples of their successful use. These curve-fitting procedures are based on 1) standard spectra from quality reference samples, 2) a survey of appropriate literature databases and/or a compilation of literature references, 3) fitting of multiplet split spectra based on spectra of numerous reference materials and theoretical modelling, 4) spectral subtractions routines, again using reference spectra, and 5) specific literature references where fitting procedures are available

  10. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, M C; Payne, B P; McIntryre, N S [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Hart, B R; Lau, L Wm [Surface Science Western, Room G1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Grosvenor, A P [Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada); Smart, R StC [ACeSSS, Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes, SA 5095 (Australia)], E-mail: biesingr@uwo.ca

    2008-03-15

    Practical quantitative chemical state X-ray photoelectron spectroscopy (XPS) analysis of first row transition metals, oxides and hydroxides is challenging due to the complexity of their M 2p spectra. Complex multiplet splitting, shake-up and plasmon loss structure can play a role in the interpretation of the chemical states present. This paper will show practical curve fitting procedures for the quantitative measurement of different chemical states for metal oxides and hydroxides from a survey of transition metals. It will also discuss some of the limitations and pitfalls present as well as give practical examples of their successful use. These curve-fitting procedures are based on 1) standard spectra from quality reference samples, 2) a survey of appropriate literature databases and/or a compilation of literature references, 3) fitting of multiplet split spectra based on spectra of numerous reference materials and theoretical modelling, 4) spectral subtractions routines, again using reference spectra, and 5) specific literature references where fitting procedures are available.

  11. HYDRATION AND MICROSTRUCTURE OF BLENDED CEMENT WITH SODIUM POLYSTYRENE SULFONATE

    Directory of Open Access Journals (Sweden)

    Weifeng Li

    2017-03-01

    Full Text Available Polystyrene foamed plastic wastes are a kind of environmental pollutant. It could be recycled in cement industry as a chemical agent. In this paper, the effects of sodium polystyrene sulfonate (SPS on the hydration and microstructure of blended cement were investigated by calorimetry, X-ray diffraction (XRD, scanning electron microscopy (SEM and mercury intrusion porosimetry (MIP. SPS slightly delayed the hydration of alite and decreased its hydration degree. SPS did not change the phase compositions during hydration. SPS changed the morphology of ettringite (AFt and decreased the pore volumes and the sizes of pores.

  12. The effect of mechanical activation of cements with mineral ...

    African Journals Online (AJOL)

    ... it comes that the increase of the specific surface and the chemical composition of cements to the mineral additions are the principal responsibles to the improvement of the latent reactivity of mineral additions and increase the mechanical strengths of the concretes. Journal of Civil Engineering Research and Practice Vol.

  13. Utilization of steel slag for Portland cement clinker production.

    Science.gov (United States)

    Tsakiridis, P E; Papadimitriou, G D; Tsivilis, S; Koroneos, C

    2008-04-01

    The aim of the present research work is to investigate the possibility of adding steel slag, a by-product of the conversion of iron to steel process, in the raw meal for the production of Portland cement clinker. Two samples of raw meals were prepared, one with ordinary raw materials, as a reference sample ((PC)(Ref)), and another with 10.5% steel slag ((PC)(S/S)). Both raw meals were sintered at 1450 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the steel slag did not affect the mineralogical characteristics of the so produced Portland cement clinker. Furthermore, both clinkers were tested by determining the grindability, setting times, compressive strengths and soundness. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of the steel slag did not negatively affect the quality of the produced cement.

  14. Optimization of cement composites with the use of fillers from the Chechen Republic fields

    Directory of Open Access Journals (Sweden)

    Balatkhanova Elita Mahmudovna

    Full Text Available The fillers together with binders take part in microstructure formation of matrix basis and contact zones of a composite. The advantage of cement matrix structure with a filler is that inner defects are localized in it - microcracks, macropores and capillary pores, as well as that their quantity, their sizes and stress concentration decrease. Structure formation of filled cement composites is based on the processes taking place in the contact of liquid and stiff phases, which means, it depends on the quantitative relation of the cement, fillers and water, and also dispersivity and physical and chemical activity of the fillers. In the article the authors offer research results of the processes of hydration and physical-mechanical properties of cement composites with fillers from the fields of the Chechen Republic. Research results of heat cement systems are presented, modified by fine fillers. Optimal composition of cement composites filled with powders of quartz, sandstone, river and a mountain limestone of different particle size composition, characterized by a high strength, are obtained.

  15. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  16. Metal ferrite oxygen carriers for chemical looping combustion of solid fuels

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-01-31

    The disclosure provides a metal ferrite oxygen carrier for the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The metal ferrite oxygen carrier comprises MFe.sub.xO.sub.y on an inert support, where MFe.sub.xO.sub.y is a chemical composition and M is one of Mg, Ca, Sr, Ba, Co, Mn, and combinations thereof. For example, MFe.sub.xO.sub.y may be one of MgFe.sub.2O.sub.4, CaFe.sub.2O.sub.4, SrFe.sub.2O.sub.4, BaFe.sub.2O.sub.4, CoFe.sub.2O.sub.4, MnFeO.sub.3, and combinations thereof. The MFe.sub.xO.sub.y is supported on an inert support. The inert support disperses the MFe.sub.xO.sub.y oxides to avoid agglomeration and improve performance stability. In an embodiment, the inert support comprises from about 5 wt. % to about 60 wt. % of the metal ferrite oxygen carrier and the MFe.sub.xO.sub.y comprises at least 30 wt. % of the metal ferrite oxygen carrier. The metal ferrite oxygen carriers disclosed display improved reduction rates over Fe.sub.2O.sub.3, and improved oxidation rates over CuO.

  17. Electrochemical and chemical methods of metallizing plastic films

    OpenAIRE

    Chapples, J.

    1991-01-01

    This thesis describes two novel techniques for the metallization of non-electroactive polymer films and thicker sectioned polyethylene and nylon substrates. In the first approach, non-electroactive polymer substrates were impregnated with surface layers of polypyrrole and polyaniline, using electrochemical and chemical methods of polymerization. The relative merits of both these approaches are discussed and compared with other methods in the literature. The resultant composi...

  18. Radiation chemical treatment of cement mortar - polymer composites

    International Nuclear Information System (INIS)

    Younes, M.M.

    1994-01-01

    The development of the hardened cement pastes,mortars and concretes which contain polymers has progressed rapidly in years. Developmental work has identified a number of applications where the high strength and excellent durability of the composite materials will provide definite advantages over conventional mortars and concretes. The first investigations of polymer - impregnated concrete tried mainly to increase the quantity of absorbed and polymerised monomer because this gave a greater decrease in the original of concrete and a subsequent improvement in physico - mechanical properties. However, the production costs which is due mainly to the organic polymer, becomes the most important item. In this respect recent research showed the possibility of obtaining with a very compact concrete, of relative low porosity, a compound material with high performances after impregnation 26 tabs.,28 figs.,109 refs

  19. Evaluation of Portland cement from X-ray diffraction associated with cluster analysis

    International Nuclear Information System (INIS)

    Gobbo, Luciano de Andrade; Montanheiro, Tarcisio Jose; Montanheiro, Filipe; Sant'Agostino, Lilia Mascarenhas

    2013-01-01

    The Brazilian cement industry produced 64 million tons of cement in 2012, with noteworthy contribution of CP-II (slag), CP-III (blast furnace) and CP-IV (pozzolanic) cements. The industrial pole comprises about 80 factories that utilize raw materials of different origins and chemical compositions that require enhanced analytical technologies to optimize production in order to gain space in the growing consumer market in Brazil. This paper assesses the sensitivity of mineralogical analysis by X-ray diffraction associated with cluster analysis to distinguish different kinds of cements with different additions. This technique can be applied, for example, in the prospection of different types of limestone (calcitic, dolomitic and siliceous) as well as in the qualification of different clinkers. The cluster analysis does not require any specific knowledge of the mineralogical composition of the diffractograms to be clustered; rather, it is based on their similarity. The materials tested for addition have different origins: fly ashes from different power stations from South Brazil and slag from different steel plants in the Southeast. Cement with different additions of limestone and white Portland cement were also used. The Rietveld method of qualitative and quantitative analysis was used for measuring the results generated by the cluster analysis technique. (author)

  20. Solidification of Waste Steel Foudry Dust with Portland Cement

    Czech Academy of Sciences Publication Activity Database

    Škvára, F.; Kaštánek, František; Pavelková, I.; Šolcová, Olga; Maléterová, Ywetta; Schneider, Petr

    B89, č. 1 (2001), s. 67-81 ISSN 0304-3894 R&D Projects: GA ČR GA104/99/0440 Institutional research plan: CEZ:AV0Z4072921; CEZ:MSM 223100002 Keywords : solidification, * foundry dust * cement Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.497, year: 2001