WorldWideScience

Sample records for chemical analysis revealed

  1. Physico-Chemical Analysis and Sensory Evaluation of Bread

    African Journals Online (AJOL)

    Shuaibu et al.

    Physico-Chemical Analysis and Sensory Evaluation of Bread Produced Using ... analysis of the bread samples revealed that the moisture content ..... 72. Jarup, L. ,2003. Hazards of heavy metal contamination. Br Med. Bull; 68, pp.167-82.

  2. Fatty acid composition and its association with chemical and sensory analysis of boar taint.

    Science.gov (United States)

    Liu, Xiaoye; Trautmann, Johanna; Wigger, Ruth; Zhou, Guanghong; Mörlein, Daniel

    2017-09-15

    A certain level of disagreement between the chemical analysis of androstenone and skatole and the human perception of boar taint has been found in many studies. Here we analyze whether the fatty acid composition can explain such inconsistency between sensory evaluation and chemical analysis of boar taint compounds. Therefore, back fat samples (n=143) were selected according to their sensory evaluation by a 10-person sensory panel, and the chemical analysis (stable isotope dilution analysis with headspace solid-phase microextraction and gas chromatography-mass spectrometry) of androstenone and skatole. Subsequently a quantification of fatty acids using gas chromatography-flame ionization detection was conducted. The correlation analyses revealed that several fatty acids are significantly correlated with androstenone, skatole, and the sensory rating. However, multivariate analyses (principal component analysis) revealed no explanation of the fatty acid composition with respect to the (dis-)agreement between sensory and chemical analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Combining chemical genomics screens in yeast to reveal spectrum of effects of chemical inhibition of sphingolipid biosynthesis

    Directory of Open Access Journals (Sweden)

    Giaever Guri

    2009-01-01

    Full Text Available Abstract Background Single genome-wide screens for the effect of altered gene dosage on drug sensitivity in the model organism Saccharomyces cerevisiae provide only a partial picture of the mechanism of action of a drug. Results Using the example of the tumor cell invasion inhibitor dihydromotuporamine C, we show that a more complete picture of drug action can be obtained by combining different chemical genomics approaches – analysis of the sensitivity of ρ0 cells lacking mitochondrial DNA, drug-induced haploinsufficiency, suppression of drug sensitivity by gene overexpression and chemical-genetic synthetic lethality screening using strains deleted of nonessential genes. Killing of yeast by this chemical requires a functional mitochondrial electron-transport chain and cytochrome c heme lyase function. However, we find that it does not require genes associated with programmed cell death in yeast. The chemical also inhibits endocytosis and intracellular vesicle trafficking and interferes with vacuolar acidification in yeast and in human cancer cells. These effects can all be ascribed to inhibition of sphingolipid biosynthesis by dihydromotuporamine C. Conclusion Despite their similar conceptual basis, namely altering drug sensitivity by modifying gene dosage, each of the screening approaches provided a distinct set of information that, when integrated, revealed a more complete picture of the mechanism of action of a drug on cells.

  4. Chemical transitions of Areca semen during the thermal processing revealed by temperature-resolved ATR-FTIR spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo

    2018-03-01

    Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.

  5. Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing tastes from the past.

    Science.gov (United States)

    Jeandet, Philippe; Heinzmann, Silke S; Roullier-Gall, Chloé; Cilindre, Clara; Aron, Alissa; Deville, Marie Alice; Moritz, Franco; Karbowiak, Thomas; Demarville, Dominique; Brun, Cyril; Moreau, Fabienne; Michalke, Bernhard; Liger-Belair, Gérard; Witting, Michael; Lucio, Marianna; Steyer, Damien; Gougeon, Régis D; Schmitt-Kopplin, Philippe

    2015-05-12

    Archaeochemistry as the application of the most recent analytical techniques to ancient samples now provides an unprecedented understanding of human culture throughout history. In this paper, we report on a multiplatform analytical investigation of 170-y-old champagne bottles found in a shipwreck at the bottom of the Baltic Sea, which provides insight into winemaking practices used at the time. Organic spectroscopy-based nontargeted metabolomics and metallomics give access to the detailed composition of these wines, revealing, for instance, unexpected chemical characteristics in terms of small ion, sugar, and acid contents as well as markers of barrel aging and Maillard reaction products. The distinct aroma composition of these ancient champagne samples, first revealed during tasting sessions, was later confirmed using state-of-the-art aroma analysis techniques. After 170 y of deep sea aging in close-to-perfect conditions, these sleeping champagne bottles awoke to tell us a chapter of the story of winemaking and to reveal their extraordinary archaeometabolome and elemental diversity in the form of chemical signatures related to each individual step of champagne production.

  6. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra

    Science.gov (United States)

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-01

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pKa‧. The determination of pKa‧ is performed for various ionic strengths, which reveals the thermodynamic acid constant (pKa = 7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of - 1 and the blue form that of - 2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed.

  7. An extended chemical analysis of gallstone

    OpenAIRE

    Chandran, P.; Kuchhal, N. K.; Garg, P.; Pundir, C. S.

    2007-01-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble prot...

  8. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra.

    Science.gov (United States)

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-05

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pK a '. The determination of pK a ' is performed for various ionic strengths, which reveals the thermodynamic acid constant (pK a =7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of -1 and the blue form that of -2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Chemical Security Analysis Center

    Data.gov (United States)

    Federal Laboratory Consortium — In 2006, by Presidential Directive, DHS established the Chemical Security Analysis Center (CSAC) to identify and assess chemical threats and vulnerabilities in the...

  10. Determinants of job stress in chemical process industry: A factor analysis approach.

    Science.gov (United States)

    Menon, Balagopal G; Praveensal, C J; Madhu, G

    2015-01-01

    Job stress is one of the active research domains in industrial safety research. The job stress can result in accidents and health related issues in workers in chemical process industries. Hence it is important to measure the level of job stress in workers so as to mitigate the same to avoid the worker's safety related problems in the industries. The objective of this study is to determine the job stress factors in the chemical process industry in Kerala state, India. This study also aims to propose a comprehensive model and an instrument framework for measuring job stress levels in the chemical process industries in Kerala, India. The data is collected through a questionnaire survey conducted in chemical process industries in Kerala. The collected data out of 1197 surveys is subjected to principal component and confirmatory factor analysis to develop the job stress factor structure. The factor analysis revealed 8 factors that influence the job stress in process industries. It is also found that the job stress in employees is most influenced by role ambiguity and the least by work environment. The study has developed an instrument framework towards measuring job stress utilizing exploratory factor analysis and structural equation modeling.

  11. Spectral Analysis by XANES Reveals that GPNMB Influences the Chemical Composition of Intact Melanosomes

    Energy Technology Data Exchange (ETDEWEB)

    T Haraszti; C Trantow; A Hedberg-Buenz; M Grunze; M Anderson

    2011-12-31

    GPNMB is a unique melanosomal protein. Unlike many melanosomal proteins, GPNMB has not been associated with any forms of albinism, and it is unclear whether GPNMB has any direct influence on melanosomes. Here, melanosomes from congenic strains of C57BL/6J mice mutant for Gpnmb are compared to strain-matched controls using standard transmission electron microscopy and synchrotron-based X-ray absorption near-edge structure analysis (XANES). Whereas electron microscopy did not detect any ultrastructural changes in melanosomes lacking functional GPNMB, XANES uncovered multiple spectral phenotypes. These results directly demonstrate that GPNMB influences the chemical composition of melanosomes and more broadly illustrate the potential for using genetic approaches in combination with nano-imaging technologies to study organelle biology.

  12. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  13. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  14. Neutron activation analysis of high-purity iron in comparison with chemical analysis

    International Nuclear Information System (INIS)

    Kinomura, Atsushi; Horino, Yuji; Takaki, Seiichi; Abiko, Kenji

    2000-01-01

    Neutron activation analysis of iron samples of three different purity levels has been performed and compared with chemical analysis for 30 metallic and metalloid impurity elements. The concentration of As, Cl, Cu, Sb and V detected by neutron activation analysis was mostly in agreement with that obtained by chemical analysis. The sensitivity limits of neutron activation analysis of three kinds of iron samples were calculated and found to be reasonable compared with measured values or detection limits of chemical analysis; however, most of them were above the detection limits of chemical analysis. Graphite-shielded irradiation to suppress fast neutron reactions was effective for Mn analysis without decreasing sensitivity to the other impurity elements. (author)

  15. Chemical substructure analysis in toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, R.O. Jr. [Center for Information on Toxicology and Environment, Raleigh, NC (United States)

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  16. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    Science.gov (United States)

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  17. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  18. Molecular activation analysis for chemical speciation studies

    International Nuclear Information System (INIS)

    Chai-Chifang

    1998-01-01

    The term of Molecular Activation Analysis (MAA) refers to an activation analysis method that is able to provide information about the chemical species of elements in system of interests, though its definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the total concentrations are often without any meaning when assessing health or environmental risks of trace elements.In practice, the MAA is a combination of conventional instrumental or radiochemical activation analysis and physical, chemical or biochemical separation techniques. The MAA is able to play a particular role in speciation studies. However, the critical point in the MAA is that it is not permitted to change the primitive chemical species of elements in systems, or the change has to be under control; in the meantime it is not allowed to form the 'new artifact' originally not present in systems. Some practical examples of MAA for chemical species research performed recently in our laboratory will be presented as follows: Chemical species of platinum group elements in sediment; Chemical species of iodine in marine algae; Chemical species of mercury in human tissues; Chemical species of selenium in corn; Chemical species of rare earth elements in natural plant, etc. The merits and limitations of MAA will be described as well. (author)

  19. ANALYSIS OF CHEMICAL COMPOUNDS DISTINGUISHER FOR AGARWOOD QUALITIES

    Directory of Open Access Journals (Sweden)

    Gunawan Trisandi Pasaribu

    2015-04-01

    Full Text Available Gaharu (Agarwood is described as a fragrant-smelling wood that is usually derived from the trunk of the genus Aquilaria and Gyrinops (both of the family Thymelaeaceae, which have been infected by a particular disease. Based on Indonesian National Standard, agarwood can be classified into various grades, i.e. gubal gaharu, kemedangan and serbuk gaharu. The grading system is based on the color, weight and odor. It seems that such a grading is too subjective for agarwood classification. Therefore, to minimize the subjectivity, more objective agarwood grading is required, which incorporates its chemical composition and resin content. This research was conducted focusing on the analysis of the particular grade of agarwood originating from West Sumatra. The different types of agarwood qualities are: kemedangan C, teri C, kacangan C and super AB. Initially, the obtained agarwood samples were grounded to powder, extracted on a Soxhlet extractor using various organic solvents (i.e. n-hexane, acetone, and methanol. The agarwood-acetone extracts were analyzed using GC-MS to determine its chemical composition. The results showed a positive, linier relationship in which the resin yield increased with the increase in agarwood quality grades. GC-MS analysis revealed that several sesquiterpene groups can be found in kemedangan C, teri C, kacangan C and super AB qualities. It is interesting that aromadendrene could be identified or found in all agarwood quality grades. Therefore, it is presumed that the aromadendrene compounds can act as an effective chemical distinguisher for agarwood, whereby the greater the aromadendrene content, the better is the agarwood grade.

  20. Chemical analysis of high purity graphite

    International Nuclear Information System (INIS)

    1993-03-01

    The Sub-Committee on Chemical Analysis of Graphite was organized in April 1989, under the Committee on Chemical Analysis of Nuclear Fuels and Reactor Materials, JAERI. The Sub-Committee carried out collaborative analyses among eleven participating laboratories for the certification of the Certified Reference Materials (CRMs), JAERI-G5 and G6, after developing and evaluating analytical methods during the period of September 1989 to March 1992. The certified values were given for ash, boron and silicon in the CRM based on the collaborative analysis. The values for ten elements (Al, Ca, Cr, Fe, Mg, Mo, Ni, Sr, Ti, V) were not certified, but given for information. Preparation, homogeneity testing and chemical analyses for certification of reference materials were described in this paper. (author) 52 refs

  1. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    International Nuclear Information System (INIS)

    Bharti, Amardeep; Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-01-01

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  2. Utilization of chemical derivatives in activation analysis

    International Nuclear Information System (INIS)

    Ehmann, W.D.

    1990-01-01

    Derivative activation analysis (DAA) is a method to enhance the sensitivity of nuclear activation analysis for the more elusive elements. It may also allow a degree of chemical speciation for the element of interest. DAA uses a preirradiation chemical reaction on the sample to initiate the formation of, or an exchange with, a chemical complex which contains a surrogate element, M. As a result, the amount of the element or the chemical species to be determined, X, is now represented by measurement of the amount of the surrogate element, M, that is made part of, or released by the complex species. The surrogate element is selected for its superior properties for nuclear activation analysis and the absence of interference reaction in its final determination by instrumental neutron activation analysis (INAA) after some preconcentration or separation chemistry. Published DAA studies have been limited to neutron activation analysis. DAA can offer the analyst some important advantages. It can determine elements, functional groups, or chemical species which cannot be determined directly by INAA, fast neutron activation analysis (FNAA), prompt gamma neutron activation analysis (PGNAA), or charged particle activation analysis (CPAA) procedures. When compared with conventional RNAA, there are fewer precautions with respect to handling of intensely radioactive samples, since the chemistry is done before the irradiation. The preirradiation chemistry may also eliminate many interferences that might occur in INAA and, through use of an appropriate surrogate element, can place the analytical gamma-ray line in an interference-free region of the gamma-ray spectrum

  3. An extended chemical analysis of gallstone.

    Science.gov (United States)

    Chandran, P; Kuchhal, N K; Garg, P; Pundir, C S

    2007-09-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble proteins, sodium potassium, magnesium, copper, oxalate and chlorides of biliary calculi (52 cholesterol, 76 mixed and 72 pigment) retrieved from surgical operation of 200 patients from Haryana state was carried out. Total cholesterol as the major component and total bilirubin, phospholipids, triglycerides, bile acids, fatty acids (esterified), soluble protein, calcium, magnesium, iron, copper, sodium, potassium, inorganic phosphate, oxalate and chloride as minor components were found in all types of calculi. The cholesterol stones had higher content of total cholesterol, phospholipids, fatty acids (esterified), inorganic phosphate and copper compared to mixed and pigment stones. The mixed stones had higher content of iron and triglycerides than to cholesterol and pigment stones. The pigment stones were richer in total bilirubin, bile acids, calcium, oxalate, magnesium, sodium, potassium, chloride and soluble protein compared to cholesterol and mixed stones. Although total cholesterol was a major component of cholesterol, mixed and pigment gall stone in Haryana, the content of most of the other lipids, cations and anions was different in different gall stones indicating their different mechanism of formation.

  4. [New approaches to early diagnosis of chronic organophosphorus chemicals intoxication in workers at chemical weapons extermination objects].

    Science.gov (United States)

    Babakov, V N; Goncharov, N V; Radilov, A S; Glashkina, E P; Podol'skaia, E P; Ermolaeva, E E; Shilov, V V; Prokof'eva, D S; Voĭtenko, N G; Egorov, N A

    2009-01-01

    Mass spectrum analysis revealed differences in general contents of low-molecular peptides spectrums in chemical weapons extermination object staffers, in comparison with the reference group. Findings are that serum paraoxonase activity in chemical weapons extermination object staffers in significantly increased.

  5. Microbiological and chemical analysis of land snails commercialised in Sicily

    Directory of Open Access Journals (Sweden)

    Antonello Cicero

    2015-05-01

    Full Text Available In this study 160 samples of snails belonging to the species Helix aspersa maxima and Helix aspersa muller were examined for chemical and microbiological analysis. Samples came from Greece and Poland. Results showed mean concentration of cadmium (0.35±0.036 mg/kg and lead (0.05±0.013 mg/kg much higher than the limit of detection. Mercury levels in both species were not detected. Microbiological analysis revealed the absence of Salmonella spp. and Clostridium spp. in both examined species. E. coli and K. oxytoca were observed in Helix aspersa maxima and Helix aspersa muller. Furthermore, one case of fungi positivity in samples of Helix aspersa muller was found. The reported investigations highlight the need to create and adopt a reference legislation to protect the health of consumers.

  6. Service activities of chemical analysis division

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Suh, Moo Yul; Park, Kyoung Kyun; Jung, Ki Suk; Joe, Kih Soo; Jee, Kwang Yong; Jung, Woo Sik; Sohn, Se Chul; Yeo, In Heong; Han, Sun Ho

    1988-12-01

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  7. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    International Nuclear Information System (INIS)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone; Kelecom, Alphonse; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova; Dores, Luis Augusto de Carvalho Bresser

    2011-01-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  8. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone, E-mail: wspereira@inb.gov.br [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Protecao Radiologica. Grupo Multidisciplinar de Radioprotecao; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Biologia. Lab. de Radiobiologia e Radiometria Pedro Lopes dos Santos; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Desenvolvimento de Processos; Dores, Luis Augusto de Carvalho Bresser [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Gerencia de Descomissionamento

    2011-07-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  9. Systems analysis of past, present, and future chemical terrorism scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  10. A chemical-genetic strategy reveals distinct temporal requirements for SAD-1 kinase in neuronal polarization and synapse formation

    Directory of Open Access Journals (Sweden)

    Shokat Kevan M

    2008-09-01

    Full Text Available Abstract Background Neurons assemble into a functional network through a sequence of developmental processes including neuronal polarization and synapse formation. In Caenorhabditis elegans, the serine/threonine SAD-1 kinase is essential for proper neuronal polarity and synaptic organization. To determine if SAD-1 activity regulates the establishment or maintenance of these neuronal structures, we examined its temporal requirements using a chemical-genetic method that allows for selective and reversible inactivation of its kinase activity in vivo. Results We generated a PP1 analog-sensitive variant of SAD-1. Through temporal inhibition of SAD-1 kinase activity we show that its activity is required for the establishment of both neuronal polarity and synaptic organization. However, while SAD-1 activity is needed strictly when neurons are polarizing, the temporal requirement for SAD-1 is less stringent in synaptic organization, which can also be re-established during maintenance. Conclusion This study reports the first temporal analysis of a neural kinase activity using the chemical-genetic system. It reveals that neuronal polarity and synaptic organization have distinct temporal requirements for SAD-1.

  11. Microprocessors in automatic chemical analysis

    International Nuclear Information System (INIS)

    Goujon de Beauvivier, M.; Perez, J.-J.

    1979-01-01

    Application of microprocessors to programming and computing of solutions chemical analysis by a sequential technique is examined. Safety, performances reliability are compared to other methods. An example is given on uranium titration by spectrophotometry [fr

  12. Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine

    Science.gov (United States)

    Ouzon-Shubeita, Hala; Lee, Seongmin

    2014-01-01

    N7-Methyl-2′-deoxyguanosine (m7dG) is the predominant lesion formed by methylating agents. A systematic investigation on the effect of m7dG on DNA replication has been difficult due to the chemical instability of m7dG. To gain insights into the m7dG effect, we employed a 2′-fluorine-mediated transition-state destabilzation strategy. Specifically, we determined kinetic parameters for dCTP insertion opposite a chemically stable m7dG analogue, 2′-fluoro-m7dG (Fm7dG), by human DNA polymerase β (polβ) and solved three X-ray structures of polβ in complex with the templating Fm7dG paired with incoming dCTP or dTTP analogues. The kinetic studies reveal that the templating Fm7dG slows polβ catalysis ∼300-fold, suggesting that m7dG in genomic DNA may impede replication by some DNA polymerases. The structural analysis reveals that Fm7dG forms a canonical Watson–Crick base pair with dCTP, but metal ion coordination is suboptimal for catalysis in the polβ-Fm7dG:dCTP complex, which partially explains the slow insertion of dCTP opposite Fm7dG by polβ. In addition, the polβ-Fm7dG:dTTP structure shows open protein conformations and staggered base pair conformations, indicating that N7-methylation of dG does not promote a promutagenic replication. Overall, the first systematic studies on the effect of m7dG on DNA replication reveal that polβ catalysis across m7dG is slow, yet highly accurate. PMID:24966350

  13. Thai students' mental model of chemical bonding

    Science.gov (United States)

    Sarawan, Supawadee; Yuenyong, Chokchai

    2018-01-01

    This Research was finding the viewing about concept of chemical bonding is fundamental to subsequent learning of various other topics related to this concept in chemistry. Any conceptions about atomic structures that students have will be shown their further learning. The purpose of this study is to interviews conceptions held by high school chemistry students about metallic bonding and to reveal mental model of atomic structures show according to the educational level. With this aim, the questionnaire prepared making use of the literature and administered for analysis about mental model of chemical bonding. It was determined from the analysis of answers of questionnaire the 10th grade, 11th grade and 12th grade students. Finally, each was shown prompts in the form of focus cards derived from curriculum material that showed ways in which the bonding in specific metallic substances had been depicted. Students' responses revealed that learners across all three levels prefer simple, realistic mental models for metallic bonding and reveal to chemical bonding.

  14. Chemical analysis and base-promoted hydrolysis of locally ...

    African Journals Online (AJOL)

    Abstract. The study was on the chemical analysis and base- promoted hydrolysis of extracted shea nut fat. The local method of extraction of the shea nut oil was employed in comparison with literature report. A simple cold-process alkali hydrolysis of the shea nut oil was used in producing the soap. The chemical analysis of ...

  15. Calibrating Detailed Chemical Analysis of M dwarfs

    Science.gov (United States)

    Veyette, Mark; Muirhead, Philip Steven; Mann, Andrew; Brewer, John; Allard, France; Homeier, Derek

    2018-01-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy, assessing membership in stellar kinematic groups, and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres has hindered similar analysis of M-dwarf stars. Large surveys of FGK abundances play an important role in developing methods to measure the compositions of M dwarfs by providing benchmark FGK stars that have widely-separated M dwarf companions. These systems allow us to empirically calibrate metallicity-sensitive features in M dwarf spectra. However, current methods to measure metallicity in M dwarfs from moderate-resolution spectra are limited to measuring overall metallicity and largely rely on astrophysical abundance correlations in stellar populations. In this talk, I will discuss how large, homogeneous catalogs of precise FGK abundances are crucial to advancing chemical analysis of M dwarfs beyond overall metallicity to direct measurements of individual elemental abundances. I will present a new method to analyze high-resolution, NIR spectra of M dwarfs that employs an empirical calibration of synthetic M dwarf spectra to infer effective temperature, Fe abundance, and Ti abundance. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.

  16. Chemical analysis by nuclear methods. v. 2

    International Nuclear Information System (INIS)

    Alfassi, Z.B.

    1998-01-01

    'Chemical analysis by Nuclear Methods' is an effort of some renowned authors in field of nuclear chemistry and radiochemistry which is compiled by Alfassi, Z.B. and translated into Farsi version collected in two volumes. The second volume consists of the following chapters: Detecting ion recoil scattering and elastic scattering are dealt in the eleventh chapter, the twelfth chapter is devoted to nuclear reaction analysis using charged particles, X-ray emission is discussed at thirteenth chapter, the fourteenth chapter is about using ion microprobes, X-ray fluorescence analysis is discussed in the fifteenth chapter, alpha, beta and gamma ray scattering in chemical analysis are dealt in chapter sixteen, Moessbauer spectroscopy and positron annihilation are discussed in chapter seventeen and eighteen; The last two chapters are about isotope dilution analysis and radioimmunoassay

  17. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk

    DEFF Research Database (Denmark)

    Hedegaard, R V; Kristensen, D; Nielsen, Jacob Holm

    2006-01-01

    and lipolytic changes occurring in the milk during chill storage for 4 d. Sensory analysis and chemical analysis showed high correlation between the typical descriptors for oxidation such as cardboard, metallic taste, and boiled milk and specific chemical markers for oxidation such as hexanal. Notably, primary......Oxidation in 3 types of bovine milk with different fatty acid profiles obtained through manipulation of feed was evaluated by analytical methods quantifying the content of potential antioxidants, the tendency of formation of free radicals, and the accumulation of primary and secondary oxidation...... products. The milk samples were evaluated in parallel by descriptive sensory analysis by a trained panel, and the correlation between the chemical analysis and the descriptive sensory analysis was evaluated. The fatty acid composition of the 3 types of milk was found to influence the oxidative...

  18. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Kristensen, D.; Nielsen, J. H.

    2006-01-01

    products. The milk samples were evaluated in parallel by descriptive sensory analysis by a trained panel, and the correlation between the chemical analysis and the descriptive sensory analysis was evaluated. The fatty acid composition of the 3 types of milk was found to influence the oxidative...... and lipolytic changes occurring in the milk during chill storage for 4 d. Sensory analysis and chemical analysis showed high correlation between the typical descriptors for oxidation such as cardboard, metallic taste, and boiled milk and specific chemical markers for oxidation such as hexanal. Notably, primary...... oxidation products (i.e., lipid hydroperoxides) and even the tendency of formation of radicals as measured by electron spin resonance spectroscopy were also highly correlated to the sensory descriptors for oxidation. Electron spin resonance spectroscopy should accordingly be further explored as a routine...

  19. Chemical and thermal analysis for characterisation of building materials

    International Nuclear Information System (INIS)

    Kumar, S.C.; Sudersanan, M.; Ravindran, P.V.; Kalekar, B.B.; Mathur, P.K.

    2000-01-01

    Cement and other construction materials are extensively used for the construction of shielding materials for nuclear and high energy radiations. The design and optimum utilisation of such materials need an accurate analysis of their chemical composition. The moisture content and presence of bound water and other volatile materials are also important. The use of thermal analysis supplements the data obtained by chemical analysis and enables a distinction of moisture and chemically bound water. It also enables an identification of the process leading to the loss on ignition. The work carried out on the analysis of sand, cement and other aggregate materials used for the preparation of concrete is described in the paper. (author)

  20. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium.

    Science.gov (United States)

    Li, Zhanjie; Cheng, Yufeng; Cui, Jianmin; Zhang, Peipei; Zhao, Huixian; Hu, Shengwu

    2015-03-17

    Chemical hybridization agents (CHAs) are often used to induce male sterility for the production of hybrid seeds. We previously discovered that monosulfuron ester sodium (MES), an acetolactate synthase (ALS) inhibitor of the herbicide sulfonylurea family, can induce rapeseed (Brassica napus L.) male sterility at approximately 1% concentration required for its herbicidal activity. To find some clues to the mechanism of MES inducing male sterility, the ultrastructural cytology observations, comparative transcriptome analysis, and physiological analysis on carbohydrate content were carried out in leaves and anthers at different developmental stages between the MES-treated and mock-treated rapeseed plants. Cytological analysis revealed that the plastid ultrastructure was abnormal in pollen mother cells and tapetal cells in male sterility anthers induced by MES treatment, with less material accumulation in it. However, starch granules were observed in chloroplastids of the epidermis cells in male sterility anthers. Comparative transcriptome analysis identified 1501 differentially expressed transcripts (DETs) in leaves and anthers at different developmental stages, most of these DETs being localized in plastid and mitochondrion. Transcripts involved in metabolism, especially in carbohydrate and lipid metabolism, and cellular transport were differentially expressed. Pathway visualization showed that the tightly regulated gene network for metabolism was reprogrammed to respond to MES treatment. The results of cytological observation and transcriptome analysis in the MES-treated rapeseed plants were mirrored by carbohydrate content analysis. MES treatment led to decrease in soluble sugars content in leaves and early stage buds, but increase in soluble sugars content and decrease in starch content in middle stage buds. Our integrative results suggested that carbohydrate and lipid metabolism were influenced by CHA-MES treatment during rapeseed anther development, which might

  1. Inline chemical process analysis in micro-plants based on thermoelectric flow and impedimetric sensors

    International Nuclear Information System (INIS)

    Jacobs, T; Kutzner, C; Hauptmann, P; Kropp, M; Lang, W; Brokmann, G; Steinke, A; Kienle, A

    2010-01-01

    In micro-plants, as used in chemical micro-process engineering, an integrated inline analytics is regarded as an important factor for the development and optimization of chemical processes. Up to now, there is a lack of sensitive, robust and low-priced micro-sensors for monitoring mixing and chemical conversion in micro-fluidic channels. In this paper a novel sensor system combining an impedimetric sensor and a novel pressure stable thermoelectric flow sensor for monitoring chemical reactions in micro-plants is presented. The CMOS-technology-based impedimetric sensor mainly consists of two capacitively coupled interdigital electrodes on a silicon chip. The thermoelectric flow sensor consists of a heater in between two thermopiles on a perforated membrane. The pulsed and constant current feeds of the heater were analyzed. Both sensors enable the analysis of chemical conversion by means of changes in the thermal and electrical properties of the liquid. The homogeneously catalyzed synthesis of n-butyl acetate as a chemical model system was studied. Experimental results revealed that in an overpressure regime, relative changes of less than 1% in terms of thermal and electrical properties can be detected. Furthermore, the transition from one to two liquid phases accompanied by the change in slug flow conditions could be reproducibly detected

  2. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... Comparative Analysis on Chemical Composition of Bentonite Clays. Obtained from Ashaka and ... versatile material for geotechnical engineering and as well as their demand for ..... A PhD thesis submitted to the Chemical ...

  3. Chemical analysis of the Fornax Dwarf galaxy

    NARCIS (Netherlands)

    Letarte, Bruno

    2007-01-01

    This thesis is entitled “Chemical Analysis of the Fornax Dwarf Galaxy”, and it’s main goal is to determine what are the chemical elements present in the stars of this galaxy in order to try and understand it’s evolution. Galaxies are not “static” objects, they move, form stars and can interact with

  4. [Revealing the chemical changes of tea cell wall induced by anthracnose with confocal Raman microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Hu, Xiao-qian; Lou, Bing-gan; He, Yong

    2014-06-01

    Healthy tea and tea infected by anthracnose were first studied by confocal Raman microscopy to illustrate chemical changes of cell wall in the present paper. Firstly, Raman spectra of both healthy and infected sample tissues were collected with spatial resolution at micron-level, and ultrastructure of healthy and infected tea cells was got from scanning electron microscope. These results showed that there were significant changes in Raman shift and Raman intensity between healthy and infected cell walls, indicating that great differences occurred in chemical compositions of cell walls between healthy and infected samples. In details, intensities at many Raman bands which were closely associated with cellulose, pectin, esters were reduced after infection, revealing that the content of chemical compounds such as cellulose, pectin, esters was decreased after infection. Subsequently, chemical imaging of both healthy and infected tea cell walls were realized based on Raman fingerprint spectra of cellulose and microscopic spatial structure. It was found that not only the content of cellulose was reduced greatly after infection, but also the ordered structure of cellulose was destroyed by anthracnose infection. Thus, confocal Raman microscopy was shown to be a powerful tool to detect the chemical changes in cell wall of tea caused by anthracnose without any chemical treatment or staining. This research firstly applied confocal Raman microscopy in phytopathology for the study of interactive relationship between host and pathogen, and it will also open a new way for intensive study of host-pathogen at cellular level.

  5. Handbook of Basic Tables for Chemical Analysis. Final report

    International Nuclear Information System (INIS)

    Bruno, T.J.; Svoronos, P.D.N.

    1988-04-01

    This work began as a slim booklet prepared by one of the authors (TJB) to accompany a course on chemical instrumentation presented at the National Bureau of Standards, Boulder Laboratories. The booklet contained tables on chromatography, spectroscopy, and chemical (wet) methods, and was intended to provide the students with enough basic data to design their own analytical methods and procedures. Shortly thereafter, with the co-authorship of Prof. Paris D. N. Svoronos, it was expanded into a more-extensive compilation entitled Basic Tables for Chemical Analysis, published as National Bureau of Standards Technical Note 1096. That work has now been expanded and updated into the present body of tables. Although there have been considerable changes since the first version of these tables, the aim has remained essentially the same. The authors have tried to provide a single source of information for those practicing scientists and research students who must use various aspects of chemical analysis in their work. In this respect, it is geared less toward the researcher in analytical chemistry than to those practitioners in other chemical disciplines who must have routine use of chemical analysis

  6. Backside versus frontside advanced chemical analysis of high-k/metal gate stacks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E., E-mail: eugenie.martinez@cea.fr [Univ Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Saidi, B. [STMicroelectronics, 850 rue Jean Monnet, 38926 Rousset Cedex, Crolles (France); Veillerot, M. [Univ Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Caubet, P. [STMicroelectronics, 850 rue Jean Monnet, 38926 Rousset Cedex, Crolles (France); Fabbri, J-M. [Univ Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Piallat, F. [STMicroelectronics, 850 rue Jean Monnet, 38926 Rousset Cedex, Crolles (France); Gassilloud, R. [Univ Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Schamm-Chardon, S. [CEMES-CNRS et Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse (France)

    2015-08-15

    Highlights: • The backside approach is a promising solution for advanced chemical characterization of future MOSFETs. • Frontside ToF-SIMS and Auger depth profiles are affected by cumulative mixing effects and thus not relevant for analyzing ultra-thin layers. • Higher in-depth resolution is possible in the backside approach for Auger and ToF-SIMS depth profiling. • Backside depth profiling allows revealing ultra-thin layers and elemental in-depth redistribution inside high-k/metal gate stacks. • Backside XPS allows preserving the full metal gate, thus enabling the analysis of real technological samples. - Abstract: Downscaling of transistors beyond the 14 nm technological node requires the implementation of new architectures and materials. Advanced characterization methods are needed to gain information about the chemical composition of buried layers and interfaces. An effective approach based on backside analysis is presented here. X-ray photoelectron spectroscopy, Auger depth profiling and time-of-flight secondary ions mass spectrometry are combined to investigate inter-diffusion phenomena. To highlight improvements related to the backside method, backside and frontside analyses are compared. Critical information regarding nitrogen, oxygen and aluminium redistribution inside the gate stacks is obtained only in the backside configuration.

  7. Chemical analysis of reactor and commercial columbium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The methods cover the chemical analysis of reactor and commercial columbium having chemical compositions within specified limits. The following analytical procedures are discussed along with apparatus, reagents, photometric practice, safety precautions, sampling, and rounding calculated values: nitrogen, by distillation (photometric) method; molybdenum and tungsten by the dithiol (photometric) method; iron by the 1,10-phenanthroline (photometric) method

  8. Genome Wide Transcriptome Analysis reveals ABA mediated response in Arabidopsis during Gold (AuCl4- treatment

    Directory of Open Access Journals (Sweden)

    Devesh eShukla

    2014-11-01

    Full Text Available The unique physico-chemical properties of gold nanoparticles (AuNPs find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl4- In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- hours in presence of gold solution (HAuCl4 using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit, ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4- treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE, suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE points to the operation of a predominant signaling mechanism in response to AuCl4- exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of

  9. Thermally emissive sensing materials for chemical spectroscopy analysis

    Science.gov (United States)

    Poole, Zsolt; Ohodnicki, Paul R.

    2018-05-08

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to the material.

  10. Molecular activation analysis for chemical species studies

    International Nuclear Information System (INIS)

    Chai Zhifang; Mao Xueying; Wang Yuqi; Sun Jingxin; Qian Qingfang; Hou Xiaolin; Zhang Peiqun; Chen Chunying; Feng Weiyu; Ding Wenjun; Li Xiaolin; Li Chunsheng; Dai Xiongxin

    2001-01-01

    The Molecular Activation Analysis (MAA) mainly refers to an activation analysis method that is able to provide information about the chemical species of elements in systems of interest, though its exact definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the bulk contents or concentrations are often insignificant for judging biological, environmental or geochemical effects of elements. In this paper, the features, methodology and limitation of MAA were outlined. Further, the up-to-date MAA progress made in our laboratory was introduced as well. (author)

  11. Advanced chemical analysis service for elements, radionuclides and phases

    International Nuclear Information System (INIS)

    Sansoni, B.

    1986-01-01

    A review is given on the structure, organisation and performance of the chemical analysis service of the Central Department for Chemical Analysis at the Kernforschungsanlage Juelich GmbH. The research and development programs together with the infrastructure of the Centre afford to analyse almost all stable elements of the periodical table in almost any material. The corresponding chemical analysis service has been organized according to a new modular system of analytical steps. According to this, the most complicated and, therefore, most general case of an analytical scheme for element and radionuclide analysis in any type of material can be differentiated into about 14 different steps, the modules. They are more or less independent of the special problem. The laboratory is designed and organized according to these steps. (orig./PW) [de

  12. VALIDATION GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following guidelines for laboratories engaged in the forensic analysis of chemical evidence associated with terrorism. This document provides a baseline framework and guidance for...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 11. Preparation, characterization, and post-synthetic ... The results revealed that MCM-22 has a layered sphere, doughnut like morphology and after modification, swollen and broken sphere was observed. Physicochemical analysis revealed that the ...

  14. Probabilistic risk analysis in chemical engineering

    International Nuclear Information System (INIS)

    Schmalz, F.

    1991-01-01

    In risk analysis in the chemical industry, recognising potential risks is considered more important than assessing their quantitative extent. Even in assessing risks, emphasis is not on the probability involved but on the possible extent. Qualitative assessment has proved valuable here. Probabilistic methods are used in individual cases where the wide implications make it essential to be able to assess the reliability of safety precautions. In this case, assessment therefore centres on the reliability of technical systems and not on the extent of a chemical risk. 7 figs

  15. All-Russia conference on chemical analysis of substances and materials. Abstracts of reports

    International Nuclear Information System (INIS)

    2000-01-01

    Collection contains abstracts of reports on chemical analysis of foods, drugs, environmental materials. Methods of chemical analysis used in such regions as chemical control in agriculture, criminology, art and archaeology, biotechnology, geology, chemistry and petrochemistry, metallurgy, metrology are presented. Theoretical, methodological and applied aspects of chemical analysis are considered [ru

  16. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)

    Science.gov (United States)

    Amberg, Alexander; Barrett, Dave; Beale, Michael H.; Beger, Richard; Daykin, Clare A.; Fan, Teresa W.-M.; Fiehn, Oliver; Goodacre, Royston; Griffin, Julian L.; Hankemeier, Thomas; Hardy, Nigel; Harnly, James; Higashi, Richard; Kopka, Joachim; Lane, Andrew N.; Lindon, John C.; Marriott, Philip; Nicholls, Andrew W.; Reily, Michael D.; Thaden, John J.; Viant, Mark R.

    2013-01-01

    There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at http://msi-workgroups.sourceforge.net/ or http://Msi-workgroups-feedback@lists.sourceforge.net. Further, community input related to this document can also be provided via this electronic forum. PMID:24039616

  17. Chemical analysis of carbonates and carbonate rocks by atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tardon, S

    1981-01-01

    Evaluates methods of determining chemical composition of rocks surrounding black coal seams. Carbonate rock samples were collected in the Ostrava-Karvina coal mines. Sampling methods are described. Determination of the following elements and compounds in carbonate rocks is discussed: calcium, magnesium, iron, manganese, barium, silicon, aluminium, titanium, sodium, potassium, sulfur trioxide, phosphorus pentoxide, water and carbon dioxide. Proportion of compounds insoluble in water in the investigated rocks is also determined. Most of the elements are determined by means of atomic absorption analysis. Phosphorus is also determined by atomic absorption analysis. Other compounds are determined gravimetrically. The described procedure permits weight of a rock sample to be reduced to 0.5 g without reducing analysis accuracy. The results of determining carbonate rock components by X-ray analysis and by chemical analysis are compared. Equipment used for atomic absorption analysis is characterized (the 503 Perkin-Elmer and the CF-4 Optica-Milano spectrophotometers). The analyzed method for determining carbonate rock permits more accurate classification of rocks surrounding coal seams and rock impurities in run-of-mine coal. (22 refs.) (In Czech)

  18. Chemical detection, identification, and analysis system

    International Nuclear Information System (INIS)

    Morel, R.S.; Gonzales, D.; Mniszewski, S.

    1990-01-01

    The chemical detection, identification, and analysis system (CDIAS) has three major goals. The first is to display safety information regarding chemical environment before personnel entry. The second is to archive personnel exposure to the environment. Third, the system assists users in identifying the stage of a chemical process in progress and suggests safety precautions associated with that process. In addition to these major goals, the system must be sufficiently compact to provide transportability, and it must be extremely simple to use in order to keep user interaction at a minimum. The system created to meet these goals includes several pieces of hardware and the integration of four software packages. The hardware consists of a low-oxygen, carbon monoxide, explosives, and hydrogen sulfide detector; an ion mobility spectrometer for airborne vapor detection; and a COMPAQ 386/20 portable computer. The software modules are a graphics kernel, an expert system shell, a data-base management system, and an interface management system. A supervisory module developed using the interface management system coordinates the interaction of the other software components. The system determines the safety of the environment using conventional data acquisition and analysis techniques. The low-oxygen, carbon monoxide, hydrogen sulfide, explosives, and vapor detectors are monitored for hazardous levels, and warnings are issued accordingly

  19. Microarray technology for major chemical contaminants analysis in food: current status and prospects.

    Science.gov (United States)

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.

  20. Chemical analysis and potential health risks of hookah charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Yehya, E-mail: yelsayed@aus.edu; Dalibalta, Sarah, E-mail: sdalibalta@aus.edu; Abu-Farha, Nedal

    2016-11-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography–mass spectrometry (TD-GC–MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified. - Highlights: • Hookah charcoals, mainly synthetic brands, contains trace/heavy metals in concentrations exceeding those in cigarettes. • The concentration of lead in synthetic charcoal briquettes may impose adverse effects on human health. • The amount of nitrogen in synthetic charcoal is comparable to that reported in cigarettes. • Chemical profiling of smoke emitted from hookah charcoal reveals many compounds associated with potential health risks.

  1. Chemical analysis and potential health risks of hookah charcoal

    International Nuclear Information System (INIS)

    Elsayed, Yehya; Dalibalta, Sarah; Abu-Farha, Nedal

    2016-01-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography–mass spectrometry (TD-GC–MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified. - Highlights: • Hookah charcoals, mainly synthetic brands, contains trace/heavy metals in concentrations exceeding those in cigarettes. • The concentration of lead in synthetic charcoal briquettes may impose adverse effects on human health. • The amount of nitrogen in synthetic charcoal is comparable to that reported in cigarettes. • Chemical profiling of smoke emitted from hookah charcoal reveals many compounds associated with potential health risks.

  2. Microfabricated Gas Phase Chemical Analysis Systems

    International Nuclear Information System (INIS)

    FRYE-MASON, GREGORY CHARLES; HELLER, EDWIN J.; HIETALA, VINCENT M.; KOTTENSTETTE, RICHARD; LEWIS, PATRICK R.; MANGINELL, RONALD P.; MATZKE, CAROLYN M.; WONG, CHUNGNIN C.

    1999-01-01

    A portable, autonomous, hand-held chemical laboratory ((micro)ChemLab(trademark)) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described

  3. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities

    DEFF Research Database (Denmark)

    Kitir, Betül; Maolanon, Alex R.; Ohm, Ragnhild G.

    2017-01-01

    medicines. Therefore, detailed mechanistic information and precise characterization of the chemical probes used to investigate the effects of HDAC enzymes are vital. We interrogated Nature's arsenal of macrocyclic nonribosomal peptide HDAC inhibitors by chemical synthesis and evaluation of more than 30...... natural products and analogues. This furnished surprising trends in binding affinities for the various macrocycles, which were then exploited for the design of highly potent class I and IIb HDAC inhibitors. Furthermore, thorough kinetic investigation revealed unexpected inhibitory mechanisms of important...

  4. Rapid chemical analysis of allanite

    International Nuclear Information System (INIS)

    Nishiyama, Goro; Hayashi, Hiroshi

    1981-01-01

    Rapid chemical analysis of allanite was studied by atomic absorption spectrophotometry. Powdered sample was fused with mixture of sodium carbonate anhydrous and borax (4 : 1 weight) in platinum crucible and sample solution was prepared. SiO 2 , Fe 2 O 3 , Al 2 O 3 , MnO and rare earth metals were determined by atomic absorption spectrophotometry, CaO, MgO and Ce 2 O 3 by titration, ThO 2 by colorimetry, and La 2 O 3 by flame photometry respectively. For sample solution treated with hydrofluoric acid and sulfuric acid. Na 2 O and K 2 O were determined by atomic absorption spectrophotometry, TiO 2 and P 2 O 5 by colorimetry. Chemical analyses for four samples were carried out and gave consistent results. (author)

  5. Chemical analysis of geological samples

    International Nuclear Information System (INIS)

    Malhotra, R.K.

    1997-01-01

    Most of the analytical methodology used in geochemical exploration has been based on molecular absorption, atomic absorption, and ICP-AES, ICPMAS etc. Detection limit and precision are factors in the choice of methodology in search of metallic ores and are related to the accuracy of data. A brief outline of the various chemical analysis techniques explaining essentially the basics of measurement principles and instrumentation is discussed

  6. QUALITY ASSURANCE GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following quality assurance guidelines to provide laboratories engaged in forensic analysis of chemical evidence associated with terrorism a framework to implement a quality assura...

  7. Urine storage under refrigeration preserves the sample in chemical, cellularity and bacteriuria analysis of ACS

    Directory of Open Access Journals (Sweden)

    Karen Cristina Barcellos Ribeiro

    2013-12-01

    Full Text Available INTRODUCTION: The analysis of urine abnormal constituents and sediment (ACS comprises tests of great diagnostic and prognostic value in clinical practice. When the analysis of ACS cannot be performed within two hours after collection, the sample must be preserved in order to avoid pre-analytical interferences. Refrigeration is the most applied technique due to its cost effectiveness. Moreover, it presents fewer inconveniences when compared to chemical preservation. However, changes in ACS may also occur in samples under refrigeration. OBJECTIVE: To analyze the influence of refrigeration at 2 to 8ºC on the storage of urine samples within 24 hours. MATERIAL AND METHOD: A total of 80 urine samples were selected from patients admitted at Universidade Federal de Juiz de Fora (UFJF university hospital, which were tested for ACS at room temperature and stored under refrigeration for 6, 12 and 24 hours. RESULTS: The results showed that refrigeration proved to be effective when compared to samples kept at room temperature, inasmuch as the physical, chemical, microbial and cellularity features were preserved. Nevertheless, crystalluria was present after a 6- hour storage period. CONCLUSION: The tests revealed that cooling preserved cellularity and chemical characteristics of urine samples for up to 12 hours. Nonetheless, the precipitation of crystals was evident in this storage method. Thus, the possible consequences of storing urine samples for ACS test under these conditions should be included in the analysis report.

  8. Optical MEMS for chemical analysis and biomedicine

    CERN Document Server

    Jiang, Hongrui

    2016-01-01

    This book describes the current state of optical MEMS in chemical and biomedical analysis and brings together current trends and highlights topics representing the most exciting progress in recent years in the field.

  9. Nonradiological chemical pathway analysis and identification of chemicals of concern for environmental monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Blanton, M.L.; Cooper, A.T.; Castleton, K.J.

    1995-11-01

    Pacific Northwest's Surface Environmental Surveillance Project (SESP) is an ongoing effort tot design, review, and conducted monitoring on and off the Hanford site. Chemicals of concern that were selected are listed. Using modeled exposure pathways, the offsite cancer incidence and hazard quotient were calculated and a retrospective pathway analysis performed to estimate what onsite concentrations would be required in the soil for each chemical of concern and other detected chemicals that would be required to obtain an estimated offsite human-health risk of 1.0E-06 cancer incidence or 1.0 hazard quotient. This analysis indicates that current nonradiological chemical contamination occurring on the site does not pose a significant offsite human-health risk; the highest cancer incidence to the offsite maximally exposed individual was from arsenic (1.76E-10); the highest hazard quotient was chromium(VI) (1.48E-04). The most sensitive pathways of exposure were surfacewater and aquatic food consumption. Combined total offsite excess cancer incidence was 2.09E-10 and estimated hazard quotient was 2.40E-04. Of the 17 identified chemicals of concern, the SESP does not currently (routinely) monitor arsenic, benzo(a)pyrene, bis(2- ethylhexyl)phthalate (BEHP), and chrysene. Only 3 of the chemicals of concern (arsenic, BEHP, chloroform) could actually occur in onsite soil at concern high enough to cause a 1.0E-06 excess cancer incidence or a 1.0 hazard index for a given offsite exposure pathway. During the retrospective analysis, 20 other chemicals were also evaluated; only vinyl chloride and thallium could reach targeted offsite risk values

  10. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX).

    Science.gov (United States)

    Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R

    2014-08-01

    Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.

  11. Chemical characterization of organic aerosol above a mid-latitude forest reveals a complex mixture of highly-functionalized chemical species and diverse structural features with temporal variability

    Science.gov (United States)

    Gentner, D. R.; Ditto, J.; Barnes, E.; Khare, P.

    2017-12-01

    Highly-functionalized organic compounds are known to be a major component of the complex mixture of the particle-phase compounds that comprise organic aerosol, yet little is known about the identity of many of these compounds, and their formation pathways and roles in atmospheric processes are poorly understood. We present results from the comprehensive chemical speciation of PM10 organic aerosols collected in July 2016 at the remote mid-latitude forest field site during PROPHET. Samples were analyzed via liquid and gas chromatography coupled with a quadrupole time-of-flight tandem mass spectrometry (MS×MS) following electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). 8 hr samples were collected during day- and night-time sampling periods rather than more typical 24-hour samples. This analysis of the organic aerosol yielded over 12,000 unique compounds for which we have high accuracy molecular masses, formulas, and additional information on structural features using MS×MS. O:C ratios were 0.3 on average, yet the top 10% of compounds ranged 0.7-2.3. 70% and 69% of day- and night-time samples were nitrogen-containing, whereas 26% and 24% contained sulfur, respectively. Within these broader molecular categories, we observed a wide variety of molecular features that reveal a diversity of functional groups and moieties. In this presentation, we present the results of our speciation, temporal variability, connections to air parcel back trajectories and other bulk properties, and potential formation pathways.

  12. Proteomic analysis of MG132-treated germinating pollen reveals expression signatures associated with proteasome inhibition.

    Directory of Open Access Journals (Sweden)

    Candida Vannini

    Full Text Available Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition.

  13. Chemical Information revealed by Mössbauer spectroscopy and DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Satoru, E-mail: snaka@hiroshima-u.ac.jp [Hiroshima University, Natural Science Center for Basic Research and Development (Japan)

    2017-11-15

    Mixed-valence state of binuclear metallocene derivatives and spin-crossover (SCO) phenomena of the assembled Fe(II) complexes have been studied by using Mössbauer spectroscopy. The understanding of the results obtained by Mössbauer spectra is well supported by means of X-ray structural analysis and density functional theory (DFT) calculation. Benchmark study of relativisitic DFT calculation by using Mössbauer isomer shifts of Eu, Np complexes reveals the validity of the calculation. Such study sheds light on the bonding character of 4f and 5f electron. These results are reviewed.

  14. Chemical analysis of cyanide in cyanidation process: review of methods

    International Nuclear Information System (INIS)

    Nova-Alonso, F.; Elorza-Rodriguez, E.; Uribe-Salas, A.; Perez-Garibay, R.

    2007-01-01

    Cyanidation, the world wide method for precious metals recovery, the chemical analysis of cyanide, is a very important, but complex operation. Cyanide can be present forming different species, each of them with different stability, toxicity, analysis method and elimination technique. For cyanide analysis, there exists a wide selection of analytical methods but most of them present difficulties because of the interference of species present in the solution. This paper presents the different available methods for chemical analysis of cyanide: titration, specific electrode and distillation, giving special emphasis on the interferences problem, with the aim of helping in the interpretation of the results. (Author)

  15. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and

  16. Chemical analysis by nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y

    2002-01-01

    This state art report consists of four parts, production of micro-particles, analysis of boron, alpha tracking method and development of neutron induced prompt gamma ray spectroscopy (NIPS) system. The various methods for the production of micro-paticles such as mechanical method, electrolysis method, chemical method, spray method were described in the first part. The second part contains sample treatment, separation and concentration, analytical method, and application of boron analysis. The third part contains characteristics of alpha track, track dectectors, pretreatment of sample, neutron irradiation, etching conditions for various detectors, observation of track on the detector, etc. The last part contains basic theory, neutron source, collimator, neutron shields, calibration of NIPS, and application of NIPS system.

  17. Chemical analysis by nuclear techniques

    International Nuclear Information System (INIS)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.

    2002-01-01

    This state art report consists of four parts, production of micro-particles, analysis of boron, alpha tracking method and development of neutron induced prompt gamma ray spectroscopy (NIPS) system. The various methods for the production of micro-paticles such as mechanical method, electrolysis method, chemical method, spray method were described in the first part. The second part contains sample treatment, separation and concentration, analytical method, and application of boron analysis. The third part contains characteristics of alpha track, track dectectors, pretreatment of sample, neutron irradiation, etching conditions for various detectors, observation of track on the detector, etc. The last part contains basic theory, neutron source, collimator, neutron shields, calibration of NIPS, and application of NIPS system

  18. Toward crustacean without chemicals: a descriptive analysis of consumer response using price comparisons

    Directory of Open Access Journals (Sweden)

    Charles Odilichukwu R. Okpala

    2016-10-01

    Full Text Available Background: To date, there seems to be limited-to-zero emphasis about how consumers perceive crustacean products subject to either chemical and or non-chemical preservative treatments. In addition, studies that investigated price comparisons of crustacean products subject to either chemical or chemical-free preservative methods seem unreported. Objective: This study focused on providing some foundational knowledge about how consumers perceive traditionally harvested crustaceans that are either chemical-treated and or free of chemicals, incorporating price comparisons using a descriptive approach. Design: The study design employed a questionnaire approach via interview using a computer-assisted telephone system and sampled 1,540 participants across five key locations in Italy. To actualize consumer sensitivity, ‘price’ was the focus given its crucial role as a consumption barrier. Prior to this, variables such as demographic characteristics of participants, frequency of purchasing, quality attributes/factors that limit the consumption of crustaceans were equally considered. Results: By price comparisons, consumers are likely to favor chemical-free (modified atmosphere packaging crustacean products amid a price increase of up to 15%. But, a further price increase such as by 25% could markedly damage consumers’ feelings, which might lead to a considerable number opting out in favor of either chemical-treated or other seafood products. Comparing locations, the studied variables showed no statistical differences (p>0.05. On the contrary, the response weightings fluctuated across the studied categories. Both response weightings and coefficient of variation helped reveal more about how responses deviated per variable categories. Conclusions: This study has revealed some foundational knowledge about how consumers perceive traditionally harvested crustaceans that were either chemical-treated or subject to chemical-free preservative up to price

  19. Toward crustacean without chemicals: a descriptive analysis of consumer response using price comparisons.

    Science.gov (United States)

    Okpala, Charles Odilichukwu R; Bono, Gioacchino; Pipitone, Vito; Vitale, Sergio; Cannizzaro, Leonardo

    2016-01-01

    To date, there seems to be limited-to-zero emphasis about how consumers perceive crustacean products subject to either chemical and or non-chemical preservative treatments. In addition, studies that investigated price comparisons of crustacean products subject to either chemical or chemical-free preservative methods seem unreported. This study focused on providing some foundational knowledge about how consumers perceive traditionally harvested crustaceans that are either chemical-treated and or free of chemicals, incorporating price comparisons using a descriptive approach. The study design employed a questionnaire approach via interview using a computer-assisted telephone system and sampled 1,540 participants across five key locations in Italy. To actualize consumer sensitivity, 'price' was the focus given its crucial role as a consumption barrier. Prior to this, variables such as demographic characteristics of participants, frequency of purchasing, quality attributes/factors that limit the consumption of crustaceans were equally considered. By price comparisons, consumers are likely to favor chemical-free (modified atmosphere packaging) crustacean products amid a price increase of up to 15%. But, a further price increase such as by 25% could markedly damage consumers' feelings, which might lead to a considerable number opting out in favor of either chemical-treated or other seafood products. Comparing locations, the studied variables showed no statistical differences ( p >0.05). On the contrary, the response weightings fluctuated across the studied categories. Both response weightings and coefficient of variation helped reveal more about how responses deviated per variable categories. This study has revealed some foundational knowledge about how consumers perceive traditionally harvested crustaceans that were either chemical-treated or subject to chemical-free preservative up to price sensitivity using Italy as a reference case, which is applicable to other parts

  20. Chemical analysis and antihyperglycemic activity of an original extract from burdock root (Arctium lappa).

    Science.gov (United States)

    Tousch, Didier; Bidel, Luc P R; Cazals, Guillaume; Ferrare, Karine; Leroy, Jeremy; Faucanié, Marie; Chevassus, Hugues; Tournier, Michel; Lajoix, Anne-Dominique; Azay-Milhau, Jacqueline

    2014-08-06

    In the present study, we obtained a dried burdock root extract (DBRE) rich in caffeoylquinic acids derivatives. We performed the chemical characterization of DBRE and explored its antihyperglycemic potential in both in vitro and in vivo experiments. Chemical analysis of DBRE using LC-MS and GC-MS revealed the presence of a great majority of dicaffeoylquinic acid derivatives (75.4%) of which 1,5-di-O-caffeoyl-4-O-maloylquinic acid represents 44% of the extract. In the in vitro experiments, DBRE is able to increase glucose uptake in cultured L6 myocytes and to decrease glucagon-induced glucose output from rat isolated hepatocytes together with a reduction of hepatic glucose 6-phosphatase activity. DBRE did not increase insulin secretion in the INS-1 pancreatic β-cell line. In vivo, DBRE improves glucose tolerance both after intraperitoneal and oral subchronic administration. In conclusion, our data demonstrate that DBRE constitutes an original set of caffeoylquinic acid derivatives displaying antihyperglycemic properties.

  1. Positron annihilation spectroscopy for chemical analysis (PASCA). Chapter 9

    International Nuclear Information System (INIS)

    Cheng, K.L.; Jean, Y.C.

    1988-01-01

    This chapter gives an up to date overview of positron annihilation spectroscopy for chemical analysis (PASCA). As an in situ technique PASCA is especially suitable for studying processes occurring at surfaces. The in situ characteristics of PASCA are treated. The principes of positron annihilation life time spectroscopy (PAL) are discussed and some important analytical applications such as, in determining of total surface areas and cavity volumes in chemical reactions, in the study of chemisorption and catalytic reactions on porous surfaces, in the analysis of bulk materials, in determining molecular association constants in biological systems, in proton and neutron activation analysis, in thin layer chromatography and in tracer technology. 28 refs.; 15 figs.; 8 tabs

  2. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Qingchao; Yan, Xuefeng; Lv, Zhaomin; Guo, Meijin [East China University of Science and Technology, Shanghai (China)

    2013-06-15

    Considering that kernel entropy component analysis (KECA) is a promising new method of nonlinear data transformation and dimensionality reduction, a KECA based method is proposed for nonlinear chemical process monitoring. In this method, an angle-based statistic is designed because KECA reveals structure related to the Renyi entropy of input space data set, and the transformed data sets are produced with a distinct angle-based structure. Based on the angle difference between normal status and current sample data, the current status can be monitored effectively. And, the confidence limit of the angle-based statistics is determined by kernel density estimation based on sample data of the normal status. The effectiveness of the proposed method is demonstrated by case studies on both a numerical process and a simulated continuous stirred tank reactor (CSTR) process. The KECA based method can be an effective method for nonlinear chemical process monitoring.

  3. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure

    International Nuclear Information System (INIS)

    Jiang, Qingchao; Yan, Xuefeng; Lv, Zhaomin; Guo, Meijin

    2013-01-01

    Considering that kernel entropy component analysis (KECA) is a promising new method of nonlinear data transformation and dimensionality reduction, a KECA based method is proposed for nonlinear chemical process monitoring. In this method, an angle-based statistic is designed because KECA reveals structure related to the Renyi entropy of input space data set, and the transformed data sets are produced with a distinct angle-based structure. Based on the angle difference between normal status and current sample data, the current status can be monitored effectively. And, the confidence limit of the angle-based statistics is determined by kernel density estimation based on sample data of the normal status. The effectiveness of the proposed method is demonstrated by case studies on both a numerical process and a simulated continuous stirred tank reactor (CSTR) process. The KECA based method can be an effective method for nonlinear chemical process monitoring

  4. Antimicrobial activity and chemical compositions of Turkish propolis ...

    African Journals Online (AJOL)

    negative bacteria and its chemical composition were evaluated by the method of agar-well diffusion and GC-MS, respectively. Some typical compounds samples were identified in the propolis samples. Principal component analysis revealed that the ...

  5. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  6. Chemical and Biological Analysis of Malaysian Sting less Bee Propolis Extracts

    International Nuclear Information System (INIS)

    Nurhamizah Ibrahim; Nurul Farah Shakila Mohd Niza; Muhammad Muslim Mohd Rodi; Abdul Jamil Zakaria; Zhari Ismail; Khamsah Suryati Mohd; Khamsah Suryati Mohd

    2016-01-01

    The aim of this study is to evaluate chemical and biological profile of methanol extracts from Malaysian propolis produced by two commonly found sting less bee species, Heterotrigona itama (MHI) and Geniotrigona thoracica (MGT). Test samples were analyzed for physicochemical parameters such as moisture, fat, crude fibre, crude protein, carbohydrate and ash content. Tests for phyto chemical screening by thin layer chromatography of both extracts revealed that presence of terpenoids, flavonoids, phenols and essential oils but steroids, saponin and coumarins only occur in MHI. Both extracts displayed a characteristic profile and vary from each other. Accordingly, MHI possess higher antioxidant activity with an IC_5_0 of 15.0 ± 0.21 μg/ mL compared to MGT with IC_5_0 of 270.0 ± 0.19 μg/ mL. MHI showed moderate nitric oxide scavenging activity, while MGT only showed mild inhibition. Antidiabetic activity was determined by α-glucosidase inhibition and found significantly better than that of acarbose (positive control). In conclusion, data gathered in this study revealed that bee species play role in determining the chemical and biological profile of particular propolis and should put into account in decision of further development for propolis. (author)

  7. Revealing chemical processes and kinetics of drug action within single living cells via plasmonic Raman probes.

    Science.gov (United States)

    Li, Shan-Shan; Guan, Qi-Yuan; Meng, Gang; Chang, Xiao-Feng; Wei, Ji-Wu; Wang, Peng; Kang, Bin; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-05-23

    Better understanding the drug action within cells may extend our knowledge on drug action mechanisms and promote new drugs discovery. Herein, we studied the processes of drug induced chemical changes on proteins and nucleic acids in human breast adenocarcinoma (MCF-7) cells via time-resolved plasmonic-enhanced Raman spectroscopy (PERS) in combination with principal component analysis (PCA). Using three popular chemotherapy drugs (fluorouracil, cisplatin and camptothecin) as models, chemical changes during drug action process were clearly discriminated. Reaction kinetics related to protein denaturation, conformational modification, DNA damage and their associated biomolecular events were calculated. Through rate constants and reaction delay times, the different action modes of these drugs could be distinguished. These results may provide vital insights into understanding the chemical reactions associated with drug-cell interactions.

  8. Failure analysis on a chemical waste pipe

    International Nuclear Information System (INIS)

    Ambler, J.R.

    1985-01-01

    A failure analysis of a chemical waste pipe illustrates how nuclear technology can spin off metallurgical consultant services. The pipe, made of zirconium alloy (Zr-2.5 wt percent Nb, UNS 60705), had cracked in several places, all at butt welds. A combination of fractography and metallography indicated delayed hydride cracking

  9. Characteristics of the tomato chromoplast revealed by proteomic analysis

    OpenAIRE

    Barsan, Cristina; Sanchez-Bel, Paloma; Rombaldi, César Valmor; Egea, Isabel; Rossignol, Michel; Kuntz, Marcel; Zouine, Mohamed; Latché, Alain; Bouzayen, Mondher; Pech, Jean-Claude

    2010-01-01

    Chromoplasts are non-photosynthetic specialized plastids that are important in ripening tomato fruit (Solanum lycopersicum) since, among other functions, they are the site of accumulation of coloured compounds. Analysis of the proteome of red fruit chromoplasts revealed the presence of 988 proteins corresponding to 802 Arabidopsis unigenes, among which 209 had not been listed so far in plastidial databanks. These data revealed several features of the chromoplast. Proteins of lipid metabolism ...

  10. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rabitz, H. [Princeton Univ., NJ (United States)

    1993-12-01

    The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.

  11. Statistic analysis of grouping in evaluation of the behavior of stable chemical elements and physical-chemical parameters in effluent from uranium mining

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.

    2013-01-01

    The Ore Treatment Unit (UTM) is a uranium mine off. The statistical analysis of clustering was used to evaluate the behavior of stable chemical elements and physico-chemical variables in their effluents. The use of cluster analysis proved effective in the evaluation, allowing to identify groups of chemical elements in physico-chemical variables and group analyzes (element and variables ). As a result, we can say, based on the analysis of the data, a strong link between Ca and Mg and between Al and TR 2 O 3 (rare earth oxides) in the UTM effluents. The SO 4 was also identified as strongly linked to total solids and dissolved and these linked to electrical conductivity. Other associations existed, but were not as strongly linked. Additional collections for seasonal evaluation are required so that assessments can be confirmed. Additional statistics analysis (ordination techniques) should be used to help identify the origins of the groups identified in this analysis. (author)

  12. Metabolomic profiling reveals deep chemical divergence between two morphotypes of the zoanthid Parazoanthus axinellae

    Science.gov (United States)

    Cachet, Nadja; Genta-Jouve, Grégory; Ivanisevic, Julijana; Chevaldonné, Pierre; Sinniger, Frédéric; Culioli, Gérald; Pérez, Thierry; Thomas, Olivier P.

    2015-01-01

    Metabolomics has recently proven its usefulness as complementary tool to traditional morphological and genetic analyses for the classification of marine invertebrates. Among the metabolite-rich cnidarian order Zoantharia, Parazoanthus is a polyphyletic genus whose systematics and phylogeny remain controversial. Within this genus, one of the most studied species, Parazoanthus axinellae is prominent in rocky shallow waters of the Mediterranean Sea and the NE Atlantic Ocean. Although different morphotypes can easily be distinguished, only one species is recognized to date. Here, a metabolomic profiling approach has been used to assess the chemical diversity of two main Mediterranean morphotypes, the “slender” and “stocky” forms of P. axinellae. Targeted profiling of their major secondary metabolites revealed a significant chemical divergence between the morphotypes. While zoanthoxanthin alkaloids and ecdysteroids are abundant in both morphs, the “slender” morphotype is characterized by the presence of additional and bioactive 3,5-disubstituted hydantoin derivatives named parazoanthines. The absence of these specific compounds in the “stocky” morphotype was confirmed by spatial and temporal monitoring over an annual cycle. Moreover, specimens of the “slender” morphotype are also the only ones found as epibionts of several sponge species, particularly Cymbaxinella damicornis thus suggesting a putative ecological link. PMID:25655432

  13. Methodology for national risk analysis and prioritization of toxic industrial chemicals.

    Science.gov (United States)

    Taxell, Piia; Engström, Kerstin; Tuovila, Juha; Söderström, Martin; Kiljunen, Harri; Vanninen, Paula; Santonen, Tiina

    2013-01-01

    The identification of chemicals that pose the greatest threat to human health from incidental releases is a cornerstone in public health preparedness for chemical threats. The present study developed and applied a methodology for the risk analysis and prioritization of industrial chemicals to identify the most significant chemicals that pose a threat to public health in Finland. The prioritization criteria included acute and chronic health hazards, physicochemical and environmental hazards, national production and use quantities, the physicochemical properties of the substances, and the history of substance-related incidents. The presented methodology enabled a systematic review and prioritization of industrial chemicals for the purpose of national public health preparedness for chemical incidents.

  14. Ultrastructural Analysis of Urinary Stones by Microfocus Computed Tomography and Comparison with Chemical Analysis

    Directory of Open Access Journals (Sweden)

    Tolga Karakan

    2016-06-01

    Full Text Available Objective: To investigate the ultra-structure of urinary system stones using micro-focus computed tomography (MCT, which makes non-destructive analysis and to compare with wet chemical analysis. Methods: This study was carried out at the Ankara Train­ing and Research hospital. Renal stones, removed from 30 patients during percutaneous nephrolithotomy (PNL surgery, were included in the study. The stones were blindly evaluated by the specialists with MCT and chemi­cal analysis. Results: The comparison of the stone components be­tween chemical analysis and MCT, showed that the rate of consistence was very low (p0.05. It was also seen that there was no significant relation between its 3D structure being heterogeneous or homogenous. Conclusion: The stone analysis with MCT is a time con­suming and costly method. This method is useful to un­derstand the mechanisms of stone formation and an im­portant guide to develop the future treatment modalities.

  15. Comparison of Chemical Constituents in Scrophulariae Radix Processed by Different Methods based on UFLC-MS Combined with Multivariate Statistical Analysis.

    Science.gov (United States)

    Wang, Shengnan; Hua, Yujiao; Zou, Lisi; Liu, Xunhong; Yan, Ying; Zhao, Hui; Luo, Yiyuan; Liu, Juanxiu

    2018-02-01

    Scrophulariae Radix is one of the most popular traditional Chinese medicines (TCMs). Primary processing of Scrophulariae Radix is an important link which closely related to the quality of products in this TCM. The aim of this study is to explore the influence of different processing methods on chemical constituents in Scrophulariae Radix. The difference of chemical constituents in Scrophulariae Radix processed by different methods was analyzed by using ultra fast liquid chromatography-triple quadrupole-time of flight mass spectrometry coupled with principal component analysis and orthogonal partial least squares discriminant analysis. Furthermore, the contents of 12 index differential constituents in Scrophulariae Radix processed by different methods were simultaneously determined by using ultra fast liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry. Gray relational analysis was performed to evaluate the different processed samples according to the contents of 12 constituents. All of the results demonstrated that the quality of Scrophulariae Radix processed by "sweating" method was better. This study will provide the basic information for revealing the change law of chemical constituents in Scrophulariae Radix processed by different methods and facilitating selection of the suitable processing method of this TCM. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Network analysis reveals multiscale controls on streamwater chemistry

    Science.gov (United States)

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  17. Network analysis reveals multiscale controls on streamwater chemistry.

    Science.gov (United States)

    McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W

    2014-05-13

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  18. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    Science.gov (United States)

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.

  19. Development of a Mechanical Analysis System Considering Chemical Transitions of Barrier Materials

    International Nuclear Information System (INIS)

    Sahara, F.; Murakami, T.; Ito, H.; Kobayashi, I.; Yokozeki, K.

    2006-01-01

    An analysis system for the long-term mechanical behavior of barrier materials (MACBECE: Mechanical Analysis system considering Chemical transitions of Bentonite-based and Cement-based materials) was developed in order to improve the reliability of the evaluation of the hydraulic field that is one of the important environmental conditions in the safety assessment of the TRU waste disposal in Japan. The MACBECE is a system that calculates the deformation of barrier materials using their chemical property changes as inputs, and subsequently their hydraulic conductivity taking both their chemical property changes and deformation into consideration. This paper provides a general description of MACBECE and the results of experimental analysis carried out using MACBECE. (authors)

  20. Microbial and chemical analysis of illicit drugs samples confiscated from different areas of PakistanMicrobial and chemical analysis of illicit drugs samples confiscated from different areas of Pakistan.

    Science.gov (United States)

    Hussain, Shahzad; Khattak, Zainab; Mahmood, Sidra; Malik, Farnaz; Riaz, Humayun; Raza, Syed Atif; Khan, Samiullah

    2016-09-01

    The microbial and chemical analysis of illicit drug samples from different areas of Pakistan i.e. Quetta, Karachi, Lahore and Islamabad was conducted in a cross-sectional study at National Institute of Health, Islamabad. The drug samples were confiscated by Anti Narcotics Force (ANF), Pakistan. Microbial analysis was done by estimating bioburden which revealed the presence of gram negative and positive bacteria's, fungus, Streptococcus, Staphylococcus species. Trypton soya agar was used for total aerobic count, MacConkey agar for gram-negative bacteria, Sabouraud dextrose agar for fungus and Vogel-Johnson agar for Streptococcus and Staphylococcus species. Colour tests were applied to identify the drug samples. Qualitative and quantitative analysis of suspected samples of Heroin, morphine, cocaine and acetic anhydride was made by employing different chromatographic techniques i.e. Thin-layer chromatography (TLC) and High-performance liquid chromatography (HPLC). The samples were found to be adulterated with paracetamol, diazepam and Dextromethorphen. Acetic anhydride was adulterated with hydrochloric acid (HCl). There is lack of information providing structured advice on responses to the consequences of illicit drug adulteration. Robust and rehearsed interventions and communication strategies would provide a basis for response for a wide variety of organisations. Research into the usefulness of media warnings about adulteration of illicit drugs is required.

  1. Ingredients of a 2,000-y-old medicine revealed by chemical, mineralogical, and botanical investigations.

    Science.gov (United States)

    Giachi, Gianna; Pallecchi, Pasquino; Romualdi, Antonella; Ribechini, Erika; Lucejko, Jeannette Jacqueline; Colombini, Maria Perla; Mariotti Lippi, Marta

    2013-01-22

    In archaeology, the discovery of ancient medicines is very rare, as is knowledge of their chemical composition. In this paper we present results combining chemical, mineralogical, and botanical investigations on the well-preserved contents of a tin pyxis discovered onboard the Pozzino shipwreck (second century B.C.). The contents consist of six flat, gray, discoid tablets that represent direct evidence of an ancient medicinal preparation. The data revealed extraordinary information on the composition of the tablets and on their possible therapeutic use. Hydrozincite and smithsonite were by far the most abundant ingredients of the Pozzino tablets, along with starch, animal and plant lipids, and pine resin. The composition and the form of the Pozzino tablets seem to indicate that they were used for ophthalmic purposes: the Latin name collyrium (eyewash) comes from the Greek name κoλλυρα, which means "small round loaves." This study provided valuable information on ancient medical and pharmaceutical practices and on the development of pharmacology and medicine over the centuries. In addition, given the current focus on natural compounds, our data could lead to new investigations and research for therapeutic care.

  2. Fragrance chemicals in domestic and occupational products

    DEFF Research Database (Denmark)

    Rastogi, Suresh Chandra; Heydorn, S; Johansen, J D

    2001-01-01

    Epidemiological studies have described an increasing prevalence of fragrance allergy and indicated an association with hand eczema. 59 domestic and occupational products intended for hand exposure were subjected to gas chromatography-mass spectrometric (GC-MS) analyses to test the hypothesis...... that fragrance chemicals known to have the potential to cause contact allergy but not included in fragrance mix (FM) may be common ingredients in these products. A quantitative analysis of 19 selected fragrances was performed by GC-MS. Further analysis of GC-MS data revealed the presence of 43 other fragrance...... chemicals/groups of fragrance chemicals in the products investigated. Among the 19 target substances the most commonly detected were limonene in 78%, linalool in 61% and citronellol in 47% of the products investigated. The FM ingredients were present in these products with the following frequencies: oak...

  3. Chemical analysis using coincidence Doppler broadening and supporting first-principles theory: Applications to vacancy defects in compound semiconductors

    International Nuclear Information System (INIS)

    Makkonen, I.; Rauch, C.; Mäki, J.-M.; Tuomisto, F.

    2012-01-01

    The Doppler broadening of the positron annihilation radiation contains information on the chemical environment of vacancy defects trapping positrons in solids. The measured signal can, for instance, reveal impurity atoms situated next to vacancies. As compared to integrated quantities such as the positron annihilation rate or the annihilation line shape parameters, the full Doppler spectrum measured in the coincidence mode contains much more useful information for defect identification. This information, however, is indirect and complementary understanding is needed to fully interpret the results. First-principles calculations are a valuable tool in the analysis of measured spectra. One can construct an atomic-scale model for a given candidate defect, calculate from first principles the corresponding Doppler spectrum, and directly compare results between experiment and theory. In this paper we discuss recent examples of successful combinations of coincidence Doppler broadening measurements and supporting first-principles calculations. These demonstrate the predictive power of state-of-the-art calculations and the usefulness of such an approach in the chemical analysis of vacancy defects.

  4. Mass spectral chemical fingerprints reveal the molecular dependence of exhaust particulate matters on engine speeds.

    Science.gov (United States)

    Li, Yi; Zhang, Hua; Zhao, Zongshan; Tian, Yong; Liu, Kun; Jie, Feifan; Zhu, Liang; Chen, Huanwen

    2018-05-01

    Particulate matters (PMs) emitted by automobile exhaust contribute to a significant fraction of the global PMs. Extractive atmospheric pressure chemical ionization mass spectrometry (EAPCI-MS) was developed to explore the molecular dependence of PMs collected from exhaust gases produced at different vehicle engine speeds. The mass spectral fingerprints of the organic compounds embedded in differentially sized PMs (e.g., 0.22-0.45, 0.45-1.00, 1.00-2.00, 2.00-3.00, 3.00-5.00, and 5.00-10.00μm) generated at different engine speeds (e.g., 1000, 1500, 2000, 2500, and 3000r/min) were chemically profiled in the mass range of mass to charge ratio (m/z) 50-800. Organic compounds, including alcohols, aldehydes, and esters, were detected in all the PMs tested, with varied concentration levels for each individual PM sample. At relatively low engine speeds (≤1500r/min), the total amount of organic species embedded in PMs of 0.22-1.00μm was greater than in PMs of other sizes, while more organic species were found in PMs of 5.00-10.00μm at high engine speeds (≥3000r/min), indicating that the organic compounds distributed in different sizes of PMs strongly correlated with the engine speed. The experimental data showed that the EAPCI-MS technique enables molecular characterization of PMs in exhaust, revealing the chemical dependence of PMs on the engine speeds (i.e., the combustion conditions) of automobiles. Copyright © 2017. Published by Elsevier B.V.

  5. The collection and field chemical analysis of water samples

    International Nuclear Information System (INIS)

    Korte, N.E.; Ealey, D.T.; Hollenbach, M.H.

    1984-01-01

    A successful water sampling program requires a clear understanding of appropriate measurement and sampling procedures in order to obtain reliable field data and representative samples. It is imperative that the personnel involved have a thorough knowledge of the limitations of the techniques being used. Though this seems self-evident, many sampling and field-chemical-analysis programs are still not properly conducted. Recognizing these problems, the Department of Energy contracted with Bendix Field Engineering Corporation through the Technical Measurements Center to develop and select procedures for water sampling and field chemical analysis at waste sites. The fundamental causese of poor field programs are addressed in this paper, largely through discussion of specific field-measurement techniques and their limitations. Recommendations for improvement, including quality-assurance measures, are also presented

  6. Chemical analysis quality assurance at the ICPP

    International Nuclear Information System (INIS)

    Hand, R.L.

    1990-01-01

    This document discusses the chemical analysis quality assurance program at the ICPP which involves records management, analytical methods quality control, analysis procedures and training and qualification. Since 1979, the major portion of the quality assurance program has been implemented on a central analytical computer system. The individual features provided by the system are storage, retrieval, and search capabilities over all general request and sample analysis information, automatic method selection for all process streams, automation of all method calculations, automatic assignment of bias and precision estimates at all analysis levels, with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of all process stream results for replicate agreement, automatic testing of process results against pre- established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of all analysis data plus all statistical testing to the Production Department

  7. Quantitative flux analysis reveals folate-dependent NADPH production

    Science.gov (United States)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  8. Chemical composition of hydrothermal ores from Mid-Okinawa trough and Suiyo Seamount determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Noguchi, Takuroh; Taira, Naoto; Oomori, Tamotsu; Taira, Hatsuo; Tanahara, Akira; Takada, Jitsuya

    2007-01-01

    Neutron activation analysis of 13 hydrothermal ore samples (70 subsamples) collected from the Mid-Okinawa Trough and Suiyo Seamount revealed higher contents of precious metal such as Au and Ag, and those of As, Sb, Ga, and Hg than those from mid-ocean ridge hydrothermal systems. In addition, the Mid-Okinawa Trough samples were richer in Ag and Sb than those from the Suiyo Seamount. The geochemical differences among these hydrothermal ore deposits are regarded as reflecting both differences in the chemical composition of the hosted magma of hydrothermal system and the abundance of sediments that is reacted with hydrothermal fluids. (author)

  9. Endocrine-disrupting Chemicals: Review of Toxicological Mechanisms Using Molecular Pathway Analysis

    Science.gov (United States)

    Yang, Oneyeol; Kim, Hye Lim; Weon, Jong-Il; Seo, Young Rok

    2015-01-01

    Endocrine disruptors are known to cause harmful effects to human through various exposure routes. These chemicals mainly appear to interfere with the endocrine or hormone systems. As importantly, numerous studies have demonstrated that the accumulation of endocrine disruptors can induce fatal disorders including obesity and cancer. Using diverse biological tools, the potential molecular mechanisms related with these diseases by exposure of endocrine disruptors. Recently, pathway analysis, a bioinformatics tool, is being widely used to predict the potential mechanism or biological network of certain chemicals. In this review, we initially summarize the major molecular mechanisms involved in the induction of the above mentioned diseases by endocrine disruptors. Additionally, we provide the potential markers and signaling mechanisms discovered via pathway analysis under exposure to representative endocrine disruptors, bisphenol, diethylhexylphthalate, and nonylphenol. The review emphasizes the importance of pathway analysis using bioinformatics to finding the specific mechanisms of toxic chemicals, including endocrine disruptors. PMID:25853100

  10. Chemical analysis as production guide

    International Nuclear Information System (INIS)

    Bouzigues, H.; Fontaine, A.; Patigny, P.

    1975-01-01

    All piloting data of chemical processing plants are based on the results of analysis. The first part of this article describes a system of analysers adapted to the needs of the Pierrelatte plant, with management of signals collected by the factory computer. Part two shows the influence of analytical development in the establishment of material balance sheets for the Marcoule spent fuel processing plant. Part three stresses the contribution of the automation of analytical test processes at the La Hague spent fuel processing plant. In all three cases the progress in analytical methods greatly improves the safety, reliability and response time of the various operations [fr

  11. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    Science.gov (United States)

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation.

  12. [Relativity of commercial specification of Menthae Herba based on chemical analysis].

    Science.gov (United States)

    Ye, Dan; Zhao, Ming; Shao, Yang; Ouyang, Zhen; Peng, Hua-sheng; Han Bang-xing; Zhang, Wei-wan-qi; Gu, Xue-mei

    2015-01-01

    In order to compare the differences of 35 Menthae Herba samples collected on the market and at producing areas, the contents of six total terpenoids, the essential oil and chromatographic fingerprints were analyzed, which provided evidences for drawing up the commodity specifications and grading criteria of Menthae Herba. GC-MS method was used to analyze the chemical constituents of 35 different samples. The chromatographic fingerprints obtained by using GC were then evaluated by similarity analysis, hierarchical clustering analysis and principal component analysis. The relativity between the content of six terpenoids and the essential oil were studied. In this study, the chemical profiles of 35 samples from different producing areas had significant disparity. All samples collected in the report could be categorized into four chemical types, L-menthol, pulegone, carvone and L-menthone, but the chemical profiles had no relationship with the areas. The chromatographic fingerprints of the samples from different types were dissimilar, while the different producing areas were difficult to be separated. It was indicated that the content of volatile oil was positively correlated with the content of L-menthol and the sum of six total terpenoids. The content of the essential oil, L-menthol and the sum of six total terpenoids of Menthae Herba were considered as one of the commercial specifications and grading criteria. These results in the research could be helpful to draw up the commercial specification and grading criteria of Menthae Herba from a view of chemical information.

  13. Synthesis and analysis of separation networks for the recovery of intracellular chemicals generated from microbial-based conversions.

    Science.gov (United States)

    Yenkie, Kirti M; Wu, Wenzhao; Maravelias, Christos T

    2017-01-01

    Bioseparations can contribute to more than 70% in the total production cost of a bio-based chemical, and if the desired chemical is localized intracellularly, there can be additional challenges associated with its recovery. Based on the properties of the desired chemical and other components in the stream, there can be multiple feasible options for product recovery. These options are composed of several alternative technologies, performing similar tasks. The suitability of a technology for a particular chemical depends on (1) its performance parameters, such as separation efficiency; (2) cost or amount of added separating agent; (3) properties of the bioreactor effluent (e.g., biomass titer, product content); and (4) final product specifications. Our goal is to first synthesize alternative separation options and then analyze how technology selection affects the overall process economics. To achieve this, we propose an optimization-based framework that helps in identifying the critical technologies and parameters. We study the separation networks for two representative classes of chemicals based on their properties. The separation network is divided into three stages: cell and product isolation (stage I), product concentration (II), and product purification and refining (III). Each stage exploits differences in specific product properties for achieving the desired product quality. The cost contribution analysis for the two cases (intracellular insoluble and intracellular soluble) reveals that stage I is the key cost contributor (>70% of the overall cost). Further analysis suggests that changes in input conditions and technology performance parameters lead to new designs primarily in stage I. The proposed framework provides significant insights for technology selection and assists in making informed decisions regarding technologies that should be used in combination for a given set of stream/product properties and final output specifications. Additionally, the

  14. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    Science.gov (United States)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  15. Analysis of chemical constituents in medicinal plants of selected ...

    African Journals Online (AJOL)

    Analysis of chemical constituents in medicinal plants of selected districts of Pakhtoonkhwa, Pakistan. I Hussain, R Ullah, J Khan, N Khan, M Zahoor, N Ullah, MuR Khattak, FA Khan, A Baseer, M Khurram ...

  16. Chemical Analysis of Plants that Poison Livestock: Successes, Challenges, and Opportunities.

    Science.gov (United States)

    Welch, Kevin D; Lee, Stephen T; Cook, Daniel; Gardner, Dale R; Pfister, James A

    2018-04-04

    Poisonous plants have a devastating impact on the livestock industry as well as human health. To fully understand the effects of poisonous plants, multiple scientific disciplines are required. Chemical analysis of plant secondary compounds is key to identifying the responsible toxins, characterizing their metabolism, and understanding their effects on animals and humans. In this review, we highlight some of the successes in studying poisonous plants and mitigating their toxic effects. We also highlight some of the remaining challenges and opportunities with regards to the chemical analysis of poisonous plants.

  17. Physico-chemical analysis and sensory evaluation of bread ...

    African Journals Online (AJOL)

    This study carried out the physico-chemical analysis and sensory evaluation of bread produced using different indigenous yeast isolates in order to offer an insight into the overall quality of the bread. Four (4) different yeast species were isolated from sweet orange, pineapple and palm wine. The yeasts were characterized ...

  18. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Fuensanta Sánchez Rojas

    2006-10-01

    Full Text Available Optical techniques for chemical analysis are well established and sensors based on thesetechniques are now attracting considerable attention because of their importance in applications suchas environmental monitoring, biomedical sensing, and industrial process control. On the other hand,flow injection analysis (FIA is advisable for the rapid analysis of microliter volume samples and canbe interfaced directly to the chemical process. The FIA has become a widespread automatic analyticalmethod for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, andease of assembling. In this paper, an overview of flow injection determinations by using opticalchemical sensors is provided, and instrumentation, sensor design, and applications are discussed. Thiswork summarizes the most relevant manuscripts from 1980 to date referred to analysis using opticalchemical sensors in FIA.

  19. Flow Injection Analysis and Liquid Chromatography for Multifunctional Chemical Analysis (MCA) Systems

    Science.gov (United States)

    Mayo, Ana V.; Loegel, Thomas N.; Bretz, Stacey Lowery; Danielson, Neil D.

    2013-01-01

    The large class sizes of first-year chemistry labs makes it challenging to provide students with hands-on access to instrumentation because the number of students typically far exceeds the number of research-grade instruments available to collect data. Multifunctional chemical analysis (MCA) systems provide a viable alternative for large-scale…

  20. Genetic and chemical diversity of high mucilaginous plants of Sida complex by ISSR markers and chemical fingerprinting.

    Science.gov (United States)

    Thul, Sanjog T; Srivastava, Ankit K; Singh, Subhash C; Shanker, Karuna

    2011-09-01

    A method was developed based on multiple approaches wherein DNA and chemical analysis was carried out toward differentiation of important species of Sida complex that is being used for commercial preparation. Isolated DNA samples were successfully performed through PCR amplification using ISSR markers and degree of genetic diversity among the different species of Sida is compared with that of chemical diversity. For genetic fingerprint investigation, selected 10 ISSR primers generating reproducible banding patterns were used. Among the total of 63 amplicons, 62 were recorded as polymorphic, genetic similarity index deduced from ISSR profiles ranged from 12 to 51%. Based on similarity index, S. acuta and S. rhombifolia found to be most similar (51%). High number of species-specific bands played pivotal role to delineate species at genetic level. Investigation based on HPTLC fingerprints analysis revealed 23 bands representing to characteristic chemicals and similarity index ranged from 73 to 91%. Prominent distinguishable bands were observed only in S. acuta, while S. cordifolia and S. rhombifolia shared most bands making them difficult to identify on chemical fingerprint basis. This report summarizes the genotypic and chemotypic diversity and the use of profiles for authentication of species of Sida complex.

  1. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure α-helices, β-sheets, and others such as β-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted α-helices, β-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm -1 , the results show that barley protein consisted of approximately 18-34% of α-helices, 14-25% of β-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P 0.05). The ratio of α-helices to others (0.3 to 1.0, P < 0.05) and that of β-sheets to others (0.2 to 0.8, P < 0.05) were different among the barley varieties. It needs to be pointed out that using a multi-peak modeling for protein structure analysis is only for making relative estimates and not exact determinations and only for the comparison purpose between varieties. The principal component analysis showed that protein amide I Fourier

  2. The development of chemical speciation analysis

    International Nuclear Information System (INIS)

    Martin, R.; Santana, J.L.; Lima, L.; De La Rosa, D.; Melchor, K.

    2003-01-01

    The knowledge of many metals species on the environmental, its bioaccumulation, quantification and its effect in human body has been studied by a wide researchers groups in the last two decades. The development of speciation analysis has an vertiginous advance close to the developing of novel analytical techniques. Separation and quantification at low level is a problem that's has been afford by a coupling of high resolution chromatographic techniques like HPLC and HRGC with a specific method of detection (ICP-MS or CV-AAS). This methodological approach make possible the success in chemical speciation nowadays

  3. Laser chemical analysis: the recent developments

    International Nuclear Information System (INIS)

    Mauchien, P.

    1997-01-01

    This paper gives a general overview and describes the principles of the main laser-based techniques for physical and chemical analysis, and of their recent developments. Analytical techniques using laser radiations were actually developed at the end of the 1970's. The recent evolutions concern the 3 principal techniques of laser spectroscopy currently used: Raman, fluorescence (atomic and molecular) and ablation (ICP laser ablation-plasma coupling, optical emission spectroscopy on laser-induced plasma). The description of these different techniques is illustrated with some examples of applications. (J.S.)

  4. Chemical analysis of refractories by plasma spectrometry

    International Nuclear Information System (INIS)

    Coutinho, C.A.

    1990-01-01

    X-ray spectrometry has been, since the last two or three decades, the traditional procedure for the chemical analysis of refractories, due to its high degree of accuracy and speed to produce analytical results. An interesting alternative to X-ray fluorescence is provided by the Inductively Coupled Plasma Spectrometry technique, for those laboratories where wet chemistry facilities are already available or process control is not required at high speed, or investiment costs have to be low. This paper presents results obtained by plasma spectroscopy for the analysis of silico - aluminous refractories, showing calibration curves, precion and detection limits. Considerations and comparisons with X-ray fluorescence are also made. (author) [pt

  5. Forecasting global developments in the basic chemical industry for environmental policy analysis

    NARCIS (Netherlands)

    Broeren, M.L.M.|info:eu-repo/dai/nl/371687438; Saygin, D.; Patel, M.K.

    The chemical sector is the largest industrial energy user, but detailed analysis of its energy use developments lags behind other energy-intensive sectors. A cost-driven forecasting model for basic chemicals production is developed, accounting for regional production costs, demand growth and stock

  6. Hydrogen fluoride (HF) substance flow analysis for safe and sustainable chemical industry.

    Science.gov (United States)

    Kim, Junbeum; Hwang, Yongwoo; Yoo, Mijin; Chen, Sha; Lee, Ik-Mo

    2017-11-01

    In this study, the chemical substance flow of hydrogen fluoride (hydrofluoric acid, HF) in domestic chemical industries in 2014 was analyzed in order to provide a basic material and information for the establishment of organized management system to ensure safety during HF applications. A total of 44,751 tons of HF was made by four domestic companies (in 2014); import amount was 95,984 tons in 2014 while 21,579 tons of HF was imported in 2005. The export amount of HF was 2180 tons, of which 2074 ton (China, 1422 tons, U.S. 524 tons, and Malaysia, 128 tons) was exported for the manufacturing of semiconductors. Based on the export and import amounts, it can be inferred that HF was used for manufacturing semiconductors. The industries applications of 161,123 tons of HF were as follows: manufacturing of basic inorganic chemical substance (27,937 tons), manufacturing of other chemical products such as detergents (28,208 tons), manufacturing of flat display (24,896 tons), and manufacturing of glass container package (22,002 tons). In this study, an analysis of the chemical substance flow showed that HF was mainly used in the semiconductor industry as well as glass container manufacturing. Combined with other risk management tools and approaches in the chemical industry, the chemical substance flow analysis (CSFA) can be a useful tool and method for assessment and management. The current CSFA results provide useful information for policy making in the chemical industry and national systems. Graphical abstract Hydrogen fluoride chemical substance flows in 2014 in South Korea.

  7. Chemical analysis of steel by optical emission spectrometry

    International Nuclear Information System (INIS)

    Hayakawa, M.O.; Kajita, T.; Jeszensky, G.

    1981-01-01

    The development of the chemical analysis for special steels by optical emission spectrometry direct reading method with computer, at the Siderurgica N.S. Aparecida S.A. is presented. Results are presented for the low alloy steels and high speed steel. Also, the contribution of this method to the special steel preparation is commented. (Author) [pt

  8. Chemical and antimicrobial analysis of husk fiber aqueous extract ...

    African Journals Online (AJOL)

    Chemical and antimicrobial analysis of husk fiber aqueous extract from Cocos nucifera L. Davi Oliveira e Silva, Gabriel Rocha Martins, Antônio Jorge Ribeiro da Silva, Daniela Sales Alviano, Rodrigo Pires Nascimento, Maria Auxiliadora Coelho Kaplan, Celuta Sales Alviano ...

  9. Chemical and microbiological analysis of public school water in Uberaba Municipality

    Directory of Open Access Journals (Sweden)

    Sérgio Marcos Sanches

    2015-07-01

    Full Text Available This study evaluated the quality of water consumed by schoolchildren in the city of Uberaba, relying upon chemical analyzes to determine the levels of free-residual chlorine and levels of chromium, copper, manganese, lead and cadmium. Microbiological analysis was also performed in order to determine total coliforms and Escherichia coli, using the values established by Ordinance n0 . 2914 of 2011 of the Ministry of Health as parameters for safe drinking water. Water samples were analyzed from the drinking fountains and kitchen faucets of eight public schools that serve children aged 0-5 years. Sampling was conducted quarterly from December 2011 to September 2012, resulting in four collections. The results revealed the presence of Escherichia coli and total coliforms above the valued permitted by legislation in more than 50% of the samples. It was also observed that concentrations of free-residual chlorine were below the minimum value required by law in nearly half of the samples analyzed. In relation to the concentration of metals, some samples had water contents of copper, cadmium, chromium, manganese and lead above the permissible levels. Statistical tests revealed that when analyzing the period of sampling, only the values for the concentrations of free-residual chlorine, chromium and lead showed no significant difference (p> 0.05. The results show the need for corrective actions at the water supply point for the school population, in addition to monitoring and controlling the quality of water for human consumption.

  10. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury.

    Science.gov (United States)

    Li, Cen; Yang, Hongxia; Du, Yuzhi; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao; Wei, Lixin

    2016-01-01

    Zuotai ( gTso thal ) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100-800 nm, which commonly further aggregate into 1-30  μ m loosely amorphous particles. XRD test shows that β -HgS, S 8 , and α -HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai , and it would play a positive role in interpreting this mysterious Tibetan drug.

  11. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents.

    Science.gov (United States)

    Witkiewicz, Zygfryd; Neffe, Slawomir; Sliwka, Ewa; Quagliano, Javier

    2018-09-03

    Recent advances in analysis of precursors, simulants and degradation products of chemical warfare agents (CWA) are reviewed. Fast and reliable analysis of precursors, simulants and CWA degradation products is extremely important at a time, when more and more terrorist groups and radical non-state organizations use or plan to use chemical weapons to achieve their own psychological, political and military goals. The review covers the open source literature analysis after the time, when the chemical weapons convention had come into force (1997). The authors stated that during last 15 years increased number of laboratories are focused not only on trace analysis of CWA (mostly nerve and blister agents) in environmental and biological samples, but the growing number of research are devoted to instrumental analysis of precursors and degradation products of these substances. The identification of low-level concentration of CWA degradation products is often more important and difficult than the original CWA, because of lower level of concentration and a very large number of compounds present in environmental and biological samples. Many of them are hydrolysis products and are present in samples in the ionic form. For this reason, two or three instrumental methods are used to perform a reliable analysis of these substances.

  12. Valorisation of chicken feathers: Characterisation of chemical properties.

    Science.gov (United States)

    Tesfaye, Tamrat; Sithole, Bruce; Ramjugernath, Deresh; Chunilall, Viren

    2017-10-01

    The characterisation of the chemical properties of the whole chicken feather and its fractions (barb and rachis), was undertaken to identify opportunities for valorizing this waste product. The authors have described the physical, morphological, mechanical, electrical and thermal properties of the chicken feathers and related them to potential valorisation routes of the waste. However, identification of their chemical properties is necessary to complete a comprehensive description of chicken feather fractions. Hence, the chicken feathers were thoroughly characterised by proximate and ultimate analyses, elemental composition, spectroscopic analyses, durability in different solvents, burning test, and hydrophobicity. The proximate analysis of chicken feathers revealed the following compositions: crude lipid (0.83%), crude fibre (2.15%), crude protein (82.36%), ash (1.49%), NFE (1.02%) and moisture content (12.33%) whereas the ultimate analyses showed: carbon (64.47%), nitrogen (10.41%), oxygen (22.34%), and sulphur (2.64%). FTIR analysis revealed that the chicken feather fractions contain amide and carboxylic groups indicative of proteinious functional groups; XRD showed a crystallinity index of 22. Durability and burning tests confirmed that feathers behaved similarly to animal fibre. This reveals that chicken feather can be a valuable raw material in textile, plastic, cosmetics, pharmaceuticals, biomedical and bioenergy industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Zebrafish chemical screening reveals the impairment of dopaminergic neuronal survival by cardiac glycosides.

    Directory of Open Access Journals (Sweden)

    Yaping Sun

    Full Text Available Parkinson's disease is a neurodegenerative disorder characterized by the prominent degeneration of dopaminergic (DA neurons among other cell types. Here we report a first chemical screen of over 5,000 compounds in zebrafish, aimed at identifying small molecule modulators of DA neuron development or survival. We find that Neriifolin, a member of the cardiac glycoside family of compounds, impairs survival but not differentiation of both zebrafish and mammalian DA neurons. Cardiac glycosides are inhibitors of Na(+/K(+ ATPase activity and widely used for treating heart disorders. Our data suggest that Neriifolin impairs DA neuronal survival by targeting the neuronal enriched Na(+/K(+ ATPase α3 subunit (ATP1A3. Modulation of ionic homeostasis, knockdown of p53, or treatment with antioxidants protects DA neurons from Neriifolin-induced death. These results reveal a previously unknown effect of cardiac glycosides on DA neuronal survival and suggest that it is mediated through ATP1A3 inhibition, oxidative stress, and p53. They also elucidate potential approaches for counteracting the neurotoxicity of this valuable class of medications.

  14. Development of chemical equilibrium analysis code 'CHEEQ'

    International Nuclear Information System (INIS)

    Nagai, Shuichiro

    2006-08-01

    'CHEEQ' code which calculates the partial pressure and the mass of the system consisting of ideal gas and pure condensed phase compounds, was developed. Characteristics of 'CHEEQ' code are as follows. All the chemical equilibrium equations were described by the formation reactions from the mono-atomic gases in order to simplify the code structure and input preparation. Chemical equilibrium conditions, Σν i μ i =0 for the gaseous compounds and precipitated condensed phase compounds and Σν i μ i > 0 for the non-precipitated condensed phase compounds, were applied. Where, ν i and μ i are stoichiometric coefficient and chemical potential of component i. Virtual solid model was introduced to perform the calculation of constant partial pressure condition. 'CHEEQ' was consisted of following 3 parts, (1) analysis code, zc132. f. (2) thermodynamic data base, zmdb01 and (3) input data file, zindb. 'CHEEQ' code can calculate the system which consisted of elements (max.20), condensed phase compounds (max.100) and gaseous compounds. (max.200). Thermodynamic data base, zmdb01 contains about 1000 elements and compounds, and 200 of them were Actinide elements and their compounds. This report describes the basic equations, the outline of the solution procedure and instructions to prepare the input data and to evaluate the calculation results. (author)

  15. Neutron activation analysis for chemical characterization of Brazilian oxo-biodegradable plastics

    International Nuclear Information System (INIS)

    Mateus Eugenio Boscaro; De Nadai Fernandes, E.A.; Marcio Arruda Bacchi; Luis Gustavo Cofani dos Santos; Cofani dos Santos, S.N.S.; Sandra Mara Martins-Franchetti

    2015-01-01

    The chemical characterization of oxo-biodegradable plastic bags was performed by neutron activation analysis. The presence of several chemical elements (As, Br, Ca, Co, Cr, Fe, Hf, K, La, Na, Sb, Sc, Ta and Zn) with large variability of mass fractions amongst samples indicates that these plastics receive additives and may have been contaminated during manufacturing process thereby becoming potential environmental pollutants. (author)

  16. Chemical ecotoxicology

    International Nuclear Information System (INIS)

    Paasivirta, J.

    1991-01-01

    This book discusses risk assessment, chemical cycles, structure-activity relations, organohalogens, oil residues, mercury, sampling and analysis of trace chemicals, and emissions from the forestry industry. Topics include: Cycles of chemicals in the environment. Rick assessment and management, strucuture and toxicity, sampling and analysis of trace chemicals in environment, interpretation of the environmental analysis results, mercury in the environment, organohalogen compounds in the environment, emissions from forestry industry, oil residues in the environment: oil spills in the marine environment

  17. Chemical Abundance Measurements of Ultra-Faint Dwarf Galaxies Discovered by the Dark Energy Survey

    Science.gov (United States)

    Nagasawa, Daniel; Marshall, Jennifer L.; Simon, Joshua D.; Hansen, Terese; Li, Ting; Bernstein, Rebecca; Balbinot, Eduardo; Drlica-Wagner, Alex; Pace, Andrew; Strigari, Louis; Pellegrino, Craig; DePoy, Darren L.; Suntzeff, Nicholas; Bechtol, Keith; Dark Energy Suvey

    2018-01-01

    We present chemical abundance analysis results derived from high-resolution spectroscopy of ultra-faint dwarfs discovered by the Dark Energy Survey. Ultra-faint dwarf galaxies preserve a fossil record of the chemical abundance patterns imprinted by the first stars in the Universe. High-resolution spectroscopic observations of member stars in several recently discovered Milky Way satellites reveal a range of abundance patterns among ultra-faint dwarfs suggesting that star formation processes in the early Universe were quite diverse. The chemical content provides a glimpse not only of the varied nucleosynthetic processes and chemical history of the dwarfs themselves, but also the environment in which they were formed. We present the chemical abundance analysis of these objects and discuss possible explanations for the observed abundance patterns.

  18. Activation analysis. A basis for chemical similarity and classification

    Energy Technology Data Exchange (ETDEWEB)

    Beeck, J OP de [Ghent Rijksuniversiteit (Belgium). Instituut voor Kernwetenschappen

    1977-01-01

    It is shown that activation analysis is especially suited to serve as a basis for determining the chemical similarity between samples defined by their trace-element concentration patterns. The general problem of classification and identification is discussed. The nature of possible classification structures and their appropriate clustering strategies is considered. A practical computer method is suggested and its application as well as the graphical representation of classification results are given. The possibility for classification using information theory is mentioned. Classification of chemical elements is discussed and practically realized after Hadamard transformation of the concentration variation patterns in a series of samples.

  19. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    International Nuclear Information System (INIS)

    Kan, C W; Lam, Y L; Yuen, C W M; Luximon, A; Lau, K W; Chen, K S

    2013-01-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  20. International Research Project on the Effects of Chemical Ageing of Polymers on Performance Properties: Chemical and Thermal Analysis

    Science.gov (United States)

    Bulluck, J. W.; Rushing, R. A.

    1996-01-01

    Work during the past six months has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted small changes in the molecular weight distribution. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Ultra- Violet Scanning Analysis, GC/Mass Spectrometry, Differential Scanning Calorimetry and Thermomechanical Analysis. In the ultra-violet analysis we noted the presence of an absorption band indicative of triene formation. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We also cast films at SWT and subjected these films to a refluxing methanol 1% ethylene diamine solution. An updated literature search was conducted using Dialog and DROLLS to identify any new papers that may have been published in the open literature since the start of this project. The updated literature search and abstracts are contained in the Appendix section of this report.

  1. Phthalic Acid Chemical Probes Synthesized for Protein-Protein Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Chin-Jen Wu

    2013-06-01

    Full Text Available Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP. According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES was deposited on silicon dioxides (SiO2 particles and phthalate chemical probes were manufactured from phthalic acid and APTES–SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  2. Bark chemical analysis explains selective bark damage by rodents

    Czech Academy of Sciences Publication Activity Database

    Heroldová, Marta; Jánová, Eva; Suchomel, J.; Purchart, L.; Homolka, Miloslav

    2009-01-01

    Roč. 2, č. 2 (2009), s. 137-140 ISSN 1803-2451 R&D Projects: GA MZe QH72075 Institutional research plan: CEZ:AV0Z60930519 Keywords : bark damage * bark selection * bark chemical analysis * rowan * beech * spruce * mountain forest regeneration Subject RIV: GK - Forestry

  3. A comparative analysis of physical and chemical properties of Jatropha Curcas. L, Calophyllum Inophyllum. L and Sterculia Feotida. L oil

    Energy Technology Data Exchange (ETDEWEB)

    Silitonga, A.S. [Department of Mechanical Engineering, Medan State Polytechnic (Indonesia)], email: ardinsu@yahoo.co.id, email: a_atabani2@msn.com; Atabani, A.E. [Department of Mechanical Engineering, University of Khartoum (Sudan); Mahlia, T.M.I. [Department of Mechanical Engineering, Syiah Kuala University, (Indonesia); Masjuki, H.H.; Badruddin, I.A. [Department of Mechanical Engineering, University of Malaya (Malaysia)

    2011-07-01

    Production of bio-diesel converted from edible oil has raised the issue of competition for resources between food production and fuel production, as well as other questions of environmental impact. It has been established that producing bio-diesel from non-edible vegetable oils was one of the effective ways to resolve these issues. Jatropha curcas L., Calophyllum inophyllum L., and Sterculia foetida L. are all non-edible oils and all can be potential sources for future energy supply. The purpose of this paper is to reveal the results of a comparative analysis of the physical and chemical properties of Jatropha curcas L., Calophyllum inophyllum L., and Sterculia foetida L. oils. Physical and chemical properties of these vegetable oils, such as density, iodine value, free fatty acid, etc. were investigated and measured. These properties were then compared with those of other non-edible vegetable oils in terms of potential. This paper finds that the results of analysis indicate that there is high potential for using Jatropha curcas L., Calophyllum inophyllum L., and Sterculia foetida L. crude oil as an alternative fuel.

  4. Chemical imaging and solid state analysis at compact surfaces using UV imaging

    DEFF Research Database (Denmark)

    Wu, Jian X.; Rehder, Sönke; van den Berg, Frans

    2014-01-01

    and excipients in a non-invasive way, as well as mapping the glibenclamide solid state form. An exploratory data analysis supported the critical evaluation of the mapping results and the selection of model parameters for the chemical mapping. The present study demonstrated that the multi-wavelength UV imaging......Fast non-destructive multi-wavelength UV imaging together with multivariate image analysis was utilized to visualize distribution of chemical components and their solid state form at compact surfaces. Amorphous and crystalline solid forms of the antidiabetic compound glibenclamide...

  5. Participation in the 1999 IAEA interlaboratory comparison on chemical analysis of groundwater

    International Nuclear Information System (INIS)

    Joe, Kih Soo; Choi, Kwang Soon; Han, Sun Ho; Suh, Moo Yul; Park, Kyung Kyun; Choi, Ke Chun; Kim, Won Ho

    2000-08-01

    KAERI analytical laboratory participated in the 1999 IAEA interlaboratory comparison on chemical analysis of groundwater organized by IAEA Hydrology Laboratory(RAS/8/084). 13 items such as pH, electroconductivity, HCO 3 , Cl, SO 4 , NO 3 , SiO 2 , B, Li, Na, K, Ca, Mg were analyzed. The result of this program showed that KAERI laboratory was ranked within 10% range from top level. An analytical expert in KAERI attended the 'Consultants' Meeting' at IAEA headquater and prepared the guideline for chemical analysis of groundwater

  6. Prompt gamma-ray spectroscopy and its use for the elemental chemical analysis

    International Nuclear Information System (INIS)

    Deconninck, G.; Demortier, G.; Bodart, F.

    The elemental chemical analysis by nuclear techniques has been widely developed since a quarter of century. In this review the analysis by irradiation of the the sample (solid or liquid) of a majority of chemical elements by means of the charged particles and the detection during this irradiation of the gamma photons characteristic of the element are considered. After a brief account of the physical phenomena peculiar to the prompt detection of photons in comparison with the activation methods where a delayed activity is measured, a brief description of the experimental equipment for this kind of analysis is given. A comprehensive critical survey of the recent applications to the analysis of metals, semiconductors and electric insulating substances is presented. The necessary informations for the choice of the nuclear reaction to use for a specific analysis are contained in a set of tables. (AF)

  7. An Inverse Analysis Approach to the Characterization of Chemical Transport in Paints

    Science.gov (United States)

    Willis, Matthew P.; Stevenson, Shawn M.; Pearl, Thomas P.; Mantooth, Brent A.

    2014-01-01

    The ability to directly characterize chemical transport and interactions that occur within a material (i.e., subsurface dynamics) is a vital component in understanding contaminant mass transport and the ability to decontaminate materials. If a material is contaminated, over time, the transport of highly toxic chemicals (such as chemical warfare agent species) out of the material can result in vapor exposure or transfer to the skin, which can result in percutaneous exposure to personnel who interact with the material. Due to the high toxicity of chemical warfare agents, the release of trace chemical quantities is of significant concern. Mapping subsurface concentration distribution and transport characteristics of absorbed agents enables exposure hazards to be assessed in untested conditions. Furthermore, these tools can be used to characterize subsurface reaction dynamics to ultimately design improved decontaminants or decontamination procedures. To achieve this goal, an inverse analysis mass transport modeling approach was developed that utilizes time-resolved mass spectroscopy measurements of vapor emission from contaminated paint coatings as the input parameter for calculation of subsurface concentration profiles. Details are provided on sample preparation, including contaminant and material handling, the application of mass spectrometry for the measurement of emitted contaminant vapor, and the implementation of inverse analysis using a physics-based diffusion model to determine transport properties of live chemical warfare agents including distilled mustard (HD) and the nerve agent VX. PMID:25226346

  8. Characterization of dermal plates from armored catfish Pterygoplichthys pardalis reveals sandwich-like nanocomposite structure.

    Science.gov (United States)

    Ebenstein, Donna; Calderon, Carlos; Troncoso, Omar P; Torres, Fernando G

    2015-05-01

    Dermal plates from armored catfish are bony structures that cover their body. In this paper we characterized structural, chemical, and nanomechanical properties of the dermal plates from the Amazonian fish Pterygoplichthys pardalis. Analysis of the morphology of the plates using scanning electron microscopy (SEM) revealed that the dermal plates have a sandwich-like structure composed of an inner porous matrix surrounded by two external dense layers. This is different from the plywood-like laminated structure of elasmoid fish scales but similar to the structure of osteoderms found in the dermal armour of some reptiles and mammals. Chemical analysis performed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed similarities between the composition of P. pardalis plates and the elasmoid fish scales of Arapaima gigas. Reduced moduli of P. pardalis plates measured using nanoindentation were also consistent with reported values for A. gigas scales, but further revealed that the dermal plate is an anisotropic and heterogeneous material, similar to many other fish scales and osteoderms. It is postulated that the sandwich-like structure of the dermal plates provides a lightweight and tough protective layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Participation in the 1999 IAEA interlaboratory comparison on chemical analysis of groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Kih Soo; Choi, Kwang Soon; Han, Sun Ho; Suh, Moo Yul; Park, Kyung Kyun; Choi, Ke Chun; Kim, Won Ho

    2000-08-01

    KAERI analytical laboratory participated in the 1999 IAEA interlaboratory comparison on chemical analysis of groundwater organized by IAEA Hydrology Laboratory(RAS/8/084). 13 items such as pH, electroconductivity, HCO{sub 3}, Cl, SO{sub 4}, NO{sub 3}, SiO{sub 2}, B, Li, Na, K, Ca, Mg were analyzed. The result of this program showed that KAERI laboratory was ranked within 10% range from top level. An analytical expert in KAERI attended the 'Consultants' Meeting' at IAEA headquater and prepared the guideline for chemical analysis of groundwater.

  10. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.

    Science.gov (United States)

    Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-04-15

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.

  11. Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination

    International Nuclear Information System (INIS)

    Avilov, A.; Kuligin, K.; Nicolopoulos, S.; Nickolskiy, M.; Boulahya, K.; Portillo, J.; Lepeshov, G.; Sobolev, B.; Collette, J.P.; Martin, N.; Robins, A.C.; Fischione, P.

    2007-01-01

    We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession 'Spinning Star' system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF 2 as revealed for the first time by precise electron diffractometry

  12. Chemical Abundance Analysis of Moving Group W11450 (Latham 1)

    Science.gov (United States)

    O'Connell, Julia E.; Martens, Kylee; Frinchaboy, Peter M.

    2016-12-01

    We present elemental abundances for all seven stars in Moving Group W11450 (Latham 1) to determine if they may be chemically related. These stars appear to be both spatially and kinematically related, but no spectroscopic abundance analysis exists in literature. Abundances for eight elements were derived via equivalent width analyses of high-resolution (R ˜ 60,000), high-signal-to-noise ratio ( ˜ 100) spectra obtained with the Otto Struve 2.1 m telescope and the Sandiford Echelle Spectrograph at McDonald Observatory. The large star-to-star scatter in metallicity, -0.55 ≤ [Fe/H] ≤slant 0.06 dex (σ = 0.25), implies these stars were not produced from the same chemically homogeneous molecular cloud, and are therefore not part of a remnant or open cluster as previously proposed. Prior to this analysis, it was suggested that two stars in the group, W11449 and W11450, are possible wide binaries. The candidate wide binary pair show similar chemical abundance patterns with not only iron but with other elements analyzed in this study, suggesting the proposed connection between these two stars may be real.

  13. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  14. ANALYSIS AND IDENTIFICATION SPIKING CHEMICAL COMPOUNDS RELATED TO CHEMICAL WEAPON CONVENTION IN UNKNOWN WATER SAMPLES USING GAS CHROMATOGRAPHY AND GAS CHROMATOGRAPHY ELECTRON IONIZATION MASS SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2010-06-01

    Full Text Available The identification and analysis of chemical warfare agents and their degradation products is one of important component for the implementation of the convention. Nowadays, the analytical method for determination chemical warfare agent and their degradation products has been developing and improving. In order to get the sufficient analytical data as recommended by OPCW especially in Proficiency Testing, the spiking chemical compounds related to Chemical Weapon Convention in unknown water sample were determined using two different techniques such as gas chromatography and gas chromatography electron-impact ionization mass spectrometry. Neutral organic extraction, pH 11 organic extraction, cation exchanged-methylation, triethylamine/methanol-silylation were performed to extract the chemical warfare agents from the sample, before analyzing with gas chromatography. The identification of chemical warfare agents was carried out by comparing the mass spectrum of chemicals with mass spectrum reference from the OPCW Central Analytical Database (OCAD library while the retention indices calculation obtained from gas chromatography analysis was used to get the confirmation and supported data of  the chemical warfare agents. Diisopropyl methylphosphonate, 2,2-diphenyl-2-hydroacetic acid and 3-quinuclidinol were found in unknown water sample. Those chemicals were classified in schedule 2 as precursor or reactant of chemical weapons compound in schedule list of Chemical Weapon Convention.   Keywords: gas chromatography, mass spectrometry, retention indices, OCAD library, chemical warfare agents

  15. Comprehensive Mass Analysis for Chemical Processes, a Case Study on L-Dopa Manufacture

    Science.gov (United States)

    To evaluate the “greenness” of chemical processes in route selection and process development, we propose a comprehensive mass analysis to inform the stakeholders from different fields. This is carried out by characterizing the mass intensity for each contributing chemical or wast...

  16. Emil Fischer and the "art of chemical experimentation".

    Science.gov (United States)

    Jackson, Catherine M

    2017-03-01

    What did nineteenth-century chemists know? This essay uses Emil Fischer's classic study of the sugars in 1880s and 90s Germany to argue that chemists' knowledge was not primarily vested in the theories of valence, structure, and stereochemistry that have been the subject of so much historical and philosophical analysis of chemistry in this period. Nor can chemistry be reduced to a merely manipulative exercise requiring little or no intellectual input. Examining what chemists themselves termed the "art of chemical experimentation" reveals chemical practice as inseparable from its cognitive component, and it explains how chemists integrated theory with experiment through reason.

  17. Variability of chemical analysis of reinforcing bar produced in Saudi Arabia

    Science.gov (United States)

    Salman, A.; Djavanroodi, F.

    2018-04-01

    In view of the importance and demanding roles of steel rebar’s in the reinforced concrete structures, accurate information on the properties of the steels is important at the design stage. In the steelmaking process, production variations in chemical composition are unavoidable. The aim of this work is to study the variability of the chemical composition of reinforcing steel produced throughout the Saudi Arabia and asses the quality of steel rebar’s acoording to ASTM A615. 68 samples of ASTM A615 Grade 60 from different manufacturers were collected and tested using the Spectrometer test to obtain Chemical Compositions. EasyFit (5.6) software is utilized to conducted statistical analysis. Chemical compositions distributions and, control charts are generated for the compositions. Results showed that some compositions are above the upper line of the control chart. Finally, the analyses show that less than 3% of the steel failed to meet minimum ASTM standards for chemical composition.

  18. Basic chemically recuperated gas turbines--power plant optimization and thermodynamics second law analysis

    International Nuclear Information System (INIS)

    Alves, Lourenco Gobira; Nebra, Silvia Azucena

    2004-01-01

    One of the proposals to increase the performance of the gas turbines is to improve chemical recuperated cycle. In this cycle, the heat in the turbine exhaust gases is used to heat and modify the chemical characteristics of the fuel. One mixture of natural gas and steam receives heat from the exhaust turbine gases; the mixture components react among themselves producing hot synthesis gas. In this work, an analysis and nonlinear optimization of the cycle were made in order to investigate the temperature and pressure influence on the global cycle performance. The chemical composition in the reformer was assumed according to chemical equilibrium equations, which presents good agreement with data from literature. The mixture of hot gases was treated like ideal gases. The maximum net profit was achieved and a thermodynamic second law analysis was made in order to detect the greatest sources of irreversibility

  19. Nondestructive inspection of chemical warfare based on API-TOF

    International Nuclear Information System (INIS)

    Wang Xinhua; Zheng Pu; He Tie; An Li; Yang Jie; Fan Yu

    2013-01-01

    Background: Real-time, fast, accurate, nondestructive inspection (NDI) and quantitative analysis for chemical warfare are very imperative for chemical defense, anti-terror and nation security. Purpose: Associated Particles Technique (APT)/Neutron Time of Flight (TOF) has been developed for non-invasive inspection of sealed containers with chemical warfare agents. Methods: A prototype equipment for chemical warfare is consisted of an APT neutron generator with a 3×3 matrix of semiconductor detectors of associated alpha-particles, the shielding protection of neutron and gamma-ray, arrayed NaI(Tl)-based detectors of gamma-rays, fully-digital data acquisition electronics, data analysis, decision-making software, support platform and remote control system. Inelastic scattering gamma-ray pulse height spectra of sarin, VX, mustard gas and adamsite induced by 14-MeV neutron are measured. The energies of these gamma rays are used to identify the inelastic scattering elements, and the intensities of the peaks at these energies are used to reveal their concentrations. Results: The characteristic peaks of inelastic scattering gamma-ray pulse height spectra show that the prototype equipment can fast and accurately inspect chemical warfare. Conclusion: The equipment can be used to detect not only chemical warfare agents but also other hazardous materials, such as chemical/toxic/drug materials, if their chemical composition is in any way different from that of the surrounding materials. (authors)

  20. Heavy metal distribution in Suillus luteus mycorrhizas - as revealed by micro-PIXE analysis

    Science.gov (United States)

    Turnau, K.; Przybyłowicz, W. J.; Mesjasz-Przybyłowicz, J.

    2001-07-01

    Suillus luteus/Pinus sylvestris mycorrhizas, collected from zinc wastes in Southern Poland, were selected as potential biofilters on the basis of earlier studies carried out with energy dispersive spectrometry (EDS) microanalytical system coupled to scanning electron microscope (SEM) and transmission electron microscope (TEM). Using the National Accelerator Centre (NAC) nuclear microprobe, elemental concentrations in the ectomycorrhiza parts were for the first time estimated quantitatively. Micro-proton-induced X-ray emission (PIXE) true elemental maps from freeze-dried and chemically fixed mycorrhizas revealed strong accumulation of Ca, Fe, Zn and Pb within the fungal mantle and in the rhizomorph. Vascular tissue was enriched with P, S and K, while high concentrations of Si and Cl were present in the endodermis. Cu was the only element showing elevated concentrations in the cortex region. Elemental losses and redistributions were found in mycorrhizas prepared by chemical fixation. Some problems related to elemental imaging are discussed.

  1. Heavy metal distribution in Suillus luteus mycorrhizas - as revealed by micro-PIXE analysis

    International Nuclear Information System (INIS)

    Turnau, K.; Przybylowicz, W.J.; Mesjasz-Przybylowicz, J.

    2001-01-01

    Suillus luteus/Pinus sylvestris mycorrhizas, collected from zinc wastes in Southern Poland, were selected as potential biofilters on the basis of earlier studies carried out with energy dispersive spectrometry (EDS) microanalytical system coupled to scanning electron microscope (SEM) and transmission electron microscope (TEM). Using the National Accelerator Centre (NAC) nuclear microprobe, elemental concentrations in the ectomycorrhiza parts were for the first time estimated quantitatively. Micro-proton-induced X-ray emission (PIXE) true elemental maps from freeze-dried and chemically fixed mycorrhizas revealed strong accumulation of Ca, Fe, Zn and Pb within the fungal mantle and in the rhizomorph. Vascular tissue was enriched with P, S and K, while high concentrations of Si and Cl were present in the endodermis. Cu was the only element showing elevated concentrations in the cortex region. Elemental losses and redistributions were found in mycorrhizas prepared by chemical fixation. Some problems related to elemental imaging are discussed

  2. Activation and chemical analysis of drinking water from shallow aquifers

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1991-01-01

    In most of the Indian cities drinking water is drawn from shallow aqiufers with the help of hand pumps. These shallow aquifers get easilyl polluted. In the present work we have measured 20 trace elements using Neutron Activation Analysis (NAA) and 8 chemical parameters using standard chemical methods of drinking water drawn from Rajpura city. It was found that almost all water samples are highly polluted. We attribute this to unplaned disposal of industrial and domestic waste over a period of many decades. (author) 11 refs.; 1 fig.; 1 tab

  3. Novel chemical analysis for thin films

    International Nuclear Information System (INIS)

    Usui, Toshio; Kamei, Masayuki; Aoki, Yuji; Morishita, Tadataka; Tanaka, Shoji

    1991-01-01

    Scanning electron microscopy and total-reflection-angle X-ray spectroscopy (SEM-TRAXS) was applied for fluorescence X-ray analysis of 50A- and 125A-thick Au thin films on Si(100). The intensity of the AuM line (2.15 keV) emitted from the Au thin films varied as a function of the take-off angle (θ t ) with respect to the film surface; the intensity of AuM line from the 125A-thick Au thin film was 1.5 times as large as that of SiK α line (1.74 keV) emitted from the Si substrate when θ t = 0deg-3deg, in the vicinity of a critical angle for total external reflection of the AuM line at Si (0.81deg). In addition, the intensity of the AuM line emitted from the 50A-thick Au thin film was also sufficiently strong for chemical analysis. (author)

  4. A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments

    Science.gov (United States)

    Gokoglu, S. A.; Kuczmarski, M. A.

    1993-01-01

    Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.

  5. Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis.

    Science.gov (United States)

    Demir, Aynur; Arisoy, Münevver

    2007-08-17

    The objective of the present study is cost and benefit analysis of biological and chemical removal of hexavalent chromium [Cr(VI)] ions. Cost and benefit analysis were done with refer to two separate studies on removal of Cr(VI), one of heavy metals with a crucial role concerning increase in environmental pollution and disturbance of ecological balance, through biological adsorption and chemical ion-exchange. Methods of biological and chemical removal were compared with regard to their cost and percentage in chrome removal. According to the result of the comparison, cost per unit in chemical removal was calculated 0.24 euros and the ratio of chrome removal was 99.68%, whereas those of biological removal were 0.14 and 59.3% euros. Therefore, it was seen that cost per unit in chemical removal and chrome removal ratio were higher than those of biological removal method. In the current study where chrome removal is seen as immeasurable benefit in terms of human health and the environment, percentages of chrome removal were taken as measurable benefit and cost per unit of the chemicals as measurable cost.

  6. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit.

    Science.gov (United States)

    Ashoori, Maryam; Burns, Catherine M; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamwork and leverage the existing CWA approaches to analyse team interactions. Team CWA is explained and contrasted with prior approaches to CWA. Team CWA does not replace CWA, but supplements traditional CWA to more easily reveal team information. As a result, Team CWA may be a useful approach to enhance CWA in complex environments where effective teamwork is required. This paper looks at ways of analysing cognitive work in healthcare teams. Team Cognitive Work Analysis, when used to supplement traditional Cognitive Work Analysis, revealed more team information than traditional Cognitive Work Analysis. Team Cognitive Work Analysis should be considered when studying teams.

  7. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit

    Science.gov (United States)

    Ashoori, Maryam; Burns, Catherine M.; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamworkand leverage the existing CWA approaches to analyse team interactions. Team CWA is explained and contrasted with prior approaches to CWA. Team CWA does not replace CWA, but supplements traditional CWA to more easily reveal team information. As a result, Team CWA may be a useful approach to enhance CWA in complex environments where effective teamwork is required. Practitioner Summary: This paper looks at ways of analysing cognitive work in healthcare teams. Team Cognitive Work Analysis, when used to supplement traditional Cognitive Work Analysis, revealed more team information than traditional Cognitive Work Analysis. Team Cognitive Work Analysis should be considered when studying teams PMID:24837514

  8. Forecasting global developments in the basic chemical industry for environmental policy analysis

    International Nuclear Information System (INIS)

    Broeren, M.L.M.; Saygin, D.; Patel, M.K.

    2014-01-01

    The chemical sector is the largest industrial energy user, but detailed analysis of its energy use developments lags behind other energy-intensive sectors. A cost-driven forecasting model for basic chemicals production is developed, accounting for regional production costs, demand growth and stock turnover. The model determines the global production capacity placement, implementation of energy-efficient Best Practice Technology (BPT) and global carbon dioxide (CO 2 ) emissions for the period 2010–2030. Subsequently, the effects of energy and climate policies on these parameters are quantified. About 60% of new basic chemical production capacity is projected to be placed in non-OECD regions by 2030 due to low energy prices. While global production increases by 80% between 2010 and 2030, the OECD's production capacity share decreases from 40% to 20% and global emissions increase by 50%. Energy pricing and climate policies are found to reduce 2030 CO 2 emissions by 5–15% relative to the baseline developments by increasing BPT implementation. Maximum BPT implementation results in a 25% reduction. Further emission reductions require measures beyond energy-efficient technologies. The model is useful to estimate general trends related to basic chemicals production, but improved data from the chemical sector is required to expand the analysis to additional technologies and chemicals. - Highlights: • We develop a global cost-driven forecasting model for the basic chemical sector. • We study regional production, energy-efficient technology, emissions and policies. • Between 2010 and 2030, 60% of new chemicals capacity is built in non-OECD regions. • Global CO 2 emissions rise by 50%, but climate policies may limit this to 30–40%. • Measures beyond energy efficiency are needed to prevent increasing CO 2 emissions

  9. Regression analysis of a chemical reaction fouling model

    International Nuclear Information System (INIS)

    Vasak, F.; Epstein, N.

    1996-01-01

    A previously reported mathematical model for the initial chemical reaction fouling of a heated tube is critically examined in the light of the experimental data for which it was developed. A regression analysis of the model with respect to that data shows that the reference point upon which the two adjustable parameters of the model were originally based was well chosen, albeit fortuitously. (author). 3 refs., 2 tabs., 2 figs

  10. Sample preparation for combined chemical analysis and bioassay application in water quality assessment

    NARCIS (Netherlands)

    Kolkman, A.; Schriks, M.; Brand, W; Bäuerlein, P.S.; van der Kooi, M.M.E.; van Doorn, R.H.; Emke, E.; Reus, A.; van der Linden, S.; de Voogt, P.; Heringa, M.B.

    2013-01-01

    The combination of in vitro bioassays and chemical screening can provide a powerful toolbox to determine biologically relevant compounds in water extracts. In this study, a sample preparation method is evaluated for the suitability for both chemical analysis and in vitro bioassays. A set of 39

  11. A DNA-Encoded Library of Chemical Compounds Based on Common Scaffolding Structures Reveals the Impact of Ligand Geometry on Protein Recognition.

    Science.gov (United States)

    Favalli, Nicholas; Biendl, Stefan; Hartmann, Marco; Piazzi, Jacopo; Sladojevich, Filippo; Gräslund, Susanne; Brown, Peter J; Näreoja, Katja; Schüler, Herwig; Scheuermann, Jörg; Franzini, Raphael; Neri, Dario

    2018-06-01

    A DNA-encoded chemical library (DECL) with 1.2 million compounds was synthesized by combinatorial reaction of seven central scaffolds with two sets of 343×492 building blocks. Library screening by affinity capture revealed that for some target proteins, the chemical nature of building blocks dominated the selection results, whereas for other proteins, the central scaffold also crucially contributed to ligand affinity. Molecules based on a 3,5-bis(aminomethyl)benzoic acid core structure were found to bind human serum albumin with a K d value of 6 nm, while compounds with the same substituents on an equidistant but flexible l-lysine scaffold showed 140-fold lower affinity. A 18 nm tankyrase-1 binder featured l-lysine as linking moiety, while molecules based on d-Lysine or (2S,4S)-amino-l-proline showed no detectable binding to the target. This work suggests that central scaffolds which predispose the orientation of chemical building blocks toward the protein target may enhance the screening productivity of encoded libraries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tissue chemical analysis with muonic X-rays

    International Nuclear Information System (INIS)

    Hutson, R.L.; Reidy, J.J.; Springer, K.; Daniel, H.; Knowles, H.B.

    1976-01-01

    The stopped muon channel at the Clinton P. Anderson Meson Physics Facility (LAMPF) was used as a source of muons for studying the elemental composition of tissue with muonic X rays. The X ray spectra from several types of tissue were used to determine the amounts of carbon, nitrogen, and oxygen present. These determinations agree with the results of more conventional chemical analysis. The results show that muonic X rays offer a non-invasive technique for determining the amounts of the more abundant elements present in selected regions of the body. (orig.) [de

  13. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    Science.gov (United States)

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. Copyright © 2016. Published by Elsevier Ltd.

  14. Suicidal Behavior in Chemically Dependent Adolescents.

    Science.gov (United States)

    Cavaiola, Alan A.; Lavender, Neil

    1999-01-01

    Study explores distinctions between chemically dependent suicide attempters, chemically dependent nonsuicidal adolescents, and high school students with no history of chemical dependency (N=250). Results reveal that there were significant differences between the chemically dependent groups. It was also found that the majority of suicidal gestures…

  15. Analysis of pharmaceutical pellets: An approach using near-infrared chemical imaging

    International Nuclear Information System (INIS)

    Sabin, Guilherme P.; Breitkreitz, Marcia C.; Souza, Andre M. de; Fonseca, Patricia da; Calefe, Lupercio; Moffa, Mario; Poppi, Ronei J.

    2011-01-01

    Highlights: → Near-Infrared Chemical Imaging was used for pellets analysis. → Distribution of the components throughout the coatings layers and core of the pellets was estimated. → Classical Least Squares (CLS) was used for calculation of the concentration maps. - Abstract: Pharmaceutical pellets are spherical or nearly spherical multi-unit dosage forms designed to optimize pharmacokinetics and pharmacodynamics features of drug release. The distribution of the pharmaceutical ingredients in the layers and core is a very important parameter for appropriate drug release, especially for pellets manufactured by the process of layer gain. Physical aspects of the sample are normally evaluated by Scanning Electron Microscopy (SEM), but it is in many cases unsuitable to provide conclusive chemical information about the distribution of the pharmaceutical ingredients in both layers and core. On the other hand, methods based on spectroscopic imaging can be very promising for this purpose. In this work, a Near-Infrared Chemical Imaging (NIR-CI) method was developed and applied to the analysis of diclophenac sodium pellets. Since all the compounds present in the sample were known in advance, Classical Least Squares (CLS) was used for calculations. The results have shown that the method was capable of providing chemical information about the distribution of the active ingredient and excipients in the core and coating layers and therefore can be complementary to SEM for the pharmaceutical development of pellets.

  16. Analysis of pharmaceutical pellets: An approach using near-infrared chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sabin, Guilherme P.; Breitkreitz, Marcia C.; Souza, Andre M. de [Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Fonseca, Patricia da; Calefe, Lupercio; Moffa, Mario [Zelus Servicos para Industria Farmaceutica Ltda., Av. Professor Lineu Prestes n. 2242, Sao Paulo, SP (Brazil); Poppi, Ronei J., E-mail: ronei@iqm.unicamp.br [Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2011-11-07

    Highlights: {yields} Near-Infrared Chemical Imaging was used for pellets analysis. {yields} Distribution of the components throughout the coatings layers and core of the pellets was estimated. {yields} Classical Least Squares (CLS) was used for calculation of the concentration maps. - Abstract: Pharmaceutical pellets are spherical or nearly spherical multi-unit dosage forms designed to optimize pharmacokinetics and pharmacodynamics features of drug release. The distribution of the pharmaceutical ingredients in the layers and core is a very important parameter for appropriate drug release, especially for pellets manufactured by the process of layer gain. Physical aspects of the sample are normally evaluated by Scanning Electron Microscopy (SEM), but it is in many cases unsuitable to provide conclusive chemical information about the distribution of the pharmaceutical ingredients in both layers and core. On the other hand, methods based on spectroscopic imaging can be very promising for this purpose. In this work, a Near-Infrared Chemical Imaging (NIR-CI) method was developed and applied to the analysis of diclophenac sodium pellets. Since all the compounds present in the sample were known in advance, Classical Least Squares (CLS) was used for calculations. The results have shown that the method was capable of providing chemical information about the distribution of the active ingredient and excipients in the core and coating layers and therefore can be complementary to SEM for the pharmaceutical development of pellets.

  17. Influence of trace aromatics on the chemical growth mechanisms of Titan aerosol analogues

    Science.gov (United States)

    Gautier, Thomas; Sebree, Joshua A.; Li, Xiang; Pinnick, Veronica T.; Grubisic, Andrej; Loeffler, Mark J.; Getty, Stephanie A.; Trainer, Melissa G.; Brinckerhoff, William B.

    2017-06-01

    The chemical structure and formation pathways of Titan aerosols remain largely unknown. In this work, we studied the effect of trace aromatics on the chemical composition and formation pathways of laboratory analogues of Titan's organic aerosols. The aerosol analogues were produced using four different trace aromatic molecules, comprised of one or two aromatic rings, each with or without a nitrogen heteroatom. Samples were then analyzed by laser desorption/ionization Mass Spectrometry (LDMS), revealing a high variability in the sample composition depending on the trace aromatic used. Our work reveals that the final chemical structure of the aerosols depends strongly on the number of aromatic rings in the trace molecule, leading either to a polymeric or to a random co-polymeric growth of the sample. These different chemical structures can affect the physical properties of the aerosol. Future analysis of Titan's aerosols using better resolution could potentially determine whether either of the growth hypotheses are preferred.

  18. Application of factor analysis to chemically analyzed data in environmental samples after x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    El-Sayed, A.A.

    2005-01-01

    The underlying principle of factorial analysis is frequency distribution and description of reaction in between and through the element series in specific environmental samples. Application of this factor analysis was elaborated to interpret the variance and covariance of certain elements Si, Al, Ca. K, Fe, Ti and Mg in three different types of common materials in environmental sediments, soil, and rock. These evaluations were proceeded after x-ray fluorescence measurements. Results of applications of factorial statistical data analysis show that three factors cause relationship between the above elements in a certain type of environmental samples are mainly recognized. In such cases, these factors represent the main reason for findings and interpret all hidden relationship between the chemical analyzed data. Factor one, the effect of weathering type alteration and oxidation reaction processes as a main one in case of soil and rock where they are characterized by the close covariance of a group of metals, like iron and manganese, commonly derived from weathered and altered igneous rocks. Factor two and three represents other processes. In case of soil, formation of alumino-silicate is revealed in factor two due to the positive covariance of these elements and also the presence of aluminum oxide, titanium oxide and silicon dioxide together is explained by these positive values. The inverse relation between Ca, K, Fe and Mg while indicate the presence of mineral salts which may be due to fertilization and water of irrigation. In case of factor three in that soil, it is the weakest factor that can be used to explain the relationship between the above elements

  19. Body composition of two human cadavers by neutron activation and chemical analysis

    International Nuclear Information System (INIS)

    Knight, G.S.; Beddoe, A.H.; Streat, S.J.; Hill, G.L.

    1986-01-01

    In vivo neutron activation analysis (NAA) is currently used to measure body composition in metabolic and nutritional studies in many clinical situations, but has not previously been validated by comparison with chemical analysis of human cadavers. Total body nitrogen (TBN) and chlorine (TBCl) were measured in two human cadavers by NAA before homogenization and chemical analysis (CHEM) after (cadaver 1: TBN, 1.47 NAA, 1.51 CHEM; TBCl, 0.144 NAA, 0.147 CHEM; cadaver 2: TBN, 0.576 NAA, 0.572 CHEM; TBCl, 0.0227 NAA, 0.0250 CHEM). The homogenates were also analyzed by NAA, and no significant differences were found, indicating that the effects of elemental inhomogeneity on the measurement of TBN and TBCl are insignificant. Total body water, fat, protein, minerals, and carbohydrates were measured chemically for each cadaver and compared with estimates for these compartments obtained from a body composition model, which when used in vivo involves NAA and tritium dilution. The agreement found justifies the use of the model for the measurement of changes in total body protein, water, and fat in sequential studies in groups of patients

  20. Physio-Chemical Analysis of Industrial Effluents in parts of Edo ...

    African Journals Online (AJOL)

    Physio-Chemical Analysis of Industrial Effluents in parts of Edo States Nigeria. ... Journal of Applied Sciences and Environmental Management ... particularly, surface water results from all activities of man involving indiscriminate waste disposal from industry such as effluents into waterways, waste, agricultural waste, and all ...

  1. Method for fractional solid-waste sampling and chemical analysis

    DEFF Research Database (Denmark)

    Riber, Christian; Rodushkin, I.; Spliid, Henrik

    2007-01-01

    four subsampling methods and five digestion methods, paying attention to the heterogeneity and the material characteristics of the waste fractions, it was possible to determine 61 substances with low detection limits, reasonable variance, and high accuracy. For most of the substances of environmental...... of variance (20-85% of the overall variation). Only by increasing the sample size significantly can this variance be reduced. The accuracy and short-term reproducibility of the chemical characterization were good, as determined by the analysis of several relevant certified reference materials. Typically, six...... to eight different certified reference materials representing a range of concentrations levels and matrix characteristics were included. Based on the documentation provided, the methods introduced were considered satisfactory for characterization of the chemical composition of waste-material fractions...

  2. Chemical Analysis of the Moon at the Surveyor VII Landing Site: Preliminary Results.

    Science.gov (United States)

    Turkevich, A L; Franzgrote, E J; Patterson, J H

    1968-10-04

    The alpha-scattering experiment aboard Surveyor VII has provided a chemical analysis of the moon in the area of the crater Tycho. The preliminary results indicate a chemical composition similar to that already found at two mare sites, but with a lower concentration of elements of the iron group (titanium through copper).

  3. Multielement analysis of reagents used in chemical identification of transuranic elements

    International Nuclear Information System (INIS)

    Montalvan Estrada, A.; Brigido Flores, O.; Maslov, O.D.; Dmitriev, S.N.

    2006-01-01

    For more than 40 years, chemical identification of transuranic elements has been used at the Laboratory of Nuclear Reactions of the Join Institute for Nuclear Research, Dubna, Russia, as a secondary method of identification. Chlorination of transuranic elements obtained by nuclear reactions is an important step of the procedure in order to obtain volatile compounds able to pass through a thermo chromatographic process. To access the quality of the reagents TiCl 4 and SOCl 2 multielement analysis was carried out using both X-rays fluorescence and gamma activation. It was followed the simplest procedure for reagents samples pretreatment, so further interferences from other chemical products were avoided. X-rays fluorescence analysis was performed in a spectrometer with Si(Li) detector with a resolution for Fe (K?) of 190 eV. Both Cd-109 and Am-241 were used as isotopic sources of excitation. Gamma activation analysis was carried out using the compact electron accelerator MT-25, where gamma rays are produced in a stopping target. Among the parameters of the MT-25 are the following: energy range-10-25 MeV, gamma-ray flux-10 14 photon/s, power consumption-20 kw. Measurements of the induced activity were performed with the help of a HPGe detector, thin and coaxial Ge(Li) detectors. There were identified two elements in SOCl 2 -Nickel (3*10 -6 g/g) and Antimony (2*10 -7 g/g), while there were identified three elements in TiCl 4 - Zirconium (8*10 -7 g/g), Arsenic (9*10 -7 g/g) and Antimony (5*10 -7 g/g). Only five elements were detected in trace concentrations in the two analyzed reagents, that is for more than 57 elements capable of being detected using gamma activation analysis with the MT-25 only 5 had concentrations above the detection limits of the method. Not being chemical analogs of the synthesized transuranic elements (Z-104 and 106) and not being able to alpha or fission disintegrations there is not expected any interference from them in the chemical

  4. Chemical analysis for waste management in paint industries

    International Nuclear Information System (INIS)

    Nawaz, Z.; Naveed, S.; Shiekh, N.A.; Sagheer, K.

    2005-01-01

    The chemical analysis of paint industries waste has been carried out; the main emission sources are the heating of raw materials and lacquer. Also the waste from other applications and production contains high concentration of heavy metals, VOC's, COD, TDS with notable acidity and alkalinity. Based on the analysis it was observed that the major losses of production could be minimized. Further toxic effects of the waste material can be minimized. In this reference measures to minimize production losses should be adopted along with the proper management. These laboratory results also lead to the areas of emissions and waste production during manufacturing process. Solutions have been proposed for process development and integrated waste minimization. (author)

  5. Sweet Potato Value Chain Analysis Reveals Opportunities for Increased Income and Food Security in Northern Ghana

    Directory of Open Access Journals (Sweden)

    Issah Sugri

    2017-01-01

    Full Text Available Sweet potato has gained prominence due to its ability to adapt to wide production ecologies and yield response to minimal external inputs. Orange-fleshed cultivars in particular have immense potential to improve household income and nutrition in sub-Saharan Africa. However, the sweet potato value chain (SPVC is not well-developed in many producing countries. The study was conducted in two regions to characterize the production operations as well as identify opportunities to propel the SPVC in Northern Ghana. Data were collected using mixed methods including structured questionnaires via face-to-face interviews. Analysis of strengths, weaknesses, opportunities, and threats (SWOT was conducted at multistakeholder platforms with different actors. Gross margin profit and benefit-cost ratios were determined by using six cost variables. Overall, the industry was largely a fresh produce market, targeting food vendors, processors, and direct selling to wholesalers, retailers, and household consumers. The SWOT analysis revealed wide-ranging opportunities including favourable production ecologies, processing options, and insatiable local and international markets. The institutional actors need to network the primary actors to synergistically operate with a collective profit motive. The most prioritized production constraints such as access to seed, cost of chemical fertilizer, short shelf-life, field pests and diseases, and declining soil fertility should be addressed.

  6. Analysis of soil chemical parameters of an uncleaned crude oil spill ...

    African Journals Online (AJOL)

    Analysis of soil chemical parameters of an uncleaned crude oil spill site at Biara was carried out. Soil samples were collected at 0 -15 cm and 15 – 30 cm soil depths from both polluted and unpolluted sites for analysis. Significant increase in high total hydrocarbon content (1015±80.5 – 1150±90.1 mg/kg) in polluted site was ...

  7. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    Directory of Open Access Journals (Sweden)

    José A. Centeno

    2014-01-01

    Full Text Available Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU, tungsten (W, lead (Pb, and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF, scanning electron microscopy (SEM, laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS, and confocal laser Raman

  8. Chemical degradation of fluoroelastomer in an alkaline environment

    DEFF Research Database (Denmark)

    Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.

    2004-01-01

    We have investigated the time-dependent chemical degradation of a fluoroelastomer, FKM (Viton((R)) A), in an alkaline environment (10% NaOH, 80 degreesC). Optical microscopy and SEM analysis reveal that degradation starts with surface roughness right from the earliest stage of exposure (e.g., 1...... week) and finally results in cracks on the surface after prolonged exposure. Initially the extent of degradation is mainly confined to the surface regions (a few nanometers) but with longer exposure (e.g., 12 weeks) it extends to below the subsurface region of the fluoroelastomer. The extent...... of this surface degradation is found to be strong enough to affect the bulk mechanical properties. The molecular mechanisms of the surface chemical degradation were determined using surface analysis (XPS and ATR-FTIR) where the initial degradation was found to proceed via dehydrofluorination. This leads to double...

  9. Activation and chemical analysis of drinking waters

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1989-01-01

    Ground water samples from Patiala city have been analysed for 22 trace elements using neutron activation analysis and for seven chemical parameters using standard techniques. It was found that alkali and alkaline earth metals have high concentrations in all samples whereas the concentrations of toxic metals are low in the majority of samples. However, chromium and cadmium concentrations are higher in ground water taken from the industrial belt of the city. This indicates that the overall level of pollution is low, but that some measures are still needed to inhibit various industries from polluting the ground water. (author)

  10. Multivariate Analysis of Multiple Datasets: a Practical Guide for Chemical Ecology.

    Science.gov (United States)

    Hervé, Maxime R; Nicolè, Florence; Lê Cao, Kim-Anh

    2018-03-01

    Chemical ecology has strong links with metabolomics, the large-scale study of all metabolites detectable in a biological sample. Consequently, chemical ecologists are often challenged by the statistical analyses of such large datasets. This holds especially true when the purpose is to integrate multiple datasets to obtain a holistic view and a better understanding of a biological system under study. The present article provides a comprehensive resource to analyze such complex datasets using multivariate methods. It starts from the necessary pre-treatment of data including data transformations and distance calculations, to the application of both gold standard and novel multivariate methods for the integration of different omics data. We illustrate the process of analysis along with detailed results interpretations for six issues representative of the different types of biological questions encountered by chemical ecologists. We provide the necessary knowledge and tools with reproducible R codes and chemical-ecological datasets to practice and teach multivariate methods.

  11. Methodology for the physical and chemical exergetic analysis of steam boilers

    International Nuclear Information System (INIS)

    Ohijeagbon, Idehai O.; Waheed, M. Adekojo; Jekayinfa, Simeon O.

    2013-01-01

    This paper presents a framework of thermodynamic, energy and exergy, analyses of industrial steam boilers. Mass, energy, and exergy analysis were used to develop a methodology for evaluating thermodynamic properties, energy and exergy input and output resources in industrial steam boilers. Determined methods make available an analytic procedure for the physical and chemical exergetic analysis of steam boilers for appropriate applications. The energy and exergy efficiencies obtained for the entire boiler was 69.56% and 38.57% at standard reference state temperature of 25 °C for an evaporation ratio of 12. Chemical exergy of the material streams was considered to offer a more comprehensive detail on energy and exergy resource allocation and losses of the processes in a steam boiler. - Highlights: ► We evaluated thermodynamic properties and performance variables associated with material streams. ► We analysed resources allocation, and magnitude of exergetic losses in steam boilers. ► Chemical exergy of material streams contributed to improved exergy values. ► High operational parameter will lead to higher boiler exergy. ► Exergy destroyed was higher in the combustion as against the heat exchanging unit

  12. The Use of Chemical-Chemical Interaction and Chemical Structure to Identify New Candidate Chemicals Related to Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available Lung cancer causes over one million deaths every year worldwide. However, prevention and treatment methods for this serious disease are limited. The identification of new chemicals related to lung cancer may aid in disease prevention and the design of more effective treatments. This study employed a weighted network, constructed using chemical-chemical interaction information, to identify new chemicals related to two types of lung cancer: non-small lung cancer and small-cell lung cancer. Then, a randomization test as well as chemical-chemical interaction and chemical structure information were utilized to make further selections. A final analysis of these new chemicals in the context of the current literature indicates that several chemicals are strongly linked to lung cancer.

  13. DRES Database of Methods for the Analysis of Chemical Warfare Agents

    National Research Council Canada - National Science Library

    D'Agostino, Paul

    1997-01-01

    .... Update of the database continues as an ongoing effort and the DRES Database of Methods for the Analysis of Chemical Warfare Agents is available panel in hardcopy form or as a softcopy Procite or Wordperfect file...

  14. Histo-chemical and biochemical analysis reveals association of er1 mediated powdery mildew resistance and redox balance in pea.

    Science.gov (United States)

    Mohapatra, Chinmayee; Chand, Ramesh; Navathe, Sudhir; Sharma, Sandeep

    2016-09-01

    Powdery mildew caused by Erysiphe pisi is one of the important diseases responsible for heavy yield losses in pea crop worldwide. The most effective method of controlling the disease is the use of resistant varieties. The resistance to powdery mildew in pea is recessive and governed by a single gene er1. The objective of present study is to investigate if er1 mediated powdery mildew resistance is associated with changes in the redox status of the pea plant. 16 pea genotypes were screened for powdery mildew resistance in field condition for two years and, also, analyzed for the presence/absence of er1 gene. Histochemical analysis with DAB and NBT staining indicates accumulation of reactive oxygen species (ROS) in surrounding area of powdery mildew infection which was higher in susceptible genotypes as compared to resistant genotypes. A biochemical study revealed that the activity of superoxide dismutase (SOD) and catalase, enzymes involved in scavenging ROS, was increased in, both, resistant and susceptible genotypes after powdery mildew infection. However, both enzymes level was always higher in resistant than susceptible genotypes throughout time course of infection. Moreover, irrespective of any treatment, the total phenol (TP) and malondialdehyde (MDA) content was significantly high and low in resistant genotypes, respectively. The powdery mildew infection elevated the MDA content but decreased the total phenol in pea genotypes. Statistical analysis showed a strong positive correlation between AUDPC and MDA; however, a negative correlation was observed between AUDPC and SOD, CAT and TP. Heritability of antioxidant was also high. The study identified few novel genotypes resistant to powdery mildew infection that carried the er1 gene and provided further clue that er1 mediated defense response utilizes antioxidant machinery to confer powdery mildew resistance in pea. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist's Approach to Allostery.

    Science.gov (United States)

    Boulton, Stephen; Selvaratnam, Rajeevan; Ahmed, Rashik; Melacini, Giuseppe

    2018-01-01

    Mapping allosteric sites is emerging as one of the central challenges in physiology, pathology, and pharmacology. Nuclear Magnetic Resonance (NMR) spectroscopy is ideally suited to map allosteric sites, given its ability to sense at atomic resolution the dynamics underlying allostery. Here, we focus specifically on the NMR CHEmical Shift Covariance Analysis (CHESCA), in which allosteric systems are interrogated through a targeted library of perturbations (e.g., mutations and/or analogs of the allosteric effector ligand). The atomic resolution readout for the response to such perturbation library is provided by NMR chemical shifts. These are then subject to statistical correlation and covariance analyses resulting in clusters of allosterically coupled residues that exhibit concerted responses to the common set of perturbations. This chapter provides a description of how each step in the CHESCA is implemented, starting from the selection of the perturbation library and ending with an overview of different clustering options.

  16. Quantitative analysis of chemical elements in single cells using nuclear microprobe and nano-probe

    International Nuclear Information System (INIS)

    Deves, Guillaume

    2010-01-01

    The study of the role of trace elements at cellular level requires the use of state-of-the-art analytical tools that could achieve enough sensitivity and spatial resolution. We developed a new methodology for the accurate quantification of chemical element distribution in single cells based on a combination of ion beam analysis techniques STIM, PIXE and RBS. The quantification procedure relies on the development of a STIM data analysis software (Paparamborde). Validity of this methodology and limits are discussed here. The method allows the quantification of trace elements (μg/g) with a 19.8 % uncertainty in cellular compartments with mass below 0.1 ng. The main limit of the method lies in the poor number of samples that can be analyzed, due to long irradiation times required and limited access to ion beam analysis facilities. This is the reason why we developed a database for cellular chemical composition capitalization (BDC4). BDC4 has been designed in order to use cellular chemical composition as a tracer for biological activities and is expected to provide in the future reference chemical compositions for any cellular type or compartment. Application of the STIM-PIXE-RBS methodology to the study of nuclear toxicology of cobalt compounds is presented here showing that STIM analysis is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. (author)

  17. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    Science.gov (United States)

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  18. Physical, chemical and microbiological analysis of the water quality of Rawal Lake, Pakistan

    Directory of Open Access Journals (Sweden)

    Mehreen Hassan

    2014-06-01

    Full Text Available What better gift of nature would be than good quality water? In order to assess the quality of water of Rawal Lake, following research was carried out. Rawal lake is a source of drinking water supplied to many areas of Rawalpindi and Islamabad’ the capital city of Pakistan. Water of this lake is being highly polluted by the local communities alongside the lake through solid waste dumping. Samples of surface water were collected, tested and analyzed in the laboratory on the basis of physical, chemical and microbiological parameters. The results showed uncertainties in many of the selected parameters. Microbiological analysis revealed high contamination of E. coli, fecal coliform and total coliform in the samples proving it unfit for drinking. It was found that the concentration of all physical parameters such as nitrates, chloride, pH and conductivity were within the normal limits. The level of heavy metals like lead, iron, chromium etc. was also found low. Turbidity at some points exceeded the maximum acceptable limit as per WHO statement.

  19. Antibacterial Efficiency of Benzalkonium Chloride Base Disinfectant According To European Standard 13727, Chemical Analysis and Validation Studies

    OpenAIRE

    Yıldırım, Çinel; Çelenk, Veysel

    2018-01-01

    Antibacterial Efficiency of Benzalkonium Chloride Base Disinfectant According To European Standard 13727, Chemical Analysis and Validation Studies This study was aimed to provide principle of the chemical analyses, antibacterial efficiency test and validation procedures of the most commonly used benzalkonium chloride (BAC) base disinfectant as a biocide. Disinfectant which comprised 20 % BAC concentration was used as a prototype product and active substance was verified with chemical analysis...

  20. Spectral analysis and quantum chemical studies of chair and twist-boat conformers of cycloheximide in gas and solution phases

    Science.gov (United States)

    Tokatli, A.; Ucun, F.; Sütçü, K.; Osmanoğlu, Y. E.; Osmanoğlu, Ş.

    2018-02-01

    In this study the conformational behavior of cycloheximide in the gas and solution (CHCl3) phases has theoretically been investigated by spectroscopic and quantum chemical properties using density functional theory (wB97X-D) method with 6-31++G(d,p) basis set, for the first time. The calculated IR results reveal that in the ground state the molecule exits as a mixture of the chair and twist-boat conformers in the gas phase, while the calculated NMR results reveal that it only exits as the chair conformer in the solution phase. In order to obtain the contributions coming from intramolecular interactions to the stability of the conformers in the gas and solution phases, the quantum theory of atoms in molecules (QTAIM), noncovalent interactions (NCI) method, and natural bond orbital analysis (NBO) have been employed. The QTAIM and NCI methods indicated that by intramolecular interactions with bond critical point (BCP) the twist-boat conformer is more stabilized than the chair conformer, while by steric interactions it is more destabilized. Considering that these interactions balance each other, the stabilities of the conformers are understood to be dictated by the van der Waals interactions. The NBO analyses show that the hyperconjugative and steric effects play an important role in the stabilization in the gas and solution phases. Furthermore, to get a better understanding of the chemical behavior of this important antibiotic drug we have evaluated and, commented the global and local reactivity descriptors of the both conformers. Finally, the EPR analysis of γ-irradiated cycloheximide has been done. The comparison of the experimental and calculated data have showed the inducement of a radical structure of (CH2)2ĊCH2 in the molecule. The experimental EPR spectrum has also confirmed that the molecule simultaneously exists in the chair and twist-boat conformers in the solid phase.

  1. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity

    DEFF Research Database (Denmark)

    Casanovas, Albert; Hannibal-Bach, Hans Kristian; Jensen, Ole Nørregaard

    2014-01-01

    Shotgun lipidomics affords comprehensive and quantitative analysis of lipid species in cells and tissues at high-throughput [1 5]. The methodology is based on direct infusion of lipid extracts by electrospray ionization (ESI) combined with tandem mass spectrometry (MS/MS) and/or high resolution F...... low ionization efficiency in ESI [7]. For this reason, chemical derivatization procedures including acetylation [8] or sulfation [9] are commonly implemented to facilitate ionization, detection and quantification of sterols for global lipidome analysis [1-3, 10]....

  2. Analysis of iodine chemical form noted from severe fuel damage experiments

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Osetek, D.J.

    1986-01-01

    Data from the TMI-2 accident has shown that only small amounts of iodine (I) escaped the plant. The postulated reason for such limited release is the formation of CsI (a salt) within fuel, which remains stable in a reducing high-temperature steam-H 2 environment. Upon cooldown CsI would dissolve in water condensate to form an ionic solution. However, recent data from fuel destruction experiments indicate different iodine release behavior that is tied to fuel burnup and oxidation conditions, as well as fission product concentration levels in the steam/H 2 effluent. Analysis of the data indicate that at low-burnup conditions, atomic I release from fuel is favored. Likewise, at low fission product concentration conditions HI is the favored chemical form in the steam/H 2 environment, not CsI. Results of thermochemical equilibria and chemical kinetics analysis support the data trends noted from the PBF-SFD tests. An a priori assumption of CsI for risk analysis of all accident sequences may therefore be inappropriate

  3. Low-Pressure H2, NH3 Microwave Plasma Treatment of Polytetrafluoroethylene (PTFE) Powders: Chemical, Thermal and Wettability Analysis

    Science.gov (United States)

    Hunke, Harald; Soin, Navneet; Shah, Tahir H.; Kramer, Erich; Pascual, Alfons; Karuna, Mallampalli Sri Lakshmi; Siores, Elias

    2015-01-01

    Functionalization of Polytetrafluoroethylene (PTFE) powders of ~6 μm particle size is carried out using low-pressure 2.45 GHz H2, NH3 microwave plasmas for various durations (2.5, 10 h) to chemically modify their surface and alter their surface energy. The X-ray Photoelectron Spectroscopy (XPS) analyses reveal that plasma treatment leads to significant defluorination (F/C atomic ratio of 1.13 and 1.30 for 10 h NH3 and H2 plasma treatments, respectively vs. 1.86 for pristine PTFE), along with the incorporation of functional polar moieties on the surface, resulting in enhanced wettability. Analysis of temperature dependent XPS revealed a loss of surface moieties above 200 °C, however, the functional groups are not completely removable even at higher temperatures (>300 °C), thus enabling the use of plasma treated PTFE powders as potential tribological fillers in high temperature engineering polymers. Ageing studies carried over a period of 12 months revealed that while the surface changes degenerate over time, again, they are not completely reversible. These functionalised PTFE powders can be further used for applications into smart, high performance materials such as tribological fillers for engineering polymers and bio-medical, bio-material applications.

  4. Recent breakthroughs in metabolomics promise to reveal the cryptic chemical traits that mediate plant community composition, character evolution and lineage diversification.

    Science.gov (United States)

    Sedio, Brian E

    2017-05-01

    Contents 952 I. 952 II. 953 III. 955 IV. 956 V. 957 957 References 957 SUMMARY: Much of our understanding of the mechanisms by which biotic interactions shape plant communities has been constrained by the methods available to study the diverse secondary chemistry that defines plant relationships with other organisms. Recent innovations in analytical chemistry and bioinformatics promise to reveal the cryptic chemical traits that mediate plant ecology and evolution by facilitating simultaneous structural comparisons of hundreds of unknown molecules to each other and to libraries of known compounds. Here, I explore the potential for mass spectrometry and nuclear magnetic resonance metabolomics to enable unprecedented tests of seminal, but largely untested hypotheses that propose a fundamental role for plant chemical defenses against herbivores and pathogens in the evolutionary origins and ecological coexistence of plant species diversity. © 2017 The Author. New Phytologist © 2017 New Phytologist Trust.

  5. Application of hazard analysis critical control points (HACCP) to organic chemical contaminants in food.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-03-01

    Hazard Analysis Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards that was developed as an effective alternative to conventional end-point analysis to control food safety. It has been described as the most effective means of controlling foodborne diseases, and its application to the control of microbiological hazards has been accepted internationally. By contrast, relatively little has been reported relating to the potential use of HACCP, or HACCP-like procedures, to control chemical contaminants of food. This article presents an overview of the implementation of HACCP and discusses its application to the control of organic chemical contaminants in the food chain. Although this is likely to result in many of the advantages previously identified for microbiological HACCP, that is, more effective, efficient, and economical hazard management, a number of areas are identified that require further research and development. These include: (1) a need to refine the methods of chemical contaminant identification and risk assessment employed, (2) develop more cost-effective monitoring and control methods for routine chemical contaminant surveillance of food, and (3) improve the effectiveness of process optimization for the control of chemical contaminants in food.

  6. Investigation of hydrogen content in chemically delithiated lithium-ion battery cathodes using prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Aghara, S.K.; Alvarez II, E.; Venkatraman, S.; Manthiram, A.

    2005-01-01

    Lithium-ion batteries are widely used as a power source for portable electronic devices. Currently, only 50-70% of the theoretical capacity of the layered oxide cathode (positive electrode) materials could be reversibly used. The reason for this limitation is not fully understood in the literature. Recent structural and chemical characterizations of chemically delithiated (charged) cathodes suggest that loss of oxygen from the lattice may play a role in this regard. However, during the chemical delithiation process any proton inserted from the solvent could adversely affect the oxygen content analysis data. The challenge in addressing this issue is to detect and determine precisely the proton content in the chemically delithiated samples. The prompt gamma-ray activation analysis (PGAA) facility at the Nuclear Engineering Teaching Laboratory (NETL) is used to determine the proton content in the layered oxide cathode LiNi 0.5 Mn 0.5 O 2 before and after chemical delithiation. The data are compared with those obtained with Fourier transform infrared (FTIR) spectroscopy, which can provide mainly qualitative analysis. The technique has proved to be promising for these compounds and will be applied to characterize several other chemically delithiated Li 1-x Co 1-y M y O 2 (M = Cr, Mn, Fe, Ni, Cu, Mg, and Al) cathodes. (author)

  7. Genetic evidence reveals improvement opportunities for tissue preparation in forensic analysis

    OpenAIRE

    Romero, Rosa Elena; Sandoval, Alejandro; Arango, Juliana; Camargo, Martha Lucia

    2016-01-01

    Introduction: Paraffin embedded tissues are an excellent alternative to obtain dna, especially when it is not possible to have fresh samples or when the tissue storage and preservation is not feasible; therefore, this sample is the only item available for matching purposes. The success in any genetic analysis implies having adequate tissue fixation and suitable dna extraction methods that allow to obtain good quality and quantity molecules, free of biological, chemical and microbiological con...

  8. Comprehensive default methodology for the analysis of exposures to mixtures of chemicals accidentally released to the atmosphere

    International Nuclear Information System (INIS)

    Craig, D.K.; Baskett, R.L.; Powell, T.J.; Davis, J.S.; Dukes, L.L.; Hansen, D.J.; Petrocchi, A.J.; Sutherland, P.J.

    1997-01-01

    Safety analysis of Department of Energy (DOE) facilities requires consideration of potential exposures to mixtures of chemicals released to the atmosphere. Exposure to chemical mixtures may lead to additive, synergistic, or antagonistic health effects. In the past, the consequences of each chemical have been analyzed separately. This approach may not adequately protect the health of persons exposed to mixtures. However, considerable time would be required to evaluate all possible mixtures. The objective of this paper is to present reasonable default methodology developed by the EFCOG Safety Analysis Working Group Nonradiological Hazardous Material Subgroup (NHMS) for use in safety analysis within the DOE Complex

  9. Theoretical considerations of Flow Injection Analysis in the Absence of Chemical Reactions

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2000-01-01

    The fundamental mechanism of flow injection analysis (FIA) is assumed to be simple dissusion and the response of the detector is included in a model description that provide information about the shape of the FIA peak in terms of, basically, five parameters. Two of the five parameters are associa...... that any deviation from the features of the present model and the results of a tentative chemical reaction with one of the test compounds, is related to chemical kinetics.......The fundamental mechanism of flow injection analysis (FIA) is assumed to be simple dissusion and the response of the detector is included in a model description that provide information about the shape of the FIA peak in terms of, basically, five parameters. Two of the five parameters...

  10. Buying drugs on a Darknet market: A better deal? Studying the online illicit drug market through the analysis of digital, physical and chemical data.

    Science.gov (United States)

    Rhumorbarbe, Damien; Staehli, Ludovic; Broséus, Julian; Rossy, Quentin; Esseiva, Pierre

    2016-10-01

    Darknet markets, also known as cryptomarkets, are websites located on the Darknet and designed to allow the trafficking of illicit products, mainly drugs. This study aims at presenting the added value of combining digital, chemical and physical information to reconstruct sellers' activities. In particular, this research focuses on Evolution, one of the most popular cryptomarkets active from January 2014 to March 2015. Evolution source code files were analysed using Python scripts based on regular expressions to extract information about listings (i.e., sales proposals) and sellers. The results revealed more than 48,000 listings and around 2700 vendors claiming to send illicit drug products from 70 countries. The most frequent categories of illicit drugs offered by vendors were cannabis-related products (around 25%) followed by ecstasy (MDA, MDMA) and stimulants (cocaine, speed). The cryptomarket was then especially studied from a Swiss point of view. Illicit drugs were purchased from three sellers located in Switzerland. The purchases were carried out to confront digital information (e.g., the type of drug, the purity, the shipping country and the concealment methods mentioned on listings) with the physical analysis of the shipment packaging and the chemical analysis of the received product (purity, cutting agents, chemical profile based on minor and major alkaloids, chemical class). The results show that digital information, such as concealment methods and shipping country, seems accurate. But the illicit drugs purity is found to be different from the information indicated on their respective listings. Moreover, chemical profiling highlighted links between cocaine sold online and specimens seized in Western Switzerland. This study highlights that (1) the forensic analysis of the received products allows the evaluation of the accuracy of digital data collected on the website, and (2) the information from digital and physical/chemical traces are complementary to

  11. Comparison of sodium content of workplace and homemade meals through chemical analysis and salinity measurements.

    Science.gov (United States)

    Shin, Eun-Kyung; Lee, Yeon-Kyung

    2014-10-01

    Most Koreans consume nearly 70-80% of the total sodium through their dishes. The use of a salinometer to measure salinity is recommended to help individuals control their sodium intake. The purpose of this study was to compare sodium content through chemical analysis and salinity measurement in foods served by industry foodservice operations and homemade meals. Workplace and homemade meals consumed by employees in 15 cafeterias located in 8 districts in Daegu were collected and the sodium content was measured through chemical analysis and salinity measurements and then compared. The foods were categorized into 9 types of menus with 103 workplace meals and 337 homemade meals. Workplace meals did not differ significantly in terms of sodium content per 100 g of food but had higher sodium content via chemical analysis in roasted foods per portion. Homemade meals had higher broth salt content and higher salt content by chemical analysis per 100 g of roasted foods and hard-boiled foods. One-dish workplace meals had higher salinity (P content (P content per 100 g of foods was higher in one-dish workplace meals (P content in foods and control one's sodium intake within the daily intake target as a way to promote cooking bland foods at home. However, estimated and actual measured values may differ.

  12. Some comments on misuse of terms related to chemical analysis

    International Nuclear Information System (INIS)

    Steinnes, E.

    2007-01-01

    Complet text of publication follows. I have been involved in scientific studies involving chemical analysis for more than 49 years. Over this period I have observed an increasing tendency to incorrect use of terms 'analysis' and 'determination' and the corresponding verbum forms. According to correct terminology in English, samples are analyzed, analytes (e.g., trace elements) are determined. However, too often expressions such as 'analysis of copper in blood' are seen in the literature, especially in papers written by non-chemists. The reason why I am raising this point at the present time in that I observed the problem in several recent titles of papers published over the last few years in the Journal of Radioanalytical and Nuclear Chemistry: Preconcentration and neutron activation analysis of thorium and uranium in natural waters. Use of activated carbon as pre-separation agent in NAA of selenium, cobalt and iodine. Recent developments in the analysis of transuranics (Np, Pu, Am) in sea water. Automated radiochemical analysis of total 99 Tc in aged nuclear waste processing streams. Photon activation analysis of carbon in glasses for fiber amplifiers by using the flow method for the rapid separation of 11 C. Preconcentration neutron activation analysis of lanthanides by cloudpoint extraction using PAN. Analysis of the chemical elements in leaves infected by fumagina by X-ray fluorescence technique. Rapid method for 226 Ra and 228 Ra analysis in water samples. The above list is far from exhaustive. I believe that this incorrect use of terminology should be avoided at least in the titles of scientific papers, in Journal of Radioanalytical and Nuclear Chemistry as well as in other scientific journals. In some of the above cases replacing 'of' with 'for the determination of', or just with 'for', would have solved the problem. In other cases it would be preferable to reverse the order of words in the sentence, such as e.g., 'Determination of selenium, cobalt and

  13. ISS Expeditions 16 through 20: Chemical Analysis Results for Potable Water

    Science.gov (United States)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.

    2010-01-01

    During the 2-year span from Expedition 16 through Expedition 20, the chemical quality of the potable water onboard the International Space Station (ISS) was verified safe for crew consumption through the return and chemical analysis of archival water samples by the Water and Food Analytical Laboratory (WAFAL) at Johnson Space Center (JSC). Reclaimed cabin humidity condensate and Russian ground-supplied water were the principal sources of potable water for Expeditions 16 through 18. During Expedition 18 the U.S. water processor assembly was delivered, installed, and tested during a 90-day checkout period. Beginning with Expedition 19, U.S. potable water recovered from a combined waste stream of humidity condensate and pretreated urine was also available for ISS crew use. A total of 74 potable water samples were collected using U.S. sampling hardware during Expeditions 16 through 20 and returned on both Shuttle and Soyuz vehicles. The results of JSC chemical analyses of these ISS potable water samples are presented in this paper. Eight potable water samples collected in flight with Russian hardware were also received for analysis, as well as 5 preflight samples of Rodnik potable water delivered to ISS on Russian Progress vehicles 28 to 34. Analytical results for these additional potable water samples are also reported and discussed.

  14. Bonding effectiveness to different chemically pre-treated dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  15. Nest marking behavior and chemical composition of olfactory cues involved in nest recognition in Megachile rotundata.

    Science.gov (United States)

    Guédot, Christelle; Buckner, James S; Hagen, Marcia M; Bosch, Jordi; Kemp, William P; Pitts-Singer, Theresa L

    2013-08-01

    In-nest observations of the solitary bee, Megachile rotundata (F.), revealed that nesting females apply olfactory cues to nests for nest recognition. On their way in and out of the nest, females drag the abdomen along the entire length of the nest, and sometimes deposit fluid droplets from the tip of the abdomen. The removal of bee-marked sections of the nest resulted in hesitation and searching behavior by females, indicating the loss of olfactory cues used for nest recognition. Chemical analysis of female cuticles and the deposits inside marked nesting tubes revealed the presence of hydrocarbons, wax esters, fatty aldehydes, and fatty alcohol acetate esters. Chemical compositions were similar across tube samples, but proportionally different from cuticular extracts. These findings reveal the importance of lipids as chemical signals for nest recognition and suggest that the nest-marking cues are derived from a source in addition to, or other than, the female cuticle.

  16. Physico-chemical and organoleptic comparison of buffalo, cow and goat milk and their yogurt samples

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, N.; Elahi, S. [Kinnaird College for Women, Lahore (Pakistan). Dept. of Biotechnology

    2014-09-15

    The physico-chemical and organoleptic properties of buffalo, cow and goat milk and their respective yogurt samples were analyzed. Milk samples, 200ml each, were inoculated with sucrose, skimmed milk powder, carboxymethyl cellulose (CMC) along with varying concentrations of starter culture and incubated at 45 degree C for 5 hours for yogurt preparation. The physico-chemical parameters studied were pH, tritable acidity, ash, moisture, fat, solid-non fat, total solids, crude protein, specific gravity and total energy, whereas the organoleptic analysis included texture, taste, colour and odor. Results revealed that commercial starter culture, sucrose, CMC and skimmed milk powder, in the concentrations of 0.05%, 0.5%, 0.075% and 0.5% respectively, was the best composition for fermentation. The milk and yogurt of buffalo was found to be physico-chemically and organoleptically superior. However, results showed that goat milk and yogurt could be a valuable substitute, especially in comparison to cow milk and yogurt. goat, milk, yogurt, physico-chemical analysis, organoleptic analysis, carboxymethyl cellulose. (author)

  17. Physico-chemical and organoleptic comparison of buffalo, cow and goat milk and their yogurt samples

    International Nuclear Information System (INIS)

    Ahmed, N.; Elahi, S.

    2014-01-01

    The physico-chemical and organoleptic properties of buffalo, cow and goat milk and their respective yogurt samples were analyzed. Milk samples, 200ml each, were inoculated with sucrose, skimmed milk powder, carboxymethyl cellulose (CMC) along with varying concentrations of starter culture and incubated at 45 degree C for 5 hours for yogurt preparation. The physico-chemical parameters studied were pH, tritable acidity, ash, moisture, fat, solid-non fat, total solids, crude protein, specific gravity and total energy, whereas the organoleptic analysis included texture, taste, colour and odor. Results revealed that commercial starter culture, sucrose, CMC and skimmed milk powder, in the concentrations of 0.05%, 0.5%, 0.075% and 0.5% respectively, was the best composition for fermentation. The milk and yogurt of buffalo was found to be physico-chemically and organoleptically superior. However, results showed that goat milk and yogurt could be a valuable substitute, especially in comparison to cow milk and yogurt. goat, milk, yogurt, physico-chemical analysis, organoleptic analysis, carboxymethyl cellulose. (author)

  18. Effect of Chemical Treatment on Physical, Mechanical and Thermal Properties of Ladies Finger Natural Fiber

    Directory of Open Access Journals (Sweden)

    S. I. Hossain

    2013-01-01

    Full Text Available In present research, natural fiber obtained from ladies finger plant was chemically treated separately using alkali (2% NaOH, chromium sulfate (4% , and chromium sulfate and sodium bicarbonate (4% . Both raw and chemically treated fibers were subsequently characterized using mechanical (tensile, structural (Fourier transform infrared spectroscopy and scanning electron microscopy, and thermal (thermogravimetric analysis. Fourier analysis showed the presence of (−OH group in the ladies plant fiber. Scanning electron micrographs revealed rougher surface in case of alkali treated fiber, while thin coating layer was formed on the fiber surface during other two treatments. Tensile test on ladies finger single fiber was carried out by varying span length. The tensile strength and Young's modulus values were found to be increased after chemical treatment. For both raw and chemically treated fibers, Young's modulus increased and tensile strength decreased with increase in span length. Thermogravimetric analysis indicated the same level of thermal stability for both raw and treated ladies finger fibers.

  19. Chemical and Biological Evaluation of Whey

    International Nuclear Information System (INIS)

    Mohamed, N.E.; Anwar, M.M.

    2013-01-01

    This Study has been carried out to extract whey protein concentrate (WPC) from sweet whey and to study the chemical composition, amino acids composition, amino acid scores and to investigate the possible role of WPC in ameliorating some biochemical disorders induced in γ-irradiated rats. Animals were divided into 4 groups. Group 1, fed on normal diet during experimental period. Group 2, fed on diet containing 15% WPC instead of soybean protein. Group 3, rats exposed to whole body γ-radiation with single dose of 5 Gy and fed on the normal diet. Group 4, rats exposed to 5 Gy then fed on diet containing 15% WPC. The rats were decapitated 14 and 28 days post irradiation. Chemical analysis of WPC revealed that it contains high amounts of protein (44%), total amino acids (71%) and all essential amino acids (EAA), phenylalanine (37%), isoleucine cystine and threonine were the major EAA and high amounts of sulphur amino acids. Methionine gave rich chemical score (102.67%) also, isoleucine (119.95%) and phenylalanine+ tyrosine gave maximum chemical score (198.8%), respectively. Exposure to γ-irradiation caused significant elevation of serum cholesterol, triglycerides, low density lipoprotein (LDL), lipid per oxidation end product (TBARS) and iron (Fe) with significant decrease in high density lipoprotein (HDL), glutathione (GSH) and catalase (CAT) in serum. Also, irradiated rats had significant decrease in copper (Cu), magnesium (Mg) and zinc (Zn) in serum. The histological examination of cardiac tissue showed severe structural damage. Irradiated rats fed on WPC revealed significant improvement of some biochemical parameters. It could be concluded that WPC must be added to diet for reducing radiation injury via metabolic pathway

  20. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  1. Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Laner, David; Astrup, Thomas Fruergaard

    2016-01-01

    material source-segregation and collection was the least effective strategy for reducing chemical contamination, if the overall recycling rates should be maintained at the current level (approximately 70% for Europe). The study provides a consistent approach for evaluating contaminant levels in material......This study provides a systematic approach for assessment of contaminants in materials for recycling. Paper recycling is used as an illustrative example. Three selected chemicals, bisphenol A (BPA), diethylhexyl phthalate (DEHP) and mineral oil hydrocarbons (MOHs), are evaluated within the paper...... cycle. The approach combines static material flow analysis (MFA) with dynamic material and substance flow modeling. The results indicate that phasing out of chemicals is the most effective measure for reducing chemical contamination. However, this scenario was also associated with a considerable lag...

  2. Sequence analysis of serum albumins reveals the molecular evolution of ligand recognition properties.

    Science.gov (United States)

    Fanali, Gabriella; Ascenzi, Paolo; Bernardi, Giorgio; Fasano, Mauro

    2012-01-01

    Serum albumin (SA) is a circulating protein providing a depot and carrier for many endogenous and exogenous compounds. At least seven major binding sites have been identified by structural and functional investigations mainly in human SA. SA is conserved in vertebrates, with at least 49 entries in protein sequence databases. The multiple sequence analysis of this set of entries leads to the definition of a cladistic tree for the molecular evolution of SA orthologs in vertebrates, thus showing the clustering of the considered species, with lamprey SAs (Lethenteron japonicum and Petromyzon marinus) in a separate outgroup. Sequence analysis aimed at searching conserved domains revealed that most SA sequences are made up by three repeated domains (about 600 residues), as extensively characterized for human SA. On the contrary, lamprey SAs are giant proteins (about 1400 residues) comprising seven repeated domains. The phylogenetic analysis of the SA family reveals a stringent correlation with the taxonomic classification of the species available in sequence databases. A focused inspection of the sequences of ligand binding sites in SA revealed that in all sites most residues involved in ligand binding are conserved, although the versatility towards different ligands could be peculiar of higher organisms. Moreover, the analysis of molecular links between the different sites suggests that allosteric modulation mechanisms could be restricted to higher vertebrates.

  3. Development of a robotics system for automated chemical analysis of sediments, sludges, and soils

    International Nuclear Information System (INIS)

    McGrail, B.P.; Dodson, M.G.; Skorpik, J.R.; Strachan, D.M.; Barich, J.J.

    1989-01-01

    Adaptation and use of a high-reliability robot to conduct a standard laboratory procedure for soil chemical analysis are reported. Results from a blind comparative test were used to obtain a quantitative measure of the improvement in precision possible with the automated test method. Results from the automated chemical analysis procedure were compared with values obtained from an EPA-certified lab and with results from a more extensive interlaboratory round robin conducted by the EPA. For several elements, up to fivefold improvement in precision was obtained with the automated test method

  4. Chemical analysis of plants that poison livestock: Successes, challenges, and opportunities

    Science.gov (United States)

    Poisonous plants have a devastating impact on the livestock industry, as well as human health. In order to fully understand the effects of poisonous plants, multiple scientific disciplines are required. Chemical analysis of plant secondary compounds is key to identifying the responsible toxins, char...

  5. The dilemma in prioritizing chemicals for environmental analysis: known versus unknown hazards.

    Science.gov (United States)

    Anna, Sobek; Sofia, Bejgarn; Christina, Rudén; Magnus, Breitholtz

    2016-08-10

    A major challenge for society is to manage the risks posed by the many chemicals continuously emitted to the environment. All chemicals in production and use cannot be monitored and science-based strategies for prioritization are essential. In this study we review available data to investigate which substances are included in environmental monitoring programs and published research studies reporting analyses of chemicals in Baltic Sea fish between 2000 and 2012. Our aim is to contribute to the discussion of priority settings in environmental chemical monitoring and research, which is closely linked to chemical management. In total, 105 different substances or substance groups were analyzed in Baltic Sea fish. Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) were the most studied substances or substance groups. The majority, 87%, of all analyses comprised 20% of the substances or substance groups, whereas 46 substance groups (44%) were analyzed only once. Almost three quarters of all analyses regarded a POP-substance (persistent organic pollutant). These results demonstrate that the majority of analyses on environmental contaminants in Baltic Sea fish concern a small number of already regulated chemicals. Legacy pollutants such as POPs pose a high risk to the Baltic Sea due to their hazardous properties. Yet, there may be a risk that prioritizations for chemical analyses are biased based on the knowns of the past. Such biases may lead to society failing in identifying risks posed by yet unknown hazardous chemicals. Alternative and complementary ways to identify priority chemicals are needed. More transparent communication between risk assessments performed as part of the risk assessment process within REACH and monitoring programs, and information on chemicals contained in consumer articles, would offer ways to identify chemicals for environmental analysis.

  6. Gas analysis during the chemical vapor deposition of carbon

    International Nuclear Information System (INIS)

    Lieberman, M.L.; Noles, G.T.

    1973-01-01

    Gas chromatographic analyses were performed during the chemical vapor deposition of carbon in both isothermal and thermal gradient systems. Such data offer insight into the gas phase processes which occur during deposition and the interrelations which exist between gas composition, deposition rate, and resultant structure of the deposit. The results support a carbon CVD model presented previously. The application of chromatographic analysis to research, development, and full-scale facilities is shown. (U.S.)

  7. Existence of Inverted Profile in Chemically Responsive Molecular Pathways in the Zebrafish Liver

    Science.gov (United States)

    Zhang, Xun; Li, Hu; Ma, Jing; Zhang, Louxin; Li, Baowen; Gong, Zhiyuan

    2011-01-01

    How a living organism maintains its healthy equilibrium in response to endless exposure of potentially harmful chemicals is an important question in current biology. By transcriptomic analysis of zebrafish livers treated by various chemicals, we defined hubs as molecular pathways that are frequently perturbed by chemicals and have high degree of functional connectivity to other pathways. Our network analysis revealed that these hubs were organized into two groups showing inverted functionality with each other. Intriguingly, the inverted activity profiles in these two groups of hubs were observed to associate only with toxicopathological states but not with physiological changes. Furthermore, these inverted profiles were also present in rat, mouse, and human under certain toxicopathological conditions. Thus, toxicopathological-associated anti-correlated profiles in hubs not only indicate their potential use in diagnosis but also development of systems-based therapeutics to modulate gene expression by chemical approach in order to rewire the deregulated activities of hubs back to normal physiology. PMID:22140468

  8. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  9. EXPLORATORY DATA ANALYSIS AND MULTIVARIATE STRATEGIES FOR REVEALING MULTIVARIATE STRUCTURES IN CLIMATE DATA

    Directory of Open Access Journals (Sweden)

    2016-12-01

    Full Text Available This paper is on data analysis strategy in a complex, multidimensional, and dynamic domain. The focus is on the use of data mining techniques to explore the importance of multivariate structures; using climate variables which influences climate change. Techniques involved in data mining exercise vary according to the data structures. The multivariate analysis strategy considered here involved choosing an appropriate tool to analyze a process. Factor analysis is introduced into data mining technique in order to reveal the influencing impacts of factors involved as well as solving for multicolinearity effect among the variables. The temporal nature and multidimensionality of the target variables is revealed in the model using multidimensional regression estimates. The strategy of integrating the method of several statistical techniques, using climate variables in Nigeria was employed. R2 of 0.518 was obtained from the ordinary least square regression analysis carried out and the test was not significant at 5% level of significance. However, factor analysis regression strategy gave a good fit with R2 of 0.811 and the test was significant at 5% level of significance. Based on this study, model building should go beyond the usual confirmatory data analysis (CDA, rather it should be complemented with exploratory data analysis (EDA in order to achieve a desired result.

  10. Fast analysis of narcotic drugs by optical chemical imaging

    International Nuclear Information System (INIS)

    Fisher, Michal; Bulatov, Vallery; Schechter, Israel

    2003-01-01

    A new technique is proposed for fast detection, identification and imaging of narcotic drugs in their solid phase. This technique, which requires only a tiny sample of a few microns, is based on microscopic chemical imaging. Minor sample preparation is required, and results are obtained within seconds. As far as we know, this is the most sensitive detection system available today for solid drugs. The technique can be applied for fast analysis of minute drug residues, and therefore is of considerable importance for forensic applications. It is shown that identification of drug traces in realistic matrixes is possible. Two main methods were applied in this study for detection of drugs and drug derivatives. The first method was based on direct detection and chemical imaging of the auto-fluorescence of the analyzed drugs. This method is applicable when the analyzed drug emits fluorescence under the experiment conditions, such as lysergic acid diethylamide (known as LSD). The second method was used for obtaining chemical imaging of drugs that do not fluoresce under the experiment conditions. In these cases fluorescent labeling dyes were applied to the examined samples (including the drug and the matrix). Both methods are simple and rapid, and require minor or no sample preparation at all. Detection limits are very low in the picogram range

  11. Rich RNA Structure Landscapes Revealed by Mutate-and-Map Analysis.

    Directory of Open Access Journals (Sweden)

    Pablo Cordero

    2015-11-01

    Full Text Available Landscapes exhibiting multiple secondary structures arise in natural RNA molecules that modulate gene expression, protein synthesis, and viral infection [corrected]. We report herein that high-throughput chemical experiments can isolate an RNA's multiple alternative secondary structures as they are stabilized by systematic mutagenesis (mutate-and-map, M2 and that a computational algorithm, REEFFIT, enables unbiased reconstruction of these states' structures and populations. In an in silico benchmark on non-coding RNAs with complex landscapes, M2-REEFFIT recovers 95% of RNA helices present with at least 25% population while maintaining a low false discovery rate (10% and conservative error estimates. In experimental benchmarks, M2-REEFFIT recovers the structure landscapes of a 35-nt MedLoop hairpin, a 110-nt 16S rRNA four-way junction with an excited state, a 25-nt bistable hairpin, and a 112-nt three-state adenine riboswitch with its expression platform, molecules whose characterization previously required expert mutational analysis and specialized NMR or chemical mapping experiments. With this validation, M2-REEFFIT enabled tests of whether artificial RNA sequences might exhibit complex landscapes in the absence of explicit design. An artificial flavin mononucleotide riboswitch and a randomly generated RNA sequence are found to interconvert between three or more states, including structures for which there was no design, but that could be stabilized through mutations. These results highlight the likely pervasiveness of rich landscapes with multiple secondary structures in both natural and artificial RNAs and demonstrate an automated chemical/computational route for their empirical characterization.

  12. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    Directory of Open Access Journals (Sweden)

    Henry D Priest

    Full Text Available Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  13. Chemical state analysis of conversion coatings by SR-XPS and TEY-XANES

    CERN Document Server

    Noro, H; Nagoshi, M

    2002-01-01

    Chromate coatings on galvanized steel have been studied by Synchrotron Radiation (SR) based techniques that include X-ray Photoelectron Spectroscopy (XPS) and Total-Electron-Yield X-ray Absorption Near Edge Structure (TEY-XANES). Non-destructive depth profiling of the coatings by SR-XPS reveals the enhancement of Cr sup 6 sup + in the outer surface. TEY-XANES spectroscopy based on simple specimen current measurement is demonstrated as an effective technique for analyzing chemical states of conversion coatings on general bulk substrates. The sampling depth of this technique, which exceeds several tens of nanometer, is determined by the penetration length of Auger electrons excited by X-ray and the inelastic mean free path of secondary electrons excited by inelastically scattered Auger electrons. The chemical states of phosphoric acid added chromate coatings are studied using this technique. The phosphoric acid is taken into the chromate coatings as partially changed into zinc and chromium phosphates, and the r...

  14. Design and analysis of questionnaires for survey skills in chemical engineering

    Directory of Open Access Journals (Sweden)

    Susana Lucas

    2011-09-01

    Full Text Available 800x600 Normal 0 21 false false false CA X-NONE X-NONE The new reorganization of university education has involved relevant changes in teaching and learning methodologies in order to help students to learn more effectively and to develop important skills and competences demanded by the professional world. In this sense the new configuration of the degree in Chemical Engineering required the identification of the main general and transferable skills, the implementation of the new teaching and learning strategies necessary to achieve them and, in addition, an evaluation procedure for determining the importance and the degree of development of a student´s skills and competences. In this exercise, two obligatory chemical reactor engineering subjects of the still in effect Chemical Engineering degree were chosen as examples of competence-based learning disciplines. For each one, a significant group of transferable and specific skills were selected to be developed. The identification and selection of skills was made according to the recommendations of the European Federation of Chemical Engineering (EFCE together with the established requirements in the ministerial order for the new Chemical Engineering Degree (Ministerial order CIN/351/2009. In order to check the effectiveness of teaching strategies in helping students to acquire these abilities, specific questionnaires were designed. These tests allowed for the utility of the competences in question to be evaluated in terms of the students´ professional work as future chemical engineering graduates and also facilitated the perception of skill development acquired through the methodology implemented in these subjects. The results of the skill evaluation questionnaires revealed the importance that both university collectives (students and professors give to the development of transferable skills. These skills included the ability to communicate effectively (including in English, to work in

  15. Chemical profiling and biological activity analysis of cone, bark and needle of Pinus roxburghii collected from Nepal

    Directory of Open Access Journals (Sweden)

    Rupak Thapa

    2018-03-01

    Conclusions: This study showed that among that needle, cone and bark of Pinus roxburghii as a huge source of biological active metabolites. Furthermore, bark extract revealed the presence of diverse chemical constituent. [J Complement Med Res 2018; 7(1.000: 66-75

  16. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice: Investigation of nicotinic acid receptor agonists

    International Nuclear Information System (INIS)

    Zgoda-Pols, Joanna R.; Chowdhury, Swapan; Wirth, Mark; Milburn, Michael V.; Alexander, Danny C.; Alton, Kevin B.

    2011-01-01

    An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increased in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research highlights: → Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. → MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. → 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than

  17. Re-Analysis of Metagenomic Sequences from Acute Flaccidmyelitis Patients Reveals Alternatives to Enterovirus D68 Infection

    Science.gov (United States)

    2015-07-13

    caused in some cases by infection with enterovirus D68. We found that among the patients whose symptoms were previously attributed to enterovirus D68...distribution is unlimited. Re-analysis of metagenomic sequences from acute flaccidmyelitis patients reveals alternatives to enterovirus D68...Street Baltimore, MD 21218 -2685 ABSTRACT Re-analysis of metagenomic sequences from acute flaccidmyelitis patients reveals alternatives to enterovirus

  18. Letters from China: A History of the Origins of the Chemical Analysis of Ceramics.

    Science.gov (United States)

    Pollard, A M

    2015-02-01

    This paper is an attempt to document the early history of the quantitative chemical analysis of ceramic materials in Europe, with a specific interest in the analysis of archaeological ceramics. This inevitably leads to a study of the attempts made in Europe to imitate the miraculous material--porcelain--imported from China from the fourteenth century onwards. It is clear that before the end of the eighteenth century progress was made in this endeavor by systematic but essentially trial-and-error firing of various raw materials, culminating in the successful production of European porcelain by Böttger and von Tschirnhaus in 1709. Shortly after this, letters describing the Chinese manufacture of porcelain, and, more importantly, samples of raw and fired material, began to arrive in Europe from French Jesuit missionaries, which were subjected to intense study. Following the perfection of gravimetric methods of chemical analysis in the late eighteenth century, these Chinese samples, and samples of porcelain from various European factories, were regularly analysed, particularly by Brongniart at Sèvres. Similar work was carried out on English porcelain by Simeon Shaw and Sir Arthur Church. The origins of the chemical analysis of archaeological ceramics are still somewhat obscure, but must date to the late eighteenth or early nineteenth centuries, by the likes of Vauquelin and Chaptal.

  19. Chemical analysis of minerals in granitic rocks by electron probe micro analyser

    International Nuclear Information System (INIS)

    Hiraoka, Yoshihiro

    1994-01-01

    The chemical compositions of minerals in a few granitic rocks were determined by electron probe micro analyser (EPMA). The accurate analytical data for standard feldspar groups were obtained by correcting the low analytical values of sodium and potassium that were arised from the damage in EPMA analysis. Using this method, feldspar groups and biotites in three granitic rocks gathered from Hiei, Hira and Kurama areas respectively, were analyzed. As the results, the local characteristics were observed in the kinds of feldspar groups and the chemical compositions of biotites that were contained in granitic rocks. (author)

  20. Computational Chemical Synthesis Analysis and Pathway Design

    Directory of Open Access Journals (Sweden)

    Fan Feng

    2018-06-01

    Full Text Available With the idea of retrosynthetic analysis, which was raised in the 1960s, chemical synthesis analysis and pathway design have been transformed from a complex problem to a regular process of structural simplification. This review aims to summarize the developments of computer-assisted synthetic analysis and design in recent years, and how machine-learning algorithms contributed to them. LHASA system started the pioneering work of designing semi-empirical reaction modes in computers, with its following rule-based and network-searching work not only expanding the databases, but also building new approaches to indicating reaction rules. Programs like ARChem Route Designer replaced hand-coded reaction modes with automatically-extracted rules, and programs like Chematica changed traditional designing into network searching. Afterward, with the help of machine learning, two-step models which combine reaction rules and statistical methods became the main stream. Recently, fully data-driven learning methods using deep neural networks which even do not require any prior knowledge, were applied into this field. Up to now, however, these methods still cannot replace experienced human organic chemists due to their relatively low accuracies. Future new algorithms with the aid of powerful computational hardware will make this topic promising and with good prospects.

  1. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler

    Directory of Open Access Journals (Sweden)

    Jun-Xia Zhang

    2016-03-01

    Full Text Available Because the air-staged combustion technology is one of the key technologies with low investment running costs and high emission reduction efficiency for the pulverized boiler, it is important to reveal the chemical reaction kinetics mechanism for developing various technologies of nitrogen oxide reduction emissions. At the present work, a three-dimensional mesh model of the large-scale four corner tangentially fired boiler furnace is established with the GAMBIT pre-processing of the FLUENT software. The partial turbulent premixed and diffusion flame was simulated for the air-staged combustion processing. Parameters distributions for the air-staged and no the air-staged were obtained, including in-furnace flow field, temperature field and nitrogen oxide concentration field. The results show that the air-staged has more regular velocity field, higher velocity of flue gas, higher turbulence intensity and more uniform temperature of flue gas. In addition, a lower negative pressure zone and lower O2 concentration zone is formed in the main combustion zone, which is conducive to the NO of fuel type reduced to N2, enhanced the effect of NOx reduction. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 14th January 2016; Accepted: 16th January 2016  How to Cite: Zhang, J.X., Zhang, J.F. (2016. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 100-108. (doi:10.9767/bcrec.11.1.431.100-108 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.431.100-108

  2. Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS).

    Science.gov (United States)

    Román, Jessica K; Walsh, Callee M; Oh, Junho; Dana, Catherine E; Hong, Sungmin; Jo, Kyoo D; Alleyne, Marianne; Miljkovic, Nenad; Cropek, Donald M

    2018-03-01

    Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.

  3. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation

    Directory of Open Access Journals (Sweden)

    Treuner-Lange Anke

    2010-04-01

    Full Text Available Abstract Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate

  4. Metal-assisted chemical etching of CIGS thin films for grain size analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Chaowei [Research and Development Centre, Hanergy Thin Film Power Group Limited, Chengdu (China); Loi, Huu-Ha; Duong, Anh; Parker, Magdalena [Failure Analysis Department, MiaSole Hi-Tech Corp., Santa Clara, CA (United States)

    2016-09-15

    Grain size of the CIGS absorber is an important monitoring factor in the CIGS solar cell manufacturing. Electron backscatter diffraction (EBSD) analysis is commonly used to perform CIGS grain size analysis in the scanning electron microscope (SEM). Although direct quantification on SEM image using the average grain intercept (AGI) method is faster and simpler than EBSD, it is hardly applicable on CIGS thin films. The challenge is that, not like polycrystalline silicon, to define grain boundaries by selective chemical etching is not easily realizable for the multi-component CIGS alloy. In this Letter, we present direct quantification of CIGS thin film grain size using the AGI method by developing metal-assisted wet chemical etching process to define CIGS grain boundaries. The calculated value is similar to EBSD result. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Final report on the sampling and analysis of sediment cores from the L-Area oil and chemical basin

    Energy Technology Data Exchange (ETDEWEB)

    1985-08-01

    Nine vibracores were collected in the L-Area oil and chemical basin (904-83G) during late March and early April 1985. These cores were collected for analysis of the sludge on the basin floor and the underlying sediment. Several different field and laboratory analyses were performed on each three inch segment of all the cores. These included: (1) Sediment characterization; (2) Percent moisture; (3) Dry weight; (4) Spectral gamma analysis; (5) Gross alpha and beta analysis. Detailed chemical analysis were measured on selected intervals of 2 cores (LBC-5 and 6) for complete chemical characterization of the sediments. This sampling program was conducted to provide information so that a closure plan for the basin could be developed. This report describes the methods employed during the project and provide a hard copy of the analytical results from the sample analyses. Included in the appendices are copies of all field and laboratory notes taken during the project and copies of the gas chromatograms for the petroleum hydrocarbon analysis. All chemical results were also submitted on a 5-inch floppy disk.

  6. Chemical analysis of dairy cattle feed from Brazil

    International Nuclear Information System (INIS)

    Luis Gustavo Cofani dos Santos; De Nadai Fernandes, E.A.; Marcio Arruda Bacchi; Lucimara Blumer; Gabriel Adrian Sarries; Fernando Barbosa Junior

    2009-01-01

    The bovine dairy cattle demand diets of high nutritional value being essential to know chemical composition of feed supplied to cows to achieve high levels of quality, safety and productivity of milk. Different roughages and concentrates from Minas Gerais and Rio Grande do Sul states, Brazil, were analyzed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). Concentrate and roughage samples were differentiated by mass fractions of As, Ba, Mg, P, Rb and Sr. Samples of concentrate from both origins were differentiated by mass fractions of As, Cd, Co, Cr, Cs, Ni and Rb. (author)

  7. Determination of air pollutants by nuclear chemical analysis

    International Nuclear Information System (INIS)

    Lesny, J.; Toelgyessy, J.

    1975-01-01

    Nuclear analytical methods are discussed with a view to their applicability in the determination of air pollutants. It is shown that some methods (use of radioactive kryptonates in automatic analyzers, application of activation analysis, X-ray fluorescence methods) are developed in theory and proven in practice in such an extent to be widely used in the near future in the control of the environment. Many other methods are becoming increasingly important for the solution of specific problems of environmental protection (such as the control of sudden environmental contamination in the proximity of chemical plants and industrial centers). (author)

  8. Analysis of hybrid membrane and chemical absorption systems for CO2 capture

    International Nuclear Information System (INIS)

    Binns, Michael; Oh, Se-Young; Kwak, Dong-Hun; Kim, Jin-Kuk

    2015-01-01

    Amine-based absorption of CO 2 is currently the industry standard technology for capturing CO 2 emitted from power plants, refineries and other large chemical plants. However, more recently there have been a number of competing technologies under consideration, including the use of membranes for CO 2 separation and purification. We constructed and analyzed two different hybrid configurations combining and connecting chemical absorption with membrane separation. For a particular flue gas which is currently treated with amine-based chemical absorption at a pilot plant we considered and tested how membranes could be integrated to improve the performance of the CO 2 capture. In particular we looked at the CO 2 removal efficiency and the energy requirements. Sensitivity analysis was performed varying the size of the membranes and the solvent flow rate

  9. Synthesis, Crystal Structure, and Chemical-Bonding Analysis of BaZn(NCN2

    Directory of Open Access Journals (Sweden)

    Alex J. Corkett

    2017-12-01

    Full Text Available The ternary carbodiimide BaZn(NCN2 was prepared by a solid-state metathesis reaction between BaF2, ZnF2, and Li2NCN in a 1:1:2 molar ratio, and its crystal structure was determined from Rietveld refinement of X-ray data. BaZn(NCN2 represents the aristotype of the LiBa2Al(NCN4 structure which is unique to carbodiimide/cyanamide chemistry and is well regarded as being constructed from ZnN4 tetrahedra, sharing edges and vertices through NCN2− units to form corrugated layers with Ba2+ in the interlayer voids. Structural anomalies in the shape of the cyanamide units are addressed via IR spectrometry and DFT calculations, which suggest the presence of slightly bent N=C=N2− carbodiimide units with C2v symmetry. Moreover, chemical-bonding analysis within the framework of crystal orbital Hamilton population (COHP reveals striking similarities between the bonding interactions in BaZn(NCN2 and SrZn(NCN2 despite their contrasting crystal structures. BaZn(NCN2 is only the second example of a ternary post-transition metal carbodiimide, and its realization paves the way for the preparation of analogues featuring divalent transition metals at the tetrahedral Zn2+ site.

  10. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal, E-mail: ana_allves2008@hotmail.co [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10{sup 11}ncm{sup -2}s{sup -1}. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000mug.g{sup -1}. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  11. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal

    2009-01-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10 11 ncm -2 s -1 . The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000μg.g -1 . Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  12. QSAR modeling and chemical space analysis of antimalarial compounds

    Science.gov (United States)

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including 3000 molecules tested in one or several of 17 anti- Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  13. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  14. Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina

    DEFF Research Database (Denmark)

    Gallo, G.; Renzone, G.; Alduina, R.

    2010-01-01

    A differential proteomic analysis, based on 2-DE and MS procedures, was performed on Amycolatopsis balhimycina DSM5908, the actinomycete producing the vancomycin-like antibiotic balhimycin. A comparison of proteomic profiles before and during balhimycin production characterized differentially...... available over the World Wide Web as interactive web pages (http://www.unipa.it/ampuglia/Abal-proteome-maps). Functional clustering analysis revealed that differentially expressed proteins belong to functional groups involved in central carbon metabolism, amino acid metabolism and protein biosynthesis...... intermediates, were upregulated during antibiotic production. qRT-PCR analysis revealed that 8 out of 14 upregulated genes showed a positive correlation between changes at translational and transcriptional expression level. Furthermore, proteomic analysis of two nonproducing mutants, restricted to a sub...

  15. Chemical composition dispersion in bi-metallic nanoparticles: semi-automated analysis using HAADF-STEM

    International Nuclear Information System (INIS)

    Epicier, T.; Sato, K.; Tournus, F.; Konno, T.

    2012-01-01

    We present a method using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to determine the chemical composition of bi-metallic nanoparticles. This method, which can be applied in a semi-automated way, allows large scale analysis with a statistical number of particles (several hundreds) in a short time. Once a calibration curve has been obtained, e.g., using energy-dispersive X-ray spectroscopy (EDX) measurements on a few particles, the HAADF integrated intensity of each particle can indeed be directly related to its chemical composition. After a theoretical description, this approach is applied to the case of iron–palladium nanoparticles (expected to be nearly stoichiometric) with a mean size of 8.3 nm. It will be shown that an accurate chemical composition histogram is obtained, i.e., the Fe content has been determined to be 49.0 at.% with a dispersion of 10.4 %. HAADF-STEM analysis represents a powerful alternative to fastidious single particle EDX measurements, for the compositional dispersion in alloy nanoparticles.

  16. Meta-Analysis of the Chemical and Non-Chemical Stressors Affecting Childhood Obesity

    Science.gov (United States)

    Worldwide, approximately 42 million children under the age of 5 years are considered overweight or obese. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous chemical and non-chemical stres...

  17. Controlling organic chemical hazards in food manufacturing: a hazard analysis critical control points (HACCP) approach.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-08-01

    Hazard analysis by critical control points (HACCP) is a systematic approach to the identification, assessment and control of hazards. Effective HACCP requires the consideration of all hazards, i.e., chemical, microbiological and physical. However, to-date most 'in-place' HACCP procedures have tended to focus on the control of microbiological and physical food hazards. In general, the chemical component of HACCP procedures is either ignored or limited to applied chemicals, e.g., food additives and pesticides. In this paper we discuss the application of HACCP to a broader range of chemical hazards, using organic chemical contaminants as examples, and the problems that are likely to arise in the food manufacturing sector. Chemical HACCP procedures are likely to result in many of the advantages previously identified for microbiological HACCP procedures: more effective, efficient and economical than conventional end-point-testing methods. However, the high costs of analytical monitoring of chemical contaminants and a limited understanding of formulation and process optimisation as means of controlling chemical contamination of foods are likely to prevent chemical HACCP becoming as effective as microbiological HACCP.

  18. Isotopic Abundance and Chemical Purity Analysis of Stable Isotope Deuterium Labeled Sudan I

    Directory of Open Access Journals (Sweden)

    CAI Yin-ping;LEI Wen;ZHENG Bo;DU Xiao-ning

    2014-02-01

    Full Text Available It is important that to analysis of the isotopic abundance and chemical purity of Sudan I-D5, which is the internal standard of isotope dilution mass spectrometry. The isotopic abundance of Sudan I-D5 is detected by “mass cluster” classification method and LC-MS. The repeatability and reproducibility experiments were carried out by using different mass spectrometers and different operators. The RSD was less than 0.1%, so the repeatability and reproducibility were satisfactory. The accuracy and precision of the isotopic abundance analysis method was good with the results of F test and t test. The high performance liquid chromatography (HPLC had been used for detecting the chemical purity of Sudan I-D5 as external standard method.

  19. A chemical profiling strategy for semi-quantitative analysis of flavonoids in Ginkgo extracts.

    Science.gov (United States)

    Yang, Jing; Wang, An-Qi; Li, Xue-Jing; Fan, Xue; Yin, Shan-Shan; Lan, Ke

    2016-05-10

    Flavonoids analysis in herbal products is challenged by their vast chemical diversity. This work aimed to develop a chemical profiling strategy for the semi-quantification of flavonoids using extracts of Ginkgo biloba L. (EGB) as an example. The strategy was based on the principle that flavonoids in EGB have an almost equivalent molecular absorption coefficient at a fixed wavelength. As a result, the molecular-contents of flavonoids were able to be semi-quantitatively determined by the molecular-concentration calibration curves of common standards and recalculated as the mass-contents with the characterized molecular weight (MW). Twenty batches of EGB were subjected to HPLC-UV/DAD/MS fingerprinting analysis to test the feasibility and reliability of this strategy. The flavonoid peaks were distinguished from the other peaks with principle component analysis and Pearson correlation analysis of the normalized UV spectrometric dataset. Each flavonoid peak was subsequently tentatively identified by the MS data to ascertain their MW. It was highlighted that the flavonoids absorption at Band-II (240-280 nm) was more suitable for the semi-quantification purpose because of the less variation compared to that at Band-I (300-380 nm). The semi-quantification was therefore conducted at 254 nm. Beyond the qualitative comparison results acquired by common chemical profiling techniques, the semi-quantitative approach presented the detailed compositional information of flavonoids in EGB and demonstrated how the adulteration of one batch was achieved. The developed strategy was believed to be useful for the advanced analysis of herbal extracts with a high flavonoid content without laborious identification and isolation of individual components. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparative analysis reveals that polyploidy does not decelerate diversification in fish.

    Science.gov (United States)

    Zhan, S H; Glick, L; Tsigenopoulos, C S; Otto, S P; Mayrose, I

    2014-02-01

    While the proliferation of the species-rich teleost fish has been ascribed to an ancient genome duplication event at the base of this group, the broader impact of polyploidy on fish evolution and diversification remains poorly understood. Here, we investigate the association between polyploidy and diversification in several fish lineages: the sturgeons (Acipenseridae: Acipenseriformes), the botiid loaches (Botiidae: Cypriniformes), Cyprininae fishes (Cyprinidae: Cypriniformes) and the salmonids (Salmonidae: Salmoniformes). Using likelihood-based evolutionary methodologies, we co-estimate speciation and extinction rates associated with polyploid vs. diploid fish lineages. Family-level analysis of Acipenseridae and Botiidae revealed no significant difference in diversification rates between polyploid and diploid relatives, while analysis of the subfamily Cyprininae revealed higher polyploid diversification. Additionally, order-level analysis of the polyploid Salmoniformes and its diploid sister clade, the Esociformes, did not support a significantly different net diversification rate between the two groups. Taken together, our results suggest that polyploidy is generally not associated with decreased diversification in fish - a pattern that stands in contrast to that previously observed in plants. While there are notable differences in the time frame examined in the two studies, our results suggest that polyploidy is associated with different diversification patterns in these two major branches of the eukaryote tree of life. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  1. Standardization of Cassia spectabilis with Respect to Authenticity, Assay and Chemical Constituent Analysis

    Directory of Open Access Journals (Sweden)

    Angeline Torey

    2010-05-01

    Full Text Available Quality control standardizations of the various medicinal plants used in traditional medicine is becoming more important today in view of the commercialization of formulations based on these plants. An attempt at standardization of Cassia spectabilis leaf has been carried out with respect to authenticity, assay and chemical constituent analysis. The authentication involved many parameters, including gross morphology, microscopy of the leaves and functional group analysis by Fourier Transform Infrared (FTIR spectroscopy. The assay part of standardization involved determination of the minimum inhibitory concentration (MIC of the extract which could help assess the chemical effects and establish curative values. The MIC of the C. spectabilis leaf extracts was investigated using the Broth Dilution Method. The extracts showed a MIC value of 6.25 mg/mL, independent of the extraction time. The chemical constituent aspect of standardization involves quantification of the main chemical components in C. spectabilis. The GCMS method used for quantification of 2,4-(1H,3H-pyrimidinedione in the extract was rapid, accurate, precise, linear (R2 = 0.8685, rugged and robust. Hence this method was suitable for quantification of this component in C. spectabilis. The standardization of C. spectabilis is needed to facilitate marketing of medicinal plants, with a view to promoting the export of valuable Malaysian Traditional Medicinal plants such as C. spectabilis.

  2. Standardization of Cassia spectabilis with respect to authenticity, assay and chemical constituent analysis.

    Science.gov (United States)

    Torey, Angeline; Sasidharan, Sreenivasan; Yeng, Chen; Latha, Lachimanan Yoga

    2010-05-10

    Quality control standardizations of the various medicinal plants used in traditional medicine is becoming more important today in view of the commercialization of formulations based on these plants. An attempt at standardization of Cassia spectabilis leaf has been carried out with respect to authenticity, assay and chemical constituent analysis. The authentication involved many parameters, including gross morphology, microscopy of the leaves and functional group analysis by Fourier Transform Infrared (FTIR) spectroscopy. The assay part of standardization involved determination of the minimum inhibitory concentration (MIC) of the extract which could help assess the chemical effects and establish curative values. The MIC of the C. spectabilis leaf extracts was investigated using the Broth Dilution Method. The extracts showed a MIC value of 6.25 mg/mL, independent of the extraction time. The chemical constituent aspect of standardization involves quantification of the main chemical components in C. spectabilis. The GCMS method used for quantification of 2,4-(1H,3H)-pyrimidinedione in the extract was rapid, accurate, precise, linear (R(2) = 0.8685), rugged and robust. Hence this method was suitable for quantification of this component in C. spectabilis. The standardization of C. spectabilis is needed to facilitate marketing of medicinal plants, with a view to promoting the export of valuable Malaysian Traditional Medicinal plants such as C. spectabilis.

  3. Chemical analysis report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    This report highlights the results of chemical analyzes of fluorides, bromides, lithium and boron carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 120 samples. The report presents the analytical techniques used (parameters and methods), a legend and the results tables.

  4. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Apra, Edoardo; Govind, Niranjan; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  5. Modern sample preparation techniques for gas chromatography-mass spectrometry analysis of environmental markers of chemical warfare agents use

    NARCIS (Netherlands)

    Terzic, O.; de Voogt, P.; Banoub, J.

    2014-01-01

    The chapter introduces problematics of on-site chemical analysis in the investigations of past chemical warfare agents (CWA) events. An overview of primary environmental degradation pathways of CWA leading to formation of chemical markers of their use is given. Conventional and modern sample

  6. Probing beer aging chemistry by nuclear magnetic resonance and multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.A. [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Barros, A.S. [QOPNA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Carvalho, B.; Brandao, T. [UNICER, Bebidas de Portugal, Leca do Balio, 4466-955, S. Mamede de Infesta (Portugal); Gil, Ana M., E-mail: agil@ua.pt [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2011-09-30

    Graphical abstract: The use of nuclear magnetic resonance (NMR) metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging (at 45 deg. C for up to 18 days) is described. Both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and an aging trend was observed. Inspection of PLS-DA loadings and peak integration revealed the importance of well known markers (e.g. 5-HMF) as well as of other compounds: amino acids, higher alcohols, organic acids, dextrins and some still unassigned spin systems. 2D correlation analysis enabled relevant compound variations to be confirmed and inter-compound correlations to be assessed, thus offering improved insight into the chemical aspects of beer aging. Highlights: {center_dot} Use of NMR metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging. {center_dot} Compositional variations evaluated by principal component analysis and partial least squares-discriminant analysis. {center_dot} Results reveal importance of known markers and other compounds: amino and organic acids, higher alcohols, dextrins. {center_dot} 2D correlation analysis reveals inter-compound relationships, offering insight into beer aging chemistry. - Abstract: This paper describes the use of nuclear magnetic resonance (NMR) spectroscopy, in tandem with multivariate analysis (MVA), for monitoring the chemical changes occurring in a lager beer exposed to forced aging (at 45 deg. C for up to 18 days). To evaluate the resulting compositional variations, both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and a clear aging trend was observed. Inspection of PLS-DA loadings and peak integration enabled the changing compounds to be identified, revealing the importance of well known

  7. Probing beer aging chemistry by nuclear magnetic resonance and multivariate analysis

    International Nuclear Information System (INIS)

    Rodrigues, J.A.; Barros, A.S.; Carvalho, B.; Brandao, T.; Gil, Ana M.

    2011-01-01

    Graphical abstract: The use of nuclear magnetic resonance (NMR) metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging (at 45 deg. C for up to 18 days) is described. Both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and an aging trend was observed. Inspection of PLS-DA loadings and peak integration revealed the importance of well known markers (e.g. 5-HMF) as well as of other compounds: amino acids, higher alcohols, organic acids, dextrins and some still unassigned spin systems. 2D correlation analysis enabled relevant compound variations to be confirmed and inter-compound correlations to be assessed, thus offering improved insight into the chemical aspects of beer aging. Highlights: · Use of NMR metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging. · Compositional variations evaluated by principal component analysis and partial least squares-discriminant analysis. · Results reveal importance of known markers and other compounds: amino and organic acids, higher alcohols, dextrins. · 2D correlation analysis reveals inter-compound relationships, offering insight into beer aging chemistry. - Abstract: This paper describes the use of nuclear magnetic resonance (NMR) spectroscopy, in tandem with multivariate analysis (MVA), for monitoring the chemical changes occurring in a lager beer exposed to forced aging (at 45 deg. C for up to 18 days). To evaluate the resulting compositional variations, both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and a clear aging trend was observed. Inspection of PLS-DA loadings and peak integration enabled the changing compounds to be identified, revealing the importance of well known markers such as 5-hydroxymethylfurfural (5

  8. Laser Applications to Chemical, Security, and Environmental Analysis: introduction to the feature issue

    International Nuclear Information System (INIS)

    Dreizler, Andreas; Fried, Alan; Gord, James R.

    2007-01-01

    This Applied Optics feature issue on Laser Applications to Chemical, Security,and Environmental Analysis (LACSEA) highlights papers presented at theLACSEA 2006 Tenth Topical Meeting sponsored by the Optical Society ofAmerica

  9. Laser applications to chemical, security, and environmental analysis: introduction to the feature issue.

    Science.gov (United States)

    Seeger, Thomas; Dreier, Thomas; Chen, Weidong; Kearny, Sean; Kulatilaka, Waruna

    2017-04-10

    This Applied Optics feature issue on laser applications to chemical, security, and environmental analysis (LACSEA) highlights papers presented at the LACSEA 2016 Fifteenth Topical Meeting sponsored by the Optical Society of America.

  10. Ecological consequences, genetic and chemical variations in fragmented populations of a medicinal plant, justicia adhatoda and implications for its conservation

    International Nuclear Information System (INIS)

    Gilani, S.A.; Watanabe, K.N.; Fujii, Y.; Shinwari, Z.K.

    2011-01-01

    Justicia adhatoda from Kohat Plateau was selected for genetic diversity studies, due to its fragmented habitat, importance in traditional and pharmaceutical medicine and a lack of population structure studies. We had two hypotheses: that habitat loss posed a greater threat to populations than loss of genetic diversity, and that chemical diversity would be higher among different populations than within populations. Genetic diversity within and among populations was evaluated using PBA (P450 based analogue) markers. AMOVA analysis revealed that there was higher genetic diversity within populations (90%) than among populations (10%). No genetic drift was observed, i.e., genetic diversity within populations was maintained despite fewer numbers of individuals in fragmented populations. Surveys of J. adhatoda populations revealed that they were growing in harsh conditions and were imperiled due to extensive harvesting for commercial and domestic purposes. Chemical diversity was evaluated by GC-MS (Gas Chromatograph-Mass Spectrometry) analysis of 90% methanol and 1:2 chloroform:methanol extracts. GC-MS analysis of both the extracts showed nine and 18 chemical compounds, respectively, with higher chemical variations among populations. It is therefore recommended that efforts for the conservation of severely fragmented populations of J. adhatoda must be carried out along with sustainable harvesting. (author)

  11. Chemical analysis of fish bile extracts for monitoring endocrine disrupting chemical exposure in water: Bisphenol A, alkylphenols, and norethindrone.

    Science.gov (United States)

    Wu, Minghong; Pan, Chenyuan; Yang, Ming; Xu, Bentuo; Lei, Xiangjie; Ma, Jing; Cai, Ling; Chen, Jingsi

    2016-01-01

    The present study determined concentrations of estrogenic bisphenol A (BPA), nonylphenol, octylphenol (4-tert-octylphenol), butylphenol (4-tert-butylphenol), and progestogenic norethindrone by liquid chromatography-tandem mass spectrometry in bile extracts from field fish from the Xin'an River and market fish in Shanghai, China. Compared with the field fish, endocrine disrupting chemical (EDC) concentrations in market fish bile were at relatively high levels with high detectable rates. The average concentrations of BPA, nonylphenol, 4-tert-octylphenol, 4-tert-butylphenol, and norethindrone in field fish bile were 30.1 µg/L, 203 µg/L, 4.69 µg/L, 7.84 µg/L, and 0.514 µg/L, respectively; in market fish bile they were 240 µg/L, 528 µg/L, 76.5 µg/L, 12.8 µg/L, and 5.26 µg/L, respectively; and in the surface water of Xin'an River they were 38.8 ng/L, 7.91 ng/L, 1.98 ng/L, 2.66 ng/L, and 0.116 ng/L, respectively. The average of total estrogenic activity of river water was 3.32 ng/L estradiol equivalents. High bioconcentration factors (BCFs) were discovered for all 5 EDCs (≧998-fold) in field fish bile. Furthermore, the authors analyzed the BCF value of BPA in fish bile after 30-d exposure to environmentally relevant concentrations of BPA in the laboratory, and the analysis revealed that BCF in fish bile (BCF(Fish bile)) changed in an inverse concentration-dependent manner based on the log10-transformed BPA concentration in water. Strikingly, the data from the field study were well fitted within this trend. The data together suggested that analysis of fish bile extracts could be an efficient method for assessing waterborne EDCs exposure for aquatic biota. © 2015 SETAC.

  12. Chemical characterization of ancient pottery from the southwest Amazonia using neutron activation analysis

    International Nuclear Information System (INIS)

    Carvalho, Patricia R.; Munita, Casimiro S.; Neves, Eduardo G.; Zimpel, Carlos A.; Universidade de Sao Paulo

    2017-01-01

    The analyzes carried out in this work aims to contribute to the discussion about the ceramic objects founded in Monte Castelo's sambaqui located at Southwest Amazonia. The first study accomplished by Miller in 1980 suggests that this archaeological site is inserted in the old contexts of production of ceramics in the Amazon. Until today, there are not any physical and chemical analysis studies in this ceramics and this kind of studies may help archaeological studies performed at the sambaqui. With this purpose, this work presents a preliminary study of chemical characterization of eighty-seven ceramic samples using the Neutron Activation Analysis (NAA). The analyzed elements were: As, K, La, Lu, Na, Nd, Sm, U, Yb, Ce, Co, Cr, Cs, Eu, Fe, Hf, Rb, Sc, Ta, Tb, Th. With the purpose to study the similarity/dissimilarity between the samples cluster and discriminant analysis were used. The results showed the existence of three different chemical groups that are in agreement with the archaeological studies made by Miller which found a sequence of cultural development, with three main occupational components whose dating ranging from 8.400 to 4.000 b.P. In this way, the results of this work are in agreement with miller's studies and suggest Bacabal's phase as the oldest ceramist culture in the Southwest of the Amazon. (author)

  13. Chemical characterization of ancient pottery from the southwest Amazonia using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Patricia R.; Munita, Casimiro S.; Neves, Eduardo G.; Zimpel, Carlos A., E-mail: camunita@ipen.br, E-mail: edgneves@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de Sao Paulo (MAE/USP), SP (Brazil). Museu de Arqueologia e Etnologia

    2017-11-01

    The analyzes carried out in this work aims to contribute to the discussion about the ceramic objects founded in Monte Castelo's sambaqui located at Southwest Amazonia. The first study accomplished by Miller in 1980 suggests that this archaeological site is inserted in the old contexts of production of ceramics in the Amazon. Until today, there are not any physical and chemical analysis studies in this ceramics and this kind of studies may help archaeological studies performed at the sambaqui. With this purpose, this work presents a preliminary study of chemical characterization of eighty-seven ceramic samples using the Neutron Activation Analysis (NAA). The analyzed elements were: As, K, La, Lu, Na, Nd, Sm, U, Yb, Ce, Co, Cr, Cs, Eu, Fe, Hf, Rb, Sc, Ta, Tb, Th. With the purpose to study the similarity/dissimilarity between the samples cluster and discriminant analysis were used. The results showed the existence of three different chemical groups that are in agreement with the archaeological studies made by Miller which found a sequence of cultural development, with three main occupational components whose dating ranging from 8.400 to 4.000 b.P. In this way, the results of this work are in agreement with miller's studies and suggest Bacabal's phase as the oldest ceramist culture in the Southwest of the Amazon. (author)

  14. Assessing the spatial pattern of a river water quality in southern Brazil by multivariate analysis of biological and chemical indicators

    Directory of Open Access Journals (Sweden)

    M. B. B. Cassanego

    Full Text Available Abstract This study assessed the genotoxicity and chemical quality of the Rio dos Sinos, southern Brazil. During two years, bimonthly, cuttings of Tradescantia pallida var. purpurea with flower buds were exposed to river water samples from Caraá, Santo Antônio da Patrulha, Taquara and Campo Bom, which are municipalities located in the upper, middle and lower stretches of the Rio dos Sinos basin. Simultaneously, chemical parameters were analyzed, rainfall data were surveyed and negative (distilled water and positive (0.1% formaldehyde controls were made. Micronuclei (MCN frequencies were determined in tetrads of pollen grain mother cells. From the upper stretch toward the lower, there was an increase in the frequency of MCN and in concentrations of chemical parameters. Cadmium, lead, copper, total chromium and zinc were present at the four sites and a concentration gradient was not demonstrated along the river. The multivariate analysis revealed that two principal components exist, which accounted for 62.3% of the observed variances. Although genotoxicity was observed in Santo Antônio da Patrulha, the water presented higher mean values for most of the assessed parameters, in the lower stretch, where urbanization and industrialization are greater. The spatial and temporal pattern of water quality observed reinforces the importance of considering the environmental factors and their effects on organisms in an integrated way in watercourse monitoring programs.

  15. Chemical analysis report 2014

    International Nuclear Information System (INIS)

    Elbouzidi, Saliha; Elyahyaoui, Adil; Ghassan, Acil; Marah, Hamid

    2014-01-01

    This report highlights the results of chemical analyzes related to Major elements, traces and heavy metals carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 120 samples. The report presents the analytical techniques used (parameters and methods), a legend and the results tables.

  16. Exploring the Potential for Using Inexpensive Natural Reagents Extracted from Plants to Teach Chemical Analysis

    Science.gov (United States)

    Hartwell, Supaporn Kradtap

    2012-01-01

    A number of scientific articles report on the use of natural extracts from plants as chemical reagents, where the main objective is to present the scientific applications of those natural plant extracts. The author suggests that natural reagents extracted from plants can be used as alternative low cost tools in teaching chemical analysis,…

  17. Imperfect chemical female mimicry in males of the ant Cardiocondyla obscurior

    DEFF Research Database (Denmark)

    Cremer, S.; D'Ettorre, P.; Drijfhout, F.P.

    2008-01-01

    in the nest. In the first 5 days of their life, winged males perform a chemical female mimicry that protects them against attack and even makes them sexually attractive to ergatoid males. When older, the chemical profile of winged males no longer matches that of virgin females; nevertheless, they are still...... and the tolerated males from several normal colonies revealed that normal old males are still performing some chemical mimicry to the virgin queens, though less perfect than in their young ages. The anomalous attacked winged males, on the other hand, had a very different odour to the females. Our study thus...... exemplifies that the analysis of rare malfunctioning can add valuable insight on functioning under normal conditions and allows the conclusion that older winged males from normal colonies of the ant C. obscurior are guarded through an imperfect chemical female mimicry, still close enough to protect against...

  18. Thermodynamic analysis of chemical heat pumps

    International Nuclear Information System (INIS)

    Obermeier, Jonas; Müller, Karsten; Arlt, Wolfgang

    2015-01-01

    Thermal energy storages and heat pump units represent an important part of high efficient renewable energy systems. By using thermally driven, reversible chemical reactions a combination of thermal energy storage and heat pump can be realized. The influences of thermophysical properties of the involved components on the efficiency of a heat pump cycle is analysed and the relevance of the thermodynamic driving force is worked out. In general, the behaviour of energetic and exergetic efficiency is contrary. In a real cycle, higher enthalpies of reaction decrease the energetic efficiency but increase the exergetic efficiency. Higher enthalpies of reaction allow for lower offsets from equilibrium state for a default thermodynamic driving force of the reaction. - Highlights: • A comprehensive efficiency analysis of gas-solid heat pumps is proposed. • Link between thermodynamic driving force and equilibrium drop is shown. • Calculation of the equilibrium drop based on thermochemical properties. • Reaction equilibria of the decomposition reaction of salt hydrates. • Contrary behavior of energetic and exergetic efficiency

  19. Environmental Risk Assessment: Spatial Analysis of Chemical Hazards and Risks in South Korea

    Science.gov (United States)

    Yu, H.; Heo, S.; Kim, M.; Lee, W. K.; Jong-Ryeul, S.

    2017-12-01

    This study identified chemical hazard and risk levels in Korea by analyzing the spatial distribution of chemical factories and accidents. The number of chemical factories and accidents in 5-km2 grids were used as the attribute value for spatial analysis. First, semi-variograms were conducted to examine spatial distribution patterns and to identify spatial autocorrelation of chemical factories and accidents. Semi-variograms explained that the spatial distribution of chemical factories and accidents were spatially autocorrelated. Second, the results of the semi-variograms were used in Ordinary Kriging to estimate chemical hazard and risk level. The level values were extracted from the Ordinary Kriging result and their spatial similarity was examined by juxtaposing the two values with respect to their location. Six peaks were identified in both the hazard and risk estimation result, and the peaks correlated with major cities in Korea. Third, the estimated hazard and risk levels were classified with geometrical interval and could be classified into four quadrants: Low Hazard and Low Risk (LHLR), Low Hazard and High Risk (LHHR), High Hazard and Low Risk (HHLR), and High Hazard and High Risk (HHHR). The 4 groups identified different chemical safety management issues in Korea; relatively safe LHLR group, many chemical reseller factories were found in HHLR group, chemical transportation accidents were in the LHHR group, and an abundance of factories and accidents were in the HHHR group. Each quadrant represented different safety management obstacles in Korea, and studying spatial differences can support the establishment of an efficient risk management plan.

  20. Chemically produced nanostructured ODS-lanthanum oxide-tungsten composites sintered by spark plasma

    International Nuclear Information System (INIS)

    Yar, Mazher Ahmed; Wahlberg, Sverker; Bergqvist, Hans; Salem, Hanadi G.; Johnsson, Mats; Muhammed, Mamoun

    2011-01-01

    High purity W and W-0.9La 2 O 3 (wt.%) nanopowders were produced by a wet chemical route. The precursor was prepared by the reaction of ammonium paratungstate (APT) with lanthanum salt in aqueous solutions. High resolution electron microscopy investigations revealed that the tungstate particles were coated with oxide precipitates. The precursor powder was reduced to tungsten metal with dispersed lanthanum oxide. Powders were consolidated by spark plasma sintering (SPS) at 1300 and 1400 o C to suppress grain growth during sintering. The final grain size relates to the SPS conditions, i.e. temperature and heating rate, regardless of the starting powder particle size. Scanning electron microscopy revealed that oxide phases were mainly accumulated at grain boundaries while the tungsten matrix constituted of nanosized sub-grains. The transmission electron microscopy revealed that the tungsten grains consist of micron-scale grains and finer sub-grains. EDX analysis confirmed the presence of W in dispersed oxide phases with varying chemical composition, which evidenced the presence of complex oxide phases (W-O-La) in the sintered metals.

  1. Chemical Stability Analysis of Hair Cleansing Conditioners under High-Heat Conditions Experienced during Hair Styling Processes

    Directory of Open Access Journals (Sweden)

    Derek A. Drechsel

    2018-03-01

    Full Text Available Chemical stability is a key component of ensuring that a cosmetic product is safe for consumer use. The objective of this study was to evaluate the chemical stability of commercially available hair cleansing conditioners subjected to high heat stresses from the styling processes of blow drying or straightening. Two hair cleansing conditioners were subjected to temperatures of 60 °C and 185 °C to simulate the use of a blow dryer or flatiron hair straightener, respectively and analyzed via Gas Chromatography-Mass Spectrometry (GC-MS, High-Performance Liquid Chromatography-UV (HPLC and Fourier-Transform Infrared Spectroscopy (FT-IR to capture a chemical profile of the samples. The resulting spectra from matched heated and unheated samples were compared to identify any changes in chemical composition. Overall, no differences in the spectra were observed between the heated and unheated samples at both temperatures evaluated. Specifically, no new peaks were observed during analysis, indicating that no degradation products were formed. In addition, all chemicals identified during GC-MS analysis were known listed ingredients of the products. In summary, no measurable changes in chemical composition were observed in the hair cleansing conditioner samples under high-heat stress conditions. The presented analytical methods can serve as an initial screening tool to evaluate the chemical stability of a cosmetic product under conditions of anticipated use.

  2. USE OF AMAZONIAN SPECIES FOR AGING DISTILLED BEVERAGES: PHYSICAL AND CHEMICAL WOOD ANALYSIS

    Directory of Open Access Journals (Sweden)

    Jonnys Paz Castro

    2015-06-01

    Full Text Available The process of storing liquor in wooden barrels is a practice that aims to improve the sensory characteristics, such as color, aroma and flavor, of the beverage. The quality of the liquor stored in these barrels depends on wood characteristics such as density, permeability, chemical composition, anatomy, besides the wood heat treatment used to fabricate the barrels. Brazil has a great diversity of forests, mainly in the north, in the Amazon. This region is home to thousands of tree species, but is limited to the use of only a few native species to store liquors. The objective of this study was to determine some of the physical and chemical characteristics for four Amazon wood species. The results obtained in this study will be compared with others from woods that are traditionally used for liquor storage. The species studied were angelim-pedra (Hymenolobium petraeum Ducke cumarurana (Dipteryx polyphylla (Huber Ducke, jatobá (Hymenaea courbaril L. and louro-vermelho (Nectandra rubra (Mez CK Allen. The trees were collected from Precious Woods Amazon Company forest management area, in Silves, Amazonas. Analyzes such as: concentration of extractives, lignin amount, percentage of minerals (ash and tannin content, density, elemental analysis (CHNS-O and thermal analysis were done. It was observed that the chemical composition (lignin, holocellulose and elemental analysis (percentage of C, H, N and O of the woods have significant differences. The jatobá wood presented higher tannin content, and in the thermal analysis, was that which had the lowest mass loss.

  3. Chemical Fingerprint Analysis and Quantitative Analysis of Rosa rugosa by UPLC-DAD

    Directory of Open Access Journals (Sweden)

    Sanawar Mansur

    2016-12-01

    Full Text Available A method based on ultra performance liquid chromatography with a diode array detector (UPLC-DAD was developed for quantitative analysis of five active compounds and chemical fingerprint analysis of Rosa rugosa. Ten batches of R. rugosa collected from different plantations in the Xinjiang region of China were used to establish the fingerprint. The feasibility and advantages of the used UPLC fingerprint were verified for its similarity evaluation by systematically comparing chromatograms with professional analytical software recommended by State Food and Drug Administration (SFDA of China. In quantitative analysis, the five compounds showed good regression (R2 = 0.9995 within the test ranges, and the recovery of the method was in the range of 94.2%–103.8%. The similarities of liquid chromatography fingerprints of 10 batches of R. rugosa were more than 0.981. The developed UPLC fingerprint method is simple, reliable, and validated for the quality control and identification of R. rugosa. Additionally, simultaneous quantification of five major bioactive ingredients in the R. rugosa samples was conducted to interpret the consistency of the quality test. The results indicated that the UPLC fingerprint, as a characteristic distinguishing method combining similarity evaluation and quantification analysis, can be successfully used to assess the quality and to identify the authenticity of R. rugosa.

  4. Chemical Differentiation of Osseous, Dental, and Non-skeletal Materials in Forensic Anthropology using Elemental Analysis.

    Science.gov (United States)

    Zimmerman, Heather A; Meizel-Lambert, Cayli J; Schultz, John J; Sigman, Michael E

    2015-03-01

    Forensic anthropologists are generally able to identify skeletal materials (bone and tooth) using gross anatomical features; however, highly fragmented or taphonomically altered materials may be problematic to identify. Several chemical analysis techniques have been shown to be reliable laboratory methods that can be used to determine if questionable fragments are osseous, dental, or non-skeletal in nature. The purpose of this review is to provide a detailed background of chemical analysis techniques focusing on elemental compositions that have been assessed for use in differentiating osseous, dental, and non-skeletal materials. More recently, chemical analysis studies have also focused on using the elemental composition of osseous/dental materials to evaluate species and provide individual discrimination, but have generally been successful only in small, closed groups, limiting their use forensically. Despite significant advances incorporating a variety of instruments, including handheld devices, further research is necessary to address issues in standardization, error rates, and sample size/diversity. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Imaging, structural, and chemical analysis of silicon nanowires

    International Nuclear Information System (INIS)

    Barsotti, R.J. Jr.; Fischer, J.E.; Lee, C.H.; Mahmood, J.; Adu, C.K.W.; Eklund, P.C.

    2002-01-01

    Laser ablation has been used to grow silicon nanowires with an average silicon crystal core diameter of 6.7 nm±2.9 nm surrounded by an amorphous SiO x sheath of 1-2 nm, the smallest silicon wires reported in the literature. Imaging, chemical, and structural analysis of these wires are reported. Due to the growth temperature and the presence of calcium impurities and trace oxygen, two distinct types of wires are found. They appear to grow by two different processes. One requires a metal catalyst, the other is catalyzed by oxygen. Suggestions for controlled synthesis based on these growth mechanisms are made

  6. Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging

    KAUST Repository

    Hajjar, Dina

    2017-06-13

    Natural products have been used for medical applications since ancient times. Commonly, natural products are structurally complex chemical compounds that efficiently interact with their biological targets, making them useful drug candidates in cancer therapy. Here, we used cell-based phenotypic profiling and image-based high-content screening to study the mode of action and potential cellular targets of plants historically used in Saudi Arabia\\'s traditional medicine. We compared the cytological profiles of fractions taken from Juniperus phoenicea (Arar), Anastatica hierochuntica (Kaff Maryam), and Citrullus colocynthis (Hanzal) with a set of reference compounds with established modes of action. Cluster analyses of the cytological profiles of the tested compounds suggested that these plants contain possible topoisomerase inhibitors that could be effective in cancer treatment. Using histone H2AX phosphorylation as a marker for DNA damage, we discovered that some of the compounds induced double-strand DNA breaks. Furthermore, chemical analysis of the active fraction isolated from Juniperus phoenicea revealed possible anti-cancer compounds. Our results demonstrate the usefulness of cell-based phenotypic screening of natural products to reveal their biological activities.

  7. SewageLCI 1.0 - A first generation inventory model for quantification of chemical emissions via sewage systems. Application on chemicals of concern

    DEFF Research Database (Denmark)

    Gallice, Aurélie; Birkved, Morten; Kech, Sébastien

    obtained applying SewageLCI 1.0 model reveal that it’s possible to account for many of the variations in emission quantities of chemicals, caused by variations in the chemical fate properties and in the composition of national waste water treatment grids. The results indicate that the total emission...... treatment is emission to surface water recipients, other environmental compartments such as agricultural soil may receive considerable loads of chemicals emitted by the national specific waste water grids. The SewageLCI 1.0 presentation and case study reveal how broad inclusion of chemicals emitted......Lack of inventory data on chemical emissions often forces life cycle assessors to rely on crude emissions estimates (e.g. 100 % of the applied chemical mass is assumed emitted) or in the worst case to omit chemical emissions due to lack of emission data. The inventory model SewageLCI 1.0, provides...

  8. Physico-chemical and biological characterization of urban municipal landfill leachate.

    Science.gov (United States)

    Naveen, B P; Mahapatra, Durga Madhab; Sitharam, T G; Sivapullaiah, P V; Ramachandra, T V

    2017-01-01

    Unscientific management and ad-hoc approaches in municipal solid waste management have led to a generation of voluminous leachate in urban conglomerates. Quantification, quality assessment, following treatment and management of leachate has become a serious problem worldwide. In this context, the present study investigates the physico-chemical and biological characterization of landfill leachate and nearby water sources and attempts to identify relationships between the key parameters together with understanding the various processes for chemical transformations. The analysis shows an intermediate leachate age (5-10 years) with higher nutrient levels of 10,000-12,000 mg/l and ∼2000-3000 mg/l of carbon (COD) and nitrogen (TKN) respectively. Elemental analysis and underlying mechanisms reveal chemical precipitation and co-precipitation as the vital processes in leachate pond systems resulting in accumulation of trace metals. Based on the above criteria the samples were clustered into major groups that showed a clear distinction between leachate and water bodies. The microbial analysis showed bacterial communities correlating with specific factors relevant to redox environments indicating a gradient in nature and abundance of biotic diversity with a change in leachate environment. Finally, the quality and the contamination potential of the samples were evaluated with the help of leachate pollution index (LPI) and water quality index (WQI) analysis. The study helps in understanding the contamination potential of landfill leachate and establishes linkages between microbial communities and physico-chemical parameters for effective management of landfill leachate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Feasibility of cogeneration systems in chemical industry; Viabilidade de sistemas de cogeracao em industria quimica

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Moises Henrique de Andrade; Balestieri, Jose Antonio Perrella [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia

    1998-07-01

    The increasing penetration of natural gas in the Brazilian energetic market, some industries as pulp and paper, chemical and that ones related to the food and beverage processes are some of the ones that are more interested in the cogeneration practice based on the burning of this fossil fuel. An analysis of a photographic chemical industry consumption data revealed that combined cycles and Diesel units were the most suitable for thermal following strategy, considering that the four compression chillers must be maintained, and steam or gas cycles in the case of a complete substitution for absorption chillers and the same strategy. The economic attractiveness was done according to the internal return rate and payback, revealing that the investment can be returned in short time. (author)

  10. Contact allergy to preservatives in patients with occupational contact dermatitis and exposure analysis of preservatives in registered chemical products for occupational use.

    Science.gov (United States)

    Schwensen, Jakob Ferløv; Friis, Ulrik Fischer; Menné, Torkil; Flyvholm, Mari-Ann; Johansen, Jeanne Duus

    2017-05-01

    The aim of the study is to investigate risk factors for sensitization to preservatives and to examine to which extent different preservatives are registered in chemical products for occupational use in Denmark. A retrospective epidemiological observational analysis of data from a university hospital was conducted. All patients had occupational contact dermatitis and were consecutively patch tested with 11 preservatives from the European baseline series and extended patch test series during a 5-year period: 2009-2013. Information regarding the same preservatives in chemical products for occupational use ('substances and materials') registered in the Danish Product Register Database (PROBAS) was obtained. The frequency of preservative contact allergy was 14.2% (n = 141) in 995 patients with occupational contact dermatitis. Patients with preservative contact allergy had significantly more frequently facial dermatitis (19.9 versus 13.1%) and age > 40 years (71.6 versus 45.8%) than patients without preservative contact allergy, whereas atopic dermatitis was less frequently observed (12.1 versus 19.8%). Preservative contact allergy was more frequent in painters with occupational contact dermatitis as compared to non-painters with occupational contact dermatitis (p contact allergy to methylisothiazolinone and contact allergy to formaldehyde. Analysis of the registered substances and materials in PROBAS revealed that preservatives occurred in several product categories, e.g., 'paints and varnishes', 'cleaning agents', 'cooling agents', and 'polishing agents'. Formaldehyde and isothiazolinones were extensively registered in PROBAS. The extensive use of formaldehyde and isothiazolinones in chemical products for occupational use may be problematic for the worker. Appropriate legislation, substitution, and employee education should be prioritized.

  11. Chemical fingerprints encode mother–offspring similarity, colony membership, relatedness, and genetic quality in fur seals

    Science.gov (United States)

    Stoffel, Martin A.; Caspers, Barbara A.; Forcada, Jaume; Giannakara, Athina; Baier, Markus; Eberhart-Phillips, Luke; Müller, Caroline; Hoffman, Joseph I.

    2015-01-01

    Chemical communication underpins virtually all aspects of vertebrate social life, yet remains poorly understood because of its highly complex mechanistic basis. We therefore used chemical fingerprinting of skin swabs and genetic analysis to explore the chemical cues that may underlie mother–offspring recognition in colonially breeding Antarctic fur seals. By sampling mother–offspring pairs from two different colonies, using a variety of statistical approaches and genotyping a large panel of microsatellite loci, we show that colony membership, mother–offspring similarity, heterozygosity, and genetic relatedness are all chemically encoded. Moreover, chemical similarity between mothers and offspring reflects a combination of genetic and environmental influences, the former partly encoded by substances resembling known pheromones. Our findings reveal the diversity of information contained within chemical fingerprints and have implications for understanding mother–offspring communication, kin recognition, and mate choice. PMID:26261311

  12. Inhibition of melanogenesis versus antioxidant properties of essential oil extracted from leaves of Vitex negundo Linn and chemical composition analysis by GC-MS.

    Science.gov (United States)

    Huang, Huey-Chun; Chang, Tzu-Yun; Chang, Long-Zen; Wang, Hsiao-Fen; Yih, Kuang-Hway; Hsieh, Wan-Yu; Chang, Tsong-Min

    2012-03-30

    This study was aimed at investigating the antimelanogenic and antioxidative properties of the essential oil extracted from leaves of V. negundo Linn and the analysis of the chemical composition of this essential oil. The efficacy of the essential oil was evaluated spectrophotometrically, whereas the volatile chemical compounds in the essential oil were analyzed by gas chromatography-mass spectrometry (GC-MS). The results revealed that the essential oil effectively suppresses murine B16F10 tyrosinase activity and decreases the amount of melanin in a dose-dependent manner. Additionally, the essential oil significantly scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals, and showed potent reducing power versus metal-ion chelating properties in a dose-dependent pattern. The chemical constituents in the essential oil are sesquiterpenes (44.41%), monoterpenes (19.25%), esters (14.77%), alcohols (8.53%), aromatic compound (5.90%), ketone (4.96%), ethers (0.4%) that together account for 98.22% of its chemical composition. It is predicted that the aromatic compound in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from V. negundo Linn leaves decreased melanin production in B16F10 melanoma cells and showed potent antioxidant activities. The essential oil can thereby serve as an inhibitor of melanin synthesis and could also act as a natural antioxidant.

  13. Effect of maturation on physico-chemical and sensory quality characteristics of custard apple wine

    Directory of Open Access Journals (Sweden)

    Vikas Kumar

    2016-12-01

    Full Text Available Recently, researchers have taken a shift to utilize the custard apple for wine preparation besides its major use in ice cream, confectionary and milk products. In the present study, an attempt has been made to study the effect of maturation on physico-chemical and sensory quality characteristics of custard apple wine. Custard apple wine was prepared as per the earlier standardized method. The wine so prepared was matured for six months. The physico-chemical analysis was conducted at every three months interval for six months and sensory evaluation was performed after six months of storage. With the maturation, a decrease in total soluble solids, total sugars, titratable acidity, ethanol, total phenols and tannins was observed, whereas, an increase in reducing sugars and pH was observed. All the sensory quality characteristics of custard apple wine increased with advancement of the maturation period except astringency. Cluster analysis of the data obtained from physico-chemical analysis revealed that there was no difference between three months and six months of storage. Physico-chemical characteristics of custard apple wine were reduced to two principal components using principal component analysis which accounted for 100% variation. In general, maturation for six months improved the quality of custard apple wine considerably.

  14. Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces

    KAUST Repository

    Xu, Xianmin; Wang, Xiaoping

    2011-01-01

    Wetting and contact angle hysteresis on chemically patterned surfaces in two dimensionsare analyzed from a stationary phase-field model for immiscible two phase fluids. We first study the sharp-interface limit of the model by the method of matched asymptotic expansions. We then justify the results rigorously by the γ-convergence theory for the related variational problem and study the properties of the limiting minimizers. The results also provide a clear geometric picture of the equilibrium configuration of the interface. This enables us to explicitly calculate the total surface energy for the two phase systems on chemically patterned surfaces with simple geometries, namely the two phase flow in a channel and the drop spreading. By considering the quasi-staticmotion of the interface described by the change of volume (or volume fraction), we can follow the change-of-energy landscape which also reveals the mechanism for the stick-slip motion of the interface and contact angle hysteresis on the chemically patterned surfaces. As the interface passes throughpatterned surfaces, we observe not only stick-slip of the interface and switching of the contact angles but also the hysteresis of contact point and contact angle. Furthermore, as the size of the patternde creases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle (when the interface ismoving in the opposite direction) without the switching in between. © 2011 Society for Industrial and Applied Mathematics.

  15. Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective

    Science.gov (United States)

    Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.

    2012-05-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.

  16. Transcriptomic profiling of chemical exposure reveals roles of Yap1 in protecting yeast cells from oxidative and other types of stresses.

    Science.gov (United States)

    Zhang, Chao; Li, Zhouquan; Zhang, Xiaohua; Yuan, Li; Dai, Heping; Xiao, Wei

    2016-01-01

    Transcriptomic profiles are generated by comparing wild-type and the yeast yap1 mutant to various chemicals in an attempt to establish a correlation between this gene mutation and chemical exposure. Test chemicals include ClonNAT as a non-genotoxic agent, methyl methanesulphonate (MMS) as an alkylating agent, tert-butyl hydroperoxide (t-BHP) as an oxidative agent and the mixture of t-BHP and MMS to reflect complex natural exposure. Differentially expressed genes (DEGs) were identified and specific DEGs were obtained by excluding overlapping DEGs with the control group. In the MMS exposure group, deoxyribonucleotide biosynthetic processes were upregulated, while oxidation-reduction processes were downregulated. In the t-BHP exposure group, metabolic processes were upregulated while peroxisome and ion transport pathways were downregulated. In the mixture exposure group, the proteasome pathway was upregulated, while the aerobic respiration was downregulated. Homologue analysis of DEGs related to human diseases showed that many of DEGs were linked to cancer, ageing and neuronal degeneration. These observations confirm that the yap1 mutant is more sensitive to chemicals than wild-type cells and that the susceptible individuals carrying the YAP1-like gene defect may enhance risk to chemical exposure. Hence, this study offers a novel approach to environmental risk assessment, based on the genetic backgrounds of susceptible individuals. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Techniques for SMM/THz Chemical Analysis: Investigations and Exploitation of the Large Molecule Limit

    Science.gov (United States)

    2014-03-03

    SECURITY CLASSIFICATION OF: It has long been recognized that the SMM /THz has a unique combinations of attributes that make it attractive as a basis for...applicability of SMM chemical sensors; the second is to explore infrared – SMM double resonance as a basis for atmospheric remote sensing; and the third...2014 12-Aug-2009 11-Aug-2013 Approved for Public Release; Distribution Unlimited Techniques for SMM /THz Chemical Analysis: Investigations and

  18. Chemical hazards analysis of resilient flooring for healthcare.

    Science.gov (United States)

    Lent, Tom; Silas, Julie; Vallette, Jim

    2010-01-01

    This article addresses resilient flooring, evaluating the potential health effects of vinyl flooring and the leading alternatives-synthetic rubber, polyolefin, and linoleum-currently used in the healthcare marketplace. The study inventories chemicals incorporated as components of each of the four material types or involved in their life cycle as feedstocks, intermediary chemicals, or emissions. It then characterizes those chemicals using a chemical hazard-based framework that addresses persistence and bioaccumulation, human toxicity, and human exposures.

  19. Chemical milling solution reveals stress corrosion cracks in titanium alloy

    Science.gov (United States)

    Braski, D. N.

    1967-01-01

    Solution of hydrogen flouride, hydrogen peroxide, and water reveals hot salt stress corrosion cracks in various titanium alloys. After the surface is rinsed in water, dried, and swabbed with the solution, it can be observed by the naked eye or at low magnification.

  20. Method and multichannel equipment for chemical analysis by X-ray emission

    International Nuclear Information System (INIS)

    Bacso, J.; Horkay, Gy.; Kalinka, G.; Kertesz, Zs.; Kiss Varga, M.; Lakatos, T.; Mathe, Gy.; Paal, A.; Sulik, B.

    1978-01-01

    In the patent a simple method and an apparatus are described for chemical analysis based on X-ray emission generated by irradiation. The concentrations of pre-selected elements can be determined easily by this method using an equipment containing microprocessor. The number of channels and the elements to be determined can be modified by a simple change in the program. (Sz.J.)

  1. Direct chemical analysis of frozen ice cores by UV-laser ablation ICPMS

    DEFF Research Database (Denmark)

    Müller, Wolfgang; Shelley, J. Michael G.; Rasmussen, Sune Olander

    2011-01-01

    Cryo-cell UV-LA-ICPMS is a new technique for direct chemical analysis of frozen ice cores at high spatial resolution (dust records and annual layer signatures at unprecedented spatial/time resolution. Uniquely......, the location of cation impurities relative to grain boundaries in recrystallized ice can be assessed....

  2. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals

    NARCIS (Netherlands)

    Beek, van T.A.; Montoro, P.

    2009-01-01

    The chemical analysis and quality control of Ginkgo leaves, extracts, phytopharmaceuticals and some herbal supplements is comprehensively reviewed. The review is an update of a similar, earlier review in this journal [T.A. van Beek, J. Chromatogr. A 967 (2002) 21¿55]. Since 2001 over 3000 papers on

  3. X-ray texture analysis of paper coating pigments and the correlation with chemical composition analysis

    Science.gov (United States)

    Roine, J.; Tenho, M.; Murtomaa, M.; Lehto, V.-P.; Kansanaho, R.

    2007-10-01

    The present research experiments the applicability of x-ray texture analysis in investigating the properties of paper coatings. The preferred orientations of kaolin, talc, ground calcium carbonate, and precipitated calcium carbonate particles used in four different paper coatings were determined qualitatively based on the measured crystal orientation data. The extent of the orientation, namely, the degree of the texture of each pigment, was characterized quantitatively using a single parameter. As a result, the effect of paper calendering is clearly seen as an increase on the degree of texture of the coating pigments. The effect of calendering on the preferred orientation of kaolin was also evident in an independent energy dispersive spectrometer analysis on micrometer scale and an electron spectroscopy for chemical analysis on nanometer scale. Thus, the present work proves x-ray texture analysis to be a potential research tool for characterizing the properties of paper coating layers.

  4. Uranium complexes with macrosyclic polyethers. Synthesis and structural chemical analysis

    International Nuclear Information System (INIS)

    Elbasyouny, A.

    1983-01-01

    This dissertation reports about studies on the chemical coordination behaviour of uranium of oxidation stages IV and VI with regard to twelve different macrocyclic ligands. For the preparation of the complexes, for every system a different method has been developed. The elementary analysis of the various complexes including the uranium had been done by X-ray fluorescence analysis, and the structural characterization proceeded via vibrational, uv-vis and emission spectroscopy as well as 1 H-NMR and 13 C-spin-lattice relaxation time studies. Conformational analysis of the polyethers used allowed the structural changes in the complexes to be observed. The structural analysis of the hydrous uranium VI crown ether complexes yielded information of characteristic features of these types of complexes. The first coordination sphere of the uranyl ion with covalently bonded anion remains unchanged. As to the water content, there is a certain range. Depending upon the solvent used, the complexes have two or four H 2 O molecules per formula unit. (orig./EF) [de

  5. Chemical fingerprinting of hydrocarbon-contamination in soil.

    Science.gov (United States)

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  6. Energy saving analysis and management modeling based on index decomposition analysis integrated energy saving potential method: Application to complex chemical processes

    International Nuclear Information System (INIS)

    Geng, Zhiqiang; Gao, Huachao; Wang, Yanqing; Han, Yongming; Zhu, Qunxiong

    2017-01-01

    Highlights: • The integrated framework that combines IDA with energy-saving potential method is proposed. • Energy saving analysis and management framework of complex chemical processes is obtained. • This proposed method is efficient in energy optimization and carbon emissions of complex chemical processes. - Abstract: Energy saving and management of complex chemical processes play a crucial role in the sustainable development procedure. In order to analyze the effect of the technology, management level, and production structure having on energy efficiency and energy saving potential, this paper proposed a novel integrated framework that combines index decomposition analysis (IDA) with energy saving potential method. The IDA method can obtain the level of energy activity, energy hierarchy and energy intensity effectively based on data-drive to reflect the impact of energy usage. The energy saving potential method can verify the correctness of the improvement direction proposed by the IDA method. Meanwhile, energy efficiency improvement, energy consumption reduction and energy savings can be visually discovered by the proposed framework. The demonstration analysis of ethylene production has verified the practicality of the proposed method. Moreover, we can obtain the corresponding improvement for the ethylene production based on the demonstration analysis. The energy efficiency index and the energy saving potential of these worst months can be increased by 6.7% and 7.4%, respectively. And the carbon emissions can be reduced by 7.4–8.2%.

  7. Chemical and physical analysis of core materials for advanced high temperature reactors with process heat applications

    International Nuclear Information System (INIS)

    Nickel, H.

    1985-08-01

    Various chemical and physical methods for the analysis of structural materials have been developed in the research programmes for advanced high temperature reactors. These methods are discussed using as examples the structural materials of the reactor core - the fuel elements consisting of coated particles in a graphite matrix and the structural graphite. Emphasis is given to the methods of chemical analysis. The composition of fuel kernels is investigated using chemical analysis methods to determine the heavy metals content (uranium, plutonium, thorium and metallic impurity elements) and the amount of non-metallic constituents. The properties of the pyrocarbon and silicon carbide coatings of fuel elements are investigated using specially developed physiochemical methods. Regarding the irradiation behaviour of coated particles and fuel elements, methods have been developed for examining specimens in hot cells following exposures under reactor operating conditions, to supplement the measurements of in-reactor performance. For the structural graphite, the determination of impurities is important because certain impurities may cause pitting corrosion during irradiation. The localized analysis of very low impurity concentrations is carried out using spectrochemical d.c. arc excitation, local laser and inductively coupled plasma methods. (orig.)

  8. Manganese contents of soils as determined by activation analysis

    International Nuclear Information System (INIS)

    El-Kholi, A.F.; Hamdy, A.A.; Al Metwally, A.I.; El-Damaty, A.H.

    1976-01-01

    The object of this investigation is to determine total manganese by means of neutron activation analysis and evaluate this technique in comparison with the corresponding data obtained by conventional chemical analysis. Data obtained revealed that the values of total manganese in calcareous soils obtained by both chemical analysis and that by neutron activation analysis were similar. Therefore, activation analysis could be recommended as a quick laboratory, less tedious, and time consuming method for the determination of Mn content in both soils and plants than the conventional chemical techniques due to its great specificity, sensitivity and simplicity. Statistical analysis showed that there is a significant correlation at 5% probability level between manganese content in Soybean plant and total manganese determined by activation and chemical analysis giving the evidence that in the case of those highly calcareous soils of low total manganese content this fraction has to be considered as far as available soil manganese is concerned

  9. COLLABORATIVE TRIAL AND QUALITY CONTROL IN CHEMICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Narsito Narsito

    2010-06-01

    Full Text Available Abstract                                                             This paper deals with some practical problems related to the quality of analytical chemical data usually met in practice. Special attention is given to the topic of quality control in analytical chemistry, since analytical data is one of the primary information from which some important scientifically based decision are to be made. The present paper starts with brief description on some fundamental aspects associated with quality of analytical data, such as sources of variation of analytical data, criteria for quality of analytical method, quality assurance in chemical analysis. The assessment of quality parameter for analytical method like the use of standard materials as well as standard methods is given. Concerning with the quality control of analytical data, the use of several techniques, such as control samples and control charts, in monitoring analytical data in quality control program are described qualitatively.  In the final part of this paper, some important remarks for the preparation of collaborative trials, including the evaluation of accuracy and reproducibility of analytical method are also given Keywords: collaborative trials, quality control, analytical data Abstract                                                             This paper deals with some practical problems related to the quality of analytical chemical data usually met in practice. Special attention is given to the topic of quality control in analytical chemistry, since analytical data is one of the primary information from which some important scientifically based decision are to be made. The present paper starts with brief description on some fundamental aspects associated with quality of analytical data, such as sources of variation of analytical data, criteria for quality of

  10. Chemical sensors and the development of potentiometric methods for liquid media analysis

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Kolodnikov, V.V.; Ermolenko, Yu.E.; Mikhajlova, S.S.

    1996-01-01

    Aspects of applying indirect potentiometric determination to chemical analysis are considered. Among them are the standard and modified addition and subtraction methods, the multiple addition method, and potentiometric titration using ion-selective electrodes as indicators. These methods significantly extend the capabilities of ion-selective potentiometric analysis. Conditions for the applicability of the above-mentioned methods to various samples (Cd, REE, Th, iodides and others) are discussed using all available ion-selective electrodes as examples. 162 refs., 2 figs., 5 tabs

  11. Draft whole genome sequence of groundnut stem rot fungus Athelia rolfsii revealing genetic architect of its pathogenicity and virulence.

    Science.gov (United States)

    Iquebal, M A; Tomar, Rukam S; Parakhia, M V; Singla, Deepak; Jaiswal, Sarika; Rathod, V M; Padhiyar, S M; Kumar, Neeraj; Rai, Anil; Kumar, Dinesh

    2017-07-13

    Groundnut (Arachis hypogaea L.) is an important oil seed crop having major biotic constraint in production due to stem rot disease caused by fungus, Athelia rolfsii causing 25-80% loss in productivity. As chemical and biological combating strategies of this fungus are not very effective, thus genome sequencing can reveal virulence and pathogenicity related genes for better understanding of the host-parasite interaction. We report draft assembly of Athelia rolfsii genome of ~73 Mb having 8919 contigs. Annotation analysis revealed 16830 genes which are involved in fungicide resistance, virulence and pathogenicity along with putative effector and lethal genes. Secretome analysis revealed CAZY genes representing 1085 enzymatic genes, glycoside hydrolases, carbohydrate esterases, carbohydrate-binding modules, auxillary activities, glycosyl transferases and polysaccharide lyases. Repeat analysis revealed 11171 SSRs, LTR, GYPSY and COPIA elements. Comparative analysis with other existing ascomycotina genome predicted conserved domain family of WD40, CYP450, Pkinase and ABC transporter revealing insight of evolution of pathogenicity and virulence. This study would help in understanding pathogenicity and virulence at molecular level and development of new combating strategies. Such approach is imperative in endeavour of genome based solution in stem rot disease management leading to better productivity of groundnut crop in tropical region of world.

  12. Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death.

    Directory of Open Access Journals (Sweden)

    Marie-Noëlle Delyfer

    Full Text Available BACKGROUND: Retinal detachment often leads to a severe and permanent loss of vision and its therapeutic management remains to this day exclusively surgical. We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment in order to identify new potential pharmacological targets that could be used in combination with surgery to further improve final outcome. METHODOLOGY/PRINCIPAL FINDINGS: Statistical analysis reveals major involvement of the immune response in the disease. Interestingly, using a novel approach relying on coordinated expression, the interindividual variation was monitored to unravel a second crucial aspect of the pathological process: the death of photoreceptor cells. Within the genes identified, the expression of the major histocompatibility complex I gene HLA-C enables diagnosis of the disease, while PKD2L1 and SLCO4A1 -which are both down-regulated- act synergistically to provide an estimate of the duration of the retinal detachment process. Our analysis thus reveals the two complementary cellular and molecular aspects linked to retinal detachment: an immune response and the degeneration of photoreceptor cells. We also reveal that the human specimens have a higher clinical value as compared to artificial models that point to IL6 and oxidative stress, not implicated in the surgical specimens studied here. CONCLUSIONS/SIGNIFICANCE: This systematic analysis confirmed the occurrence of both neurodegeneration and inflammation during retinal detachment, and further identifies precisely the modification of expression of the different genes implicated in these two phenomena. Our data henceforth give a new insight into the disease process and provide a rationale for therapeutic strategies aimed at limiting inflammation and photoreceptor damage associated with retinal detachment and, in turn, improving visual prognosis after retinal surgery.

  13. Chemical analysis by X-ray fluorescence, of niobium in high-strength plate steels

    International Nuclear Information System (INIS)

    Iozzi, F.B.; Dias, M.J.P.

    1981-01-01

    The use of X-ray fluorescence spectrometry in quantitative analysis of niobium in steels, as an alternative solution for optical emission spectrometry, in the rapid chemical control of steel fabrication by LD type converters, is presented. (M.C.K.) [pt

  14. Analysis of air-, moisture- and solvent-sensitive chemical compounds by mass spectrometry using an inert atmospheric pressure solids analysis probe.

    Science.gov (United States)

    Mosely, Jackie A; Stokes, Peter; Parker, David; Dyer, Philip W; Messinis, Antonis M

    2018-02-01

    A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.

  15. Hyperplane distance neighbor clustering based on local discriminant analysis for complex chemical processes monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chunhong; Xiao, Shaoqing; Gu, Xiaofeng [Jiangnan University, Wuxi (China)

    2014-11-15

    The collected training data often include both normal and faulty samples for complex chemical processes. However, some monitoring methods, such as partial least squares (PLS), principal component analysis (PCA), independent component analysis (ICA) and Fisher discriminant analysis (FDA), require fault-free data to build the normal operation model. These techniques are applicable after the preliminary step of data clustering is applied. We here propose a novel hyperplane distance neighbor clustering (HDNC) based on the local discriminant analysis (LDA) for chemical process monitoring. First, faulty samples are separated from normal ones using the HDNC method. Then, the optimal subspace for fault detection and classification can be obtained using the LDA approach. The proposed method takes the multimodality within the faulty data into account, and thus improves the capability of process monitoring significantly. The HDNC-LDA monitoring approach is applied to two simulation processes and then compared with the conventional FDA based on the K-nearest neighbor (KNN-FDA) method. The results obtained in two different scenarios demonstrate the superiority of the HDNC-LDA approach in terms of fault detection and classification accuracy.

  16. Hyperplane distance neighbor clustering based on local discriminant analysis for complex chemical processes monitoring

    International Nuclear Information System (INIS)

    Lu, Chunhong; Xiao, Shaoqing; Gu, Xiaofeng

    2014-01-01

    The collected training data often include both normal and faulty samples for complex chemical processes. However, some monitoring methods, such as partial least squares (PLS), principal component analysis (PCA), independent component analysis (ICA) and Fisher discriminant analysis (FDA), require fault-free data to build the normal operation model. These techniques are applicable after the preliminary step of data clustering is applied. We here propose a novel hyperplane distance neighbor clustering (HDNC) based on the local discriminant analysis (LDA) for chemical process monitoring. First, faulty samples are separated from normal ones using the HDNC method. Then, the optimal subspace for fault detection and classification can be obtained using the LDA approach. The proposed method takes the multimodality within the faulty data into account, and thus improves the capability of process monitoring significantly. The HDNC-LDA monitoring approach is applied to two simulation processes and then compared with the conventional FDA based on the K-nearest neighbor (KNN-FDA) method. The results obtained in two different scenarios demonstrate the superiority of the HDNC-LDA approach in terms of fault detection and classification accuracy

  17. Chemical contents in Lygeum spartum L. using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Nedjimi, Bouzid

    2015-01-01

    The present investigation was conducted to determine the chemical contents of Lygeum spartum L. (Poaceae). Samples were analyzed in order to determine essential (Ca, K, Na, Fe, Co) and some potentially toxic elements (Eu, Sb, Tb) using instrumental neutron activation analysis (INAA). In general chemical element contents were in substantial amounts to meet adult sheep requirements. Potential intake of Ca, K, Zn, Co and Fe by ruminant weighing 50 kg BW consuming 2.0 kg per day DM was sufficient to satisfy their requirements. However, only Na level was still insufficient to meet the requirements for grazing ruminants. Potential toxic elements in this species were within the safety baseline of all the assayed elements recommended by NRC. Na supplementation would seem to be necessary in this zone, for optimum productivity of grazing animals.

  18. Reduction and Uncertainty Analysis of Chemical Mechanisms Based on Local and Global Sensitivities

    Science.gov (United States)

    Esposito, Gaetano

    Numerical simulations of critical reacting flow phenomena in hypersonic propulsion devices require accurate representation of finite-rate chemical kinetics. The chemical kinetic models available for hydrocarbon fuel combustion are rather large, involving hundreds of species and thousands of reactions. As a consequence, they cannot be used in multi-dimensional computational fluid dynamic calculations in the foreseeable future due to the prohibitive computational cost. In addition to the computational difficulties, it is also known that some fundamental chemical kinetic parameters of detailed models have significant level of uncertainty due to limited experimental data available and to poor understanding of interactions among kinetic parameters. In the present investigation, local and global sensitivity analysis techniques are employed to develop a systematic approach of reducing and analyzing detailed chemical kinetic models. Unlike previous studies in which skeletal model reduction was based on the separate analysis of simple cases, in this work a novel strategy based on Principal Component Analysis of local sensitivity values is presented. This new approach is capable of simultaneously taking into account all the relevant canonical combustion configurations over different composition, temperature and pressure conditions. Moreover, the procedure developed in this work represents the first documented inclusion of non-premixed extinction phenomena, which is of great relevance in hypersonic combustors, in an automated reduction algorithm. The application of the skeletal reduction to a detailed kinetic model consisting of 111 species in 784 reactions is demonstrated. The resulting reduced skeletal model of 37--38 species showed that the global ignition/propagation/extinction phenomena of ethylene-air mixtures can be predicted within an accuracy of 2% of the full detailed model. The problems of both understanding non-linear interactions between kinetic parameters and

  19. In situ chemical state analysis of buried polymer/metal adhesive interface by hard X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ozawa, Kenichi; Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya; Mase, Kazuhiko; Ikenaga, Eiji; Nakamura, Tetsuya; Kinoshita, Toyohiko; Oji, Hiroshi

    2014-01-01

    Highlights: • Chemical state analysis of the buried rubber/brass interface is conducted by HAXPES. • Ultrathin rubber films are prepared on the brass surface by two methods. • A high density of Cu 2 S is found on the rubber side of the buried adhesive layer. • The chemical states of the buried and exposed interfaces are compared. - Abstract: Chemical state analysis of adhesive interfaces is important to understand an adhesion mechanism between two different materials. Although photoelectron spectroscopy (PES) is an ideal tool for such an analysis, the adhesive interfaces must be exposed to the surface because PES is essentially a surface sensitive technique. However, an in situ observation is possible by hard X-ray PES (HAXPES) owing to its large probing depth. In the present study, HAXPES is applied to investigate the adhesive interface between rubber and brass without exposing the interface. It is demonstrated that copper sulfides formed at the buried rubber/brass interface are distinguished from S-containing species in the rubber overlayer. The chemical state of the buried interface is compared with that of the “exposed” interface prepared by so-called a filter-paper method

  20. Revealing the equivalence of two clonal survival models by principal component analysis

    International Nuclear Information System (INIS)

    Lachet, Bernard; Dufour, Jacques

    1976-01-01

    The principal component analysis of 21 chlorella cell survival curves, adjusted by one-hit and two-hit target models, lead to quite similar projections on the principal plan: the homologous parameters of these models are linearly correlated; the reason for the statistical equivalence of these two models, in the present state of experimental inaccuracy, is revealed [fr

  1. Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis

    DEFF Research Database (Denmark)

    Kjærsgård, Inger Vibeke Holst; Nørrelykke, M.R.; Jessen, Flemming

    2006-01-01

    Multivariate data analysis has been combined with proteomics to enhance the recovery of information from 2-DE of cod muscle proteins during different storage conditions. Proteins were extracted according to 11 different storage conditions and samples were resolved by 2-DE. Data generated by 2-DE...... was subjected to principal component analysis (PCA) and discriminant partial least squares regression (DPLSR). Applying PCA to 2-DE data revealed the samples to form groups according to frozen storage time, whereas differences due to different storage temperatures or chilled storage in modified atmosphere...... light chain 1, 2 and 3, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase A and two ?-actin fragments, and a nuclease diphosphate kinase B fragment to change in concentration, during frozen storage. Application of proteomics, multivariate data analysis and MS/MS to analyse...

  2. Effects of chemical treatments on hemp fibre structure

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, M.M., E-mail: kabirm@usq.edu.au [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Wang, H. [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Lau, K.T. [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Cardona, F. [Centre of Excellence in Engineered Fibre Composite (CEEFC), Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia)

    2013-07-01

    In this study, hemp fibres were treated with alkali, acetyl and silane chemicals. Fibre constituents such as cellulose, hemicellulose and lignin constituents were separated from treated fibres. The chemical and thermal influences of these constituents on the treated fibres were examined by using scanning electron microscope (SEM), fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Experimental results revealed that, hemicellulose was degraded faster than that of cellulose and lignin. Cellulose exhibited better thermal stability and lignin was degraded in a wide range of temperatures. The hydrophilic nature of the fibres was predominantly caused by the presence of hemicellulose and then lignin constituents. Hemicellulose and lignin were mostly removed by the alkalisation with higher concentrations of NaOH, followed by acetylation. Silane treatment could not remove the hemicellulose and lignin, rather this treatment facilitated coupling with the fibre constituents.

  3. Effects of chemical treatments on hemp fibre structure

    International Nuclear Information System (INIS)

    Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F.

    2013-01-01

    In this study, hemp fibres were treated with alkali, acetyl and silane chemicals. Fibre constituents such as cellulose, hemicellulose and lignin constituents were separated from treated fibres. The chemical and thermal influences of these constituents on the treated fibres were examined by using scanning electron microscope (SEM), fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Experimental results revealed that, hemicellulose was degraded faster than that of cellulose and lignin. Cellulose exhibited better thermal stability and lignin was degraded in a wide range of temperatures. The hydrophilic nature of the fibres was predominantly caused by the presence of hemicellulose and then lignin constituents. Hemicellulose and lignin were mostly removed by the alkalisation with higher concentrations of NaOH, followed by acetylation. Silane treatment could not remove the hemicellulose and lignin, rather this treatment facilitated coupling with the fibre constituents.

  4. Chemical risk evaluation, importance of the risk analysis framework uses: Latin America development restrictions

    International Nuclear Information System (INIS)

    Carrillo, M.

    2013-01-01

    The power point presentation is about reach and results of the risk analysis in Venezuela, chemical dangers in food, human damage, injuries , technologies news in fodd development, toxicity, microbiological risk, technical recommendations

  5. Toxicogenomic analysis reveals profibrogenic effects of trichloroethylene in autoimmune-mediated cholangitis in mice.

    Science.gov (United States)

    Kopec, Anna K; Sullivan, Bradley P; Kassel, Karen M; Joshi, Nikita; Luyendyk, James P

    2014-10-01

    Epidemiological studies suggest that exposure to environmental chemicals increases the risk of developing autoimmune liver disease. However, the identity of specific chemical perpetrators and the mechanisms whereby environmental chemicals modify liver disease is unclear. Previous studies link exposure to trichloroethylene (TCE) with the development of autoimmune liver disease and exacerbation of autoimmunity in lupus-prone MRL mice. In this study, we utilized NOD.c3c4 mice, which spontaneously develop autoimmune cholangitis bearing resemblance to some features of primary biliary cirrhosis. Nine-week-old female NOD.c3c4 mice were given TCE (0.5 mg/ml) or its vehicle (1% Cremophor-EL) in drinking water for 4 weeks. TCE had little effect on clinical chemistry, biliary cyst formation, or hepatic CD3+ T-cell accumulation. Hepatic microarray profiling revealed a dramatic suppression of early growth response 1 (EGR1) mRNA in livers of TCE-treated mice, which was verified by qPCR and immunohistochemical staining. Consistent with a reported link between reduced EGR1 expression and liver fibrosis, TCE increased hepatic type I collagen (COL1A1) mRNA and protein levels in livers of NOD.c3c4 mice. In contrast, TCE did not increase COL1A1 expression in NOD.ShiLtJ mice, which do not develop autoimmune cholangitis. These results suggest that in the context of concurrent autoimmune liver disease with a genetic basis, modification of hepatic gene expression by TCE may increase profibrogenic signaling in the liver. Moreover, these studies suggest that NOD.c3c4 mice may be a novel model to study gene-environment interactions critical for the development of autoimmune liver disease. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Assessment of diversity among populations of Rauvolfia serpentina Benth. Ex. Kurtz. from Southern Western Ghats of India, based on chemical profiling, horticultural traits and RAPD analysis.

    Science.gov (United States)

    Nair, Vadakkemuriyil Divya; Raj, Rajan Pillai Dinesh; Panneerselvam, Rajaram; Gopi, Ragupathi

    2014-01-01

    Genetic, morphological and chemical variations of ten natural populations of Rauvolfia serpentina Benth. Ex. Kurtz. from Southern Western Ghats of India were assessed using RAPD markers reserpine content and morphological traits. An estimate of genetic diversity and differentiation between genotypes of breeding germplasm is of key importance for its improvement. Populations were collected from different geographical regions. Data obtained through three different methods were compared and the correlation among them was estimated. Statistical analysis showed significant differences for all horticultural characteristics among the accessions suggesting that selection for relevant characteristics could be possible. Variation in the content of Reserpine ranges from 0.192 g/100 g (population from Tusharagiri) to 1.312 g/100 g (population from Aryankavu). A high diversity within population and high genetic differentiation among them based on RAPDs were revealed caused both by habitat fragmentation of the low size of most populations and the low level of gene flow among them. The UPGMA dendrogram and PCA analysis based on reserpine content yielded higher separation among populations indicated specific adaptation of populations into clusters each of them including populations closed to their geographical origin. Genetic, chemical and morphological data were correlated based on Mantel test. Given the high differentiation among populations conservation strategies should take into account genetic diversity and chemical variation levels in relation to bioclimatic and geographic location of populations. Our results also indicate that RAPD approach along with horticultural analysis seemed to be best suited for assessing with high accuracy the genetic relationships among distinct R. serpentina accessions. © 2013.

  7. Mass spectrographic analysis of selected chemical elements by microbial leaching of zircon

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.; Bullmann, M.; Iske, U.

    1986-01-01

    Spark source mass spectrometry is a useful method for chemical element analysis of geological and biological samples. This sensitive technique (detection limit down to the ppb-range) is used to analyze leaching processes by means of several microorganisms. The problem of microbial leaching of chemical resistent materials was tested under laboratory conditions with regard to possible analytical and technical applications. Leaching of metals with chemolithotrophic and heterotrophic, organic acids producing microorganisms has been investigated with zircon from the Baltic Shield containing 0.7% rare earth elements and 1.67% hafnium. When zircon is leached with strains of thiobacillus ferrooxidans about 80% of the rare earth elements, Hf, Th and U can be recovered. (orig.) [de

  8. Analysis of abused drugs by selected ion monitoring: quantitative comparison of electron impact and chemical ionization

    International Nuclear Information System (INIS)

    Foltz, R.L.; Knowlton, D.A.; Lin, D.C.K.; Fentiman, A.F. Jr.

    1975-01-01

    A comparison was made of the relative sensitivities of electron impact and chemical ionization when used for selected ion monitoring analysis of commonly abused drugs. For most of the drugs examined chemical ionization using ammonia as the reactant gas gave the largest single m/e ion current response per unit weight of sample. However, if maximum sensitivity is desired it is important to evaluate electron impact and chemical ionization with respect to both maximum response and degree of interference from background and endogenous materials

  9. Genomic analysis reveals the molecular basis for capsule loss in the group B Streptococcus population.

    Directory of Open Access Journals (Sweden)

    Roberto Rosini

    Full Text Available The human and bovine bacterial pathogen Streptococcus agalactiae (Group B Streptococcus, GBS expresses a thick polysaccharide capsule that constitutes a major virulence factor and vaccine target. GBS can be classified into ten distinct serotypes differing in the chemical composition of their capsular polysaccharide. However, non-typeable strains that do not react with anti-capsular sera are frequently isolated from colonized and infected humans and cattle. To gain a comprehensive insight into the molecular basis for the loss of capsule expression in GBS, a collection of well-characterized non-typeable strains was investigated by genome sequencing. Genome based phylogenetic analysis extended to a wide population of sequenced strains confirmed the recently observed high clonality among GBS lineages mainly containing human strains, and revealed a much higher degree of diversity in the bovine population. Remarkably, non-typeable strains were equally distributed in all lineages. A number of distinct mutations in the cps operon were identified that were apparently responsible for inactivation of capsule synthesis. The most frequent genetic alterations were point mutations leading to stop codons in the cps genes, and the main target was found to be cpsE encoding the portal glycosyl transferase of capsule biosynthesis. Complementation of strains carrying missense mutations in cpsE with a wild-type gene restored capsule expression allowing the identification of amino acid residues essential for enzyme activity.

  10. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  11. Development of Procedures for the Analysis of Components of Dumped Chemical Weapons and Their Principal Transformation Products in Sea Water

    International Nuclear Information System (INIS)

    Saveleva, E. I.; Koryagina, N. L.; Radilov, A. S.; Khlebnikova, N. S.; Khrustaleva, V. S.

    2007-01-01

    A package of chemical analytical procedures was developed for the detection of products indicative of the presence of damped chemical weapons in the Baltic Sea. The principal requirements imposed upon the procedures were the following: high sensitivity, reliable identification of target compounds, wide range of components covered by survey analysis, and lack of interferences from sea salts. Thiodiglycol, a product of hydrolysis of sulfur mustard reportedly always detected in the sites of damping chemical weapons in the Baltic Sea, was considered the principal marker. We developed a high-sensitivity procedure for the determination of thiodiglycol in sea water, involving evaporation of samples to dryness in a vacuum concentrator, followed by tert-butyldimethylsilylation of the residue and GCMS analysis in the SIM mode with meta-fluorobenzoic acid as internal reference. The detection limit of thiodiglycol was 0.001 mg/l, and the procedure throughput was up to 30 samples per day. The same procedure, but with BSTFA as derivatizing agent instead of MTBSTFA, was used for preparing samples for survey analysis of nonvolatile components. In this case, full mass spectra were measured in the GCMS analysis. The use of BSTFA was motivated by the fact that trimethylsilyl derivatives are much wider represented in electronic mass spectral databases. The identification of sulfur mustard, volatile transformation products of sulfur mustard and lewisite, as well as chloroacetophenone in sea water was performed by means of GCMS in combination with SPME. The survey GC-MS analysis was focused on the identification of volatile and nonvolatile toxic chemicals whose mass spectra are included in the OPCW database (3219 toxic chemicals, precursors, and transformation products) with the use of AMDIS software (version 2.62). Using 2 GC-MS instruments, we could perform the survey analysis for volatile and nonvolatile components of up to 20 samples per day. Thus, the package of three procedures

  12. Nature's chemical signatures in human olfaction: a foodborne perspective for future biotechnology.

    Science.gov (United States)

    Dunkel, Andreas; Steinhaus, Martin; Kotthoff, Matthias; Nowak, Bettina; Krautwurst, Dietmar; Schieberle, Peter; Hofmann, Thomas

    2014-07-07

    The biocatalytic production of flavor naturals that determine chemosensory percepts of foods and beverages is an ever challenging target for academic and industrial research. Advances in chemical trace analysis and post-genomic progress at the chemistry-biology interface revealed odor qualities of nature's chemosensory entities to be defined by odorant-induced olfactory receptor activity patterns. Beyond traditional views, this review and meta-analysis now shows characteristic ratios of only about 3 to 40 genuine key odorants for each food, from a group of about 230 out of circa 10 000 food volatiles. This suggests the foodborn stimulus space has co-evolved with, and roughly match our circa 400 olfactory receptors as best natural agonists. This perspective gives insight into nature's chemical signatures of smell, provides the chemical odor codes of more than 220 food samples, and beyond addresses industrial implications for producing recombinants that fully reconstruct the natural odor signatures for use in flavors and fragrances, fully immersive interactive virtual environments, or humanoid bioelectronic noses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dual Bioactivities of Essential Oil Extracted from the Leaves of Artemisia argyi as an Antimelanogenic versus Antioxidant Agent and Chemical Composition Analysis by GC/MS

    Directory of Open Access Journals (Sweden)

    Long-Zen Chang

    2012-11-01

    Full Text Available The study was aimed at investigating the antimelanogenic and antioxidant properties of essential oil when extracted from the leaves of Artemisia argyi, then analyzing the chemical composition of the essential oil. The inhibitory effect of the essential oil on melanogenesis was evaluated by a mushroom tyrosinase activity assay and B16F10 melanoma cell model. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis, and the volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS. The results revealed that the essential oil significantly inhibits mushroom tyrosinase activity (IC50 = 19.16 mg/mL, down-regulates B16F10 intracellular tyrosinase activity and decreases the amount of melanin content in a dose-dependent pattern. Furthermore, the essential oil significantly scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid ABTS radicals, showed an apparent reduction power as compared with metal-ion chelating activities. The chemicals constituents in the essential oil are ether (23.66%, alcohols (16.72%, sesquiterpenes (15.21%, esters (11.78%, monoterpenes (11.63%, ketones (6.09%, aromatic compounds (5.01%, and account for a 90.10% analysis of its chemical composition. It is predicted that eucalyptol and the other constituents, except for alcohols, in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from A. argyi leaves decreased melanin production in B16F10 cells and showed potent antioxidant activity. The essential oil can thereby be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products.

  14. Dual Bioactivities of Essential Oil Extracted from the Leaves of Artemisia argyi as an Antimelanogenic versus Antioxidant Agent and Chemical Composition Analysis by GC/MS

    Science.gov (United States)

    Huang, Huey-Chun; Wang, Hsiao-Fen; Yih, Kuang-Hway; Chang, Long-Zen; Chang, Tsong-Min

    2012-01-01

    The study was aimed at investigating the antimelanogenic and antioxidant properties of essential oil when extracted from the leaves of Artemisia argyi, then analyzing the chemical composition of the essential oil. The inhibitory effect of the essential oil on melanogenesis was evaluated by a mushroom tyrosinase activity assay and B16F10 melanoma cell model. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis, and the volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The results revealed that the essential oil significantly inhibits mushroom tyrosinase activity (IC50 = 19.16 mg/mL), down-regulates B16F10 intracellular tyrosinase activity and decreases the amount of melanin content in a dose-dependent pattern. Furthermore, the essential oil significantly scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzthiazoline- 6-sulphonic acid) ABTS radicals, showed an apparent reduction power as compared with metal-ion chelating activities. The chemicals constituents in the essential oil are ether (23.66%), alcohols (16.72%), sesquiterpenes (15.21%), esters (11.78%), monoterpenes (11.63%), ketones (6.09%), aromatic compounds (5.01%), and account for a 90.10% analysis of its chemical composition. It is predicted that eucalyptol and the other constituents, except for alcohols, in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from A. argyi leaves decreased melanin production in B16F10 cells and showed potent antioxidant activity. The essential oil can thereby be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products. PMID:23203088

  15. Dual bioactivities of essential oil extracted from the leaves of Artemisia argyi as an antimelanogenic versus antioxidant agent and chemical composition analysis by GC/MS.

    Science.gov (United States)

    Huang, Huey-Chun; Wang, Hsiao-Fen; Yih, Kuang-Hway; Chang, Long-Zen; Chang, Tsong-Min

    2012-11-12

    The study was aimed at investigating the antimelanogenic and antioxidant properties of essential oil when extracted from the leaves of Artemisia argyi, then analyzing the chemical composition of the essential oil. The inhibitory effect of the essential oil on melanogenesis was evaluated by a mushroom tyrosinase activity assay and B16F10 melanoma cell model. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis, and the volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The results revealed that the essential oil significantly inhibits mushroom tyrosinase activity (IC(50) = 19.16 mg/mL), down-regulates B16F10 intracellular tyrosinase activity and decreases the amount of melanin content in a dose-dependent pattern. Furthermore, the essential oil significantly scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) ABTS radicals, showed an apparent reduction power as compared with metal-ion chelating activities. The chemicals constituents in the essential oil are ether (23.66%), alcohols (16.72%), sesquiterpenes (15.21%), esters (11.78%), monoterpenes (11.63%), ketones (6.09%), aromatic compounds (5.01%), and account for a 90.10% analysis of its chemical composition. It is predicted that eucalyptol and the other constituents, except for alcohols, in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from A. argyi leaves decreased melanin production in B16F10 cells and showed potent antioxidant activity. The essential oil can thereby be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products.

  16. Co-occurrence correlations of heavy metals in sediments revealed using network analysis.

    Science.gov (United States)

    Liu, Lili; Wang, Zhiping; Ju, Feng; Zhang, Tong

    2015-01-01

    In this study, the correlation-based study was used to identify the co-occurrence correlations among metals in marine sediment of Hong Kong, based on the long-term (from 1991 to 2011) temporal and spatial monitoring data. 14 stations out of the total 45 marine sediment monitoring stations were selected from three representative areas, including Deep Bay, Victoria Harbour and Mirs Bay. Firstly, Spearman's rank correlation-based network analysis was conducted as the first step to identify the co-occurrence correlations of metals from raw metadata, and then for further analysis using the normalized metadata. The correlations patterns obtained by network were consistent with those obtained by the other statistic normalization methods, including annual ratios, R-squared coefficient and Pearson correlation coefficient. Both Deep Bay and Victoria Harbour have been polluted by heavy metals, especially for Pb and Cu, which showed strong co-occurrence with other heavy metals (e.g. Cr, Ni, Zn and etc.) and little correlations with the reference parameters (Fe or Al). For Mirs Bay, which has better marine sediment quality compared with Deep Bay and Victoria Harbour, the co-occurrence patterns revealed by network analysis indicated that the metals in sediment dominantly followed the natural geography process. Besides the wide applications in biology, sociology and informatics, it is the first time to apply network analysis in the researches of environment pollutions. This study demonstrated its powerful application for revealing the co-occurrence correlations among heavy metals in marine sediments, which could be further applied for other pollutants in various environment systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Structural and Chemical Analysis of Gadolinium Halides Encapsulated within WS 2 Nanotubes

    KAUST Repository

    Anumol, E A

    2016-05-18

    The hollow cavities of nanotubes could serve as templates for the growth of size- and shape-confined functional nanostructures, giving rise to novel materials and properties. In this work, considering their potential application as MRI contrast agents, gadolinium halides are encapsulated within the hollow cavities of inorganic nanotubes of WS2 by capillary filling to obtain GdX3@WS2 nanotubes (where X = Cl, Br or I and @ means encapsulated in). Aberration corrected scanning/transmission electron microscopy (S/TEM) and spectroscopy is employed to understand the morphology and composition of the GdI3@WS2 nanotubes. The three dimensional morphology is studied with STEM tomography but understanding the compositional information is a non-trivial matter due to the presence of multiple high atomic number elements. Therefore, energy dispersive X-ray spectroscopy (EDS) tomography was employed revealing the three dimensional chemical composition. Molecular dynamics simulations of the filling procedure shed light into the mechanics behind the formation of the confined gadolinium halide crystals. The quasi-1D system employed here serves as an example of a TEM-based chemical nanotomography method that could be extended to other materials, including beam-sensitive soft materials.

  18. Structural and Chemical Analysis of Gadolinium Halides Encapsulated within WS 2 Nanotubes

    KAUST Repository

    Anumol, E A; Enyashin, Andrey; Batra, Nitin M; Da Costa, Pedro M. F. J.; Francis, Leonard Deepak

    2016-01-01

    The hollow cavities of nanotubes could serve as templates for the growth of size- and shape-confined functional nanostructures, giving rise to novel materials and properties. In this work, considering their potential application as MRI contrast agents, gadolinium halides are encapsulated within the hollow cavities of inorganic nanotubes of WS2 by capillary filling to obtain GdX3@WS2 nanotubes (where X = Cl, Br or I and @ means encapsulated in). Aberration corrected scanning/transmission electron microscopy (S/TEM) and spectroscopy is employed to understand the morphology and composition of the GdI3@WS2 nanotubes. The three dimensional morphology is studied with STEM tomography but understanding the compositional information is a non-trivial matter due to the presence of multiple high atomic number elements. Therefore, energy dispersive X-ray spectroscopy (EDS) tomography was employed revealing the three dimensional chemical composition. Molecular dynamics simulations of the filling procedure shed light into the mechanics behind the formation of the confined gadolinium halide crystals. The quasi-1D system employed here serves as an example of a TEM-based chemical nanotomography method that could be extended to other materials, including beam-sensitive soft materials.

  19. Methods of chemical and phase composition analysis of gallstones

    Science.gov (United States)

    Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.

    2017-11-01

    This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.

  20. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  1. Chemical allergy in humans

    DEFF Research Database (Denmark)

    Kimber, Ian; Basketter, David A; Thyssen, Jacob P

    2014-01-01

    Abstract There is considerable interest in the immunobiological processes through which the development of allergic sensitization to chemicals is initiated and orchestrated. One of the most intriguing issues is the basis for the elicitation by chemical sensitizers of different forms of allergic...... reaction; that is, allergic contact dermatitis or sensitization of the respiratory tract associated with occupational asthma. Studies in rodents have revealed that differential forms of allergic sensitization to chemicals are, in large part at least, a function of the selective development of discrete...... functional sub-populations of CD4(+) and CD8(+) T-lymphocytes. Evidence for a similar association of chemical allergy in humans with discrete T-lymphocyte populations is, however, limited. It is of some interest, therefore, that two recent articles from different teams of investigators have shed new light...

  2. Sampling and chemical analysis in environmental samples around Nuclear Power Plants and some environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Woo; Han, Man Jung; Cho, Seong Won; Cho, Hong Jun; Oh, Hyeon Kyun; Lee, Jeong Min; Chang, Jae Sook [KORTIC, Taejon (Korea, Republic of)

    2002-12-15

    Twelve kinds of environmental samples such as soil, seawater, underground water, etc. around Nuclear Power Plants(NPPs) were collected. Tritium chemical analysis was tried for the samples of rain water, pine-needle, air, seawater, underground water, chinese cabbage, a grain of rice and milk sampled around NPPs, and surface seawater and rain water sampled over the country. Strontium in the soil that sere sampled at 60 point of district in Korea were analyzed. Tritium were sampled at 60 point of district in Korea were analyzed. Tritium were analyzed in 21 samples of surface seawater around the Korea peninsular that were supplied from KFRDI(National Fisheries Research and Development Institute). Sampling and chemical analysis environmental samples around Kori, Woolsung, Youngkwang, Wooljin Npps and Taeduk science town for tritium and strontium analysis was managed according to plans. Succeed to KINS after all samples were tried.

  3. Inhibition of Melanogenesis Versus Antioxidant Properties of Essential Oil Extracted from Leaves of Vitex negundo Linn and Chemical Composition Analysis by GC-MS

    Directory of Open Access Journals (Sweden)

    Tsong-Min Chang

    2012-03-01

    Full Text Available This study was aimed at investigating the antimelanogenic and antioxidative properties of the essential oil extracted from leaves of V. negundo Linn and the analysis of the chemical composition of this essential oil. The efficacy of the essential oil was evaluated spectrophotometrically, whereas the volatile chemical compounds in the essential oil were analyzed by gas chromatography-mass spectrometry (GC-MS. The results revealed that the essential oil effectively suppresses murine B16F10 tyrosinase activity and decreases the amount of melanin in a dose-dependent manner. Additionally, the essential oil significantly scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS radicals, and showed potent reducing power versus metal-ion chelating properties in a dose-dependent pattern. The chemical constituents in the essential oil are sesquiterpenes (44.41%, monoterpenes (19.25%, esters (14.77%, alcohols (8.53%, aromatic compound (5.90%, ketone (4.96%, ethers (0.4% that together account for 98.22% of its chemical composition. It is predicted that the aromatic compound in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from V. negundo Linn leaves decreased melanin production in B16F10 melanoma cells and showed potent antioxidant activities. The essential oil can thereby serve as an inhibitor of melanin synthesis and could also act as a natural antioxidant.

  4. Data-Independent Acquisition-Based Quantitative Proteomic Analysis Reveals Potential Biomarkers of Kidney Cancer.

    Science.gov (United States)

    Song, Yimeng; Zhong, Lijun; Zhou, Juntuo; Lu, Min; Xing, Tianying; Ma, Lulin; Shen, Jing

    2017-12-01

    Renal cell carcinoma (RCC) is a malignant and metastatic cancer with 95% mortality, and clear cell RCC (ccRCC) is the most observed among the five major subtypes of RCC. Specific biomarkers that can distinguish cancer tissues from adjacent normal tissues should be developed to diagnose this disease in early stages and conduct a reliable prognostic evaluation. Data-independent acquisition (DIA) strategy has been widely employed in proteomic analysis because of various advantages, including enhanced protein coverage and reliable data acquisition. In this study, a DIA workflow is constructed on a quadrupole-Orbitrap LC-MS platform to reveal dysregulated proteins between ccRCC and adjacent normal tissues. More than 4000 proteins are identified, 436 of these proteins are dysregulated in ccRCC tissues. Bioinformatic analysis reveals that multiple pathways and Gene Ontology items are strongly associated with ccRCC. The expression levels of L-lactate dehydrogenase A chain, annexin A4, nicotinamide N-methyltransferase, and perilipin-2 examined through RT-qPCR, Western blot, and immunohistochemistry confirm the validity of the proteomic analysis results. The proposed DIA workflow yields optimum time efficiency and data reliability and provides a good choice for proteomic analysis in biological and clinical studies, and these dysregulated proteins might be potential biomarkers for ccRCC diagnosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mapping student thinking in chemical synthesis

    Science.gov (United States)

    Weinrich, Melissa

    In order to support the development of learning progressions about central ideas and practices in different disciplines, we need detailed analyses of the implicit assumptions and reasoning strategies that guide students' thinking at different educational levels. In the particular case of chemistry, understanding how new chemical substances are produced (chemical synthesis) is of critical importance. Thus, we have used a qualitative research approach based on individual interviews with first semester general chemistry students (n = 16), second semester organic chemistry students (n = 15), advanced undergraduates (n = 9), first year graduate students (n = 15), and PhD candidates (n = 16) to better characterize diverse students' underlying cognitive elements (conceptual modes and modes of reasoning) when thinking about chemical synthesis. Our results reveal a great variability in the cognitive resources and strategies used by students with different levels of training in the discipline to make decisions, particularly at intermediate levels of expertise. The specific nature of the task had a strong influence on the conceptual sophistication and mode of reasoning that students exhibited. Nevertheless, our data analysis has allowed us to identify common modes of reasoning and assumptions that seem to guide students' thinking at different educational levels. Our results should facilitate the development of learning progressions that help improve chemistry instruction, curriculum, and assessment.

  6. Thermal and chemical durability of nitrogen-doped carbon nanotubes

    International Nuclear Information System (INIS)

    Liu Hao; Zhang Yong; Li Ruying; Sun Xueliang; Abou-Rachid, Hakima

    2012-01-01

    Nitrogen-doped carbon nanotubes (CN x tubes) with nitrogen content of 7.6 at.% are synthesized on carbon papers. Thermal and chemical stability of the nanotubes are investigated by thermogravimetric analysis, differential scanning calorimetry and X-ray photoelectron spectroscopy techniques. The results indicate that the nitrogen can be firmly kept in the nanotubes after annealing at 300 °C in air. Under an argon atmosphere, the nitrogen would not release until 670 °C, and half of the nitrogen incorporated is released after annealing at 700 °C for 30 min. Chemical stability investigation indicates that the nitrogen incorporated in the nanotubes is very stable under the thermal and acid environment comparable to working condition of proton exchange membrane (PEM) fuel cells. Profile of the nitrogen species inside the nanotubes reveals that graphite-like nitrogen releases slower than any other kind of nitrogen in the nanotubes during the chemical stability measurement. These CN x tubes synthesized by this simple chemical vapor deposition method are expected to be suitable for many applications, such as PEM fuel cells that work under both thermal and corrosive conditions and some other mild thermal environments.

  7. XMM-Newton high-resolution spectroscopy reveals the chemical evolution of M 87

    NARCIS (Netherlands)

    Werner, N.; Boehringer, H.; Kaastra, J.S.; de Plaa, J.; Simionescu, D.; Vink, J.

    2006-01-01

    We present a study of chemical abundances in the giant elliptical galaxy M 87 using high-resolution spectra obtained with the Reflection Grating Spectrometers during two deep XMM-Newton observations. While we confirm the two-temperature structure of the inter-stellar medium (ISM) in M 87, we also

  8. High-speed image analysis reveals chaotic vibratory behaviors of pathological vocal folds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu, E-mail: yuzhang@xmu.edu.c [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Shao Jun [Shanghai EENT Hospital of Fudan University, Shanghai (China); Krausert, Christopher R. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States); Zhang Sai [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Jiang, Jack J. [Shanghai EENT Hospital of Fudan University, Shanghai (China); Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States)

    2011-01-15

    Research highlights: Low-dimensional human glottal area data. Evidence of chaos in human laryngeal activity from high-speed digital imaging. Traditional perturbation analysis should be cautiously applied to aperiodic high speed image signals. Nonlinear dynamic analysis may be helpful for understanding disordered behaviors in pathological laryngeal systems. - Abstract: Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic analysis is capable of

  9. High-speed image analysis reveals chaotic vibratory behaviors of pathological vocal folds

    International Nuclear Information System (INIS)

    Zhang Yu; Shao Jun; Krausert, Christopher R.; Zhang Sai; Jiang, Jack J.

    2011-01-01

    Research highlights: → Low-dimensional human glottal area data. → Evidence of chaos in human laryngeal activity from high-speed digital imaging. → Traditional perturbation analysis should be cautiously applied to aperiodic high speed image signals. → Nonlinear dynamic analysis may be helpful for understanding disordered behaviors in pathological laryngeal systems. - Abstract: Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic

  10. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    International Nuclear Information System (INIS)

    Scognamiglio, Viviana; Pezzotti, Italo; Pezzotti, Gianni; Cano, Juan; Manfredonia, Ivano; Buonasera, Katia; Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe; Giardi, Maria Teresa

    2012-01-01

    Highlights: ► A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. ► The sensing system employ an array of biological recognition elements. ► Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. ► The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 μM and 4.5 μM, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 μM and 35 μM respectively, with an RSD% less than 5%.

  11. How to tackle chemical communication? Relative proportions versus semiquantitative determination of compounds in lizard chemical secretions.

    Science.gov (United States)

    García-Roa, Roberto; Sáiz, Jorge; Gómara, Belén; López, Pilar; Martín, José

    2018-02-01

    Knowledge about chemical communication in some vertebrates is still relatively limited. Squamates are a glaring example of this, even when recent evidences indicate that scents are involved in social and sexual interactions. In lizards, where our understanding of chemical communication has considerably progressed in the last few years, many questions about chemical interactions remain unanswered. A potential reason for this is the inherent complexity and technical limitations that some methodologies embody when analyzing the compounds used to convey information. We provide here a straightforward procedure to analyze lizard chemical secretions based on gas chromatography coupled to mass spectrometry that uses an internal standard for the semiquantification of compounds. We compare the results of this method with those obtained by the traditional procedure of calculating relative proportions of compounds. For such purpose, we designed two experiments to investigate if these procedures allowed revealing changes in chemical secretions 1) when lizards received previously a vitamin dietary supplementation or 2) when the chemical secretions were exposed to high temperatures. Our results show that the procedure based on relative proportions is useful to describe the overall chemical profile, or changes in it, at population or species levels. On the other hand, the use of the procedure based on semiquantitative determination can be applied when the target of study is the variation in one or more particular compounds of the sample, as it has proved more accurate detecting quantitative variations in the secretions. This method would reveal new aspects produced by, for example, the effects of different physiological and climatic factors that the traditional method does not show.

  12. Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhen, Shoumin; Dong, Kun; Deng, Xiong; Zhou, Jiaxing; Xu, Xuexin; Han, Caixia; Zhang, Wenying; Xu, Yanhao; Wang, Zhimin; Yan, Yueming

    2016-08-01

    Metabolites in wheat grains greatly influence nutritional values. Wheat provides proteins, minerals, B-group vitamins and dietary fiber to humans. These metabolites are important to human health. However, the metabolome of the grain during the development of bread wheat has not been studied so far. In this work the first dynamic metabolome of the developing grain of the elite Chinese bread wheat cultivar Zhongmai 175 was analyzed, using non-targeted gas chromatography/mass spectrometry (GC/MS) for metabolite profiling. In total, 74 metabolites were identified over the grain developmental stages. Metabolite-metabolite correlation analysis revealed that the metabolism of amino acids, carbohydrates, organic acids, amines and lipids was interrelated. An integrated metabolic map revealed a distinct regulatory profile. The results provide information that can be used by metabolic engineers and molecular breeders to improve wheat grain quality. The present metabolome approach identified dynamic changes in metabolite levels, and correlations among such levels, in developing seeds. The comprehensive metabolic map may be useful when breeding programs seek to improve grain quality. The work highlights the utility of GC/MS-based metabolomics, in conjunction with univariate and multivariate data analysis, when it is sought to understand metabolic changes in developing seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Analysis of clothing and urine from Moscow theatre siege casualties reveals carfentanil and remifentanil use.

    Science.gov (United States)

    Riches, James R; Read, Robert W; Black, Robin M; Cooper, Nicholas J; Timperley, Christopher M

    2012-01-01

    On October 26, 2002, Russian Special Forces deployed a chemical aerosol against Chechen terrorists to rescue hostages in the Dubrovka theatre. Its use confirmed Russian military interest in chemicals with effects on personnel and caused 125 deaths through a combination of the aerosol and inadequate medical care. This study provides evidence from liquid chromatography-tandem mass spectrometry analysis of extracts of clothing from two British survivors, and urine from a third survivor, that the aerosol comprised a mixture of two anaesthetics--carfentanil and remifentanil--whose relative proportions this study was unable to identify. Carfentanil and remifentanil were found on a shirt sample and a metabolite called norcarfentanil was found in a urine sample. This metabolite probably originated from carfentanil.

  14. Experimental and numerical reaction analysis on sodium-water chemical reaction field

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2015-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using an elementary reaction analysis. A quasi one-dimensional flame model is applied to a sodium-water counter-flow reaction field. The analysis contains 25 elementary reactions, which consist of 17 H_2-O_2 and 8 Na-H_2O reactions. Temperature and species concentrations in the counter-flow reaction field were measured using laser diagnostics such as LIF and CARS. The main reaction in the experimental conditions is Na+H_2O → NaOH+H and OH is produced by H_2O+H → H_2+OH. It is demonstrated that the reaction model in this study well explains the structure of the sodium-water counter-flow diffusion flame. (author)

  15. Chemical investigation, isolation and structural analysis of flavones from primula veris

    International Nuclear Information System (INIS)

    Huck, Ch.

    1998-01-01

    The chemical investigation, isolation and structural analysis of six flavones present in flowers of Primula veris is described. Sample preparation of substances G from Primula veris comprised methanol extraction, low pressure chromatography on aluminum oxide, medium pressure chromatography on silica gel, and RP-HPLC on ODS. The six flavones, which were identified by their blue fluorescence after separation by thin layer chromatography, were named substance G1, G2, G3, G4, G5 and G6 according to their Rf-values. Fractions were collected during each of the separation processes and the fractions were analyzed by NP-HPLC and RP-HPLC. Higher resolution was obtained by NP-HPLC on a silica gel column and an n-hexane/ isopropanol (92:8 v/v) eluent, where 6 peaks (G1, G2, G3, G4, G5 and G6) were obtained. Diode array detection from 190 - 350 nm was utilized for the recording of UV-spectra for peak identification and peak-purity-analysis. The structures of Substance G4 and Substance G6 were established on the basis of UV, NMR, EI-MS and APCI-MS. The structure of the isolated substance G4 was verified by chemical synthesis. (author)

  16. Fingerprint enhancement revisited and the effects of blood enhancement chemicals on subsequent profiler Plus fluorescent short tandem repeat DNA analysis of fresh and aged bloody fingerprints.

    Science.gov (United States)

    Frégeau, C J; Germain, O; Fourney, R M

    2000-03-01

    This study was aimed at determining the effect of seven blood enhancement reagents on the subsequent Profiler Plus fluorescent STR DNA analysis of fresh or aged bloody fingerprints deposited on various porous and nonporous surfaces. Amido Black, Crowle's Double Stain. 1,8-diazafluoren-9-one (DFO), Hungarian Red, leucomalachite green, luminol and ninhydrin were tested on linoleum, glass, metal, wood (pine, painted white), clothing (85% polyester/15% cotton, 65% polyester/35% cotton, and blue denim) and paper (Scott 2-ply and Xerox-grade). Preliminary experiments were designed to determine the optimal blood dilutions to use to ensure a DNA typing result following chemical enhancement. A 1:200 blood dilution deposited on linoleum and enhanced with Crowle's Double Stain generated enough DNA for one to two rounds of Profiler Plus PCR amplification. A comparative study of the DNA yields before and after treatment indicated that the quantity of DNA recovered from bloody fingerprints following enhancement was reduced by a factor of 2 to 12. Such a reduction in the DNA yields could potentially compromise DNA typing analysis in the case of small stains. The blood enhancement chemicals selected were also evaluated for their capability to reveal bloodmarks on the various porous and nonporous surfaces chosen in this study. Luminol. Amido Black and Crowle's Double Stain showed the highest sensitivity of all seven chemicals tested and revealed highly diluted (1:200) bloody fingerprints. Both luminol and Amido Black produced excellent results on both porous and nonporous surfaces, but Crowle's Double Stain failed to produce any results on porous substrates. Hungarian Red, DFO, leucomalachite green and ninhydrin showed lower sensitivities. Enhancement of bloodmarks using any of the chemicals selected, and short-term exposure to these same chemicals (i.e., less than 54 days), had no adverse effects on the PCR amplification of the nine STR systems surveyed (D3S 1358, HumvWA, Hum

  17. Molecular structure, vibrational analysis (IR and Raman) and quantum chemical investigations of 1-aminoisoquinoline

    Science.gov (United States)

    Sivaprakash, S.; Prakash, S.; Mohan, S.; Jose, Sujin P.

    2017-12-01

    Quantum chemical calculations of energy and geometrical parameters of 1-aminoisoquinoline [1-AIQ] were carried out by using DFT/B3LYP method using 6-311G (d,p), 6-311G++(d,p) and cc-pVTZ basis sets. The vibrational wavenumbers were computed for the energetically most stable, optimized geometry. The vibrational assignments were performed on the basis of potential energy distribution (PED) using VEDA program. The NBO analysis was done to investigate the intra molecular charge transfer of the molecule. The frontier molecular orbital (FMO) analysis was carried out and the chemical reactivity descriptors of the molecule were studied. The Mulliken charge analysis, molecular electrostatic potential (MEP), HOMO-LUMO energy gap and the related properties were also investigated at B3LYP level. The absorption spectrum of the molecule was studied from UV-Visible analysis by using time-dependent density functional theory (TD-DFT). Fourier Transform Infrared spectrum (FT-IR) and Raman spectrum of 1-AIQ compound were analyzed and recorded in the range 4000-400 cm-1 and 3500-100 cm-1 respectively. The experimentally determined wavenumbers were compared with those calculated theoretically and they complement each other.

  18. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  19. Isolation and chemical analysis of nanoparticles from English ivy (Hedera helix L.)

    Science.gov (United States)

    Lenaghan, Scott C.; Burris, Jason N.; Chourey, Karuna; Huang, Yujian; Xia, Lijin; Lady, Belinda; Sharma, Ritin; Pan, Chongle; LeJeune, Zorabel; Foister, Shane; Hettich, Robert L.; Stewart, C. Neal; Zhang, Mingjun

    2013-01-01

    Bio-inspiration for novel adhesive development has drawn increasing interest in recent years with the discovery of the nanoscale morphology of the gecko footpad and mussel adhesive proteins. Similar to these animal systems, it was discovered that English ivy (Hedera helix L.) secretes a high strength adhesive containing uniform nanoparticles. Recent studies have demonstrated that the ivy nanoparticles not only contribute to the high strength of this adhesive, but also have ultraviolet (UV) protective abilities, making them ideal for sunscreen and cosmetic fillers, and may be used as nanocarriers for drug delivery. To make these applications a reality, the chemical nature of the ivy nanoparticles must be elucidated. In the current work, a method was developed to harvest bulk ivy nanoparticles from an adventitious root culture system, and the chemical composition of the nanoparticles was analysed. UV/visible spectroscopy, inductively coupled plasma mass spectrometry, Fourier transform infrared spectroscopy and electrophoresis were used in this study to identify the chemical nature of the ivy nanoparticles. Based on this analysis, we conclude that the ivy nanoparticles are proteinaceous. PMID:23883948

  20. The challenge of predicting problematic chemicals using a decision analysis tool: Triclosan as a case study.

    Science.gov (United States)

    Perez, Angela L; Gauthier, Alison M; Ferracini, Tyler; Cowan, Dallas M; Kingsbury, Tony; Panko, Julie

    2017-01-01

    Manufacturers lack a reliable means for determining whether a chemical will be targeted for deselection from their supply chain. In this analysis, 3 methods for determining whether a specific chemical (triclosan) would meet the criteria necessary for being targeted for deselection are presented. The methods included a list-based approach, use of a commercially available chemical assessment software tool run in 2 modes, and a public interest evaluation. Our results indicated that triclosan was included on only 6 of the lists reviewed, none of which were particularly influential in chemical selection decisions. The results from the chemical assessment tool evaluations indicated that human and ecological toxicity for triclosan is low and received scores indicating that the chemical would be considered of low concern. However, triclosan's peak public interest tracked several years in advance of increased regulatory scrutiny of this chemical suggesting that public pressure may have been influential in deselection decisions. Key data gaps and toxicity endpoints not yet regulated such as endocrine disruption potential or phototoxicity, but that are important to estimate the trajectory for deselection of a chemical, are discussed. Integr Environ Assess Manag 2017;13:198-207. © 2016 SETAC. © 2016 SETAC.

  1. Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite under Ambient Conditions

    KAUST Repository

    Huang, Weixin; Manser, Joseph S.; Kamat, Prashant V.; Ptasinska, Sylwia

    2016-01-01

    © 2015 American Chemical Society. The surface composition and morphology of CH3NH3PbI3 perovskite films stored for several days under ambient conditions were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction techniques. Chemical analysis revealed the loss of CH3NH3 + and I- species from CH3NH3PbI3 and its subsequent decomposition into lead carbonate, lead hydroxide, and lead oxide. After long-term storage under ambient conditions, morphological analysis revealed the transformation of randomly distributed defects and cracks, initially present in the densely packed crystalline structure, into relatively small grains. In contrast to PbI2 powder, CH3NH3PbI3 exhibited a different degradation trend under ambient conditions. Therefore, we propose a plausible CH3NH3PbI3 decomposition pathway that explains the changes in the chemical composition of CH3NH3PbI3 under ambient conditions. In addition, films stored under such conditions were incorporated into photovoltaic cells, and their performances were examined. The chemical changes in the decomposed films were found to cause a significant decrease in the photovoltaic efficiency of CH3NH3PbI3.

  2. Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite under Ambient Conditions

    KAUST Repository

    Huang, Weixin

    2016-01-12

    © 2015 American Chemical Society. The surface composition and morphology of CH3NH3PbI3 perovskite films stored for several days under ambient conditions were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction techniques. Chemical analysis revealed the loss of CH3NH3 + and I- species from CH3NH3PbI3 and its subsequent decomposition into lead carbonate, lead hydroxide, and lead oxide. After long-term storage under ambient conditions, morphological analysis revealed the transformation of randomly distributed defects and cracks, initially present in the densely packed crystalline structure, into relatively small grains. In contrast to PbI2 powder, CH3NH3PbI3 exhibited a different degradation trend under ambient conditions. Therefore, we propose a plausible CH3NH3PbI3 decomposition pathway that explains the changes in the chemical composition of CH3NH3PbI3 under ambient conditions. In addition, films stored under such conditions were incorporated into photovoltaic cells, and their performances were examined. The chemical changes in the decomposed films were found to cause a significant decrease in the photovoltaic efficiency of CH3NH3PbI3.

  3. Crystal-Chemical Analysis of Soil at Rocknest, Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analysis on Martian soil [1] at Rocknest in Gale Crater. In particular, crystalline phases from scoop 5 were identified and analyzed with the Rietveld method [2]. Refined unit-cell parameters are reported in Table 1. Comparing these unit-cell parameters with those in the literature provides an estimate of the chemical composition of the crystalline phases. For instance, Fig. 1 shows the Mg-content of Fa-Fo olivine as a function of the b unit-cell parameter using literature data. Our refined b parameter is indicated by the black triangle.

  4. Analysis of a Stochastic Chemical System Close to a SNIPER Bifurcation of Its Mean-Field Model

    KAUST Repository

    Erban, Radek

    2009-01-01

    A framework for the analysis of stochastic models of chemical systems for which the deterministic mean-field description is undergoing a saddle-node infinite period (SNIPER) bifurcation is presented. Such a bifurcation occurs, for example, in the modeling of cell-cycle regulation. It is shown that the stochastic system possesses oscillatory solutions even for parameter values for which the mean-field model does not oscillate. The dependence of the mean period of these oscillations on the parameters of the model (kinetic rate constants) and the size of the system (number of molecules present) are studied. Our approach is based on the chemical Fokker-Planck equation. To gain some insight into the advantages and disadvantages of the method, a simple one-dimensional chemical switch is first analyzed, and then the chemical SNIPER problem is studied in detail. First, results obtained by solving the Fokker-Planck equation numerically are presented. Then an asymptotic analysis of the Fokker-Planck equation is used to derive explicit formulae for the period of oscillation as a function of the rate constants and as a function of the system size. © 2009 Society for Industrial and Applied Mathematics.

  5. Control charts technique - a tool to data analysis for chemical experiments

    International Nuclear Information System (INIS)

    Yadav, M.B.; Venugopal, V.

    1999-01-01

    A procedure using control charts technique has been developed to analyse data of a chemical experiment which was conducted to assign a value to uranium content in Rb 2 U(SO 4 ) 3 . A value of (34.164 ± 0.031)% has been assigned against (34.167 ± 0.042)% already assigned by analysis of variance (ANOVA) technique. These values do not differ significantly. Merits and demerits of the two techniques have been discussed. (author)

  6. Surface properties of hydrogenated nanodiamonds: a chemical investigation.

    Science.gov (United States)

    Girard, H A; Petit, T; Perruchas, S; Gacoin, T; Gesset, C; Arnault, J C; Bergonzo, P

    2011-06-28

    Hydrogen terminations (C-H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development. This journal is © the Owner Societies 2011

  7. Practical chemical analysis of Pt and Pd based heterogeneous catalysts with hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, H., E-mail: YOSHIKAWA.Hideki@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Matolínová, I.; Matolín, V. [Charles University in Prague, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8 (Czech Republic)

    2013-10-15

    Highlights: •Hard X-ray photoelectron spectroscopy (HAXPES) enables interface analysis of catalyst. •HAXPES enables overall analysis of porous film of Pt-doped CeO{sub 2} and related catalyst. •HAXPES enables analysis of trace elements for Pd and Pt{sub 3}Ni nanoparticle catalysts. -- Abstract: Interfacial properties including configuration, porosity, chemical states, and atomic diffusion greatly affect the performance of supported heterogeneous catalysts. Hard X-ray photoelectron spectroscopy (HAXPES) can be used to analyze the interfaces of heterogeneous catalysts because of its large information depth of more than 20 nm. We use HAXPES to examine Pt-doped CeO{sub 2} and related thin film catalysts evaporated on Si, carbon, and carbon nanotube substrates, because Pt-doped CeO{sub 2} has great potential as a noble metal-based heterogeneous catalyst for fuel cells. The HAXPES measurements clarify that the dopant material, substrate material, and surface pretreatment of substrate are important parameters that affect the interfacial properties of Pt-doped CeO{sub 2} and related thin film catalysts. Another advantage of HAXPES measurement of heterogeneous catalysts is that it can be used for chemical analysis of trace elements by detecting photoelectrons from deep core levels, which have large photoionization cross-sections in the hard X-ray region. We use HAXPES for chemical analysis of trace elements in Pd nanoparticle catalysts immobilized on sulfur-terminated substrates and Pt{sub 3}Ni nanoparticle catalysts enveloped by dendrimer molecules.

  8. Quantum chemical and spectroscopic analysis of calcium hydroxyapatite and related materials

    International Nuclear Information System (INIS)

    Khavryuchenko, V.D.; Khavryuchenko, O.V.; Lisnyak, V.V.

    2007-01-01

    Amorphous calcium hydroxyapatite was examined by vibrational spectroscopy (Raman and infra-red (IR)) and quantum chemical simulation techniques. The structures and vibrational (IR, Raman and inelastic neutron scattering) spectra of PO 4 3- ion, Ca 3 (PO 4 ) 2 , [Ca 3 (PO 4 ) 2 ] 3 , Ca 5 (PO 4 ) 3 OH, CaHPO 4 , [CaHPO 4 ] 2 , Ca 3 (PO 4 ) 2 .H 2 O, Ca 3 (PO 4 ) 2 .2H 2 O and Ca 3 (PO 4 ) 2 .3H 2 O clusters were quantum chemically simulated at ab initio and semiempirical levels of approximation. A complete coordinate analysis of the vibrational spectra was performed. The comparison of the theoretically simulated spectra with the experimental ones allows to identify correctly the phase composition of the amorphous calcium hydroxyapatite and related materials. The shape of the bands in the IR spectra of the hydroxoapatite can be used in order to characterize the structural properties of the material, e.g., the PO 4 3- ion status, the degree of hydrolysis of the material and the presence of hydrolysis products. - Graphical abstract: The structure of the quantum chemically optimized Ca 5 (PO 4 ) 3 (OH) cluster, which was used for vibrations spectra simulation

  9. Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1.

    Science.gov (United States)

    Durek, Thomas; Vetter, Irina; Wang, Ching-I Anderson; Motin, Leonid; Knapp, Oliver; Adams, David J; Lewis, Richard J; Alewood, Paul F

    2013-01-01

    Scorpion α-toxins are invaluable pharmacological tools for studying voltage-gated sodium channels, but few structure-function studies have been undertaken due to their challenging synthesis. To address this deficiency, we report a chemical engineering strategy based upon native chemical ligation. The chemical synthesis of α-toxin OD1 was achieved by chemical ligation of three unprotected peptide segments. A high resolution X-ray structure (1.8 Å) of synthetic OD1 showed the typical βαββ α-toxin fold and revealed important conformational differences in the pharmacophore region when compared with other α-toxin structures. Pharmacological analysis of synthetic OD1 revealed potent α-toxin activity (inhibition of fast inactivation) at Nav1.7, as well as Nav1.4 and Nav1.6. In addition, OD1 also produced potent β-toxin activity at Nav1.4 and Nav1.6 (shift of channel activation in the hyperpolarizing direction), indicating that OD1 might interact at more than one site with Nav1.4 and Nav1.6. Investigation of nine OD1 mutants revealed that three residues in the reverse turn contributed significantly to selectivity, with the triple OD1 mutant (D9K, D10P, K11H) being 40-fold more selective for Nav1.7 over Nav1.6, while OD1 K11V was 5-fold more selective for Nav1.6 than Nav1.7. This switch in selectivity highlights the importance of the reverse turn for engineering α-toxins with altered selectivity at Nav subtypes.

  10. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells

    DEFF Research Database (Denmark)

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas

    2016-01-01

    to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially...... kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified...... as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human...

  11. Recent adaptive events in human brain revealed by meta-analysis of positively selected genes.

    Directory of Open Access Journals (Sweden)

    Yue Huang

    Full Text Available BACKGROUND AND OBJECTIVES: Analysis of positively-selected genes can help us understand how human evolved, especially the evolution of highly developed cognitive functions. However, previous works have reached conflicting conclusions regarding whether human neuronal genes are over-represented among genes under positive selection. METHODS AND RESULTS: We divided positively-selected genes into four groups according to the identification approaches, compiling a comprehensive list from 27 previous studies. We showed that genes that are highly expressed in the central nervous system are enriched in recent positive selection events in human history identified by intra-species genomic scan, especially in brain regions related to cognitive functions. This pattern holds when different datasets, parameters and analysis pipelines were used. Functional category enrichment analysis supported these findings, showing that synapse-related functions are enriched in genes under recent positive selection. In contrast, immune-related functions, for instance, are enriched in genes under ancient positive selection revealed by inter-species coding region comparison. We further demonstrated that most of these patterns still hold even after controlling for genomic characteristics that might bias genome-wide identification of positively-selected genes including gene length, gene density, GC composition, and intensity of negative selection. CONCLUSION: Our rigorous analysis resolved previous conflicting conclusions and revealed recent adaptation of human brain functions.

  12. A standard analysis method (SAM) for the automated analysis of polychlorinated biphenyls (PCBs) in soils using the chemical analysis automation (CAA) paradigm: validation and performance

    International Nuclear Information System (INIS)

    Rzeszutko, C.; Johnson, C.R.; Monagle, M.; Klatt, L.N.

    1997-10-01

    The Chemical Analysis Automation (CAA) program is developing a standardized modular automation strategy for chemical analysis. In this automation concept, analytical chemistry is performed with modular building blocks that correspond to individual elements of the steps in the analytical process. With a standardized set of behaviors and interactions, these blocks can be assembled in a 'plug and play' manner into a complete analysis system. These building blocks, which are referred to as Standard Laboratory Modules (SLM), interface to a host control system that orchestrates the entire analytical process, from sample preparation through data interpretation. The integrated system is called a Standard Analysis Method (SAME). A SAME for the automated determination of Polychlorinated Biphenyls (PCB) in soils, assembled in a mobile laboratory, is undergoing extensive testing and validation. The SAME consists of the following SLMs: a four channel Soxhlet extractor, a High Volume Concentrator, column clean up, a gas chromatograph, a PCB data interpretation module, a robot, and a human- computer interface. The SAME is configured to meet the requirements specified in U.S. Environmental Protection Agency's (EPA) SW-846 Methods 3541/3620A/8082 for the analysis of pcbs in soils. The PCB SAME will be described along with the developmental test plan. Performance data obtained during developmental testing will also be discussed

  13. Meta-analysis of toxicity and teratogenicity of 133 chemicals from zebrafish developmental toxicity studies

    Science.gov (United States)

    Zebrafish developmental toxicity testing is an emerging field, which faces considerable challenges regarding data meta-analysis and the establishment of standardized test protocols. Here, we present an initial correlation study on toxicity of 133 chemicals based on data in the li...

  14. Analysis reveals potential rangeland impacts if Williamson Act eliminated

    Directory of Open Access Journals (Sweden)

    William C. Wetzel

    2012-10-01

    Full Text Available California budget cuts have resulted in dramatic reductions in state funding for the Williamson Act, a land protection program that reduces property taxes for the owners of 15 million acres of California farms and rangeland. With state reimbursements to counties eliminated, the decision to continue Williamson Act contracts lies with individual counties. We investigated the consequences of eliminating the Williamson Act, using a geospatial analysis and a mail questionnaire asking ranchers for plans under a hypothetical elimination scenario. The geospatial analysis revealed that 72% of rangeland parcels enrolled in Williamson Act contracts contained habitat important for statewide conservation goals. Presented with the elimination scenario, survey respondents reported an intention to sell 20% of their total 496,889 acres. The tendency of survey participants to respond that they would sell land was highest among full-time ranchers with low household incomes and without off-ranch employment. A majority (76% of the ranchers who reported that they would sell land predicted that the buyers would develop it for nonagricultural uses, suggesting substantial changes to California's landscape in a future without the Williamson Act.

  15. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides

    International Nuclear Information System (INIS)

    Biesinger, M C; Payne, B P; McIntryre, N S; Hart, B R; Lau, L Wm; Grosvenor, A P; Smart, R StC

    2008-01-01

    Practical quantitative chemical state X-ray photoelectron spectroscopy (XPS) analysis of first row transition metals, oxides and hydroxides is challenging due to the complexity of their M 2p spectra. Complex multiplet splitting, shake-up and plasmon loss structure can play a role in the interpretation of the chemical states present. This paper will show practical curve fitting procedures for the quantitative measurement of different chemical states for metal oxides and hydroxides from a survey of transition metals. It will also discuss some of the limitations and pitfalls present as well as give practical examples of their successful use. These curve-fitting procedures are based on 1) standard spectra from quality reference samples, 2) a survey of appropriate literature databases and/or a compilation of literature references, 3) fitting of multiplet split spectra based on spectra of numerous reference materials and theoretical modelling, 4) spectral subtractions routines, again using reference spectra, and 5) specific literature references where fitting procedures are available

  16. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, M C; Payne, B P; McIntryre, N S [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Hart, B R; Lau, L Wm [Surface Science Western, Room G1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Grosvenor, A P [Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada); Smart, R StC [ACeSSS, Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes, SA 5095 (Australia)], E-mail: biesingr@uwo.ca

    2008-03-15

    Practical quantitative chemical state X-ray photoelectron spectroscopy (XPS) analysis of first row transition metals, oxides and hydroxides is challenging due to the complexity of their M 2p spectra. Complex multiplet splitting, shake-up and plasmon loss structure can play a role in the interpretation of the chemical states present. This paper will show practical curve fitting procedures for the quantitative measurement of different chemical states for metal oxides and hydroxides from a survey of transition metals. It will also discuss some of the limitations and pitfalls present as well as give practical examples of their successful use. These curve-fitting procedures are based on 1) standard spectra from quality reference samples, 2) a survey of appropriate literature databases and/or a compilation of literature references, 3) fitting of multiplet split spectra based on spectra of numerous reference materials and theoretical modelling, 4) spectral subtractions routines, again using reference spectra, and 5) specific literature references where fitting procedures are available.

  17. A large scale analysis of information-theoretic network complexity measures using chemical structures.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available This paper aims to investigate information-theoretic network complexity measures which have already been intensely used in mathematical- and medicinal chemistry including drug design. Numerous such measures have been developed so far but many of them lack a meaningful interpretation, e.g., we want to examine which kind of structural information they detect. Therefore, our main contribution is to shed light on the relatedness between some selected information measures for graphs by performing a large scale analysis using chemical networks. Starting from several sets containing real and synthetic chemical structures represented by graphs, we study the relatedness between a classical (partition-based complexity measure called the topological information content of a graph and some others inferred by a different paradigm leading to partition-independent measures. Moreover, we evaluate the uniqueness of network complexity measures numerically. Generally, a high uniqueness is an important and desirable property when designing novel topological descriptors having the potential to be applied to large chemical databases.

  18. Prediction of proton chemical shifts in RNA - Their use in structure refinement and validation

    International Nuclear Information System (INIS)

    Cromsigt, Jenny A.M.T.C.; Hilbers, Cees W.; Wijmenga, Sybren S.

    2001-01-01

    An analysis is presented of experimental versus calculated chemical shifts of the non-exchangeable protons for 28 RNA structures deposited in the Protein Data Bank, covering a wide range of structural building blocks. We have used existing models for ring-current and magnetic-anisotropy contributions to calculate the proton chemical shifts from the structures. Two different parameter sets were tried: (i) parameters derived by Ribas-Prado and Giessner-Prettre (GP set) [(1981) J. Mol. Struct.,76, 81-92.]; (ii) parameters derived by Case [(1995) J. Biomol. NMR, 6, 341-346]. Both sets lead to similar results. The detailed analysis was carried using the GP set. The root-mean-square-deviation between the predicted and observed chemical shifts of the complete database is 0.16 ppm with a Pearson correlation coefficient of 0.79. For protons in the usually well-defined A-helix environment these numbers are, 0.08 ppm and 0.96, respectively. As a result of this good correspondence, a reliable analysis could be made of the structural dependencies of the 1 H chemical shifts revealing their physical origin. For example, a down-field shift of either H2' or H3' or both indicates a high-syn/syn χ-angle. In an A-helix it is essentially the 5'-neighbor that affects the chemical shifts of H5, H6 and H8 protons. The H5, H6 and H8 resonances can therefore be assigned in an A-helix on the basis of their observed chemical shifts. In general, the chemical shifts were found to be quite sensitive to structural changes. We therefore propose that a comparison between calculated and observed 1 H chemical shifts is a good tool for validation and refinement of structures derived from NOEs and J-couplings

  19. Refractometry and interferometry in chemical analysis; Refractometrie et interferometrie en analyse chimique

    Energy Technology Data Exchange (ETDEWEB)

    Veret, C [Faculte des Sciences de Paris, 75 (France)

    2000-03-01

    In vacuum, an electromagnetic radiation is propagated at a constant velocity. But, when it has to pass through a physical medium, it is submitted to different interactions (for instance: absorption, diffusion, refraction, polarization, dispersion, fluorescence) which lead to a modification of its propagation. In the frequency ranges of the radiation for which the absorption is not very important, the modifications of the propagation velocity of a radiation can bring data on the nature and/or the physical conditions (pressure, temperature) of a medium, whatever its state be: gas, liquid or solid. Thus, the absolute refractive index of a medium in relation to vacuum is defined as the ratio c/v of the propagation velocity c of a monochromatic electromagnetic radiation in vacuum at its velocity v in this medium. The photonic refractometry (field of ultraviolet, visible and infrared radiations) is the set of the measure techniques of the refractive indexes having a role in chemical analysis. The refractometry measures can only be applied to media which are optically transparent. After having described these techniques, the author presents their uses in chemical analysis. (O.M.)

  20. Chemical analysis of useful trace elements in sea water

    International Nuclear Information System (INIS)

    Katoh, Shunsaku; Fujii, Ayako; Miyai, Yoshitaka; Sakane, Kohji; Ogata, Noboru.

    1983-01-01

    The methods for the analysis of useful trace elements in sea water which have been tried so far are reviewed, and these methods are described briefly from the standpoint of studying the collection of resources. Ag and Au can be determined by concentrating sea water by ion-exchange method, solvent extraction method and electrodeposition method, then the elements are measured quantitatively by activation analysis and atomic absorption spectrochemical analysis. Sr, B and Li, which exist in relatively high concentration in sea water, are determined easily by atomic absorption spectrochemical analysis and absorption spectrometry. U, Mo and V are measured suitably by concentrating the elements by coprecipitation or solvent extraction method, and measuring by fluorescence analysis and arsenazo-3 method for U and through graphite-atomic absorption analysis for Mo and V. It has been revealed that the concentration of Ag and Au in sea water is extremely low, accordingly the recovery study is not conducted recently. On the other hand, the adsorption method using hydrated titanium oxide and amidoxim adsorbents for U, Mo and V, the adsorption method using aluminum adsorbent for Li, and the adsorption method using magnesium oxide and zirconium hydroxide and the solvent extraction method for B are hopeful to recover these elements. (Yoshitake, I.)

  1. The approach to risk analysis in three industries: nuclear power, space systems, and chemical process

    International Nuclear Information System (INIS)

    Garrick, B.J.

    1988-01-01

    The aerospace, nuclear power, and chemical processing industries are providing much of the incentive for the development and application of advanced risk analysis techniques to engineered systems. Risk analysis must answer three basic questions: What can go wrong? How likely is it? and What are the consequences? The result of such analyses is not only a quantitative answer to the question of 'What is the risk', but, more importantly, a framework for intelligent and visible risk management. Because of the societal importance of the subject industries and the amount of risk analysis activity involved in each, it is interesting to look for commonalities, differences, and, hopefully, a basis for some standardization. Each industry has its strengths: the solid experience base of the chemical industry, the extensive qualification and testing procedures of the space industry, and the integrative and quantitative risk and reliability methodologies developed for the nuclear power industry. In particular, most advances in data handling, systems interaction modeling, and uncertainty analysis have come from the probabilistic risk assessment work in the nuclear safety field. In the final analysis, all three industries would greatly benefit from a more deliberate technology exchange program in the rapidly evolving discipline of quantitative risk analysis. (author)

  2. Analysis of chemical signatures of alkaliphiles using fatty acid methyl ester analysis

    Directory of Open Access Journals (Sweden)

    Basha Sreenivasulu

    2017-01-01

    Full Text Available Background: Fatty acids occur in nearly all living organisms as the important predominant constituents of lipids. While all fatty acids have essentially the same chemical nature, they are an extremely diverse group of compounds. Materials and Methods: To test the hypothesis, fatty acids of alkaliphiles isolates, Bacillus subtilis SVUNM4, Bacillus licheniformis SVUNM8, Bacillus methylotrohicus SVUNM9, and Paenibacillus dendritiformis SVUNM11, were characterized compared using gas chromatography-mass spectrometry (GC-MS analysis. Results: The content of investigated ten fatty acids, 1, 2-benzenedicarboxylic acid butyl 2-methylpropyl ester, phthalic acid, isobutyl 2-pentyl ester, dibutyl phthalate, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane, octamethyl, dodecamethyl, heptasiloxane 1,1,3,3,5,5,7,7,9,9,11,11,13,13-etradecamethyl, 7,15-dihydroxydehydroabietic acid, methyl ester, di (trimethylsilyl ether, hentriacontane, 2-thiopheneacetic acid, undec-2-enyl ester, obviously varied among four species, suggesting each species has its own fatty acid pattern. Conclusions: These findings demonstrated that GC-MS-based fatty acid profiling analysis provides the reliable platform to classify these four species, which is helpful for ensuring their biotechnological interest and novel chemotaxonomic.

  3. Analysis of very thin organic fibres by means of small spots electron spectroscopy for chemical analysis

    International Nuclear Information System (INIS)

    Daiser, S.M.; Cormia, R.D.; Scharpen, L.

    1985-01-01

    ESCA analysis of very thin organic fibres as small as a few micrometer diameter is now possible using the small spot X-ray capability of the SSX100 ESCA system. The sampling method involves suspending the material in the SSX100 chamber, and illuminating it with a monochromatized X-ray beam of 150-300 μm diameter. From the small spot ESCA spectra one can determine the chemical character of the organic layer and the thickness. (Author)

  4. Conformational analysis, spectroscopic, structure-activity relations and quantum chemical simulation studies of 4-(trifluoromethyl)benzylamine

    Science.gov (United States)

    Arjunan, V.; Devi, L.; Mohan, S.

    2018-05-01

    The FT-IR and FT-Raman spectra of 4-trifluoromethylbenzylamine (TFMBA) have been recorded in the range 4000-450 and 4000-100 cm-1 respectively. The conformational analysis of the compound has been carried out to attain stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers obtained theoretically from the B3LYP gradient calculations employing the standard high level 6-311++G** and cc-pVTZ basis sets for the optimised geometry of the compound. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The 1H (400 MHz; CDCl3) and 13C (100 MHz; CDCl3) nuclear magnetic resonance (NMR) spectra were also recorded. The electronic properties, highest occupied molecular orbital and lowest unoccupied molecular orbital energies are measured by DFT approach. The charges of the atoms by natural bond orbital (NBO) analysis are determined by B3LYP/cc-pVTZ method. The structure-chemical reactivity relations of the compound are determined through chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods.

  5. Physico-chemical pre-treatment for drinking water

    International Nuclear Information System (INIS)

    Hassanien, W. A. M.

    2004-08-01

    The objective of this work is to attempt to improve the quality of town water by application of alternating current, direct current and magnetic field to raw water as pre-treatment to enhance the coagulation and flocculation. The design and operation for these processes and the evaluation there of have been mentioned. Treatment generally requires application of electric current Ac or Dc (0.1-1.0 A) for residence current time 2-12 minutes, or application of magnetic field (20-400 mt). The measurement of turbidity and total suspended solids (TSS) of raw water were determined before and after treatment to obtain the efficiency of turbidity and TSS removal. Total bacteria count was determined using standard plate count method. Most probable number (MPN) technique was used to determine the number of coliform organisms that were present in water to obtain the efficiency of water purification. The results obtain revealed that treatment by Ac and Dc electric current gave turbidity removal efficiency in the range 40-81%, 17-76% and TSS in the range 37-61%, 9-57%, respectively. Coagulation of natural colloids and other material suspended in water is faster in water impacted by an electric current. When alum and polymer was used as coagulant together with Ac electric current, clarification rate was greater by 1.8-2.4 times in Damira 2001; 1.5-3.3 times by poly aluminum chloride together with Ac electric current ; 2.4-4.5 times by alum and poly diallyl dimethyl ammonium chloride together with Dc electric current in Damira 2002. The mortality efficiency of total bacteria count was 57-83% and of total coliform was 58-93% when exposed to electric current for an extended residence current times between 2 to 11 minutes. The mortality efficiency of total bacteria count was 60-85%, and of total coliform was 53-95% when exposed to current between 0.16-0.60 A at constant current time. The results obtained from physical and chemical analysis of raw water and water treated by Ac, Dc

  6. Physico-chemical pre-treatment for drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Hassanien, W A. M. [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2004-08-01

    The objective of this work is to attempt to improve the quality of town water by application of alternating current, direct current and magnetic field to raw water as pre-treatment to enhance the coagulation and flocculation. The design and operation for these processes and the evaluation there of have been mentioned. Treatment generally requires application of electric current Ac or Dc (0.1-1.0 A) for residence current time 2-12 minutes, or application of magnetic field (20-400 mt). The measurement of turbidity and total suspended solids (TSS) of raw water were determined before and after treatment to obtain the efficiency of turbidity and TSS removal. Total bacteria count was determined using standard plate count method. Most probable number (MPN) technique was used to determine the number of coliform organisms that were present in water to obtain the efficiency of water purification. The results obtain revealed that treatment by Ac and Dc electric current gave turbidity removal efficiency in the range 40-81%, 17-76% and TSS in the range 37-61%, 9-57%, respectively. Coagulation of natural colloids and other material suspended in water is faster in water impacted by an electric current. When alum and polymer was used as coagulant together with Ac electric current, clarification rate was greater by 1.8-2.4 times in Damira 2001; 1.5-3.3 times by poly aluminum chloride together with Ac electric current ; 2.4-4.5 times by alum and poly diallyl dimethyl ammonium chloride together with Dc electric current in Damira 2002. The mortality efficiency of total bacteria count was 57-83% and of total coliform was 58-93% when exposed to electric current for an extended residence current times between 2 to 11 minutes. The mortality efficiency of total bacteria count was 60-85%, and of total coliform was 53-95% when exposed to current between 0.16-0.60 A at constant current time. The results obtained from physical and chemical analysis of raw water and water treated by Ac, Dc

  7. Genomic analysis of primordial dwarfism reveals novel disease genes.

    Science.gov (United States)

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S

    2014-02-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.

  8. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scognamiglio, Viviana, E-mail: viviana.scognamiglio@mlib.ic.cnr.it [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Pezzotti, Italo; Pezzotti, Gianni; Cano, Juan; Manfredonia, Ivano [Biosensor S.r.l. - Via degli Olmetti 44 00060 Formello, Rome (Italy); Buonasera, Katia [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe [Universita di Roma Tor Vergata, Dipartimento di Scienze e Tecnologie Chimiche - Via della Ricerca Scientifica 00133, Rome (Italy); Giardi, Maria Teresa [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. Black-Right-Pointing-Pointer The sensing system employ an array of biological recognition elements. Black-Right-Pointing-Pointer Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. Black-Right-Pointing-Pointer The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 {mu}M and 4.5 {mu}M, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 {mu}M and 35 {mu}M respectively, with an RSD% less than 5%.

  9. Chemical and sequential analysis of some metals in sediments from the North Coast of the Gulf of Mexico

    International Nuclear Information System (INIS)

    Trinidad Martinez; Brenda Estanol; Miguel Angel Zuniga

    2016-01-01

    Sediments collected from the North Coast of the Gulf of Mexico got carefully mixed, dried, and finally subjected to physical and chemical analysis. Metal concentration was determined by energy dispersive X-ray fluorescence (EDXRF). Sequential chemical analysis was performed by modified TESSIER technique. Results and statistical analysis (α = 0.05) show concentrations of most elements (excepting Mn, Ca, Ga, As and Pb) in the range of those of the earth crust's values, which set a sampling zone base line. Sequential extraction shows the potential risk of mobilization of metals sequestered in particulate phases by oxidation of anoxic sediments or intense organic matter degradation. (author)

  10. Overview on Analysis of Free Metabolites for Detection of Exposure to Chemical Warfare Agents

    Directory of Open Access Journals (Sweden)

    Grigoriu Nicoleta

    2015-06-01

    Full Text Available Chemical warfare agents (CWA’s induce complex toxicological effects with major adverse consequences for those exposed. For many chemical agents there is a need for research and development of analytical toxicological methods for a rapid and certain confirmation of those exposures. The certain methods will help for establishing the laboratory diagnosis for applying the proper therapy; the treatment of only contaminated people, decreasing the stress level in the medical community in management of crisis situations, increasing the survival rate of the population exposed to the contamination, supervision of professional exposure, judicial analysis in case of suspicious terrorist activities.

  11. Microsynthesis and electron ionization mass spectral studies of O(S)-alkyl N,N-dimethyl alkylphosphono(thiolo)thionoamidates for Chemical Weapons Convention verification.

    Science.gov (United States)

    Saeidian, Hamdollah; Babri, Mehran; Abdoli, Morteza; Sarabadani, Mansour; Ashrafi, Davood; Naseri, Mohammad Taghi

    2012-12-15

    The availability of mass spectra and interpretation skills are essential for unambiguous identification of the Chemical Weapons Convention (CWC)-related chemicals. The O(S)-alkyl N,N-dimethyl alkylphosphono(thiolo)thionoamidates are included in the list of scheduled CWC-related compounds, but there are very few spectra from these compounds in the literature. This paper examines these spectra and their mass spectral fragmentation routes. The title chemicals were prepared through microsynthetic protocols and were analyzed using electron ionization mass spectrometry with gas chromatography as a MS-inlet system. Structures of fragments were confirmed using analysis of fragment ions of deuterated analogs, tandem mass spectrometry and density functional theory (DFT) calculations. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as alkene and amine elimination and McLafferty-type rearrangements. The most important fragmentation route of the chemicals is the thiono-thiolo rearrangement. DFT calculations are used to support MS results and to reveal relative preference formation of fragment ions. The retention indices (RIs) of all the studied compounds are also reported. Mass spectra of the synthesized compounds were investigated with the aim to enrich the Organization for the Prohibition of Chemical Weapons (OPCW) Central Analytical Database (OCAD) which may be used for detection and identification of CWC-related chemicals during on-site inspection and/or off-site analysis such as OPCW proficiency tests. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  13. Human biomonitoring after chemical incidents and during short-term maintenance work as a tool for exposure analysis and assessment.

    Science.gov (United States)

    Bader, M; Van Weyenbergh, T; Verwerft, E; Van Pul, J; Lang, S; Oberlinner, C

    2014-12-15

    Human biomonitoring (HBM) is frequently used for the analysis and assessment of exposure to chemicals under routine working conditions. In recent years, HBM has also been applied to monitor the exposure of the general population, and of emergency responders in the aftermath of chemical incidents. Two examples of targeted HBM programs in the chemical industry are described and discussed in this paper: (1) analysis and assessment of the exposure of firefighters and chemical workers after the spill of p-chloroaniline from a burning chemical barrel, and (2) biomonitoring of maintenance workers potentially exposed to benzene during regular turnarounds. The results of these investigations underline that human biomonitoring contributes substantially to comprehensive exposure analyses, human health risk assessments and communication. In addition, regular HBM surveillance and feedback can assist in the continuous improvement of workplace safety measures and exposure control. In conclusion, data on accidental or short-term exposure to hazardous chemicals are an important source of information for the further development of limit and assessment values, the validation of biomarkers and of targeted HBM programs for both routine monitoring and disaster management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Closing in on chemical bonds by opening up relativity theory.

    Science.gov (United States)

    Whitney, Cynthia K

    2008-03-01

    This paper develops a connection between the phenomenology of chemical bonding and the theory of relativity. Empirical correlations between electron numbers in atoms and chemical bond stabilities in molecules are first reviewed and extended. Quantitative chemical bond strengths are then related to ionization potentials in elements. Striking patterns in ionization potentials are revealed when the data are viewed in an element-independent way, where element-specific details are removed via an appropriate scaling law. The scale factor involved is not explained by quantum mechanics; it is revealed only when one goes back further, to the development of Einstein's special relativity theory.

  15. Rapid characterization of chemical markers for discrimination of Moutan Cortex and its processed products by direct injection-based mass spectrometry profiling and metabolomic method.

    Science.gov (United States)

    Li, Chao-Ran; Li, Meng-Ning; Yang, Hua; Li, Ping; Gao, Wen

    2018-06-01

    Processing of herbal medicines is a characteristic pharmaceutical technique in Traditional Chinese Medicine, which can reduce toxicity and side effect, improve the flavor and efficacy, and even change the pharmacological action entirely. It is significant and crucial to perform a method to find chemical markers for differentiating herbal medicines in different processed degrees. The aim of this study was to perform a rapid and reasonable method to discriminate Moutan Cortex and its processed products, and to reveal the characteristics of chemical components depend on chemical markers. Thirty batches of Moutan Cortex and its processed products, including 11 batches of Raw Moutan Cortex (RMC), 9 batches of Moutan Cortex Tostus (MCT) and 10 batches of Moutan Cortex Carbonisatus (MCC), were directly injected in electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF MS) for rapid analysis in positive and negative mode. Without chromatographic separation, each run was completed within 3 min. The raw MS data were automatically extracted by background deduction and molecular feature (MF) extraction algorithm. In negative mode, a total of 452 MFs were obtained and then pretreated by data filtration and differential analysis. After that, the filtered 85 MFs were treated by principal component analysis (PCA) to reduce the dimensions. Subsequently, a partial least squares discrimination analysis (PLS-DA) model was constructed for differentiation and chemical markers detection of Moutan Cortex in different processed degrees. The positive mode data were treated as same as those in negative mode. RMC, MCT and MCC were successfully classified. Moreover, 14 and 3 chemical markers from negative and positive mode respectively, were screened by the combination of their relative peak areas and the parameter variable importance in the projection (VIP) values in PLS-DA model. The content changes of these chemical markers were employed in order to illustrate

  16. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit

    OpenAIRE

    Ashoori, Maryam; Burns, Catherine M.; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamworkand leverage the exis...

  17. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis.

    Science.gov (United States)

    Wei, Wen-Long; Zeng, Rui; Gu, Cai-Mei; Qu, Yan; Huang, Lin-Fang

    2016-08-22

    Angelica sinensis (Oliv.) Diels, known as Dang Gui (in Chinese), is a traditional medicinal and edible plant that has long been used for tonifying, replenishing, and invigorating blood as well as relieving pain, lubricating the intestines, and treating female irregular menstruation and amenorrhea. A. sinensis has also been used as a health product and become increasingly popular in China, Japan, and Korea. This paper aims to provide a systemic review of traditional uses of A. sinensis and its recent advances in the fields of phytochemistry, analytical methods and toxicology. In addition, possible trends, therapeutic potentials, and perspectives for future research of this plant are also briefly discussed. An extensive review of the literature was conducted, and electronic databases including China National Knowledge Infrastructure, PubMed, Google Scholar, Science Direct, and Reaxys were used to assemble the data. Ethnopharmacological literature and digitalised sources of academic libraries were also systematically searched. In addition, information was obtained from local books and The Plant List (TPL, www.theplantlist.org). This study reviews the progress in chemical analysis of A. sinensis and its preparations. Previously and newly established methods, including spectroscopy, thin-layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography(UPLC), and nuclear magnetic resonance analysis (NMR), are summarized. Moreover, identified bioactive components such as polysaccharides, ligustilide and ferulic acid were reviewed, along with analytical methods for quantitative and qualitative determination of target analytes, and fingerprinting authentication, quality evaluation of A. sinensis, and toxicology and pharmacodynamic studies. Scientific reports on crude extracts and pure compounds and formulations revealed a wide range of pharmacological activities, including anti-inflammatory activity

  18. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    Science.gov (United States)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  19. Structure Analysis of Effective Chemical Compounds against Dengue Viruses Isolated from Isatis tinctoria.

    Science.gov (United States)

    Gao, Bo; Zhang, Jianming; Xie, Lianhui

    2018-01-01

    The history of Chinese herb research can be traced back to thousands of years ago, and the abundant knowledge accumulated for these herbs makes them good candidates for developing new natural drugs. Isatis tinctoria is probably the most well-studied Chinese herb, which has been identified to be effective against dengue fever. However, the underlying biological mechanisms are still unclear. In this study, we adopt combined methods of bioactive trace technology and phytochemical extraction and separation, to guide the isolation and purification of the effective chemical constituents on the water-soluble components of aerial parts of Isatis tinctoria . In addition, we apply polarimetry and 1D or 2D nuclear magnetic resonance (NMR) spectroscopy to identify their structures, which lay a foundation for further study on the biological mechanisms underlying medicinal effects of Isatis tinctoria using in vitro and in vivo experiments. Specifically, we identify and infer the structures of 27 types of chemical compounds named GB-1, GB-2, …, GB-27, respectively, among which GB-7 is a novel compound. Further study of these compounds is critical to reveal the secrets behind the medicinal effects of Isatis tinctoria .

  20. Structure Analysis of Effective Chemical Compounds against Dengue Viruses Isolated from Isatis tinctoria

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2018-01-01

    Full Text Available The history of Chinese herb research can be traced back to thousands of years ago, and the abundant knowledge accumulated for these herbs makes them good candidates for developing new natural drugs. Isatis tinctoria is probably the most well-studied Chinese herb, which has been identified to be effective against dengue fever. However, the underlying biological mechanisms are still unclear. In this study, we adopt combined methods of bioactive trace technology and phytochemical extraction and separation, to guide the isolation and purification of the effective chemical constituents on the water-soluble components of aerial parts of Isatis tinctoria. In addition, we apply polarimetry and 1D or 2D nuclear magnetic resonance (NMR spectroscopy to identify their structures, which lay a foundation for further study on the biological mechanisms underlying medicinal effects of Isatis tinctoria using in vitro and in vivo experiments. Specifically, we identify and infer the structures of 27 types of chemical compounds named GB-1, GB-2, …, GB-27, respectively, among which GB-7 is a novel compound. Further study of these compounds is critical to reveal the secrets behind the medicinal effects of Isatis tinctoria.

  1. Risk analysis in the chemical industry; Analisis de riesgos en la industria quimica

    Energy Technology Data Exchange (ETDEWEB)

    Rea Soto, Rogelio; Sandoval Valenzuela, Salvador [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    The Instituto de Investigaciones Electricas has a group of risk analysis (GAR), specialized in the most advanced methodologies to apply them in diverse industries of the productive sector, such as the nuclear, the oil and the chemical industries. In this work the integrated methodology that the GAR uses to make risk analysis in the chemical and oil industries is described. These analyses have as an objective to make a meticulous evaluation of the system design, the operation practices, the maintenance and inspection policies and the emergency plans. [Spanish] El Instituto de Investigaciones Electricas cuenta con un grupo de analisis de riesgo (GAR), especializado en las metodologias mas avanzadas para aplicarlas en diversas industrias del sector productivo, como lo son la nuclear, la petrolera y la quimica. En este trabajo se describe la metodologia integrada que el GAR utiliza para realizar analisis de riesgos en las industrias quimica y petrolera. Estos analisis tienen como objetivo realizar una minuciosa evaluacion del diseno del sistema, las practicas de operacion, las politicas de mantenimiento e inspeccion y los planes de emergencia.

  2. Fatty acid and cholesterol content, chemical composition and ...

    African Journals Online (AJOL)

    This study aimed to determine the fatty acid and chemical composition and cholesterol concentration of horsemeat, and to evaluate its taste acceptability by the Brazilian population. Horsemeat samples (M. longissimus dorsi) were obtained from a Paraná State slaughterhouse. The chemical composition revealed a low lipid ...

  3. Treatment systems for liquid wastes generated in chemical analysis laboratories

    International Nuclear Information System (INIS)

    Linda Berrio; Oscar Beltran; Edison Agudelo; Santiago Cardona

    2012-01-01

    Nowadays, handling of liquid wastes from chemical analysis laboratories is posing problems to different public and private organizations because of its requirements of an integrated management. This article reviews various treatment technologies and its removal efficiencies in order to establish criteria for selecting the system and the appropriate variables to achieve research objectives as well as environmental sustainability. Review begins with a description of the problem and continues with the study of treatments for laboratory wastes. These technologies are segregated into physicochemical and biological treatments that comprise a variety of processes, some of which are considered in this review.

  4. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar....... The emphasis of this paper is on the signal-to-noise ratio of the detection and its relation to the sensitivity. Two absorbance cells with an optical path length of 100 μm and 1000 μm were characterized and compared in terms of sensitivity, limit of detection and effective path length for measurements...

  5. Analysis of the chemical equilibrium of combustion at constant volume

    Directory of Open Access Journals (Sweden)

    Marius BREBENEL

    2014-04-01

    Full Text Available Determining the composition of a mixture of combustion gases at a given temperature is based on chemical equilibrium, when the equilibrium constants are calculated on the assumption of constant pressure and temperature. In this paper, an analysis of changes occurring when combustion takes place at constant volume is presented, deriving a specific formula of the equilibrium constant. The simple reaction of carbon combustion in pure oxygen in both cases (constant pressure and constant volume is next considered as example of application, observing the changes occurring in the composition of the combustion gases depending on temperature.

  6. Cell behaviour on chemically microstructured surfaces

    International Nuclear Information System (INIS)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-01-01

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 μm) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions

  7. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  8. Quality in the chemical analysis of biological matrices by fluorescence X-ray by energy dispersive

    International Nuclear Information System (INIS)

    Sousa, Evely E. de; Paiva, Jose Daniel S. de; Franca, Elvis J. de; Almeida, Macio E.S.; Cantinha, Rebeca S.; Hazin, Clovis A.

    2013-01-01

    The aim of this study was to obtain multielement analytical curves of high analytical rigor to the analysis of biological matrices by the technique of fluorescence x-ray energy dispersive - EDXRF. Calibration curves were constructed from the reference materials IAEA 140, IAEA 155, IAEA V8, V10 to the International Atomic Energy Agency - IAEA, and SRM1515, SRM 1547, SRM 1570a, SRM 1573a, SEM 1567a, to the National Institute of Standards and Technology - NIST. After energy calibration, all samples were subjected to vacuum to the analyzes by 100 seconds for each group of chemical elements. The voltages used were respectively 15 keV for chemical elements with less than atomic number 22 and 50 keV for the others. After the construction of the curves, the analytical quality was assessed by the analysis of a portion-test of the reference material SRM 2976, also produced by NIST. Based on the number of certified reference materials used for construction of calibration curves in this work, quality analytical protocol was originated with considerable reliability for quantification of chemical elements in biological samples by EDXR

  9. Application of quantum dots as analytical tools in automated chemical analysis: A review

    International Nuclear Information System (INIS)

    Frigerio, Christian; Ribeiro, David S.M.; Rodrigues, S. Sofia M.; Abreu, Vera L.R.G.; Barbosa, João A.C.; Prior, João A.V.; Marques, Karine L.; Santos, João L.M.

    2012-01-01

    Highlights: ► Review on quantum dots application in automated chemical analysis. ► Automation by using flow-based techniques. ► Quantum dots in liquid chromatography and capillary electrophoresis. ► Detection by fluorescence and chemiluminescence. ► Electrochemiluminescence and radical generation. - Abstract: Colloidal semiconductor nanocrystals or quantum dots (QDs) are one of the most relevant developments in the fast-growing world of nanotechnology. Initially proposed as luminescent biological labels, they are finding new important fields of application in analytical chemistry, where their photoluminescent properties have been exploited in environmental monitoring, pharmaceutical and clinical analysis and food quality control. Despite the enormous variety of applications that have been developed, the automation of QDs-based analytical methodologies by resorting to automation tools such as continuous flow analysis and related techniques, which would allow to take advantage of particular features of the nanocrystals such as the versatile surface chemistry and ligand binding ability, the aptitude to generate reactive species, the possibility of encapsulation in different materials while retaining native luminescence providing the means for the implementation of renewable chemosensors or even the utilisation of more drastic and even stability impairing reaction conditions, is hitherto very limited. In this review, we provide insights into the analytical potential of quantum dots focusing on prospects of their utilisation in automated flow-based and flow-related approaches and the future outlook of QDs applications in chemical analysis.

  10. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats.

    Science.gov (United States)

    Badr, Sherif E A; Shaaban, Mohamed; Elkholy, Yehya M; Helal, Maher H; Hamza, Akila S; Masoud, Mohamed S; El Safty, Mounir M

    2011-09-01

    The chemical composition and biological activity of three parts (rind, flesh and seeds) of pumpkin fruits (Cucurbita pepo L.) cultivated in Egypt were studied. Chemical analysis of fibre, protein, β-carotene, carbohydrates, minerals and fatty acids present in the rind, flesh, seeds and defatted seeds meal was conducted. Chemical, GC-MS and biological assays of organic extracts of the main fruit parts, rind and flesh established their unique constituents. Chromatographic purification of the extracts afforded triglyceride fatty acid mixture (1), tetrahydro-thiophene (2), linoleic acid (3), calotropoleanly ester (4), cholesterol (5) and 13(18)-oleanen-3-ol (6). GC-MS analysis of the extract's unpolar fraction revealed the existence of dodecane and tetradecane. Structures of the isolated compounds (1-6) were confirmed by NMR and EI-MS spectrometry. Antimicrobial, antiviral and antitumour activities of the fruit parts were discussed. The promising combined extract of rind and flesh was biologically studied for microbial and cytotoxic activities in comparison with the whole isolated components.

  11. REVEAL - A tool for rule driven analysis of safety critical software

    International Nuclear Information System (INIS)

    Miedl, H.; Kersken, M.

    1998-01-01

    As the determination of ultrahigh reliability figures for safety critical software is hardly possible, national and international guidelines and standards give mainly requirements for the qualitative evaluation of software. An analysis whether all these requirements are fulfilled is time and effort consuming and prone to errors, if performed manually by analysts, and should instead be dedicated to tools as far as possible. There are many ''general-purpose'' software analysis tools, both static and dynamic, which help analyzing the source code. However, they are not designed to assess the adherence to specific requirements of guidelines and standards in the nuclear field. Against the background of the development of I and C systems in the nuclear field which are based on digital techniques and implemented in high level language, it is essential that the assessor or licenser has a tool with which he can automatically and uniformly qualify as many aspects as possible of the high level language software. For this purpose the software analysis tool REVEAL has been developed at ISTec and the Halden Reactor Project. (author)

  12. Chemical Industry Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  13. Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent III-V heteroepitaxy

    International Nuclear Information System (INIS)

    Zhao, W.; Steidl, M.; Paszuk, A.; Brückner, S.; Dobrich, A.; Supplie, O.; Kleinschmidt, P.; Hannappel, T.

    2017-01-01

    Highlights: • We investigate the Si(111) surface prepared in CVD ambient at 1000 °C in 950 mbar H_2. • UHV-based XPS, LEED, STM and FTIR as well as ambient AFM are applied. • After processing the Si(111) surface is free of contamination and atomically flat. • The surface exhibits a (1 × 1) reconstruction and monohydride termination. • Wet-chemical pretreatment and homoepitaxy are required for a regular step structure. - Abstract: For well-defined heteroepitaxial growth of III-V epilayers on Si(111) substrates the atomic structure of the silicon surface is an essential element. Here, we study the preparation of the Si(111) surface in H_2-based chemical vapor ambient as well as its atomic structure after contamination-free transfer to ultrahigh vacuum (UHV). Applying complementary UHV-based techniques, we derive a complete picture of the atomic surface structure and its chemical composition. X-ray photoelectron spectroscopy measurements after high-temperature annealing confirm a Si surface free of any traces of oxygen or other impurities. The annealing in H_2 ambient leads to a monohydride surface termination, as verified by Fourier-transform infrared spectroscopy. Scanning tunneling microscopy confirms a well ordered, atomically smooth surface, which is (1 × 1) reconstructed, in agreement with low energy electron diffraction patterns. Atomic force microscopy reveals a significant influence of homoepitaxy and wet-chemical pretreatment on the surface morphology. Our findings show that wet-chemical pretreatment followed by high-temperature annealing leads to contamination-free, atomically flat Si(111) surfaces, which are ideally suited for subsequent III-V heteroepitaxy.

  14. Imperfect chemical female mimicry in males of the ant Cardiocondyla obscurior

    Science.gov (United States)

    Cremer, Sylvia; D'Ettorre, Patrizia; Drijfhout, Falko P.; Sledge, Matthew F.; Turillazzi, Stefano; Heinze, Jürgen

    2008-11-01

    Winged and wingless males coexist in the ant Cardiocondyla obscurior. Wingless (“ergatoid”) males never leave their maternal colony and fight remorselessly among each other for the access to emerging females. The peaceful winged males disperse after about 10 days, but beforehand also mate in the nest. In the first 5 days of their life, winged males perform a chemical female mimicry that protects them against attack and even makes them sexually attractive to ergatoid males. When older, the chemical profile of winged males no longer matches that of virgin females; nevertheless, they are still tolerated, which so far has been puzzling. Contrasting this general pattern, we have identified a single aberrant colony in which all winged males were attacked and killed by the ergatoid males. A comparative analysis of the morphology and chemical profile of these untypical attacked winged males and the tolerated males from several normal colonies revealed that normal old males are still performing some chemical mimicry to the virgin queens, though less perfect than in their young ages. The anomalous attacked winged males, on the other hand, had a very different odour to the females. Our study thus exemplifies that the analysis of rare malfunctioning can add valuable insight on functioning under normal conditions and allows the conclusion that older winged males from normal colonies of the ant C. obscurior are guarded through an imperfect chemical female mimicry, still close enough to protect against attacks by the wingless fighters yet dissimilar enough not to elicit their sexual interest.

  15. Assessment of uncertainties in risk analysis of chemical establishments. The ASSURANCE project. Final summary report

    DEFF Research Database (Denmark)

    Lauridsen, K.; Kozine, Igor; Markert, Frank

    2002-01-01

    and led the comparison of results in order to reveal the causes for differences between the partners' results. The results of the project point to an increased awareness of the potential uncertainties in riskanalyses and highlight a number of important sources of such uncertainties. In the hazard......This report summarises the results obtained in the ASSURANCE project (EU contract number ENV4-CT97-0627). Seven teams have performed risk analyses for the same chemical facility, an ammonia storage. The EC's Joint Research Centre at Ispra and RisøNational Laboratory co-ordinated the exercise...

  16. Chemical Analysis of the Moon at the Surveyor VI Landing Site: Preliminary Results.

    Science.gov (United States)

    Turkevich, A L; Patterson, J H; Franzgrote, E J

    1968-06-07

    The alpha-scattering experiment aboard soft-landing Surveyor VI has provided a chemical analysis of the surface of the moon in Sinus Medii. The preliminary results indicate that, within experimental errors, the composition is the same as that found by Surveyor V in Mare Tranquillitatis. This finding suggests that large portions of the lunar maria resemble basalt in composition.

  17. Chemoproteomics Reveals Chemical Diversity and Dynamics of 4-Oxo-2-nonenal Modifications in Cells.

    Science.gov (United States)

    Sun, Rui; Fu, Ling; Liu, Keke; Tian, Caiping; Yang, Yong; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C; Yang, Jing

    2017-10-01

    4-Oxo-2-nonenal (ONE) derived from lipid peroxidation modifies nucleophiles and transduces redox signaling by its reactions with proteins. However, the molecular interactions between ONE and complex proteomes and their dynamics in situ remain largely unknown. Here we describe a quantitative chemoproteomic analysis of protein adduction by ONE in cells, in which the cellular target profile of ONE is mimicked by its alkynyl surrogate. The analyses reveal four types of ONE-derived modifications in cells, including ketoamide and Schiff-base adducts to lysine, Michael adducts to cysteine, and a novel pyrrole adduct to cysteine. ONE-derived adducts co-localize and exhibit crosstalk with many histone marks and redox sensitive sites. All four types of modifications derived from ONE can be reversed site-specifically in cells. Taken together, our study provides much-needed mechanistic insights into the cellular signaling and potential toxicities associated with this important lipid derived electrophile. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Computing Equilibrium Chemical Compositions

    Science.gov (United States)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  19. Clays for brick manufacturing in Actopan, Hidalgo: physical, chemical and mineralogical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Tovar, Raul; Yañez-Hernández, Osiris Annel; Pérez-Moreno, Fidel; Rodríguez-Lugo, Ventura [Área de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo (Mexico); Rivera, José de Jesús Cruz [Universidad Autónoma de San Luis Potosí (Mexico); Rivera, Ana Leonor, E-mail: analeonor.ventura.2016@gmail.com [Universidad Nacional Autónoma de México, DF (Mexico)

    2017-10-15

    Samples of clays from Actopan, Hidalgo employed in brick manufacturing are physical, chemical and mineralogical characterized. Transmitted polarized light microscopy showed a uniform particle size with grain morphology characteristic of euhedral crystals with quartz, feldspars, nontronite, and iron oxides particles. Scanning Electron Microscopy revealed 75 μm to 90 μm wide subhedral structures formed by particles from 2.0 μm to 5.0 μm; and rombohedrales forms 40 μm wide, 70 µm long, constituted of silicon, aluminum, iron, titanium, calcium, minor amounts of potassium, magnesium, and sodium. Minerals such as quartz, albite, cristobalite, calcium and Hematite phases were recognized by X-Ray Diffraction technique. Chemical analysis by atomic emission spectrometry with Inductively Coupled Plasma confirmed this mineralogy composition while laser granulometry method found the same particle size. Grain size analysis determined submicrometric dimensions, and multimodal type curves, that can be interpreted as the mixing of two or more different mineral phases in each sample. (author)

  20. Clays for brick manufacturing in Actopan, Hidalgo: physical, chemical and mineralogical characterization

    International Nuclear Information System (INIS)

    Moreno-Tovar, Raul; Yañez-Hernández, Osiris Annel; Pérez-Moreno, Fidel; Rodríguez-Lugo, Ventura; Rivera, José de Jesús Cruz; Rivera, Ana Leonor

    2017-01-01

    Samples of clays from Actopan, Hidalgo employed in brick manufacturing are physical, chemical and mineralogical characterized. Transmitted polarized light microscopy showed a uniform particle size with grain morphology characteristic of euhedral crystals with quartz, feldspars, nontronite, and iron oxides particles. Scanning Electron Microscopy revealed 75 μm to 90 μm wide subhedral structures formed by particles from 2.0 μm to 5.0 μm; and rombohedrales forms 40 μm wide, 70 µm long, constituted of silicon, aluminum, iron, titanium, calcium, minor amounts of potassium, magnesium, and sodium. Minerals such as quartz, albite, cristobalite, calcium and Hematite phases were recognized by X-Ray Diffraction technique. Chemical analysis by atomic emission spectrometry with Inductively Coupled Plasma confirmed this mineralogy composition while laser granulometry method found the same particle size. Grain size analysis determined submicrometric dimensions, and multimodal type curves, that can be interpreted as the mixing of two or more different mineral phases in each sample. (author)

  1. Substance Flow Analysis and Source Mapping of Chemical UV-filters

    International Nuclear Information System (INIS)

    Eriksson, E.; Andersen, H. R.; Ledin, A.

    2008-01-01

    Chemical ultraviolet (UV)-filters are used in sunscreens to protect the skin from harmful UV radiation which may otherwise cause sunburns and skin cancer. Commonly used chemical UV-filters are known to cause endocrine disrupting effects in both aquatic and terrestrial animals as well as in human skin cells. Here, source mapping and substance flow analysis were applied to find the sources of six UV-filters (oxybenzone, avobenzone, 4-methylbenzylidene camphor, octyl methoxycinnamate, octyl dimethyl PABA and homosalate) and to identify the most dominant flows of these substances in Denmark. Urban water, composed of wastewater and surface waters, was found to be the primary recipient of UV-filters, whereby wastewater received an estimated 8.5-65 tonnes and surface waters received 7.1-51 tonnes in 2005. In wastewater treatment plants, their sorption onto sludge is perceived to be an important process and presence in effluents can be expected due to a lack of biodegradability. In addition, the use of UV-filters is expected to continue to increase significantly. Not all filters (e.g., octyl dimethyl PABA and homosalate) are used in Denmark. For example, 4-MBC is mainly associated with self-tanning liquids and private import of sunscreens

  2. Substance Flow Analysis and Source Mapping of Chemical UV-filters

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, E., E-mail: eve@env.dtu.dk; Andersen, H. R.; Ledin, A. [Technical University of Denmark, Department of Environmental Engineering (Denmark)

    2008-12-15

    Chemical ultraviolet (UV)-filters are used in sunscreens to protect the skin from harmful UV radiation which may otherwise cause sunburns and skin cancer. Commonly used chemical UV-filters are known to cause endocrine disrupting effects in both aquatic and terrestrial animals as well as in human skin cells. Here, source mapping and substance flow analysis were applied to find the sources of six UV-filters (oxybenzone, avobenzone, 4-methylbenzylidene camphor, octyl methoxycinnamate, octyl dimethyl PABA and homosalate) and to identify the most dominant flows of these substances in Denmark. Urban water, composed of wastewater and surface waters, was found to be the primary recipient of UV-filters, whereby wastewater received an estimated 8.5-65 tonnes and surface waters received 7.1-51 tonnes in 2005. In wastewater treatment plants, their sorption onto sludge is perceived to be an important process and presence in effluents can be expected due to a lack of biodegradability. In addition, the use of UV-filters is expected to continue to increase significantly. Not all filters (e.g., octyl dimethyl PABA and homosalate) are used in Denmark. For example, 4-MBC is mainly associated with self-tanning liquids and private import of sunscreens.

  3. An analysis of chemical ingredients network of Chinese herbal formulae for the treatment of coronary heart disease.

    Directory of Open Access Journals (Sweden)

    Fan Ding

    Full Text Available As a complex system, the complicated interactions between chemical ingredients, as well as the potential rules of interactive associations among chemical ingredients of traditional Chinese herbal formulae are not yet fully understood by modern science. On the other hand, network analysis is emerging as a powerful approach focusing on processing complex interactive data. By employing network approach in selected Chinese herbal formulae for the treatment of coronary heart disease (CHD, this article aims to construct and analyze chemical ingredients network of herbal formulae, and provide candidate herbs, chemical constituents, and ingredient groups for further investigation. As a result, chemical ingredients network composed of 1588 ingredients from 36 herbs used in 8 core formulae for the treatment of CHD was produced based on combination associations in herbal formulae. In this network, 9 communities with relative dense internal connections are significantly associated with 14 kinds of chemical structures with P<0.001. Moreover, chemical structural fingerprints of network communities were detected, while specific centralities of chemical ingredients indicating different levels of importance in the network were also measured. Finally, several distinct herbs, chemical ingredients, and ingredient groups with essential position in the network or high centrality value are recommended for further pharmacology study in the context of new drug development.

  4. Comparing chemical analysis with literature studies to identify micropollutants in a catchment of Copenhagen (DK)

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Birch, Heidi; Eriksson, Eva

    2011-01-01

    on urban surface runoff originating from a well defined catchment of Copenhagen (Denmark) with an inventory of potential pollution sources for the same catchment. The selected catchment covers an area with roads, a shopping centre, a parking lot, office buildings, a gymnasium and some restaurants....... The literature approach is limited to the range of included PSs and to how and which information is compiled, whereas the analytical chemical approach is limited to the selection of analyzed substances, sensitivity and precision. Comparing the two approaches of chemical analysis with literature study to identify...

  5. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia

    Directory of Open Access Journals (Sweden)

    E. Damaraju

    2014-01-01

    Full Text Available Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length, and a dynamic sense, computed using sliding windows (44 s in length and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual, as well as reduced connectivity (hypoconnectivity between sensory networks from all modalities. Dynamic analysis suggests that (1, on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2, that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity

  6. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Organically Cultivated Fennel Cultivars

    OpenAIRE

    Shahat, Abdelaaty A.; Ibrahim, Abeer Y.; Hendawy, Saber F.; Omer, Elsayed A.; Hammouda, Faiza M.; Abdel-Rahman, Fawzia H.; Saleh, Mahmoud A.

    2011-01-01

    Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare) were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragol...

  7. Allosteric effects in bacteriophage HK97 procapsids revealed directly from covariance analysis of cryo EM data.

    Science.gov (United States)

    Xu, Nan; Veesler, David; Doerschuk, Peter C; Johnson, John E

    2018-05-01

    The information content of cryo EM data sets exceeds that of the electron scattering potential (cryo EM) density initially derived for structure determination. Previously we demonstrated the power of data variance analysis for characterizing regions of cryo EM density that displayed functionally important variance anomalies associated with maturation cleavage events in Nudaurelia Omega Capensis Virus and the presence or absence of a maturation protease in bacteriophage HK97 procapsids. Here we extend the analysis in two ways. First, instead of imposing icosahedral symmetry on every particle in the data set during the variance analysis, we only assume that the data set as a whole has icosahedral symmetry. This change removes artifacts of high variance along icosahedral symmetry axes, but retains all of the features previously reported in the HK97 data set. Second we present a covariance analysis that reveals correlations in structural dynamics (variance) between the interior of the HK97 procapsid with the protease and regions of the exterior (not seen in the absence of the protease). The latter analysis corresponds well with hydrogen deuterium exchange studies previously published that reveal the same correlation. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Potential external contamination with bisphenol A and other ubiquitous organic environmental chemicals during biomonitoring analysis: an elusive laboratory challenge.

    Science.gov (United States)

    Ye, Xiaoyun; Zhou, Xiaoliu; Hennings, Ryan; Kramer, Joshua; Calafat, Antonia M

    2013-03-01

    Biomonitoring studies are conducted to assess internal dose (i.e., body burden) to environmental chemicals. However, because of the ubiquitous presence in the environment of some of these chemicals, such as bisphenol A (BPA), external contamination during handling and analysis of the biospecimens collected for biomonitoring evaluations could compromise the reported concentrations of such chemicals. We examined the contamination with the target analytes during analysis of biological specimens in biomonitoring laboratories equipped with state-of-the-art analytical instrumentation. We present several case studies using the quantitative determination of BPA and other organic chemicals (i.e., benzophenone-3, triclosan, parabens) in human urine, milk, and serum to identify potential contamination sources when the biomarkers measured are ubiquitous environmental contaminants. Contamination with target analytes during biomonitoring analysis could result from solvents and reagents, the experimental apparatus used, the laboratory environment, and/or even the analyst. For biomonotoring data to be valid-even when obtained from high-quality analytical methods and good laboratory practices-the following practices must be followed to identify and track unintended contamination with the target analytes during analysis of the biological specimens: strict quality control measures including use of laboratory blanks; replicate analyses; engineering controls (e.g., clean rooms, biosafety cabinets) as needed; and homogeneous matrix-based quality control materials within the expected concentration ranges of the study samples.

  9. Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring

    Science.gov (United States)

    Hannstein, Inga; Adler, Anne-Katrin; Lapina, Victoria; Osipov, Vladimir; Opitz, Jörg; Schreiber, Jürgen; Meyendorf, Norbert

    2009-03-01

    In the present study, a smart coating for light metal alloys was developed and investigated. Chemically activated nanodiamonds (CANDiT) were electrophoretically deposited onto anodized aluminum alloy AA2024 substrates in order to increase corrosion resistance, enhance bonding properties and establish a means of corrosion monitoring based on the fluorescence behavior of the particles. In order to create stable aqueous CANDiT dispersions suitable for electrophoretic deposition, mechanical milling had to be implemented under specific chemical conditions. The influence of the CANDiT volume fraction and pH of the dispersion on the electrochemical properties of the coated samples was investigated. Linear voltammetry measurements reveal that the chemical characteristics of the CANDiT dispersion have a distinct influence on the quality of the coating. The fluorescence spectra as well as fluorescence excitation spectra of the samples show that corrosion can be easily detected by optical means. Furthermore, an optimization on the basis of "smart" - algorithms for the data processing of a surface analysis by the laser-speckle-method is presented.

  10. Gas chromatography/chemical ionization triple quadrupole mass spectrometry analysis of anabolic steroids: ionization and collision-induced dissociation behavior.

    Science.gov (United States)

    Polet, Michael; Van Gansbeke, Wim; Van Eenoo, Peter; Deventer, Koen

    2016-02-28

    The detection of new anabolic steroid metabolites and new designer steroids is a challenging task in doping analysis. Switching from electron ionization gas chromatography triple quadrupole mass spectrometry (GC/EI-MS/MS) to chemical ionization (CI) has proven to be an efficient way to increase the sensitivity of GC/MS/MS analyses and facilitate the detection of anabolic steroids. CI also extends the possibilities of GC/MS/MS analyses as the molecular ion is retained in its protonated form due to the softer ionization. In EI it can be difficult to find previously unknown but expected metabolites due to the low abundance or absence of the molecular ion and the extensive (and to a large extent unpredictable) fragmentation. The main aim of this work was to study the CI and collision-induced dissociation (CID) behavior of a large number of anabolic androgenic steroids (AAS) as their trimethylsilyl derivatives in order to determine correlations between structures and CID fragmentation. Clarification of these correlations is needed for the elucidation of structures of unknown steroids and new metabolites. The ionization and CID behavior of 65 AAS have been studied using GC/CI-MS/MS with ammonia as the reagent gas. Glucuronidated AAS reference standards were first hydrolyzed to obtain their free forms. Afterwards, all the standards were derivatized to their trimethylsilyl forms. Full scan and product ion scan analyses were used to examine the ionization and CID behavior. Full scan and product ion scan analyses revealed clear correlations between AAS structure and the obtained mass spectra. These correlations were confirmed by analysis of multiple hydroxylated, methylated, chlorinated and deuterated analogs. AAS have been divided into three groups according to their ionization behavior and into seven groups according to their CID behavior. Correlations between fragmentation and structure were revealed and fragmentation pathways were postulated. Copyright © 2016 John Wiley

  11. Stereospecific assignment of the asparagine and glutamine sidechain amide protons in proteins from chemical shift analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harsch, Tobias; Schneider, Philipp; Kieninger, Bärbel; Donaubauer, Harald; Kalbitzer, Hans Robert, E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany)

    2017-02-15

    Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to H{sup δ21} and H{sup ε21}, respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts.

  12. Global Controllability of Chemical Reactions

    OpenAIRE

    Drexler, Dániel András; Tóth, János

    2015-01-01

    Controllability of chemical reactions is an important problem in chemical engineering science. In control theory, analysis of the controllability of linear systems is well-founded, however the dynamics of chemical reactions is usually nonlinear. Global controllability properties of chemical reactions are analyzed here based on the Lie-algebra of the vector fields associated to elementary reactions. A chemical reaction is controllable almost everywhere if all the reaction rate coefficients can...

  13. Humidity independent mass spectrometry for gas phase chemical analysis via ambient proton transfer reaction.

    Science.gov (United States)

    Zhu, Hongying; Huang, Guangming

    2015-03-31

    In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m(-3), ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Analysis of Chemical Bioactivity through In Vitro Profiling ...

    Science.gov (United States)

    Safety assessment of drugs and environmental chemicals relies extensively on animal testing. However, the quantity of chemicals needing assessment and challenges of species extrapolation drive the development of alternative approaches. The EPA’s ToxCast and the multiagency Tox21 programs address this through use of an extensive in vitro screening program to generate data on a large library of important environmental chemicals. These in vitro assays encompass both cell-free, biochemical assays targeting proteins that may be potential molecular initiating events and cellular assays that provide coverage of critical signaling pathways and toxicity phenotypes. Effects on model organisms such as the developing zebrafish, are also part of the testing strategy. A variety of computational approaches are used to analyze the resulting complex data sets to gain insight in to inherent biological activity of chemicals and possible mechanisms of toxicity. Several case studies including identification of modulators of estrogen receptor and aromatic hydrocarbon receptor pathways with effects in primary human cell systems will be described. In addition, existing in vivo data from a subset of the chemicals was used to anchor predictive models using in vitro data for a number of adverse endpoints including reproductive and developmental toxicities. The strengths and weaknesses of this approach will be described. This work does not necessarily reflect official Agency policy. Pres

  15. A rapid chemical method for lysing Arabidopsis cells for protein analysis

    Directory of Open Access Journals (Sweden)

    Takano Tetsuo

    2011-07-01

    Full Text Available Abstract Background Protein extraction is a frequent procedure in biological research. For preparation of plant cell extracts, plant materials usually have to be ground and homogenized to physically break the robust cell wall, but this step is laborious and time-consuming when a large number of samples are handled at once. Results We developed a chemical method for lysing Arabidopsis cells without grinding. In this method, plants are boiled for just 10 minutes in a solution containing a Ca2+ chelator and detergent. Cell extracts prepared by this method were suitable for SDS-PAGE and immunoblot analysis. This method was also applicable to genomic DNA extraction for PCR analysis. Our method was applied to many other plant species, and worked well for some of them. Conclusions Our method is rapid and economical, and allows many samples to be prepared simultaneously for protein analysis. Our method is useful not only for Arabidopsis research but also research on certain other species.

  16. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

    Science.gov (United States)

    Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.

    2018-01-01

    The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.

  17. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta.

    Science.gov (United States)

    Hirota, Tsuyoshi; Lewis, Warren G; Liu, Andrew C; Lee, Jae Wook; Schultz, Peter G; Kay, Steve A

    2008-12-30

    The circadian clock controls daily oscillations of gene expression at the cellular level. We report the development of a high-throughput circadian functional assay system that consists of luminescent reporter cells, screening automation, and a data analysis pipeline. We applied this system to further dissect the molecular mechanisms underlying the mammalian circadian clock using a chemical biology approach. We analyzed the effect of 1,280 pharmacologically active compounds with diverse structures on the circadian period length that is indicative of the core clock mechanism. Our screening paradigm identified many compounds previously known to change the circadian period or phase, demonstrating the validity of the assay system. Furthermore, we found that small molecule inhibitors of glycogen synthase kinase 3 (GSK-3) consistently caused a strong short period phenotype in contrast to the well-known period lengthening by lithium, another presumed GSK-3 inhibitor. siRNA-mediated knockdown of GSK-3beta also caused a short period, confirming the phenotype obtained with the small molecule inhibitors. These results clarify the role of GSK-3beta in the period regulation of the mammalian clockworks and highlight the effectiveness of chemical biology in exploring unidentified mechanisms of the circadian clock.

  18. Chemical and Hydro-Geologic Analysis of Ikogosi Warm Spring Water in Nigeria

    OpenAIRE

    Akinola Ikudayisi; Folasade Adeyemo; Josiah Adeyemo

    2015-01-01

    This study focuses on the hydro-geology and chemical constituents analysis of Ikogosi Warm Spring waters in South West Nigeria. Ikogosi warm spring is a global tourist attraction because it has both warm and cold spring sources. Water samples from the cold spring, warm spring and the meeting point were collected, analyzed and the result shows close similarity in temperature, hydrogen iron concentration (pH), alkalinity, hardness, Calcium, Magnesium, Sodium, Iron, total di...

  19. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    International Nuclear Information System (INIS)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt

    2001-01-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis. In this respect there is a

  20. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt [Risoe National Laboratory, Roskilde (Denmark). Systems Analysis Department

    2001-07-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis

  1. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    Science.gov (United States)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  2. Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm.

    Science.gov (United States)

    Skinnider, Michael A; Dejong, Chris A; Franczak, Brian C; McNicholas, Paul D; Magarvey, Nathan A

    2017-08-16

    Natural products represent a prominent source of pharmaceutically and industrially important agents. Calculating the chemical similarity of two molecules is a central task in cheminformatics, with applications at multiple stages of the drug discovery pipeline. Quantifying the similarity of natural products is a particularly important problem, as the biological activities of these molecules have been extensively optimized by natural selection. The large and structurally complex scaffolds of natural products distinguish their physical and chemical properties from those of synthetic compounds. However, no analysis of the performance of existing methods for molecular similarity calculation specific to natural products has been reported to date. Here, we present LEMONS, an algorithm for the enumeration of hypothetical modular natural product structures. We leverage this algorithm to conduct a comparative analysis of molecular similarity methods within the unique chemical space occupied by modular natural products using controlled synthetic data, and comprehensively investigate the impact of diverse biosynthetic parameters on similarity search. We additionally investigate a recently described algorithm for natural product retrobiosynthesis and alignment, and find that when rule-based retrobiosynthesis can be applied, this approach outperforms conventional two-dimensional fingerprints, suggesting it may represent a valuable approach for the targeted exploration of natural product chemical space and microbial genome mining. Our open-source algorithm is an extensible method of enumerating hypothetical natural product structures with diverse potential applications in bioinformatics.

  3. Interactions between toxic chemicals and natural environmental factors--a meta-analysis and case studies.

    Science.gov (United States)

    Laskowski, Ryszard; Bednarska, Agnieszka J; Kramarz, Paulina E; Loureiro, Susana; Scheil, Volker; Kudłek, Joanna; Holmstrup, Martin

    2010-08-15

    The paper addresses problems arising from effects of natural environmental factors on toxicity of pollutants to organisms. Most studies on interactions between toxicants and natural factors, including those completed in the EU project NoMiracle (Novel Methods for Integrated Risk Assessment of Cumulative Stressors in Europe) described herein, showed that effects of toxic chemicals on organisms can differ vastly depending purely on external conditions. We compiled data from 61 studies on effects of temperature, moisture and dissolved oxygen on toxicity of a range of chemicals representing pesticides, polycyclic aromatic hydrocarbons, plant protection products of bacterial origin and trace metals. In 62.3% cases significant interactions (pnatural factors and chemicals were found, reaching 100% for the effect of dissolved oxygen on toxicity of waterborne chemicals. The meta-analysis of the 61 studies showed that the null hypothesis assuming no interactions between toxic chemicals and natural environmental factors should be rejected at p=2.7 x 10(-82) (truncated product method probability). In a few cases of more complex experimental designs, also second-order interactions were found, indicating that natural factors can modify interactions among chemicals. Such data emphasize the necessity of including information on natural factors and their variation in time and across geographic regions in ecological risk assessment. This can be done only if appropriate ecotoxicological test designs are used, in which test organisms are exposed to toxicants at a range of environmental conditions. We advocate designing such tests for the second-tier ecological risk assessment procedures. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Topological data analysis (TDA) applied to reveal pedogenetic principles of European topsoil system.

    Science.gov (United States)

    Savic, Aleksandar; Toth, Gergely; Duponchel, Ludovic

    2017-05-15

    Recent developments in applied mathematics are bringing new tools that are capable to synthesize knowledge in various disciplines, and help in finding hidden relationships between variables. One such technique is topological data analysis (TDA), a fusion of classical exploration techniques such as principal component analysis (PCA), and a topological point of view applied to clustering of results. Various phenomena have already received new interpretations thanks to TDA, from the proper choice of sport teams to cancer treatments. For the first time, this technique has been applied in soil science, to show the interaction between physical and chemical soil attributes and main soil-forming factors, such as climate and land use. The topsoil data set of the Land Use/Land Cover Area Frame survey (LUCAS) was used as a comprehensive database that consists of approximately 20,000 samples, each described by 12 physical and chemical parameters. After the application of TDA, results obtained were cross-checked against known grouping parameters including five types of land cover, nine types of climate and the organic carbon content of soil. Some of the grouping characteristics observed using standard approaches were confirmed by TDA (e.g., organic carbon content) but novel subtle relationships (e.g., magnitude of anthropogenic effect in soil formation), were discovered as well. The importance of this finding is that TDA is a unique mathematical technique capable of extracting complex relations hidden in soil science data sets, giving the opportunity to see the influence of physicochemical, biotic and abiotic factors on topsoil formation through fresh eyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    International Nuclear Information System (INIS)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei

    2013-01-01

    We introduce a Python-based program that utilizes the large database of 13 C and 15 N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13 C– 13 C, 15 N– 13 C, or 3D 15 N– 13 C– 13 C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13 C– 13 C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  6. Chemical analysis of DC745 Materials: DEV Lot 1 reinvestigation; barcodes P053387, P053388, and P053389

    Energy Technology Data Exchange (ETDEWEB)

    Dirmyer, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-09

    This report serves as a follow up to our initial development lot 1 chemical analysis report (LA-UR-16-21970). The purpose of that report was to determine whether or not certain combinations of resin lots and curing agent lots resulted in chemical differences in the final material. One finding of that report suggested that pad P053389 was different from the three other pads analyzed. This report consists of chemical analysis of P053387, P053388, and a reinvestigation of P053389 all of which came from the potentially suspect combination of resin and curing agents lot. The goal of this report is to determine whether the observations relating to P053389 were isolated to that particular pad or systemic to that combination of resin and curing agent lot. The following suite of analyses were performed on the pads: Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FT-IR), and Solid State Nuclear Magnetic Resonance (NMR). The overall conclusions of the study are that pads P053387 and P053388 behave more consistently with the pads of other resin lot and curing agent lot combinations and that the chemical observations made regarding pad P053389 are isolated to that pad and not representative of an issue with that resin lot and curing agent lot combination.

  7. Chemical and physical analysis on hard tissues after irradiation with short pulse Nd:YAG laser

    International Nuclear Information System (INIS)

    Pereira, Andrea Antunes

    2003-01-01

    This work reports on a study that was designed to investigate chemical, physical and morphological alterations in the dental enamel surface. The influence of application of laser in enamel surface by microscopic technical, X-ray fluorescence for chemical analysis, physical property as well as hardness and thermal analysis with Nd:YAG laser is also pointed out. A prototype of Nd:YAG (Q-switched) laser developed at the Center of Lasers and Applications - Institute of Energetic and Nuclear Research, aiming applications in the Medical Sciences that typical wavelength of 1.064 nm was used. The modifications in human dental enamel chemical composition for major and trace elements are here outlined. The accuracy of procedures was performed by analysis of natural hydroxyapatite as standard reference material. The identification and quantification of the chemical elements presented in the dental tissue samples were performed trough EDS, XRF and INAA. We determined the rate Calcium/Phosphorus (Ca/P) for different techniques. We performed an analysis in different regions of the surface and for different areas allowing a description of the chemical change in the total area of the specimen and the assessment of the compositional homogeneity of the each specimen. A comparison between XRF and INAA is presented. Based on morphological analysis of the irradiated surfaces with short pulse Nd:YAG laser we determined the area surrounded by the irradiation for the parameters for this thesis, and this technique allowed us to visualize the regions of fusion and re-solidification. The energy densities ranged from 10 J/cm 2 to 40 J/cm 2 , with pulse width of 6, 10 e 200 ns, and repetition rates of 5 and 7 Hz. In this thesis, FTIR-spectroscopy is used to analyze powder of mineralized tissue as well as enamel, dentine, root and cementum for human and bovine teeth after irradiation with short-pulse Nd:YAG laser. Characteristic spectra were obtained for the proteins components and mineral

  8. Physcio chemical analysis of browning inhibitors treated solanum turberosum powder

    International Nuclear Information System (INIS)

    Alizai, M.N.K.; Abid, H.

    2008-01-01

    White potatoes (Solanum turberosum) were procured from agriculture Research Institute Tarnab Farm Peshawar to use for the preparation of potato powder. The process involves sorting. Washing, peeling slicing, blanching, treating with poly phenol oxidase inhibitors, dehydration, grinding and packing. All these parameters used in process were standardized. Chemical analysis of fresh potato and potato powder were carried out. Microbiological examination, functional properties and storage life studies of the potato powder were also performed. The product prepared by drying in cabinet dryer at 55 C for 7 hours was off white colour potatoes chips which was grinded to make off white potato powder. The potato powder possessed taste and texture. (author)

  9. Influences of Thermo-Vacuum Treatment on Colors and Chemical Compositions of Alder Birch Wood

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2015-10-01

    Full Text Available With high temperature-heat treatment, the dimensional stability and durability of wood is improved and wood color is darkened as well. In this paper, alder birch wood (Betula alnoides was treated by the Thermo-Vacuum Treatment (TVT. The changes of wood color parameters and the chemical composition were determined by the CIE1976 L*a*b* method and the chemical analysis method, respectively. The results were revealed as follows: (1 A lower value of lightness, L*, and a higher value of total color difference, △E*, were obtained at the higher heat-treatment temperatures and longer treatment time. (2 The higher the heat-treatment temperatures and the longer the heat-treatment times were, the lower the contents of hemicellulose and cellulose were and the higher the content of lignin was. Moreover, Fourier Transform infrared spectroscopy (FTIR analysis demonstrated that the characteristic absorption peaks of cellulose, hemicellulose, and lignin diminished. The acetylation reaction of hemicellulose and the degradation reaction of groups of lignin side chain occurred during TVT. (3 TVT degraded the chemical composition of cell walls, which resulted in further changes of the wood color. A significant correlation existed between the differences of color indices and the differences of the chemical composition after TVT.

  10. Summer 2012 Testing and Analysis of the Chemical Mixture Methodology -- Part I

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, Clifford S.; Yu, Xiao-Ying; Coggin, Rebekah L.; Ponder, Lashaundra A.; Booth, Alexander E.; Petrocchi, Achille J.; Horn, Sarah M.; Yao, Juan

    2012-07-01

    This report presents the key findings made by the Chemical Mixture Methodology (CMM) project team during the first stage of their summer 2012 testing and analysis of the CMM. The study focused on answering the following questions: o What is the percentage of the chemicals in the CMM Rev 27 database associated with each Health Code Number (HCN)? How does this result influence the relative importance of acute HCNs and chronic HCNs in the CMM data set? o What is the benefit of using the HCN-based approach? Which Modes of Action and Target Organ Effects tend to be important in determining the HCN-based Hazard Index (HI) for a chemical mixture? o What are some of the potential issues associated with the current HCN-based approach? What are the opportunities for improving the performance and/or technical defensibility of the HCN-based approach? How would those improvements increase the benefit of using the HCN-based approach? o What is the Target Organ System Effect approach and how can it be used to improve upon the current HCN-based approach? How does the benefits users would derive from using the Target Organ System Approach compare to the benefits available from the current HCN-based approach?

  11. Environmental chemicals and thyroid function

    DEFF Research Database (Denmark)

    Boas, Malene; Main, Katharina M; Feldt-Rasmussen, Ulla

    2009-01-01

    PURPOSE OF REVIEW: To overview the effects of endocrine disrupters on thyroid function. RECENT FINDINGS: Studies in recent years have revealed thyroid-disrupting properties of many environmentally abundant chemicals. Of special concern is the exposure of pregnant women and infants, as thyroid...

  12. Development of international standards for surface analysis by ISO technical committee 201 on surface chemical analysis

    International Nuclear Information System (INIS)

    Powell, C.J.

    1999-01-01

    Full text: The International Organization for Standardization (ISO) established Technical Committee 201 on Surface Chemical Analysis in 1991 to develop documentary standards for surface analysis. ISO/TC 201 met first in 1992 and has met annually since. This committee now has eight subcommittees (Terminology, General Procedures, Data Management and Treatment, Depth Profiling, AES, SIMS, XPS, and Glow Discharge Spectroscopy (GDS)) and one working group (Total X-Ray Fluorescence Spectroscopy). Each subcommittee has one or more working groups to develop standards on particular topics. Australia has observer-member status on ISO/TC 201 and on all ISO/TC 201 subcommittees except GDS where it has participator-member status. I will outline the organization of ISO/TC 201 and summarize the standards that have been or are being developed. Copyright (1999) Australian X-ray Analytical Association Inc

  13. Functional and chemical stability of a medicinal herb, Artemisia capillaris, following gamma sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Uhee; Jeong, Ill Yun; Bae, Mun Hyoung; Byun, Myung Woo; Jo, Sung Kee [Radiation Research Center for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2007-08-15

    The stability of functional and chemical properties of gamma-irradiated (10 kGy) Artemisia capillaris, a widely used herb in the traditional Oriental medicine, was investigated. Functional properties of the extracts of gamma-irradiated and non-irradiated A. capillaris were compared in antioxidant activities, such as 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical and superoxide anion radical scavenging, lipid peroxidation inhibition, and protection of lymphocyte and plasmid DNA. Their chemical properties were assessed by HPLC analysis, comparing with chlorogenic acid and caffeic acid, which were isolated from ethylacetate fraction as major compounds with strong antioxidant activities. No significant difference in functional properties between irradiated and non-irradiated A. capillaris was found in all antioxidant assays. Also HPLC analysis of ethyl acetate fractions of irradiated and non-irradiated A. capillaris revealed the preservation of chlorogenic acid ({sub t}R=3.124 min) and caffeic acid ({sub t}R=3.672 min), and showed almost the same pattern in the general peaks. These results suggest that the chemical components and antioxidant properties of A. capillaris are not affected largely by gamma-ray irradiation. Therefore, this study may provide evidence that the irradiated herbs retain their potential functional properties.

  14. Chemical state analysis of oxidation products on steel surface by conversion electron Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Nomura, Kiyoshi

    1978-01-01

    The polished NT-70H steel (Fe: 95.97%, C: 0.56%, diameter: 5 cm, thickness: 0.5 cm) was immersed in deionized water or in solutions containing (0.25 -- 0.5) M of chloride, sulfate and nitrate ions. The chemical states of oxidation products of iron on the surface were identified through the analysis of conversion electron Moessbauer spectra (CEMS). CEMS of the steel surface, which had been dipped in deionized water, revealed that γ-FeOOH was formed on the surface. The thickness of γ-FeOOH layer increased with the increase of the duration of dipping. Dissolved oxygen in the solution played an essential role in the oxidation of iron to γ-FeOOH. Oxidation product of iron dipped in the 0.5 M sodium chloride solution was identified as γ-FeOOH. Amorphous paramagnetic iron (III) compound tended to form in the presence of hydrogen peroxide or ammonium ions in the solutions. The increase of alkalinity of the solution up to pH 12 suppressed the oxidation rate and assisted the formation of green rust, which was confirmed by the appearance of the quadrupole splitting peaks of the green rust. In the 0.25 M sodium sulfate solution, oxidation of the steel surface proceeded slowly and the quadrupole splitting peaks of Fe(OH) 2 were seen in the CEMS. The peak intensity of Fe(OH) 2 gradually decreased and that of γ-FeOOH increased by the extension of immersion of steel in the solution. Magnetite (Fe 3 O 4 ) layer was developed beneath the γ-FeOOH layer, when steel was dipped in 0.5 M sodium nitrate solution. However, the peaks of Fe 3 O 4 were not seen on CEMS of steel surface immersed in 0.5 M ammonium nitrate solution. Thus, applying the feasibility of CEMS for the characterization of oxidated compounds of iron on the steel surface formed by the immersion in solutions, the oxidation mechanism of the steel surface was discussed based upon the results of chemical state analyses. (author)

  15. Development of estrogen receptor beta binding prediction model using large sets of chemicals.

    Science.gov (United States)

    Sakkiah, Sugunadevi; Selvaraj, Chandrabose; Gong, Ping; Zhang, Chaoyang; Tong, Weida; Hong, Huixiao

    2017-11-03

    We developed an ER β binding prediction model to facilitate identification of chemicals specifically bind ER β or ER α together with our previously developed ER α binding model. Decision Forest was used to train ER β binding prediction model based on a large set of compounds obtained from EADB. Model performance was estimated through 1000 iterations of 5-fold cross validations. Prediction confidence was analyzed using predictions from the cross validations. Informative chemical features for ER β binding were identified through analysis of the frequency data of chemical descriptors used in the models in the 5-fold cross validations. 1000 permutations were conducted to assess the chance correlation. The average accuracy of 5-fold cross validations was 93.14% with a standard deviation of 0.64%. Prediction confidence analysis indicated that the higher the prediction confidence the more accurate the predictions. Permutation testing results revealed that the prediction model is unlikely generated by chance. Eighteen informative descriptors were identified to be important to ER β binding prediction. Application of the prediction model to the data from ToxCast project yielded very high sensitivity of 90-92%. Our results demonstrated ER β binding of chemicals could be accurately predicted using the developed model. Coupling with our previously developed ER α prediction model, this model could be expected to facilitate drug development through identification of chemicals that specifically bind ER β or ER α .

  16. Prediction of the contact sensitizing potential of chemicals using analysis of gene expression changes in human THP-1 monocytes.

    Science.gov (United States)

    Arkusz, Joanna; Stępnik, Maciej; Sobala, Wojciech; Dastych, Jarosław

    2010-11-10

    The aim of this study was to find differentially regulated genes in THP-1 monocytic cells exposed to sensitizers and nonsensitizers and to investigate if such genes could be reliable markers for an in vitro predictive method for the identification of skin sensitizing chemicals. Changes in expression of 35 genes in the THP-1 cell line following treatment with chemicals of different sensitizing potential (from nonsensitizers to extreme sensitizers) were assessed using real-time PCR. Verification of 13 candidate genes by testing a large number of chemicals (an additional 22 sensitizers and 8 nonsensitizers) revealed that prediction of contact sensitization potential was possible based on evaluation of changes in three genes: IL8, HMOX1 and PAIMP1. In total, changes in expression of these genes allowed correct detection of sensitization potential of 21 out of 27 (78%) test sensitizers. The gene expression levels inside potency groups varied and did not allow estimation of sensitization potency of test chemicals. Results of this study indicate that evaluation of changes in expression of proposed biomarkers in THP-1 cells could be a valuable model for preliminary screening of chemicals to discriminate an appreciable majority of sensitizers from nonsensitizers. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. An Intelligent System for Modelling, Design and Analysis of Chemical Processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    ICAS, Integrated Computer Aided System, is a software that consists of a number of intelligent tools, which are very suitable, among others, for computer aided modelling, sustainable design of chemical and biochemical processes, and design-analysis of product-process monitoring systems. Each...... the computer aided modelling tool will illustrate how to generate a desired process model, how to analyze the model equations, how to extract data and identify the model and make it ready for various types of application. In sustainable process design, the example will highlight the issue of integration...

  18. Evaluation of chemical and/or mechanical treatments of the smear layer as revealed by scanning electron microscopy - a blind comparative study

    Directory of Open Access Journals (Sweden)

    LUZ Maria Aparecida Alves de Cerqueira

    2000-01-01

    Full Text Available A blind comparative study of chemical and/or mechanical treatments of the smear layer, according to scanning electron microscopy images, was carried out. The effect of the treatments was analyzed on the smear layer of mesio-occlusodistal cavity walls prepared in vitro in human third molars. The agents used were air/water spray, 37% phosphoric acid, 5% tannic acid, biologic detergent, 0.5% sodium hypochlorite, and enamel hatchet alone or in association with the previous agents. Electron micrographs were evaluated by three professionals according to the degree of visualization of underlying dentin or enamel. Phosphoric acid received the highest scores due to the complete removal of the smear layer. However, statistical analyses revealed diverse performances of non or slightly demineralizing agents, according to the cavity walls in dentin, while there was equivalent effect on the enamel of gingival walls.

  19. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging

    Science.gov (United States)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai

    2017-10-01

    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  20. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buyck, N.; Thomas, S.

    2001-01-01

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) at the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.

  1. Anisotropic chemical strain in cubic ceria due to oxygen-vacancy-induced elastic dipoles.

    Science.gov (United States)

    Das, Tridip; Nicholas, Jason D; Sheldon, Brian W; Qi, Yue

    2018-06-06

    Accurate characterization of chemical strain is required to study a broad range of chemical-mechanical coupling phenomena. One of the most studied mechano-chemically active oxides, nonstoichiometric ceria (CeO2-δ), has only been described by a scalar chemical strain assuming isotropic deformation. However, combined density functional theory (DFT) calculations and elastic dipole tensor theory reveal that both the short-range bond distortions surrounding an oxygen-vacancy and the long-range chemical strain are anisotropic in cubic CeO2-δ. The origin of this anisotropy is the charge disproportionation between the four cerium atoms around each oxygen-vacancy (two become Ce3+ and two become Ce4+) when a neutral oxygen-vacancy is formed. Around the oxygen-vacancy, six of the Ce3+-O bonds elongate, one of the Ce3+-O bond shorten, and all seven of the Ce4+-O bonds shorten. Further, the average and maximum chemical strain values obtained through tensor analysis successfully bound the various experimental data. Lastly, the anisotropic, oxygen-vacancy-elastic-dipole induced chemical strain is polarizable, which provides a physical model for the giant electrostriction recently discovered in doped and non-doped CeO2-δ. Together, this work highlights the need to consider anisotropic tensors when calculating the chemical strain induced by dilute point defects in all materials, regardless of their symmetry.

  2. Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent III-V heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W.; Steidl, M.; Paszuk, A. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Brückner, S. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institut für Solare Brennstoffe, 14109 Berlin (Germany); Dobrich, A. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Supplie, O. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institut für Solare Brennstoffe, 14109 Berlin (Germany); Kleinschmidt, P. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Hannappel, T., E-mail: thomas.hannappel@tu-ilmenau.de [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institut für Solare Brennstoffe, 14109 Berlin (Germany)

    2017-01-15

    Highlights: • We investigate the Si(111) surface prepared in CVD ambient at 1000 °C in 950 mbar H{sub 2}. • UHV-based XPS, LEED, STM and FTIR as well as ambient AFM are applied. • After processing the Si(111) surface is free of contamination and atomically flat. • The surface exhibits a (1 × 1) reconstruction and monohydride termination. • Wet-chemical pretreatment and homoepitaxy are required for a regular step structure. - Abstract: For well-defined heteroepitaxial growth of III-V epilayers on Si(111) substrates the atomic structure of the silicon surface is an essential element. Here, we study the preparation of the Si(111) surface in H{sub 2}-based chemical vapor ambient as well as its atomic structure after contamination-free transfer to ultrahigh vacuum (UHV). Applying complementary UHV-based techniques, we derive a complete picture of the atomic surface structure and its chemical composition. X-ray photoelectron spectroscopy measurements after high-temperature annealing confirm a Si surface free of any traces of oxygen or other impurities. The annealing in H{sub 2} ambient leads to a monohydride surface termination, as verified by Fourier-transform infrared spectroscopy. Scanning tunneling microscopy confirms a well ordered, atomically smooth surface, which is (1 × 1) reconstructed, in agreement with low energy electron diffraction patterns. Atomic force microscopy reveals a significant influence of homoepitaxy and wet-chemical pretreatment on the surface morphology. Our findings show that wet-chemical pretreatment followed by high-temperature annealing leads to contamination-free, atomically flat Si(111) surfaces, which are ideally suited for subsequent III-V heteroepitaxy.

  3. Physical-chemical study of hydroxi-phosphates and associated minerals occurring in the Pirocaua Plateau (MA) and Jandia hill (PA)

    International Nuclear Information System (INIS)

    Reymao, M. de F.F.

    1983-01-01

    A lateritic profile rich in alumino-calcic and aluminum hidroxi-phosphates (Pirocaua, MA), and another also rich in alumino-calcic and containning iron and calcium hidroxi-phosphates (Jandia, PA) has been investigated in order to elucidate the formation of the secondary minerals and the trace element behaviour during tropical weathering. For such purposes it was decided to use X-ray diffractometry and chemical analysis and it was pointed out the applicability of infrared absorption spectroscopy and differential thermal analysis for the mineral characterization. In order to relate the geochemical alterations it was included a theoretical thermodynamic study. Infrared absorption spectroscopy and differential thermal analysis have been demonstrated to be valuables methods for studying minerals. Results are presented which demonstrate the usefullness of these techniques. These studies show that it is now possible to correlate differential thermal analysis and infrared data with that from other techniques (chemical analysis, X-ray diffraction patterns) and that the methods yields valuable supplemental information. Theoretical calculations and the use of thermodynamic data (standard free energie and solubility products) reveal some important conclusions about chemical equilibria, mineral formation, solubility and stability relations. (Author) [pt

  4. Cheminformatics Analysis of EPA ToxCast Chemical Libraries ...

    Science.gov (United States)

    An important goal of toxicology research is the development of robust methods that use in vitro and chemical structure information to predict in vivo toxicity endpoints. The US EPA ToxCast program is addressing this goal using ~600 in vitro assays to create bioactivity profiles on a set of 320 compounds, mostly pesticide actives, that have well characterized in vivo toxicity. These 320 compounds (EPA-320 set evaluated in Phase I of ToxCast) are a subset of a much larger set of ~10,000 candidates that are of interest to the EPA (called here EPA-10K). Predictive models of in vivo toxicity are being constructed from the in vitro assay data on the EPA-320 chemical set. These models require validation on additional chemicals prior to wide acceptance, and this will be carried out by evaluating compounds from EPA-10K in Phase II of ToxCast. We have used cheminformatics approaches including clustering, data visualization, and QSAR to develop models for EPA-320 that could help prioritizing EPA-10K validation chemicals. Both chemical descriptors, as well as calculated physicochemical properties have been used. Compounds from EPA-10K are prioritized based on their similarity to EPA-320 using different similarity metrics, with similarity thresholds defining the domain of applicability for the predictive models built for EPA-320 set. In addition, prioritized lists of compounds of increasing dissimilarity from the EPA-320 have been produced, to test the ability of the EPA-320

  5. Solubilization of advanced ceramic materials controlled by chemical analysis by means of atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Amarante Junior, A.

    1992-01-01

    This paper purpose is to show the techniques used in chemical analysis laboratory at Escola SENAI Mario Amato in the ceramic nucleus for opening and solubilization of Advanced Ceramic materials, where the elements in its majority are determined for atomic absorption spectroscopy. (author)

  6. Chemical Analysis of the Herbal Medicine Salviae miltiorrhizae Radix et Rhizoma (Danshen

    Directory of Open Access Journals (Sweden)

    Hanqing Pang

    2016-01-01

    Full Text Available Radix Salviae miltiorrhizae et Rhizoma, known as Danshen in China, is one of the most popular traditional Chinese medicines. Recently, there has been increasing scientific attention on Danshen for its remarkable bioactivities, such as promoting blood circulation, removing blood stasis, and clearing away heat. This review summarized the advances in chemical analysis of Danshen and its preparations since 2009. Representative established methods were reviewed, including spectroscopy, thin layer chromatography, gas chromatography, liquid chromatography (LC, liquid chromatography-mass spectrometry (LC-MS, capillary electrophoresis, electrochemistry, and bioanalysis. Especially the analysis of polysaccharides in Danshen was discussed for the first time. Some proposals were also put forward to benefit quality control of Danshen.

  7. Development and Analysis of Group Contribution Plus Models for Property Prediction of Organic Chemical Systems

    DEFF Research Database (Denmark)

    Mustaffa, Azizul Azri

    for the GIPs are then used in the UNIFAC model to calculate activity coefficients. This approach can increase the application range of any “host” UNIFAC model by providing a reliable predictive model towards fast and efficient product development. This PhD project is focused on the analysis and further......Prediction of properties is important in chemical process-product design. Reliable property models are needed for increasingly complex and wider range of chemicals. Group-contribution methods provide useful tool but there is a need to validate them and improve their accuracy when complex chemicals...... are present in the mixtures. In accordance with that, a combined group-contribution and atom connectivity approach that is able to extend the application range of property models has been developed for mixture properties. This so-called Group-ContributionPlus (GCPlus) approach is a hybrid model which combines...

  8. Chemical analysis and antioxidant activity in vitro of polysaccharides extracted from Boletus edulis.

    Science.gov (United States)

    Zhang, Anqiang; Xiao, Nannan; He, Pengfei; Sun, Peilong

    2011-12-01

    Boletus edulis is a well-known delicious mushroom. In this study, three crude polysaccharides (BEPF30, BEPF60 and BEPF80) were isolated from the fruiting bodies of B. edulis with boiling water. Chemical and physical characteristics of the three crude polysaccharides were investigated by the combination of chemical and instrumental analysis methods. Their antioxidant activities were investigated in vitro systems including hydroxyl assay, superoxide radical assay, reducing power and chelating activity. Among these three polysaccharides, BEPF60 showed more significant reducing power and chelating activity; and highest inhibitory effects on superoxide radical and hydroxyl radical. These results indicated that polysaccharides extracted from B. edulis might be employed as ingredients in healthy and functional food to alleviate the oxidative stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. GC-MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites.

    Science.gov (United States)

    Cuadros-Inostroza, Alvaro; Ruíz-Lara, Simón; González, Enrique; Eckardt, Aenne; Willmitzer, Lothar; Peña-Cortés, Hugo

    Information about the total chemical composition of primary metabolites during grape berry development is scarce, as are comparative studies trying to understand to what extent metabolite modifications differ between cultivars during ripening. Thus, correlating the metabolic profiles with the changes occurring in berry development and ripening processes is essential to progress in their comprehension as well in the development of new approaches to improve fruit attributes. Here, the developmental metabolic profiling analysis across six stages from flowering to fully mature berries of two cultivars, Cabernet Sauvignon and Merlot, is reported at metabolite level. Based on a gas chromatography-mass spectrometry untargeted approach, 115 metabolites were identified and relative quantified in both cultivars. Sugars and amino acids levels show an opposite behaviour in both cultivars undergoing a highly coordinated shift of metabolite associated to primary metabolism during the stages involved in growth, development and ripening of berries. The changes are characteristic for each stage, the most pronounced ones occuring at fruit setting and pre-Veraison. They are associated to a reduction of the levels of metabolites present in the earlier corresponding stage, revealing a required catabolic activity of primary metabolites for grape berry developmental process. Network analysis revealed that the network connectivity of primary metabolites is stage- and cultivar-dependent, suggesting differences in metabolism regulation between both cultivars as the maturity process progresses. Furthermore, network analysis may represent an appropriate method to display the association between primary metabolites during berry developmental processes among different grapevine cultivars and for identifying potential biologically relevant metabolites.

  10. Soft X-ray induced chemical modification of polysaccharides in vascular plant cell walls

    International Nuclear Information System (INIS)

    Cody, George D.; Brandes, Jay; Jacobsen, Chris; Wirick, Susan

    2009-01-01

    Scanning transmission X-ray microscopy and micro carbon X-ray Absorption Near Edge Spectroscopy (C-XANES) can provide quantitative information regarding the distribution of the biopolymers cellulose, hemicellulose, and lignin in vascular plant cell walls. In the case of angiosperms, flowering plants, C-XANES may also be able to distinguish variations in lignin monomer distributions throughout the cell wall. Polysaccharides are susceptible to soft X-ray irradiation induced chemical transformations that may complicate spectral analysis. The stability of a model polysaccharide, cellulose acetate, to variable doses of soft X-rays under conditions optimized for high quality C-XANES spectroscopy was investigated. The primary chemical effect of soft X-ray irradiation on cellulose acetate involves mass loss coincident with de-acetylation. A lesser amount of vinyl ketone formation also occurs. Reduction in irradiation dose via defocusing does enable high quality pristine spectra to be obtained. Radiation induced chemical modification studies of oak cell wall reveals that cellulose and hemicellulose are less labile to chemical modification than cellulose acetate. Strategies for obtaining pristine C-XANES spectra of polysaccharides are presented.

  11. ChemiRs: a web application for microRNAs and chemicals.

    Science.gov (United States)

    Su, Emily Chia-Yu; Chen, Yu-Sing; Tien, Yun-Cheng; Liu, Jeff; Ho, Bing-Ching; Yu, Sung-Liang; Singh, Sher

    2016-04-18

    MicroRNAs (miRNAs) are about 22 nucleotides, non-coding RNAs that affect various cellular functions, and play a regulatory role in different organisms including human. Until now, more than 2500 mature miRNAs in human have been discovered and registered, but still lack of information or algorithms to reveal the relations among miRNAs, environmental chemicals and human health. Chemicals in environment affect our health and daily life, and some of them can lead to diseases by inferring biological pathways. We develop a creditable online web server, ChemiRs, for predicting interactions and relations among miRNAs, chemicals and pathways. The database not only compares gene lists affected by chemicals and miRNAs, but also incorporates curated pathways to identify possible interactions. Here, we manually retrieved associations of miRNAs and chemicals from biomedical literature. We developed an online system, ChemiRs, which contains miRNAs, diseases, Medical Subject Heading (MeSH) terms, chemicals, genes, pathways and PubMed IDs. We connected each miRNA to miRBase, and every current gene symbol to HUGO Gene Nomenclature Committee (HGNC) for genome annotation. Human pathway information is also provided from KEGG and REACTOME databases. Information about Gene Ontology (GO) is queried from GO Online SQL Environment (GOOSE). With a user-friendly interface, the web application is easy to use. Multiple query results can be easily integrated and exported as report documents in PDF format. Association analysis of miRNAs and chemicals can help us understand the pathogenesis of chemical components. ChemiRs is freely available for public use at http://omics.biol.ntnu.edu.tw/ChemiRs .

  12. Mapping students' ideas about chemical reactions at different educational levels

    Science.gov (United States)

    Yan, Fan

    Understanding chemical reactions is crucial in learning chemistry at all educational levels. Nevertheless, research in science education has revealed that many students struggle to understand chemical processes. Improving teaching and learning about chemical reactions demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the discipline. Thus, we have carried out a qualitative study using semi-structured interviews as the main data collection tool to explore students reasoning about reaction mechanism and causality. The participants of this study included students at different levels of training in chemistry: general chemistry students (n=22), organic chemistry students (n=16), first year graduate students (n=13) and Ph.D. candidates (n=14). We identified major conceptual modes along critical dimensions of analysis, and illustrated common ways of reasoning using typical cases. Main findings indicate that although significant progress is observed in student reasoning in some areas, major conceptual difficulties seem to persist even at the more advanced educational levels. In addition, our findings suggest that students struggle to integrate important concepts when thinking about mechanism and causality in chemical reactions. The results of our study are relevant to chemistry educators interested in learning progressions, assessment, and conceptual development.

  13. Chemical or Biological Terrorist Attacks: An Analysis of the Preparedness of Hospitals for Managing Victims Affected by Chemical or Biological Weapons of Mass Destruction

    Science.gov (United States)

    Bennett, Russell L.

    2006-01-01

    The possibility of a terrorist attack employing the use of chemical or biological weapons of mass destruction (WMD) on American soil is no longer an empty threat, it has become a reality. A WMD is defined as any weapon with the capacity to inflict death and destruction on such a massive scale that its very presence in the hands of hostile forces is a grievous threat. Events of the past few years including the bombing of the World Trade Center in 1993, the Murrah Federal Building in Oklahoma City in 1995 and the use of planes as guided missiles directed into the Pentagon and New York’s Twin Towers in 2001 (9/11) and the tragic incidents involving twenty-three people who were infected and five who died as a result of contact with anthrax-laced mail in the Fall of 2001, have well established that the United States can be attacked by both domestic and international terrorists without warning or provocation. In light of these actions, hospitals have been working vigorously to ensure that they would be “ready” in the event of another terrorist attack to provide appropriate medical care to victims. However, according to a recent United States General Accounting Office (GAO) nationwide survey, our nation’s hospitals still are not prepared to manage mass causalities resulting from chemical or biological WMD. Therefore, there is a clear need for information about current hospital preparedness in order to provide a foundation for systematic planning and broader discussions about relative cost, probable effectiveness, environmental impact and overall societal priorities. Hence, the aim of this research was to examine the current preparedness of hospitals in the State of Mississippi to manage victims of terrorist attacks involving chemical or biological WMD. All acute care hospitals in the State were selected for inclusion in this study. Both quantitative and qualitative methods were utilized for data collection and analysis. Six hypotheses were tested. Using a

  14. Analysis of a Stochastic Chemical System Close to a SNIPER Bifurcation of Its Mean-Field Model

    KAUST Repository

    Erban, Radek; Chapman, S. Jonathan; Kevrekidis, Ioannis G.; Vejchodský , Tomá š

    2009-01-01

    A framework for the analysis of stochastic models of chemical systems for which the deterministic mean-field description is undergoing a saddle-node infinite period (SNIPER) bifurcation is presented. Such a bifurcation occurs, for example

  15. On the graph and systems analysis of reversible chemical reaction networks with mass action kinetics

    NARCIS (Netherlands)

    Rao, Shodhan; Jayawardhana, Bayu; Schaft, Arjan van der

    2012-01-01

    Motivated by the recent progresses on the interplay between the graph theory and systems theory, we revisit the analysis of reversible chemical reaction networks described by mass action kinetics by reformulating it using the graph knowledge of the underlying networks. Based on this formulation, we

  16. Analysis of radiation and chemical factors which define the ecological situation of environment

    International Nuclear Information System (INIS)

    Trofimenko, A.P.

    1996-01-01

    A new method of large information set statistical analysis is proposed. It permits to define the main directions of work in a given field in the world or in a particular country, to find the most important investigated problems and to evaluate the role each of them quantitatively, as well as to study the dynamics of work development in time, the methods of research used, the centres in which this research is mostly developed, authors of publications etc. Statistical analysis may be supplemented with subject analysis of selected publications. Main factors which influence on different environment components and on public health are presented as an example of this method use, and the role of radiation and chemical factors is evaluated. 18 refs., 6 tab

  17. Urine storage under refrigeration preserves the sample in chemical, cellularity and bacteriuria analysis of ACS

    OpenAIRE

    Karen Cristina Barcellos Ribeiro; Bruno Rotondo Levenhagem Serabion; Eduardo Lima Nolasco; Chislene Pereira Vanelli; Harleson Lopes de Mesquita; José Otávio do Amaral Corrêa

    2013-01-01

    INTRODUCTION: The analysis of urine abnormal constituents and sediment (ACS) comprises tests of great diagnostic and prognostic value in clinical practice. When the analysis of ACS cannot be performed within two hours after collection, the sample must be preserved in order to avoid pre-analytical interferences. Refrigeration is the most applied technique due to its cost effectiveness. Moreover, it presents fewer inconveniences when compared to chemical preservation. However, changes in ACS ma...

  18. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 2: Base Case and Sensitivity Analysis

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Part 1 (10.1021/ef3014103) of this series describes a new rotary reactor for gas-fueled chemical-looping combustion (CLC), in which, a solid wheel with microchannels rotates between the reducing and oxidizing streams. The oxygen carrier (OC) coated on the surfaces of the channels periodically adsorbs oxygen from air and releases it to oxidize the fuel. A one-dimensional model is also developed in part 1 (10.1021/ef3014103). This paper presents the simulation results based on the base-case design parameters. The results indicate that both the fuel conversion efficiency and the carbon separation efficiency are close to unity. Because of the relatively low reduction rate of copper oxide, fuel conversion occurs gradually from the inlet to the exit. A total of 99.9% of the fuel is converted within 75% of the channel, leading to 25% redundant length near the exit, to ensure robustness. In the air sector, the OC is rapidly regenerated while consuming a large amount of oxygen from air. Velocity fluctuations are observed during the transition between sectors because of the complete reactions of OCs. The gas temperature increases monotonically from 823 to 1315 K, which is mainly determined by the solid temperature, whose variations with time are limited within 20 K. The overall energy in the solid phase is balanced between the reaction heat release, conduction, and convective cooling. In the sensitivity analysis, important input parameters are identified and varied around their base-case values. The resulting changes in the model-predicted performance revealed that the most important parameters are the reduction kinetics, the operating pressure, and the feed stream temperatures. © 2012 American Chemical Society.

  19. Process Equipment Failure Mode Analysis in a Chemical Industry

    Directory of Open Access Journals (Sweden)

    J. Nasl Seraji

    2008-04-01

    Full Text Available Background and aims   Prevention of potential accidents and safety promotion in chemical processes requires systematic safety management in them. The main objective of this study was analysis of important process equipment components failure modes and effects in H2S and CO2  isolation from extracted natural gas process.   Methods   This study was done in sweetening unit of an Iranian gas refinery. Failure Mode and Effect Analysis (FMEA used for identification of process equipments failures.   Results   Totally 30 failures identified and evaluated using FMEA. P-1 blower's blade breaking and sour gas pressure control valve bearing tight moving had maximum risk Priority number (RPN, P-1 body corrosion and increasing plug lower side angle of reach DEAlevel control valve  in tower - 1 were minimum calculated RPN.   Conclusion   By providing a reliable documentation system for equipment failures and  incidents recording, maintaining of basic information for later safety assessments would be  possible. Also, the probability of failures and effects could be minimized by conducting preventive maintenance.

  20. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices.

    Science.gov (United States)

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-10-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients (R (2) ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time. Graphical Abstract ᅟ.

  1. Kinematics analysis on hinges of robot arm gripper for harmful chemical handling

    Science.gov (United States)

    Razali, Zol Bahri; Kader, Mohamed Mydin M. Abdul; Mustafa, Nurul Fahimah; Daud, Mohd Hisam

    2017-09-01

    The development of manufacturing industry is booming the application of industrial robot, and proportional to the use of robot arm. Some of the purpose of robot arm gripper is to sort things and place to the proper place. And some of the things are harmful to human, such as harmful chemical. By using robot arm to do picking and placing, it is expected to replace human tasks, as well as to reduce human from the harmful job. The problem of the robot arm gripper, most likely the problem of hinge, thus the analysis on the hinges of robot arm gripper to prevent claw is essential. By using robot arm, instead of human, is labored to do the harmful tasks and unexpected accident happen, costs and expenses in handling injured employee due to the harmful chemicals can be minimized. Thus the objective of this project is to make a kinematics analysis on the hinges of the robot arm gripper. Suitable material such as steel structure has also been selected for the construction of this hinges. This material has properties associated with compressive strength, fire resistance, corrosion and has a shape that is easy to move. Solid Works and ANSYS software is used to create animated movement on the design model and to detect deficiencies in the hinges. Detail methodology is described in this paper.

  2. Chemical discrimination of lubricant marketing types using direct analysis in real time time-of-flight mass spectrometry.

    Science.gov (United States)

    Maric, Mark; Harvey, Lauren; Tomcsak, Maren; Solano, Angelique; Bridge, Candice

    2017-06-30

    In comparison to other violent crimes, sexual assaults suffer from very low prosecution and conviction rates especially in the absence of DNA evidence. As a result, the forensic community needs to utilize other forms of trace contact evidence, like lubricant evidence, in order to provide a link between the victim and the assailant. In this study, 90 personal bottled and condom lubricants from the three main marketing types, silicone-based, water-based and condoms, were characterized by direct analysis in real time time of flight mass spectrometry (DART-TOFMS). The instrumental data was analyzed by multivariate statistics including hierarchal cluster analysis, principal component analysis, and linear discriminant analysis. By interpreting the mass spectral data with multivariate statistics, 12 discrete groupings were identified, indicating inherent chemical diversity not only between but within the three main marketing groups. A number of unique chemical markers, both major and minor, were identified, other than the three main chemical components (i.e. PEG, PDMS and nonoxynol-9) currently used for lubricant classification. The data was validated by a stratified 20% withheld cross-validation which demonstrated that there was minimal overlap between the groupings. Based on the groupings identified and unique features of each group, a highly discriminating statistical model was then developed that aims to provide the foundation for the development of a forensic lubricant database that may eventually be applied to casework. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci.

    Directory of Open Access Journals (Sweden)

    Christopher L Schardl

    Full Text Available The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species, which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne, and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species, a morning-glory symbiont (Periglandula ipomoeae, and a bamboo pathogen (Aciculosporium take, and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories

  4. Chemical fingerprinting and source tracing of obsidian: the central Mediterranean trade in black gold.

    Science.gov (United States)

    Tykot, Robert H

    2002-08-01

    Chemical fingerprinting using major or trace element composition is used to characterize the Mediterranean island sources of obsidian and can even differentiate as many as nine flows in the Monte Arci region of Sardinia. Analysis of significant numbers of obsidian artifacts from Neolithic sites in the central Mediterranean reveals specific patterns of source exploitation and suggests particular trade mechanisms and routes. The use of techniques such as X-ray fluorescence, the electron microprobe, neutron activation analysis, and laser ablation ICP mass spectrometry are emphasized in order to produce quantitative results while minimizing damage to valuable artifacts.

  5. Sample handling and chemical procedures for efficacious trace analysis of urine by neutron activation analysis

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.; Roman, F.R.

    1988-01-01

    Important for the determination of trace elements, ions, or compounds in urine by chemical neutron activation analysis is the optimization of sample handling, preirradiation chemistry, and radioassay procedures necessary for viable analysis. Each element, because of its natural abundance in the earth's crust and, hence, its potential for reagent and environmental contamination, requires specific procedures for storage, handling, and preirradiation chemistry. Radioassay techniques for radionuclides vary depending on their half-lives and decay characteristics. Described in this paper are optimized procedures for aluminum and selenium. While 28 Al (T 1/2 = 2.24 min) and 77m Se(T 1/2 = 17.4s) have short half-lives, their gamma-ray spectra are quite different. Aluminum-28 decays by a 1779-keV gamma and 77m Se by a 162-keV gamma. Unlike selenium, aluminum is a ubiquitous element in the environment requiring special handling to minimize contamination in all phases of its analytical determination

  6. Natural and Semisynthetic Analogues of Manadoperoxide B Reveal New Structural Requirements for Trypanocidal Activity

    Science.gov (United States)

    Chianese, Giuseppina; Scala, Fernando; Calcinai, Barbara; Cerrano, Carlo; Dien, Henny A.; Kaiser, Marcel; Tasdemir, Deniz; Taglialatela-Scafati, Orazio

    2013-01-01

    Chemical analysis of the Indonesian sponge Plakortis cfr. lita afforded two new analogues of the potent trypanocidal agent manadoperoxide B (1), namely 12-isomanadoperoxide B (2) and manadoperoxidic acid B (3). These compounds were isolated along with a new short chain dicarboxylate monoester (4), bearing some interesting relationships with the polyketide endoperoxides found in this sponge. Some semi-synthetic analogues of manadoperoxide B (6–8) were prepared and evaluated for antitrypanosomal activity and cytotoxicity. These studies revealed crucial structure–activity relationships that should be taken into account in the design of optimized and simplified endoperoxyketal trypanocidal agents. PMID:23989650

  7. Natural and Semisynthetic Analogues of Manadoperoxide B Reveal New Structural Requirements for Trypanocidal Activity

    Directory of Open Access Journals (Sweden)

    Orazio Taglialatela-Scafati

    2013-08-01

    Full Text Available Chemical analysis of the Indonesian sponge Plakortis cfr. lita afforded two new analogues of the potent trypanocidal agent manadoperoxide B (1, namely 12-isomanadoperoxide B (2 and manadoperoxidic acid B (3. These compounds were isolated along with a new short chain dicarboxylate monoester (4, bearing some interesting relationships with the polyketide endoperoxides found in this sponge. Some semi-synthetic analogues of manadoperoxide B (6–8 were prepared and evaluated for antitrypanosomal activity and cytotoxicity. These studies revealed crucial structure–activity relationships that should be taken into account in the design of optimized and simplified endoperoxyketal trypanocidal agents.

  8. Physical- chemical changes in irradiated sodium alginate algimar

    International Nuclear Information System (INIS)

    Rapado Paneque, Manuel; Alazanes, Sonia; Sainz Vidal, Dianelys; Wandrey, Christine

    2003-01-01

    The effect of gamma radiation on the physical-chemical properties of sodium alginate Algimar has been investigated. dilution viscometric, densitometry FTIR spectroscopy served to identify modifications. Decreasing intrinsic, viscosities clearly revealed chain cleavage for both solid alginate indicate that chain degradation occurs without significant change of the chemical structure, The obtained results have practical implication change of the chemical structure. The obtained results have practical implication in the field of radiation modification and sterilization of sodium alginate used for microcapsule formation

  9. Application of Solid Phase Microextraction Coupled with Gas Chromatography/Mass Spectrometry as a Rapid Method for Field Sampling and Analysis of Chemical Warfare Agents and Toxic Industrial Chemicals

    National Research Council Canada - National Science Library

    Hook, Gary L

    2003-01-01

    ..., is: What chemicals are present? In order to answer this question rapidly, there is increasing demand for field analysis of volatile and semi-volatile organic compounds with instrumentation that provides definitive identification...

  10. Multilocus Sequence Analysis of Nectar Pseudomonads Reveals High Genetic Diversity and Contrasting Recombination Patterns

    Science.gov (United States)

    Álvarez-Pérez, Sergio; de Vega, Clara; Herrera, Carlos M.

    2013-01-01

    The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas ‘sensu stricto’ isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA) of four core housekeeping genes (rrs, gyrB, rpoB and rpoD). A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs) 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1); P. fluorescens, P. lutea and P. syringae (NG 2); and P. rhizosphaerae (NG 3). Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria. PMID:24116076

  11. Multilocus sequence analysis of nectar pseudomonads reveals high genetic diversity and contrasting recombination patterns.

    Science.gov (United States)

    Alvarez-Pérez, Sergio; de Vega, Clara; Herrera, Carlos M

    2013-01-01

    The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas 'sensu stricto' isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA) of four core housekeeping genes (rrs, gyrB, rpoB and rpoD). A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs) 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1); P. fluorescens, P. lutea and P. syringae (NG 2); and P. rhizosphaerae (NG 3). Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria.

  12. Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes

    International Nuclear Information System (INIS)

    Geng, ZhiQiang; Dong, JunGen; Han, YongMing; Zhu, QunXiong

    2017-01-01

    Highlights: •An improved environment DEA cross-model method is proposed. •Energy and environment efficiency analysis framework of complex chemical processes is obtained. •This proposed method is efficient in energy-saving and emission reduction of complex chemical processes. -- Abstract: The complex chemical process is a high pollution and high energy consumption industrial process. Therefore, it is very important to analyze and evaluate the energy and environment efficiency of the complex chemical process. Data Envelopment Analysis (DEA) is used to evaluate the relative effectiveness of decision-making units (DMUs). However, the traditional DEA method usually cannot genuinely distinguish the effective and inefficient DMU due to its extreme or unreasonable weight distribution of input and output variables. Therefore, this paper proposes an energy and environment efficiency analysis method based on an improved environment DEA cross-model (DEACM) method. The inputs of the complex chemical process are divided into energy and non-energy inputs. Meanwhile, the outputs are divided into desirable and undesirable outputs. And then the energy and environment performance index (EEPI) based on the cross evaluation is used to represent the overall performance of each DMU. Moreover, the improvement direction of energy-saving and carbon emission reduction of each inefficiency DMU is quantitatively obtained based on the self-evaluation model of the improved environment DEACM. The results show that the improved environment DEACM method has a better effective discrimination than the original DEA method by analyzing the energy and environment efficiency of the ethylene production process in complex chemical processes, and it can obtain the potential of energy-saving and carbon emission reduction of ethylene plants, especially the improvement direction of inefficient DMUs to improve energy efficiency and reduce carbon emission.

  13. Chemical profile of Taxodium distichum winter cones

    Directory of Open Access Journals (Sweden)

    Đapić Nina M.

    2017-01-01

    Full Text Available This work is concerned with the chemical profile of Taxodium distichum winter cones. The extract obtained after maceration in absolute ethanol was subjected to qualitative analysis by gas chromatography/mass spectrometry and quantification was done by gas chromatography/ flame ionization detector. The chromatogram revealed the presence of 53 compounds, of which 33 compounds were identified. The extract contained oxygenated monoterpenes (12.42%, sesquiterpenes (5.18%, oxygenated sesquiterpenes (17.41%, diterpenes (1.15%, and oxygenated diterpenes (30.87%, while the amount of retinoic acid was 0.32%. Monoacylglycerols were detected in the amount of 4.32%. The most abundant compounds were: caryophyllene oxide (14.27%, 6,7-dehydro-ferruginol (12.49%, bornyl acetate (10.96%, 6- deoxy-taxodione (9.50% and trans-caryophyllene (4.20%.

  14. The use of microbial and chemical analyses to characterize the variations in fouling profile of seawater reverse osmosis (SWRO) membrane

    KAUST Repository

    Manes, Carmem Lara De O

    2013-01-01

    Biofouling of reverse osmosis (RO) membranes is one of the most common problems in desalinations plants reducing the efficiency of the water production process. The characterization of bacterial community composition from fouling layers as well as detailed analysis of surrounding chemical environment might reveal process specific bacterial groups/species that are involved in RO biofouling. In this study, advanced organics analytic methods (elemental analysis, FTIR, and ICP-OES) were combined with high-throughput 16S rRNA (pyro) sequencing to assess in parallel, the chemical properties and the active microbial community composition of SWRO membranes from a pilot desalination plant (MFT, Tarragona) in February 2011 and July 2011. Prefiltered ultrafiltration. waters fed SWRO membranes during third and fifth month of operation, respectively. SWRO samples were taken from three modules at different positions (first, fourth, and sixth) in order to investigate the spatial changes in fouling layers\\' chemical and microbiological composition. The overall assessment of chemical parameters revealed that fouling layers were mainly composed by bio and organic material (proteins and lipids). Ca and Fe were found to be the most abundant elements having an increasing concentration gradient according to the module position. Bacterial community composition of SWRO membranes is mostly represented by the Gammaproteobacteria class with interesting differences in genera/species spatial and temporal distribution. This preliminary result suggests that pretreatments and/or operational conditions might have selected different bacterial groups more adapted to colonize SWRO membranes. © 2013 Desalination Publications.

  15. Determination of mercury in ppb level by activation analysis and chemical separation

    International Nuclear Information System (INIS)

    Requejo, C.S.

    1983-02-01

    A method for determining mercury in steel samples was developed. Activation analysis using thermal neutrons, followed by radiochemical separations to eliminate 75 Se interferences, were applied. Sixty hours after the end of the irradiation, the samples were processed and distillation of mercury and selenium bromides were carried out. Selenium was separated as an element and mercury sulfide was precipitaded. The chemical separation procedure was tested by using a tracer technique; the recovery yield was 99,2% + - 2,7%. (C.L.B.) [pt

  16. Quantitative analysis of abused drugs in physiological fluids by gas chromatography/chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Foltz, R.L.

    1978-01-01

    Methods have been developed for quantitative analysis of commonly abused drugs in physiological fluids using gas chromatography/chemical ionization mass spectrometry. The methods are being evaluated in volunteer analytical and toxicological laboratories, and analytical manuals describing the methods are being prepared. The specific drug and metabolites included in this program are: Δ 9 -tetrahydrocannabinol, methadone, phencyclidine, methaqualone, morphine, amphetamine, methamphetamine, mescaline, 2,5-dimethoxy-4-methyl amphetamine, cocaine, benzoylecgonine, diazepam, and N-desmethyldiazepam. The current analytical methods utilize relatively conventional instrumentation and procedures, and are capable of measuring drug concentrations as low as 1 ng/ml. Various newer techniques such as sample clean-up by high performance liquid chromatography, separation by glass capillary chromatography, and ionization by negative ion chemical ionization are being investigated with respect to their potential for achieving higher sensitivity and specificity, as well as their ability to facilitate simultaneous analysis of more than one drug and metabolite. (Auth.)

  17. Chemical Fingerprint and Quantitative Analysis for the Quality Evaluation of Platycladi cacumen by Ultra-performance Liquid Chromatography Coupled with Hierarchical Cluster Analysis.

    Science.gov (United States)

    Shan, Mingqiu; Li, Sam Fong Yau; Yu, Sheng; Qian, Yan; Guo, Shuchen; Zhang, Li; Ding, Anwei

    2018-01-01

    Platycladi cacumen (dried twigs and leaves of Platycladus orientalis (L.) Franco) is a frequently utilized Chinese medicinal herb. To evaluate the quality of the phytomedcine, an ultra-performance liquid chromatographic method with diode array detection was established for chemical fingerprinting and quantitative analysis. In this study, 27 batches of P. cacumen from different regions were collected for analysis. A chemical fingerprint with 20 common peaks was obtained using Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (Version 2004A). Among these 20 components, seven flavonoids (myricitrin, isoquercitrin, quercitrin, afzelin, cupressuflavone, amentoflavone and hinokiflavone) were identified and determined simultaneously. In the method validation, the seven analytes showed good regressions (R ≥ 0.9995) within linear ranges and good recoveries from 96.4% to 103.3%. Furthermore, with the contents of these seven flavonoids, hierarchical clustering analysis was applied to distinguish the 27 batches into five groups. The chemometric results showed that these groups were almost consistent with geographical positions and climatic conditions of the production regions. Integrating fingerprint analysis, simultaneous determination and hierarchical clustering analysis, the established method is rapid, sensitive, accurate and readily applicable, and also provides a significant foundation for quality control of P. cacumen efficiently. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. ANALYSIS OF THE MANAGEMENT SYSTEM IN THE FIELD OF ENVIRONMENTAL PROTECTION OF RUSSIAN CHEMICAL COMPANIES

    Directory of Open Access Journals (Sweden)

    Anna Makarov

    2018-03-01

    Full Text Available Since 2007, many chemical industrial companies in the Russian Federation have been actively involved in the Responsible Care® international voluntary program. To implement this program, vast bodies of data on environmental impact assessments needs to be collected. This allows us to analyse the environment-oriented trends in economic and social activities, and to record the achievements and problems in this field. The collected large bodies of data are in many cases heterogeneous, since the report has been a voluntary initiative. To analyse the existing trends in business processes, authors applied the methodology for system analysis of large bodies of data and used their own heuristic approximation algorithm for the treatment of accumulated data. This algorithm gives us the unique possibility of evaluating the performance of both individual chemical companies in the framework of the Responsible Care® program and the Russian chemical industry as a whole.

  19. Chemical composition of stars in Ruprecht 106 .

    Science.gov (United States)

    François, P.

    High resolution spectra of 9 stars belonging to the globular cluster Rup 106 have been used to determine their chemical composition. The results reveal that Ruprecht 106 exhibits abundance anomalies when compared to galactic globular cluster of similar metallicity. The chemical composition of these stars is similar to what is found in Dwarf spheroidal galaxies favoring the hypothesis that Rup 106 has not been formed in our Galaxy.

  20. Microbes and associated soluble and volatile chemicals on periodically wet household surfaces.

    Science.gov (United States)

    Adams, Rachel I; Lymperopoulou, Despoina S; Misztal, Pawel K; De Cassia Pessotti, Rita; Behie, Scott W; Tian, Yilin; Goldstein, Allen H; Lindow, Steven E; Nazaroff, William W; Taylor, John W; Traxler, Matt F; Bruns, Thomas D

    2017-09-26

    Microorganisms influence the chemical milieu of their environment, and chemical metabolites can affect ecological processes. In built environments, where people spend the majority of their time, very little is known about how surface-borne microorganisms influence the chemistry of the indoor spaces. Here, we applied multidisciplinary approaches to investigate aspects of chemical microbiology in a house. We characterized the microbial and chemical composition of two common and frequently wet surfaces in a residential setting: kitchen sink and bathroom shower. Microbial communities were studied using culture-dependent and independent techniques, including targeting RNA for amplicon sequencing. Volatile and soluble chemicals from paired samples were analyzed using state-of-the-art techniques to explore the links between the observed microbiota and chemical exudates. Microbial analysis revealed a rich biological presence on the surfaces exposed in kitchen sinks and bathroom shower stalls. Microbial composition, matched for DNA and RNA targets, varied by surface type and sampling period. Bacteria were found to have an average of 25× more gene copies than fungi. Biomass estimates based on qPCR were well correlated with measured total volatile organic compound (VOC) emissions. Abundant VOCs included products associated with fatty acid production. Molecular networking revealed a diversity of surface-borne compounds that likely originate from microbes and from household products. Microbes played a role in structuring the chemical profiles on and emitted from kitchen sinks and shower stalls. Microbial VOCs (mVOCs) were predominately associated with the processing of fatty acids. The mVOC composition may be more stable than that of microbial communities, which can show temporal and spatial variation in their responses to changing environmental conditions. The mVOC output from microbial metabolism on kitchen sinks and bathroom showers should be apparent through careful