WorldWideScience

Sample records for chemical abundance analysis

  1. Chemical Abundance Analysis of Moving Group W11450 (Latham 1)

    Science.gov (United States)

    O'Connell, Julia E.; Martens, Kylee; Frinchaboy, Peter M.

    2016-12-01

    We present elemental abundances for all seven stars in Moving Group W11450 (Latham 1) to determine if they may be chemically related. These stars appear to be both spatially and kinematically related, but no spectroscopic abundance analysis exists in literature. Abundances for eight elements were derived via equivalent width analyses of high-resolution (R ˜ 60,000), high-signal-to-noise ratio ( ˜ 100) spectra obtained with the Otto Struve 2.1 m telescope and the Sandiford Echelle Spectrograph at McDonald Observatory. The large star-to-star scatter in metallicity, -0.55 ≤ [Fe/H] ≤slant 0.06 dex (σ = 0.25), implies these stars were not produced from the same chemically homogeneous molecular cloud, and are therefore not part of a remnant or open cluster as previously proposed. Prior to this analysis, it was suggested that two stars in the group, W11449 and W11450, are possible wide binaries. The candidate wide binary pair show similar chemical abundance patterns with not only iron but with other elements analyzed in this study, suggesting the proposed connection between these two stars may be real.

  2. Isotopic Abundance and Chemical Purity Analysis of Stable Isotope Deuterium Labeled Sudan I

    Directory of Open Access Journals (Sweden)

    CAI Yin-ping;LEI Wen;ZHENG Bo;DU Xiao-ning

    2014-02-01

    Full Text Available It is important that to analysis of the isotopic abundance and chemical purity of Sudan I-D5, which is the internal standard of isotope dilution mass spectrometry. The isotopic abundance of Sudan I-D5 is detected by “mass cluster” classification method and LC-MS. The repeatability and reproducibility experiments were carried out by using different mass spectrometers and different operators. The RSD was less than 0.1%, so the repeatability and reproducibility were satisfactory. The accuracy and precision of the isotopic abundance analysis method was good with the results of F test and t test. The high performance liquid chromatography (HPLC had been used for detecting the chemical purity of Sudan I-D5 as external standard method.

  3. Chemical Abundance Measurements of Ultra-Faint Dwarf Galaxies Discovered by the Dark Energy Survey

    Science.gov (United States)

    Nagasawa, Daniel; Marshall, Jennifer L.; Simon, Joshua D.; Hansen, Terese; Li, Ting; Bernstein, Rebecca; Balbinot, Eduardo; Drlica-Wagner, Alex; Pace, Andrew; Strigari, Louis; Pellegrino, Craig; DePoy, Darren L.; Suntzeff, Nicholas; Bechtol, Keith; Dark Energy Suvey

    2018-01-01

    We present chemical abundance analysis results derived from high-resolution spectroscopy of ultra-faint dwarfs discovered by the Dark Energy Survey. Ultra-faint dwarf galaxies preserve a fossil record of the chemical abundance patterns imprinted by the first stars in the Universe. High-resolution spectroscopic observations of member stars in several recently discovered Milky Way satellites reveal a range of abundance patterns among ultra-faint dwarfs suggesting that star formation processes in the early Universe were quite diverse. The chemical content provides a glimpse not only of the varied nucleosynthetic processes and chemical history of the dwarfs themselves, but also the environment in which they were formed. We present the chemical abundance analysis of these objects and discuss possible explanations for the observed abundance patterns.

  4. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Current Status

    Science.gov (United States)

    Frinchaboy, Peter; O'Connell, Julia; Donor, John; Cunha, Katia; Thompson, Benjamin; Melendez, Matthew; Shetrone, Matthew; Zasowski, Gail; Majewski, Steven R.; APOGEE TEAM

    2018-01-01

    The Open Cluster Chemical Analysis and Mapping (OCCAM) survey aims to produce a comprehensive, uniform, infrared-based data set forhundreds of open clusters, and constrain key Galactic dynamical and chemical parameters using the SDSS/APOGEE survey and follow-up from the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We report on multi-element radial abundance gradients obtained from a sample of over 30 disk open clusters. The APOGEE chemical abundances were derived automatically by the ASPCAP pipeline and these are part of the SDSS IV Data Release 14, optical follow-up were analyzed using equivalent width analysis and spectral synthesis. We present the current open cluster sample that spans a significant range in age allowing exploration of the evolution of the Galactic abundance gradients. This work is supported by an NSF AAG grants AST-1311835 & AST-1715662.

  5. Chemical Abundances in SFG and DLA

    OpenAIRE

    Schulte-Ladbeck, Regina E.; König, Brigitte; Cherinka, Brian

    2005-01-01

    We investigate the chemical abundances of local star-forming galaxies which cause Damped Lyman Alpha lines. A metallicity versus redshift diagram is constructed, on which the chemical abundances of low-redshift star-forming galaxy populations are compared with those of high-redshift Damped Lyman Alpha systems. We disucss two types of experiments on individual star-forming galaxies. In the first, the Damped Lyman Alpha line is created against an internal ultraviolet light source generated by a...

  6. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy System

    Science.gov (United States)

    Hasselquist, Sten; Shetrone, Matthew D.; Smith, Verne V.; Holtzman, Jon A.; McWilliam, Andrew; APOGEE Team

    2018-06-01

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze the chemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] > -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function. We then exploit the unique chemical abundance patters of the Sgr core to trace stars belonging to the Sgr tidal streams elsewhere in the Milky Way.

  7. ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE

    Energy Technology Data Exchange (ETDEWEB)

    García Pérez, Ana E.; Majewski, Steven R.; Shane, Neville; Sobeck, Jennifer; Troup, Nicholas [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Prieto, Carlos Allende; Carrera, Ricardo; García-Hernández, D. A.; Zamora, Olga [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Holtzman, Jon A. [New Mexico State University, Las Cruces, NM 88003 (United States); Shetrone, Matthew [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States); Mészáros, Szabolcs [ELTE Gothard Astrophysical Observatory, H-9704 Szombathely, Szent Imre Herceg St. 112 (Hungary); Bizyaev, Dmitry [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Cunha, Katia [Observatório Nacional, São Cristóvão, Rio de Janeiro (Brazil); Johnson, Jennifer A.; Weinberg, David H. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Schiavon, Ricardo P. [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead, Wirral CH41 1LD (United Kingdom); Smith, Verne V. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Bovy, Jo, E-mail: agp@iac.es [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); and others

    2016-06-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution ( R  ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ {sup 2} minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.

  8. ASPCAP: The APOGEE Stellar Parameter and Chemical Abundances Pipeline

    Science.gov (United States)

    García Pérez, Ana E.; Allende Prieto, Carlos; Holtzman, Jon A.; Shetrone, Matthew; Mészáros, Szabolcs; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia; García-Hernández, D. A.; Johnson, Jennifer A.; Majewski, Steven R.; Nidever, David L.; Schiavon, Ricardo P.; Shane, Neville; Smith, Verne V.; Sobeck, Jennifer; Troup, Nicholas; Zamora, Olga; Weinberg, David H.; Bovy, Jo; Eisenstein, Daniel J.; Feuillet, Diane; Frinchaboy, Peter M.; Hayden, Michael R.; Hearty, Fred R.; Nguyen, Duy C.; O'Connell, Robert W.; Pinsonneault, Marc H.; Wilson, John C.; Zasowski, Gail

    2016-06-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ2 minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.

  9. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    International Nuclear Information System (INIS)

    Hasselquist, Sten; Holtzman, Jon; Shetrone, Matthew; Smith, Verne; Nidever, David L.; McWilliam, Andrew; Fernández-Trincado, J. G.; Tang, Baitian; Beers, Timothy C.; Majewski, Steven R.; Anguiano, Borja; Tissera, Patricia B.; Alvar, Emma Fernández; Carigi, Leticia; Delgado Inglada, Gloria; Allende Prieto, Carlos; Battaglia, Giuseppina; García-Hernández, D. A.; Almeida, Andres; Frinchaboy, Peter

    2017-01-01

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ −0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.

  10. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hasselquist, Sten; Holtzman, Jon [New Mexico State University, Las Cruces, NM 88003 (United States); Shetrone, Matthew [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States); Smith, Verne; Nidever, David L. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); McWilliam, Andrew [The Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Fernández-Trincado, J. G.; Tang, Baitian [Departamento de Astronomía, Casilla 160-C, Universidad de Concepción, Concepción (Chile); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Majewski, Steven R.; Anguiano, Borja [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Tissera, Patricia B. [Department of Physics, Universidad Andres Bello, 700 Fernandez Concha (Chile); Alvar, Emma Fernández; Carigi, Leticia; Delgado Inglada, Gloria [Instituto de Astronomía, Universidad Nacional Autnoma de México, Apdo. Postal 70264, Ciudad de México, 04510 (Mexico); Allende Prieto, Carlos; Battaglia, Giuseppina; García-Hernández, D. A. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Almeida, Andres [Departamento de Física, Facultad de Ciencias, Universidad de La Serena, Cisternas 1200, La Serena (Chile); Frinchaboy, Peter, E-mail: sten@nmsu.edu, E-mail: holtz@nmsu.edu, E-mail: shetrone@astro.as.utexas.edu, E-mail: vsmith@email.noao.edu [Texas Christian University, Fort Worth, TX 76129 (United States); and others

    2017-08-20

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ −0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.

  11. Chemical abundances of globular clusters in NGC 5128 (Centaurus A)

    Science.gov (United States)

    Hernandez, Svea; Larsen, Søren; Trager, Scott; Kaper, Lex; Groot, Paul

    2018-06-01

    We perform a detailed abundance analysis on integrated-light spectra of 20 globular clusters (GCs) in the early-type galaxy NGC 5128 (Centaurus A). The GCs were observed with X-Shooter on the Very Large Telescope (VLT). The cluster sample spans a metallicity range of -1.92 poor GCs in NGC 5128 is genuine, it could hint at a chemical enrichment history different than that experienced by the MW. We also measure Na abundances in 9 out of 20 GCs. We find evidence for intracluster abundance variations in six of these clusters where we see enhanced [Na/Fe] > +0.25 dex. We obtain the first abundance measurements of Cr, Mn, and Ni for a sample of the GC population in NGC 5128 and find consistency with the overall trends observed in the MW, with a slight enhancement (<0.1 dex) in the Fe-peak abundances measured in the NGC 5128.

  12. Chemical element abundance in K giant atmospheres

    International Nuclear Information System (INIS)

    Komarov, N.S.; Shcherbak, A.N.

    1980-01-01

    With the help of modified method of differential curves of growth studied are physical parameters of atmospheres of giant stars of KO111 spectral class of the NGC 752, M25 and UMa cluster. Observations have been made on reflector of Crimea astrophysical observatory of Academy of Sciences of the USSR in the period from February to May, 1978. Spectograms are obtained for the wave length range from 5000-5500 A. It is shown that the change of chemical content in the wide range in heavy element composition does not influence the star atmosphere structUre. It follows from the results of the investigation that the abundance of chemical elements in stars of various scattered clusters, is the same in the range of errors of measurements and is similar to the abundance of chemical elements in the Sun atmosphere

  13. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. Detailed abundance analysis of OGLE-2008-BLG-209S

    OpenAIRE

    Bensby, T.; Johnson, J. A.; Cohen, J.; Feltzing, S.; Udalski, A.; Gould, A.; Huang, W.; Thompson, I.; Simmerer, J.; Adén, D.

    2009-01-01

    AIMS. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We then aim to use microlensed dwarf and subgiant stars to investigate the abundance structure and chemical evolution of the Milky Way Bulge. [ABRIDGED] METHODS. We present a detailed elemental abundance analysis of OGLE-2008-BLG-209S, the source star...

  14. Calibrating Detailed Chemical Analysis of M dwarfs

    Science.gov (United States)

    Veyette, Mark; Muirhead, Philip Steven; Mann, Andrew; Brewer, John; Allard, France; Homeier, Derek

    2018-01-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy, assessing membership in stellar kinematic groups, and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres has hindered similar analysis of M-dwarf stars. Large surveys of FGK abundances play an important role in developing methods to measure the compositions of M dwarfs by providing benchmark FGK stars that have widely-separated M dwarf companions. These systems allow us to empirically calibrate metallicity-sensitive features in M dwarf spectra. However, current methods to measure metallicity in M dwarfs from moderate-resolution spectra are limited to measuring overall metallicity and largely rely on astrophysical abundance correlations in stellar populations. In this talk, I will discuss how large, homogeneous catalogs of precise FGK abundances are crucial to advancing chemical analysis of M dwarfs beyond overall metallicity to direct measurements of individual elemental abundances. I will present a new method to analyze high-resolution, NIR spectra of M dwarfs that employs an empirical calibration of synthetic M dwarf spectra to infer effective temperature, Fe abundance, and Ti abundance. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.

  15. Chempy: A flexible chemical evolution model for abundance fitting. Do the Sun's abundances alone constrain chemical evolution models?

    Science.gov (United States)

    Rybizki, Jan; Just, Andreas; Rix, Hans-Walter

    2017-09-01

    Elemental abundances of stars are the result of the complex enrichment history of their galaxy. Interpretation of observed abundances requires flexible modeling tools to explore and quantify the information about Galactic chemical evolution (GCE) stored in such data. Here we present Chempy, a newly developed code for GCE modeling, representing a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of five to ten parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: for example, the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF), and the incidence of supernova of type Ia (SN Ia). Unlike established approaches, Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets. It is essentially a chemical evolution fitting tool. We straightforwardly extend Chempy to a multi-zone scheme. As an illustrative application, we show that interesting parameter constraints result from only the ages and elemental abundances of the Sun, Arcturus, and the present-day interstellar medium (ISM). For the first time, we use such information to infer the IMF parameter via GCE modeling, where we properly marginalize over nuisance parameters and account for different yield sets. We find that 11.6+ 2.1-1.6% of the IMF explodes as core-collapse supernova (CC-SN), compatible with Salpeter (1955, ApJ, 121, 161). We also constrain the incidence of SN Ia per 103M⊙ to 0.5-1.4. At the same time, this Chempy application shows persistent discrepancies between predicted and observed abundances for some elements, irrespective of the chosen yield set. These cannot be remedied by any variations of Chempy's parameters and could be an indication of missing nucleosynthetic channels. Chempy could be a powerful tool to confront predictions from stellar

  16. Chemical homogeneity in the Orion Association: Oxygen abundances of B stars

    Directory of Open Access Journals (Sweden)

    Lanz T.

    2012-02-01

    Full Text Available We present non-LTE oxygen abundances for a sample of B stars in the Orion association. The abundance calculations included non-LTE line formation and used fully blanketed non-LTE model atmospheres. The stellar parameters were the same as adopted in the previous study by Cunha & Lambert (1994. We find that the young Orion stars in this sample of 10 stars are described by a single oxygen abundance with an average value of A(O = 8.78 and a small dispersion of ±0.05, dex which is of the order of the uncertainties in the analysis. This average oxygen abundance compares well with the average oxygen abundance obtained previously in Cunha & Lambert (1994: A(O = 8.72 ± 0.13 although this earlier study, based upon non-blanketed model atmospheres in LTE, displayed larger scatter. Small scatter of chemical abundances in Orion B stars had also been found in our previous studies for neon and argon; all based on the same effective temperature scale. The derived oxygen abundance distribution for the Orion association compares well with other results for the oxygen abundance in the solar neighborhood.

  17. CHEMICAL ABUNDANCE ANALYSIS OF A NEUTRON-CAPTURE ENHANCED RED GIANT IN THE BULGE PLAUT FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I.; Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); McWilliam, Andrew, E-mail: cijohnson@astro.ucla.edu, E-mail: rmr@astro.ucla.edu, E-mail: cjohnson@cfa.harvard.edu, E-mail: andy@obs.carnegiescience.edu [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

    2013-09-20

    We present chemical abundances for 27 elements ranging from oxygen to erbium in the metal-poor ([Fe/H] = –1.67) bulge red giant branch star 2MASS 18174532-3353235. The results are based on equivalent width and spectrum synthesis analyses of a high-resolution (R ∼ 30, 000) spectrum obtained with the Magellan-MIKE spectrograph. While the light (Z ∼< 30) element abundance patterns match those of similar metallicity bulge and halo stars, the strongly enhanced heavy element abundances are more similar to 'r-II' halo stars (e.g., CS 22892-052) typically found at [Fe/H] ∼< – 2.5. We find that the heaviest elements (Z ≥ 56) closely follow the scaled-solar r-process abundance pattern. We do not find evidence supporting significant s-process contributions; however, the intermediate mass elements (e.g., Y and Zr) appear to have been produced through a different process than the heaviest elements. The light and heavy element abundance patterns of 2MASS 18174532-3353235 are in good agreement with the more metal-poor r-process enhanced stars CS 22892-052 and BD +17{sup o}3248. 2MASS 18174532-3353235 also shares many chemical characteristics with the similar metallicity but comparatively α-poor Ursa Minor dwarf galaxy giant COS 82. Interestingly, the Mo and Ru abundances of 2MASS 18174532-3353235 are also strongly enhanced and follow a similar trend recently found to be common in moderately metal-poor main-sequence turn-off halo stars.

  18. Chemical Abundances of New Member Stars in the Tucana II Dwarf Galaxy

    Science.gov (United States)

    Chiti, Anirudh; Frebel, Anna; Ji, Alexander P.; Jerjen, Helmut; Kim, Dongwon; Norris, John E.

    2018-04-01

    We present chemical abundance measurements for seven stars with metallicities ranging from Fe/H] = ‑3.3 to [Fe/H] = ‑2.4 in the Tucana II ultra-faint dwarf galaxy (UFD), based on high-resolution spectra obtained with the MIKE spectrograph on the 6.5 m Magellan-Clay Telescope. For three stars, we present detailed chemical abundances for the first time. Of those, two stars are newly discovered members of Tucana II and were selected as probable members from deep narrowband photometry of the Tucana II UFD taken with the SkyMapper telescope. This result demonstrates the potential for photometrically identifying members of dwarf galaxy systems based on chemical composition. One new star was selected from the membership catalog of Walker et al. The other four stars in our sample have been reanalyzed, following additional observations. Overall, six stars have chemical abundances that are characteristic of the UFD stellar population. The seventh star shows chemical abundances that are discrepant from the other Tucana II members and an atypical, higher strontium abundance than what is expected for typical UFD stars. While unlikely, its strontium abundance raises the possibility that it may be a foreground metal-poor halo star with the same systemic velocity as Tucana II. If we were to exclude this star, Tucana II would satisfy the criteria to be a surviving first galaxy. Otherwise, this star implies that Tucana II has likely experienced somewhat extended chemical evolution. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements

    Science.gov (United States)

    Melendez, Matthew; O'Connell, Julia; Frinchaboy, Peter M.; Donor, John; Cunha, Katia M. L.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Stassun, Keivan G.; APOGEE Team

    2017-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are very limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.This work is supported by an NSF AAG grant AST-1311835.

  20. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Detailed Age and Abundance Gradients using DR12

    Science.gov (United States)

    Frinchaboy, Peter M.; Thompson, Benjamin A.; O'Connell, Julia; Meyer, Brianne; Donor, John; Majewski, Steven R.; Holtzman, Jon A.; Zasowski, Gail; Beers, Timothy C.; Beaton, Rachael; Cunha, Katia M. L.; Hearty, Fred; Nidever, David L.; Schiavon, Ricardo P.; Smith, Verne V.; Hayden, Michael R.

    2015-01-01

    We present detailed abundance results for Galactic open clusters as part of the Open Cluster Chemical Abundances and Mapping (OCCAM) Survey, which is based primarily on data from the Sloan Digital Sky Survey/ Apache Point Observatory Galactic Evolution Experiment. Using 100 open clusters from the uniformly observed complete SDSS-III/APOGEE-1 DR12 dataset, we present age and multi-element abundance gradients for the disk of the Milky Way.This work is supported by an NSF AAG grant AST-1311835.

  1. Abundance anomalies in RGB stars as probes of galactic chemical evolution

    Science.gov (United States)

    Charbonnel, C.; Palacios, A.

    During the last two decades, extensive spectroscopic studies have revealed chemical abundance anomalies exhibited by low mass RGB stars which bring a new light on some important aspects of stellar nucleosynthesis and chemical evolution. We underline the differences between field and globular cluster populations and discuss their possible origin both in terms of primordial pollution and stellar internal nucleosynthesis and mixing. We suggest some tests to help to understand the influence of metallicity and of a dense environment on abundance anomalies in connection with the second parameter problem and with the stellar yields.

  2. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron CaptureAbundance Gradients

    Science.gov (United States)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Melendez, Matthew; Cunha, Katia; Majewski, Steven R.; Zasowski, Gail; APOGEE Team

    2017-06-01

    The evolution of elements, as a function or age, throughout the Milky Way disk provides a key constraint for galaxy evolution models. In an effort to provide these constraints, we have conducted an investigation into the r- and s- process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 survey. Stars were identified as cluster members by the Open Cluster Chemical Abundance & Mapping (OCCAM) survey, which culls member candidates by radial velocity, metallicity and proper motion from the observed APOGEE sample. To obtain data for neutron capture elements in these clusters, we conducted a long-term observing campaign covering three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We present Galactic neutron capture abundance gradients using 30+ clusters, within 6 kpc of the Sun, covering a range of ages from ~80 Myr to ~10 Gyr .

  3. The population of planetary nebulae near the Galactic Centre: chemical abundances

    Science.gov (United States)

    Mollá, M.; Cavichia, O.; Costa, R. D. D.; Maciel, W. J.

    2017-10-01

    In this work, we report physical parameters and abundances derived for a sample of 15 high extinction planetary nebulae located in the inner 2° of the Galactic bulge, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The new data allow us to extend our database including older, weaker objects that are at the faint end of the planetary nebulae luminosity function. The data provide chemical compositions for PNe located in this region of the bulge to explore the chemical enrichment history of the central region of the Galactic bulge. The results show that the abundances of our sample are skewed to higher metallicities than previous data in the outer regions of the bulge. This can indicate a faster chemical enrichment taking place at the Galactic centre.

  4. Behavior of Abundances in Chemically Peculiar Dwarf and Subgiant A-Type Stars: HD 23193 and HD 170920

    Science.gov (United States)

    Kılıçoğlu, Tolgahan; Çalışkan, Şeyma; Ünal, Kübraözge

    2018-01-01

    To understand the origin of the abundance peculiarities of non-magnetic A-type stars, we present the first detailed chemical abundance analysis of a metallic line star HD 23193 (A2m) and an A-type subgiant HD 170920 (A5), which could have been a HgMn star on the main sequence. Our analysis is based on medium (R ∼ 14,000) and high (R ∼ 40,000) resolution spectroscopic data of the stars. The abundances of 18 elements are derived: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, and Ba. The masses of HD 23193 and HD 170920 are estimated from evolutionary tracks as 2.3 ± 0.1 M ⊙ and 2.9 ± 0.1 M ⊙. The ages are found to be 635 ± 33 Myr for HD 23193 and 480 ± 50 Myr for HD 170920 using isochrones. The abundance pattern of HD 23193 shows deviations from solar values in the iron-peak elements and indicates remarkable overabundances of Sr (1.16), Y (1.03), and Ba (1.24) with respect to the solar abundances. We compare the derived abundances of this moderately rotating (v\\sin i =37.5 km s‑1) Am star to the theoretical chemical evolution models including rotational mixing. The theoretically predicted abundances resemble our derived abundance pattern, except for a few elements (Si and Cr). For HD 170920, we find nearly solar abundances, except for C (‑0.43), S (0.16), Ti (0.15), Ni (0.16), Zn (0.41), Y (0.57), and Ba (0.97). Its low rotational velocity (v\\sin i=14.5 km s‑1), reduced carbon abundance, and enhanced heavy element abundances suggest that the star is most likely an evolved HgMn star. Based on observations made at the TÜBITAK National Observatory (Program ID 14BRTT150–671), and the Ankara University Observatory, Turkey.

  5. Abundance gradients in disc galaxies and chemical evolution models

    International Nuclear Information System (INIS)

    Diaz, A.I.

    1989-01-01

    The present state of abundance gradients and chemical evolution models of spiral galaxies is reviewed. An up to date compilation of abundance data in the literature concerning HII regions over galactic discs is presented. From these data Oxygen and Nitrogen radial gradients are computed. The slope of the Oxygen gradient is shown to have a break at a radius between 1.5 and 1.75 times the value of the effective radius of the disc, i.e. the radius containing half of the light of the disc. The gradient is steeper in the central parts of the disc and becomes flatter in the outer parts. N/O gradients are shown to be rather different from galaxy to galaxy and only a weak trend of N/O with O/H is found. The existing chemical evolution models for spiral galaxies are reviewed with special emphasis in the interpretation of numerical models having a large number of parameters. (author)

  6. Clustering in the stellar abundance space

    Science.gov (United States)

    Boesso, R.; Rocha-Pinto, H. J.

    2018-03-01

    We have studied the chemical enrichment history of the interstellar medium through an analysis of the n-dimensional stellar abundance space. This work is a non-parametric analysis of the stellar chemical abundance space. The main goal is to study the stars from their organization within this abundance space. Within this space, we seek to find clusters (in a statistical sense), that is, stars likely to share similar chemo-evolutionary history, using two methods: the hierarchical clustering and the principal component analysis. We analysed some selected abundance surveys available in the literature. For each sample, we labelled the group of stars according to its average abundance curve. In all samples, we identify the existence of a main enrichment pattern of the stars, which we call chemical enrichment flow. This flow is set by the structured and well-defined mean rate at which the abundances of the interstellar medium increase, resulting from the mixture of the material ejected from the stars and stellar mass-loss and interstellar medium gas. One of the main results of our analysis is the identification of subgroups of stars with peculiar chemistry. These stars are situated in regions outside of the enrichment flow in the abundance space. These peculiar stars show a mismatch in the enrichment rate of a few elements, such as Mg, Si, Sc and V, when compared to the mean enrichment rate of the other elements of the same stars. We believe that the existence of these groups of stars with peculiar chemistry may be related to the accretion of planetary material on to stellar surfaces or may be due to production of the same chemical element by different nucleosynthetic sites.

  7. Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. I. Signatures of Diffusion in the Open Cluster M67

    Science.gov (United States)

    Souto, Diogo; Cunha, Katia; Smith, Verne V.; Allende Prieto, C.; García-Hernández, D. A.; Pinsonneault, Marc; Holzer, Parker; Frinchaboy, Peter; Holtzman, Jon; Johnson, J. A.; Jönsson, Henrik; Majewski, Steven R.; Shetrone, Matthew; Sobeck, Jennifer; Stringfellow, Guy; Teske, Johanna; Zamora, Olga; Zasowski, Gail; Carrera, Ricardo; Stassun, Keivan; Fernandez-Trincado, J. G.; Villanova, Sandro; Minniti, Dante; Santana, Felipe

    2018-04-01

    Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of ∼4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (λ1.5–1.7 μm) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of ≤0.04 dex for all elements. Chemical homogeneity is found within each class of stars (∼0.02 dex), while significant abundance variations (∼0.05–0.20 dex) are found across the different evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67.

  8. Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes

    Science.gov (United States)

    Eistrup, Christian; Walsh, Catherine; van Dishoeck, Ewine F.

    2018-05-01

    Context. Exoplanet atmospheres are thought be built up from accretion of gas as well as pebbles and planetesimals in the midplanes of planet-forming disks. The chemical composition of this material is usually assumed to be unchanged during the disk lifetime. However, chemistry can alter the relative abundances of molecules in this planet-building material. Aims: We aim to assess the impact of disk chemistry during the era of planet formation. This is done by investigating the chemical changes to volatile gases and ices in a protoplanetary disk midplane out to 30 AU for up to 7 Myr, considering a variety of different conditions, including a physical midplane structure that is evolving in time, and also considering two disks with different masses. Methods: An extensive kinetic chemistry gas-grain reaction network was utilised to evolve the abundances of chemical species over time. Two disk midplane ionisation levels (low and high) were explored, as well as two different makeups of the initial abundances ("inheritance" or "reset"). Results: Given a high level of ionisation, chemical evolution in protoplanetary disk midplanes becomes significant after a few times 105 yr, and is still ongoing by 7 Myr between the H2O and the O2 icelines. Inside the H2O iceline, and in the outer, colder regions of the disk midplane outside the O2 iceline, the relative abundances of the species reach (close to) steady state by 7 Myr. Importantly, the changes in the abundances of the major elemental carbon and oxygen-bearing molecules imply that the traditional "stepfunction" for the C/O ratios in gas and ice in the disk midplane (as defined by sharp changes at icelines of H2O, CO2 and CO) evolves over time, and cannot be assumed fixed, with the C/O ratio in the gas even becoming smaller than the C/O ratio in the ice. In addition, at lower temperatures (C/O ratios of exoplanets to where and how the atmospheres have formed in a disk midplane, chemical evolution needs to be considered and

  9. Chemical Abundances of M-Dwarfs from the Apogee Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186

    Energy Technology Data Exchange (ETDEWEB)

    Souto, D.; Cunha, K. [Observatório Nacional, Rua General José Cristino, 77, 20921-400 São Cristóvão, Rio de Janeiro, RJ (Brazil); García-Hernández, D. A.; Zamora, O.; Prieto, C. Allende; Jönsson, H.; Pérez, A. E. García [Instituto de Astrofísica de Canarias (IAC), Vía Lactea S/N, E-38205, La Laguna, Tenerife (Spain); Smith, V. V. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Mahadevan, S. [Department of Astronomy and Astrophysics, The Pennsylvania State University (United States); Blake, C. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Johnson, J. A.; Pinsonneault, M. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); Majewski, S. R.; Sobeck, J. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Shetrone, M. [University of Texas at Austin, McDonald Observatory (United States); Teske, J. [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Nidever, D. [Department of Astronomy, University of Michigan, Ann Arbor, MI, 48104 (United States); Schiavon, R. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); and others

    2017-02-01

    We report the first detailed chemical abundance analysis of the exoplanet-hosting M-dwarf stars Kepler-138 and Kepler-186 from the analysis of high-resolution ( R ∼ 22,500) H -band spectra from the SDSS-IV–APOGEE survey. Chemical abundances of 13 elements—C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe—are extracted from the APOGEE spectra of these early M-dwarfs via spectrum syntheses computed with an improved line list that takes into account H{sub 2}O and FeH lines. This paper demonstrates that APOGEE spectra can be analyzed to determine detailed chemical compositions of M-dwarfs. Both exoplanet-hosting M-dwarfs display modest sub-solar metallicities: [Fe/H]{sub Kepler-138} = −0.09 ± 0.09 dex and [Fe/H]{sub Kepler-186} = −0.08 ± 0.10 dex. The measured metallicities resulting from this high-resolution analysis are found to be higher by ∼0.1–0.2 dex than previous estimates from lower-resolution spectra. The C/O ratios obtained for the two planet-hosting stars are near-solar, with values of 0.55±0.10 for Kepler-138 and 0.52±0.12 for Kepler-186. Kepler-186 exhibits a marginally enhanced [Si/Fe] ratio.

  10. The chemical composition of red giants in 47 Tucanae. I. Fundamental parameters and chemical abundance patterns

    Science.gov (United States)

    Thygesen, A. O.; Sbordone, L.; Andrievsky, S.; Korotin, S.; Yong, D.; Zaggia, S.; Ludwig, H.-G.; Collet, R.; Asplund, M.; Ventura, P.; D'Antona, F.; Meléndez, J.; D'Ercole, A.

    2014-12-01

    Context. The study of chemical abundance patterns in globular clusters is key importance to constraining the different candidates for intracluster pollution of light elements. Aims: We aim at deriving accurate abundances for a wide range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D local thermodynamic equilibrium (LTE) atmospheric models, together with a combination of equivalent width measurements, LTE, and NLTE synthesis, we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al, and Ba. We find a mean [Fe/H] = -0.78 ± 0.07 and [ α/ Fe ] = 0.34 ± 0.03 in good agreement with previous studies. The remaining elements show good agreement with the literature, but including NLTE for Al has a significant impact on the behavior of this key element. Conclusions: We confirm the presence of an Na-O anti-correlation in 47 Tucanae found by several other works. Our NLTE analysis of Al shifts the [Al/Fe] to lower values, indicating that this may be overestimated in earlier works. No evidence of an intrinsic variation is found in any of the remaining elements. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (Programmes 084.B-0810 and 086.B-0237).Full Tables 2, 5, and 9 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A108Appendix A is available in electronic form at http://www.aanda.org

  11. The Chemical Abundances of Stars in the Halo (CASH) Project. II. New Extremely Metal-poor Stars

    Science.gov (United States)

    Krugler, Julie A.; Frebel, A.; Roederer, I. U.; Sneden, C.; Shetrone, M.; Beers, T.; Christlieb, N.

    2011-01-01

    We present new abundance results from the Chemical Abundances of Stars in the Halo (CASH) project. The 500 CASH spectra were observed using the Hobby-Eberly Telescope in "snapshot" mode and are analyzed using an automated stellar parameter and abundance pipeline called CASHCODE. For the 20 most metal-poor stars of the CASH sample we have obtained high resolution spectra using the Magellan Telescope in order to test the uncertainties and systematic errors associated with the snapshot quality (i.e., R 15,000 and S/N 65) HET spectra and to calibrate the newly developed CASHCODE by making a detailed comparison between the stellar parameters and abundances determined from the high resolution and snapshot spectra. We find that the CASHCODE stellar parameters (effective temperature, surface gravity, metallicity, and microturbulence) agree well with the results of the manual analysis of the high resolution spectra. We present the abundances of three newly discovered stars with [Fe/H] ratios with alpha-enhancement and Fe-peak depletion and a range of n-capture elements. The full CASH sample will be used to derive statistically robust abundance trends and frequencies (e.g. carbon and n-capture), as well as placing constraints on nucleosynthetic processes that occurred in the early universe.

  12. Chemical Abundances and Physical Parameters of H II Regions in the Magellanic Clouds

    Science.gov (United States)

    Reyes, R. E. C.

    The chemical abundances and physical parameters of H II regions are important pa rameters to determine in order to understand how stars and galaxies evolve. The Magellanic Clouds offer us a unique oportunity to persue such studies in low metallicity galaxies. In this contribution we present the results of the photoionization modeling of 5 H II regions in each of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) sys tems. Optical data were collected from the literature, complemented by our own observa tions (Carlos Reyes et al. 1998), including UV spectra from the new IUE data ban k and infrared fluxes from the IRAS satellite. The chemical abundances of He, C, N, O, Ne, S, Ar and physical parameters like the densities, the ionized masses, the luminosities, the ionization temperatures , the filling factor and optical depth are determined. A comparison of the abundances of these HII regions with those of typical planetary nebulae and supergiants stars is also presented.

  13. Galactic Pal-eontology: abundance analysis of the disrupting globular cluster Palomar 5

    Science.gov (United States)

    Koch, Andreas; Côté, Patrick

    2017-05-01

    We present a chemical abundance analysis of the tidally disrupted globular cluster (GC) Palomar 5. By co-adding high-resolution spectra of 15 member stars from the cluster's main body, taken at low signal-to-noise with the Keck/HIRES spectrograph, we were able to measure integrated abundance ratios of 24 species of 20 elements including all major nucleosynthetic channels (namely the light element Na; α-elements Mg, Si, Ca, Ti; Fe-peak and heavy elements Sc, V, Cr, Mn, Co, Ni, Cu, Zn; and the neutron-capture elements Y, Zr, Ba, La, Nd, Sm, Eu). The mean metallicity of -1.56 ± 0.02 ± 0.06 dex (statistical and systematic errors) agrees well with the values from individual, low-resolution measurements of individual stars, but it is lower than previous high-resolution results of a small number of stars in the literature. Comparison with Galactic halo stars and other disrupted and unperturbed GCs renders Pal 5 a typical representative of the Milky Way halo population, as has been noted before, emphasizing that the early chemical evolution of such clusters is decoupled from their later dynamical history. We also performed a test as to the detectability of light element variations in this co-added abundance analysis technique and found that this approach is not sensitive even in the presence of a broad range in sodium of 0.6 dex, a value typically found in the old halo GCs. Thus, while methods of determining the global abundance patterns of such objects are well suited to study their overall enrichment histories, chemical distinctions of their multiple stellar populations is still best obtained from measurements of individual stars. Full Table 3 is is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A41

  14. CHEMICAL ABUNDANCES IN NGC 5053: A VERY METAL-POOR AND DYNAMICALLY COMPLEX GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2015-05-10

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin–Indiana–Yale–NOAO–Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ∼ 75–90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of −2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na–O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  15. Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  16. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    Science.gov (United States)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-01

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ∼ ‑2.6 and are not α-enhanced ([α/Fe] ∼ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility of a different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This paper also includes data based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 096.D-0967(B); PI: E. Balbinot).

  17. The RAVE-on Catalog of Stellar Atmospheric Parameters and Chemical Abundances for Chemo-dynamic Studies in the Gaia Era

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Andrew R.; Hawkins, Keith; Koposov, Sergey; Sanders, Jason; Gilmore, Gerry [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hogg, David W. [Simons Center for Data Analysis, 160 Fifth Avenue, 7th Floor, New York, NY 10010 (United States); Ness, Melissa; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Enke, Harry [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Zwitter, Tomaž; Matijevič, Gal [University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, 1000 Ljubljana (Slovenia); Freeman, Kenneth C.; Casagrande, Luca [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Seabroke, George [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, RH5 6NT (United Kingdom); Bienaymé, Olivier [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Gibson, Brad K. [E.A. Milne Centre for Astrophysics, University of Hull, Hull, HU6 7RX (United Kingdom); and others

    2017-05-01

    The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho- Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon . For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC . We derive and validate effective temperature T {sub eff}, surface gravity log g , and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.

  18. The use of lead isotopic abundances in trace uranium samples for nuclear forensics analysis

    International Nuclear Information System (INIS)

    Fahey, A.J.; Ritchie, N.W.M.; Newbury, D.E.; Small, J.A.

    2010-01-01

    Secondary ion mass spectrometry (SIMS), secondary electron microscopy (SEM) and X-ray analysis have been applied to the measurement of U-bearing particles with the intent of gleaning information concerning their history and/or origin. The lead isotopic abundances are definitive indicators that U-bearing particles have come from an ore-body, even if they have undergone chemical processing. SEM images and X-ray analysis can add further information to the study that may allude to the extent of chemical processing. The presence of 'common' lead that does not exhibit a radiogenic signature is clear evidence of anthropogenic origin. (author)

  19. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    International Nuclear Information System (INIS)

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.; Meszaros, Szabolcs; Allende Prieto, Carlos; Bizyaev, Dmitry; Garcìa Pèrez, Ana; Majewski, Steven R.; Schiavon, Ricardo; Holtzman, Jon; Johnson, Jennifer A.

    2013-01-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants (α Boo and μ Leo), two M-giants (β And and δ Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes 12 C, 13 C, 14 N, and 16 O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of 12 C synthesized during 4 He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to ∼0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  20. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Verne V.; Cunha, Katia [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Shetrone, Matthew D. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Meszaros, Szabolcs; Allende Prieto, Carlos [Instituto d' Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Garcia Perez, Ana; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Schiavon, Ricardo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5UX (United Kingdom); Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, Jennifer A., E-mail: vsmith@noao.edu [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  1. ISM chemical abundances in two intermediate-velocity clouds in the line of sight to SN 1987A

    Science.gov (United States)

    Morgan, Siobahn; Bohm-Vitense, Erika

    1988-01-01

    The earliest IUE high-resolution spectra of SN 1987A have been studied and reveal the presence of several clouds in the line of sight to the LMC. In particular, there are two clouds with radial velocities of about 130 km/s and about 180 km/s. These clouds' velocities are between those of Galactic clouds at 0-80 km/s and those of LMC gas at about 270 km/s. Chemical-abundance determinations may help to determine the origin and location of these clouds. Curve-of-growth analysis and 21-cm observations show that they may be underabundant in heavy elements by about a factor of 2 as compared to solar abundances. No depletion indicative of grain formation can be seen.

  2. ELEMENTAL ABUNDANCES AND THEIR IMPLICATIONS FOR THE CHEMICAL ENRICHMENT OF THE BOOeTES I ULTRAFAINT GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Gerard [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Norris, John E.; Yong, David [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Monaco, Lorenzo [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago 19 (Chile); Wyse, Rosemary F. G. [Department of Physics and Astronomy, The Johns Hopkins University, 3900 North Charles Street, Baltimore, MD 21218 (United States); Geisler, D., E-mail: gil@ast.cam.ac.uk, E-mail: jen@mso.anu.edu.au, E-mail: yong@mso.anu.edu.au, E-mail: lmonaco@eso.org, E-mail: wyse@pha.jhu.edu, E-mail: dgeisler@astro-udec.cl [Departamento de Astronomia, Universidad de Concepcion (Chile)

    2013-01-20

    We present a double-blind analysis of high-dispersion spectra of seven red giant members of the Booetes I ultrafaint dwarf spheroidal galaxy, complemented with re-analysis of a similar spectrum of an eighth-member star. The stars cover [Fe/H] from -3.7 to -1.9 and include a CEMP-no star with [Fe/H] = -3.33. We conclude from our chemical abundance data that Booetes I has evolved as a self-enriching star-forming system, from essentially primordial initial abundances. This allows us uniquely to investigate the place of CEMP-no stars in a chemically evolving system, in addition to limiting the timescale of star formation. The elemental abundances are formally consistent with a halo-like distribution, with enhanced mean [{alpha}/Fe] and small scatter about the mean. This is in accord with the high-mass stellar initial mass function in this low-stellar-density, low-metallicity system being indistinguishable from the present-day solar neighborhood value. There is a non-significant hint of a decline in [{alpha}/Fe] with [Fe/H]; together with the low scatter, this requires low star formation rates, allowing time for supernova ejecta to be mixed over the large spatial scales of interest. One star has very high [Ti/Fe], but we do not confirm a previously published high value of [Mg/Fe] for another star. We discuss the existence of CEMP-no stars, and the absence of any stars with lower CEMP-no enhancements at higher [Fe/H], a situation that is consistent with knowledge of CEMP-no stars in the Galactic field. We show that this observation requires there be two enrichment paths at very low metallicities: CEMP-no and 'carbon-normal'.

  3. ELEMENTAL ABUNDANCES AND THEIR IMPLICATIONS FOR THE CHEMICAL ENRICHMENT OF THE BOÖTES I ULTRAFAINT GALAXY

    International Nuclear Information System (INIS)

    Gilmore, Gerard; Norris, John E.; Yong, David; Monaco, Lorenzo; Wyse, Rosemary F. G.; Geisler, D.

    2013-01-01

    We present a double-blind analysis of high-dispersion spectra of seven red giant members of the Boötes I ultrafaint dwarf spheroidal galaxy, complemented with re-analysis of a similar spectrum of an eighth-member star. The stars cover [Fe/H] from –3.7 to –1.9 and include a CEMP-no star with [Fe/H] = –3.33. We conclude from our chemical abundance data that Boötes I has evolved as a self-enriching star-forming system, from essentially primordial initial abundances. This allows us uniquely to investigate the place of CEMP-no stars in a chemically evolving system, in addition to limiting the timescale of star formation. The elemental abundances are formally consistent with a halo-like distribution, with enhanced mean [α/Fe] and small scatter about the mean. This is in accord with the high-mass stellar initial mass function in this low-stellar-density, low-metallicity system being indistinguishable from the present-day solar neighborhood value. There is a non-significant hint of a decline in [α/Fe] with [Fe/H]; together with the low scatter, this requires low star formation rates, allowing time for supernova ejecta to be mixed over the large spatial scales of interest. One star has very high [Ti/Fe], but we do not confirm a previously published high value of [Mg/Fe] for another star. We discuss the existence of CEMP-no stars, and the absence of any stars with lower CEMP-no enhancements at higher [Fe/H], a situation that is consistent with knowledge of CEMP-no stars in the Galactic field. We show that this observation requires there be two enrichment paths at very low metallicities: CEMP-no and 'carbon-normal'.

  4. THE CHEMICAL ABUNDANCES IN THE GALACTIC CENTER FROM THE ATMOSPHERES OF RED SUPERGIANTS

    International Nuclear Information System (INIS)

    Davies, Ben; Figer, Don F.; Origlia, Livia; Kudritzki, Rolf-Peter; Rich, R. Michael; Najarro, Francisco

    2009-01-01

    The Galactic center (GC) has experienced a high degree of recent star-forming activity, as evidenced by the large number of massive stars currently residing there. The relative abundances of chemical elements in the GC may provide insights into the origins of this activity. Here, we present high-resolution H-band spectra of two red supergiants (RSGs) in the GC (IRS 7 and VR 5-7), and in combination with spectral synthesis we derive abundances for Fe and C, as well as other α-elements Ca, Si, Mg Ti, and O. We find that the C depletion in VR 5-7 is consistent with the predictions of evolutionary models of RSGs, while the heavy depletion of C and O in IRS 7's atmosphere is indicative of deep mixing, possibly due to fast initial rotation and/or enhanced mass loss. Our results indicate that the current surface Fe/H content of each star is slightly above solar. However, comparisons to evolutionary models indicate that the initial Fe-to-H ratio was likely closer to solar, and has been driven higher by H depletion at the stars' surface. Overall, we find α-to-Fe ratios for both stars, which are consistent with the thin Galactic disk. These results are consistent with other chemical studies of the GC, given the precision to which abundances can currently be determined. We argue that the GC abundances are consistent with a scenario in which the recent star-forming activity in the GC was fueled by either material traveling down the Bar from the inner disk, or from the winds of stars in the inner bulge-with no need to invoke top-heavy stellar initial mass functions to explain anomalous abundance ratios.

  5. Chemical Abundances of Hydrostatic and Explosive Alpha-elements in Sagittarius Stream Stars

    Science.gov (United States)

    Carlin, Jeffrey L.; Sheffield, Allyson A.; Cunha, Katia; Smith, Verne V.

    2018-05-01

    We analyze chemical abundances of stars in the Sagittarius (Sgr) tidal stream using high-resolution Gemini+GRACES spectra of 42 members of the highest surface-brightness portions of both the trailing and leading arms. Targets were chosen using a 2MASS+WISE color–color selection, combined with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) radial velocities. In this Letter, we analyze [Fe/H] and α-elements produced by both hydrostatic (O, Mg) and explosive (Si, Ca, Ti) nucleosynthetic processes. The average [Fe/H] for our Sgr stream stars is lower than that for stars in the Sgr core, and stars in the trailing and leading arms show systematic differences in [Fe/H]. Both hydrostatic and explosive elements are depleted relative to Milky Way (MW) disk and halo stars, with a larger gap between the MW trend and Sgr stars for the hydrostatic elements. Chemical abundances of Sgr stream stars show similar patterns to those measured in the core of the Sgr dSph. We explore the ratio of hydrostatic to explosive α-elements [α h/ex] (which we refer to as the “HEx ratio”). Our observed HEx ratio trends for Sgr debris are deficient relative to MW stars. Via simple chemical evolution modeling, we show that these HEx ratio patterns are consistent with a Sgr IMF that lacks the most massive stars. This study provides a link between the chemical properties in the intact Sgr core and the significant portion of the Sgr system’s luminosity that is estimated to currently reside in the streams.

  6. RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-01-01

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10 3–4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time

  7. RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duane M. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Johnston, Kathryn V. [Department of Astronomy, Columbia University, New York City, NY 10027 (United States); Sen, Bodhisattva; Jessop, Will, E-mail: duane@shao.ac.cn [Department of Statistics, Columbia University, New York City, NY 10027 (United States)

    2015-03-20

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10{sup 3–4} mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.

  8. Elemental Abundances and their Implications for the Chemical Enrichment of the Boötes I Ultrafaint Galaxy

    Science.gov (United States)

    Gilmore, Gerard; Norris, John E.; Monaco, Lorenzo; Yong, David; Wyse, Rosemary F. G.; Geisler, D.

    2013-01-01

    We present a double-blind analysis of high-dispersion spectra of seven red giant members of the Boötes I ultrafaint dwarf spheroidal galaxy, complemented with re-analysis of a similar spectrum of an eighth-member star. The stars cover [Fe/H] from -3.7 to -1.9 and include a CEMP-no star with [Fe/H] = -3.33. We conclude from our chemical abundance data that Boötes I has evolved as a self-enriching star-forming system, from essentially primordial initial abundances. This allows us uniquely to investigate the place of CEMP-no stars in a chemically evolving system, in addition to limiting the timescale of star formation. The elemental abundances are formally consistent with a halo-like distribution, with enhanced mean [α/Fe] and small scatter about the mean. This is in accord with the high-mass stellar initial mass function in this low-stellar-density, low-metallicity system being indistinguishable from the present-day solar neighborhood value. There is a non-significant hint of a decline in [α/Fe] with [Fe/H]; together with the low scatter, this requires low star formation rates, allowing time for supernova ejecta to be mixed over the large spatial scales of interest. One star has very high [Ti/Fe], but we do not confirm a previously published high value of [Mg/Fe] for another star. We discuss the existence of CEMP-no stars, and the absence of any stars with lower CEMP-no enhancements at higher [Fe/H], a situation that is consistent with knowledge of CEMP-no stars in the Galactic field. We show that this observation requires there be two enrichment paths at very low metallicities: CEMP-no and "carbon-normal." Based on observations collected at the European Southern Observatory, Paranal, Chile (Proposal P82.182.B-0372, PI: G. Gilmore).

  9. Chemical Abundance Analysis of Three α -poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-10

    We present chemical abundance measurements of three stars in the ultra-faintdwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark EnergySurvey. Using high resolution spectroscopic observations we measure themetallicity of the three stars as well as abundance ratios of several$\\alpha$-elements, iron-peak elements, and neutron-capture elements. Theabundance pattern is relatively consistent among all three stars, which have alow average metallicity of [Fe/H] $\\sim -2.6$ and are not $\\alpha$-enhanced([$\\alpha$/Fe] $\\sim 0.0$). This result is unexpected when compared to otherlow-metallicity stars in the Galactic halo and other ultra-faint dwarfs andhints at an entirely different mechanism for the enrichment of Hor I comparedto other satellites. We discuss possible scenarios that could lead to thisobserved nucleosynthetic signature including extended star formation, aPopulation III supernova, and a possible association with the Large MagellanicCloud.

  10. THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS ,

    International Nuclear Information System (INIS)

    Hollek, Julie K.; Sneden, Christopher; Shetrone, Matthew; Frebel, Anna; Roederer, Ian U.; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-01-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ∼15, 000) and corresponding high-resolution (R ∼35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from –2.9 to –3.9, including four new stars with [Fe/H] < –3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< – 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] ∼< –3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ∼500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.

  11. CHEMICAL ABUNDANCE EVIDENCE OF ENDURING HIGH STAR FORMATION RATES IN AN EARLY-TYPE GALAXY: HIGH [Ca/Fe] IN NGC 5128 GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Durán, María Fernanda; Bernstein, Rebecca A.; McWilliam, Andrew

    2013-01-01

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between –1.6 and –0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <–0.4 is +0.37 ± 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 ± 0.09 and +0.24 ± 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope

  12. CHEMICAL ABUNDANCE EVIDENCE OF ENDURING HIGH STAR FORMATION RATES IN AN EARLY-TYPE GALAXY: HIGH [Ca/Fe] IN NGC 5128 GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Duran, Maria Fernanda; Bernstein, Rebecca A. [Department of Astronomy and Astrophysics, 1156 High Street, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); McWilliam, Andrew, E-mail: jcolucci@ucolick.org [Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States)

    2013-08-20

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between -1.6 and -0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <-0.4 is +0.37 {+-} 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 {+-} 0.09 and +0.24 {+-} 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope.

  13. The Chemical Abundances of Stars in the Halo (CASH) Project. II. A Sample of 14 Extremely Metal-poor Stars

    Science.gov (United States)

    Hollek, Julie K.; Frebel, Anna; Roederer, Ian U.; Sneden, Christopher; Shetrone, Matthew; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-11-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ~15, 000) and corresponding high-resolution (R ~35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. Magellanic Clouds Cepheids: Thorium Abundances

    Directory of Open Access Journals (Sweden)

    Yeuncheol Jeong

    2018-03-01

    Full Text Available The analysis of the high-resolution spectra of 31 Magellanic Clouds Cepheid variables enabled the identification of thorium lines. The abundances of thorium were found with spectrum synthesis method. The calculated thorium abundances exhibit correlations with the abundances of other chemical elements and atmospheric parameters of the program stars. These correlations are similar for both Clouds. The correlations of iron abundances of thorium, europium, neodymium, and yttrium relative to the pulsational periods are different in the Large Magellanic Cloud (LMC and the Small Magellanic Cloud (SMC, namely the correlations are negative for LMC and positive or close to zero for SMC. One of the possible explanations can be the higher activity of nucleosynthesis in SMC with respect to LMC in the recent several hundred million years.

  15. Elemental abundances of solar sibling candidates

    International Nuclear Information System (INIS)

    Ramírez, I.; Lambert, D. L.; Endl, M.; Cochran, W. D.; MacQueen, P. J.; Bajkova, A. T.; Bobylev, V. V.; Roederer, I. U.; Wittenmyer, R. A.

    2014-01-01

    Dynamical information along with survey data on metallicity and in some cases age have been used recently by some authors to search for candidates of stars that were born in the cluster where the Sun formed. We have acquired high-resolution, high signal-to-noise ratio spectra for 30 of these objects to determine, using detailed elemental abundance analysis, if they could be true solar siblings. Only two of the candidates are found to have solar chemical composition. Updated modeling of the stars' past orbits in a realistic Galactic potential reveals that one of them, HD 162826, satisfies both chemical and dynamical conditions for being a sibling of the Sun. Measurements of rare-element abundances for this star further confirm its solar composition, with the only possible exception of Sm. Analysis of long-term high-precision radial velocity data rules out the presence of hot Jupiters and confirms that this star is not in a binary system. We find that chemical tagging does not necessarily benefit from studying as many elements as possible but instead from identifying and carefully measuring the abundances of those elements that show large star-to-star scatter at a given metallicity. Future searches employing data products from ongoing massive astrometric and spectroscopic surveys can be optimized by acknowledging this fact.

  16. Early chemical enrichment of the Galactic dwarf satellites from a homogeneous and NLTE abundance analysis

    Science.gov (United States)

    Mashonkina, Lyudmila; Jablonka, Pascale; Sitnova, Tatyana; Pakhomov, Yuri; North, Pierre

    2018-06-01

    We review recent abundance results for very metal-poor (VMP, -4 ≤ [Fe/H] ≤ -2) stars in seven dwarf spheroidal galaxies (dSphs) and in the Milky Way (MW) halo comparison sample that were obtained based on high-resolution spectroscopic datasets, homogeneous and accurate atmospheric parameters, and the non-local thermodynamic equilibrium (NLTE) line formation for 10 chemical species. A remarkable gain of using such an approach is the reduction, compared to a simple compilation of the literature data, of the spread in abundance ratios at given metallicity within each galaxy and from one to the other. We show that all massive galaxies in our sample, that is, the MW halo and the classical dSphs Sculptor, Ursa Minor, Sextans, and Fornax, reveal a similar plateau at [α/Fe] \\simeq 0.3 for each of the α-process elements: Mg, Ca, and Ti. We put on a firm ground the evidence for a decline in α/Fe with increasing metallicity in the Boötes I ultra-faint dwarf galaxy (UFD), that is most probably due to the ejecta of type Ia supernovae. In our classical dSphs, we observe the dichotomy in the [Sr/Ba] versus [Ba/H] diagram, similarly to the MW halo, calling for two different nucleosynthesis channels for Sr at the earliest evolution stages of these galaxies. Our three UFDs, that is Boötes I, UMa II, and Leo IV, are depleted in Sr and Ba relative to Fe and Mg, with very similar ratios of [Sr/Mg] ≈ -1.3 and [Ba/Mg] ≈ -1 on the entire range of their Mg abundances. The subsolar Sr/Ba ratios of Boötes I and UMa II indicate a common r-process origin of their neutron-capture elements. For Na/Fe, Na/Mg, and Al/Mg, the MW halo and all dSphs reveal indistinguishable trends with metallicity, suggesting that the processes of Na and Al synthesis are identical in all systems, independent of their mass. Sculptor remains the classical dSph, in which the evidence for inhomogeneous mixing in the early evolution stage, at [Fe/H] < -2, is the strongest.

  17. Chemical Abundance Evidence of Enduring High Star Formation Rates in an Early-type Galaxy: High [Ca/Fe] in NGC 5128 Globular Clusters

    Science.gov (United States)

    Colucci, Janet E.; Fernanda Durán, María; Bernstein, Rebecca A.; McWilliam, Andrew

    2013-08-01

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between -1.6 and -0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <-0.4 is +0.37 ± 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 ± 0.09 and +0.24 ± 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope. This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  18. Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion

    Science.gov (United States)

    Escala, Ivanna; Wetzel, Andrew; Kirby, Evan N.; Hopkins, Philip F.; Ma, Xiangcheng; Wheeler, Coral; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot

    2018-02-01

    We investigate stellar metallicity distribution functions (MDFs), including Fe and α-element abundances, in dwarf galaxies from the Feedback in Realistic Environment (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a Milky Way-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles towards the average metallicity. This effect provides significantly better agreement with observed abundance distributions in dwarf galaxies in the Local Group, including small intrinsic scatter in [α/Fe] versus [Fe/H] of ≲0.1 dex. This small intrinsic scatter arises in our simulations because the interstellar medium in dwarf galaxies is well mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to ≲0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.

  19. Chemical Abundances of Red Giant Branch Stars in the Globular Cluster NGC 288

    Science.gov (United States)

    Hsyu, Tiffany; Johnson, C. I.; Pilachowski, C. A.; Lee, Y.; Rich, R. M.

    2013-01-01

    We present chemical abundances and radial velocities for ~30 red giant branch (RGB) stars in the globular cluster NGC 288. The results are based on moderate resolution (R≈18,000) and moderate signal-to-noise ratio 50-75) obtained with the Hydra multi-object spectrograph on the Blanco 4m telescope. NGC 288 has been shown to exhibit two separate RGBs and we investigate possible differences in metallicity and/or light element abundances between stars on each branch. We present a new filter tracing for the CTIO Calcium HK narrow band filter and explore its effects on previous globular cluster color-magnitude diagrams. We also compare the light element abundance patterns of NGC 288 to those of other similar metallicity halo clusters. This material is based upon work supported by the National Science Foundation under award No.AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grants AST-0709479 and AST-121120995.

  20. Correlation between some environmental variables and abundance ...

    African Journals Online (AJOL)

    Correlation between some environmental variables and abundance of Almophrya mediovacuolata (Ciliophora: Anoplophryidae) endocommensal ciliate of an ... The survey primarily involved soil samples collection from the same spots of EW collection and preparation for physico-chemical analysis; evaluation in situ of the ...

  1. Depleting high-abundant and enriching low-abundant proteins in human serum: An evaluation of sample preparation methods using magnetic nanoparticle, chemical depletion and immunoaffinity techniques.

    Science.gov (United States)

    de Jesus, Jemmyson Romário; da Silva Fernandes, Rafael; de Souza Pessôa, Gustavo; Raimundo, Ivo Milton; Arruda, Marco Aurélio Zezzi

    2017-08-01

    The efficiency of three different depletion methods to remove the most abundant proteins, enriching those human serum proteins with low abundance is checked to make more efficient the search and discovery of biomarkers. These methods utilize magnetic nanoparticles (MNPs), chemical reagents (sequential application of dithiothreitol and acetonitrile, DTT/ACN), and commercial apparatus based on immunoaffinity (ProteoMiner, PM). The comparison between methods shows significant removal of abundant protein, remaining in the supernatant at concentrations of 4.6±0.2, 3.6±0.1, and 3.3±0.2µgµL -1 (n=3) for MNPs, DTT/ACN and PM respectively, from a total protein content of 54µgµL -1 . Using GeLC-MS/MS analysis, MNPs depletion shows good efficiency in removing high molecular weight proteins (>80kDa). Due to the synergic effect between the reagents DTT and ACN, DTT/ACN-based depletion offers good performance in the depletion of thiol-rich proteins, such as albumin and transferrin (DTT action), as well as of high molecular weight proteins (ACN action). Furthermore, PM equalization confirms its efficiency in concentrating low-abundant proteins, decreasing the dynamic range of protein levels in human serum. Direct comparison between the treatments reveals 72 proteins identified when using MNP depletion (43 of them exclusively by this method), but only 20 proteins using DTT/ACN (seven exclusively by this method). Additionally, after PM treatment 30 proteins were identified, seven exclusively by this method. Thus, MNPs and DTT/ACN depletion can be simple, quick, cheap, and robust alternatives for immunochemistry-based protein depletion, providing a potential strategy in the search for disease biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Investigation of plutonium abundance and age analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huailong, Wu; Jian, Gong; Fanhua, Hao [China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2007-06-15

    Based on spectra analysis software, all of the plutonium material peak counts are analyzed. Relatively efficiency calibration is done by the non-coupling peaks of {sup 239}Pu. By using the known isotopes half life and yield, the coupling peaks counts are allocated by non-coupling peaks, consequently the atom ratios of each isotope are gotten. The formula between atom ratio and abundance or age is deduced by plutonium material isotopes decay characteristic. And so the abundance and age of plutonium material is gotten. After some re- peat measurements for a plutonium equipment are completed, a comparison between our analysis results and PC-FRAM and the owner's reference results are done. (authors)

  3. Tissue chemical analysis with muonic X-rays

    International Nuclear Information System (INIS)

    Hutson, R.L.; Reidy, J.J.; Springer, K.; Daniel, H.; Knowles, H.B.

    1976-01-01

    The stopped muon channel at the Clinton P. Anderson Meson Physics Facility (LAMPF) was used as a source of muons for studying the elemental composition of tissue with muonic X rays. The X ray spectra from several types of tissue were used to determine the amounts of carbon, nitrogen, and oxygen present. These determinations agree with the results of more conventional chemical analysis. The results show that muonic X rays offer a non-invasive technique for determining the amounts of the more abundant elements present in selected regions of the body. (orig.) [de

  4. Chemical abundances in the globular clusters NGC6229 and NGC6779

    Science.gov (United States)

    Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    2014-10-01

    Long-slit medium-resolution spectra of the Galactic globular clusters (GCs) NGC6229 and NGC6779, obtained with the CARELEC spectrograph at the 1.93-m telescope of the Haute-Provence observatory, have been used to determine the age, helium abundance (Y), and metallicity [Fe/H] as well as the first estimate of the abundances of C, N, O, Mg, Ca, Ti, and Cr for these objects. We solved this task by comparing the observed spectra and the integrated synthetic spectra, calculated with the use of the stellar atmosphere models with the parameters preset for the stars from these clusters. The model mass estimates, T eff, and log g were derived by comparing the observed "color-magnitude" diagrams and the theoretical isochrones. The summing-up of the synthetic blanketed stellar spectra was conducted according to the Chabrier mass function. To test the accuracy of the results, we estimated the chemical abundances, [Fe/H], log t, and Y for the NGC5904 and NGC6254 clusters, which, according to the literature, are considered to be the closest analogues of the two GCs of our study. Using the medium-resolution spectra from the library of Schiavon et al., we obtained for these two clusters a satisfactory agreement with the reported estimates for all the parameters within the errors. We derived the following cluster parameters. NGC6229: [Fe/H] = -1.65 dex, t = 12.6 Gyr, Y = 0.26, [ α/Fe] = 0.28 dex; NGC6779: [Fe/H] = -1.9 dex, t = 12.6 Gyr, Y = 0.23, [ α/Fe] = 0.08 dex; NGC5904: [Fe/H] = -1.6 dex, t = 12.6 Gyr, Y = 0.30, [ α/Fe] = 0.35 dex; NGC6254: [Fe/H] = -1.52 dex, t = 11.2 Gyr, Y = 0.30, [ α/Fe] = 0.025 dex. The value [ α/Fe] denotes the average of the Ca and Mg abundances.

  5. The next generation of galaxy evolution models: A symbiosis of stellar populations and chemical abundances

    Science.gov (United States)

    Kotulla, Ralf

    2012-10-01

    Over its lifespan Hubble has invested significant effort into detailed observations of galaxies both in the local and distant universe. To extract the physical information from the observed {spectro-}photometry requires detailed and accurate models. Stellar population synthesis models are frequently used to obtain stellar masses, star formation rate, galaxy ages and star formation histories. Chemical evolution models offer another valuable and complementary approach to gain insight into many of the same aspects, yet these two methods have rarely been used in combination.Our proposed next generation of galaxy evolution models will help us improve our understanding of how galaxies form and evolve. Building on GALEV evolutionary synthesis models we incorporate state-of-the-art input physics for stellar evolution of binaries and rotating stars as well as new spectral libraries well matched to the modern observational capabilities. Our improved chemical evolution model allows us to self-consistently trace abundances of individual elements, fully accounting for the increasing initial abundances of successive stellar generations. GALEV will support variable Initial Mass Functions {IMF}, enabling us to test recent observational findings of a non-universal IMF by predicting chemical properties and integrated spectra in an integrated and consistent manner.HST is the perfect instrument for testing this approach. Its wide wavelength coverage from UV to NIR enables precise SED fitting, and with its spatial resolution we can compare the inferred chemical evolution to studies of star clusters and resolved stellar populations in nearby galaxies.

  6. Abundances in planetary nebulae near the galactic centre .1. Abundance determinations

    NARCIS (Netherlands)

    Ratag, MA; Pottasch, [No Value; Dennefeld, M; Menzies, J

    1997-01-01

    Abundance determinations of about 110 planetary nebulae, which are likely to be in the Galactic Bulge are presented. Plasma diagnostics have been performed by making use of the available forbidden line ratios combined with radio continuum measurements. Chemical abundances of He, O, N, Ne, S, Ar, and

  7. Magnetic field topology and chemical abundance distributions of the young, rapidly rotating, chemically peculiar star HR 5624

    Science.gov (United States)

    Kochukhov, O.; Silvester, J.; Bailey, J. D.; Landstreet, J. D.; Wade, G. A.

    2017-09-01

    Context. The young, rapidly rotating Bp star HR 5624 (HD 133880) shows an unusually strong non-sinusoidal variability of its longitudinal magnetic field. This behaviour was previously interpreted as the signature of an exceptionally strong, quadrupole-dominated surface magnetic field geometry. Aims: We studied the magnetic field structure and chemical abundance distributions of HR 5624 with the aim to verify the unusual quadrupolar nature of its magnetic field and to investigate correlations between the field topology and chemical spots. Methods: We analysed high-resolution, time series Stokes parameter spectra of HR 5624 with the help of a magnetic Doppler imaging inversion code based on detailed polarised radiative transfer modelling of the line profiles. Results: We refined the stellar parameters, revised the rotational period, and obtained new longitudinal magnetic field measurements. Our magnetic Doppler inversions reveal that the field structure of HR 5624 is considerably simpler and the field strength is much lower than proposed by previous studies. We find a maximum local field strength of 12 kG and a mean field strength of 4 kG, which is about a factor of three weaker than predicted by quadrupolar field models. Our model implies that overall large-scale field topology of HR 5624 is better described as a distorted, asymmetric dipole rather than an axisymmetric quadrupole. The chemical abundance maps of Mg, Si, Ti, Cr, Fe, and Nd obtained in our study are characterised by large-scale, high-contrast abundance patterns. These structures correlate weakly with the magnetic field geometry and, in particular, show no distinct element concentrations in the horizontal field regions predicted by theoretical atomic diffusion calculations. Conclusions: We conclude that the surface magnetic field topology of HR 5624 is not as unusual as previously proposed. Considering these results together with other recent magnetic mapping analyses of early-type stars suggests that

  8. Chemical Abundances of Red Giant Stars in the Globular Cluster M107 (NGC 6171)

    Science.gov (United States)

    O'Connell, Julia E.; Johnson, Christian I.; Pilachowski, Catherine A.; Burks, Geoffrey

    2011-10-01

    We present chemical abundances of Al and several Fe-Peak and neutron-capture elements for 13 red giant branch stars in the Galactic globular cluster NGC 6171 (M107). The abundances were determined using equivalent width and spectrum synthesis analyses of moderate-resolution ( R ˜ 15,000), moderate signal-to-noise ratio ( ˜ 80) spectra obtained with the WIYN telescope and Hydra multifiber spectrograph. A comparison between photometric and spectroscopic effective temperature estimates seems to indicate that a reddening value of E(B - V) = 0.46 may be more appropriate for this cluster than the more commonly used value of E(B - V) = 0.33. Similarly, we found that a distance modulus of (m - M)V ≈ 13.7 provided reasonable surface gravity estimates for the stars in our sample. Our spectroscopic analysis finds M107 to be moderately metal-poor with = -0.93 and also exhibits a small star-to-star metallicity dispersion (σ = 0.04). These results are consistent with previous photometric and spectroscopic studies. Aluminum appears to be moderately enhanced in all program stars ( = +0.39, σ = 0.11). The relatively small star-to-star scatter in [Al/Fe] differs from the trend found in more metal-poor globular clusters, and is more similar to what is found in clusters with [Fe/H] ≳ -1. The cluster also appears to be moderately r-process-enriched with = +0.32 (σ = 0.17).

  9. Oxygen abundances in unevolved metal-poor stars - Interpretation and consequences

    International Nuclear Information System (INIS)

    Abia, C.; Rebolo, R.

    1989-01-01

    The oxygen abundance has been determined by analysis of the O I infrared triplet in 30 unevolved field stars of metallicities in the range Fe/H abundance ratio between -0.2 and -3.5. The data show that the O/Fe abundance ratio increases monotonically as metallicity decreases from solar, reaching values in the range 1.0-1.2 at an Fe/H abundance ratio of about -2. The results, when compared with those already published for metal-deficient red giants, suggest that oxygen could have been depleted in the latter. A discussion of the O/Fe abundance ratios in connection with the chemical evolution of the Galaxy is also presented. 83 refs

  10. DETAILED CHEMICAL ABUNDANCES OF FOUR STARS IN THE UNUSUAL GLOBULAR CLUSTER PALOMAR 1

    International Nuclear Information System (INIS)

    Sakari, Charli M.; Venn, Kim A.; Irwin, Mike; Aoki, Wako; Arimoto, Nobuo; Dotter, Aaron

    2011-01-01

    Detailed chemical abundances for 21 elements are presented for four red giants in the anomalous outer halo globular cluster Palomar 1 (R GC = 17.2 kpc, Z = 3.6 kpc) using high-resolution (R = 36, 000) spectra from the High Dispersion Spectrograph on the Subaru Telescope. Pal 1 has long been considered unusual because of its low surface brightness, sparse red giant branch, young age, and its possible association with two extragalactic streams of stars. This paper shows that its chemistry further confirms its unusual nature. The mean metallicity of the four stars, [Fe/H] = -0.60 ± 0.01, is high for a globular cluster so far from the Galactic center, but is low for a typical open cluster. The [α/Fe] ratios, though in agreement with the Galactic stars within the 1σ errors, agree best with the lower values in dwarf galaxies. No signs of the Na/O anticorrelation are detected in Pal 1, though Na appears to be marginally high in all four stars. Pal 1's neutron-capture elements are also unusual: its high [Ba/Y] ratio agrees best with dwarf galaxies, implying an excess of second-peak over first-peak s-process elements, while its [Eu/α] and [Ba/Eu] ratios show that Pal 1's contributions from the r-process must have differed in some way from normal Galactic stars. Therefore, Pal 1 is unusual chemically, as well in its other properties. Pal 1 shares some of its unusual abundance characteristics with the young clusters associated with the Sagittarius dwarf galaxy remnant and the intermediate-age LMC clusters, and could be chemically associated with the Canis Majoris overdensity; however, it does not seem to be similar to the Monoceros/Galactic Anticenter Stellar Stream.

  11. CHEMICAL EVOLUTION OF THE UNIVERSE AT 0.7 < z < 1.6 DERIVED FROM ABUNDANCE DIAGNOSTICS OF THE BROAD-LINE REGION OF QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Sameshima, H. [Laboratory of Infrared High-resolution Spectroscopy, Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Yoshii, Y.; Kawara, K., E-mail: sameshima@cc.kyoto-su.ac.jp [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2017-01-10

    We present an analysis of Mg ii λ 2798 and Fe ii UV emission lines for archival Sloan Digital Sky Survey (SDSS) quasars to explore the diagnostics of the magnesium-to-iron abundance ratio in a broad-line region cloud. Our sample consists of 17,432 quasars selected from the SDSS Data Release 7 with a redshift range of 0.72 <  z  < 1.63. A strong anticorrelation between the Mg ii equivalent width (EW) and the Eddington ratio is found, while only a weak positive correlation is found between the Fe ii EW and the Eddington ratio. To investigate the origin of these differing behaviors of Mg ii and Fe ii emission lines, we perform photoionization calculations using the Cloudy code, where constraints from recent reverberation mapping studies are considered. We find from calculations that (1) Mg ii and Fe ii emission lines are created at different regions in a photoionized cloud, and (2) their EW correlations with the Eddington ratio can be explained by just changing the cloud gas density. These results indicate that the Mg ii/Fe ii flux ratio, which has been used as a first-order proxy for the Mg/Fe abundance ratio in chemical evolution studies with quasar emission lines, depends largely on the cloud gas density. By correcting this density dependence, we propose new diagnostics of the Mg/Fe abundance ratio for a broad-line region cloud. In comparing the derived Mg/Fe abundance ratios with chemical evolution models, we suggest that α -enrichment by mass loss from metal-poor intermediate-mass stars occurred at z  ∼ 2 or earlier.

  12. SULFUR ABUNDANCES IN THE ORION ASSOCIATION B STARS

    International Nuclear Information System (INIS)

    Daflon, Simone; Cunha, Katia; De la Reza, Ramiro; Holtzman, Jon; Chiappini, Cristina

    2009-01-01

    Sulfur abundances are derived for a sample of 10 B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, S II and S III. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S) = 7.15 ± 0.05. This average abundance result is in agreement with the recommended solar value (both from modeling of the photospheres in one-dimensional and three-dimensional, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ∼4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion Nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037 ± 0.012 dex kpc -1 .

  13. No Evidence of Chemical Abundance Variations in the Intermediate-age Cluster NGC 1783

    Science.gov (United States)

    Zhang, Hao; de Grijs, Richard; Li, Chengyuan; Wu, Xiaohan

    2018-02-01

    We have analyzed multi-passband photometric observations, obtained with the Hubble Space Telescope, of the massive (1.8 × 105 M ⊙), intermediate-age (1.8 Gyr-old) Large Magellanic Cloud star cluster NGC 1783. The morphology of the cluster’s red giant branch does not exhibit a clear broadening beyond its intrinsic width; the observed width is consistent with that owing to photometric uncertainties alone and independent of the photometric selection boundaries we applied to obtain our sample of red giant stars. The color dispersion of the cluster’s red giant stars around the best-fitting ridgeline is 0.062 ± 0.009 mag, which is equivalent to the width of 0.080 ± 0.001 mag derived from artificial simple stellar population tests, that is, tests based on single-age, single-metallicity stellar populations. NGC 1783 is comparably as massive as other star clusters that show clear evidence of multiple stellar populations. After incorporating mass-loss recipes from its current age of 1.8 Gyr to an age of 6 Gyr, NGC 1783 is expected to remain as massive as some other clusters that host clear multiple populations at these intermediate ages. If we were to assume that mass is an important driver of multiple population formation, then NGC 1783 should have exhibited clear evidence of chemical abundance variations. However, our results support the absence of any chemical abundance variations in NGC 1783.

  14. CHEMICAL ABUNDANCE PATTERNS IN THE INNER GALAXY: THE SCUTUM RED SUPERGIANT CLUSTERS

    International Nuclear Information System (INIS)

    Davies, Ben; Origlia, Livia; Kudritzki, Rolf-Peter; Figer, Don F.; Rich, R. Michael; Najarro, Francisco; Negueruela, Ignacio; Clark, J. Simon

    2009-01-01

    The location of the Scutum Red Supergiant (RSG) clusters at the end of the Galactic Bar makes them an excellent probe of the Galaxy's secular evolution, while the clusters themselves are ideal testbeds in which to study the predictions of stellar evolutionary theory. To this end, we present a study of the RSG's surface abundances using a combination of high-resolution Keck/NIRSPEC H-band spectroscopy and spectral synthesis analysis. We provide abundance measurements for elements C, O, Si, Mg, Ti, and Fe. We find that the surface abundances of the stars studied are consistent with CNO burning and deep, rotationally enhanced mixing. The average α/Fe ratios of the clusters are solar, consistent with a thin-disk population. However, we find significantly subsolar Fe/H ratios for each cluster, a result which strongly contradicts a simple extrapolation of the Galactic metallicity gradient to lower Galactocentric distances. We suggest that a simple one-dimensional parameterization of the Galaxy's abundance patterns is insufficient at low Galactocentric distances, as large azimuthal variations may be present. Indeed, we show that the abundances of O, Si, and Mg are consistent with independent measurements of objects in similar locations in the Galaxy. In combining our results with other data in the literature, we present evidence for large-scale (∼ kpc) azimuthal variations in abundances at Galactocentric distances of 3-5 kpc. While we cannot rule out that this observed behavior is due to systematic offsets between different measurement techniques, we do find evidence for similar behavior in a study of the barred spiral galaxy NGC 4736 which uses homogeneous methodology. We suggest that these azimuthal abundance variations could result from the intense but patchy star formation driven by the potential of the central bar.

  15. Comparison of amino acids physico-chemical properties and usage of late embryogenesis abundant proteins, hydrophilins and WHy domain.

    Science.gov (United States)

    Jaspard, Emmanuel; Hunault, Gilles

    2014-01-01

    Late Embryogenesis Abundant proteins (LEAPs) comprise several diverse protein families and are mostly involved in stress tolerance. Most of LEAPs are intrinsically disordered and thus poorly functionally characterized. LEAPs have been classified and a large number of their physico-chemical properties have been statistically analyzed. LEAPs were previously proposed to be a subset of a very wide family of proteins called hydrophilins, while a domain called WHy (Water stress and Hypersensitive response) was found in LEAP class 8 (according to our previous classification). Since little is known about hydrophilins and WHy domain, the cross-analysis of their amino acids physico-chemical properties and amino acids usage together with those of LEAPs helps to describe some of their structural features and to make hypothesis about their function. Physico-chemical properties of hydrophilins and WHy domain strongly suggest their role in dehydration tolerance, probably by interacting with water and small polar molecules. The computational analysis reveals that LEAP class 8 and hydrophilins are distinct protein families and that not all LEAPs are a protein subset of hydrophilins family as proposed earlier. Hydrophilins seem related to LEAP class 2 (also called dehydrins) and to Heat Shock Proteins 12 (HSP12). Hydrophilins are likely unstructured proteins while WHy domain is structured. LEAP class 2, hydrophilins and WHy domain are thus proposed to share a common physiological role by interacting with water or other polar/charged small molecules, hence contributing to dehydration tolerance.

  16. CHLORINE ABUNDANCES IN COOL STARS

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Z. G.; Pilachowski, C. A. [Indiana University Bloomington, Astronomy Department, Swain West 319, 727 East Third Street, Bloomington, IN 47405-7105 (United States); Hinkle, K., E-mail: zmaas@indiana.edu, E-mail: cpilacho@indiana.edu, E-mail: hinkle@noao.edu [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States)

    2016-12-01

    Chlorine abundances are reported in 15 evolved giants and 1 M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H{sup 35}Cl at 3.69851 μ m. The high-resolution L -band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4 m telescope. The average [{sup 35}Cl/Fe] abundance in stars with −0.72 < [Fe/H] < 0.20 is [{sup 35}Cl/Fe] = (−0.10 ± 0.15) dex. The mean difference between the [{sup 35}Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16 ± 0.15) dex. The [{sup 35}Cl/Ca] ratio has an offset of ∼0.35 dex above model predictions, suggesting that chemical evolution models are underproducing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and H ii regions. In one star where both H{sup 35}Cl and H{sup 37}Cl could be measured, a {sup 35}Cl/{sup 37}Cl isotope ratio of 2.2 ± 0.4 was found, consistent with values found in the Galactic ISM and predicted chemical evolution models.

  17. THE ORIGIN AND EVOLUTION OF THE HALO PN BoBn 1: FROM A VIEWPOINT OF CHEMICAL ABUNDANCES BASED ON MULTIWAVELENGTH SPECTRA

    International Nuclear Information System (INIS)

    Otsuka, Masaaki; Tajitsu, Akito; Hyung, Siek; Izumiura, Hideyuki

    2010-01-01

    We have performed a comprehensive chemical abundance analysis of the extremely metal-poor ([Ar/H] -6 M sun . The photoionization models built with non-LTE theoretical stellar atmospheres indicate that the progenitor was a 1-1.5 M sun star that would evolve into a white dwarf with an ∼0.62 M sun core mass and ∼0.09 M sun ionized nebula. We have measured a heliocentric radial velocity of +191.6 ±1.3 km s -1 and expansion velocity 2V exp of 40.5 ± 3.3 km s -1 from an average over 300 lines. The derived elemental abundances have been reviewed from the standpoint of theoretical nucleosynthesis models. It is likely that the elemental abundances except N could be explained either by a 1.5 M sun single star model or by a binary model composed of 0.75 M sun + 1.5 M sun stars. Careful examination implies that BoBn 1 has evolved from a 0.75 M sun + 1.5 M sun binary and experienced coalescence during the evolution to become a visible PN, similar to the other extremely metal-poor halo PN, K 648 in M 15.

  18. Hydrogen Atom Collision Processes in Cool Stellar Atmospheres: Effects on Spectral Line Strengths and Measured Chemical Abundances in Old Stars

    International Nuclear Information System (INIS)

    Barklem, Paul S

    2012-01-01

    The precise measurement of the chemical composition of stars is a fundamental problem relevant to many areas of astrophysics. State-of-the-art approaches attempt to unite accurate descriptions of microphysics, non-local thermodynamic equilibrium (non-LTE) line formation and 3D hydrodynamical model atmospheres. In this paper I review progress in understanding inelastic collisions of hydrogen atoms with other species and their influence on spectral line formation and derived abundances in stellar atmospheres. These collisions are a major source of uncertainty in non-LTE modelling of spectral lines and abundance determinations, especially for old, metal-poor stars, which are unique tracers of the early evolution of our galaxy. Full quantum scattering calculations of direct excitation processes X(nl) + H ↔ X(n'l') + H and charge transfer processes X(nl) + H ↔ X + + H − have been done for Li, Na and Mg [1,2,3] based on detailed quantum chemical data, e.g. [4]. Rate coefficients have been calculated and applied to non-LTE modelling of spectral lines in stellar atmospheres [5,6,7,8,9]. In all cases we find that charge transfer processes from the first excited S-state are very important, and the processes affect measured abundances for Li, Na and Mg in some stars by as much as 60%. Effects vary with stellar parameters (e.g. temperature, luminosity, metal content) and so these processes are important not only for accurate absolute abundances, but also for relative abundances among dissimilar stars.

  19. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution

    Science.gov (United States)

    Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; Bergemann, M.; Nordlander, T.; Morel, T.; Pancino, E.; Tautvaišienė, G.; Adibekyan, V.; Tosi, M.; Vallenari, A.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M⊙. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. Aims: We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: I) more than 600 dwarfs of the solar neighborhood and of open clusters and II) low- and intermediate-mass clump giants in six open clusters. Methods: Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models. Results: Abundances of Na in stars with mass below ~2.0 M⊙, and of Al in stars below ~3.0 M⊙, seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M⊙, NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs

  20. Chemical Abundances of Red Giant Branch Stars in the Globular Clusters NGC 6333 and NGC 6366

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. M.; Pilachowski, C. A.; Kunder, A. M.

    2013-01-01

    We present chemical abundances and radial velocities for >20 red giant branch (RGB) stars in the Galactic globular clusters NGC 6333 ([Fe/H]≈-1.8) and NGC 6366 ([Fe/H]≈-0.6). The results are based on moderate resolution (R=18,000), high signal-to-noise ratio (>100) spectra obtained with the Hydra multifiber positioner and bench spectrograph on the WIYN 3.5m telescope at Kitt Peak National Observatory. Both objects are likely associated with the Galactic bulge globular cluster system, and we therefore compare the cluster abundance patterns with those of nearby bulge field stars. Additionally, we investigate differences in the O-Na anticorrelation and neutron-capture element dispersion between the two clusters, and compare their abundance patterns with those of similar metallicity halo globular clusters. This material is based upon work supported by the National Science Foundation under award No. AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grant AST-0709479 and AST-121120995.

  1. Seismological measurement of solar helium abundance

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Pamyatnykh, A.A.

    1991-01-01

    The internal structure and evolution of the Sun depends on its chemical composition, particularly the helium abundance. In addition, the helium abundance in the solar envelope is thought to represent the protosolar value, making it a datum of cosmological significance. Spectroscopic measurements of the helium abundance are uncertain, and the most reliable estimates until now have come from the calibration of solar evolutionary models. The frequencies of solar acoustic oscillations are sensitive, however, to the behaviour of the speed of sound in the Sun's helium ionization zone, which allows a helioseismological determination of the helium abundance. Sound-speed inversion of helioseismological data can be used for this purpose, but precise frequency measurements of high-degree oscillation modes are needed. Here we describe a new approach based on an analysis of the phase shift of acoustic waves of intermediate-degree modes. From the accurate intermediate-mode data now available, we obtain a helium mass fraction Y=0.25±0.01 in the solar convection zone, significantly smaller than the value Y=0.27-0.29 predicted by recent solar evolutionary models. The discrepancy indicates either that initial helium abundance was reduced in the envelope by downward diffusion or that the protosolar value was lower than currently accepted. (author)

  2. In-depth analysis of low abundant proteins in bovine colostrum using different fractionation techniques

    DEFF Research Database (Denmark)

    Nissen, Asger; Bendixen, Emøke; Ingvartsen, Klaus Lønne

    2012-01-01

    Bovine colostrum is well known for its large content of bioactive components and its importance for neonatal survival. Unfortunately, the colostrum proteome is complicated by a wide dynamic range, because of a few dominating proteins that hamper sensitivity and proteome coverage achieved on low...... abundant proteins. Moreover, the composition of colostrum is complex and the proteins are located within different physical fractions that make up the colostrum. To gain a more exhaustive picture of the bovine colostrum proteome and gather information on protein location, we performed an extensive pre......-analysis fractionation of colostrum prior to 2D-LC-MS/MS analysis. Physical and chemical properties of the proteins and colostrum were used alone or in combination for the separation of proteins. ELISA was used to quantify and verify the presence of proteins in colostrum. In total, 403 proteins were identified...

  3. Metal-poor dwarf galaxies in the SIGRID galaxy sample. I. H II region observations and chemical abundances

    International Nuclear Information System (INIS)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J.; Basurah, Hassan

    2014-01-01

    In this paper we present the results of observations of 17 H II regions in thirteen galaxies from the SIGRID sample of isolated gas-rich irregular dwarf galaxies. The spectra of all but one of the galaxies exhibit the auroral [O III] 4363 Å line, from which we calculate the electron temperature, T e , and gas-phase oxygen abundance. Five of the objects are blue compact dwarf galaxies, of which four have not previously been analyzed spectroscopically. We include one unusual galaxy which exhibits no evidence of the [N II] λλ 6548,6584 Å lines, suggesting a particularly low metallicity (< Z ☉ /30). We compare the electron temperature based abundances with those derived using eight of the new strong-line diagnostics presented by Dopita et al. Using a method derived from first principles for calculating total oxygen abundance, we show that the discrepancy between the T e -based and strong-line gas-phase abundances have now been reduced to within ∼0.07 dex. The chemical abundances are consistent with what is expected from the luminosity-metallicity relation. We derive estimates of the electron densities and find them to be between ∼5 and ∼100 cm –3 . We find no evidence for a nitrogen plateau for objects in this sample with metallicities 0.5 > Z ☉ > 0.15.

  4. Metal-poor dwarf galaxies in the SIGRID galaxy sample. I. H II region observations and chemical abundances

    Energy Technology Data Exchange (ETDEWEB)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Basurah, Hassan, E-mail: David.Nicholls@anu.edu.au [Astronomy Department, King Abdulaziz University, P.O. Box 80203 Jeddah (Saudi Arabia)

    2014-05-10

    In this paper we present the results of observations of 17 H II regions in thirteen galaxies from the SIGRID sample of isolated gas-rich irregular dwarf galaxies. The spectra of all but one of the galaxies exhibit the auroral [O III] 4363 Å line, from which we calculate the electron temperature, T{sub e} , and gas-phase oxygen abundance. Five of the objects are blue compact dwarf galaxies, of which four have not previously been analyzed spectroscopically. We include one unusual galaxy which exhibits no evidence of the [N II] λλ 6548,6584 Å lines, suggesting a particularly low metallicity (< Z {sub ☉}/30). We compare the electron temperature based abundances with those derived using eight of the new strong-line diagnostics presented by Dopita et al. Using a method derived from first principles for calculating total oxygen abundance, we show that the discrepancy between the T{sub e} -based and strong-line gas-phase abundances have now been reduced to within ∼0.07 dex. The chemical abundances are consistent with what is expected from the luminosity-metallicity relation. We derive estimates of the electron densities and find them to be between ∼5 and ∼100 cm{sup –3}. We find no evidence for a nitrogen plateau for objects in this sample with metallicities 0.5 > Z {sub ☉} > 0.15.

  5. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility.

    Science.gov (United States)

    Navarrete, Acacio Aparecido; Soares, Tielle; Rossetto, Raffaella; van Veen, Johannes Antonie; Tsai, Siu Mui; Kuramae, Eiko Eurya

    2015-09-01

    Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.819, P = 0.002). The relative proportion of Verrucomicrobia declined in response to increased soil fertility after slash-and-burn deforestation, accounting on average, for 4 and 2 % of the total bacterial signal, in natural nutrient-poor forest soils and nutrient-enriched deforested soils, respectively. In case study Model II ("Management practices for sugarcane") disparate patterns were revealed in sugarcane rhizosphere sampled on optimal and deficient soil fertility for sugarcane (R = 0.786, P = 0.002). Verrucomicrobial community abundance in sugarcane rhizosphere was negatively correlated with soil fertility, accounting for 2 and 5 % of the total bacterial signal, under optimal and deficient soil fertility conditions for sugarcane, respectively. In nutrient-enriched soils, verrucomicrobial community structures were related to soil factors linked to soil fertility, such as total nitrogen, phosphorus, potassium and sum of bases, i.e., the sum of calcium, magnesium and potassium contents. We conclude that community structure and abundance represent important ecological aspects in soil verrucomicrobial communities for tracking the changes in chemical factors linked to soil fertility under tropical environmental conditions.

  6. Comparison of instrumental neutron activation analysis and instrumental charged-particle activation analysis for determining of Zn-68 abundance

    International Nuclear Information System (INIS)

    Rafii, H.; Mirzaei, M.; Aslani, G.R.; Kamali-Dehghan, M.; Rajamand, A-A.; Rahiminejad, A.; Mirzajani, N.; Sardari, D.; Shahabi, I.; Majidi, F.

    2004-01-01

    Gallium-67 has found important applications in nuclear medicine since last decades. The bombardment of enriched zinc-68 by proton beams in cyclotron is the most suitable method for the carrier-free production of this radionuclide. Any traces and isotopic impurities of the target cause serious radiological hazards because of their associated induced radioactivities. Trace analysis and Zn-68 content determination of the target material before any bombardment and chemical separation provide a valuable assessment of desired product. The elemental abundance evaluation of enriched isotopes is generally carried out by inductively coupled plasma-mass spectrometry method, ICP-Ms Instrumental neutron activation analysis and instrumental charged particle activation analysis. International neutron activation analysis and instrumental charged- particle activation analysis, looks be an alternative nuclear method for determining the abundance evaluation of enriched Zn-68 enrichment in two different samples has been studied by mean of international neutron activation analysis and instrumental charged- particle activation analysis . One sample was purchased from a French company, cortecnet, and the other was separated by an electromagnetic system in the Ions source department of our center, NRCAM. The neutron or proton irradiation was took place respectively in miniature neutron source reactor of Esfahan by flux of (1 to 5) 10 11 n/cm 2 .sec for 30 min and in Cyclon30 by 19 MeV proton beams of 100μA current for 12 min. The produced radioactivity was measured by HpGe detector for determination of trace impurities and evaluation of Zn-68 content in the samples. The result shows a good agreement with the reported ones by their producers and their low derivation of about ± indicates that the international neutron activation analysis and instrumental charged- particle activation analysis are relatively precise and rapid and each one can be used as a supplemental method for analyzing

  7. The AMBRE Project: r-process element abundances in the Milky Way thin and thick discs

    Science.gov (United States)

    Guiglion, Guillaume; de Laverny, Patrick; Recio-Blanco, Alejandra; Worley, C. Clare

    2018-04-01

    Chemical evolution of r-process elements in the Milky Way disc is still a matter of debate. We took advantage of high resolution HARPS spectra from the ESO archive in order to derive precise chemical abundances of 3 r-process elements Eu, Dy & Gd for a sample of 4 355 FGK Milky Way stars. The chemical analysis has been performed thanks to the automatic optimization pipeline GAUGUIN. Based on the [α/Fe] ratio, we chemically characterized the thin and the thick discs, and present here results of these 3 r-process element abundances in both discs. We found an unexpected Gadolinium and Dysprosium enrichment in the thick disc stars compared to Europium, while these three elements track well each other in the thin disc.

  8. Chemical abundances of primary stars in the Sirius-like binary systems

    Science.gov (United States)

    Kong, X. M.; Zhao, G.; Zhao, J. K.; Shi, J. R.; Kumar, Y. Bharat; Wang, L.; Zhang, J. B.; Wang, Y.; Zhou, Y. T.

    2018-05-01

    Study of primary stars lying in Sirius-like systems with various masses of white dwarf (WD) companions and orbital separations is one of the key aspects to understand the origin and nature of barium (Ba) stars. In this paper, based on high-resolution and high-S/N spectra, we present systematic analysis of photospheric abundances for 18 FGK primary stars of Sirius-like systems including six giants and 12 dwarfs. Atmospheric parameters, stellar masses, and abundances of 24 elements (C, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Ba, La, Ce, and Nd) are determined homogeneously. The abundance patterns in these sample stars show that most of the elements in our sample follow the behaviour of field stars with similar metallicity. As expected, s-process elements in four known Ba giants show overabundance. A weak correlation was found between anomalies of s-process elemental abundance and orbital separation, suggesting that the orbital separation of the binaries could not be the main constraint to differentiate strong Ba stars from mild Ba stars. Our study shows that the large mass (>0.51 M⊙) of a WD companion in a binary system is not a sufficient condition to form a Ba star, even if the separation between the two components is small. Although not sufficient, it seems to be a necessary condition since Ba stars with lower mass WDs in the observed sample were not found. Our results support that [s/Fe] and [hs/ls] ratios of Ba stars are anti-correlated with the metallicity. However, the different levels of s-process overabundance among Ba stars may not be dominated mainly by the metallicity.

  9. The Abundance Pattern in the Hot ISM of NGC 4472: Insights and Anomalies

    Science.gov (United States)

    Loewenstein, Michael; Davis, David S.

    2010-01-01

    Important clues to the chemical and dynamical history of elliptical galaxies are encoded in the abundances of heavy elements in the X-ray emitting plasma. We derive the hot ISM abundance pattern in inner (0.2.3R(sub e)) and outer (2.3.4.6R(sub e)) regions of NGC 4472 from analysis of Suzaku spectra, supported by analysis of co- spatial XMM-Newton spectra. The low background and relatively sharp spectral resolution of the Suzaku XIS detectors, combined with the high luminosity and temperature in NGC 4472, enable us to derive a particularly extensive abundance pattern that encompasses O, Ne, Mg, Al, Si, S, Ar, Ca, Fe, and Ni in both regions. We apply simple chemical evolution models to these data, and conclude that the abundances are best explained by a combination of alpha-element enhanced stellar mass loss and direct injection of Type Ia supernova (SNIa) ejecta. We thus confirm the inference, based on optical data, that the stars in elliptical galaxies have supersolar [alpha/Fe] ratios, but find that that the present-day SNIa rate is approximately 4.6 times lower than the standard value. We find SNIa yield sets that reproduce Ca and Ar, or Ni, but not all three simultaneously. The low abundance of O relative to Ne and Mg implies that standard core collapse nucleosynthesis models overproduce O by approximately 2.

  10. Chemical analysis of three barium stars: HD 51959, HD 88035, and HD 121447

    Science.gov (United States)

    Karinkuzhi, Drisya; Goswami, Aruna; Sridhar, Navin; Masseron, Thomas; Purandardas, Meenakshi

    2018-05-01

    We present elemental abundance results from high-resolution spectral analysis of three nitrogen-enhanced barium stars. The analysis is based on spectra obtained with the fibre-fed extended range optical spectrograph attached to 1.52 m telescope at European Southern Observatory, Chile. The spectral resolution is R ˜ 48,000 and the spectral coverage spans from 3500 to 9000Å . For the objects HD 51959 and HD 88035, we present the first-time abundance analyses results. Although a few studies are available in literature on the object HD 121447, the results are significantly different from each other. We have therefore carried out a detailed chemical composition study for this object based on a high-resolution spectrum with high S/N ratio, for a better understanding of the origin of the abundance patterns observed in this star. Stellar atmospheric parameters, the effective temperature, surface gravity, microturbulence, and metallicity of the stars are determined from the local thermodynamic equilibrium analysis using model atmospheres. The metallicities of HD 51959 and HD 88035 are found to be near-solar; they exhibit enhanced abundances of neutron-capture elements. HD 121447 is found to be moderately metal-poor with [Fe/H] = -0.65. While carbon is near-solar in the other two objects, HD 121447 shows carbon enhancement at a level, [C/Fe] = 0.82. Neutron-capture elements are highly enhanced with [X/Fe] > 2 (X: Ba, La, Pr, Nd, Sm) in this object. The α- and iron-peak elements show abundances very similar to field giants with the same metallicity. From kinematic analysis all the three objects are found to be members of thin disc population with a high probability of 0.99, 0.99, and 0.92 for HD 51959, HD 88035, and HD 121447, respectively.

  11. Do stellar and nebular abundances in the Cocoon nebula agree?

    Science.gov (United States)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2015-05-01

    The Cocoon nebula is an apparently spherical Galactic HII region ionized by a single star (BD+46 3474). This nebula seems to be appropriate to investigate the chemical behavior of oxygen and other heavy elements from two different points of view: a detailed analysis of the chemical content of the ionized gas through nebular spectrophotometry and a detailed spectroscopic analysis of the spectrum of the ionizing star using the state-of-the-art stellar atmosphere modelling. In this poster we present the results from a set of high-quality observations, from 2m-4m class telescopes, including the optical spectrum of the ionizing star BD+46 3474, along with long-slit spatially resolved spectroscopy of the nebula. We have used state-of-the-art stellar atmosphere codes to determine stellar parameters and the chemical content of several heavy elements. Traditional nebular techniques along with updated atomic data have been used to compute gaseous abundances of O, N and S in the Cocoon nebula. Thanks to the low ionization degree of the nebula, we could determine total abundances directly from observable ions (no ionization correction factors were needed) for three of the analyzed elements (O, S, and N). The derived stellar and nebular abundances are compared and the influence of the possible presence of the so-called temperature fluctuations on the nebula is discussed. The results of this study are presented in more detail in García-Rojas, Simón-Díaz & Esteban 2014, A&A, 571, A93.

  12. Physico-chemical characteristics and abundance of aquatic ...

    African Journals Online (AJOL)

    Macroinvertebrates abundance shows that, out of the total number of species identified, 14 were arthropods, distributed among 3 classes; 10 species were of class Insecta, 2 species from class Arachnida and 2 species from the class Crustacean. Phylum Mollusca and phylum Annelida had 2 and 1 species, respectively.

  13. Understanding and reducing statistical uncertainties in nebular abundance determinations

    Science.gov (United States)

    Wesson, R.; Stock, D. J.; Scicluna, P.

    2012-06-01

    Whenever observations are compared to theories, an estimate of the uncertainties associated with the observations is vital if the comparison is to be meaningful. However, many or even most determinations of temperatures, densities and abundances in photoionized nebulae do not quote the associated uncertainty. Those that do typically propagate the uncertainties using analytical techniques which rely on assumptions that generally do not hold. Motivated by this issue, we have developed Nebular Empirical Analysis Tool (NEAT), a new code for calculating chemical abundances in photoionized nebulae. The code carries out a standard analysis of lists of emission lines using long-established techniques to estimate the amount of interstellar extinction, calculate representative temperatures and densities, compute ionic abundances from both collisionally excited lines and recombination lines, and finally to estimate total elemental abundances using an ionization correction scheme. NEATuses a Monte Carlo technique to robustly propagate uncertainties from line flux measurements through to the derived abundances. We show that, for typical observational data, this approach is superior to analytic estimates of uncertainties. NEAT also accounts for the effect of upward biasing on measurements of lines with low signal-to-noise ratio, allowing us to accurately quantify the effect of this bias on abundance determinations. We find not only that the effect can result in significant overestimates of heavy element abundances derived from weak lines, but also that taking it into account reduces the uncertainty of these abundance determinations. Finally, we investigate the effect of possible uncertainties in R, the ratio of selective-to-total extinction, on abundance determinations. We find that the uncertainty due to this parameter is negligible compared to the statistical uncertainties due to typical line flux measurement uncertainties.

  14. VizieR Online Data Catalog: Chemical abundances of 1059 FGK stars (Delgado Mena+, 2017)

    Science.gov (United States)

    Delgado Mena, E.; Tsantaki, M.; Adibekyan, V. Zh.; Sousa, S. G.; Santos, N. C.; Gonzalez Hernandez, J. I.; Israelian, G.

    2017-07-01

    The baseline sample used in this work is formed by 1111 FGK stars observed within the context of the HARPS GTO programs. It is a combination of three HARPS subsamples hereafter called HARPS-1 (Mayor et al., 2003Msngr.114...20M), HARPS-2 (Lo Curto et al., 2010, Cat. J/A+A/512/A48), and HARPS-4 (Santos et al., 2011, Cat. J/A+A/526/A112). The individual spectra of each star were reduced using the HARPS pipeline and then combined with IRAF after correcting for its radial velocity shift. The final spectra have a resolution of R~115000 and high signal-to-noise ratios (55%of the spectra have a S/N higher than 200). The total sample is composed of 136 stars with planets and 975 stars without detected planets. Chemical abundances of these samples for refractory elements with AMena et al., 2014, Cat. J/A+A/562/A92; 2015, Cat. J/A+A/576/A69), and nitrogen abundances (Suarez-Andres et al., 2016A&A...591A..69S, only for a small fraction of stars). (2 data files).

  15. Ammonia abundances in four comets

    International Nuclear Information System (INIS)

    Wickoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    NH2 emission band strengths were measured in four comets and the NH2 column densities were determined in order to measure the ammonia content of the comets. The mean ammonia/water abundance ratio derived for the four comets is found to be 0.13 + or - 0.06 percent, with no significant variation among the comets. The uniformity of this abundance attests to a remarkable degree of chemical homogeneity over large scales in the comet-forming region of the primordial solar nebula, and contrasts with the CO abundance variations found previously in comets. The N2 and NH3 abundances indicate a condensation temperature in the range 20-160 K, consistent with virtually all comet formation hypotheses. 64 refs

  16. CHEMICAL ANALYSIS OF A CARBON-ENHANCED VERY METAL-POOR STAR: CD-27 14351

    Energy Technology Data Exchange (ETDEWEB)

    Karinkuzhi, Drisya; Goswami, Aruna [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Masseron, Thomas [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2017-01-01

    We present, for the first time, an abundance analysis of a very metal-poor carbon-enhanced star CD-27 14351 based on a high-resolution ( R  ∼ 48,000) FEROS spectrum. Our abundance analysis performed using local thermodynamic equilibrium model atmospheres shows that the object is a cool star with stellar atmospheric parameters, effective temperature T {sub eff} = 4335 K, surface gravity log g  = 0.5, microturbulence ξ  = 2.42 km s{sup −1}, and metallicity [Fe/H] = −2.6. The star exhibits high carbon and nitrogen abundances with [C/Fe] = 2.89 and [N/Fe] = 1.89. Overabundances of neutron-capture elements are evident in Ba, La, Ce, and Nd, with estimated [X/Fe] > 1, the largest enhancement being seen in Ce with [Ce/Fe] = 2.63. While the first peak s -process elements Sr and Y are found to be enhanced with respect to Fe, ([Sr/Fe] = 1.73 and [Y/Fe] = 1.91), the third peak s -process element Pb could not be detected in our spectrum at the given resolution. Europium, primarily an r -process element also shows an enhancement with [Eu/Fe] = 1.65. With [Ba/Eu] = 0.12, the object CD-27 14351 satisfies the classification criterion for a CEMP-r/s star. The elemental abundance distributions observed in this star are discussed in light of the chemical abundances observed in other CEMP stars in the literature.

  17. Chemical abundances associated with gamma-ray bursts: nucleosynthesis in afterglows

    Science.gov (United States)

    Hu, Tao; Wang, Min

    2014-03-01

    Gamma-ray burst (GRB) ejecta carries huge amounts of energy expanding into the surrounding medium and heats up these materials, making it possible that nucleosynthesis can take place in such hot sites in afterglow stage. Here, we study possible changes in chemical abundances in the GRB afterglow processes of Wolf-Rayet (WR) star wind environments (Case A) and constant density surroundings (Case B). We find that the light element of lithium-beryllium-boron could occur in the afterglows via He+He process and spallation reactions. Some isotopes of F, Ne, Mg, Al, Si, P, S and Fe-group elements are also new species formed in the afterglows via proton-, neutron- and α-capture. The results show that the nucleosynthetic yields might be a diagnostic of the GRB's ambient environment. Our calculations indicate that Mg, Al, Si, P, Cr, Mn, Fe and Co have trended to appear in Case A, while Ne, Ti and Ni trend to occur in Case B. Furthermore, although some species have occurred both in Cases A and B, their mass fractions are quite different in these two cases. Here, we show that the mass fractions of 7Li, 7Be, 24Mg and 30Si are higher in Case A than that in Case B, but 18F gives an opposite conclusion. Nucleosynthetic outputs might also be an indice to estimate the luminosity-temperature relation factor β. In this study, when β reduces, the mass abundances of 11B and 20Ne are higher in Case B than that in Case A; in contrast, as the β becomes larger, this trend would be reversed; therefore, perhaps we could select the above elements as the indicators to estimate the properties of the surroundings around the GRBs. We also suggest that the spectroscopic observations of a GRB afterglow could only reveal the nucleosynthetic outputs from the interaction site between the GRB jet and its ambient matter, but could not represent the original composition of the pre-GRB surrounding medium.

  18. Crystal-Chemical Analysis Martian Minerals in Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2015-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analyses on scooped soil at Rocknest and on drilled rock fines at Yellowknife Bay (John Klein and Cumberland samples), The Kimberley (Windjana sample), and Pahrump (Confidence Hills sample) in Gale crater, Mars. Samples were analyzed with the Rietveld method to determine the unit-cell parameters and abundance of each observed crystalline phase. Unit-cell parameters were used to estimate compositions of the major crystalline phases using crystal-chemical techniques. These phases include olivine, plagioclase and clinopyroxene minerals. Comparison of the CheMin sample unit-cell parameters with those in the literature provides an estimate of the chemical compositions of the major crystalline phases. Preliminary unit-cell parameters, abundances and compositions of crystalline phases found in Rocknest and Yellowknife Bay samples were reported in. Further instrument calibration, development of 2D-to- 1D pattern conversion corrections, and refinement of corrected data allows presentation of improved compositions for the above samples.

  19. Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates.

    Science.gov (United States)

    Elliot, Samuel G; Tolborg, Søren; Sádaba, Irantzu; Taarning, Esben; Meier, Sebastian

    2017-07-21

    The future role of biomass-derived chemicals relies on the formation of diverse functional monomers in high yields from carbohydrates. Recently, it has become clear that a series of α-hydroxy acids, esters, and lactones can be formed from carbohydrates in alcohol and water solvents using tin-containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters bearing additional olefin and alcohol functionalities. An NMR approach was used to identify, quantify, and optimize the formation of these building blocks in the Sn-Beta-catalyzed transformation of abundant carbohydrates. Record yields of the target molecules can be achieved by obstructing competing reactions through solvent selection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Comparison of normalization methods for the analysis of metagenomic gene abundance data.

    Science.gov (United States)

    Pereira, Mariana Buongermino; Wallroth, Mikael; Jonsson, Viktor; Kristiansson, Erik

    2018-04-20

    In shotgun metagenomics, microbial communities are studied through direct sequencing of DNA without any prior cultivation. By comparing gene abundances estimated from the generated sequencing reads, functional differences between the communities can be identified. However, gene abundance data is affected by high levels of systematic variability, which can greatly reduce the statistical power and introduce false positives. Normalization, which is the process where systematic variability is identified and removed, is therefore a vital part of the data analysis. A wide range of normalization methods for high-dimensional count data has been proposed but their performance on the analysis of shotgun metagenomic data has not been evaluated. Here, we present a systematic evaluation of nine normalization methods for gene abundance data. The methods were evaluated through resampling of three comprehensive datasets, creating a realistic setting that preserved the unique characteristics of metagenomic data. Performance was measured in terms of the methods ability to identify differentially abundant genes (DAGs), correctly calculate unbiased p-values and control the false discovery rate (FDR). Our results showed that the choice of normalization method has a large impact on the end results. When the DAGs were asymmetrically present between the experimental conditions, many normalization methods had a reduced true positive rate (TPR) and a high false positive rate (FPR). The methods trimmed mean of M-values (TMM) and relative log expression (RLE) had the overall highest performance and are therefore recommended for the analysis of gene abundance data. For larger sample sizes, CSS also showed satisfactory performance. This study emphasizes the importance of selecting a suitable normalization methods in the analysis of data from shotgun metagenomics. Our results also demonstrate that improper methods may result in unacceptably high levels of false positives, which in turn may lead

  1. Boolean analysis reveals systematic interactions among low-abundance species in the human gut microbiome.

    Directory of Open Access Journals (Sweden)

    Jens Christian Claussen

    2017-06-01

    Full Text Available The analysis of microbiome compositions in the human gut has gained increasing interest due to the broader availability of data and functional databases and substantial progress in data analysis methods, but also due to the high relevance of the microbiome in human health and disease. While most analyses infer interactions among highly abundant species, the large number of low-abundance species has received less attention. Here we present a novel analysis method based on Boolean operations applied to microbial co-occurrence patterns. We calibrate our approach with simulated data based on a dynamical Boolean network model from which we interpret the statistics of attractor states as a theoretical proxy for microbiome composition. We show that for given fractions of synergistic and competitive interactions in the model our Boolean abundance analysis can reliably detect these interactions. Analyzing a novel data set of 822 microbiome compositions of the human gut, we find a large number of highly significant synergistic interactions among these low-abundance species, forming a connected network, and a few isolated competitive interactions.

  2. H II region in NGC 6744: Spectrophotometry and chemical abundances

    International Nuclear Information System (INIS)

    Talent, D.L.

    1982-01-01

    Spectrophotometry of emission lines in the lambdalambda3700--6800 spectral range is presented for An H II region in an outer arm of NGC6744, a southern hemisphere galaxy of type SAB(r)bc II. The electron temperature, derived from the [O III] lines and assuming N/sub e/ = 100 cm -3 , was found to be 9,630 +- 450 K. Ionic abundances, derived in the usual fashion from the measured line strengths, were corrected to total relative number abundances by application of the standard ionization correction factor (ICF) scheme and by comparison to models. The derived abundances, relative to log Hequivalent12.00, are log He = 10.96 +- 0.06, log N = 7.34 +- 0.26, log O log O = 8.44 +- 0.10, log Ne = 7.80 +- 0.16, and log S = 6.75 +- 0.28. The NGC 6744 H II region abundances, and various ratios, are compared to similar data for H II regions in the SMC, LMC, and the Perseus arm of the Galaxy,. From the comparison it is suggested that the histories of nucleosynthesis in the outer regions of NGC 6744 and the Galaxy could have been quite similar

  3. Primordial helium abundance determination using sulphur as metallicity tracer

    Science.gov (United States)

    Fernández, Vital; Terlevich, Elena; Díaz, Angeles I.; Terlevich, Roberto; Rosales-Ortega, F. F.

    2018-05-01

    The primordial helium abundance YP is calculated using sulphur as metallicity tracer in the classical methodology (with YP as an extrapolation of Y to zero metals). The calculated value, YP, S = 0.244 ± 0.006, is in good agreement with the estimate from the Planck experiment, as well as, determinations in the literature using oxygen as the metallicity tracer. The chemical analysis includes the sustraction of the nebular continuum and of the stellar continuum computed from simple stellar population synthesis grids. The S+2 content is measured from the near infrared [SIII]λλ9069Å, 9532Å lines, while an ICF(S3 +) is proposed based on the Ar3 +/Ar2 + fraction. Finally, we apply a multivariable linear regression using simultaneously oxygen, nitrogen and sulphur abundances for the same sample to determine the primordial helium abundance resulting in YP - O, N, S = 0.245 ± 0.007.

  4. An elemental abundance analysis of the superficially normal A star Vega

    International Nuclear Information System (INIS)

    Adelman, S.J.; Gulliver, A.F.

    1990-01-01

    An elemental abundance analysis of Vega has been performed using high-signal-to-noise 2.4 A/mm Reticon observations of the region 4313-4809 A. Vega is found to be a metal-poor star with a mean underabundance of 0.60 dex. The He/H ratio of 0.03 as derived from He I 4472 A suggests that the superficial helium convection zone has disappeared and that radiative diffusion is producing the photospheric abundance anomalies. 45 refs

  5. The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging

    Energy Technology Data Exchange (ETDEWEB)

    Dotter, Aaron; Conroy, Charlie; Cargile, Phillip [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Asplund, Martin, E-mail: aaron.dotter@gmail.com [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT (Australia)

    2017-05-10

    In the era of large stellar spectroscopic surveys, there is an emphasis on deriving not only stellar abundances but also the ages for millions of stars. In the context of Galactic archeology, stellar ages provide a direct probe of the formation history of the Galaxy. We use the stellar evolution code MESA to compute models with atomic diffusion—with and without radiative acceleration—and extra mixing in the surface layers. The extra mixing consists of both density-dependent turbulent mixing and envelope overshoot mixing. Based on these models we argue that it is important to distinguish between initial, bulk abundances (parameters) and current, surface abundances (variables) in the analysis of individual stellar ages. In stars that maintain radiative regions on evolutionary timescales, atomic diffusion modifies the surface abundances. We show that when initial, bulk metallicity is equated with current, surface metallicity in isochrone age analysis, the resulting stellar ages can be systematically overestimated by up to 20%. The change of surface abundances with evolutionary phase also complicates chemical tagging, which is the concept that dispersed star clusters can be identified through unique, high-dimensional chemical signatures. Stars from the same cluster, but in different evolutionary phases, will show different surface abundances. We speculate that calibration of stellar models may allow us to estimate not only stellar ages but also initial abundances for individual stars. In the meantime, analyzing the chemical properties of stars in similar evolutionary phases is essential to minimize the effects of atomic diffusion in the context of chemical tagging.

  6. An extended chemical analysis of gallstone

    OpenAIRE

    Chandran, P.; Kuchhal, N. K.; Garg, P.; Pundir, C. S.

    2007-01-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble prot...

  7. Detailed abundance analysis of globular clusters in the Local Group. NGC 147, NGC 6822, and Messier 33

    Science.gov (United States)

    Larsen, S. S.; Brodie, J. P.; Wasserman, A.; Strader, J.

    2018-06-01

    Context. Globular clusters (GCs) are emerging as powerful tracers of the chemical composition of extragalactic stellar populations. Aims: We present new abundance measurements for 11 GCs in the Local Group galaxies NGC 147, NGC 6822, and Messier 33. These are combined with previously published observations of four GCs in the Fornax and Wolf-Lundmark-Melotte (WLM) galaxies. Methods: The abundances were determined from analyses of integrated-light spectra obtained with the HIRES spectrograph on the Keck I telescope and with UVES on the Very Large Telescope (VLT). We used our analysis technique that was developed for this purpose and tested on Milky Way GCs. Results: We find that the clusters with [Fe/H] -1.5, the GCs in M33 are also α-enhanced, while the GCs that belong to dwarfs (NGC 6822 SC7 and Fornax 4) have closer to solar-scaled α-element abundances. The abundance patterns in SC7 are remarkably similar to those in the Galactic GC Ruprecht 106, including significantly subsolar [Na/Fe] and [Ni/Fe] ratios. In NGC 147, the GCs with [Fe/H] account for about 6% of the total luminosity of stars in the same metallicity range, a lower fraction than those previously found in the Fornax and WLM galaxies, but substantially higher than in the Milky Way halo. Conclusions: At low metallicities, the abundance patterns suggest that GCs in the Milky Way, dwarf galaxies, and M33 experienced similar enrichment histories and/or processes. At higher metallicities, the lower levels of α-enhancement in the GCs found in dwarf galaxies resemble the abundance patterns observed in field stars in nearby dwarfs. Constraining the presence of multiple populations in these GCs is complicated by lack of information about detailed abundances in field stars of the corresponding metallicities. We suggest that correlations such as [Na/Fe] versus [Ni/Fe] may prove useful for this purpose if an accuracy of 0.1 dex or better can be reached for integrated-light measurements. Tables A.1-A.15

  8. Determination of the isotopic abundance of 235U in rocks in search for an Oklo phenomenon in Brazil by activation analysis

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.; Armelin, M.J.A.; Lima, F.W. de; Fulfaro, R.

    1981-09-01

    Isotopic analyses of uranium are generally carried out by mass spectrometry, with a precision better than 1%. In nuclear laboratories it is often necessary to perform rapid determinations of 235 U isotopic abundances. Thermal neutron activation analysis by delayed neutron counting or by high resolution gamma-ray spectrometry can be applied for this purpose, although with less precision than by mass spectrometry. In this work, delayed neutron counting and gamma-ray spectrometry are used for the determination of the isotopic abundance of 235 U in rocks from the Northeastern region of Brazil. In the case of the application of delayed neutron counting, the rocks are analyzed non-destructively. When high resolution gamma-ray spectrometry is applied, a pre-irradiation chemical separation had to be performed, by extraction of uranium with tributylphosphate. By both methods employed the results for the isotopic abundance of 235 U can be considered as equal to the natural value of 0.702%, for the rocks under study. The precision attained by gamma-ray spectrometry is better than that by delayed neutron couting. (Author) [pt

  9. Chemical abundances and physical parameters of RR Lyrae stars

    International Nuclear Information System (INIS)

    Manduca, A.

    1980-01-01

    A grid of model stellar atmospheres has been calculated with a range of physical parameters which effectively cover RR Lyrae stars over all phases of their pulsation cycle. The models, calculated with the computer program MARCS, are flux-constant and include the effects of convection and line blanketing. Synthetic spectra were calculated for these models from 3000 A to 9600 A at 0.1 A resolution using the computer program SSG. These spectra were used directly in the applications below and were also used to computer theoretical colors on the UBVR, Stromgren uvby, and Walraven systems for the models. The uvby colors were used in determinations of effective temperature and surface gravity from photometry by various observers. The models, synthetic spectra, and colors were then applied to the problems detailed below. The data collected by Freeman and Rodgers (1975) for 25 RR Lyrae stars in ω Cen was reanalyzed with an alternative, synthetic spectrum approach to the calibration of their theoretical relations. The results confirm a wide range in calcium abundance for the stars in the cluster but at much lower values than reported by Freeman and Rodgers: a range of [Ca/H] = -1.0 to -1.9 was found. A theoretical calibration was performed for the ΔS system of determining metal abundances for RR Lyrae stars. The results support the existing empirical calibration of Butler in the range [Fe/H] = -0.6 to -2.2 and indicate how the calibration should be extrapolated to even lower metal abundances. For higher metal abundances, however, our calibration yields [Fe/H] values lower than Butler by as much as 0.4. Possible explanations of this discrepancy are investigated and the implications are discussed

  10. Chemical Security Analysis Center

    Data.gov (United States)

    Federal Laboratory Consortium — In 2006, by Presidential Directive, DHS established the Chemical Security Analysis Center (CSAC) to identify and assess chemical threats and vulnerabilities in the...

  11. On the enrichment of low-abundant isotopes of light chemical elements by gas centrifuges

    International Nuclear Information System (INIS)

    Borisevich, V.D.; Morozov, O.E.; Zaozerskiy, Yu.P.; Shmelev, G.M.; Shipilov, Yu.D.

    2000-01-01

    A brief review of the main areas for the application of the isotopes 15 N and 13 C is made. Separation of the nitrogen isotopes in a single gas centrifuge in the form of pure nitrogen, ammonia, and trifluoride of nitrogen as well as the carbon isotopes in the form of carbon dioxide has been studied by means of numerical simulation. The parameters of the centrifugal machine investigated were close to the parameters of the Iguassu machine. The dependence of the efficiency criterion versus the basic parameters of the separation process has been explored in the computational experiments. Comparisons of the calculated results with the experimental data have shown good agreement. The results obtained have demonstrated the possibility of using gas centrifuge technology to enrich successfully the low-abundant isotopes of light chemical elements

  12. Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu

    Science.gov (United States)

    Delgado Mena, E.; Tsantaki, M.; Adibekyan, V. Zh.; Sousa, S. G.; Santos, N. C.; González Hernández, J. I.; Israelian, G.

    2017-10-01

    Aims: To understand the formation and evolution of the different stellar populations within our Galaxy it is essential to combine detailed kinematical and chemical information for large samples of stars. The aim of this work is to explore the chemical abundances of neutron capture elements which are a product of different nucleosynthesis processes taking place in diverse objects in the Galaxy, such as massive stars, asymptotic giant branch (AGB) stars and supernovae (SNe) explosions. Methods: We derive chemical abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu for a large sample of more than 1000 FGK dwarf stars with high-resolution (R 115 000) and high-quality spectra from the HARPS-GTO program. The abundances are derived by a standard local thermodynamic equilibrium (LTE) analysis using measured equivalent widths (EWs) injected to the code MOOG and a grid of Kurucz ATLAS9 atmospheres. Results: We find that thick disc stars are chemically disjunct for Zn and Eu and also show on average higher Zr but lower Ba and Y than the thin disc stars. We also discovered that the previously identified high-α metal-rich population is also enhanced in Cu, Zn, Nd, and Eu with respect to the thin disc but presents lower Ba and Y abundances on average, following the trend of thick disc stars towards higher metallities and further supporting the different chemical composition of this population. By making a qualitative comparison of O (pure α), Mg, Eu (pure r-process), and s-process elements we can distinguish between the contribution of the more massive stars (SNe II for α and r-process elements) and the lower mass stars (AGBs) whose contribution to the enrichment of the Galaxy is delayed, due to their longer lifetimes. The ratio of heavy-s to light-s elements of thin disc stars presents the expected behaviour (increasing towards lower metallicities) and can be explained by a major contribution of low-mass AGB stars for s-process production at disc metallicities. However, the

  13. OXYGEN ABUNDANCES IN CEPHEIDS

    International Nuclear Information System (INIS)

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V.

    2013-01-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  14. Fossil Signatures Using Elemental Abundance Distributions and Bayesian Probabilistic Classification

    Science.gov (United States)

    Hoover, Richard B.; Storrie-Lombardi, Michael C.

    2004-01-01

    Elemental abundances (C6, N7, O8, Na11, Mg12, Al3, P15, S16, Cl17, K19, Ca20, Ti22, Mn25, Fe26, and Ni28) were obtained for a set of terrestrial fossils and the rock matrix surrounding them. Principal Component Analysis extracted five factors accounting for the 92.5% of the data variance, i.e. information content, of the elemental abundance data. Hierarchical Cluster Analysis provided unsupervised sample classification distinguishing fossil from matrix samples on the basis of either raw abundances or PCA input that agreed strongly with visual classification. A stochastic, non-linear Artificial Neural Network produced a Bayesian probability of correct sample classification. The results provide a quantitative probabilistic methodology for discriminating terrestrial fossils from the surrounding rock matrix using chemical information. To demonstrate the applicability of these techniques to the assessment of meteoritic samples or in situ extraterrestrial exploration, we present preliminary data on samples of the Orgueil meteorite. In both systems an elemental signature produces target classification decisions remarkably consistent with morphological classification by a human expert using only structural (visual) information. We discuss the possibility of implementing a complexity analysis metric capable of automating certain image analysis and pattern recognition abilities of the human eye using low magnification optical microscopy images and discuss the extension of this technique across multiple scales.

  15. CHEMICAL ABUNDANCE PATTERNS AND THE EARLY ENVIRONMENT OF DWARF GALAXIES

    International Nuclear Information System (INIS)

    Corlies, Lauren; Johnston, Kathryn V.; Bryan, Greg; Tumlinson, Jason

    2013-01-01

    Recent observations suggest that abundance pattern differences exist between low metallicity stars in the Milky Way stellar halo and those in the dwarf satellite galaxies. This paper takes a first look at what role the early environment for pre-galactic star formation might have played in shaping these stellar populations. In particular, we consider whether differences in cross-pollution between the progenitors of the stellar halo and the satellites could help to explain the differences in abundance patterns. Using an N-body simulation, we find that the progenitor halos of the main halo are primarily clustered together at z = 10 while the progenitors of the satellite galaxies remain on the outskirts of this cluster. Next, analytically modeled supernova-driven winds show that main halo progenitors cross-pollute each other more effectively while satellite galaxy progenitors remain more isolated. Thus, inhomogeneous cross-pollution as a result of different high-z spatial locations of each system's progenitors can help to explain observed differences in abundance patterns today. Conversely, these differences are a signature of the inhomogeneity of metal enrichment at early times

  16. Abundance Analysis of 17 Planetary Nebulae from High-Resolution Optical Spectroscopy

    Science.gov (United States)

    Sherrard, Cameroun G.; Sterling, Nicholas C.; Dinerstein, Harriet L.; Madonna, Simone; Mashburn, Amanda

    2017-06-01

    We present an abundance analysis of 17 planetary nebulae (PNe) observed with the 2D-coudé echelle spectrograph on the 2.7-m Harlan J. Smith telescope at McDonald Observatory. The spectra cover the wavelength range 3600--10,400 Å at a resolution R = 36,700, and are the first high-resolution optical spectra for many objects in our sample. The number of emission lines detected in individual nebulae range from ~125 to over 600. We derive temperatures, densities, and abundances from collisionally-excited lines using the PyNeb package (Luridiana et al. 2015, A&A, 573, A42) and the ionization correction factor scheme of Delgado-Inglada et al. (2014, MNRAS, 440, 536). The abundances of light elements agree with previous estimates for most of the PNe. Several objects exhibit emission lines of refractory elements such as K and Fe, and neutron-capture elements that can be enriched by the s-process. We find that K and Fe are depleted relative to solar by ~0.3--0.7~dex and 1-2 dex, respectively, and find evidence for s-process enrichments in 10 objects. Several objects in our sample exhibit C, N, and O recombination lines that are useful for abundance determinations. These transitions are used to compute abundance discrepancy factors (ADFs), the ratio of ionic abundances derived from permitted lines to those from collisionally-excited transitions. We explore relations among depletion factors, ADFs, s-process enrichment factors, and other nebular stellar and nebular properties. We acknowledge support from NSF awards AST-901432 and AST-0708429.

  17. Abundances in field dwarf stars. II. Carbon and nitrogen abundances

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.B.

    1985-02-15

    Intermediate-dispersion spectra of 116 field dwarf stars, plus 10 faint field giants and 3 Hyades dwarfs, have been used to derive carbon and nitrogen abundances relative to iron. The program sample includes both disk and halo stars, spanning a range in (Fe/H) of +0.50 to -2.45. Synthetic spectra of CH and NH bands have been used to determine carbon and nitrogen abundances. The C/Fe ratio is solar over the range of metallicity studied, with an estimated intrinsic scatter of 0.10 dex. Down to (Fe/H)roughly-equal-1.8, below which the nitrogen abundance could not be measured, the N/Fe ratio is also constant for the majority of stars, indicating that nitrogen production is largely primary. Four halo stars are found to be enhanced in nitrogen relative to iron, by factors between 5 and 50, although their carbon abundances appear to be normal. These results are discussed in connection with the chemical evolution of the Galaxy and the sites of C, N, and Fe nucleosynthesis. The results require that C, N, and Fe be produced in stars of similar mass. Our current understanding of N production, then, implies that most Type I supernovae have intermediate-mass progenitors. The nitrogen in the N-enhanced halo stars is very probably primordial, indicating that the interstellar medium at early epochs contained substantial inhomogeneities.

  18. Abundances in field dwarf stars. II. Carbon and nitrogen abundances

    International Nuclear Information System (INIS)

    Laird, J.B.

    1985-01-01

    Intermediate-dispersion spectra of 116 field dwarf stars, plus 10 faint field giants and 3 Hyades dwarfs, have been used to derive carbon and nitrogen abundances relative to iron. The program sample includes both disk and halo stars, spanning a range in [Fe/H] of +0.50 to -2.45. Synthetic spectra of CH and NH bands have been used to determine carbon and nitrogen abundances. The C/Fe ratio is solar over the range of metallicity studied, with an estimated intrinsic scatter of 0.10 dex. Down to [Fe/H]roughly-equal-1.8, below which the nitrogen abundance could not be measured, the N/Fe ratio is also constant for the majority of stars, indicating that nitrogen production is largely primary. Four halo stars are found to be enhanced in nitrogen relative to iron, by factors between 5 and 50, although their carbon abundances appear to be normal. These results are discussed in connection with the chemical evolution of the Galaxy and the sites of C, N, and Fe nucleosynthesis. The results require that C, N, and Fe be produced in stars of similar mass. Our current understanding of N production, then, implies that most Type I supernovae have intermediate-mass progenitors. The nitrogen in the N-enhanced halo stars is very probably primordial, indicating that the interstellar medium at early epochs contained substantial inhomogeneities

  19. Impacts of different exposure scenarios on transcript abundances in Danio rerio embryos when investigating the toxicological burden of riverine sediments.

    Directory of Open Access Journals (Sweden)

    Kerstin Bluhm

    Full Text Available PURPOSE: Recently, a proof-of-concept study revealed the suitability of transcriptome analyses to obtain and assess changes in the abundance of transcripts in zebrafish (Danio rerio embryos after exposure to organic sediment extracts. The present study investigated changes in the transcript abundance in zebrafish embryos exposed to whole sediment samples and corresponding organic extracts in order to identify the impact of different exposure pathways on sediment toxicity. MATERIALS AND METHODS: Danio rerio embryos were exposed to sublethal concentrations of three sediment samples from the Danube River, Germany. The sediment samples were investigated both as freeze-dried samples and as organic extracts. Silica dust and a process control of the extraction procedure were used as references. After exposure, mRNA was isolated and changes in profiles of gene expression levels were examined by an oligonucleotide microarray. The microarray results were compared with bioassays, chemical analysis of the sediments and profiles of gene expression levels induced by several single substances. RESULTS AND DISCUSSION: The microarray approach elucidated significant changes in the abundance of transcripts in exposed zebrafish embryos compared to the references. Generally, results could be related to Ah-receptor-mediated effects as confirmed by bioassays and chemical analysis of dioxin-like contaminants, as well as to exposure to stress-inducing compounds. Furthermore, the results indicated that mixtures of chemicals, as present in sediment and extract samples, result in complex changes of gene expression level profiles difficult to compare with profiles induced by single chemical substances. Specifically, patterns of transcript abundances were less influenced by the chemical composition at the sampling site compared t the method of exposure (sediment/extract. This effect might be related to different bioavailability of chemicals. CONCLUSIONS: The apparent

  20. The Stanford-U.S. Geological Survey SHRIMP ion microprobe--a tool for micro-scale chemical and isotopic analysis

    Science.gov (United States)

    Bacon, Charles R.; Grove, Marty; Vazquez, Jorge A.; Coble, Matthew A.

    2012-01-01

    Answers to many questions in Earth science require chemical analysis of minute volumes of minerals, volcanic glass, or biological materials. Secondary Ion Mass Spectrometry (SIMS) is an extremely sensitive analytical method in which a 5–30 micrometer diameter "primary" beam of charged particles (ions) is focused on a region of a solid specimen to sputter secondary ions from 1–5 nanograms of the sample under high vacuum. The elemental abundances and isotopic ratios of these secondary ions are determined with a mass spectrometer. These results can be used for geochronology to determine the age of a region within a crystal thousands to billions of years old or to precisely measure trace abundances of chemical elements at concentrations as low as parts per billion. A partnership of the U.S. Geological Survey and the Stanford University School of Earth Sciences operates a large SIMS instrument, the Sensitive High-Resolution Ion Microprobe with Reverse Geometry (SHRIMP–RG) on the Stanford campus.

  1. M31 GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott; McWilliam, Andrew; Cohen, Judith G.

    2009-01-01

    We report the first detailed chemical abundances for five globular clusters (GCs) in M31 from high-resolution (R ∼ 25,000) spectroscopy of their integrated light (IL). These GCs are the first in a larger set of clusters observed as part of an ongoing project to study the formation history of M31 and its GC population. The data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope and are analyzed using a new IL spectra analysis method that we have developed. In these clusters, we measure abundances for Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba, ages ≥10 Gyr, and a range in [Fe/H] of -0.9 to -2.2. As is typical of Milky Way GCs, we find these M31 GCs to be enhanced in the α-elements Ca, Si, and Ti relative to Fe. We also find [Mg/Fe] to be low relative to other [α/Fe], and [Al/Fe] to be enhanced in the IL abundances. These results imply that abundances of Mg, Al (and likely O, Na) recovered from IL do display the inter- and intra-cluster abundance variations seen in individual Milky Way GC stars, and that special care should be taken in the future in interpreting low- or high-resolution IL abundances of GCs that are based on Mg-dominated absorption features. Fe-peak and the neutron-capture elements Ba and Y also follow Milky Way abundance trends. We also present high-precision velocity dispersion measurements for all five M31 GCs, as well as independent constraints on the reddening toward the clusters from our analysis.

  2. Determination of lunar ilmenite abundances from remotely sensed data

    Science.gov (United States)

    Larson, Stephen M.; Johnson, Jeffrey R.; Singer, Robert B.

    1991-01-01

    The mineral ilmenite (FeTiO3) was found in abundance in lunar mare soils returned during the Apollo project. Lunar ilmenite often contains greater than 50 weight-percent titanium dioxide (TiO2), and is a primary potential resource for oxygen and other raw materials to supply future lunar bases. Chemical and spectroscopic analysis of the returned lunar soils produced an empirical function that relates the spectral reflectance ratio at 400 and 560 nm to the weight percent abundance of TiO2. This allowed mapping of the lunar TiO2 distribution using telescopic vidicon multispectral imaging from the ground; however, the time variant photometric response of the vidicon detectors produced abundance uncertainties of at least 2 to 5 percent. Since that time, solid-state charge-coupled device (CCD) detector technology capable of much improved photometric response has become available. An investigation of the lunar TiO2 distribution was carried out utilizing groundbased telescopic CCD multispectral imagery and spectroscopy. The work was approached in phases to develop optimum technique based upon initial results. The goal is to achieve the best possible TiO2 abundance maps from the ground as a precursor to lunar orbiter and robotic sample return missions, and to produce a better idea of the peak abundances of TiO2 for benefaction studies. These phases and the results are summarized.

  3. Chemical content of the circumstellar envelope of the oxygen-rich AGB star R Doradus. Non-LTE abundance analysis of CO, SiO, and HCN

    Science.gov (United States)

    Van de Sande, M.; Decin, L.; Lombaert, R.; Khouri, T.; de Koter, A.; Wyrowski, F.; De Nutte, R.; Homan, W.

    2018-01-01

    Context. The stellar outflows of low- to intermediate-mass stars are characterised by a rich chemistry. Condensation of molecular gas species into dust grains is a key component in a chain of physical processes that leads to the onset of a stellar wind. In order to improve our understanding of the coupling between the micro-scale chemistry and macro-scale dynamics, we need to retrieve the abundance of molecules throughout the outflow. Aims: Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. SiO is thought to play an essential role in the dust-formation process of oxygen-rich AGB stars. The presence of HCN in an oxygen-rich environment is thought to be due to non-equilibrium chemistry in the inner wind. Methods: We analysed molecular transitions of CO, SiO, and HCN measured with the APEX telescope and all three instruments on the Herschel Space Observatory, together with data available in the literature. Photometric data and the infrared spectrum measured by ISO-SWS were used to constrain the dust component of the outflow. Using both continuum and line radiative transfer methods, a physical envelope model of both gas and dust was established. We performed an analysis of the SiO and HCN molecular transitions in order to calculate their abundances. Results: We have obtained an envelope model that describes the dust and the gas in the outflow, and determined the abundance of SiO and HCN throughout the region of the stellar outflow probed by our molecular data. For SiO, we find that the initial abundance lies between 5.5 × 10-5 and 6.0 × 10-5 with respect to H2. The abundance profile is constant up to 60 ± 10 R∗, after which it declines following a Gaussian profile with an e-folding radius of 3.5 ± 0.5 × 1013 cm or 1.4 ± 0.2 R∗. For HCN, we find an initial abundance of 5.0 × 10-7 with respect to H2. The Gaussian profile that describes the decline

  4. BOND: A quantum of solace for nebular abundance determinations

    Science.gov (United States)

    Vale Asari, N.; Stasińska, G.; Morisset, C.; Cid Fernandes, R.

    2017-11-01

    The abundances of chemical elements other than hydrogen and helium in a galaxy are the fossil record of its star formation history. Empirical relations such as mass-metallicity relation are thus seen as guides for studies on the history and chemical evolution of galaxies. Those relations usually rely on nebular metallicities measured with strong-line methods, which assume that H II regions are a one- (or at most two-) parameter family where the oxygen abundance is the driving quantity. Nature is however much more complex than that, and metallicities from strong lines may be strongly biased. We have developed the method BOND (Bayesian Oxygen and Nitrogen abundance Determinations) to simultaneously derive oxygen and nitrogen abundances in giant H II regions by comparing strong and semi-strong observed emission lines to a carefully-defined, finely-meshed grid of photoionization models. Our code and results are public and available at http://bond.ufsc.br.

  5. PEPSI deep spectra. III. Chemical analysis of the ancient planet-host star Kepler-444

    Science.gov (United States)

    Mack, C. E.; Strassmeier, K. G.; Ilyin, I.; Schuler, S. C.; Spada, F.; Barnes, S. A.

    2018-04-01

    Context. With the Large Binocular Telescope (LBT), we obtained a spectrum with PEPSI, its new optical high-resolution échelle spectrograph. The spectrum has very high resolution and a high signal-to-noise (S/N) and is of the K0V host Kepler-444, which is known to host five sub-Earth-sized rocky planets. The spectrum has a resolution of R ≈ 250 000, a continuous wavelength coverage from 4230 Å to 9120 Å, and an S/N between 150-550:1 (blue to red). Aim. We performed a detailed chemical analysis to determine the photospheric abundances of 18 chemical elements. These were used to place constraints on the bulk composition of the five rocky planets. Methods: Our spectral analysis employs the equivalent-width method for most of our spectral lines, but we used spectral synthesis to fit a small number of lines that required special care. In both cases, we derived our abundances using the MOOG spectral analysis package and Kurucz model atmospheres. Results: We find no correlation between elemental abundance and condensation temperature among the refractory elements (TC > 950 K). In addition, using our spectroscopic stellar parameters and isochrone fitting, we find an age of 10 ± 1.5 Gyr, which is consistent with the asteroseismic age of 11 ± 1 Gyr. Finally, from the photospheric abundances of Mg, Si, and Fe, we estimate that the typical Fe-core mass fraction for the rocky planets in the Kepler-444 system is approximately 24%. Conclusions: If our estimate of the Fe-core mass fraction is confirmed by more detailed modeling of the disk chemistry and simulations of planet formation and evolution in the Kepler-444 system, then this would suggest that rocky planets in more metal-poor and α-enhanced systems may tend to be less dense than their counterparts of comparable size in more metal-rich systems. Based on data acquired with PEPSI using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and

  6. TRACING THE EVOLUTION OF HIGH-REDSHIFT GALAXIES USING STELLAR ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Brian D.; O’Shea, Brian W. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Beers, Timothy C. [Department of Physics and JINA—Center for the Evolution of the Elements, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Tumlinson, Jason, E-mail: crosby.bd@gmail.com [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-03-20

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation and evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.

  7. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States)

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  8. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    International Nuclear Information System (INIS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  9. Carbon Abundances in Starburst Galaxies of the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Guerrero, María A.; Leitherer, Claus [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mink, Selma de [Anton Pannekoek Institute for Astronomy, Science Park 904, P.O. Box 94249, 1090 GE, Amsterdam (Netherlands); Wofford, Aida [Instituto de Astronomía, UNAM, Ensenada, CP 22860, Baja California (Mexico); Kewley, Lisa, E-mail: pena@stsci.edu, E-mail: leitherer@stsci.edu, E-mail: S.E.deMink@uva.nl, E-mail: awofford@astrosen.unam.mx, E-mail: lisa.kewley@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia)

    2017-10-01

    The cosmological origin of carbon, the fourth most abundant element in the universe, is not well known and a matter of heavy debate. We investigate the behavior of C/O to O/H in order to constrain the production mechanism of carbon. We measured emission-line intensities in the spectral range from 1600 to 10000 Å on Space Telescope Imaging Spectrograph (STIS) long-slit spectra of 18 starburst galaxies in the local universe. We determined chemical abundances through traditional nebular analysis, and we used a Markov Chain Monte Carlo method to determine where our carbon and oxygen abundances lie in the parameter space. We conclude that our C and O abundance measurements are sensible. We analyzed the behavior of our sample in the [C/O] versus [O/H] diagram with respect to other objects such as DLAs, neutral ISM measurements, and disk and halo stars, finding that each type of object seems to be located in a specific region of the diagram. Our sample shows a steeper C/O versus O/H slope with respect to other samples, suggesting that massive stars contribute more to the production of C than N at higher metallicities, only for objects where massive stars are numerous; otherwise, intermediate-mass stars dominate the C and N production.

  10. Carbon Abundances in Starburst Galaxies of the Local Universe

    International Nuclear Information System (INIS)

    Peña-Guerrero, María A.; Leitherer, Claus; Mink, Selma de; Wofford, Aida; Kewley, Lisa

    2017-01-01

    The cosmological origin of carbon, the fourth most abundant element in the universe, is not well known and a matter of heavy debate. We investigate the behavior of C/O to O/H in order to constrain the production mechanism of carbon. We measured emission-line intensities in the spectral range from 1600 to 10000 Å on Space Telescope Imaging Spectrograph (STIS) long-slit spectra of 18 starburst galaxies in the local universe. We determined chemical abundances through traditional nebular analysis, and we used a Markov Chain Monte Carlo method to determine where our carbon and oxygen abundances lie in the parameter space. We conclude that our C and O abundance measurements are sensible. We analyzed the behavior of our sample in the [C/O] versus [O/H] diagram with respect to other objects such as DLAs, neutral ISM measurements, and disk and halo stars, finding that each type of object seems to be located in a specific region of the diagram. Our sample shows a steeper C/O versus O/H slope with respect to other samples, suggesting that massive stars contribute more to the production of C than N at higher metallicities, only for objects where massive stars are numerous; otherwise, intermediate-mass stars dominate the C and N production.

  11. Project VeSElkA: a search for the vertical stratification of element abundances in HD 157087

    Science.gov (United States)

    Khalack, V.

    2018-06-01

    The new spectropolarimetric spectra of HD 157087 obtained recently with ESPaDOnS (Echelle SpectroPolarimetric Device for Observations of Stars) at the Canada-France-Hawaii Telescope are analysed to verify the nature of this object. The fundamental stellar parameters Teff = 8882 K, log g = 3.57 were obtained for HD 157087 from the analysis of nine Balmer line profiles in two available spectra. A comparison of the results of our abundance analysis with previously published data shows a variability of the average abundance with time for some chemical species, while the abundances of other elements remain almost constant. The abundance analysis also reveals evidence of a significant abundance increase towards the deeper atmospheric layers for C, S, Ca, Sc, V, Cr, Mn, Co, Ni and Zr. Together with the discovered enhanced abundance of Ca and Sc, this finding contradicts the classification of HD 157087 as a marginal Am star. An analysis of the available measurements of radial velocity revealed long- and short-period variations. The long-period variation supports the idea that HD 157087 is an astrometric binary system with a period longer than 6 yr. The presence of the short-period variation of Vr, as well as the detection of the temporal variation of the average abundance, suggests that HD 157087 may be a triple system, in which a short-period binary rotates around a third star. In this case, the short-period binary may consist of slowly rotating Am and A (or Ap with a weak magnetic field) stars that have similar effective temperatures and surface gravities, but different abundance peculiarities.

  12. Sample handling and chemical procedures for efficacious trace analysis of urine by neutron activation analysis

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.; Roman, F.R.

    1988-01-01

    Important for the determination of trace elements, ions, or compounds in urine by chemical neutron activation analysis is the optimization of sample handling, preirradiation chemistry, and radioassay procedures necessary for viable analysis. Each element, because of its natural abundance in the earth's crust and, hence, its potential for reagent and environmental contamination, requires specific procedures for storage, handling, and preirradiation chemistry. Radioassay techniques for radionuclides vary depending on their half-lives and decay characteristics. Described in this paper are optimized procedures for aluminum and selenium. While 28 Al (T 1/2 = 2.24 min) and 77m Se(T 1/2 = 17.4s) have short half-lives, their gamma-ray spectra are quite different. Aluminum-28 decays by a 1779-keV gamma and 77m Se by a 162-keV gamma. Unlike selenium, aluminum is a ubiquitous element in the environment requiring special handling to minimize contamination in all phases of its analytical determination

  13. The RRc Stars: Chemical Abundances and Envelope Kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Sneden, Christopher; Adamów, Monika [Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Preston, George W. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Chadid, Merieme, E-mail: chris@verdi.as.utexas.edu, E-mail: astromysz@gmail.com, E-mail: gwp@obs.carnegiescience.edu, E-mail: chadid@unice.fr [Université Nice Sophia–Antipolis, Observatoire de la Côte dAzur, UMR 7293, Parc Valrose, F-06108, Nice Cedex 02 (France)

    2017-10-10

    We analyzed series of spectra obtained for 12 stable RRc stars observed with the echelle spectrograph of the du Pont telescope at Las Campanas Observatory and we analyzed the spectra of RRc Blazhko stars discussed by Govea et al. We derived model atmosphere parameters, [Fe/H] metallicities, and [X/Fe] abundance ratios for 12 species of 9 elements. We co-added all spectra obtained during the pulsation cycles to increase signal to noise and demonstrate that these spectra give results superior to those obtained by co-addition in small phase intervals. The RRc abundances are in good agreement with those derived for the RRab stars of Chadid et al. We used radial velocity (RV) measurements of metal lines and H α to construct variations of velocity with phase, and center-of-mass velocities. We used these to construct RV templates for use in low- to medium-resolution RV surveys of RRc stars. Additionally, we calculated primary accelerations, radius variations, and metal and H α velocity amplitudes, which we display as regressions against primary acceleration. We employ these results to compare the atmosphere structures of metal-poor RRc stars with their RRab counterparts. Finally, we use the RV data for our Blazhko stars and the Blazhko periods of Szczygieł and Fabrycky to falsify the Blazhko oblique rotator hypothesis.

  14. Environmental Risk Assessment: Spatial Analysis of Chemical Hazards and Risks in South Korea

    Science.gov (United States)

    Yu, H.; Heo, S.; Kim, M.; Lee, W. K.; Jong-Ryeul, S.

    2017-12-01

    This study identified chemical hazard and risk levels in Korea by analyzing the spatial distribution of chemical factories and accidents. The number of chemical factories and accidents in 5-km2 grids were used as the attribute value for spatial analysis. First, semi-variograms were conducted to examine spatial distribution patterns and to identify spatial autocorrelation of chemical factories and accidents. Semi-variograms explained that the spatial distribution of chemical factories and accidents were spatially autocorrelated. Second, the results of the semi-variograms were used in Ordinary Kriging to estimate chemical hazard and risk level. The level values were extracted from the Ordinary Kriging result and their spatial similarity was examined by juxtaposing the two values with respect to their location. Six peaks were identified in both the hazard and risk estimation result, and the peaks correlated with major cities in Korea. Third, the estimated hazard and risk levels were classified with geometrical interval and could be classified into four quadrants: Low Hazard and Low Risk (LHLR), Low Hazard and High Risk (LHHR), High Hazard and Low Risk (HHLR), and High Hazard and High Risk (HHHR). The 4 groups identified different chemical safety management issues in Korea; relatively safe LHLR group, many chemical reseller factories were found in HHLR group, chemical transportation accidents were in the LHHR group, and an abundance of factories and accidents were in the HHHR group. Each quadrant represented different safety management obstacles in Korea, and studying spatial differences can support the establishment of an efficient risk management plan.

  15. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  16. Abundances and implications of volatile-bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

    Science.gov (United States)

    Archer, Paul Douglas; Franz, Heather B.; Sutter, Brad; Arevalo, Ricardo D.; Coll, Patrice; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Jones, John J.; Leshin, Laurie A.; Mahaffy, Paul R.; McAdam, Amy C.; McKay, Christopher P.; Ming, Douglas W.; Morris, Richard V.; Navarro-González, Rafael; Niles, Paul B.; Pavlov, Alex; Squyres, Steven W.; Stern, Jennifer C.; Steele, Andrew; Wray, James J.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity detected evolved gases during thermal analysis of soil samples from the Rocknest aeolian deposit in Gale Crater. Major species detected (in order of decreasing molar abundance) were H2O, SO2, CO2, and O2, all at the µmol level, with HCl, H2S, NH3, NO, and HCN present at the tens to hundreds of nmol level. We compute weight % numbers for the major gases evolved by assuming a likely source and calculate abundances between 0.5 and 3 wt.%. The evolution of these gases implies the presence of both oxidized (perchlorates) and reduced (sulfides or H-bearing) species as well as minerals formed under alkaline (carbonates) and possibly acidic (sulfates) conditions. Possible source phases in the Rocknest material are hydrated amorphous material, minor clay minerals, and hydrated perchlorate salts (all potential H2O sources), carbonates (CO2), perchlorates (O2 and HCl), and potential N-bearing materials (e.g., Martian nitrates, terrestrial or Martian nitrogenated organics, ammonium salts) that evolve NH3, NO, and/or HCN. We conclude that Rocknest materials are a physical mixture in chemical disequilibrium, consistent with aeolian mixing, and that although weathering is not extensive, it may be ongoing even under current Martian surface conditions.

  17. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. IV. THE LARGE MAGELLANIC CLOUD: α, Fe-PEAK, LIGHT, AND HEAVY ELEMENTS

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott A.; McWilliam, Andrew

    2012-01-01

    We present detailed chemical abundances in eight clusters in the Large Magellanic Cloud (LMC). We measure abundances of 22 elements for clusters spanning a range in age of 0.05-12 Gyr, providing a comprehensive picture of the chemical enrichment and star formation history of the LMC. The abundances were obtained from individual absorption lines using a new method for analysis of high-resolution (R ∼ 25,000), integrated-light (IL) spectra of star clusters. This method was developed and presented in Papers I, II, and III of this series. In this paper, we develop an additional IL χ 2 -minimization spectral synthesis technique to facilitate measurement of weak (∼15 mÅ) spectral lines and abundances in low signal-to-noise ratio data (S/N ∼ 30). Additionally, we supplement the IL abundance measurements with detailed abundances that we measure for individual stars in the youngest clusters (age +0.5) and increases with decreasing age, indicating a strong contribution of low-metallicity asymptotic giant branch star ejecta to the interstellar medium throughout the later history of the LMC. We also find a correlation of IL Na and Al abundances with cluster mass in the sense that more massive, older clusters are enriched in the light elements Na and Al with respect to Fe, which implies that these clusters harbor star-to-star abundance variations as is common in the MW. Lower mass, intermediate-age, and young clusters have Na and Al abundances that are lower and more consistent with LMC field stars. Our results can be used to constrain both future chemical evolution models for the LMC and theories of globular cluster formation.

  18. CHEMICAL ENRICHMENT IN THE FAINTEST GALAXIES: THE CARBON AND IRON ABUNDANCE SPREADS IN THE BOOeTES I DWARF SPHEROIDAL GALAXY AND THE SEGUE 1 SYSTEM

    International Nuclear Information System (INIS)

    Norris, John E.; Yong, David; Wyse, Rosemary F. G.; Gilmore, Gerard; Belokurov, V.; Zucker, Daniel B.; Frebel, Anna; Wilkinson, Mark I.

    2010-01-01

    We present an AAOmega spectroscopic study of red giants in the ultra-faint dwarf galaxy Booetes I (M V ∼ -6) and the Segue 1 system (M V ∼ -1.5), either an extremely low luminosity dwarf galaxy or an unusually extended globular cluster. Both Booetes I and Segue 1 have significant abundance dispersions in iron and carbon. Booetes I has a mean abundance of [Fe/H] = -2.55 ± 0.11 with an [Fe/H] dispersion of σ = 0.37 ± 0.08, and abundance spreads of Δ[Fe/H] = 1.7 and Δ[C/H] = 1.5. Segue 1 has a mean of [Fe/H] = -2.7 ± 0.4 with [Fe/H] dispersion of σ = 0.7 ± 0.3, and abundances spreads of Δ[Fe/H] = 1.6 and Δ[C/H] = 1.2. Moreover, Segue 1 has a radial-velocity member at four half-light radii that is extremely metal-poor and carbon-rich, with [Fe/H] = -3.5, and [C/Fe] = +2.3. Modulo an unlikely non-member contamination, the [Fe/H] abundance dispersion confirms Segue 1 as the least-luminous ultra-faint dwarf galaxy known. For [Fe/H] V = -5. The very low mean iron abundances and the high carbon and iron abundance dispersions in Segue 1 and Booetes I are consistent with highly inhomogeneous chemical evolution starting in near zero-abundance gas. These ultra-faint dwarf galaxies are apparently surviving examples of the very first bound systems.

  19. Heavy elements abundances in metal-poor stars

    International Nuclear Information System (INIS)

    Magain, P.; Jehin, E.; Neuforge, C.; Noels, A.

    1998-01-01

    A sample of 21 metal-poor stars have been analysed on the basis of high resolution and high signal-to-noise spectra. Correlations between relative abundances of 16 elements have been studied, with a special emphasis on the neutron-capture ones. This analysis reveals the existence of two sub-populations of field halo stars, namely Pop IIa and Pop IIb. They differ by the behaviour of the s-process elements versus the α and r-process elements. We suggest a scenario of formation of these stars, which closely relates the field halo stars to the evolution of globular clusters. The two sub-populations would have evaporated the clusters during two different stages of their chemical evolution

  20. Chemical Abundances of Giants in Globular Clusters

    Science.gov (United States)

    Gratton, Raffaele G.; Bragaglia, Angela; Carretta, Eugenio; D'Orazi, Valentina; Lucatello, Sara

    A large fraction of stars form in clusters. According to a widespread paradigma, stellar clusters are prototypes of single stellar populations. According to this concept, they formed on a very short time scale, and all their stars share the same chemical composition. Recently it has been understood that massive stellar clusters (the globular clusters) rather host various stellar populations, characterized by different chemical composition: these stellar populations have also slightly different ages, stars of the second generations being formed from the ejecta of part of those of an earlier one. Furthermore, it is becoming clear that the efficiency of the process is quite low: many more stars formed within this process than currently present in the clusters. This implies that a significant, perhaps even dominant fraction of the ancient population of galaxies formed within the episodes that lead to formation the globular clusters.

  1. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  2. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  3. Nitrogen abundance in Comet Halley

    International Nuclear Information System (INIS)

    Wyckoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    Data on the nitrogen-containing compounds that observed spectroscopically in the coma of Comet Halley are summarized, and the elemental abundance of nitrogen in the Comet Halley nucleus is derived. It is found that 90 percent of elemental nitrogen is in the dust fraction of the coma, while in the gas fraction, most of the nitrogen is contained in NH3 and CN. The elemental nitrogen abundance in the ice component of the nucleus was found to be deficient by a factor of about 75, relative to the solar photosphere, indicating that the chemical partitioning of N2 into NH3 and other nitrogen compounds during the evolution of the solar nebula cannot account completely for the low abundance ratio N2/NH3 = 0.1, observed in the comet. It is suggested that the low N2/NH3 ratio in Comet Halley may be explained simply by physical fractionation and/or thermal diffusion. 88 refs

  4. Globular Cluster Abundances from High-resolution, Integrated-light Spectroscopy. IV. The Large Magellanic Cloud: α, Fe-peak, Light, and Heavy Elements

    Science.gov (United States)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott A.; McWilliam, Andrew

    2012-02-01

    We present detailed chemical abundances in eight clusters in the Large Magellanic Cloud (LMC). We measure abundances of 22 elements for clusters spanning a range in age of 0.05-12 Gyr, providing a comprehensive picture of the chemical enrichment and star formation history of the LMC. The abundances were obtained from individual absorption lines using a new method for analysis of high-resolution (R ~ 25,000), integrated-light (IL) spectra of star clusters. This method was developed and presented in Papers I, II, and III of this series. In this paper, we develop an additional IL χ2-minimization spectral synthesis technique to facilitate measurement of weak (~15 mÅ) spectral lines and abundances in low signal-to-noise ratio data (S/N ~ 30). Additionally, we supplement the IL abundance measurements with detailed abundances that we measure for individual stars in the youngest clusters (age +0.5) and increases with decreasing age, indicating a strong contribution of low-metallicity asymptotic giant branch star ejecta to the interstellar medium throughout the later history of the LMC. We also find a correlation of IL Na and Al abundances with cluster mass in the sense that more massive, older clusters are enriched in the light elements Na and Al with respect to Fe, which implies that these clusters harbor star-to-star abundance variations as is common in the MW. Lower mass, intermediate-age, and young clusters have Na and Al abundances that are lower and more consistent with LMC field stars. Our results can be used to constrain both future chemical evolution models for the LMC and theories of globular cluster formation. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  5. Abundance Survey of M and K Dwarf Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Vincent M. [Astronomy Department, University of Washington, Seattle, WA 98133 (United States); Wallerstein, George [Astronomy Department, University of Washington, Seattle, WA 98133 (United States)

    2005-07-25

    We report the measurement of chemical abundances in 35 low-mass main sequence (M and K dwarf) stars. We have measured the abundance of 12 elements in Kapteyn's Star, a nearby halo M subdwarf. The abundances indicate an iron abundance of [Fe/H] = -0.98, which is about 0.5 dex smaller than that measured in the only previous published measurement using atomic absorption lines. We have measured Fe and Ti abundances in 35 M and K dwarfs with -2.39 [Fe/H] +0.21 using atomic absorption lines, mostly in the 8000A <{lambda} < 8850A range. These will be used to calibrate photometric and low-resolution spectrum metallicity indices for low mass dwarfs, which will make metallicity estimates for these stars more certain. We also describe some difficulties encountered which are not normally necessary to consider when studying warmer stars.

  6. Neutron activation analysis of high-purity iron in comparison with chemical analysis

    International Nuclear Information System (INIS)

    Kinomura, Atsushi; Horino, Yuji; Takaki, Seiichi; Abiko, Kenji

    2000-01-01

    Neutron activation analysis of iron samples of three different purity levels has been performed and compared with chemical analysis for 30 metallic and metalloid impurity elements. The concentration of As, Cl, Cu, Sb and V detected by neutron activation analysis was mostly in agreement with that obtained by chemical analysis. The sensitivity limits of neutron activation analysis of three kinds of iron samples were calculated and found to be reasonable compared with measured values or detection limits of chemical analysis; however, most of them were above the detection limits of chemical analysis. Graphite-shielded irradiation to suppress fast neutron reactions was effective for Mn analysis without decreasing sensitivity to the other impurity elements. (author)

  7. Effect of plant diversification on pest abundance and tomato yields in ...

    African Journals Online (AJOL)

    Diakalia SON

    Effect of plant diversification on pest abundance and tomato yields in two cropping systems in ..... Table 2: Monitoring of evolution of the pests population in IPM plots. Pests ... For pollinators, the most abundant families ...... induced by chemical interaction between unattacked .... in a coastal savannah agro ecological zone.

  8. Chemical substructure analysis in toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, R.O. Jr. [Center for Information on Toxicology and Environment, Raleigh, NC (United States)

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  9. Nitrogen Abundances and the Distance Moduli of the Pleiades and Hyades

    OpenAIRE

    Miller, Blake; King, Jeremy R.; Chen, Yu; Boesgaard, Ann M.

    2013-01-01

    Recent reanalyses of HIPPARCOS parallax data confirm a previously noted discrepancy with the Pleiades distance modulus estimated from main-sequence fitting in the color-magnitude diagram. One proposed explanation of this distance modulus discrepancy is a Pleiades He abundance that is significantly larger than the Hyades value. We suggest that, based on our theoretical and observational understanding of Galactic chemical evolution, nitrogen abundances may serve as a proxy for helium abundances...

  10. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    Science.gov (United States)

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  11. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  12. THE RAVE CATALOG OF STELLAR ELEMENTAL ABUNDANCES: FIRST DATA RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Boeche, C.; Williams, M.; De Jong, R. S.; Steinmetz, M. [Leibniz-Institut fuer Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Siebert, A.; Bienayme, O. [Observatoire Astronomique de Strasbourg, Universite de Strasbourg, CNRS, UMR 7550, F-67000 Strasbourg (France); Fulbright, J. P.; Ruchti, G. R. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Campbell, R. [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY (United States); Freeman, K. C. [Research School of Astronomy and Astrophysics, Australia National University, Weston Creek, Canberra ACT 2611 (Australia); Gibson, B. K. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gilmore, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum fuer Astronomie der Universitaet Heidelberg, D-69120 Heidelberg (Germany); Helmi, A. [Kapteyn Astronomical Institute, University of Groningen, 9700 AV Groningen (Netherlands); Munari, U. [INAF Osservatorio Astronomico di Padova, Asiago I-36012 (Italy); Navarro, J. F. [Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6 (Canada); Parker, Q. A.; Reid, W. [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Seabroke, G. M. [Mullard Space Science Laboratory, University College London, Holmbury, St. Mary RH5 6NT (United Kingdom); and others

    2011-12-15

    We present chemical elemental abundances for 36,561 stars observed by the RAdial Velocity Experiment (RAVE), an ambitious spectroscopic survey of our Galaxy at Galactic latitudes |b| > 25 Degree-Sign and with magnitudes in the range 9 chemical catalog is complementary to the third RAVE data release of radial velocities and stellar parameters, and it contains chemical abundances for the elements Mg, Al, Si, Ca, Ti, Fe, and Ni, with a mean error of {approx}0.2 dex, as judged from accuracy tests performed on synthetic and real spectra. Abundances are estimated through a dedicated processing pipeline in which the curve of growth of individual lines is obtained from a library of absorption line equivalent widths to construct a model spectrum that is then matched to the observed spectrum via a {chi}{sup 2} minimization technique. We plan to extend this pipeline to include estimates for other elements, such as oxygen and sulfur, in future data releases.

  13. The benchmark halo giant HD 122563: CNO abundances revisited with three-dimensional hydrodynamic model stellar atmospheres

    Science.gov (United States)

    Collet, R.; Nordlund, Å.; Asplund, M.; Hayek, W.; Trampedach, R.

    2018-04-01

    We present an abundance analysis of the low-metallicity benchmark red giant star HD 122563 based on realistic, state-of-the-art, high-resolution, three-dimensional (3D) model stellar atmospheres including non-grey radiative transfer through opacity binning with 4, 12, and 48 bins. The 48-bin 3D simulation reaches temperatures lower by ˜300-500 K than the corresponding 1D model in the upper atmosphere. Small variations in the opacity binning, adopted line opacities, or chemical mixture can cool the photospheric layers by a further ˜100-300 K and alter the effective temperature by ˜100 K. A 3D local thermodynamic equilibrium (LTE) spectroscopic analysis of Fe I and Fe II lines gives discrepant results in terms of derived Fe abundance, which we ascribe to non-LTE effects and systematic errors on the stellar parameters. We also determine C, N, and O abundances by simultaneously fitting CH, OH, NH, and CN molecular bands and lines in the ultraviolet, visible, and infrared. We find a small positive 3D-1D abundance correction for carbon (+0.03 dex) and negative ones for nitrogen (-0.07 dex) and oxygen (-0.34 dex). From the analysis of the [O I] line at 6300.3 Å, we derive a significantly higher oxygen abundance than from molecular lines (+0.46 dex in 3D and +0.15 dex in 1D). We rule out important OH photodissociation effects as possible explanation for the discrepancy and note that lowering the surface gravity would reduce the oxygen abundance difference between molecular and atomic indicators.

  14. Molecular activation analysis for chemical speciation studies

    International Nuclear Information System (INIS)

    Chai-Chifang

    1998-01-01

    The term of Molecular Activation Analysis (MAA) refers to an activation analysis method that is able to provide information about the chemical species of elements in system of interests, though its definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the total concentrations are often without any meaning when assessing health or environmental risks of trace elements.In practice, the MAA is a combination of conventional instrumental or radiochemical activation analysis and physical, chemical or biochemical separation techniques. The MAA is able to play a particular role in speciation studies. However, the critical point in the MAA is that it is not permitted to change the primitive chemical species of elements in systems, or the change has to be under control; in the meantime it is not allowed to form the 'new artifact' originally not present in systems. Some practical examples of MAA for chemical species research performed recently in our laboratory will be presented as follows: Chemical species of platinum group elements in sediment; Chemical species of iodine in marine algae; Chemical species of mercury in human tissues; Chemical species of selenium in corn; Chemical species of rare earth elements in natural plant, etc. The merits and limitations of MAA will be described as well. (author)

  15. Oxygen abundances in halo stars

    Science.gov (United States)

    Bessell, Michael S.; Sutherland, Ralph S.; Ruan, Kui

    1991-12-01

    The present study determines the oxygen abundance for a sample of metal-poor G dwarfs by analysis of OH lines between 3080 and 3200 A and the permitted high-excitation far-red O I triple. The oxygen abundances determined from the low-excitation OH lines are up to 0.55 dex lower than those measured from the high-excitation O I lines. The abundances for the far-red O I triplet lines agree with those rederived from Abia and Rebolo (1989), and the abundances from the OH lines in dwarfs and giants are in agreement with the rederived O abundances of Barbuy (1988) and others from the forbidden resonance O I line. Because the chi = 0.1.7 eV OH lines are formed in the same layers as the majority of Fe, Ti, and other neutral metal lines used for abundance analyses, it is argued that the OH lines and the forbidden O I line yield the true oxygen abundances relative to the metals.

  16. A high deuterium abundance at redshift z = 0.7.

    Science.gov (United States)

    Webb, J K; Carswell, R F; Lanzetta, K M; Ferlet, R; Lemoine, M; Vidal-Madjar, A; Bowen, D V

    1997-07-17

    Of the light elements, the primordial abundance of deuterium relative to hydrogen, (D/H)p, provides the most sensitive diagnostic for the cosmological mass density parameter, omegaB. Recent high-redshift D/H measurements are highly discrepant, although this may reflect observational uncertainties. The larger primordial D/H values imply a low omegaB (requiring the Universe to be dominated by non-baryonic matter), and cause problems for galactic chemical evolution models, which have difficulty in reproducing the steep decline in D/H to the present-day values. Conversely, the lower D/H values measured at high redshift imply an omegaB greater than that derived from 7Li and 4He abundance measurements, and may require a deuterium-abundance evolution that is too low to easily explain. Here we report the first measurement of D/H at intermediate redshift (z = 0.7010), in a gas cloud selected to minimize observational uncertainties. Our analysis yields a value of D/H ((2.0 +/- 0.5) x 10[-4]) which is at the upper end of the range of values measured at high redshifts. This finding, together with other independent observations, suggests that there may be inhomogeneity in (D/H)p of at least a factor of ten.

  17. Future emission scenarios for chemicals that may deplete stratospheric ozone

    International Nuclear Information System (INIS)

    Hammitt, J.K; Camm, Frank; Mooz, W.E.; Wolf, K.A.; Bamezai, Anil; Connel, P.S.; Wuebbles, D.J.

    1990-01-01

    Scenarios are developed for long-term future emissions of seven of the most important manmade chemicals that may deplete ozone and the corresponding effect on stratospheric ozone concentrations is calculated using a one-dimensional atmospheric model. The scenarios are based on detailed analysis of the markets for products that use these chemicals and span a central 90% probability interval for the chemicals joint effect on calculated ozone abundance, assuming no additional regulations. (author). 22 refs., 2 figs., 5 tabs

  18. Improved abundance sensitivity of molecular ions in positive-ion APCI MS analysis of petroleum in toluene.

    Science.gov (United States)

    Kim, Young Hwan; Kim, Sunghwan

    2010-03-01

    Positive-ion atmospheric pressure chemical ionization (APCI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses of petroleum sample were performed with higher sensitivity by switching the solvent composition from toluene and methanol or acetonitrile to a one-component system consisting only of toluene. In solvent blends, molecular ions were more abundant than were protonated ions with increasing percentages of toluene. In 100% toluene, the double-bond equivalence (DBE) distributions of molecular ions obtained by APCI MS for each compound class were very similar to those obtained in dopant assisted atmospheric pressure photo ionization (APPI) MS analyses. Therefore, it was concluded that charge-transfer reaction, which is important in toluene-doped APPI processes, also plays a major role in positive-ion APCI. In the DBE distributions of S(1), S(2), and SO heteroatom classes, a larger enhancement in the relative abundance of molecular ions at fairly specific DBE values was observed as the solvent was progressively switched to toluene. This enhanced abundance of molecular ions was likely dependent on molecular structure. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  19. Chemical analysis of high purity graphite

    International Nuclear Information System (INIS)

    1993-03-01

    The Sub-Committee on Chemical Analysis of Graphite was organized in April 1989, under the Committee on Chemical Analysis of Nuclear Fuels and Reactor Materials, JAERI. The Sub-Committee carried out collaborative analyses among eleven participating laboratories for the certification of the Certified Reference Materials (CRMs), JAERI-G5 and G6, after developing and evaluating analytical methods during the period of September 1989 to March 1992. The certified values were given for ash, boron and silicon in the CRM based on the collaborative analysis. The values for ten elements (Al, Ca, Cr, Fe, Mg, Mo, Ni, Sr, Ti, V) were not certified, but given for information. Preparation, homogeneity testing and chemical analyses for certification of reference materials were described in this paper. (author) 52 refs

  20. HIGH PRECISION ABUNDANCES OF THE OLD SOLAR TWIN HIP 102152: INSIGHTS ON Li DEPLETION FROM THE OLDEST SUN

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, TalaWanda R.; Melendez, Jorge; Tucci Maia, Marcelo; Freitas, Fabricio C. [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil); Ramirez, Ivan [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States); Yong, David; Asplund, Martin; Alves-Brito, Alan; Casagrande, Luca [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bergemann, Maria [Max Planck Institute for Astrophysics, Postfach 1317, D-85741 Garching (Germany); Bedell, Megan; Bean, Jacob [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Lind, Karin [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Castro, Matthieu; Do Nascimento, Jose-Dias [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Bazot, Michael, E-mail: tmonroe@usp.br [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2013-09-10

    We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex ({approx}<1%), using ultra high-resolution (R = 110,000), high S/N UVES spectra obtained on the 8.2 m Very Large Telescope. Our determined metallicity of HIP 102152 is [Fe/H] = -0.013 {+-} 0.004. The atmospheric parameters of the star were determined to be 54 K cooler than the Sun, 0.09 dex lower in surface gravity, and a microturbulence identical to our derived solar value. Elemental abundance ratios examined versus dust condensation temperature reveal a solar abundance pattern for this star, in contrast to most solar twins. The abundance pattern of HIP 102152 appears to be the most similar to solar of any known solar twin. Abundances of the younger, 2.9 Gyr solar twin, 18 Sco, were also determined from UVES spectra to serve as a comparison for HIP 102152. The solar chemical pattern of HIP 102152 makes it a potential candidate to host terrestrial planets, which is reinforced by the lack of giant planets in its terrestrial planet region. The following non-local thermodynamic equilibrium Li abundances were obtained for HIP 102152, 18 Sco, and the Sun: log {epsilon} (Li) = 0.48 {+-} 0.07, 1.62 {+-} 0.02, and 1.07 {+-} 0.02, respectively. The Li abundance of HIP 102152 is the lowest reported to date for a solar twin, and allows us to consider an emerging, tightly constrained Li-age trend for solar twin stars.

  1. Mixed poloidal-toroidal magnetic configuration and surface abundance distributions of the Bp star 36 Lyn

    Science.gov (United States)

    Oksala, M. E.; Silvester, J.; Kochukhov, O.; Neiner, C.; Wade, G. A.; the MiMeS Collaboration

    2018-01-01

    Previous studies of the chemically peculiar Bp star 36 Lyn revealed a moderately strong magnetic field, circumstellar material and inhomogeneous surface abundance distributions of certain elements. We present in this paper an analysis of 33 high signal-to-noise ratio, high-resolution Stokes IV observations of 36 Lyn obtained with the Narval spectropolarimeter at the Bernard Lyot Telescope at Pic du Midi Observatory. From these data, we compute new measurements of the mean longitudinal magnetic field, Bℓ, using the multiline least-squares deconvolution (LSD) technique. A rotationally phased Bℓ curve reveals a strong magnetic field, with indications for deviation from a pure dipole field. We derive magnetic maps and chemical abundance distributions from the LSD profiles, produced using the Zeeman-Doppler imaging code INVERSLSD. Using a spherical harmonic expansion to characterize the magnetic field, we find that the harmonic energy is concentrated predominantly in the dipole mode (ℓ = 1), with significant contribution from both the poloidal and toroidal components. This toroidal field component is predicted theoretically, but not typically observed for Ap/Bp stars. Chemical abundance maps reveal a helium enhancement in a distinct region where the radial magnetic field is strong. Silicon enhancements are located in two regions, also where the radial field is stronger. Titanium and iron enhancements are slightly offset from the helium enhancements, and are located in areas where the radial field is weak, close to the magnetic equator.

  2. Detailed abundances in stars belonging to ultra-faint dwarf spheroidal galaxies

    OpenAIRE

    François, P.; Monaco, L.; Villanova, S.; Catelan, M.; Bonifacio, P.; Bellazzini, M.; Bidin, C. Moni; Marconi, G.; Geisler, D.; Sbordone, L.

    2012-01-01

    We report preliminary results concerning the detailed chemical composition of metal poor stars belonging to close ultra-faint dwarf galaxies (hereafter UfDSphs). The abundances have been determined thanks to spectra obtained with X-Shooter, a high efficiency spectrograph installed on one of the ESO VLT units. The sample of ultra-faint dwarf spheroidal stars have abundance ratios slightly lower to what is measured in field halo star of the same metallicity.We did not find extreme abundances in...

  3. Stellar Oxygen Abundances

    Science.gov (United States)

    King, Jeremy

    1994-04-01

    This dissertation addresses several issues concerning stellar oxygen abundances. The 7774 {\\AA} O I triplet equivalent widths of Abia & Rebolo [1989, AJ, 347, 186] for metal-poor dwarfs are found to be systematically too high. I also argue that current effective temperatures used in halo star abundance studies may be ~150 K too low. New color-Teff relations are derived for metal-poor stars. Using the revised Teff values and improved equivalent widths for the 7774A O I triplet, the mean [O/Fe] ratio for a handful of halo stars is found to be +0.52 with no dependence on Teff or [Fe/H]. Possible cosmological implications of the hotter Teff scale are discussed along with additional evidence supporting the need for a higher temperature scale for metal-poor stars. Our Teff scale leads to a Spite Li plateau value of N(Li)=2.28 +/- 0.09. A conservative minimal primordial value of N(Li)=2.35 is inferred. If errors in the observations and models are considered, consistency with standard models of Big Bang nucleosynthesis is still achieved with this larger Li abundance. The revised Teff scale raises the observed B/Be ratio of HD 140283 from 10 to 12, making its value more comfortably consistent with the production of the observed B and Be by ordinary spallation. Our Teff values are found to be in good agreement with values predicted from both the Victoria and Yale isochrone color-Teff relations. Thus, it appears likely that no changes in globular cluster ages would result. Next, we examine the location of the break in the [O/Fe] versus [Fe/H] plane in a quantitative fashion. Analysis of a relatively homogeneous data set does not favor any unique break point in the range -1.7 /= -3), in agreement with the new results for halo dwarfs. We find that the gap in the observed [O/H] distribution, noted by Wheeler et al. [1989, ARAA, 27, 279], persists despite the addition of more O data and may betray the occurrence of a hiatus in star formation between the end of halo formation and

  4. An upper limit on the sulphur abundance in HE 1327-2326

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Venn, K. A.; Lambert, D. L.

    2012-08-01

    Context. Star HE 1327-2326 is a unique object, with the lowest measured iron abundance ([Fe/H] ~ -6) and a peculiar chemical composition that includes large overabundances of C, N, and O with respect to iron. One important question is whether the chemical abundances in this star reflect the chemical composition of the gas cloud from which it was formed or if they have been severely affected by other processes, such as dust-gas winnowing. Aims: We measure or provide an upper limit to the abundance of the volatile element sulphur, which can help to discriminate between the two scenarios. Methods: We observed HE 1327-2326 with the high resolution infra-red spectrograph CRIRES at the VLT to observe the S i lines of Multiplet 3 at 1045 nm. Results: We do not detect the S i line. A 3σ upper limit on the equivalent width (EW) of any line in our spectrum is EW winnowing, and the evidence coming from other elements (e.g., Na and Ti) is also inconclusive or contradictory. The formation of dust in the atmosphere versus an origin of the metals in a metal-poor supernova with extensive "fall-back" are not mutually exclusive. It is possible that dust formation distorts the peculiar abundance pattern created by a supernova with fall-back, thus the abundance ratios in HE 1327-2326 may be used to constrain the properties of the supernova(e) that produced its metals, but with some caution. Based on spectra obtained with CRIRES at the 8.2 m Antu ESO telescope, programme 386.D-0095.

  5. The Carina Project. VIII. The α-element abundances

    Science.gov (United States)

    Fabrizio, M.; Nonino, M.; Bono, G.; Primas, F.; Thévenin, F.; Stetson, P. B.; Cassisi, S.; Buonanno, R.; Coppola, G.; da Silva, R. O.; Dall'Ora, M.; Ferraro, I.; Genovali, K.; Gilmozzi, R.; Iannicola, G.; Marconi, M.; Monelli, M.; Romaniello, M.; Walker, A. R.

    2015-08-01

    We have performed a new abundance analysis of Carina red giant (RG) stars from spectroscopic data collected with UVES (high spectral resolution) and FLAMES/GIRAFFE (high and medium resolution) at ESO/VLT. The former sample includes 44 RGs, while the latter consists of 65 (high-resolution) and ~800 (medium-resolution) RGs, covering a significant fraction of the galaxy's RG branch, and red clump stars. To improve the abundance analysis at the faint magnitude limit, the FLAMES/GIRAFFE data were divided into ten surface gravity and effective temperature bins. The spectra of the stars belonging to the same gravity and temperature bin were stacked. This approach allowed us to increase the signal-to-noise ratio in the faint magnitude limit (V≥ 20.5 mag) by at least a factor of five. We took advantage of the new photometry index cU,B,I introduced recently as an age and probably a metallicity indicator to split stars along the red giant branch. These two stellar populations display distinct [Fe/H] and [Mg/H] distributions: their mean iron abundances are -2.15 ± 0.06 dex (σ = 0.28), and -1.75 ± 0.03 dex (σ = 0.21), respectively. The two iron distributions differ at the 75% level. This supports preliminary results. Moreover, we found that the old and intermediate-age stellar populations have mean [Mg/H] abundances of -1.91 ± 0.05 dex (σ = 0.22) and -1.35 ± 0.03 dex (σ = 0.22); these differ at the 83% level. Carina's α-element abundances agree, within 1σ, with similar abundances for field halo stars and for cluster (Galactic and Magellanic) stars. The same outcome applies to nearby dwarf spheroidals and ultra-faint dwarf galaxies in the iron range covered by Carina stars. Finally, we found evidence of a clear correlation between Na and O abundances, thus suggesting that Carina's chemical enrichment history is quite different from that in the globular clusters. Based on spectra retrieved from the ESO/ST-ECF Science Archive Facility and collected either with UVES at

  6. Physico-chemical, mineralogical and chemical considerations in ...

    African Journals Online (AJOL)

    ... pH (5.17 – 6.90) and EC (16.53 – 149.20ìS/cm). Values from physico-chemical analyses, secondary minerals abundance index (SMAI) and chemical index of alteration (CIA) of the soils were reflective of particles with high potential for sliding. With major contributions from favourable slope, seismic and hydrologic forces, ...

  7. A Physically Motivated and Empirically Calibrated Method to Measure the Effective Temperature, Metallicity, and Ti Abundance of M Dwarfs

    Science.gov (United States)

    Veyette, Mark J.; Muirhead, Philip S.; Mann, Andrew W.; Brewer, John M.; Allard, France; Homeier, Derek

    2017-12-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications, including studying the chemical evolution of the Galaxy and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres hinders similar analyses of M dwarf stars. Empirically calibrated methods to measure M dwarf metallicity from moderate-resolution spectra are currently limited to measuring overall metallicity and rely on astrophysical abundance correlations in stellar populations. We present a new, empirical calibration of synthetic M dwarf spectra that can be used to infer effective temperature, Fe abundance, and Ti abundance. We obtained high-resolution (R ˜ 25,000), Y-band (˜1 μm) spectra of 29 M dwarfs with NIRSPEC on Keck II. Using the PHOENIX stellar atmosphere modeling code (version 15.5), we generated a grid of synthetic spectra covering a range of temperatures, metallicities, and alpha-enhancements. From our observed and synthetic spectra, we measured the equivalent widths of multiple Fe I and Ti I lines and a temperature-sensitive index based on the FeH band head. We used abundances measured from widely separated solar-type companions to empirically calibrate transformations to the observed indices and equivalent widths that force agreement with the models. Our calibration achieves precisions in T eff, [Fe/H], and [Ti/Fe] of 60 K, 0.1 dex, and 0.05 dex, respectively, and is calibrated for 3200 K < T eff < 4100 K, -0.7 < [Fe/H] < +0.3, and -0.05 < [Ti/Fe] < +0.3. This work is a step toward detailed chemical analysis of M dwarfs at a precision similar to what has been achieved for FGK stars.

  8. The chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    1986-01-01

    The chemical evolution of galaxies is reviewed with particular attention to the theoretical interpretation of the distribution and abundances of elements in stars and the interstellar medium. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. The metallicity distribution of the solar vicinity, age metallicity relationship, abundance gradients in the galaxy, external galaxies, star formation and evolution, major sites of nucleosynthesis, yields of chemical elements, chemical models, and the galactic disk, are all discussed. (U.K.)

  9. Utilization of chemical derivatives in activation analysis

    International Nuclear Information System (INIS)

    Ehmann, W.D.

    1990-01-01

    Derivative activation analysis (DAA) is a method to enhance the sensitivity of nuclear activation analysis for the more elusive elements. It may also allow a degree of chemical speciation for the element of interest. DAA uses a preirradiation chemical reaction on the sample to initiate the formation of, or an exchange with, a chemical complex which contains a surrogate element, M. As a result, the amount of the element or the chemical species to be determined, X, is now represented by measurement of the amount of the surrogate element, M, that is made part of, or released by the complex species. The surrogate element is selected for its superior properties for nuclear activation analysis and the absence of interference reaction in its final determination by instrumental neutron activation analysis (INAA) after some preconcentration or separation chemistry. Published DAA studies have been limited to neutron activation analysis. DAA can offer the analyst some important advantages. It can determine elements, functional groups, or chemical species which cannot be determined directly by INAA, fast neutron activation analysis (FNAA), prompt gamma neutron activation analysis (PGNAA), or charged particle activation analysis (CPAA) procedures. When compared with conventional RNAA, there are fewer precautions with respect to handling of intensely radioactive samples, since the chemistry is done before the irradiation. The preirradiation chemistry may also eliminate many interferences that might occur in INAA and, through use of an appropriate surrogate element, can place the analytical gamma-ray line in an interference-free region of the gamma-ray spectrum

  10. Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf spheroidal galaxy?

    Science.gov (United States)

    Sbordone, L.; Monaco, L.; Moni Bidin, C.; Bonifacio, P.; Villanova, S.; Bellazzini, M.; Ibata, R.; Chiba, M.; Geisler, D.; Caffau, E.; Duffau, S.

    2015-07-01

    Context. The tidal disruption of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, it is suspected that the Sgr dSph has lost a number of globular clusters (GC). Many Galactic GC are thought to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed owing to chemical similarities, others exist whose chemical composition has never been investigated. Aims: NGC 5053 and NGC 5634 are two of these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. Methods: We analyze high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of unassociated MW halo globulars, and of the metal-poor Sgr dSph main body population. Results: We derive a metallicity of [Fe ii/H] = -2.26 ± 0.10 for NGC 5053, and of [Fe i/H] = -1.99 ± 0.075 and -1.97 ± 0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal-poor globular clusters in the MW. Both clusters display an α enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. Conclusions: The chemistry of the Sgr dSph main body populations is similar to that of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system. Appendix A is available in electronic form at http

  11. Metal-Poor Stars and the Chemical Enrichment of the Universe

    OpenAIRE

    Frebel, Anna; Norris, John E.

    2011-01-01

    Metal-poor stars hold the key to our understanding of the origin of the elements and the chemical evolution of the Universe. This chapter describes the process of discovery of these rare stars, the manner in which their surface abundances (produced in supernovae and other evolved stars) are determined from the analysis of their spectra, and the interpretation of their abundance patterns to elucidate questions of origin and evolution. More generally, studies of these stars contribute to other ...

  12. Nuclear abundances and evolution of the interstellar medium

    International Nuclear Information System (INIS)

    Wannier, P.G.

    1980-01-01

    Observations of molecular and elemental abundances in the interstellar medium (ISM) are reviewed, with special attention given to isotope ratios. The derivation of molecular isotope abundances for the ISM is discussed, along with H and C fractionation. Millimeter- and centimeter-wave spectra of giant clouds are examined with respect to isotope abundances of C, O, N, Si, S, and D. Evidence for the current enrichment of the ISM by mass loss from evolved stars is considered, together with chemical abundance gradients in H II regions and planetary nebulae. Cosmic-ray observations pertaining to abundances in the ISM are summarized, with emphasis on available results for Ne, Mg, Si, Fe, and Ni. The observations reviewed are shown to support arguments in favor of: (1) the cosmological production of D and He-3 (2) the production of the CNO elements by hydrostatic hydrogen burning (3) the nucleosynthesis of Ne, Mg, Si, S, Fe, and Ni as a result of He burning (4) solar abundances of interstellar S, Fe, and Ni and (5) a direct association between observed inhomogeneities in the ISM and mass loss from evolved stellar objects

  13. The source, discharge, and chemical characteristics of selected springs, and the abundance and health of associated endemic anuran species in the Mojave network parks

    Science.gov (United States)

    Schroeder, Roy A.; Smith, Gregory A.; Martin, Peter; Flint, Alan L.; Gallegos, Elizabeth; Fisher, Robert N.; Martin, Peter; Schroeder, Roy A.

    2015-01-01

    Hydrological and biological investigations were done during 2005 and 2006 in cooperation with the U.S. National Park Service to investigate the source, discharge, and chemical characteristics of selected springs and the abundance and health of endemic anuran (frog and toad) species at Darwin Falls in Death Valley National Park, Piute Spring in Mojave National Preserve, and Fortynine Palms Oasis in Joshua Tree National Park. Discharge from the springs at these sites sustains isolated riparian habitats in the normally dry Mojave Desert. Data were collected on water quantity (discharge) and quality, air and water temperature, and abundance and health of endemic anuran species. In addition, a single survey of the abundance and health of endemic anuran species was completed at Rattlesnake Canyon in Joshua Tree National Park. Results from this study were compared to limited historical data, where they exist, and can provide a baseline for future hydrological and biological investigations to evaluate the health and sustainability of the resource and its response to changing climate and increasing human use.

  14. Deuterium abundance, from ultraviolet to visible

    International Nuclear Information System (INIS)

    Hebrard, Guillaume

    2000-01-01

    In the frame of the standard Big Bang model, the primordial abundance of deuterium is the most sensitive to the baryonic density of the Universe. It was synthesized only during the primordial nucleosynthesis few minutes after the Big Bang and no other standard mechanism is able to produce any further significant amount. On the contrary, since deuterium is burned up within stars, its abundance D/H decreases along cosmic evolution. Thus, D/H measurements constrain Big Bang and galactic chemical evolution models. There are three samples of deuterium abundances: primordial, proto-solar and interstellar. Each of them is representative of a given epoch, respectively about 15 Gyrs past, 4.5 Gyrs past and present epoch. Although the evolution of the deuterium abundance seems to be qualitatively understood, the measurements show some dispersion. Present thesis works are linked to deuterium interstellar abundance measurements. Such measurements are classically obtained from spectroscopic observations of the hydrogen and deuterium Lyman series in absorption in the ultraviolet spectral range, using space observatories. Results presented here were obtained with the Hubble Space Telescope and FUSE, which has recently been launched. Simultaneously, a new way to observe deuterium has been proposed, in the visible spectral range from ground-based telescopes. This has led to the first detections and the identification of the deuterium Balmer series, in emission in HII regions, using CFHT and VLT telescopes. (author) [fr

  15. Proteomic Analysis of the Reproductive Organs of the Hermaphroditic Gastropod Lymnaea stagnalis Exposed to Different Endocrine Disrupting Chemicals

    Science.gov (United States)

    Giusti, Arnaud; Leprince, Pierre; Mazzucchelli, Gabriel; Thomé, Jean-Pierre; Lagadic, Laurent; Ducrot, Virginie; Joaquim-Justo, Célia

    2013-01-01

    Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant

  16. CHEMICAL ABUNDANCES IN THE EXTERNALLY POLLUTED WHITE DWARF GD 40: EVIDENCE OF A ROCKY EXTRASOLAR MINOR PLANET

    International Nuclear Information System (INIS)

    Klein, B.; Jura, M.; Zuckerman, B.; Melis, C.; Koester, D.

    2010-01-01

    We present Keck/High Resolution Echelle Spectrometer data with model atmosphere analysis of the helium-dominated polluted white dwarf GD 40, in which we measure atmospheric abundances relative to helium of nine elements: H, O, Mg, Si, Ca, Ti, Cr, Mn, and Fe. Apart from hydrogen, whose association with the other contaminants is uncertain, this material most likely accreted from GD 40's circumstellar dust disk whose existence is demonstrated by excess infrared emission. The data are best explained by accretion of rocky planetary material, in which heavy elements are largely contained within oxides, derived from a tidally disrupted minor planet at least the mass of Juno, and probably as massive as Vesta. The relatively low hydrogen abundance sets an upper limit of 10% water by mass in the inferred parent body, and the relatively high abundances of refractory elements, Ca and Ti, may indicate high-temperature processing. While the overall constitution of the parent body is similar to the bulk Earth being over 85% by mass composed of oxygen, magnesium, silicon, and iron, we find n(Si)/n(Mg) = 0.30 ± 0.11, significantly smaller than the ratio near unity for the bulk Earth, chondrites, the Sun, and nearby stars. This result suggests that differentiation occurred within the parent body.

  17. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    Science.gov (United States)

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  18. CHEMICAL ABUNDANCES OF SEVEN IRREGULAR AND THREE TIDAL DWARF GALAXIES IN THE M81 GROUP

    International Nuclear Information System (INIS)

    Croxall, Kevin V.; Van Zee, Liese; Lee, Henry; Miller, Bryan W.; Skillman, Evan D.; Lee, Janice C.; Cote, Stephanie; Kennicutt, Robert C.

    2009-01-01

    We have derived nebular abundances for 10 dwarf galaxies belonging to the M81 Group, including several galaxies which do not have abundances previously reported in the literature. For each galaxy, multiple H II regions were observed with GMOS-N at the Gemini Observatory in order to determine abundances of several elements (oxygen, nitrogen, sulfur, neon, and argon). For seven galaxies, at least one H II region had a detection of the temperature sensitive [O III] λ4363 line, allowing a 'direct' determination of the oxygen abundance. No abundance gradients were detected in the targeted galaxies, and the observed oxygen abundances are typically in agreement with the well-known metallicity-luminosity relation. However, three candidate 'tidal dwarf' galaxies lie well off this relation: UGC 5336, Garland, and KDG 61. The nature of these systems suggests that UGC 5336 and Garland are indeed recently formed systems, whereas KDG 61 is most likely a dwarf spheroidal galaxy which lies along the same line of sight as the M81 tidal debris field. We propose that these H II regions formed from previously enriched gas which was stripped from nearby massive galaxies (e.g., NGC 3077 and M81) during a recent tidal interaction.

  19. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure.

    Directory of Open Access Journals (Sweden)

    Anna Kozak

    Full Text Available In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR. Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment.

  20. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure

    Science.gov (United States)

    Kozak, Anna; Gołdyn, Ryszard; Dondajewska, Renata

    2015-01-01

    In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment. PMID:25906352

  1. 3He Abundances in Planetary Nebulae

    Science.gov (United States)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  2. The Effect of an Inert Solid Reservoir on Molecular Abundances in Dense Interstellar Clouds

    Directory of Open Access Journals (Sweden)

    Kalvāns Juris

    2012-12-01

    Full Text Available The question, what is the role of freeze-out of chemical species in determining the molecular abundances in the interstellar gas is a matter of debate. We investigate a theoretical case of a dense interstellar molecular cloud core by time-dependent modeling of chemical kinetics, where grain surface reactions deliberately are not included. That means, the gas-phase and solid-phase abundances are influenced only by gas reactions, accretion on grains and desorption. We compare the results to a reference model where no accretion occurs, and only gas-phase reactions are included. We can trace that the purely physical processes of molecule accretion and desorption have major chemical consequences on the gas-phase chemistry. The main effect of introduction of the gas-grain interaction is long-term molecule abundance changes that come nowhere near an equilibrium during the typical lifetime of a prestellar core.

  3. Chemical composition of hydrothermal ores from Mid-Okinawa trough and Suiyo Seamount determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Noguchi, Takuroh; Taira, Naoto; Oomori, Tamotsu; Taira, Hatsuo; Tanahara, Akira; Takada, Jitsuya

    2007-01-01

    Neutron activation analysis of 13 hydrothermal ore samples (70 subsamples) collected from the Mid-Okinawa Trough and Suiyo Seamount revealed higher contents of precious metal such as Au and Ag, and those of As, Sb, Ga, and Hg than those from mid-ocean ridge hydrothermal systems. In addition, the Mid-Okinawa Trough samples were richer in Ag and Sb than those from the Suiyo Seamount. The geochemical differences among these hydrothermal ore deposits are regarded as reflecting both differences in the chemical composition of the hosted magma of hydrothermal system and the abundance of sediments that is reacted with hydrothermal fluids. (author)

  4. ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS

    International Nuclear Information System (INIS)

    Yong, David; Carney, Bruce W.; Friel, Eileen D.

    2012-01-01

    We present radial velocities and chemical abundances for nine stars in the old, distant open clusters Be18, Be21, Be22, Be32, and PWM4. For Be18 and PWM4, these are the first chemical abundance measurements. Combining our data with literature results produces a compilation of some 68 chemical abundance measurements in 49 unique clusters. For this combined sample, we study the chemical abundances of open clusters as a function of distance, age, and metallicity. We confirm that the metallicity gradient in the outer disk is flatter than the gradient in the vicinity of the solar neighborhood. We also confirm that the open clusters in the outer disk are metal-poor with enhancements in the ratios [α/Fe] and perhaps [Eu/Fe]. All elements show negligible or small trends between [X/Fe] and distance ( –1 ), but for some elements, there is a hint that the local (R GC GC > 13 kpc) samples may have different trends with distance. There is no evidence for significant abundance trends versus age ( –1 ). We measure the linear relation between [X/Fe] and metallicity, [Fe/H], and find that the scatter about the mean trend is comparable to the measurement uncertainties. Comparison with solar neighborhood field giants shows that the open clusters share similar abundance ratios [X/Fe] at a given metallicity. While the flattening of the metallicity gradient and enhanced [α/Fe] ratios in the outer disk suggest a chemical enrichment history different from that of the solar neighborhood, we echo the sentiments expressed by Friel et al. that definitive conclusions await homogeneous analyses of larger samples of stars in larger numbers of clusters. Arguably, our understanding of the evolution of the outer disk from open clusters is currently limited by systematic abundance differences between various studies.

  5. Detecting novel low-abundant transcripts in Drosophila

    DEFF Research Database (Denmark)

    Lee, Sanggyu; Bao, Jingyue; Zhou, Guolin

    2005-01-01

    Increasing evidence suggests that low-abundant transcripts may play fundamental roles in biological processes. In an attempt to estimate the prevalence of low-abundant transcripts in eukaryotic genomes, we performed a transcriptome analysis in Drosophila using the SAGE technique. We collected 244......,313 SAGE tags from transcripts expressed in Drosophila embryonic, larval, pupae, adult, and testicular tissue. From these SAGE tags, we identified 40,823 unique SAGE tags. Our analysis showed that 55% of the 40,823 unique SAGE tags are novel without matches in currently known Drosophila transcripts...... in the Drosophila genome. Our study reveals the presence of a significant number of novel low-abundant transcripts in Drosophila, and highlights the need to isolate these novel low-abundant transcripts for further biological studies. Udgivelsesdato: 2005-Jun...

  6. ANALYSIS OF RICIN TOXIN PREPARATIONS FOR CARBOHYDRATE AND FATTY ACID ABUNDANCE AND ISOTOPE RATIO INFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.; Colburn, Heather A.; Moran, James J.; Melville, Angela M.

    2009-12-01

    This report describes method development and preliminary evaluation for analyzing castor samples for signatures of purifying ricin. Ricin purification from the source castor seeds is essentially a problem of protein purification using common biochemical methods. Indications of protein purification will likely manifest themselves as removal of the non-protein fractions of the seed. Two major, non-protein, types of biochemical constituents in the seed are the castor oil and various carbohydrates. The oil comprises roughly half the seed weight while the carbohydrate component comprises roughly half of the remaining “mash” left after oil and hull removal. Different castor oil and carbohydrate components can serve as indicators of specific toxin processing steps. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil. The loss of ricinoleic acid indicates a step to remove oil from the seeds. The relative amounts of carbohydrates and carbohydrate-like compounds, including arabinose, xylose, myo-inositol fucose, rhamnose, glucosamine and mannose detected in the sample can also indicate specific processing steps. For instance, the differential loss of arabinose relative to mannose and N-acetyl glucosamine indicates enrichment for the protein fraction of the seed using protein precipitation. The methods developed in this project center on fatty acid and carbohydrate extraction from castor samples followed by derivatization to permit analysis by gas chromatography-mass spectrometry (GC-MS). Method descriptions herein include: the source and preparation of castor materials used for method evaluation, the equipment and description of procedure required for chemical derivatization, and the instrument parameters used in the analysis. Two types of derivatization methods describe analysis of carbohydrates and one procedure for analysis of fatty acids. Two types of GC-MS analysis is included in the method development, one

  7. Chemical abundances and dust in planetary nebulae in the Galactic bulge

    NARCIS (Netherlands)

    Gutenkunst, S.; Bernard-Salas, J.; Pottasch, S. R.; Sloan, G. C.; Houck, J. R.

    2008-01-01

    We present mid-infrared Spitzer spectra of 11 planetary nebulae in the Galactic bulge. We derive argon, neon, sulfur, and oxygen abundances for them using mainly infrared line fluxes combined with some optical line fluxes from the literature. Due to the high extinction toward the bulge, the infrared

  8. Abundance analysis of neodymium in the solar atmosphere

    Science.gov (United States)

    Abdelkawy, Ali G. A.; Shaltout, Abdelrazek M. K.; Beheary, M. M.; Bakry, A.

    2017-10-01

    Based on non-local thermodynamical equilibrium (NLTE) calculations, the solar neodymium (Nd) content was found based on a model atom of singly ionized neodymium (Nd II) containing 153 energy levels and 42 line transitions plus the ground state of Nd III. Here, we re-derive the solar Nd abundance using the model of the solar photosphere of Holweger & Müller.We succeed in selecting a good sample line list, relying on 20 Nd II solar lines together with the most accurate transition probabilities measured experimentally and available observational data. With damping parameters obtained from the literature, we find a mean NLTE solar photospheric Nd abundance of log ɛNd(1D) = 1.43 ± 0.16, which is in excellent agreement with the meteoritic value (log ɛNd = 1.45 ± 0.02). For a set of selected Nd II lines, the NLTE abundance correction is found to be +0.01 dex compared with the standard LTE effect. The influence of collisional interactions with electrons and neutral hydrogen atoms is investigated in detail.

  9. Chemical study of the metal-rich globular cluster NGC 5927

    Science.gov (United States)

    Mura-Guzmán, A.; Villanova, S.; Muñoz, C.; Tang, B.

    2018-03-01

    Globular clusters (GCs) are natural laboratories where stellar and chemical evolution can be studied in detail. In addition, their chemical patterns and kinematics can tell us to which Galactic structure (disc, bulge, halo or extragalactic) the cluster belongs to. NGC 5927 is one of most metal-rich GCs in the Galaxy and its kinematics links it to the thick disc. We present abundance analysis based on high-resolution spectra of seven giant stars. The data were obtained using Fibre Large Array Multi Element Spectrograph/Ultraviolet Echelle Spectrograph (UVES) spectrograph mounted on UT2 telescope of the European Southern Observatory. The principal objective of this work is to perform a wide and detailed chemical abundance analysis of the cluster and look for possible Multiple Populations (MPs). We determined stellar parameters and measured 22 elements corresponding to light (Na, Al), alpha (O, Mg, Si, Ca, Ti), iron-peak (Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and heavy elements (Y, Zr, Ba, Ce, Nd, Eu). We found a mean iron content of [Fe/H] = -0.47 ± 0.02 (error on the mean). We confirm the existence of MPs in this GC with an O-Na anti-correlation, and moderate spread in Al abundances. We estimate a mean [α/Fe] = 0.25 ± 0.08. Iron-peak elements show no significant spread. The [Ba/Eu] ratios indicate a predominant contribution from SNeII for the formation of the cluster.

  10. An extended chemical analysis of gallstone.

    Science.gov (United States)

    Chandran, P; Kuchhal, N K; Garg, P; Pundir, C S

    2007-09-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble proteins, sodium potassium, magnesium, copper, oxalate and chlorides of biliary calculi (52 cholesterol, 76 mixed and 72 pigment) retrieved from surgical operation of 200 patients from Haryana state was carried out. Total cholesterol as the major component and total bilirubin, phospholipids, triglycerides, bile acids, fatty acids (esterified), soluble protein, calcium, magnesium, iron, copper, sodium, potassium, inorganic phosphate, oxalate and chloride as minor components were found in all types of calculi. The cholesterol stones had higher content of total cholesterol, phospholipids, fatty acids (esterified), inorganic phosphate and copper compared to mixed and pigment stones. The mixed stones had higher content of iron and triglycerides than to cholesterol and pigment stones. The pigment stones were richer in total bilirubin, bile acids, calcium, oxalate, magnesium, sodium, potassium, chloride and soluble protein compared to cholesterol and mixed stones. Although total cholesterol was a major component of cholesterol, mixed and pigment gall stone in Haryana, the content of most of the other lipids, cations and anions was different in different gall stones indicating their different mechanism of formation.

  11. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    NARCIS (Netherlands)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the

  12. Carbon and oxygen abundances across the Hertzsprung gap

    International Nuclear Information System (INIS)

    Adamczak, Jens; Lambert, David L.

    2014-01-01

    We derived atmospheric parameters and spectroscopic abundances for C and O for a large sample of stars located in the Hertzsprung gap in the Hertzsprung-Russell diagram in order to detect chemical peculiarities and get a comprehensive overview of the population of stars in this evolutionary state. We have observed and analyzed high-resolution spectra (R = 60,000) of 188 stars in the mass range 2-5 M ☉ with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory including 28 stars previously identified as Am/Ap stars. We find that the C and O abundances of the majority of stars in the Hertzsprung gap are in accordance with abundances derived for local lower-mass dwarfs but detect expected peculiarities for the Am/Ap stars. The C and O abundances of stars with T eff < 6500 K are slightly lower than for the hotter objects but the C/O ratio is constant in the analyzed temperature domain. No indication of an alteration of the C and O abundances of the stars by mixing during the evolution across the Hertzsprung gap could be found before the homogenization of their atmospheres by the first dredge-up.

  13. On the Chemical Abundances of Miras in Clusters: V1 in the Metal-rich Globular NGC 5927

    Science.gov (United States)

    D’Orazi, V.; Magurno, D.; Bono, G.; Matsunaga, N.; Braga, V. F.; Elgueta, S. S.; Fukue, K.; Hamano, S.; Inno, L.; Kobayashi, N.; Kondo, S.; Monelli, M.; Nonino, M.; Przybilla, N.; Sameshima, H.; Saviane, I.; Taniguchi, D.; Thevenin, F.; Urbaneja-Perez, M.; Watase, A.; Arai, A.; Bergemann, M.; Buonanno, R.; Dall’Ora, M.; Da Silva, R.; Fabrizio, M.; Ferraro, I.; Fiorentino, G.; Francois, P.; Gilmozzi, R.; Iannicola, G.; Ikeda, Y.; Jian, M.; Kawakita, H.; Kudritzki, R. P.; Lemasle, B.; Marengo, M.; Marinoni, S.; Martínez-Vázquez, C. E.; Minniti, D.; Neeley, J.; Otsubo, S.; Prieto, J. L.; Proxauf, B.; Romaniello, M.; Sanna, N.; Sneden, C.; Takenaka, K.; Tsujimoto, T.; Valenti, E.; Yasui, C.; Yoshikawa, T.; Zoccali, M.

    2018-03-01

    We present the first spectroscopic abundance determination of iron, α-elements (Si, Ca, and Ti), and sodium for the Mira variable V1 in the metal-rich globular cluster NGC 5927. We use high-resolution (R ∼ 28,000), high signal-to-noise ratio (∼200) spectra collected with WINERED, a near-infrared (NIR) spectrograph covering simultaneously the wavelength range 0.91–1.35 μm. The effective temperature and the surface gravity at the pulsation phase of the spectroscopic observation were estimated using both optical (V) and NIR time-series photometric data. We found that the Mira is metal-rich ([Fe/H] = ‑0.55 ± 0.15) and moderately α-enhanced ([α/Fe] = 0.15 ± 0.01, σ = 0.2). These values agree quite well with the mean cluster abundances based on high-resolution optical spectra of several cluster red giants available in the literature ([Fe/H] = ‑ 0.47 ± 0.06, [α/Fe] = + 0.24 ± 0.05). We also found a Na abundance of +0.35 ± 0.20 that is higher than the mean cluster abundance based on optical spectra (+0.18 ± 0.13). However, the lack of similar spectra for cluster red giants and that of corrections for departures from local thermodynamical equilibrium prevents us from establishing whether the difference is intrinsic or connected with multiple populations. These findings indicate a strong similarity between optical and NIR metallicity scales in spite of the difference in the experimental equipment, data analysis, and in the adopted spectroscopic diagnostics. Based on spectra collected with the WINERED spectrograph available as a visitor instrument at the ESO New Technology Telescope (NTT), La Silla, Chile (ESO Proposal: 098.D-0878(A), PI: G. Bono).

  14. Nucleosynthesis and the Inhomogeneous Chemical Evolution of the Carina Dwarf Galaxy

    NARCIS (Netherlands)

    Venn, Kim A.; Shetrone, Matthew D.; Irwin, Mike J.; Hill, Vanessa; Jablonka, Pascale; Tolstoy, Eline; Lemasle, Bertrand; Divell, Mike; Starkenburg, Else; Letarte, Bruno; Baldner, Charles; Battaglia, Giuseppina; Helmi, Amina; Kaufer, Andreas; Primas, Francesca

    2012-01-01

    The detailed abundances of 23 chemical elements in nine bright red giant branch stars in the Carina dwarf spheroidal galaxy are presented based on high-resolution spectra gathered at the Very Large Telescope (VLT) and Magellan telescopes. A spherical model atmospheres analysis is applied using

  15. The evoluation of the galactic globular clusters; I Metal abundance calibrations

    International Nuclear Information System (INIS)

    Lee, S.W.; Park, N.K.

    1984-01-01

    Five different calibrations of metal abundances of globular clusters are examined and these are compared with metallicity ranking parameters such as (Sp)sub(c), , Q39 and IR-indices. Except for the calibration *(Fe/H*)sub(H) by the high dispersion echelle analysis, the other calibration scales are correlated with the morphological parameters of red giant branch. In the *(Fe/H*)sub(Hsup(-))scale, the clusters later than approx.F8 have nearly a constant metal abundance, *(Fe/H*)sub(H)approx.-1.05, regardless of morphological characteristics of horizontal branch and red giant branch. By the two fundamental calibration scales of *(Fe/H*)sub(L) (derived by the low dispersion analysis), and *(Fe/H*)sub(delta S) (derived by the spectral analysis of RR Lyrae stars), the globular clusters are divided into the halo clusters with *(Fe/H*)<-1.0 and the disk clusters confined within the galactocentric distance rsub(G)=10 kpc and galactic plane distance absolute z=3 kpc. In this case the abundance gradient is given by d*(Fe/H*)/drsub(G)approx.-0.05kpcsup(-1) and d*(Fe/H*)/d absolute z approx. -0.08 kpcsup(-1) within rsub(G)=20 kpc and absolute z=10 kpc, respectively. According to these characteristics of the spatial distribution of globular clusters, the chemical evolution of the galactic globular clusters can be accounted for by the two-zone (disk-halo) slow collapse model when the *(Fe/H*)sub(Lsup(-)) or *(Fe/H*)sub(DELTA Ssup(-))scale is applied. In the case of *(Fe/H*)sub(Hsup(-))scale, the one-zone fast collapse model is preferred for the evolution of globular clusters. (Author)

  16. A search for stars of very low metal abundance. VI. Detailed abundances of 313 metal-poor stars

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Burley, Gregory S.; Kelson, Daniel D.; Sneden, Christopher

    2014-01-01

    We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] ≤–3.5, 84 stars with [Fe/H] ≤–3.0, and 210 stars with [Fe/H] ≤–2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] ≤–2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.

  17. Chemical analysis of eight giant stars of the globular cluster NGC 6366

    Science.gov (United States)

    Puls, Arthur A.; Alves-Brito, Alan; Campos, Fabíola; Dias, Bruno; Barbuy, Beatriz

    2018-05-01

    The metal-rich Galactic globular cluster NGC 6366 is the fifth closest to the Sun. Despite its interest, it has received scarce attention, and little is known about its internal structure. Its kinematics suggests a link to the halo, but its metallicity indicates otherwise. We present a detailed chemical analysis of eight giant stars of NGC 6366, using high-resolution and high-quality spectra (R > 40 000, S/N > 60) obtained at the VLT (8.2 m) and CFHT (3.6 m) telescopes. We attempted to characterize its chemistry and to search for evidence of multiple stellar populations. The atmospheric parameters were derived using the method of excitation and ionization equilibrium of Fe I and Fe II lines and from those atmospheric parameters we calculated the abundances for other elements and found that none of the elements measured presents star-to-star variation greater than the uncertainties. We compared the derived abundances with those of other globular clusters and field stars available in the literature. We determined a mean [Fe/H] = -0.60 ± 0.03 for NGC 6366 and found some similarity of this object with M 71, another inner halo globular cluster. The Na-O anticorrelation extension is short and no star-to-star variation in Al is found. The presence of second generation stars is not evident in NGC 6366.

  18. Abundance Tomography of Type Ia Supernovae

    International Nuclear Information System (INIS)

    Stehle, M.; Mazzali, P.A.; Hillebrandt, W.

    2005-01-01

    An analysis of early time spectra of Type Ia Supernovae is presented. A new method to derive a detailed abundance distribution of the SN ejecta through comparison with synthetic spectra, called 'Abundance Tomography' is introduced and applied to the normal SN Ia 2002bo. Conclusions regarding the explosion mechanism are drawn

  19. Service activities of chemical analysis division

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Suh, Moo Yul; Park, Kyoung Kyun; Jung, Ki Suk; Joe, Kih Soo; Jee, Kwang Yong; Jung, Woo Sik; Sohn, Se Chul; Yeo, In Heong; Han, Sun Ho

    1988-12-01

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  20. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    International Nuclear Information System (INIS)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone; Kelecom, Alphonse; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova; Dores, Luis Augusto de Carvalho Bresser

    2011-01-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  1. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone, E-mail: wspereira@inb.gov.br [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Protecao Radiologica. Grupo Multidisciplinar de Radioprotecao; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Biologia. Lab. de Radiobiologia e Radiometria Pedro Lopes dos Santos; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Desenvolvimento de Processos; Dores, Luis Augusto de Carvalho Bresser [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Gerencia de Descomissionamento

    2011-07-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  2. CHEMICAL ABUNDANCES IN NGC 5024 (M53): A MOSTLY FIRST GENERATION GLOBULAR CLUSTER

    International Nuclear Information System (INIS)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-01-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = −2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  3. Chemical Abundances in NGC 5024 (M53): A Mostly First Generation Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-06-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin-Indiana-Yale-NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = -2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na-O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  4. CHEMICAL ABUNDANCES IN NGC 5024 (M53): A MOSTLY FIRST GENERATION GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2016-06-10

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = −2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  5. Hydrocarbons and fuels analyses with the supersonic gas chromatography mass spectrometry--the novel concept of isomer abundance analysis.

    Science.gov (United States)

    Fialkov, Alexander B; Gordin, Alexander; Amirav, Aviv

    2008-06-27

    Hydrocarbon analysis with standard GC-MS is confronted by the limited range of volatile compounds amenable for analysis and by the similarity of electron ionization mass spectra for many compounds which show weak or no molecular ions for heavy hydrocarbons. The use of GC-MS with supersonic molecular beams (Supersonic GC-MS) significantly extends the range of heavy hydrocarbons that can be analyzed, and provides trustworthy enhanced molecular ion to all hydrocarbons. In addition, unique isomer mass spectral features are obtained in the ionization of vibrationally cold hydrocarbons. The availability of molecular ions for all hydrocarbons results in the ability to obtain unique chromatographic isomer distribution patterns that can serve as a new method for fuel characterization and identification. Examples of the applicability and use of this novel isomer abundance analysis (IAA) method to diesel fuel, kerosene and oil analyses are shown. It is suggested that in similarity to the "three ions method" for identification purposes, three isomer abundance patterns can serve for fuel characterization. The applications of the Supersonic GC-MS for engine motor oil analysis and transformer oil analysis are also demonstrated and discussed, including the capability to achieve fast 1-2s sampling without separation for oil and fuel fingerprinting. The relatively fast analysis of biodiesel is described, demonstrating the provision of molecular ions to heavy triglycerides. Isomer abundance analysis with the Supersonic GC-MS could find broad range of applications including petrochemicals and fuel analysis, arson analysis, environmental oil/fuel spill analysis, fuel adulteration analysis and motor oil analysis.

  6. A spectroscopic study of chemical abundances in the globular cluster Omega Centauri

    International Nuclear Information System (INIS)

    Caldwell, S.P.

    1987-10-01

    Blue spectra at a resolution of 0.5 A of red giants in the globular clusters Omega Centauri and NGCs 288, 362, 6397 and 6809 (M55) have been obtained with the Anglo-Australian Telescope. The observations were made to test Sweigart and Mengel's [Astrophy S. J. 229, 624] theory of mixing of nuclearly-processed material to the star's surface, and to elucidate the relationship between primordial and evolutionary origins for the range in abundance within Omega Cen. The Omega Cen stars were chosen in two groups either side of the giant branch, covering the luminosity range where the onset of mixing was predicted to occur. Abundances of C, N, Fe and other heavy elements have been determined by fitting synthetic spectra, calculated from model atmospheres, to the observational data. (author)

  7. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  8. Systems analysis of past, present, and future chemical terrorism scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  9. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2017-01-10

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.

  10. AGB nucleosynthesis in the Large Magellanic Cloud. Detailed abundance analysis of the RV Tauri star MACHO 47.2496.8

    NARCIS (Netherlands)

    Reyniers, M.; Abia, C.; van Winckel, H.; Lloyd Evans, T.; Decin, L.K.E.; Eriksson, K.; Pollard, K.R.

    2007-01-01

    Context: .Abundance analysis of post-AGB objects as probes of AGB nucleosynthesis. Aims: .A detailed photospheric abundance study is performed on the carbon-rich post-AGB candidate MACHO 47.2496.8 in the LMC. Methods: .High-resolution, high signal-to-noise ESO VLT-UVES spectra of MACHO 47.2496.8 are

  11. Complete Element Abundances of Nine Stars in the r-process Galaxy Reticulum II

    Science.gov (United States)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Chiti, Anirudh

    2016-10-01

    We present chemical abundances derived from high-resolution Magellan/Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (-3.5 contaminated known r-process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r-process sites besides the source of r-process elements in Ret II. Galaxies like Ret II may be the original birth sites of r-process enhanced stars now found in the halo. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  12. Galactic chemical evolution in hierarchical formation models

    Science.gov (United States)

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  13. Proteomic analysis of the reproductive organs of the hermaphroditic gastropod Lymnaea stagnalis exposed to different endocrine disrupting chemicals.

    Directory of Open Access Journals (Sweden)

    Arnaud Giusti

    Full Text Available Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range of endocrine disrupting chemicals (EDCs. However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD. In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin could

  14. Chemical Variations in a Granitic Pluton and Its Surrounding Rocks.

    Science.gov (United States)

    Baird, A K; McIntyre, D B; Welday, E E; Madlem, K W

    1964-10-09

    New techniques of x-ray fluorescence spectrography have provided, for the first time, abundant data regarding chemical variability of granitic rocks on different scales. The results suggest that current designs of sampling plans for trend surface analysis should be modified; in particular several specimens, preferably drillcores, may be required at each locality.

  15. Microprocessors in automatic chemical analysis

    International Nuclear Information System (INIS)

    Goujon de Beauvivier, M.; Perez, J.-J.

    1979-01-01

    Application of microprocessors to programming and computing of solutions chemical analysis by a sequential technique is examined. Safety, performances reliability are compared to other methods. An example is given on uranium titration by spectrophotometry [fr

  16. Carbon and oxygen abundances across the Hertzsprung gap

    Energy Technology Data Exchange (ETDEWEB)

    Adamczak, Jens; Lambert, David L., E-mail: adamczak@astro.as.utexas.edu, E-mail: dll@astro.as.utexas.edu [McDonald Observatory, The University of Texas, Austin, TX 78712 (United States)

    2014-08-10

    We derived atmospheric parameters and spectroscopic abundances for C and O for a large sample of stars located in the Hertzsprung gap in the Hertzsprung-Russell diagram in order to detect chemical peculiarities and get a comprehensive overview of the population of stars in this evolutionary state. We have observed and analyzed high-resolution spectra (R = 60,000) of 188 stars in the mass range 2-5 M{sub ☉} with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory including 28 stars previously identified as Am/Ap stars. We find that the C and O abundances of the majority of stars in the Hertzsprung gap are in accordance with abundances derived for local lower-mass dwarfs but detect expected peculiarities for the Am/Ap stars. The C and O abundances of stars with T{sub eff} < 6500 K are slightly lower than for the hotter objects but the C/O ratio is constant in the analyzed temperature domain. No indication of an alteration of the C and O abundances of the stars by mixing during the evolution across the Hertzsprung gap could be found before the homogenization of their atmospheres by the first dredge-up.

  17. Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis

    International Nuclear Information System (INIS)

    Gao, Wei-Min; Haab, Brian B; Hanash, Samir M; Kuick, Rork; Orchekowski, Randal P; Misek, David E; Qiu, Ji; Greenberg, Alissa K; Rom, William N; Brenner, Dean E; Omenn, Gilbert S

    2005-01-01

    Cancer serum protein profiling by mass spectrometry has uncovered mass profiles that are potentially diagnostic for several common types of cancer. However, direct mass spectrometric profiling has a limited dynamic range and difficulties in providing the identification of the distinctive proteins. We hypothesized that distinctive profiles may result from the differential expression of relatively abundant serum proteins associated with the host response. Eighty-four antibodies, targeting a wide range of serum proteins, were spotted onto nitrocellulose-coated microscope slides. The abundances of the corresponding proteins were measured in 80 serum samples, from 24 newly diagnosed subjects with lung cancer, 24 healthy controls, and 32 subjects with chronic obstructive pulmonary disease (COPD). Two-color rolling-circle amplification was used to measure protein abundance. Seven of the 84 antibodies gave a significant difference (p < 0.01) for the lung cancer patients as compared to healthy controls, as well as compared to COPD patients. Proteins that exhibited higher abundances in the lung cancer samples relative to the control samples included C-reactive protein (CRP; a 13.3 fold increase), serum amyloid A (SAA; a 2.0 fold increase), mucin 1 and α-1-antitrypsin (1.4 fold increases). The increased expression levels of CRP and SAA were validated by Western blot analysis. Leave-one-out cross-validation was used to construct Diagonal Linear Discriminant Analysis (DLDA) classifiers. At a cutoff where all 56 of the non-tumor samples were correctly classified, 15/24 lung tumor patient sera were correctly classified. Our results suggest that a distinctive serum protein profile involving abundant proteins may be observed in lung cancer patients relative to healthy subjects or patients with chronic disease and may have utility as part of strategies for detecting lung cancer

  18. VizieR Online Data Catalog: CoRoT red giants abundances (Morel+, 2014)

    Science.gov (United States)

    Morel, T.; Miglio, A.; Lagarde, N.; Montalban, J.; Rainer, M.; Poretti, E.; Eggenberger, P.; Hekker, S.; Kallinger, T.; Mosser, B.; Valentini, M.; Carrier, F.; Hareter, M.; Mantegazza, L.

    2014-02-01

    The equivalent widths were measured manually assuming Gaussian profiles or Voigt profiles for the few lines with extended damping wings. Lines with an unsatisfactory fit or significantly affected by telluric features were discarded. Only values eventually retained for the analysis are provided. For the chemical abundances, the usual notation is used: [X/Y]=[log({epsilon}(X))-log({epsilon}(Y))]star - [log({epsilon}(X))-log({epsilon}(Y))]⊙ with log{epsilon}(X)=12+log[N(X)/N(H)] (N is the number density of the species). For lithium, the following notation is used: [Li/H]=log(N(Li))star-log(N(Li))⊙. The adopted solar abundances are taken from Grevesse & Sauval (1998SSRv...85..161G), except for Li for which we adopt our derived values: log({epsilon}(Li))⊙=1.09 and 1.13 in LTE and NLTE, respectively (see text). All the abundances are computed under the assumption of LTE, except Li for which values corrected for departures from LTE using the data of Lind et al. (2009A&A...503..541L) are also provided. All the quoted error bars are 1-sigma uncertainties. (6 data files).

  19. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. III. THE LARGE MAGELLANIC CLOUD: Fe AND AGES

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott A.; McWilliam, Andrew

    2011-01-01

    In this paper, we refine our method for the abundance analysis of high-resolution spectroscopy of the integrated light of unresolved globular clusters (GCs). This method was previously demonstrated for the analysis of old (>10 Gyr) Milky Way (MW) GCs. Here, we extend the technique to young clusters using a training set of nine GCs in the Large Magellanic Cloud. Depending on the signal-to-noise ratio of the data, we use 20-100 Fe lines per cluster to successfully constrain the ages of old clusters to within a ∼5 Gyr range, the ages of ∼2 Gyr clusters to a 1-2 Gyr range, and the ages of the youngest clusters (0.05-1 Gyr) to a ∼200 Myr range. We also demonstrate that we can measure [Fe/H] in clusters with any age less than 12 Gyr with similar or only slightly larger uncertainties (0.1-0.25 dex) than those obtained for old MW GCs (0.1 dex); the slightly larger uncertainties are due to the rapid evolution in stellar populations at these ages. In this paper, we present only Fe abundances and ages. In the next paper in this series, we present our complete analysis of ∼20 elements for which we are able to measure abundances. For several of the clusters in this sample, there are no high-resolution abundances in the literature from individual member stars; our results are the first detailed chemical abundances available. The spectra used in this paper were obtained at Las Campanas with the echelle on the du Pont Telescope and with the MIKE spectrograph on the Magellan Clay Telescope.

  20. The benchmark halo giant HD 122563: CNO abundances revisited with three-dimensional hydrodynamic model stellar atmospheres

    DEFF Research Database (Denmark)

    Collet, R.; Nordlund, Ã.; Asplund, M.

    2018-01-01

    We present an abundance analysis of the low-metallicity benchmark red giant star HD 122563 based on realistic, state-of-the-art, high-resolution, three-dimensional (3D) model stellar atmospheres including non-grey radiative transfer through opacity binning with 4, 12, and 48 bins. The 48-bin 3D...... simulation reaches temperatures lower by ˜300-500 K than the corresponding 1D model in the upper atmosphere. Small variations in the opacity binning, adopted line opacities, or chemical mixture can cool the photospheric layers by a further ˜100-300 K and alter the effective temperature by ˜100 K. A 3D local...... molecular bands and lines in the ultraviolet, visible, and infrared. We find a small positive 3D-1D abundance correction for carbon (+0.03 dex) and negative ones for nitrogen (-0.07 dex) and oxygen (-0.34 dex). From the analysis of the [O I] line at 6300.3 Å, we derive a significantly higher oxygen...

  1. Chemical analysis and base-promoted hydrolysis of locally ...

    African Journals Online (AJOL)

    Abstract. The study was on the chemical analysis and base- promoted hydrolysis of extracted shea nut fat. The local method of extraction of the shea nut oil was employed in comparison with literature report. A simple cold-process alkali hydrolysis of the shea nut oil was used in producing the soap. The chemical analysis of ...

  2. SP_Ace: a new code to derive stellar parameters and elemental abundances

    Science.gov (United States)

    Boeche, C.; Grebel, E. K.

    2016-03-01

    Context. Ongoing and future massive spectroscopic surveys will collect large numbers (106-107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860 Å and 8400-8924 Å, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "GCOG library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the χ2 deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters

  3. Comparative study on composition and abundance of major planktons and physico-chemical characteristics among two ponds and Lake Tana, Ethiopia

    Directory of Open Access Journals (Sweden)

    Wondie Zelalem Amanu

    2015-11-01

    Full Text Available Objective: To evaluate the difference in physico-chemical characteristics, composition and abundance of plankton communities owing to the supplementary feed added in fish ponds as compared to Lake Tana. Methods: Physico-chemical and biological data of plankton were collected from 3 studied sites from November 2008 to October 2009. Data were compared using One-way ANOVA to see the difference among sites. Diversity indices such as Margalef's index, Shannon-Wiener index, and evenness index were employed to describe the distribution of plankton community among the studied sites. Results: The pH value was remarkably higher in ponds water. However, conductivity and total dissolved solids were the highest in lake water. Nitrate concentration was relatively high in ponds. Zooplankton species richness was higher in lake water than ponds. The lake also had the highest mean value of both Shannon-Wiener index and evenness index in phytoplankton. Conclusions: The results revealed that the supplementary feed added to each pond had influence on nutrient content which enhanced algal biomass and productivity of the ponds. However, the pond water has to be regularly refreshed to control eutrophication.

  4. Chemical analysis by nuclear methods. v. 2

    International Nuclear Information System (INIS)

    Alfassi, Z.B.

    1998-01-01

    'Chemical analysis by Nuclear Methods' is an effort of some renowned authors in field of nuclear chemistry and radiochemistry which is compiled by Alfassi, Z.B. and translated into Farsi version collected in two volumes. The second volume consists of the following chapters: Detecting ion recoil scattering and elastic scattering are dealt in the eleventh chapter, the twelfth chapter is devoted to nuclear reaction analysis using charged particles, X-ray emission is discussed at thirteenth chapter, the fourteenth chapter is about using ion microprobes, X-ray fluorescence analysis is discussed in the fifteenth chapter, alpha, beta and gamma ray scattering in chemical analysis are dealt in chapter sixteen, Moessbauer spectroscopy and positron annihilation are discussed in chapter seventeen and eighteen; The last two chapters are about isotope dilution analysis and radioimmunoassay

  5. [Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nirS-type denitrifiers in black soil].

    Science.gov (United States)

    Yin, Chang; Fan, Fen-Liang; Li, Zhao-Jun; Song, A-Lin; Zhu, Ping; Peng, Chang; Liang, Yong-Chao

    2012-11-01

    The objectives of this study were to explore the effects of long-term organic and inorganic fertilizations on the composition and abundance of nirS-type denitrifiers in black soil. Soil samples were collected from 4 treatments (i. e. no fertilizer treatment, CK; organic manure treatment, OM; chemical fertilizer treatment (NPK) and combination of organic and chemical fertilizers treatment (MNPK)) in Gongzhuling Long-term Fertilization Experiment Station. Composition and abundance of nirS-type denitrifiers were analyzed with terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR (Q-PCR), respectively. Denitrification enzyme activity (DEA) and soil properties were also measured. Application of organic fertilizers (OM and MNPK) significantly increased the DEAs of black soil, with the DEAs in OM and MNPK being 5.92 and 6.03 times higher than that in CK treatment, respectively, whereas there was no significant difference between NPK and CK. OM and MNPK treatments increased the abundances of nirS-type denitrifiers by 2.73 and 3.83 times relative to that of CK treatment, respectively. The abundance of nirS-type denitrifiers in NPK treatment was not significantly different from that of CK. The T-RFLP analysis of nirS genes showed significant differences in community composition between organic and inorganic treatments, with the emergence of a 79 bp T-RF, a significant decrease in relative abundance of the 84 bp T-RF and a loss of the 99 bp T-RF in all organic treatments. Phylogenetic analysis indicated that the airS-type denitrifiers in the black soil were mainly composed of alpha, beta and gamma-Proteobacteria. The 79 bp-type denitrifiers inhabiting exclusively in organic treatments (OM and MNPK) were affiliated to Pseudomonadaceae in gamma-Proteobacteria and Burkholderiales in beta-Proteobacteria. The 84 bp-types were related to Burkholderiales and Rhodocyclales. Correlation analysis indicated that pH, concentrations of total nitrogen

  6. Cosmological evolution of the nitrogen abundance

    Science.gov (United States)

    Vangioni, Elisabeth; Dvorkin, Irina; Olive, Keith A.; Dubois, Yohan; Molaro, Paolo; Petitjean, Patrick; Silk, Joe; Kimm, Taysun

    2018-06-01

    The abundance of nitrogen in the interstellar medium is a powerful probe of star formation processes over cosmological time-scales. Since nitrogen can be produced both in massive and intermediate-mass stars with metallicity-dependent yields, its evolution is challenging to model, as evidenced by the differences between theoretical predictions and observations. In this work, we attempt to identify the sources of these discrepancies using a cosmic evolution model. To further complicate matters, there is considerable dispersion in the abundances from observations of damped Lyα absorbers (DLAs) at z ˜ 2-3. We study the evolution of nitrogen with a detailed cosmic chemical evolution model and find good agreement with these observations, including the relative abundances of (N/O) and (N/Si). We find that the principal contribution of nitrogen comes from intermediate-mass stars, with the exception of systems with the lowest N/H, where nitrogen production might possibly be dominated by massive stars. This last result could be strengthened if stellar rotation which is important at low metallicity can produce significant amounts of nitrogen. Moreover, these systems likely reside in host galaxies with stellar masses below 108.5 M⊙. We also study the origin of the observed dispersion in nitrogen abundances using the cosmological hydrodynamical simulations Horizon-AGN. We conclude that this dispersion can originate from two effects: difference in the masses of the DLA host galaxies, and difference in their position inside the galaxy.

  7. Chromatographic analysis with different detectors in the chemical characterisation and dereplication of African propolis.

    Science.gov (United States)

    Zhang, Tong; Omar, Ruwida; Siheri, Weam; Al Mutairi, Sultan; Clements, Carol; Fearnley, James; Edrada-Ebel, RuAngelie; Watson, David

    2014-03-01

    Propolis or bee glue has very diverse composition and is potentially a source of biologically active compounds. Comprehensive chemical profiling was performed on 22 African propolis samples collected from the sub-Saharan region of Africa by using various hyphenated analytical techniques including Liquid Chromatography (LC)-UltraViolet Detection (UV)-Evaporative Light Scattering Detection (ELSD), LC-High Resolution Mass Spectrometry (HRMS), Gas Chromatography (GC)-MS and LC-Diode Array Detector (DAD)-HRMS/MS. The diversity of the composition of these African propolis samples could be observed by heat mapping the LC-UV and ELSD data. The characteristic chemical components were uncovered by applying Principal Component Analysis (PCA) to the LC-HRMS data and a preliminary dereplication was carried out by searching their accurate masses in the Dictionary of Natural Products (DNP). A further identification was achieved by comparing their GC-MS or LC-DAD-HRMS/MS spectra with previously published data. Generally no clear geographic delineation was observed in the classification of these African propolis samples. Triterpenoids were found as the major chemical components in more than half of the propolis samples analysed in this study and some others were classified as temperate and Eastern Mediterranean type of propolis. Based on the comparative chemical profiling and dereplication studies one uncommon propolis from southern Nigeria stood out from others by presenting prenylated isoflavonoids, which indicated that it was more like Brazilian red propolis, and more significantly a high abundance of stilbenoid compounds which could be novel in propolis. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The chemical composition of two supergiants in the dwarf irregular galaxy WLM

    NARCIS (Netherlands)

    Venn, K. A.; Tolstoy, E.; Kaufer, A.; Skillman, E. D.; Clarkson, S. M.; Smartt, S. J.; Lennon, D. J.; Kudritzki, R. P.

    The chemical composition of two stars in WLM has been determined from high-quality Ultraviolet-Visual Echelle Spectrograph (UVES) data obtained at the VLT-UT2. The model atmospheres analysis shows that they have the same metallicity, [Fe/H] = - 0.38 +/- 0.20 (+/- 0.29). Reliable magnesium abundances

  9. High-precision atmospheric parameter and abundance determination of massive stars, and consequences for stellar and Galactic evolution

    International Nuclear Information System (INIS)

    Nieva, Maria-Fernanda; Przybilla, Norbert; Irrgang, Andreas

    2011-01-01

    The derivation of high precision/accuracy parameters and chemical abundances of massive stars is of utmost importance to the fields of stellar evolution and Galactic chemical evolution. We concentrate on the study of OB-type stars near the main sequence and their evolved progeny, the BA-type supergiants, covering masses of ∼6 to 25 solar masses and a range in effective temperature from ∼8000 to 35 000 K. The minimization of the main sources of systematic errors in the atmospheric model computation, the observed spectra and the quantitative spectral analysis play a critical role in the final results. Our self-consistent spectrum analysis technique employing a robust non-LTE line formation allows precise atmospheric parameters of massive stars to be derived, achieving 1σ-uncertainties as low as 1% in effective temperature and ∼0.05–0.10 dex in surface gravity. Consequences on the behaviour of the chemical elements carbon, nitrogen and oxygen are discussed here in the context of massive star evolution and Galactic chemical evolution, showing tight relations covered in previous work by too large statistical and systematic uncertainties. The spectral analysis of larger star samples, like from the upcoming Gaia-ESO survey, may benefit from these findings.

  10. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk

    DEFF Research Database (Denmark)

    Hedegaard, R V; Kristensen, D; Nielsen, Jacob Holm

    2006-01-01

    and lipolytic changes occurring in the milk during chill storage for 4 d. Sensory analysis and chemical analysis showed high correlation between the typical descriptors for oxidation such as cardboard, metallic taste, and boiled milk and specific chemical markers for oxidation such as hexanal. Notably, primary......Oxidation in 3 types of bovine milk with different fatty acid profiles obtained through manipulation of feed was evaluated by analytical methods quantifying the content of potential antioxidants, the tendency of formation of free radicals, and the accumulation of primary and secondary oxidation...... products. The milk samples were evaluated in parallel by descriptive sensory analysis by a trained panel, and the correlation between the chemical analysis and the descriptive sensory analysis was evaluated. The fatty acid composition of the 3 types of milk was found to influence the oxidative...

  11. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Kristensen, D.; Nielsen, J. H.

    2006-01-01

    products. The milk samples were evaluated in parallel by descriptive sensory analysis by a trained panel, and the correlation between the chemical analysis and the descriptive sensory analysis was evaluated. The fatty acid composition of the 3 types of milk was found to influence the oxidative...... and lipolytic changes occurring in the milk during chill storage for 4 d. Sensory analysis and chemical analysis showed high correlation between the typical descriptors for oxidation such as cardboard, metallic taste, and boiled milk and specific chemical markers for oxidation such as hexanal. Notably, primary...... oxidation products (i.e., lipid hydroperoxides) and even the tendency of formation of radicals as measured by electron spin resonance spectroscopy were also highly correlated to the sensory descriptors for oxidation. Electron spin resonance spectroscopy should accordingly be further explored as a routine...

  12. Chemical and thermal analysis for characterisation of building materials

    International Nuclear Information System (INIS)

    Kumar, S.C.; Sudersanan, M.; Ravindran, P.V.; Kalekar, B.B.; Mathur, P.K.

    2000-01-01

    Cement and other construction materials are extensively used for the construction of shielding materials for nuclear and high energy radiations. The design and optimum utilisation of such materials need an accurate analysis of their chemical composition. The moisture content and presence of bound water and other volatile materials are also important. The use of thermal analysis supplements the data obtained by chemical analysis and enables a distinction of moisture and chemically bound water. It also enables an identification of the process leading to the loss on ignition. The work carried out on the analysis of sand, cement and other aggregate materials used for the preparation of concrete is described in the paper. (author)

  13. Seasonal abundance of epipelic algae and sediment parameters of ...

    African Journals Online (AJOL)

    Amadi-Ama creek is located close to sources of wastes which are introduced into the creek thus altering the physico-chemical parameters and the aquatic biota of the creek due to variation in nutrient load of the water. The seasonal abundance of epipelic algae and sediment parameters of Amadi-Ama Creek were ...

  14. Abundances in normal and chemically peculiar B, A and F stars: hortatory remarks and prospectus

    International Nuclear Information System (INIS)

    Cowley, C.R.

    1983-01-01

    A variety of new techniques are discussed which make it possible to determine considerably more accurate abundances than are now available for stars near spectral type A. Specific suggestions are made for implementing them. Adoption of the critically evaluated oscillator strengths by the NBS is recommended as a standard. Many references are given to data sources, both physical and astronomical. Suggestions are made for avoiding the most common sources of error in abundance work. (author)

  15. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    International Nuclear Information System (INIS)

    Manard, Manuel J.; Weeks, Stephan; Kyle, Kevin

    2010-01-01

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  16. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... Comparative Analysis on Chemical Composition of Bentonite Clays. Obtained from Ashaka and ... versatile material for geotechnical engineering and as well as their demand for ..... A PhD thesis submitted to the Chemical ...

  17. Chemical analysis of the Fornax Dwarf galaxy

    NARCIS (Netherlands)

    Letarte, Bruno

    2007-01-01

    This thesis is entitled “Chemical Analysis of the Fornax Dwarf Galaxy”, and it’s main goal is to determine what are the chemical elements present in the stars of this galaxy in order to try and understand it’s evolution. Galaxies are not “static” objects, they move, form stars and can interact with

  18. Handbook of Basic Tables for Chemical Analysis. Final report

    International Nuclear Information System (INIS)

    Bruno, T.J.; Svoronos, P.D.N.

    1988-04-01

    This work began as a slim booklet prepared by one of the authors (TJB) to accompany a course on chemical instrumentation presented at the National Bureau of Standards, Boulder Laboratories. The booklet contained tables on chromatography, spectroscopy, and chemical (wet) methods, and was intended to provide the students with enough basic data to design their own analytical methods and procedures. Shortly thereafter, with the co-authorship of Prof. Paris D. N. Svoronos, it was expanded into a more-extensive compilation entitled Basic Tables for Chemical Analysis, published as National Bureau of Standards Technical Note 1096. That work has now been expanded and updated into the present body of tables. Although there have been considerable changes since the first version of these tables, the aim has remained essentially the same. The authors have tried to provide a single source of information for those practicing scientists and research students who must use various aspects of chemical analysis in their work. In this respect, it is geared less toward the researcher in analytical chemistry than to those practitioners in other chemical disciplines who must have routine use of chemical analysis

  19. Chemical Abundances of Metal-poor stars in Dwarf Galaxies

    NARCIS (Netherlands)

    Venn, Kim A.; Jablonka, Pascale; Hill, Vanessa; Starkenburg, Else; Lemasle, Bertrand; Shetrone, Matthew; Irwin, Mike; Norris, John; Yong, David; Gilmore, Gerry; Salvadori, Stephania; Skuladottir, Asa; Tolstoy, Eline; Bragaglia, A.; Arnaboldi, M.; Rejkuba, M.; Romano, D.

    2016-01-01

    Stars in low-mass dwarf galaxies show a larger range in their chemical properties than those in the Milky Way halo. The slower star formation efficiency make dwarf galaxies ideal systems for testing nucleosynthetic yields. Not only are alpha-poor stars found at lower metallicities, and a higher

  20. Chemical analysis of reactor and commercial columbium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The methods cover the chemical analysis of reactor and commercial columbium having chemical compositions within specified limits. The following analytical procedures are discussed along with apparatus, reagents, photometric practice, safety precautions, sampling, and rounding calculated values: nitrogen, by distillation (photometric) method; molybdenum and tungsten by the dithiol (photometric) method; iron by the 1,10-phenanthroline (photometric) method

  1. The raison d'être of chemical ecology.

    Science.gov (United States)

    Raguso, Robert A; Agrawal, Anurag A; Douglas, Angela E; Jander, Georg; Kessler, André; Poveda, Katja; Thaler, Jennifer S

    2015-03-01

    Chemical ecology is a mechanistic approach to understanding the causes and consequences of species interactions, distribution, abundance, and diversity. The promise of chemical ecology stems from its potential to provide causal mechanisms that further our understanding of ecological interactions and allow us to more effectively manipulate managed systems. Founded on the notion that all organisms use endogenous hormones and chemical compounds that mediate interactions, chemical ecology has flourished over the past 50 years since its origin. In this essay we highlight the breadth of chemical ecology, from its historical focus on pheromonal communication, plant-insect interactions, and coevolution to frontier themes including community and ecosystem effects of chemically mediated species interactions. Emerging approaches including the -omics, phylogenetic ecology, the form and function of microbiomes, and network analysis, as well as emerging challenges (e.g., sustainable agriculture and public health) are guiding current growth of this field. Nonetheless, the directions and approaches we advocate for the future are grounded in classic ecological theories and hypotheses that continue to motivate our broader discipline.

  2. Thermally emissive sensing materials for chemical spectroscopy analysis

    Science.gov (United States)

    Poole, Zsolt; Ohodnicki, Paul R.

    2018-05-08

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to the material.

  3. Dependence of the Rossby number on helium and metal abundances

    International Nuclear Information System (INIS)

    Rucinski, S.M.; Vandenberg, D.A.

    1990-01-01

    Convective turnover times, tau, are calculated for solar-type stars of the zero-age main-sequence models of VandenBerg and Poll (1989) with helium abundances = 0.22, 0.27, and 0.32 and metal abundances = 0.0169, 0.024, and 0.03. Emphasis is given to the possible dependence of turnover times on the chemical composition of a star. It is found that deviations in log tau from a mean dependence on the (B-V) color are less than + or - 0.1. Thus, the predicted shape of the log tau vs. (B-V) relation is quite robust. 15 refs

  4. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    Directory of Open Access Journals (Sweden)

    Christiane Helling

    2014-04-01

    Full Text Available We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  5. Molecular activation analysis for chemical species studies

    International Nuclear Information System (INIS)

    Chai Zhifang; Mao Xueying; Wang Yuqi; Sun Jingxin; Qian Qingfang; Hou Xiaolin; Zhang Peiqun; Chen Chunying; Feng Weiyu; Ding Wenjun; Li Xiaolin; Li Chunsheng; Dai Xiongxin

    2001-01-01

    The Molecular Activation Analysis (MAA) mainly refers to an activation analysis method that is able to provide information about the chemical species of elements in systems of interest, though its exact definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the bulk contents or concentrations are often insignificant for judging biological, environmental or geochemical effects of elements. In this paper, the features, methodology and limitation of MAA were outlined. Further, the up-to-date MAA progress made in our laboratory was introduced as well. (author)

  6. The Ital-FLAMES survey of the Sagittarius dwarf Spheroidal galaxy. I. Chemical abundances of bright RGB stars

    OpenAIRE

    Monaco, L.; Bellazzini, M.; Bonifacio, P.; Ferraro, F. R.; Marconi, G.; Pancino, E.; Sbordone, L.; Zaggia, S.

    2005-01-01

    We present iron and $\\alpha$ element (Mg, Ca, Ti) abundances for a sample of 15 Red Giant Branch stars belonging to the main body of the Sagittarius dwarf Spheroidal galaxy. Abundances have been obtained from spectra collected using the high resolution spectrograph FLAMES-UVES mounted at the VLT. Stars of our sample have a mean metallicity of [Fe/H]=-0.41$\\pm$0.20 with a metal poor tail extending to [Fe/H]=-1.52. The $\\alpha$ element abundance ratios are slightly subsolar for metallicities hi...

  7. Advanced chemical analysis service for elements, radionuclides and phases

    International Nuclear Information System (INIS)

    Sansoni, B.

    1986-01-01

    A review is given on the structure, organisation and performance of the chemical analysis service of the Central Department for Chemical Analysis at the Kernforschungsanlage Juelich GmbH. The research and development programs together with the infrastructure of the Centre afford to analyse almost all stable elements of the periodical table in almost any material. The corresponding chemical analysis service has been organized according to a new modular system of analytical steps. According to this, the most complicated and, therefore, most general case of an analytical scheme for element and radionuclide analysis in any type of material can be differentiated into about 14 different steps, the modules. They are more or less independent of the special problem. The laboratory is designed and organized according to these steps. (orig./PW) [de

  8. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2004-04-01

    We report new chemical abundances of 23 bright red giant members of the globular cluster M3, based on high-resolution (R~45,000) spectra obtained with the Keck I telescope. The observations, which involve the use of multislits in the HIRES Keck I spectrograph, are described in detail. Combining these data with a previously reported small sample of M3 giants obtained with the Lick 3 m telescope, we compare metallicities and [X/Fe] ratios for 28 M3 giants with a 35-star sample in the similar-metallicity cluster M13, and with Galactic halo field stars having [Fe/H]=A(Si), we derive little difference in [X/Fe] ratios in the M3, M13, or halo field samples. All three groups exhibit C depletion with advancing evolutionary state beginning at the level of the red giant branch ``bump,'' but the overall depletion of about 0.7-0.9 dex seen in the clusters is larger than that associated with the field stars. The behaviors of O, Na, Mg, and Al are distinctively different among the three stellar samples. Field halo giants and subdwarfs have a positive correlation of Na with Mg, as predicted from explosive or hydrostatic carbon burning in Type II supernova sites. Both M3 and M13 show evidence of high-temperature proton-capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13: the M3 giants exhibit only modest deficiencies of O and corresponding enhancements of Na, less extreme overabundances of Al, fewer stars with low Mg and correspondingly high Na, and no indication that O depletions are a function of advancing evolutionary state, as has been claimed for M13. We have also considered NGC 6752, for which Mg isotopic abundances have been reported by Yong et al. Giants in NGC 6752 and M13 satisfy the same anticorrelation of O abundances with the ratio (25Mg+26Mg)/24Mg, which measures the relative contribution of rare to

  9. Boom in boarfish abundance: insight from otolith analysis

    DEFF Research Database (Denmark)

    Coad, Julie Olivia; Hüssy, Karin

    2012-01-01

    The boarfish Capros aper is a pelagic shoaling species widely distributed along the Northeast Atlantic continental shelf. In recent years, this species has experienced a dramatic boom in abundance in the Bay of Biscay and Celtic Sea. This study aims at resolving the mechanisms responsible for thi...

  10. VALIDATION GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following guidelines for laboratories engaged in the forensic analysis of chemical evidence associated with terrorism. This document provides a baseline framework and guidance for...

  11. A stochastic approach to chemical evolution

    International Nuclear Information System (INIS)

    Copi, C.J.

    1997-01-01

    Observations of elemental abundances in the Galaxy have repeatedly shown an intrinsic scatter as a function of time and metallicity. The standard approach to chemical evolution does not attempt to address this scatter in abundances since only the mean evolution is followed. In this work, the scatter is addressed via a stochastic approach to solving chemical evolution models. Three simple chemical evolution scenarios are studied using this stochastic approach: a closed box model, an infall model, and an outflow model. These models are solved for the solar neighborhood in a Monte Carlo fashion. The evolutionary history of one particular region is determined randomly based on the star formation rate and the initial mass function. Following the evolution in an ensemble of such regions leads to the predicted spread in abundances expected, based solely on different evolutionary histories of otherwise identical regions. In this work, 13 isotopes are followed, including the light elements, the CNO elements, a few α-elements, and iron. It is found that the predicted spread in abundances for a 10 5 M circle-dot region is in good agreement with observations for the α-elements. For CN, the agreement is not as good, perhaps indicating the need for more physics input for low-mass stellar evolution. Similarly for the light elements, the predicted scatter is quite small, which is in contradiction to the observations of 3 He in HII regions. The models are tuned for the solar neighborhood so that good agreement with HII regions is not expected. This has important implications for low-mass stellar evolution and on using chemical evolution to determine the primordial light-element abundances in order to test big bang nucleosynthesis. copyright 1997 The American Astronomical Society

  12. Analysis of the FF Aqr spectra

    Science.gov (United States)

    Shimanskaya, N. N.; Bikmaev, I. F.; Shimansky, V. V.

    2011-07-01

    We determine the atmospheric parameters of the secondary in the close binary system FF Aqr and analyze its chemical composition. A series of high-resolution spectra are taken at different orbital phases using the coude echelle spectrometer of the 1.5-m Russian-Turkish Telescope (RTT150). We show that the absorption line intensity of heavy elements varies with phase due to the spotty nature of the cool component. We determine the abundances of heavy elements in the star's atmosphere by modelling the synthetic spectra and performing a differential analysis of the chemical composition of FF Aqr relative to the solar composition. Our analysis of the averaged spectrum of FF Aqr yielded 539 abundance estimates for 21 chemical elements. We found the metallicity of the star ([ Fe/H] = -0.11 ± 0.08) to be close solar, in agreement with the hypothesis that FF Aqr should belong to the Galactic disk. The inferred chemical composition of the objects exhibits no anomalous abundances of the α-, r-, and s-process elements like those earlier found in other systems (IN Com, LW Hya, V471 Tau). The lack of such anomalies in FF Aqr must be due to the fact that the elements heavier than 16 O cannot be synthesized in the core of the primary during the last stages of its evolution.

  13. A Chemical Study of 47 Tucanae (NGC 104)

    Science.gov (United States)

    Cordero, Maria J.; Pilachowski, C. A.; Johnson, C. I.; Simmerer, J. A.

    2013-01-01

    47 Tuc (NGC 104) is a nearby, metal-rich globular cluster often used as a benchmark when studying dwarf spheroidal galaxies. We present chemical abundances for a sample of nearly 100 red giants whose spectra were obtained with the moderate resolution Blanco 4M telescope and Hydra multifiber specrograph, using two wavelength regions, 6140-6350 Å and 6500-6750 Å, with signal-to-noise (S/N) ranging from 70-120. Abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu have been determined using either equivalent width measurements or spectrum synthesis together with the LTE line analysis code MOOG and ATLAS 9 model atmospheres. We found [Fe/H]=-0.68 ± 0.06, which is consistent with previous studies. Additionally, we found a star-to-star variation in Na, Al, and O abundances and a first-to-second generation ratio of 36/64. Furthermore, alpha-elements (Si, Ca, and Ti) are overabundant with respect to Fe, and Ni presents a solar value.

  14. The dimensionality of stellar chemical space using spectra from the Apache Point Observatory Galactic Evolution Experiment

    Science.gov (United States)

    Price-Jones, Natalie; Bovy, Jo

    2018-03-01

    Chemical tagging of stars based on their similar compositions can offer new insights about the star formation and dynamical history of the Milky Way. We investigate the feasibility of identifying groups of stars in chemical space by forgoing the use of model derived abundances in favour of direct analysis of spectra. This facilitates the propagation of measurement uncertainties and does not pre-suppose knowledge of which elements are important for distinguishing stars in chemical space. We use ˜16 000 red giant and red clump H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and perform polynomial fits to remove trends not due to abundance-ratio variations. Using expectation maximized principal component analysis, we find principal components with high signal in the wavelength regions most important for distinguishing between stars. Different subsamples of red giant and red clump stars are all consistent with needing about 10 principal components to accurately model the spectra above the level of the measurement uncertainties. The dimensionality of stellar chemical space that can be investigated in the H band is therefore ≲10. For APOGEE observations with typical signal-to-noise ratios of 100, the number of chemical space cells within which stars cannot be distinguished is approximately 1010±2 × (5 ± 2)n - 10 with n the number of principal components. This high dimensionality and the fine-grained sampling of chemical space are a promising first step towards chemical tagging based on spectra alone.

  15. Chemical fingerprints of He-sdO stars

    Directory of Open Access Journals (Sweden)

    Schindewolf Markus

    2018-02-01

    Full Text Available The chemical composition of helium-rich hot subluminous O stars plays an important role to understand and model their formation history. We present a spectroscopic analysis of four He-sdO stars,CD-31° 4800, [CW83] 0904- 02, LSS 1274 and LS IV +10° 9. The analysis is based on archival optical and UV high-resolution spectra. We used Tlusty200/Synspec48 to compute line blanketed non-LTE model atmospheres and their corresponding synthetic spectra and derive the atmospheric parameters as well as the abundances of the most prominent elements. All stars have helium-dominated atmospheres with hardly any hydrogen and temperatures between 42000 K and 47000 K while their surface gravity spans between log g = 5.4 and 5.7. CD-31° 4800 shows an enrichment of nitrogen and the characteristic pattern of hydrogen burning via the CNO-cycle, while the rest of the elements have about the solar abundance. This points to the slow merger of two helium white dwarfs as the most likely origin for this system. The other three stars are enriched in carbon, nitrogen and neon while their intermediate mass element’s abundance scatters around the solar value. They were possibly formed in the deep mixing late hot flasher scenario.

  16. Chemical fingerprints of He-sdO stars

    Science.gov (United States)

    Schindewolf, Markus; Németh, Peter; Heber, Ulrich; Battich, Tiara; Miller Bertolami, Marcelo M.; Latour, Marilyn

    2018-02-01

    The chemical composition of helium-rich hot subluminous O stars plays an important role to understand and model their formation history. We present a spectroscopic analysis of four He-sdO stars,CD-31° 4800, [CW83] 0904- 02, LSS 1274 and LS IV +10° 9. The analysis is based on archival optical and UV high-resolution spectra. We used Tlusty200/Synspec48 to compute line blanketed non-LTE model atmospheres and their corresponding synthetic spectra and derive the atmospheric parameters as well as the abundances of the most prominent elements. All stars have helium-dominated atmospheres with hardly any hydrogen and temperatures between 42000 K and 47000 K while their surface gravity spans between log g = 5.4 and 5.7. CD-31° 4800 shows an enrichment of nitrogen and the characteristic pattern of hydrogen burning via the CNO-cycle, while the rest of the elements have about the solar abundance. This points to the slow merger of two helium white dwarfs as the most likely origin for this system. The other three stars are enriched in carbon, nitrogen and neon while their intermediate mass element's abundance scatters around the solar value. They were possibly formed in the deep mixing late hot flasher scenario.

  17. Probabilistic risk analysis in chemical engineering

    International Nuclear Information System (INIS)

    Schmalz, F.

    1991-01-01

    In risk analysis in the chemical industry, recognising potential risks is considered more important than assessing their quantitative extent. Even in assessing risks, emphasis is not on the probability involved but on the possible extent. Qualitative assessment has proved valuable here. Probabilistic methods are used in individual cases where the wide implications make it essential to be able to assess the reliability of safety precautions. In this case, assessment therefore centres on the reliability of technical systems and not on the extent of a chemical risk. 7 figs

  18. Properties of the outer regions of spiral disks: abundances, colors and ages

    Science.gov (United States)

    Mollá, Mercedes; Díaz, Angeles I.; Gibson, Brad K.; Cavichia, Oscar; López-Sánchez, Ángel-R.

    2017-03-01

    We summarize the results obtained from our suite of chemical evolution models for spiral disks, computed for different total masses and star formation efficiencies. Once the gas, stars and star formation radial distributions are reproduced, we analyze the Oxygen abundances radial profiles for gas and stars, in addition to stellar averaged ages and global metallicity. We examine scenarios for the potential origin of the apparent flattening of abundance gradients in the outskirts of disk galaxies, in particular the role of molecular gas formation prescriptions.

  19. All-Russia conference on chemical analysis of substances and materials. Abstracts of reports

    International Nuclear Information System (INIS)

    2000-01-01

    Collection contains abstracts of reports on chemical analysis of foods, drugs, environmental materials. Methods of chemical analysis used in such regions as chemical control in agriculture, criminology, art and archaeology, biotechnology, geology, chemistry and petrochemistry, metallurgy, metrology are presented. Theoretical, methodological and applied aspects of chemical analysis are considered [ru

  20. Ar39 Detection at the 10-16 Isotopic Abundance Level with Atom Trap Trace Analysis

    Science.gov (United States)

    Jiang, W.; Williams, W.; Bailey, K.; Davis, A. M.; Hu, S.-M.; Lu, Z.-T.; O'Connor, T. P.; Purtschert, R.; Sturchio, N. C.; Sun, Y. R.; Mueller, P.

    2011-03-01

    Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric Ar39 (half-life=269yr), a cosmogenic isotope with an isotopic abundance of 8×10-16. In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors.

  1. Exotic lagomorph may influence eagle abundances and breeding spatial aggregations: a field study and meta-analysis on the nearest neighbor distance

    Directory of Open Access Journals (Sweden)

    Facundo Barbar

    2018-05-01

    Full Text Available The introduction of alien species could be changing food source composition, ultimately restructuring demography and spatial distribution of native communities. In Argentine Patagonia, the exotic European hare has one of the highest numbers recorded worldwide and is now a widely consumed prey for many predators. We examine the potential relationship between abundance of this relatively new prey and the abundance and breeding spacing of one of its main consumers, the Black-chested Buzzard-Eagle (Geranoaetus melanoleucus. First we analyze the abundance of individuals of a raptor guild in relation to hare abundance through a correspondence analysis. We then estimated the Nearest Neighbor Distance (NND of the Black-chested Buzzard-eagle abundances in the two areas with high hare abundances. Finally, we performed a meta-regression between the NND and the body masses of Accipitridae raptors, to evaluate if Black-chested Buzzard-eagle NND deviates from the expected according to their mass. We found that eagle abundance was highly associated with hare abundance, more than with any other raptor species in the study area. Their NND deviates from the value expected, which was significantly lower than expected for a raptor species of this size in two areas with high hare abundance. Our results support the hypothesis that high local abundance of prey leads to a reduction of the breeding spacing of its main predator, which could potentially alter other interspecific interactions, and thus the entire community.

  2. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)

    Science.gov (United States)

    Amberg, Alexander; Barrett, Dave; Beale, Michael H.; Beger, Richard; Daykin, Clare A.; Fan, Teresa W.-M.; Fiehn, Oliver; Goodacre, Royston; Griffin, Julian L.; Hankemeier, Thomas; Hardy, Nigel; Harnly, James; Higashi, Richard; Kopka, Joachim; Lane, Andrew N.; Lindon, John C.; Marriott, Philip; Nicholls, Andrew W.; Reily, Michael D.; Thaden, John J.; Viant, Mark R.

    2013-01-01

    There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at http://msi-workgroups.sourceforge.net/ or http://Msi-workgroups-feedback@lists.sourceforge.net. Further, community input related to this document can also be provided via this electronic forum. PMID:24039616

  3. Chemical analysis of carbonates and carbonate rocks by atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tardon, S

    1981-01-01

    Evaluates methods of determining chemical composition of rocks surrounding black coal seams. Carbonate rock samples were collected in the Ostrava-Karvina coal mines. Sampling methods are described. Determination of the following elements and compounds in carbonate rocks is discussed: calcium, magnesium, iron, manganese, barium, silicon, aluminium, titanium, sodium, potassium, sulfur trioxide, phosphorus pentoxide, water and carbon dioxide. Proportion of compounds insoluble in water in the investigated rocks is also determined. Most of the elements are determined by means of atomic absorption analysis. Phosphorus is also determined by atomic absorption analysis. Other compounds are determined gravimetrically. The described procedure permits weight of a rock sample to be reduced to 0.5 g without reducing analysis accuracy. The results of determining carbonate rock components by X-ray analysis and by chemical analysis are compared. Equipment used for atomic absorption analysis is characterized (the 503 Perkin-Elmer and the CF-4 Optica-Milano spectrophotometers). The analyzed method for determining carbonate rock permits more accurate classification of rocks surrounding coal seams and rock impurities in run-of-mine coal. (22 refs.) (In Czech)

  4. Chemical Characterization and Behavior of Respirable Fractions of Indoor Dusts Collected Near a Landfill Facility

    Directory of Open Access Journals (Sweden)

    Rheo B. Lamorena-Lim

    2016-06-01

    Full Text Available The study aims to determine the inorganic and organic phases in airborne particulate matter (PM collected near a landf ill facility. The establishments within the vicinity of the landfill considered in the study were a junk shop, a school, and a money changer shop. From the elemental analysis using inductively-coupled plasma mass spectrometry (ICP-MS, lead and cadmium were discovered to be more abundant in the total suspended particulate (TSP fraction, whereas copper was more abundant in the smaller PM2.5. Manganese, arsenic, strontium, cadmium, and lead were more abundant in the PM10 fraction than in PM2.5. The results of the chemical characterization were compiled and evaluated in a geochemical modelling code (PHREEQC to determine the potential speciation of these chemical constituents. Solution complexes of As, Pb, Cd and phthalates, and metal species, such as H2AsO3- , Cd2OH3+, Pb(OH3-, were predicted to form by the PHREEQC simulation runs once the endmember components interact with water. The results contribute to the background information on the potential impacts from exposure to airborne PM at workplaces around landfill facilities. Moreover, the data gathered provide a baseline for the chemical characterization and behavior of chemical constituents of PM possibly present in this specific type of environment.

  5. Chemical detection, identification, and analysis system

    International Nuclear Information System (INIS)

    Morel, R.S.; Gonzales, D.; Mniszewski, S.

    1990-01-01

    The chemical detection, identification, and analysis system (CDIAS) has three major goals. The first is to display safety information regarding chemical environment before personnel entry. The second is to archive personnel exposure to the environment. Third, the system assists users in identifying the stage of a chemical process in progress and suggests safety precautions associated with that process. In addition to these major goals, the system must be sufficiently compact to provide transportability, and it must be extremely simple to use in order to keep user interaction at a minimum. The system created to meet these goals includes several pieces of hardware and the integration of four software packages. The hardware consists of a low-oxygen, carbon monoxide, explosives, and hydrogen sulfide detector; an ion mobility spectrometer for airborne vapor detection; and a COMPAQ 386/20 portable computer. The software modules are a graphics kernel, an expert system shell, a data-base management system, and an interface management system. A supervisory module developed using the interface management system coordinates the interaction of the other software components. The system determines the safety of the environment using conventional data acquisition and analysis techniques. The low-oxygen, carbon monoxide, hydrogen sulfide, explosives, and vapor detectors are monitored for hazardous levels, and warnings are issued accordingly

  6. Microarray technology for major chemical contaminants analysis in food: current status and prospects.

    Science.gov (United States)

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.

  7. DETAILED ABUNDANCES OF RED GIANTS IN THE GLOBULAR CLUSTER NGC 1851: C+N+O AND THE ORIGIN OF MULTIPLE POPULATIONS

    International Nuclear Information System (INIS)

    Villanova, S.; Geisler, D.; Piotto, G.

    2010-01-01

    We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the globular cluster NGC 1851 distributed along the two RGBs of the (v, v-y) color-magnitude diagram. We determined abundances for C+N+O, Na, α, iron-peak, and s-elements. We found that the two RGB populations significantly differ in their light (N, O, Na) and s-element content. On the other hand, they do not show any significant difference in their α and iron-peak element content. More importantly, the two RGB populations do not show any significant difference in their total C+N+O content. Our results do not support previous hypotheses suggesting that the origins of the two RGBs and the two subgiant branches of the cluster are related to different content of either α (including Ca) or iron-peak elements, or C+N+O abundance, due to a second generation polluted by Type II supernovae.

  8. Abundance of introduced species at home predicts abundance away in herbaceous communities

    Science.gov (United States)

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  9. Microfabricated Gas Phase Chemical Analysis Systems

    International Nuclear Information System (INIS)

    FRYE-MASON, GREGORY CHARLES; HELLER, EDWIN J.; HIETALA, VINCENT M.; KOTTENSTETTE, RICHARD; LEWIS, PATRICK R.; MANGINELL, RONALD P.; MATZKE, CAROLYN M.; WONG, CHUNGNIN C.

    1999-01-01

    A portable, autonomous, hand-held chemical laboratory ((micro)ChemLab(trademark)) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described

  10. Phytoplankton abundance, dominance and coexistence in an eutrophic reservoir in the state of Pernambuco, Northeast Brazil.

    Science.gov (United States)

    Lira, Giulliari A S T; Araújo, Elcida L; Bittencourt-Oliveira, Maria Do Carmo; Moura, Ariadne N

    2011-12-01

    The present study reports the phytoplankton abundance, dominance and co-existence relationships in the eutrophic Carpina reservoir, Pernambuco, Brazil. Sampling was carried out at six different depths bimonthly at a single reservoir spanning two climatic periods: dry season (January, September, and November 2006) and rainy season (March, May, and July 2006). Density, abundance, dominance, specific diversity and equitability of the community were determined, along with chlorophyll a, and physical and chemical variables of the environment. Eight species were considered abundant, and their densities corresponded to more than 90% of the total phytoplankton community quantified. Cyanobacteria represented more than 80% of this density. Cylindrospermopsis raciborskii was the only dominant taxon in the dry season, and was co-dominant in the rainy season. C. raciborskii, Planktothrix agardhii and Geitlerinema amphibium had the greatest densities and lowest vertical variation coefficients. The statistical analysis indicated relationships with vertical and seasonal variations in the phytoplankton community and the following variables: total dissolved solids, water temperature, electrical conductivity and pH. The changes in the environmental variables were discrete and regulated by the establishment of precipitation however, they were able to promote vertical and seasonal instability in the structure of the phytoplankton community.

  11. Abundance ratios in dwarf elliptical galaxies

    Science.gov (United States)

    Şen, Ş.; Peletier, R. F.; Boselli, A.; den Brok, M.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Mentz, J. J.; Paudel, S.; Salo, H.; Sybilska, A.; Toloba, E.; van de Ven, G.; Vazdekis, A.; Yesilyaprak, C.

    2018-04-01

    We determine abundance ratios of 37 dwarf ellipticals (dEs) in the nearby Virgo cluster. This sample is representative of the early-type population of galaxies in the absolute magnitude range -19.0 originate from late-type dwarfs or small spirals. Na-yields appear to be very metal-dependent, in agreement with studies of giant ellipticals, probably due to the large dependence on the neutron-excess in stars. We conclude that dEs have undergone a considerable amount of chemical evolution, they are therefore not uniformly old, but have extended SFH, similar to many of the Local Group galaxies.

  12. THE INFLUENCE OF RADIAL STELLAR MIGRATION ON THE CHEMICAL EVOLUTION OF THE MILKY WAY

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue; Zhao Gang, E-mail: gzhao@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-05-20

    Stellar migration is an important dynamical process in the Galactic disk. Here we model radial stellar migration in the Galactic disk with an analytical method, then add it to a detailed Galactic chemical evolution model to study the influence of radial stellar migration on the chemical evolution of the Milky Way, especially for the abundance gradients. We found that the radial stellar migration in the Galactic disk can make the profile of the G-dwarf metallicity distribution of the solar neighborhood taller and narrower, and thus it becomes another solution to the ''G-dwarf problem''. It can also scatter the age-metallicity relation. However, after migration, the abundance distributions along the Galactic radius do not change much; namely, the abundance gradients would not be flattened by the radial stellar migration, which is different from the predictions of many theoretical works. However, it can flatten the radial gradients of the mean chemical abundance of stars, and older stars possess flatter abundance gradients than younger stars. The most significant effect of radial stellar migration on the chemical abundance is that at a certain position it scatters the abundance of stars from a relatively concentrated value to a range.

  13. The GAPS programme with HARPS-N at TNG. X. Differential abundances in the XO-2 planet-hosting binary

    Science.gov (United States)

    Biazzo, K.; Gratton, R.; Desidera, S.; Lucatello, S.; Sozzetti, A.; Bonomo, A. S.; Damasso, M.; Gandolfi, D.; Affer, L.; Boccato, C.; Borsa, F.; Claudi, R.; Cosentino, R.; Covino, E.; Knapic, C.; Lanza, A. F.; Maldonado, J.; Marzari, F.; Micela, G.; Molaro, P.; Pagano, I.; Pedani, M.; Pillitteri, I.; Piotto, G.; Poretti, E.; Rainer, M.; Santos, N. C.; Scandariato, G.; Zanmar Sanchez, R.

    2015-11-01

    Binary stars hosting exoplanets are a unique laboratory where chemical tagging can be performed to measure the elemental abundances of both stellar components with high accuracy, with the aim to investigate the formation of planets and their subsequent evolution. Here, we present a high-precision differential abundance analysis of the XO-2 wide stellar binary based on high-resolution HARPS-N at TNG spectra. Both components are very similar K-dwarfs and host planets. Since they formed presumably within the same molecular cloud, we expect that they possess the same initial elemental abundances. We investigated whether planets can cause some chemical imprints in the stellar atmospheric abundances. We measure abundances of 25 elements for both stars with a range of condensation temperature TC = 40-1741 K, achieving typical precisions of ~0.07 dex. The northern component shows abundances in all elements higher by +0.067 ± 0.032 dex on average, with a mean difference of +0.078 dex for elements with TC > 800 K. The significance of the XO-2N abundance difference relative to XO-2S is at the 2σ level for almost all elements. We discuss that this result might be interpreted as the signature of the ingestion of material by XO-2N or depletion in XO-2S that is due to locking of heavy elements by the planetary companions. We estimate a mass of several tens of M⊕ in heavy elements. The difference in abundances between XO-2N and XO-2S shows a positive correlation with the condensation temperatures of the elements, with a slope of (4.7 ± 0.9) × 10-5 dex K-1, which could mean that both components have not formed terrestrial planets, but first experienced the accretion of rocky core interior to the subsequent giant planets. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the INAF - Fundación Galileo Galilei at the Roche de los Muchachos Observatory of the Instituto de Astrofísica de Canarias (IAC) in the

  14. A Model-Based Analysis of Chemical and Temporal Patterns of Cuticular Hydrocarbons in Male Drosophila melanogaster

    Science.gov (United States)

    Kent, Clement; Azanchi, Reza; Smith, Ben; Chu, Adrienne; Levine, Joel

    2007-01-01

    Drosophila Cuticular Hydrocarbons (CH) influence courtship behaviour, mating, aggregation, oviposition, and resistance to desiccation. We measured levels of 24 different CH compounds of individual male D. melanogaster hourly under a variety of environmental (LD/DD) conditions. Using a model-based analysis of CH variation, we developed an improved normalization method for CH data, and show that CH compounds have reproducible cyclic within-day temporal patterns of expression which differ between LD and DD conditions. Multivariate clustering of expression patterns identified 5 clusters of co-expressed compounds with common chemical characteristics. Turnover rate estimates suggest CH production may be a significant metabolic cost. Male cuticular hydrocarbon expression is a dynamic trait influenced by light and time of day; since abundant hydrocarbons affect male sexual behavior, males may present different pheromonal profiles at different times and under different conditions. PMID:17896002

  15. A model-based analysis of chemical and temporal patterns of cuticular hydrocarbons in male Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Clement Kent

    Full Text Available Drosophila Cuticular Hydrocarbons (CH influence courtship behaviour, mating, aggregation, oviposition, and resistance to desiccation. We measured levels of 24 different CH compounds of individual male D. melanogaster hourly under a variety of environmental (LD/DD conditions. Using a model-based analysis of CH variation, we developed an improved normalization method for CH data, and show that CH compounds have reproducible cyclic within-day temporal patterns of expression which differ between LD and DD conditions. Multivariate clustering of expression patterns identified 5 clusters of co-expressed compounds with common chemical characteristics. Turnover rate estimates suggest CH production may be a significant metabolic cost. Male cuticular hydrocarbon expression is a dynamic trait influenced by light and time of day; since abundant hydrocarbons affect male sexual behavior, males may present different pheromonal profiles at different times and under different conditions.

  16. LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS

    International Nuclear Information System (INIS)

    Aoki, Wako; Inoue, Susumu; Barklem, Paul S.; Beers, Timothy C.; Christlieb, Norbert; Perez, Ana E. GarcIa; Norris, John E.; Carollo, Daniela

    2009-01-01

    We have determined Li abundances for eleven metal-poor turnoff stars, among which eight have [Fe/H] <-3, based on LTE analyses of high-resolution spectra obtained with the High Dispersion Spectrograph on the Subaru Telescope. The Li abundances for four of these eight stars are determined for the first time by this study. Effective temperatures are determined by a profile analysis of Hα and Hβ. While seven stars have Li abundances as high as the Spite Plateau value, the remaining four objects with [Fe/H] <-3 have A(Li) =log (Li/H)+ 12 ∼< 2.0, confirming the existence of extremely metal-poor (EMP) turnoff stars having low Li abundances, as reported by previous work. The average of the Li abundances for stars with [Fe/H]<-3 is lower by 0.2 dex than that of the stars with higher metallicity. No clear constraint on the metallicity dependence or scatter of the Li abundances is derived from our measurements for the stars with [Fe/H]<-3. Correlations of the Li abundance with effective temperatures, with abundances of Na, Mg, and Sr, and with the kinematical properties are investigated, but no clear correlation is seen in the EMP star sample.

  17. Taxonomic and chemical assessment of exceptionally abundant rock mine biofilm

    Directory of Open Access Journals (Sweden)

    Karolina Tomczyk-Żak

    2017-08-01

    Full Text Available Background An exceptionally thick biofilm covers walls of ancient gold and arsenic Złoty Stok mine (Poland in the apparent absence of organic sources of energy. Methods and Results We have characterized this microbial community using culture-dependent and independent methods. We sequenced amplicons of the 16S rRNA gene obtained using generic primers and additional primers targeted at Archaea and Actinobacteria separately. Also, we have cultured numerous isolates from the biofilm on different media under aerobic and anaerobic conditions. We discovered very high biodiversity, and no single taxonomic group was dominant. The majority of almost 4,000 OTUs were classified above genus level indicating presence of novel species. Elemental analysis, performed using SEM-EDS and X-ray, of biofilm samples showed that carbon, sulphur and oxygen were not evenly distributed in the biofilm and that their presence is highly correlated. However, the distribution of arsenic and iron was more flat, and numerous intrusions of elemental silver and platinum were noted, indicating that microorganisms play a key role in releasing these elements from the rock. Conclusions Altogether, the picture obtained throughout this study shows a very rich, complex and interdependent system of rock biofilm. The chemical heterogeneity of biofilm is a likely explanation as to why this oligotrophic environment is capable of supporting such high microbial diversity.

  18. A Kine-chemical Investigation of the AB Dor Moving Group "Stream"

    Science.gov (United States)

    Barenfeld, Scott A.; Bubar, Eric J.; Mamajek, Eric E.; Young, Patrick A.

    2013-03-01

    The AB Dor Moving Group consists of a "nucleus" of ~10 stars at d ~= 20 pc, along with dozens of purported "stream" members distributed across the sky. We perform a chemical and kinematic analysis of a subsample of AB Dor stream stars to test whether they constitute a physical stellar group. We use the NEMO Galactic kinematic code to investigate the orbits of the stream members, and perform a chemical abundance analysis using high resolution spectra taken with the Magellan Clay 6.5 m telescope. Using a χ2 test with the measured abundances for 10 different elements, we find that only half of the purported AB Dor stream members could possibly constitute a statistically chemically homogeneous sample. Some stream members with three-dimensional velocities were hundreds of parsecs from the AB Dor nucleus ~108 yr ago, and hence were unlikely to share a common origin. We conclude that the published lists of AB Dor moving group stream members are unlikely to represent the dispersed remnant of a single star formation episode. A subsample of the stream stars appears to be both statistically chemically homogeneous and in the vicinity of the AB Dor nucleus at birth. Their mean metallicity is [Fe/H] = 0.02 ± 0.02 dex, which we consider representative for the AB Dor group. Finally, we report a strong lower limit on the age of the AB Dor nucleus of >110 Myr based on the pre-main sequence contraction times for K-type members which have reached the main sequence.

  19. Physico-Chemical Analysis and Sensory Evaluation of Bread

    African Journals Online (AJOL)

    Shuaibu et al.

    Physico-Chemical Analysis and Sensory Evaluation of Bread Produced Using ... analysis of the bread samples revealed that the moisture content ..... 72. Jarup, L. ,2003. Hazards of heavy metal contamination. Br Med. Bull; 68, pp.167-82.

  20. Rapid chemical analysis of allanite

    International Nuclear Information System (INIS)

    Nishiyama, Goro; Hayashi, Hiroshi

    1981-01-01

    Rapid chemical analysis of allanite was studied by atomic absorption spectrophotometry. Powdered sample was fused with mixture of sodium carbonate anhydrous and borax (4 : 1 weight) in platinum crucible and sample solution was prepared. SiO 2 , Fe 2 O 3 , Al 2 O 3 , MnO and rare earth metals were determined by atomic absorption spectrophotometry, CaO, MgO and Ce 2 O 3 by titration, ThO 2 by colorimetry, and La 2 O 3 by flame photometry respectively. For sample solution treated with hydrofluoric acid and sulfuric acid. Na 2 O and K 2 O were determined by atomic absorption spectrophotometry, TiO 2 and P 2 O 5 by colorimetry. Chemical analyses for four samples were carried out and gave consistent results. (author)

  1. Abundance in the planetary nebulae NGC 6537 and He2-111

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Feibelman, WA

    2000-01-01

    The ISO and IUE spectra of the bipolar planetary nebulae NGC 6537 and He2-111 are presented. These spectra are combined with the spectrum in the visual wavelength region from the nebulae to obtain a complete spectrum that is corrected for extinction. The chemical abundance of the nebulae is then

  2. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H.-G.; Steffen, M.; Zaggia, S.; Abate, C.

    2018-04-01

    Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios. Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations. Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

  3. Chemical, Physical, and zooplankton abundance/biomass data collected using several instruments in the Coastal Waters of California as a part of the California Cooperative Fisheries Investigation (CALCOFI) project, from 07 January 2000 to 01 July 2000 (NODC Accession 0000298)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, and zooplankton abundance/biomass data were collected using secchi disk, zooplankton net, current meter (ADCP), bottle, and CTD casts in the...

  4. An investigation into the population abundance distribution of mRNAs, proteins, and metabolites in biological systems.

    Science.gov (United States)

    Lu, Chuan; King, Ross D

    2009-08-15

    Distribution analysis is one of the most basic forms of statistical analysis. Thanks to improved analytical methods, accurate and extensive quantitative measurements can now be made of the mRNA, protein and metabolite from biological systems. Here, we report a large-scale analysis of the population abundance distributions of the transcriptomes, proteomes and metabolomes from varied biological systems. We compared the observed empirical distributions with a number of distributions: power law, lognormal, loglogistic, loggamma, right Pareto-lognormal (PLN) and double PLN (dPLN). The best-fit for mRNA, protein and metabolite population abundance distributions was found to be the dPLN. This distribution behaves like a lognormal distribution around the centre, and like a power law distribution in the tails. To better understand the cause of this observed distribution, we explored a simple stochastic model based on geometric Brownian motion. The distribution indicates that multiplicative effects are causally dominant in biological systems. We speculate that these effects arise from chemical reactions: the central-limit theorem then explains the central lognormal, and a number of possible mechanisms could explain the long tails: positive feedback, network topology, etc. Many of the components in the central lognormal parts of the empirical distributions are unidentified and/or have unknown function. This indicates that much more biology awaits discovery.

  5. Recreating the chemical evolution of the Sagittarius dwarf spheroidal from its tidal debris

    Science.gov (United States)

    Carlin, Jeffrey L.; Sheffield, Allyson; Cunha, Katia M. L.; Smith, Verne V.

    2018-06-01

    We present a detailed chemical analysis of the Sagittarius (Sgr) tidal stream based on high-resolution Gemini+GRACES spectra of 42 members of the highest surface brightness portions of both the trailing and leading arms of the Sgr stream. We select Sgr tidal stream candidates using a 2MASS+WISE color-color selection, combined with LAMOST radial velocities, allowing us to efficiently select Sgr stream members with little contamination from field stars. Sgr is a recently infallen, currently disrupting dwarf spheroidal galaxy, with roughly 70% of the luminosity of the Sgr system residing in the tidal streams. With this study, we provide a link between the (known) chemical properties in the intact Sgr core and the significant portion of the Sgr system's luminosity that is estimated to currently reside in the streams. In this talk, we focus on abundances of alpha-elements, but we will also analyze neutron-capture (both r- and s-process) and iron-peak species. We compare our chemical abundances to the few existing measurements in the stream as well as the numerous results in the Sgr core.

  6. X-shooter spectroscopy of young stellar objects in Lupus. Lithium, iron, and barium elemental abundances

    Science.gov (United States)

    Biazzo, K.; Frasca, A.; Alcalá, J. M.; Zusi, M.; Covino, E.; Randich, S.; Esposito, M.; Manara, C. F.; Antoniucci, S.; Nisini, B.; Rigliaco, E.; Getman, F.

    2017-09-01

    Aims: With the purpose of performing a homogeneous determination of elemental abundances for members of the Lupus T association, we analyzed three chemical elements: lithium, iron, and barium. The aims were: 1) to derive the lithium abundance for the almost complete sample ( 90%) of known class II stars in the Lupus I, II, III, and IV clouds; 2) to perform chemical tagging of a region where few iron abundance measurements have been obtained in the past, and no determination of the barium content has been done up to now. We also investigated possible barium enhancement at the very young age of the region, as this element has become increasingly interesting in the last few years following the evidence of barium over-abundance in young clusters, the origin of which is still unknown. Methods: Using the X-shooter spectrograph mounted on the Unit 2 (UT2) at the Very Large Telescope (VLT), we analyzed the spectra of 89 cluster members, both class II (82) and class III (7) stars. We measured the strength of the lithium line at λ6707.8 Å and derived the abundance of this element through equivalent width measurements and curves of growth. For six class II stars we also derived the iron and barium abundances using the spectral synthesis method and the code MOOG. The veiling contribution was taken into account in the abundance analysis for all three elements. Results: We find a dispersion in the strength of the lithium line at low effective temperatures and identify three targets with severe Li depletion. The nuclear age inferred for these highly lithium-depleted stars is around 15 Myr, which exceeds by an order of magnitude the isochronal one. We derive a nearly solar metallicity for the members whose spectra could be analyzed. We find that Ba is over-abundant by 0.7 dex with respect to the Sun. Since current theoretical models cannot reproduce this abundance pattern, we investigated whether this unusually large Ba content might be related to effects due to stellar

  7. Chemical analysis of geological samples

    International Nuclear Information System (INIS)

    Malhotra, R.K.

    1997-01-01

    Most of the analytical methodology used in geochemical exploration has been based on molecular absorption, atomic absorption, and ICP-AES, ICPMAS etc. Detection limit and precision are factors in the choice of methodology in search of metallic ores and are related to the accuracy of data. A brief outline of the various chemical analysis techniques explaining essentially the basics of measurement principles and instrumentation is discussed

  8. The Chemical Composition of Mercury

    OpenAIRE

    Nittler, Larry R.; Chabot, Nancy L.; Grove, Timothy L.; Peplowski, Patrick N.

    2017-01-01

    The chemical composition of a planetary body reflects its starting conditions modified by numerous processes during its formation and geological evolution. Measurements by X-ray, gamma-ray, and neutron spectrometers on the MESSENGER spacecraft revealed Mercury's surface to have surprisingly high abundances of the moderately volatile elements sodium, sulfur, potassium, chlorine, and thorium, and a low abundance of iron. This composition rules out some formation models for which high temperatur...

  9. QUALITY ASSURANCE GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following quality assurance guidelines to provide laboratories engaged in forensic analysis of chemical evidence associated with terrorism a framework to implement a quality assura...

  10. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

    Science.gov (United States)

    Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un

    2008-12-15

    A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.

  11. Chemical composition of ground water and the locations of permeable zones in the Yucca Mountain area, Nevada

    International Nuclear Information System (INIS)

    Benson, L.V.; Robison, J.H.; Blankennagel, R.K.; Ogard, A.E.

    1983-01-01

    Ten wells in the Yucca Mountain area of southern Nevada have been sampled for chemical analysis. Samples were obtained during pumping of water from the entire well bore (composite sample) and in one instance by pumping water from a single isolated interval in well UE-25b number 1. Sodium is the most abundant cation and bicarbonate the most abundant anion in all water samples. Although the general chemical compositions of individual samples are similar, there are significant differences in uncorrected carbon-14 age and in inorganic and stable-isotope composition. Flow surveys of seven wells performed using iodine-131 as a tracer indicate that ground-water production is usually from one or more discrete zones of permeability. 7 references, 12 figures, 1 table

  12. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Brett H. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A., E-mail: andrewsb@pitt.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  13. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    International Nuclear Information System (INIS)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-01-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  14. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis.

    Science.gov (United States)

    Briones, María Jesús I; Schmidt, Olaf

    2017-10-01

    The adoption of less intensive soil cultivation practices is expected to increase earthworm populations and their contributions to ecosystem functioning. However, conflicting results have been reported on the effects of tillage intensity on earthworm populations, attributed in narrative reviews to site-dependent differences in soil properties, climatic conditions and agronomic operations (e.g. fertilization, residue management and chemical crop protection). We present a quantitative review based on a global meta-analysis, using paired observations from 165 publications performed over 65 years (1950-2016) across 40 countries on five continents, to elucidate this long-standing unresolved issue. Results showed that disturbing the soil less (e.g. no-tillage and conservation agriculture [CA]) significantly increased earthworm abundance (mean increase of 137% and 127%, respectively) and biomass (196% and 101%, respectively) compared to when the soil is inverted by conventional ploughing. Earthworm population responses were more pronounced when the soil had been under reduced tillage (RT) for a long time (>10 years), in warm temperate zones with fine-textured soils, and in soils with higher clay contents (>35%) and low pH (earthworm population responses to RT. Additional meta-analyses confirmed that epigeic and, more importantly, the bigger-sized anecic earthworms were the most sensitive ecological groups to conventional tillage. In particular, the deep burrower Lumbricus terrestris exhibited the strongest positive response to RT, increasing in abundance by 124% more than the overall mean of all 13 species analysed individually. The restoration of these two important ecological groups of earthworms and their burrowing, feeding and casting activities under various forms of RT will ensure the provision of ecosystem functions such as soil structure maintenance and nutrient cycling by "nature's plough." © 2017 John Wiley & Sons Ltd.

  15. Optical MEMS for chemical analysis and biomedicine

    CERN Document Server

    Jiang, Hongrui

    2016-01-01

    This book describes the current state of optical MEMS in chemical and biomedical analysis and brings together current trends and highlights topics representing the most exciting progress in recent years in the field.

  16. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1990-01-01

    Initial conditions are probably set by results of Big Bang nucleosynthesis (BBNS) without intervening complications affecting the composition of visible matter so that extrapolation of observed abundances to BBNS products seems fairly secure. Primordial helium and deuterium abundances deduced in this way place upper and lower limits on baryonic density implying that both baryonic and non-baryonic dark matter exist and predicting no more than 3 neutrino flavours as recently confirmed in accelerator experiments. The validity of simple galactic chemical evolution models assumed in extrapolating back to the Big Bang is examined in the light of the frequency distribution of iron or oxygen abundances in the Galactic halo, bulge and disk. (orig.)

  17. THE RAVE CATALOG OF STELLAR ELEMENTAL ABUNDANCES: FIRST DATA RELEASE

    International Nuclear Information System (INIS)

    Boeche, C.; Williams, M.; De Jong, R. S.; Steinmetz, M.; Siebert, A.; Bienaymé, O.; Fulbright, J. P.; Ruchti, G. R.; Bland-Hawthorn, J.; Campbell, R.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G. M.

    2011-01-01

    We present chemical elemental abundances for 36,561 stars observed by the RAdial Velocity Experiment (RAVE), an ambitious spectroscopic survey of our Galaxy at Galactic latitudes |b| > 25° and with magnitudes in the range 9 DENIS 2 minimization technique. We plan to extend this pipeline to include estimates for other elements, such as oxygen and sulfur, in future data releases.

  18. Nonradiological chemical pathway analysis and identification of chemicals of concern for environmental monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Blanton, M.L.; Cooper, A.T.; Castleton, K.J.

    1995-11-01

    Pacific Northwest's Surface Environmental Surveillance Project (SESP) is an ongoing effort tot design, review, and conducted monitoring on and off the Hanford site. Chemicals of concern that were selected are listed. Using modeled exposure pathways, the offsite cancer incidence and hazard quotient were calculated and a retrospective pathway analysis performed to estimate what onsite concentrations would be required in the soil for each chemical of concern and other detected chemicals that would be required to obtain an estimated offsite human-health risk of 1.0E-06 cancer incidence or 1.0 hazard quotient. This analysis indicates that current nonradiological chemical contamination occurring on the site does not pose a significant offsite human-health risk; the highest cancer incidence to the offsite maximally exposed individual was from arsenic (1.76E-10); the highest hazard quotient was chromium(VI) (1.48E-04). The most sensitive pathways of exposure were surfacewater and aquatic food consumption. Combined total offsite excess cancer incidence was 2.09E-10 and estimated hazard quotient was 2.40E-04. Of the 17 identified chemicals of concern, the SESP does not currently (routinely) monitor arsenic, benzo(a)pyrene, bis(2- ethylhexyl)phthalate (BEHP), and chrysene. Only 3 of the chemicals of concern (arsenic, BEHP, chloroform) could actually occur in onsite soil at concern high enough to cause a 1.0E-06 excess cancer incidence or a 1.0 hazard index for a given offsite exposure pathway. During the retrospective analysis, 20 other chemicals were also evaluated; only vinyl chloride and thallium could reach targeted offsite risk values

  19. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX).

    Science.gov (United States)

    Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R

    2014-08-01

    Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.

  20. Instrumental Neutron Activation Analysis in archaeology interpretation beyond elemental abundance

    International Nuclear Information System (INIS)

    Bishop, Ronald L.

    2001-01-01

    Application of instrumental neutron activation analysis to the study of archaeological ceramics involves the determination of the source or sources used to produce pottery. Groups of relatively homogeneous elemental abundances are shown to be statically distinct from one another often leading to the assesment of what was locally produced and what was imported to a site. These assesment, however are among the most preliminary interpretations. Archaeology is concerned with the reasons for artificial distributions and how and why the distribution varied through time 3 reasons that include the social and political basis of ancient economics and how these responded to other factors, such as ideology. These objectives are addressed through the increasing refinement of compositional groups leading toward greater specificity of attribution. In so doing the role of analytical precision among other considerations groves in importance. This paper illustration some of these considerations with examples from the U.S. southwest, the Maya region of southern mexico, and lower central America

  1. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin (UC)

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  2. Abundance of birds in Fukushima as judged from Chernobyl

    International Nuclear Information System (INIS)

    Møller, Anders Pape; Hagiwara, Atsushi; Matsui, Shin; Kasahara, Satoe; Kawatsu, Kencho; Nishiumi, Isao; Suzuki, Hiroyuki; Ueda, Keisuke; Mousseau, Timothy A.

    2012-01-01

    The effects of radiation on abundance of common birds in Fukushima can be assessed from the effects of radiation in Chernobyl. Abundance of birds was negatively related to radiation, with a significant difference between Fukushima and Chernobyl. Analysis of 14 species common to the two areas revealed a negative effect of radiation on abundance, differing between areas and species. The relationship between abundance and radiation was more strongly negative in Fukushima than in Chernobyl for the same 14 species, demonstrating a negative consequence of radiation for birds immediately after the accident on 11 March 2011 during the main breeding season in March–July, when individuals work close to their maximum sustainable level. - Highlights: ► Abundance of birds was negatively related to radiation in Chernobyl and Fukushima. ► Effects of radiation on abundance differed between Chernobyl and Fukushima and among species. ► For 14 species common to the two areas the effects of radiation on abundance were stronger in Fukushima than in Chernobyl. - The negative effect of radiation on abundance of birds in Fukushima exceeded that for the same species in Chernobyl.

  3. Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates

    DEFF Research Database (Denmark)

    Elliot, Samuel Gilbert; Tolborg, Søren; Sádaba, Irantzu

    2017-01-01

    -containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters with additional olefin and alcohol functionalities. We employ an NMR approach to identify, quantify and optimize the formation these building blocks in the chemocatalytic transformation of abundant carbohydrates by Sn...

  4. An MCMC determination of the primordial helium abundance

    Science.gov (United States)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.

    2012-04-01

    Spectroscopic observations of the chemical abundances in metal-poor H II regions provide an independent method for estimating the primordial helium abundance. H II regions are described by several physical parameters such as electron density, electron temperature, and reddening, in addition to y, the ratio of helium to hydrogen. It had been customary to estimate or determine self-consistently these parameters to calculate y. Frequentist analyses of the parameter space have been shown to be successful in these parameter determinations, and Markov Chain Monte Carlo (MCMC) techniques have proven to be very efficient in sampling this parameter space. Nevertheless, accurate determination of the primordial helium abundance from observations of H II regions is constrained by both systematic and statistical uncertainties. In an attempt to better reduce the latter, and continue to better characterize the former, we apply MCMC methods to the large dataset recently compiled by Izotov, Thuan, & Stasińska (2007). To improve the reliability of the determination, a high quality dataset is needed. In pursuit of this, a variety of cuts are explored. The efficacy of the He I λ4026 emission line as a constraint on the solutions is first examined, revealing the introduction of systematic bias through its absence. As a clear measure of the quality of the physical solution, a χ2 analysis proves instrumental in the selection of data compatible with the theoretical model. Nearly two-thirds of the observations fall outside a standard 95% confidence level cut, which highlights the care necessary in selecting systems and warrants further investigation into potential deficiencies of the model or data. In addition, the method also allows us to exclude systems for which parameter estimations are statistical outliers. As a result, the final selected dataset gains in reliability and exhibits improved consistency. Regression to zero metallicity yields Yp = 0.2534 ± 0.0083, in broad agreement

  5. An MCMC determination of the primordial helium abundance

    International Nuclear Information System (INIS)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.

    2012-01-01

    Spectroscopic observations of the chemical abundances in metal-poor H II regions provide an independent method for estimating the primordial helium abundance. H II regions are described by several physical parameters such as electron density, electron temperature, and reddening, in addition to y, the ratio of helium to hydrogen. It had been customary to estimate or determine self-consistently these parameters to calculate y. Frequentist analyses of the parameter space have been shown to be successful in these parameter determinations, and Markov Chain Monte Carlo (MCMC) techniques have proven to be very efficient in sampling this parameter space. Nevertheless, accurate determination of the primordial helium abundance from observations of H II regions is constrained by both systematic and statistical uncertainties. In an attempt to better reduce the latter, and continue to better characterize the former, we apply MCMC methods to the large dataset recently compiled by Izotov, Thuan, and Stasińska (2007). To improve the reliability of the determination, a high quality dataset is needed. In pursuit of this, a variety of cuts are explored. The efficacy of the He I λ4026 emission line as a constraint on the solutions is first examined, revealing the introduction of systematic bias through its absence. As a clear measure of the quality of the physical solution, a χ 2 analysis proves instrumental in the selection of data compatible with the theoretical model. Nearly two-thirds of the observations fall outside a standard 95% confidence level cut, which highlights the care necessary in selecting systems and warrants further investigation into potential deficiencies of the model or data. In addition, the method also allows us to exclude systems for which parameter estimations are statistical outliers. As a result, the final selected dataset gains in reliability and exhibits improved consistency. Regression to zero metallicity yields Y p = 0.2534 ± 0.0083, in broad

  6. Using SPIRAL (Single Pollen Isotope Ratio AnaLysis) to estimate C 3- and C 4-grass abundance in the paleorecord

    Science.gov (United States)

    Nelson, David M.; Hu, Feng Sheng; Scholes, Daniel R.; Joshi, Neeraj; Pearson, Ann

    2008-05-01

    C 3 and C 4 grasses differ greatly in their responses to environmental controls and influences on biogeochemical processes (e.g. water, carbon, and nutrient cycling). Difficulties in distinguishing between these two functional groups of grasses have hindered paleoecological studies of grass-dominated ecosystems. Stable carbon isotopic analysis of individual grains of grass pollen using a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer holds promise for improving C 3 and C 4 grass reconstructions. This technique, SPIRAL (Single Pollen Isotope Ratio AnaLysis), has only been evaluated using pollen of known C 3 and C 4 grasses. To test the ability of SPIRAL to reproduce the abundance of C 3 and C 4 grasses on the landscape, we measured δ13C values of > 1500 individual grains of grass pollen isolated from the surface sediments of ten lakes in areas that span a large gradient of C 3- and C 4-grass abundance, as determined from vegetation surveys. Results indicate a strong positive correlation between the δ13C-based estimates of % C 4-grass pollen and the abundance of C 4 grasses on the landscape. The % C 4-grass pollen slightly underestimates the actual abundance of C 4 grasses at sites with high proportions of C 4 grasses, which can be corrected using regression analysis. Comparison of the % C 4-grass pollen with C/N and δ13C measurements of bulk organic matter illustrates the distinct advantages of grass-pollen δ13C as a proxy for distinguishing C 3 and C 4 shifts within the grass family. Thus SPIRAL promises to advance our understanding of grassland ecology and evolution.

  7. LiHe{sup +} IN THE EARLY UNIVERSE: A FULL ASSESSMENT OF ITS REACTION NETWORK AND FINAL ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Bovino, Stefano; Tacconi, Mario; Gianturco, Francesco A. [Department of Chemistry, Universita degli Studi di Roma ' La Sapienza' , Piazzale A. Moro 5, 00185 Roma (Italy); Curik, Roman [J. Heyrovsky Institute of Physical Chemistry, Dolejskova 3, Prague (Czech Republic); Galli, Daniele, E-mail: fa.gianturco@caspur.it [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze (Italy)

    2012-06-10

    We present the results of quantum calculations based on entirely ab initio methods for a variety of molecular processes and chemical reactions involving the LiHe{sup +} ionic polar molecule. With the aid of these calculations, we derive accurate reaction rates and fitting expressions valid over a range of gas temperatures representative of the typical conditions of the pregalactic gas. With the help of a full chemical network, we then compute the evolution of the abundance of LiHe{sup +} as function of redshift in the early universe. Finally, we compare the relative abundance of LiHe{sup +} with that of other polar cations formed in the same redshift interval.

  8. Chemical Analysis of Asymptotic Giant Branch Stars in M62

    NARCIS (Netherlands)

    Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.

    2015-01-01

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al).

  9. Carbon and oxygen abundances of field RR Lyrae stars. I. Carbon abundances

    International Nuclear Information System (INIS)

    Butler, D.; Manduca, A.; Deming, D.; Bell, R.A.

    1982-01-01

    From an analysis of KPNO 4-m echelle plates and simultaneous uvbyβ photometry, we have determined carbon abundances and carbon-to-iron ratios for a large number of field RR Lyrae stars having [Fe/H]> or approx. =-1.2. It is found that these field RR Lyrae stars: stars which are known to be in an advanced evolutionary state: have carbon-to-iron ratios which are similar to those of unevolved stars

  10. Light, Alpha, and Fe-peak Element Abundances in the Galactic Bulge

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki; Kunder, Andrea; Koch, Andreas

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,-3.02) and (0,-12). The (+5.25,-3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ~ 20,000), high signal-to-noise ration (S/N >~ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] >~ -0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M ⊙ are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars. However, the

  11. Light, alpha, and Fe-peak element abundances in the galactic bulge

    International Nuclear Information System (INIS)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki; Kunder, Andrea; Koch, Andreas

    2014-01-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M ☉ are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars

  12. Light, alpha, and Fe-peak element abundances in the galactic bulge

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States); Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Kobayashi, Chiaki [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Kunder, Andrea [Leibniz-Institute für Astrophysik Potsdam (AIP), Ander Sternwarte 16, D-14482, Potsdam (Germany); Koch, Andreas, E-mail: cjohnson@cfa.harvard.edu, E-mail: rmr@astro.ucla.edu, E-mail: c.kobayashi@herts.ac.uk, E-mail: akunder@aip.de, E-mail: akoch@lsw.uni-heidelberg.de [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, Heidelberg (Germany)

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M {sub ☉} are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field

  13. Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)

    Science.gov (United States)

    Coplen, Tyler B.; Shrestha, Yesha

    2016-01-01

    There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.

  14. Elemental abundance analyses with coadded Dominion Astrophysical Observatory spectrograms: Pt. 3

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1988-01-01

    Elemental abundance analyses were performed for three superficially normal main-sequence stars θ Leonis (A2V), τ Herculus (B5IV) and ο Pegasi (AlIV). These studies used coadded spectrograms produced from at least 12 2.4 A mm -1 IIaO Dominion Astrophysical Observatory spectrograms and show a greater degree of internal consistency and smaller microturbulent velocities than previous studies of these stars which used lower signal-to-noise data. Many lines not previously seen were identified including some of new atomic species whose analysis provide a more complete picture of the elemental abundances. The identification and analysis of La II lines in ο Peg link this star more closely with the classical metallic-lined (Am) stars, although there are considerable differences in abundances. Some of θ Leo's elemental abundances, particularly those of vanadium, strontium, and zirconium, are significantly different from solar in confirmation of previous analyses. τ Her's elemental abundances are typically a factor of 2 less than solar. (author)

  15. Sc and neutron-capture abundances in Galactic low- and high-alpha field halo stars

    DEFF Research Database (Denmark)

    Fishlock, Cherie K.; Yong, D.; Karakas, Amanda I.

    2017-01-01

    We determine relative abundance ratios for the neutron-capture elements Zr, La, Ce, Nd and Eu for a sample of 27 Galactic dwarf stars with -1.5 stars separate into three populations (low-and high-a halo and thick-disc stars) based......-alpha stars have a lower abundance compared to the high-alpha stars. The low-alpha stars display the same abundance patterns of high [Ba/Y] and low [Y/Eu] as observed in present-day dwarf spheroidal galaxies, although with smaller abundance differences, when compared to the high-alpha stars. These distinct...... chemical patterns have been attributed to differences in the star formation rate between the two populations and the contribution of low-metallicity, low-mass asymptotic giant branch (AGB) stars to the low-alpha population. By comparing the low-alpha population with AGB stellar models, we place constraints...

  16. Chemical analysis of cyanide in cyanidation process: review of methods

    International Nuclear Information System (INIS)

    Nova-Alonso, F.; Elorza-Rodriguez, E.; Uribe-Salas, A.; Perez-Garibay, R.

    2007-01-01

    Cyanidation, the world wide method for precious metals recovery, the chemical analysis of cyanide, is a very important, but complex operation. Cyanide can be present forming different species, each of them with different stability, toxicity, analysis method and elimination technique. For cyanide analysis, there exists a wide selection of analytical methods but most of them present difficulties because of the interference of species present in the solution. This paper presents the different available methods for chemical analysis of cyanide: titration, specific electrode and distillation, giving special emphasis on the interferences problem, with the aim of helping in the interpretation of the results. (Author)

  17. Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity?

    Science.gov (United States)

    Kochukhov, O.; Wade, G. A.; Shulyak, D.

    2012-04-01

    Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has provided the very first maps of stellar magnetic field topologies reconstructed from time series of full Stokes vector spectra, revealing the presence of small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticised by Stift et al., who claimed that magnetic inversions are not robust and are seriously undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and consistently neglected some of the most fundamental principles behind magnetic mapping. Using state-of-the-art opacity sampling model atmosphere and polarized radiative transfer codes, we demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalized local Stokes profiles except for the rare situation of a very strong line in an extremely Fe-rich atmosphere. For the disc-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere leads to moderate errors in Stokes I but is negligible for the circular and linear polarization spectra. Employing a new magnetic inversion code, which incorporates the horizontal variation of atmospheric structure induced by chemical spots, we reconstructed new maps of magnetic field and Fe abundance for the bright Ap star α2 CVn. The resulting distribution of chemical spots changes insignificantly compared to the previous modelling based on a single model atmosphere, while the magnetic field geometry does not change at all. This shows that the assertions by Stift et al. are exaggerated as a consequence of unreasonable assumptions and

  18. Bayesian analysis of systems with random chemical composition: renormalization-group approach to Dirichlet distributions and the statistical theory of dilution.

    Science.gov (United States)

    Vlad, Marcel Ovidiu; Tsuchiya, Masa; Oefner, Peter; Ross, John

    2002-01-01

    We investigate the statistical properties of systems with random chemical composition and try to obtain a theoretical derivation of the self-similar Dirichlet distribution, which is used empirically in molecular biology, environmental chemistry, and geochemistry. We consider a system made up of many chemical species and assume that the statistical distribution of the abundance of each chemical species in the system is the result of a succession of a variable number of random dilution events, which can be described by using the renormalization-group theory. A Bayesian approach is used for evaluating the probability density of the chemical composition of the system in terms of the probability densities of the abundances of the different chemical species. We show that for large cascades of dilution events, the probability density of the composition vector of the system is given by a self-similar probability density of the Dirichlet type. We also give an alternative formal derivation for the Dirichlet law based on the maximum entropy approach, by assuming that the average values of the chemical potentials of different species, expressed in terms of molar fractions, are constant. Although the maximum entropy approach leads formally to the Dirichlet distribution, it does not clarify the physical origin of the Dirichlet statistics and has serious limitations. The random theory of dilution provides a physical picture for the emergence of Dirichlet statistics and makes it possible to investigate its validity range. We discuss the implications of our theory in molecular biology, geochemistry, and environmental science.

  19. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.

    Science.gov (United States)

    Robatjazi, Hossein; Zhao, Hangqi; Swearer, Dayne F; Hogan, Nathaniel J; Zhou, Linan; Alabastri, Alessandro; McClain, Michael J; Nordlander, Peter; Halas, Naomi J

    2017-06-21

    The rational combination of plasmonic nanoantennas with active transition metal-based catalysts, known as 'antenna-reactor' nanostructures, holds promise to expand the scope of chemical reactions possible with plasmonic photocatalysis. Here, we report earth-abundant embedded aluminum in cuprous oxide antenna-reactor heterostructures that operate more effectively and selectively for the reverse water-gas shift reaction under milder illumination than in conventional thermal conditions. Through rigorous comparison of the spatial temperature profile, optical absorption, and integrated electric field enhancement of the catalyst, we have been able to distinguish between competing photothermal and hot-carrier driven mechanistic pathways. The antenna-reactor geometry efficiently harnesses the plasmon resonance of aluminum to supply energetic hot-carriers and increases optical absorption in cuprous oxide for selective carbon dioxide conversion to carbon monoxide with visible light. The transition from noble metals to aluminum based antenna-reactor heterostructures in plasmonic photocatalysis provides a sustainable route to high-value chemicals and reaffirms the practical potential of plasmon-mediated chemical transformations.Plasmon-enhanced photocatalysis holds promise for the control of chemical reactions. Here the authors report an Al@Cu 2 O heterostructure based on earth abundant materials to transform CO 2 into CO at significantly milder conditions.

  20. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and

  1. Chemical analysis by nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y

    2002-01-01

    This state art report consists of four parts, production of micro-particles, analysis of boron, alpha tracking method and development of neutron induced prompt gamma ray spectroscopy (NIPS) system. The various methods for the production of micro-paticles such as mechanical method, electrolysis method, chemical method, spray method were described in the first part. The second part contains sample treatment, separation and concentration, analytical method, and application of boron analysis. The third part contains characteristics of alpha track, track dectectors, pretreatment of sample, neutron irradiation, etching conditions for various detectors, observation of track on the detector, etc. The last part contains basic theory, neutron source, collimator, neutron shields, calibration of NIPS, and application of NIPS system.

  2. Chemical analysis by nuclear techniques

    International Nuclear Information System (INIS)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.

    2002-01-01

    This state art report consists of four parts, production of micro-particles, analysis of boron, alpha tracking method and development of neutron induced prompt gamma ray spectroscopy (NIPS) system. The various methods for the production of micro-paticles such as mechanical method, electrolysis method, chemical method, spray method were described in the first part. The second part contains sample treatment, separation and concentration, analytical method, and application of boron analysis. The third part contains characteristics of alpha track, track dectectors, pretreatment of sample, neutron irradiation, etching conditions for various detectors, observation of track on the detector, etc. The last part contains basic theory, neutron source, collimator, neutron shields, calibration of NIPS, and application of NIPS system

  3. Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars

    Science.gov (United States)

    Reggiani, Henrique; Meléndez, Jorge; Kobayashi, Chiaki; Karakas, Amanda; Placco, Vinicius

    2017-12-01

    Context. The chemical abundances of metal-poor halo stars are important to understanding key aspects of Galactic formation and evolution. Aims: We aim to constrain Galactic chemical evolution with precise chemical abundances of metal-poor stars (-2.8 ≤ [Fe/H] ≤ -1.5). Methods: Using high resolution and high S/N UVES spectra of 23 stars and employing the differential analysis technique we estimated stellar parameters and obtained precise LTE chemical abundances. Results: We present the abundances of Li, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Sr, Y, Zr, and Ba. The differential technique allowed us to obtain an unprecedented low level of scatter in our analysis, with standard deviations as low as 0.05 dex, and mean errors as low as 0.05 dex for [X/Fe]. Conclusions: By expanding our metallicity range with precise abundances from other works, we were able to precisely constrain Galactic chemical evolution models in a wide metallicity range (-3.6 ≤ [Fe/H] ≤ -0.4). The agreements and discrepancies found are key for further improvement of both models and observations. We also show that the LTE analysis of Cr II is a much more reliable source of abundance for chromium, as Cr I has important NLTE effects. These effects can be clearly seen when we compare the observed abundances of Cr I and Cr II with GCE models. While Cr I has a clear disagreement between model and observations, Cr II is very well modeled. We confirm tight increasing trends of Co and Zn toward lower metallicities, and a tight flat evolution of Ni relative to Fe. Our results strongly suggest inhomogeneous enrichment from hypernovae. Our precise stellar parameters results in a low star-to-star scatter (0.04 dex) in the Li abundances of our sample, with a mean value about 0.4 dex lower than the prediction from standard Big Bang nucleosynthesis; we also study the relation between lithium depletion and stellar mass, but it is difficult to assess a correlation due to the limited mass range. We

  4. Positron annihilation spectroscopy for chemical analysis (PASCA). Chapter 9

    International Nuclear Information System (INIS)

    Cheng, K.L.; Jean, Y.C.

    1988-01-01

    This chapter gives an up to date overview of positron annihilation spectroscopy for chemical analysis (PASCA). As an in situ technique PASCA is especially suitable for studying processes occurring at surfaces. The in situ characteristics of PASCA are treated. The principes of positron annihilation life time spectroscopy (PAL) are discussed and some important analytical applications such as, in determining of total surface areas and cavity volumes in chemical reactions, in the study of chemisorption and catalytic reactions on porous surfaces, in the analysis of bulk materials, in determining molecular association constants in biological systems, in proton and neutron activation analysis, in thin layer chromatography and in tracer technology. 28 refs.; 15 figs.; 8 tabs

  5. Does the chemical signature of TYC 8442-1036-1 originate from a rotating massive star that died in a faint explosion?

    Science.gov (United States)

    Cescutti, G.; Valentini, M.; François, P.; Chiappini, C.; Depagne, E.; Christlieb, N.; Cortés, C.

    2016-11-01

    Context. We have recently investigated the origin of chemical signatures observed in Galactic halo stars by means of a stochastic chemical evolution model. We found that rotating massive stars are a promising way to explain several signatures observed in these fossil stars. Aims: We discuss how the extremely metal-poor halo star TYC 8442-1036-1, for which we have now obtained detailed abundances from VLT-UVES spectra, fits into the framework of our previous work. Methods: We applied a standard one-dimensional (1D) LTE analysis to the spectrum of this star. We measured the abundances of 14 chemical elements; we computed the abundances for Na, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, and Zn using equivalent widths; we obtained the abundances for C, Sr, and Ba by means of synthetic spectra generated by MOOG. Results: We find an abundance of [Fe/H] = -3.5 ±0.13 dex based on our high-resolution spectrum; this points to an iron content that is lower by a factor of three (0.5 dex) compared to that obtained by a low-resolution spectrum. The star has a [C/Fe] = 0.4 dex, and it is not carbon enhanced like most of the stars at this metallicity. Moreover, this star lies in the plane [Ba/Fe] versus [Fe/H] in a relatively unusual position, shared by a few other Galactic halo stars, which is only marginally explained by our past results. Conclusions: The comparison of the model results with the chemical abundance characteristics of this group of stars can be improved if we consider in our model the presence of faint supernovae coupled with rotating massive stars. These results seem to imply that rotating massive stars and faint supernovae scenarios are complementary to each other, and are both required in order to match the observed chemistry of the earliest phases of the chemical enrichment of the Universe. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 094.B-0781(A); P.I. G. Cescutti).

  6. CHEMICAL COMPOSITION OF INTERMEDIATE-MASS STAR MEMBERS OF THE M6 (NGC 6405) OPEN CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Kılıçoğlu, T.; Albayrak, B. [Ankara University, Faculty of Science, Department of Astronomy and Space Sciences, 06100, Tandoğan, Ankara (Turkey); Monier, R. [LESIA, UMR 8109, Observatoire de Paris Meudon, Place J. Janssen, Meudon (France); Richer, J. [Département de physique, Université de Montréal, 2900, Boulevard Edouard-Montpetit, Montréal QC, H3C 3J7 (Canada); Fossati, L., E-mail: tkilicoglu@ankara.edu.tr, E-mail: balbayrak@ankara.edu.tr, E-mail: Richard.Monier@obspm.fr, E-mail: Jacques.Richer@umontreal.ca, E-mail: lfossati@astro.uni-bonn.de [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121, Bonn (Germany)

    2016-03-15

    We present here the first abundance analysis of 44 late B-, A-, and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myr). Low- and medium-resolution spectra, covering the 4500–5840 Å wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes. We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the H{sub β} profiles to synthetic ones. The abundances of up to 20 chemical elements, from helium to mercury, were derived for 19 late B, 16 A, and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of [Fe/H] = 0.07 ± 0.03 dex from the iron abundances of the F-type stars. We find that for most chemical elements, the normal late B- and A-type stars exhibit larger star-to-star abundance variations than the F-type stars probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si, and Sc appear to be anticorrelated with that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211, CP1), one HgMn star (HD 318126, CP3), and one He-weak P-rich (HD 318101, CP4) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modeling of HD 318101, the new He-weak P-rich CP star, using the Montréal stellar evolution code XEVOL which self-consistently treats all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modeling attempts even when a range of turbulence profiles and mass-loss rates were considered. Solutions are proposed which are

  7. Nutrients and Other Environmental Factors Influence Virus Abundances across Oxic and Hypoxic Marine Environments

    Directory of Open Access Journals (Sweden)

    Jan F. Finke

    2017-06-01

    Full Text Available Virus particles are highly abundant in seawater and, on average, outnumber microbial cells approximately 10-fold at the surface and 16-fold in deeper waters; yet, this relationship varies across environments. Here, we examine the influence of a suite of environmental variables, including nutrient concentrations, salinity and temperature, on the relationship between the abundances of viruses and prokaryotes over a broad range of spatial and temporal scales, including along a track from the Northwest Atlantic to the Northeast Pacific via the Arctic Ocean, and in the coastal waters of British Columbia, Canada. Models of varying complexity were tested and compared for best fit with the Akaike Information Criterion, and revealed that nitrogen and phosphorus concentrations, as well as prokaryote abundances, either individually or combined, had significant effects on viral abundances in all but hypoxic environments, which were only explained by a combination of physical and chemical factors. Nonetheless, multivariate models of environmental variables showed high explanatory power, matching or surpassing that of prokaryote abundance alone. Incorporating both environmental variables and prokaryote abundances into multivariate models significantly improved the explanatory power of the models, except in hypoxic environments. These findings demonstrate that environmental factors could be as important as, or even more important than, prokaryote abundance in describing viral abundance across wide-ranging marine environments

  8. Ar-39 Detection at the 10^-16 Isotopic Abundance Level with Atom Trap Trace Analysis

    OpenAIRE

    Jiang, W.; Williams, W. D.; Bailey, K.; Davis, A. M.; Hu, S. -M.; Lu, Z. -T.; O'Connor, T. P.; Purtschert, R.; Sturchio, N. C.; Sun, Y. R.; Mueller, P.

    2011-01-01

    Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, has been applied to analyze atmospheric Ar-39 (half-life = 269 yr), a cosmogenic isotope with an isotopic abundance of 8x10^-16. In addition to the superior selectivity demonstrated in this work, counting rate and efficiency of ATTA have been improved by two orders of magnitude over prior results. Significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the develop...

  9. Pathogenic Streptomyces spp. abundance affected by potato cultivars.

    Science.gov (United States)

    Nahar, Kamrun; Goyer, Claudia; Zebarth, Bernie J; Burton, David L; Whitney, Sean

    2018-04-16

    Potato cultivars vary in their tolerance to common scab (CS), however how they affect CS-causing Streptomyces spp. populations over time is poorly understood. This study investigated the effects of potato cultivar on pathogenic Streptomyces spp. abundance, measured using quantitative PCR, in three spatial locations in a CS-infested field: 1) soil close to the plant (SCP); 2) rhizosphere (RS); and 3) geocaulosphere (GS) soils. Two tolerant (Gold Rush, Hindenburg) and two susceptible cultivars (Green Mountain, Agria) were tested. The abundance of pathogenic Streptomyces spp. significantly increased in late August compared with other dates in RS of susceptible cultivars in both years. Abundance of pathogenic Streptomyces spp., when averaged over locations and time, was significantly greater in susceptible cultivars compared with tolerant cultivars in 2014. Principal coordinates analysis showed that SCP and RS soil properties (pH, organic carbon and nitrogen concentrations) explained 68% and 76% of total variation in Streptomyces spp. abundance among cultivars in 2013, respectively, suggesting that cultivars influenced CS pathogen growth conditions. The results suggested that the genetic background of potato cultivars influenced the abundance of pathogenic Streptomyces spp., with 5 to 6 times more abundant Streptomyces spp. in RS of susceptible cultivars compared with tolerant cultivars, which would result in substantially more inoculum left in the field after harvest.  .

  10. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  11. Galactic Doppelgängers: The Chemical Similarity Among Field Stars and Among Stars with a Common Birth Origin

    Science.gov (United States)

    Ness, M.; Rix, H.-W.; Hogg, David W.; Casey, A. R.; Holtzman, J.; Fouesneau, M.; Zasowski, G.; Geisler, D.; Shetrone, M.; Minniti, D.; Frinchaboy, Peter M.; Roman-Lopes, Alexandre

    2018-02-01

    We explore to what extent stars within Galactic disk open clusters resemble each other in the high-dimensional space of their photospheric element abundances and contrast this with pairs of field stars. Our analysis is based on abundances for 20 elements, homogeneously derived from APOGEE spectra (with carefully quantified uncertainties of typically 0.03 dex). We consider 90 red giant stars in seven open clusters and find that most stars within a cluster have abundances in most elements that are indistinguishable (in a {χ }2-sense) from those of the other members, as expected for stellar birth siblings. An analogous analysis among pairs of > 1000 field stars shows that highly significant abundance differences in the 20 dimensional space can be established for the vast majority of these pairs, and that the APOGEE-based abundance measurements have high discriminating power. However, pairs of field stars whose abundances are indistinguishable even at 0.03 dex precision exist: ∼0.3% of all field star pairs and ∼1.0% of field star pairs at the same (solar) metallicity [Fe/H] = 0 ± 0.02. Most of these pairs are presumably not birth siblings from the same cluster, but rather doppelgängers. Our analysis implies that “chemical tagging” in the strict sense, identifying birth siblings for typical disk stars through their abundance similarity alone, will not work with such data. However, our approach shows that abundances have extremely valuable information for probabilistic chemo-orbital modeling, and combined with velocities, we have identified new cluster members from the field.

  12. The HIFI spectral survey of AFGL 2591 (CHESS). III. Chemical structure of the protostellar envelope

    Science.gov (United States)

    Kaźmierczak-Barthel, M.; Semenov, D. A.; van der Tak, F. F. S.; Chavarría, L.; van der Wiel, M. H. D.

    2015-02-01

    Aims: The aim of this work is to understand the richness of chemical species observed in the isolated high-mass envelope of AFGL 2591, a prototypical object for studying massive star formation. Methods: Based on HIFI and JCMT data, the molecular abundances of species found in the protostellar envelope of AFGL 2591 were derived with a Monte Carlo radiative transfer code (Ratran), assuming a mixture of constant and 1D stepwise radial profiles for abundance distributions. The reconstructed 1D abundances were compared with the results of the time-dependent gas-grain chemical modeling, using the best-fit 1D power-law density structure. The chemical simulations were performed considering ages of 1-5 × 104 years, cosmic ray ionization rates of 5-500 × 10-17 s-1, uniformly-sized 0.1-1 μm dust grains, a dust/gas ratio of 1%, and several sets of initial molecular abundances with C/O 1. The most important model parameters varied one by one in the simulations are age, cosmic ray ionization rate, external UV intensity, and grain size. Results: Constant abundance models give good fits to the data for CO, CN, CS, HCO+, H2CO, N2H+, CCH, NO, OCS, OH, H2CS, O, C, C+, and CH. Models with an abundance jump at 100 K give good fits to the data for NH3, SO, SO2, H2S, H2O, HCl, and CH3OH. For HCN and HNC, the best models have an abundance jump at 230 K. The time-dependent chemical model can accurately explain abundance profiles of 15 out of these 24 species. The jump-like radial profiles for key species like HCO+, NH3, and H2O are consistent with the outcome of the time-dependent chemical modeling. The best-fit model has a chemical age of ~10-50 kyr, a solar C/O ratio of 0.44, and a cosmic-ray ionization rate of ~5 × 10-17 s-1. The grain properties and the intensity of the external UV field do not strongly affect the chemical structure of the AFGL 2591 envelope, whereas its chemical age, the cosmic-ray ionization rate, and the initial abundances play an important role. Conclusions: We

  13. The UCSD HIRES/Keck I Damped Lyα Abundance Database. II. The Implications

    Science.gov (United States)

    Prochaska, Jason X.; Wolfe, Arthur M.

    2002-02-01

    We present a comprehensive analysis of the damped Lyα (DLA) abundance database presented in the first paper of this series. This database provides a homogeneous set of abundance measurements for many elements including Si, Cr, Ni, Zn, Fe, Al, S, Co, O, and Ar from 38 DLA systems with zabs>1.5. With little exception, these DLA systems exhibit very similar relative abundances. There is no significant correlation in X/Fe with [Fe/H] metallicity, and the dispersion in X/Fe is small at all metallicity. We search the database for trends indicative of dust depletion and in a few cases find strong evidence. Specifically, we identify a correlation between [Si/Ti] and [Zn/Fe] which is unambiguous evidence for depletion. Following Hou and colleagues, we present [X/Si] abundances against [Si/H]+logN(HI) and note trends of decreasing X/Si with increasing [Si/H]+logN(HI) which argue for dust depletion. Similarly, comparisons of [Si/Fe] and [Si/Cr] against [Si/H] indicate significant depletion at [Si/H]>-1 but suggest essentially dust-free damped systems at [Si/H]0.25 dex as [Zn/Fe]-->0 and that the [Si/Fe] values exhibit a plateau of ~0.3 dex at [Si/H]good agreement with our previous work, but we emphasize two differences: (1) the unweighted and N(H I)-weighted [Fe/H] mean metallicities now have similar values at all epochs except z>3.5, where small number statistics dominate the N(H I)-weighted mean; and (2) there is no evolution in the mean [Fe/H] metallicity from z=1.7 to 3.5 but possibly a marked drop at higher redshift. We conclude with a general discussion on the physical nature of the DLA systems. We stress the uniformity of the DLA chemical abundances which indicates that the protogalaxies identified with DLA systems have very similar enrichment histories, i.e., a nearly constant relative contribution from Type Ia and Type II supernovae. The DLA systems also show constant relative abundances within a given system, which places strict constraints on the mixing timescales

  14. Distribution and abundance of fish populations in the Middle Wabash River

    International Nuclear Information System (INIS)

    Teppen, T.C.; Gammon, J.R.

    1976-01-01

    A field investigation was made of the distribution and abundance of fish within a 161-km portion of the Wabash River to determine effects of heated effluents as well as changes in water quality on ichthyofaunal communities within the river. Twenty-six sampling stations were electrofished, sequentially, four times in 1974 with extended sampling efforts made in the vicinity of two power-generating stations studied since 1967 and 1968. During August an overall rise in river temperature of 4 0 C was observed from upstream to downstream, with several chemical factors also showing slight increases. Although the majority of species populations were influenced either negatively or positively by the gradient of river conditions available to them, the only statistically significant parameters found in the analysis of community structure involved a lower diversity by weight below Terre Haute and a greater abundance of fish above the Cayuga generating station. Decreases occurred downstream in populations of redhorse (Moxostoma sp.), sauger (Stizostedion canadense), longear sunfish (Lepomis megalotis), and gizzard shad (Dorosoma cepedianum), with increases downstream observed in flathead catfish (Pylodictis olivaris), shortnose gar (Lepisosteus platostomus), longnose gar (E. osseus), and bowfin (Amia calva) populations. Carp (Cyprinus carpio) were present in large numbers throughout the study area with a tremendous population increase evident in recent years. Although species associations were variable among the segments, overall community parameters remained relatively unaffected

  15. Chemical equilibrium models of interstellar gas clouds

    International Nuclear Information System (INIS)

    Freeman, A.

    1982-10-01

    This thesis contains work which helps towards our understanding of the chemical processes and astrophysical conditions in interstellar clouds, across the whole range of cloud types. The object of the exercise is to construct a mathematical model representing a large system of two-body chemical reactions in order to deduce astrophysical parameters and predict molecular abundances and chemical pathways. Comparison with observations shows that this type of model is valid but also indicates that our knowledge of some chemical reactions is incomplete. (author)

  16. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    Science.gov (United States)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  17. Chemical Characterization of the Inner Galactic bulge: North-South Symmetry

    Science.gov (United States)

    Nandakumar, G.; Ryde, N.; Schultheis, M.; Thorsbro, B.; Jönsson, H.; Barklem, P. S.; Rich, R. M.; Fragkoudi, F.

    2018-05-01

    While the number of stars in the Galactic bulge with detailed chemical abundance measurements is increasing rapidly, the inner Galactic bulge (|b| detect a bimodal MDF with a metal-rich peak at ˜ +0.3 dex and a metal-poor peak at ˜ -0.5 dex, and no stars with [Fe/H] > +0.6 dex. The Galactic Center field reveals in contrast a mainly metal-rich population with a mean metallicity of +0.3 dex. We derived [Mg/Fe] and [Si/Fe] abundances which are consistent with trends from the outer bulge. We confirm for the supersolar metallicity stars the decreasing trend in [Mg/Fe] and [Si/Fe] as expected from chemical evolution models. With the caveat of a relatively small sample, we do not find significant differences in the chemical abundances between the Northern and the Southern fields, hence the evidence is consistent with symmetry in chemistry between North and South.

  18. Chemical fingerprinting of terpanes and steranes by chromatographic alignment and principal component analysis

    International Nuclear Information System (INIS)

    Christensen, J.H.; Hansen, A.B.; Andersen, O.

    2005-01-01

    Biomarkers such as steranes and terpanes are abundant in crude oils, particularly in heavy distillate petroleum products. They are useful for matching highly weathered oil samples when other groups of petroleum hydrocarbons fail to distinguish oil samples. In this study, time warping and principal component analysis (PCA) were applied for oil hydrocarbon fingerprinting based on relative amounts of terpane and sterane isomers analyzed by gas chromatography and mass spectrometry. The 4 principal components were boiling point range, clay content, marine or organic terrestrial matter, and maturity based on differences in the terpane and sterane isomer patterns. This study is an extension of a previous fingerprinting study for identifying the sources of oil spill samples based only on the profiles of sterane isomers. Spill samples from the Baltic Carrier oil spill were correctly identified by inspection of score plots. The interpretation of the loading and score plots offered further chemical information about correlations between changes in the amounts of sterane and terpane isomers. It was concluded that this method is an objective procedure for analyzing chromatograms with more comprehensive data usage compared to other fingerprinting methods. 20 refs., 4 figs

  19. Chemical fingerprinting of terpanes and steranes by chromatographic alignment and principal component analysis

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, J.H. [Royal Veterinary and Agricultural Univ., Thorvaldsensvej (Denmark). Dept. of Natural Sciences; Hansen, A.B. [National Environmental Research Inst., Roskilde (Denmark). Dept. of Environmental Chemistry and Microbiology; Andersen, O. [Roskilde Univ., Roskilde (Denmark). Dept. of Life Sciences and Chemistry

    2005-07-01

    Biomarkers such as steranes and terpanes are abundant in crude oils, particularly in heavy distillate petroleum products. They are useful for matching highly weathered oil samples when other groups of petroleum hydrocarbons fail to distinguish oil samples. In this study, time warping and principal component analysis (PCA) were applied for oil hydrocarbon fingerprinting based on relative amounts of terpane and sterane isomers analyzed by gas chromatography and mass spectrometry. The 4 principal components were boiling point range, clay content, marine or organic terrestrial matter, and maturity based on differences in the terpane and sterane isomer patterns. This study is an extension of a previous fingerprinting study for identifying the sources of oil spill samples based only on the profiles of sterane isomers. Spill samples from the Baltic Carrier oil spill were correctly identified by inspection of score plots. The interpretation of the loading and score plots offered further chemical information about correlations between changes in the amounts of sterane and terpane isomers. It was concluded that this method is an objective procedure for analyzing chromatograms with more comprehensive data usage compared to other fingerprinting methods. 20 refs., 4 figs.

  20. Abundance analysis of SDSS J134338.67+484426.6; an extremely metal-poor star from the MARVELS pre-survey

    Science.gov (United States)

    Susmitha Rani, A.; Sivarani, T.; Beers, T. C.; Fleming, S.; Mahadevan, S.; Ge, J.

    2016-05-01

    We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] <-3.0) star, SDSS J134338.67+484426.6, identified during the course of the Multi-object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey spectroscopic pre-survey of some 20 000 stars to identify suitable candidates for exoplanet searches. This star, with an apparent magnitude V = 12.14, is the lowest metallicity star found in the pre-survey, and is one of only ˜20 known EMP stars that are this bright or brighter. Our high-resolution spectroscopic analysis shows that this star is a subgiant with [Fe/H] = -3.42, having `normal' carbon and no enhancement of neutron-capture abundances. Strontium is underabundant, [Sr/Fe] = -0.47, but the derived lower limit on [Sr/Ba] indicates that Sr is likely enhanced relative to Ba. This star belongs to the sparsely populated class of α-poor EMP stars that exhibit low ratios of [Mg/Fe], [Si/Fe], and [Ca/Fe] compared to typical halo stars at similar metallicity. The observed variations in radial velocity from several epochs of (low- and high-resolution) spectroscopic follow-up indicate that SDSS J134338.67+484426.6 is a possible long-period binary. We also discuss the abundance trends in EMP stars for r-process elements, and compare with other magnesium-poor stars.

  1. Long-term Records of Pacific Salmon Abundance From Sediment Core Analysis: Relationships to Past Climatic Change, and Implications for the Future

    Science.gov (United States)

    Finney, B.

    2002-12-01

    The response of Pacific salmon to future climatic change is uncertain, but will have large impacts on the economy, culture and ecology of the North Pacific Rim. Relationships between sockeye salmon populations and climatic change can be determined by analyzing sediment cores from lakes where sockeye return to spawn. Sockeye salmon return to their natal lake system to spawn and subsequently die following 2 - 3 years of feeding in the North Pacific Ocean. Sockeye salmon abundance can be reconstructed from stable nitrogen isotope analysis of lake sediment cores as returning sockeye transport significant quantities of N, relatively enriched in N-15, from the ocean to freshwater systems. Temporal changes in the input of salmon-derived N, and hence salmon abundance, can be quantified through downcore analysis of N isotopes. Reconstructions of sockeye salmon abundance from lakes in several regions of Alaska show similar temporal patterns, with variability occurring on decadal to millennial timescales. Over the past 2000 years, shifts in sockeye salmon abundance far exceed the historical decadal-scale variability. A decline occurred from about 100 BC - 800 AD, but salmon were consistently more abundant 1200 - 1900 AD. Declines since 1900 AD coincide with the period of extensive commercial fishing. Correspondence between these records and paleoclimatic data suggest that changes in salmon abundance are related to large scale climatic changes over the North Pacific. For example, the increase in salmon abundance c.a. 1200 AD corresponds to a period of glacial advance in southern Alaska, and a shift to drier conditions in western North America. Although the regionally coherent patterns in reconstructed salmon abundance are consistent with the hypothesis that climate is an important driver, the relationships do not always follow patterns observed in the 20th century. A main feature of recorded climate variability in this region is the alternation between multi-decade periods of

  2. Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis.

    Science.gov (United States)

    Zamudio-Ortega, C M; Contreras-Bulnes, R; Scougall-Vilchis, R J; Morales-Luckie, R A; Olea-Mejía, O F; Rodríguez-Vilchis, L E

    2014-09-01

    The purpose of this study was to characterise the enamel surface of sound deciduous teeth in terms of morphology, chemical composition, structure and crystalline phases. The enamel of 30 human deciduous teeth was examined by: Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). Chemical differences between incisors and canines were statistically evaluated using the Mann-Whitney U test (p ≤ 0.05). Three enamel patterns were observed by SEM: 'mostly smooth with some groves', 'abundant microporosities' and 'exposed prisms'. The average Ca/P molar ratios were 1.37 and 1.03 by EDS and XPS, respectively. The crystallite size determined by XRD was 210.82 ± 16.78 Å. The mean ratio between Ca bonded to phosphate and Ca bonded to hydroxyl was approximately 10:1. The enamel of sound deciduous teeth showed two main patterns: 'mostly smooth with some groves' and 'abundant microporosities'. 'Exposed prisms' was a secondary pattern. There were slight variations among the Ca/P molar ratios found by EDS and XPS, suggesting differences in the mineral content from the enamel surface to the interior. The crystalline phases found in enamel were hydroxyapatite and carbonate apatite, with major type B than type A carbonate incorporation.

  3. How Does Abundance Affect the Strength of UV Emission in Elliptical Galaxies?

    Science.gov (United States)

    Sonneborn, George (Technical Monitor); Brown, Thomas

    2005-01-01

    This program used the Far Ultraviolet Spectroscopic Explorer (FUSE) to observe elliptical galaxies with the intention of measuring the chemical abundances in their hot stellar populations. It was designed to complement an earlier FUSE program that observed elliptical galaxies with strong UV emission. The current program originally planned observations of two ellipticals with weak UV emission (M32 and M49). Once FUSE encountered pointing control problems in certain regions of the sky (particularly Virgo, which is very unfortunate for the study of ellipticals in general), M49 was replaced with the bulge of M31, which has a similar UV-to-optical flux ratio as the center of M49. As the closest elliptical galaxy and the one with the weakest UV-to-optical flux ratio, M32 was an obvious choice of target, but M49 was the ideal complementary target, because it has a very low reddening (unlike M32). With the inability of FUSE to point at Virgo, nearly all of the best elliptical galaxies (bright galaxies with low foreground extinction) were also lost, and this severely hampered three FUSE programs of the PI, all focused on the hot stellar populations of ellipticals. M31 was the best replacement for M49, but like M32, it suffers from significant foreground reddening. Strong Galactic ISM lines heavily contaminate the FUSE spectra of M31 and M32. These ISM lines are coincident with the photospheric lines from the stellar populations (whereas M49, with little foreground ISM and significant redshift, would not have suffered from this problem). We have reduced the faint (and thus difficult) data for M31 and M32, producing final co-added spectra representing all of the exposures, but we have not yet finished our analysis, due to the complication of the contaminating ISM. The silver lining here is the set of CHI lines at 1175 Angstroms, which are not significantly contaminated by the ISM. A comparison of the M31 spectrum with other galaxies observed by FEE showed a surprising result

  4. Imaging the elusive H-poor gas in planetary nebulae with large abundance discrepancy factors

    Science.gov (United States)

    García-Rojas, Jorge; Corradi, Romano L. M.; Boffin, Henri M. J.; Monteiro, Hektor; Jones, David; Wesson, Roger; Cabrera-Lavers, Antonio; Rodríguez-Gil, Pablo

    2017-10-01

    The discrepancy between abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major, unresolved problem with significant implications for the determination of chemical abundances throughout the Universe. In planetary nebulae (PNe), the most common explanation for the discrepancy is that two different gas phases coexist: a hot component with standard metallicity, and a much colder plasma enhanced in heavy elements. This dual nature is not predicted by mass loss theories, and direct observational support for it is still weak. In this work, we present our recent findings that demonstrate that the largest abundance discrepancies are associated with close binary central stars. OSIRIS-GTC tunable filter imaging of the faint O ii ORLs and MUSE-VLT deep 2D spectrophotometry confirm that O ii ORL emission is more centrally concentrated than that of [Oiii] CELs and, therefore, that the abundance discrepancy may be closely linked to binary evolution.

  5. Barium and iron abundances in red giants

    International Nuclear Information System (INIS)

    Fernandez-Villacanas, J.L.; Rego, M.; Cornide, M.

    1990-01-01

    An intermediate-dispersion abundance analysis has been carried out on a sample of 21 barium and 14 comparison stars. The excess of barium over iron has been used as the most representative indicator of peculiarity. These excesses are higher in the peculiar stars than in the nonpeculiar stars. Particularly interesting is the case of HD 67447, included in the comparison stars, with an excess Ba/Fe abundance = 1.61, probably a new barium star. A trend indicating a possible anticorrelation between barium overabundance and metallicity favors the suggestion that the barium strong group is older than the barium weak one. 36 refs

  6. Evaluating abundance and trends in a Hawaiian avian community using state-space analysis

    Science.gov (United States)

    Camp, Richard J.; Brinck, Kevin W.; Gorresen, P.M.; Paxton, Eben H.

    2016-01-01

    Estimating population abundances and patterns of change over time are important in both ecology and conservation. Trend assessment typically entails fitting a regression to a time series of abundances to estimate population trajectory. However, changes in abundance estimates from year-to-year across time are due to both true variation in population size (process variation) and variation due to imperfect sampling and model fit. State-space models are a relatively new method that can be used to partition the error components and quantify trends based only on process variation. We compare a state-space modelling approach with a more traditional linear regression approach to assess trends in uncorrected raw counts and detection-corrected abundance estimates of forest birds at Hakalau Forest National Wildlife Refuge, Hawai‘i. Most species demonstrated similar trends using either method. In general, evidence for trends using state-space models was less strong than for linear regression, as measured by estimates of precision. However, while the state-space models may sacrifice precision, the expectation is that these estimates provide a better representation of the real world biological processes of interest because they are partitioning process variation (environmental and demographic variation) and observation variation (sampling and model variation). The state-space approach also provides annual estimates of abundance which can be used by managers to set conservation strategies, and can be linked to factors that vary by year, such as climate, to better understand processes that drive population trends.

  7. General geochemical properties and abundances of the rare earth elements

    International Nuclear Information System (INIS)

    Henderson, P.

    1984-01-01

    This chapter reviews some of the fundamental aspects of rare earth elements (REE) geochemistry and gives data on abundances in the solar system, the bulk Earth and the Earth's crust. It describes the state of knowledge on the partitioning of the REE, especially in igneous rock systems, and cites reference works concerned with the REE. Several chemical properties of REE are discussed (oxidation states; redox conditions; element coordination and ionic radii; element substitution). (Auth.)

  8. Abundance Ratios in Dwarf Elliptical Galaxies

    NARCIS (Netherlands)

    Sen, Seyda; Peletier, Reynier F.; Toloba, Elisa; Mentz, Jaco J.

    The aim of this study is to determine abundance ratios and star formation histories (SFH) of dwarf ellipticals in the nearby Virgo cluster. We perform a stellar population analysis of 39 dEs and study them using index-index and scaling relations. We find an unusual behaviour where [Na/Fe] is

  9. THE DETAILED CHEMICAL PROPERTIES OF M31 STAR CLUSTERS. I. Fe, ALPHA AND LIGHT ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Bernstein, Rebecca A. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Cohen, Judith G., E-mail: jcolucci@obs.carnegiescience.edu [Palomar Observatory, Mail Stop 105-24, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-12-20

    We present ages, [Fe/H] and abundances of the α elements Ca I, Si I, Ti I, Ti II, and light elements Mg I, Na I, and Al I for 31 globular clusters (GCs) in M31, which were obtained from high-resolution, high signal-to-noise ratio >60 echelle spectra of their integrated light (IL). All abundances and ages are obtained using our original technique for high-resolution IL abundance analysis of GCs. This sample provides a never before seen picture of the chemical history of M31. The GCs are dispersed throughout the inner and outer halo, from 2.5 kpc < R {sub M31} < 117 kpc. We find a range of [Fe/H] within 20 kpc of the center of M31, and a constant [Fe/H] ∼ – 1.6 for the outer halo clusters. We find evidence for at least one massive GC in M31 with an age between 1 and 5 Gyr. The α-element ratios are generally similar to the Milky Way GC and field star ratios. We also find chemical evidence for a late-time accretion origin for at least one cluster, which has a different abundance pattern than other clusters at similar metallicity. We find evidence for star-to-star abundance variations in Mg, Na, and Al in the GCs in our sample, and find correlations of Ca, Mg, Na, and possibly Al abundance ratios with cluster luminosity and velocity dispersion, which can potentially be used to constrain GC self-enrichment scenarios. Data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope.

  10. Good abundances from bad spectra - I. Techniques

    Science.gov (United States)

    Jones, J. Bryn; Gilmore, Gerard; Wyse, Rosemary F. G.

    1996-01-01

    Stellar spectra derived from multiple-object fibre-fed spectroscopic radial-velocity surveys, of the type feasible with, among other examples, AUTOFIB, 2dF, HYDRA, NESSIE, and the Sloan survey, differ significantly from those traditionally used for determination of stellar abundances. The spectra tend to be of moderate resolution (around 1A) and signal-to-noise ratio (around 10-20 per resolution element), and cannot usually have reliable continuum shapes determined over wavelength ranges in excess of a few tens of Angstroms. None the less, with care and a calibration of stellar effective temperature from photometry, independent of the spectroscopy, reliable iron abundances can be derived. We have developed techniques to extract true iron abundances and surface gravities from low-signal-to-noise ratio, intermediate-resolution spectra of G-type stars in the 4000-5000A wavelength region. Spectroscopic indices sensitive to iron abundance and gravity are defined from a set of narrow (few-several A wide) wavelength intervals. The indices are calibrated theoretically using synthetic spectra. Given adequate data and a photometrically determined effective temperature, one can derive estimates of the stellar iron abundance and surface gravity. We have also defined a single abundance indicator for the analysis of very low-signal-to-noise ratio spectra; with the further assumption of a value for the stellar surface gravity, this is able to provide useful iron abundance information from spectra having signal-to-noise ratios as low as 10 (1-A elements). The theoretical basis and calibration using synthetic spectra are described in this paper. The empirical calibration of these techniques by application to observational data is described in a separate paper (Jones, Wyse & Gilmore). The technique provides precise iron abundances, with zero-point correct to ~0.1 dex, and is reliable, with typical uncertainties being <~0.2 dex. A derivation of the in situ thick disc metallicity

  11. Exploring the Nature of Galaxies with Abundance Gradient Anomalies in the SDSS-IV/MaNGA Survey

    Science.gov (United States)

    Keith, Celeste; Tremonti, Christy; Pace, Zach; Schaefer, Adam

    2018-01-01

    Disk galaxies are known to have radial oxygen abundance gradients with their centers being more chemically enriched than their outskirts. The steepness of the abundance gradient has recently been shown to correlate with galaxy stellar mass, on average. However, individual galaxies sometimes show pronounced deviations from the expected trends, such as flatter or steeper slopes than expected for their mass, abrupt changes in slope, or azimuthal asymmetries. Here we report on a systematic search for galaxies with abundance gradient anomalies using 2-D spectroscopy from the Sloan Digital Sky Survey IV MaNGA. We construct nebular oxygen and nitrogen abundance maps for 300 moderately inclined non-interacting disk galaxies and use visual inspection to identify the most interesting cases. We use this training set to develop an automated pipeline to flag galaxies with abundance anomalies from the larger MaNGA dataset for visual inspection. We combine the metallicity maps with kinematic data and measurements of the galaxies' local environments to better understand the processes that shape the radial abundance gradients of disk galaxies.

  12. Can occupancy-abundance models be used to monitor wolf abundance?

    Directory of Open Access Journals (Sweden)

    M Cecilia Latham

    Full Text Available Estimating the abundance of wild carnivores is of foremost importance for conservation and management. However, given their elusive habits, direct observations of these animals are difficult to obtain, so abundance is more commonly estimated from sign surveys or radio-marked individuals. These methods can be costly and difficult, particularly in large areas with heavy forest cover. As an alternative, recent research has suggested that wolf abundance can be estimated from occupancy-abundance curves derived from "virtual" surveys of simulated wolf track networks. Although potentially more cost-effective, the utility of this approach hinges on its robustness to violations of its assumptions. We assessed the sensitivity of the occupancy-abundance approach to four assumptions: variation in wolf movement rates, changes in pack cohesion, presence of lone wolves, and size of survey units. Our simulations showed that occupancy rates and wolf pack abundances were biased high if track surveys were conducted when wolves made long compared to short movements, wolf packs were moving as multiple hunting units as opposed to a cohesive pack, and lone wolves were moving throughout the surveyed landscape. We also found that larger survey units (400 and 576 km2 were more robust to changes in these factors than smaller survey units (36 and 144 km2. However, occupancy rates derived from large survey units rapidly reached an asymptote at 100% occupancy, suggesting that these large units are inappropriate for areas with moderate to high wolf densities (>15 wolves/1,000 km2. Virtually-derived occupancy-abundance relationships can be a useful method for monitoring wolves and other elusive wildlife if applied within certain constraints, in particular biological knowledge of the surveyed species needs to be incorporated into the design of the occupancy surveys. Further, we suggest that the applicability of this method could be extended by directly incorporating some of its

  13. HD 185330 — chemically peculiar 3He star in the Kepler field

    Science.gov (United States)

    Niemczura, E.; Vennes, S.; Różański, T.; Pigulski, A.; Hełminiak, K.; Lehmann, H.

    2018-01-01

    We analyzed high-resolution spectra of the chemically peculiar 3He star HD 185330. We determined its atmospheric parameters (Teff, log g, ξ) and constrained its rotation velocity and abundance pattern. In particular, we found a large (×100) phosphorus abundance excess and evidence of 3He and 4He abundance stratification in the atmosphere.

  14. Impact of Grassland Reseeding, Herbicide Spraying and Ploughing on Diversity and Abundance of Soil Arthropods.

    Science.gov (United States)

    Liu, Wei; Zhang, Junling; Norris, Stuart L; Murray, Philip J

    2016-01-01

    In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: (1) before chemical herbicide spray; (2) after spray but before ploughing; (3) after ploughing but before reseeding; and (4) after 1 year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida) and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favored those predators with a larger body size and individual weight. After 1 year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating.

  15. Impact of Grassland Reseeding, Herbicide spraying and Ploughing on Diversity and Abundance of Soil Arthropods.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-08-01

    Full Text Available In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: 1 before chemical herbicide spray; 2 after spray but before ploughing; 3 after ploughing but before reseeding; and 4 after one year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favoured those predators with a larger body size and individual weight. After one year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating.

  16. Impact of Grassland Reseeding, Herbicide Spraying and Ploughing on Diversity and Abundance of Soil Arthropods

    Science.gov (United States)

    Liu, Wei; Zhang, Junling; Norris, Stuart L.; Murray, Philip J.

    2016-01-01

    In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: (1) before chemical herbicide spray; (2) after spray but before ploughing; (3) after ploughing but before reseeding; and (4) after 1 year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida) and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favored those predators with a larger body size and individual weight. After 1 year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating. PMID:27555863

  17. Failure analysis on a chemical waste pipe

    International Nuclear Information System (INIS)

    Ambler, J.R.

    1985-01-01

    A failure analysis of a chemical waste pipe illustrates how nuclear technology can spin off metallurgical consultant services. The pipe, made of zirconium alloy (Zr-2.5 wt percent Nb, UNS 60705), had cracked in several places, all at butt welds. A combination of fractography and metallography indicated delayed hydride cracking

  18. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rabitz, H. [Princeton Univ., NJ (United States)

    1993-12-01

    The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.

  19. Statistic analysis of grouping in evaluation of the behavior of stable chemical elements and physical-chemical parameters in effluent from uranium mining

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.

    2013-01-01

    The Ore Treatment Unit (UTM) is a uranium mine off. The statistical analysis of clustering was used to evaluate the behavior of stable chemical elements and physico-chemical variables in their effluents. The use of cluster analysis proved effective in the evaluation, allowing to identify groups of chemical elements in physico-chemical variables and group analyzes (element and variables ). As a result, we can say, based on the analysis of the data, a strong link between Ca and Mg and between Al and TR 2 O 3 (rare earth oxides) in the UTM effluents. The SO 4 was also identified as strongly linked to total solids and dissolved and these linked to electrical conductivity. Other associations existed, but were not as strongly linked. Additional collections for seasonal evaluation are required so that assessments can be confirmed. Additional statistics analysis (ordination techniques) should be used to help identify the origins of the groups identified in this analysis. (author)

  20. Predictive models for monitoring and analysis of the total zooplankton

    Directory of Open Access Journals (Sweden)

    Obradović Milica

    2014-01-01

    Full Text Available In recent years, modeling and prediction of total zooplankton abundance have been performed by various tools and techniques, among which data mining tools have been less frequent. The purpose of this paper is to automatically determine the dependency degree and the influence of physical, chemical and biological parameters on the total zooplankton abundance, through design of the specific data mining models. For this purpose, the analysis of key influencers was used. The analysis is based on the data obtained from the SeLaR information system - specifically, the data from the two reservoirs (Gruža and Grošnica with different morphometric characteristics and trophic state. The data is transformed into optimal structure for data analysis, upon which, data mining model based on the Naïve Bayes algorithm is constructed. The results of the analysis imply that in both reservoirs, parameters of groups and species of zooplankton have the greatest influence on the total zooplankton abundance. If these inputs (group and zooplankton species are left out, differences in the impact of physical, chemical and other biological parameters in dependences of reservoirs can be noted. In the Grošnica reservoir, analysis showed that the temporal dimension (months, nitrates, water temperature, chemical oxygen demand, chlorophyll and chlorides, had the key influence with strong relative impact. In the Gruža reservoir, key influence parameters for total zooplankton are: spatial dimension (location, water temperature and physiological groups of bacteria. The results show that the presented data mining model is usable on any kind of aquatic ecosystem and can also serve for the detection of inputs which could be the basis for the future analysis and modeling.

  1. Environmental chemicals and thyroid function

    DEFF Research Database (Denmark)

    Boas, Malene; Main, Katharina M; Feldt-Rasmussen, Ulla

    2009-01-01

    PURPOSE OF REVIEW: To overview the effects of endocrine disrupters on thyroid function. RECENT FINDINGS: Studies in recent years have revealed thyroid-disrupting properties of many environmentally abundant chemicals. Of special concern is the exposure of pregnant women and infants, as thyroid...

  2. MODELS FOR METAL-POOR STARS WITH ENHANCED ABUNDANCES OF C, N, O, Ne, Na, Mg, Si, S, Ca, AND Ti, IN TURN, AT CONSTANT HELIUM AND IRON ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    VandenBerg, Don A.; Dotter, Aaron [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6 (Canada); Bergbusch, Peter A. [Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Ferguson, Jason W. [Department of Physics, Wichita State University, Wichita, KS 67260-0032 (United States); Michaud, Georges; Richer, Jacques [Departement de Physique, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Proffitt, Charles R., E-mail: vandenbe@uvic.ca, E-mail: Aaron.Dotter@gmail.com, E-mail: pbergbusch@accesscomm.ca, E-mail: proffitt@stsci.edu, E-mail: Jason.Ferguson@wichita.edu, E-mail: michaudg@astro.umontreal.ca, E-mail: jacques.richer@umontreal.ca [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-08-10

    Recent work has shown that most globular clusters have at least two chemically distinct components, as well as cluster-to-cluster differences in the mean [O/Fe], [Mg/Fe], and [Si/Fe] ratios at similar [Fe/H] values. In order to investigate the implications of variations in the abundances of these and other metals for H-R diagrams and predicted ages, grids of evolutionary sequences have been computed for scaled solar and enhanced {alpha}-element metal abundances, and for mixtures in which the assumed [m/Fe] value for each of the metals C, N, O, Ne, Na, Mg, Si, S, Ca, and Ti has been increased, in turn, by 0.4 dex at constant [Fe/H]. These tracks, together with isochrones for ages from Almost-Equal-To 5 to 14 Gyr, have been computed for -3.0 {<=} [Fe/H] {<=}-0.6, with helium abundances Y = 0.25, 0.29, and 0.33 at each [Fe/H] value, using upgraded versions of the Victoria stellar structure program and the Regina interpolation code, respectively. Turnoff luminosity versus age relations from isochrones are found to depend almost entirely on the importance of the CNO cycle, and thereby mainly on the abundance of oxygen. Since C, N, and O, as well as Ne and S, do not contribute significantly to the opacities at low temperatures and densities, variations in their abundances do not impact the predicted T{sub eff} scale of red giants. The latter is a strong function of the abundances of only Mg and Si (and Fe, possibly to a lesser extent) because they are so abundant and because they are strong sources of opacity at low temperatures. For these reasons, Mg and Si also have important effects on the temperatures of main-sequence stars. Due to their low abundances, Na, Ca, and Ti are of little consequence for stellar models. The effects of varying the adopted solar metals mixture and the helium abundance at a fixed [Fe/H] are also briefly discussed.

  3. Methodology for national risk analysis and prioritization of toxic industrial chemicals.

    Science.gov (United States)

    Taxell, Piia; Engström, Kerstin; Tuovila, Juha; Söderström, Martin; Kiljunen, Harri; Vanninen, Paula; Santonen, Tiina

    2013-01-01

    The identification of chemicals that pose the greatest threat to human health from incidental releases is a cornerstone in public health preparedness for chemical threats. The present study developed and applied a methodology for the risk analysis and prioritization of industrial chemicals to identify the most significant chemicals that pose a threat to public health in Finland. The prioritization criteria included acute and chronic health hazards, physicochemical and environmental hazards, national production and use quantities, the physicochemical properties of the substances, and the history of substance-related incidents. The presented methodology enabled a systematic review and prioritization of industrial chemicals for the purpose of national public health preparedness for chemical incidents.

  4. Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows.

    Directory of Open Access Journals (Sweden)

    Ilma Tapio

    Full Text Available The ruminal microbiome, comprising large numbers of bacteria, ciliate protozoa, archaea and fungi, responds to diet and dietary additives in a complex way. The aim of this study was to investigate the benefits of increasing the depth of the community analysis in describing and explaining responses to dietary changes. Quantitative PCR, ssu rRNA amplicon based taxa composition, diversity and co-occurrence network analyses were applied to ruminal digesta samples obtained from four multiparous Nordic Red dairy cows fitted with rumen cannulae. The cows received diets with forage:concentrate ratio either 35:65 (diet H or 65:35 (L, supplemented or not with sunflower oil (SO (0 or 50 g/kg diet dry matter, supplied in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and four 35-day periods. Digesta samples were collected on days 22 and 24 and combined. QPCR provided a broad picture in which a large fall in the abundance of fungi was seen with SO in the H but not the L diet. Amplicon sequencing showed higher community diversity indices in L as compared to H diets and revealed diet specific taxa abundance changes, highlighting large differences in protozoal and fungal composition. Methanobrevibacter ruminantium and Mbb. gottschalkii dominated archaeal communities, and their abundance correlated negatively with each other. Co-occurrence network analysis provided evidence that no microbial domain played a more central role in network formation, that some minor-abundance taxa were at nodes of highest centrality, and that microbial interactions were diet specific. Networks added new dimensions to our understanding of the diet effect on rumen microbial community interactions.

  5. Ultrastructural Analysis of Urinary Stones by Microfocus Computed Tomography and Comparison with Chemical Analysis

    Directory of Open Access Journals (Sweden)

    Tolga Karakan

    2016-06-01

    Full Text Available Objective: To investigate the ultra-structure of urinary system stones using micro-focus computed tomography (MCT, which makes non-destructive analysis and to compare with wet chemical analysis. Methods: This study was carried out at the Ankara Train­ing and Research hospital. Renal stones, removed from 30 patients during percutaneous nephrolithotomy (PNL surgery, were included in the study. The stones were blindly evaluated by the specialists with MCT and chemi­cal analysis. Results: The comparison of the stone components be­tween chemical analysis and MCT, showed that the rate of consistence was very low (p0.05. It was also seen that there was no significant relation between its 3D structure being heterogeneous or homogenous. Conclusion: The stone analysis with MCT is a time con­suming and costly method. This method is useful to un­derstand the mechanisms of stone formation and an im­portant guide to develop the future treatment modalities.

  6. The Populations of Carina. II. Chemical Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Norris, John E.; Yong, David; Casagrande, Luca; Dotter, Aaron [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Venn, Kim A. [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 1A1 (Canada); Gilmore, Gerard, E-mail: jen@mso.anu.edu.au, E-mail: yong@mso.anu.edu.au, E-mail: luca@mso.anu.edu.au, E-mail: aaron.dotter@gmail.com, E-mail: kvenn@uvic.ca, E-mail: gil@ast.cam.ac.uk [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2017-06-01

    Chemical abundances are presented for 19 elements in a sample of 63 red giants in the Carina dwarf spheroidal galaxy (dSph), based on homogeneous 1D/LTE model atmosphere analyses of our own observations (32 stars) and data available in the literature (a further 31 independent stars). The (Fe) metallicity and [ α /Fe] distribution functions have mean values and dispersions of −1.59 and 0.33 dex ([Fe/H] range: −2.68 to −0.64) and 0.07 and 0.13 dex ([ α /Fe] range: −0.27 to 0.25), respectively. We confirm the finding of Venn et al. that a small percentage (some 10% in the present investigation) of the sample shows clear evidence for significant enrichment by Type Ia supernova (SN Ia) ejecta. Calcium, with the most accurately determined abundance of the α -elements, shows an asymmetric distribution toward smaller values of [Ca/Fe] at all [Fe/H], most significantly over −2.0 < [Fe/H] < −1.0, suggestive of incomplete mixing of the ejecta of SNe Ia with the ambient medium of each of Carina’s generations. Approximate color–magnitude diagram age estimates are presented for the sample, and together with our chemical abundances, compared with the results of our previous synthetic color–magnitude diagram analysis, which reported the details of Carina’s four well-defined populations. We searched for the Na–O anticorrelation universally reported in the Galaxy’s globular clusters and confirm that this phenomenon does not exist in Carina. We also found that one of the 32 stars in our sample has an extremely enhanced lithium abundance— A (Li){sub NLTE} = +3.36, consistent with membership of the ∼1% group of Li-rich stars in dSph described by Kirby et al.

  7. Modeling CO, CO2, and H2O Ice Abundances in the Envelopes of Young Stellar Objects in the Magellanic Clouds

    Science.gov (United States)

    Pauly, Tyler; Garrod, Robin T.

    2018-02-01

    Massive young stellar objects (MYSOs) in the Magellanic Clouds show infrared absorption features corresponding to significant abundances of CO, CO2, and H2O ice along the line of sight, with the relative abundances of these ices differing between the Magellanic Clouds and the Milky Way. CO ice is not detected toward sources in the Small Magellanic Cloud, and upper limits put its relative abundance well below sources in the Large Magellanic Cloud and the Milky Way. We use our gas-grain chemical code MAGICKAL, with multiple grain sizes and grain temperatures, and further expand it with a treatment for increased interstellar radiation field intensity to model the elevated dust temperatures observed in the MCs. We also adjust the elemental abundances used in the chemical models, guided by observations of H II regions in these metal-poor satellite galaxies. With a grid of models, we are able to reproduce the relative ice fractions observed in MC MYSOs, indicating that metal depletion and elevated grain temperature are important drivers of the MYSO envelope ice composition. Magellanic Cloud elemental abundances have a subgalactic C/O ratio, increasing H2O ice abundances relative to the other ices; elevated grain temperatures favor CO2 production over H2O and CO. The observed shortfall in CO in the Small Magellanic Cloud can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH3OH abundance is found to be enhanced in low-metallicity models, providing seed material for complex organic molecule formation in the Magellanic Clouds.

  8. Anomalous behavior of tellurium abundances

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L

    1984-01-01

    The cosmic abundance of Te is larger than for any element with atomic number greater than 40, but it is one of the least abundant elements in the earth's lithosphere and it is one of the five elements never reported in sea water. On the other hand, it is the fourth most abundant element in the human body (after Fe, Zn and Rb), and is unusually abundant in human food. It is shown that the high abundance in human food combined with the low abundance in soil requires that it be picked up by plant roots very much more efficiently than any other trace element.

  9. Geographical factors of the abundance of flora in Russian cities

    Science.gov (United States)

    Veselkin, D. V.; Tretyakova, A. S.; Senator, S. A.; Saksonov, S. V.; Mukhin, V. A.; Rozenberg, G. S.

    2017-09-01

    An analysis of data on the species abundance of flora in 89 cities (urban flora) of the Russian Federation facilitated determination of its main factors. It has been revealed that the factors determining the abundance of native and alien components of urban flora vary. The city area and population number are the main factors of the total number of species and of the abundance of native species in urban flora. The diversity and participation of alien species increase in parallel with. the urbanization rate, anthropogenic transformation of the regions, and the age of cities and are in adverse correlation with the climate severity.

  10. A Study of Chemical Composition of δ Scuti-Type Stars Based on the Observations with the BTA and RTT-150

    Science.gov (United States)

    Galeev, A. I.; Berdnikova, V. M.; Ivanova, D. V.; Kudryavtsev, D. O.; Shimanskaya, N. N.; Shimansky, V. V.; Balashova, M. O.

    2017-06-01

    The results of a study of a sample of δ Scuti-type stars obtained from the observations with the BTA and RTT-150 are presented. Based on photometric data, we measured and analyzed the fundamental parameters of all the studied stars. For eight stars (for two of them for the first time), the fundamental parameters of the atmospheres (Teff, log g, [Fe/H]) and the chemical composition for 29 elements in the LTE-approximation are received using spectroscopic observations. The chemical composition analysis demonstrates both the solar abundances of chemical elements and the anomalies of chemical composition typical of Am stars in the studied sample of δ Scuti-type stars.

  11. Development of a Mechanical Analysis System Considering Chemical Transitions of Barrier Materials

    International Nuclear Information System (INIS)

    Sahara, F.; Murakami, T.; Ito, H.; Kobayashi, I.; Yokozeki, K.

    2006-01-01

    An analysis system for the long-term mechanical behavior of barrier materials (MACBECE: Mechanical Analysis system considering Chemical transitions of Bentonite-based and Cement-based materials) was developed in order to improve the reliability of the evaluation of the hydraulic field that is one of the important environmental conditions in the safety assessment of the TRU waste disposal in Japan. The MACBECE is a system that calculates the deformation of barrier materials using their chemical property changes as inputs, and subsequently their hydraulic conductivity taking both their chemical property changes and deformation into consideration. This paper provides a general description of MACBECE and the results of experimental analysis carried out using MACBECE. (authors)

  12. Discovery of a ternary pseudobrookite phase in the earth-abundant Ti-Zn-O system.

    Science.gov (United States)

    Perry, Nicola H; Stevanovic, Vladan; Lim, Linda Y; Mason, Thomas O

    2016-01-28

    We combine theory with experiment in searching for "missing", stable materials within the Zn-Ti-O chemical system, leading to the discovery of a new pseudobrookite phase, ZnxTi3-xO5-δ. This ternary system was chosen for (1) technological relevance, (2) earth abundance, and (3) the fact that many compounds in this system are predicted from enthalpies of formation to be borderline stable, suggesting an important role of entropic contributions in their stabilization and making this chemical system a perfect test bed for exploring the limits of theoretical predictions. The initial set of exploratory experimental syntheses, via sintering in evacuated ampoules and quenching, resulted in a single phase ZnxTi3-xO5-δ composition with x ≈ 0.6 and an almost stoichiometric oxygen content, as evaluated by X-ray fluorescence, energy dispersive spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The theoretically calculated lowest energy crystal structure for the closest stoichiometric ZnTi5O10 composition matched that measured experimentally by synchrotron X-ray diffraction (allowing for differences attributable to cation disorder). The measured broad optical absorption, n-type electrical conductivity, and stability in acidic media are comparable to those of other ternary pseudobrookites and Ti-O Magnéli phases, suggesting comparable applicability as a robust electrode or catalyst support in electrochemical devices or water remediation. However, the new phase decomposes upon heating in air as it oxidizes. The success of the present approach to identify a "missing material" in an earth-abundant and applications-rich system suggests that future efforts to experimentally realize and theoretically confirm missing materials in this and similar systems are warranted, both scientifically and technologically.

  13. A-type Stellar Abundances: A Corollary to Herschel Observations of Debris Disks

    Science.gov (United States)

    Draper, Zachary H.; Matthews, Brenda; Venn, Kim; Lambert, David; Kennedy, Grant; Sitnova, Tatyana

    2018-04-01

    In order to assess the relationship between metallicity and exoplanetary systems, we compare the abundances of AF-type main-sequence stars with debris disk properties assessed using Herschel observations of an unbiased survey of nearby stars. Hot stars are not as commonly observed, given their unique constraints in data reduction, lack of metal lines, and “astrophysical noise” from rotation speed. Here, we address that deficiency using new and archival spectra of 83 AF-type stars. We measure the abundances of a few species in addition to Fe in order to classify the stars with Ap/Am or Lambda Boo signatures. Lambda Boo stars have a chemical signature of solar-abundant volatile species and sub-solar refractory abundances that is hypothesized to be altered by the pollution of volatiles. Overall, we see no correlation between debris disks and metallicity, primarily because the sample size is cut significantly when using only reliable fits to the spectroscopic data. The abundance measured from the Mg II 4481 blend is a useful diagnostic because it can be reliably measured at large v·sin(i) and is found to be lower around stars with bright debris disks. We find that Lambda Boo stars have brighter debris disks compared to a bias-free sample of AF stars. The trend with disk brightness and Mg abundances suggests pollution effects can be significant and used as a marker for the stability of planetary systems. We explore trends with other species, such as with the C/O ratios, but are significantly limited by the low number of reliable detections.

  14. Chemical point detection using differential fluorescence from molecularly imprinted polymers

    Science.gov (United States)

    Pestov, Dmitry; Anderson, John E.; Nelson, Jean; Tepper, Gary C.

    2004-12-01

    Fluorescence represents one of the most attractive approaches for chemical sensing due to the abundant light produced by most fluorophores, resulting in excellent detection sensitivity. However, the broad and overlapping emission spectra of target and background species have made it difficult to perform species identification in a field instrument because of the need to perform spectral decomposition and analysis. This paper describes a new chemical sensing strategy based on differential fluorescence measurements from molecularly imprinted polymers, which eliminates the need to perform any spectral analysis. Species identification is accomplished by measuring the differential light output from a pair of polymers-one imprinted to a target species and the other identical, but not imprinted. The imprinted polymer selectively concentrates the target molecule and controls the energy (wavelength) of the emitted fluorescence signal and the differential output eliminates common mode signals associated with non-specific background interference. Because no spectral analysis is required, the sensors can be made extremely small and require very little power. Preliminary performance parameters from a prototype sensor are presented and discussed.

  15. Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Osinalde, Nerea; Moss, Helle; Arrizabalaga, Onetsine

    2011-01-01

    among which 79 were found with increased abundance in the tyrosine-phosphorylated complexes, including several previously not reported IL-2 downstream effectors. Combinatorial site-specific phosphoproteomic analysis resulted in identification of 99 phosphorylated sites mapping to the identified proteins...... with increased abundance in the tyrosine-phosphorylated complexes, of which 34 were not previously described. In addition, chemical inhibition of the identified IL-2-mediated JAK, PI3K and MAPK signaling pathways, resulted in distinct alteration on the IL-2 dependent proliferation....

  16. Abundance estimation and Conservation Biology

    Directory of Open Access Journals (Sweden)

    Nichols, J. D.

    2004-06-01

    our attention should be focused on relationships between demographic processes such as survival and recruitment, the two quantities responsible for changes in abundance, rather than simply on the magnitudes of these quantities. They describe a type of Jolly–Seber capture–recapture model that permits inference about the underlying relationship between per capita recruitment rates and survival rates (Link & Barker, this volume. Implementation used Bayesian Markov Chain Monte Carlo methods and appeared to work well, yielding inferences about the relationship between recruitment and survival that were robust to selection of prior distribution. We believe that readers will find their arguments compelling, and we expect to see increased use of hierarchical modeling approaches in capture–recapture and related fields. Otto (presentation without paper also recommended use of hierarchical models in analysis of multiple data sources dealing with population dynamics of North American mallards. He integrated survival inferences from ringing data, abundance information from aerial survey data, and recruitment information based on age ratios from a harvest survey. He used a Leslie matrix population projection model as an integrating framework and obtained estimates of breeding population size using all data.Otto’s approach also permitted inference about biases in estimated quantities. As with the work of Link & Barker (2004, we find Otto’s recommendation to use hierarchical models to integrate data from multiple sources to be very compelling. Alisauskas et al. (2004 report results of an analysis of capture–recapture data for a askatchewan population of white–winged scoters. They used the approach of Pradel (1996 to estimate population growth rate (See the PDF directly. Estimates for 1975–1985 were quite low, but estimates for the recent period, 2000–2003,increased to values > 1. Parameter estimates for seniority, survival and per capita recruitment (Pradel, 1996

  17. Abundance estimation and conservation biology

    Science.gov (United States)

    Nichols, J.D.; MacKenzie, D.I.

    2004-01-01

    should be focused on relationships between demographic processes such as survival and recruitment, the two quantities responsible for changes in abundance, rather than simply on the magnitudes of these quantities. They describe a type of Jolly–Seber capture–recapture model that permits inference about the underlying relationship between per capita recruitment rates and survival rates (Link & Barker, this volume). Implementation used Bayesian Markov Chain Monte Carlo methods and appeared to work well, yielding inferences about the relationship between recruitment and survival that were robust to selection of prior distribution. We believe that readers will find their arguments compelling, and we expect to see increased use of hierarchical modeling approaches in capture–recapture and related fields. Otto (presentation without paper) also recommended use of hierarchical models in analysis of multiple data sources dealing with population dynamics of North American mallards. He integrated survival inferences from ringing data, abundance information from aerial survey data, and recruitment information based on age ratios from a harvest survey. He used a Leslie matrix population projection model as an integrating framework and obtained estimates of breeding population size using all data.Otto’s approach also permitted inference about biases in estimated quantities. As with the work of Link & Barker (2004), we find Otto’s recommendation to use hierarchical models to integrate data from multiple sources to be very compelling. Alisauskas et al. (2004) report results of an analysis of capture–recapture data for a askatchewan population of white–winged scoters. They used the approach of Pradel (1996) to estimate population growth rate (See the PDF) directly. Estimates for 1975–1985 were quite low, but estimates for the recent period, 2000–2003,increased to values > 1. Parameter estimates for seniority, survival and per capita recruitment (Pradel, 1996) led to the

  18. Compilation of solar abundance data

    International Nuclear Information System (INIS)

    Hauge, Oe.; Engvold, O.

    1977-01-01

    Interest in the previous compilations of solar abundance data by the same authors (ITA--31 and ITA--39) has led to this third, revised edition. Solar abundance data of 67 elements are tabulated and in addition upper limits for the abundances of 5 elements are listed. References are made to 167 papers. A recommended abundance value is given for each element. (JIW)

  19. The abundance and emission of H2O and O-2 in clumpy molecular clouds

    NARCIS (Netherlands)

    Spaans, M; van Dishoeck, EF

    2001-01-01

    Recent observations with the Submillimeter Wave Astronomy Satellite (SWAS) indicate abundances of gaseous H2O and O-2 in dense molecular clouds that are significantly lower than those found in standard homogeneous chemistry models. We present here results for the thermal and chemical balance of

  20. Atmospheric Composition of Weak G Band Stars: CNO and Li Abundances

    Science.gov (United States)

    Adamczak, Jens; Lambert, David L.

    2013-03-01

    We determined the chemical composition of a large sample of weak G band stars—a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normal giants and the 12C/13C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.

  1. ATMOSPHERIC COMPOSITION OF WEAK G BAND STARS: CNO AND Li ABUNDANCES

    International Nuclear Information System (INIS)

    Adamczak, Jens; Lambert, David L.

    2013-01-01

    We determined the chemical composition of a large sample of weak G band stars—a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normal giants and the 12 C/ 13 C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.

  2. The collection and field chemical analysis of water samples

    International Nuclear Information System (INIS)

    Korte, N.E.; Ealey, D.T.; Hollenbach, M.H.

    1984-01-01

    A successful water sampling program requires a clear understanding of appropriate measurement and sampling procedures in order to obtain reliable field data and representative samples. It is imperative that the personnel involved have a thorough knowledge of the limitations of the techniques being used. Though this seems self-evident, many sampling and field-chemical-analysis programs are still not properly conducted. Recognizing these problems, the Department of Energy contracted with Bendix Field Engineering Corporation through the Technical Measurements Center to develop and select procedures for water sampling and field chemical analysis at waste sites. The fundamental causese of poor field programs are addressed in this paper, largely through discussion of specific field-measurement techniques and their limitations. Recommendations for improvement, including quality-assurance measures, are also presented

  3. Chemical analysis quality assurance at the ICPP

    International Nuclear Information System (INIS)

    Hand, R.L.

    1990-01-01

    This document discusses the chemical analysis quality assurance program at the ICPP which involves records management, analytical methods quality control, analysis procedures and training and qualification. Since 1979, the major portion of the quality assurance program has been implemented on a central analytical computer system. The individual features provided by the system are storage, retrieval, and search capabilities over all general request and sample analysis information, automatic method selection for all process streams, automation of all method calculations, automatic assignment of bias and precision estimates at all analysis levels, with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of all process stream results for replicate agreement, automatic testing of process results against pre- established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of all analysis data plus all statistical testing to the Production Department

  4. INVESTIGATION OF THE PUZZLING ABUNDANCE PATTERN IN THE STARS OF THE FORNAX DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongjie; Cui Wenyuan; Zhang Bo, E-mail: zhangbo@mail.hebtu.edu.cn [Department of Physics, Hebei Normal University, No. 20 East of South 2nd Ring Road, Shijiazhuang 050024 (China)

    2013-09-20

    Many works have found unusual characteristics of elemental abundances in nearby dwarf galaxies. This implies that there is a key factor of galactic evolution that is different from that of the Milky Way (MW). The chemical abundances of the stars in the Fornax dwarf spheroidal galaxy (Fornax dSph) provide excellent information for setting constraints on the models of galactic chemical evolution. In this work, adopting the five-component approach, we fit the abundances of the Fornax dSph stars, including {alpha} elements, iron group elements, and neutron-capture elements. For most sample stars, the relative contributions from the various processes to the elemental abundances are not usually in the MW proportions. We find that the contributions from massive stars to the primary {alpha} elements and iron group elements increase monotonically with increasing [Fe/H]. This means that the effect of the galactic wind is not strong enough to halt star formation and the contributions from the massive stars to {alpha} elements did not halt for [Fe/H] {approx}< -0.5. The average contribution ratios of various processes between the dSph stars and the MW stars monotonically decrease with increasing progenitor mass. This is important evidence of a bottom-heavy initial mass function (IMF) for the Fornax dSph, compared to the MW. Considering a bottom-heavy IMF for the dSph, the observed relations of [{alpha}/Fe] versus [Fe/H], [iron group/Fe] versus [Fe/H], and [neutron-capture/Fe] versus [Fe/H] for the dSph stars can be explained.

  5. Fatty acid composition and its association with chemical and sensory analysis of boar taint.

    Science.gov (United States)

    Liu, Xiaoye; Trautmann, Johanna; Wigger, Ruth; Zhou, Guanghong; Mörlein, Daniel

    2017-09-15

    A certain level of disagreement between the chemical analysis of androstenone and skatole and the human perception of boar taint has been found in many studies. Here we analyze whether the fatty acid composition can explain such inconsistency between sensory evaluation and chemical analysis of boar taint compounds. Therefore, back fat samples (n=143) were selected according to their sensory evaluation by a 10-person sensory panel, and the chemical analysis (stable isotope dilution analysis with headspace solid-phase microextraction and gas chromatography-mass spectrometry) of androstenone and skatole. Subsequently a quantification of fatty acids using gas chromatography-flame ionization detection was conducted. The correlation analyses revealed that several fatty acids are significantly correlated with androstenone, skatole, and the sensory rating. However, multivariate analyses (principal component analysis) revealed no explanation of the fatty acid composition with respect to the (dis-)agreement between sensory and chemical analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Physico-chemical and biological characterization of urban municipal landfill leachate.

    Science.gov (United States)

    Naveen, B P; Mahapatra, Durga Madhab; Sitharam, T G; Sivapullaiah, P V; Ramachandra, T V

    2017-01-01

    Unscientific management and ad-hoc approaches in municipal solid waste management have led to a generation of voluminous leachate in urban conglomerates. Quantification, quality assessment, following treatment and management of leachate has become a serious problem worldwide. In this context, the present study investigates the physico-chemical and biological characterization of landfill leachate and nearby water sources and attempts to identify relationships between the key parameters together with understanding the various processes for chemical transformations. The analysis shows an intermediate leachate age (5-10 years) with higher nutrient levels of 10,000-12,000 mg/l and ∼2000-3000 mg/l of carbon (COD) and nitrogen (TKN) respectively. Elemental analysis and underlying mechanisms reveal chemical precipitation and co-precipitation as the vital processes in leachate pond systems resulting in accumulation of trace metals. Based on the above criteria the samples were clustered into major groups that showed a clear distinction between leachate and water bodies. The microbial analysis showed bacterial communities correlating with specific factors relevant to redox environments indicating a gradient in nature and abundance of biotic diversity with a change in leachate environment. Finally, the quality and the contamination potential of the samples were evaluated with the help of leachate pollution index (LPI) and water quality index (WQI) analysis. The study helps in understanding the contamination potential of landfill leachate and establishes linkages between microbial communities and physico-chemical parameters for effective management of landfill leachate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. SILICON AND OXYGEN ABUNDANCES IN PLANET-HOST STARS

    International Nuclear Information System (INIS)

    Brugamyer, Erik; Dodson-Robinson, Sarah E.; Cochran, William D.; Sneden, Christopher

    2011-01-01

    The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores are thought to grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 76 planet hosts and a control sample of 80 metal-rich stars without any known giant planets. Our new, independent analysis was conducted using high resolution, high signal-to-noise data obtained at McDonald Observatory. Because we do not wish to simply reproduce the known planet-metallicity correlation, we have devised a statistical method for matching the underlying [Fe/H] distributions of our two sets of stars. We find a 99% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet-metallicity correlation. We do not detect any such correlation for oxygen. Our results would thus seem to suggest that grain nucleation, rather than subsequent icy mantle growth, is the important limiting factor in forming giant planets via core accretion. Based on our results and interpretation, we predict that planet detection should correlate with host star abundance for refractory elements responsible for grain nucleation and that no such trends should exist for the most abundant volatile elements responsible for icy mantle growth.

  8. Endocrine-disrupting Chemicals: Review of Toxicological Mechanisms Using Molecular Pathway Analysis

    Science.gov (United States)

    Yang, Oneyeol; Kim, Hye Lim; Weon, Jong-Il; Seo, Young Rok

    2015-01-01

    Endocrine disruptors are known to cause harmful effects to human through various exposure routes. These chemicals mainly appear to interfere with the endocrine or hormone systems. As importantly, numerous studies have demonstrated that the accumulation of endocrine disruptors can induce fatal disorders including obesity and cancer. Using diverse biological tools, the potential molecular mechanisms related with these diseases by exposure of endocrine disruptors. Recently, pathway analysis, a bioinformatics tool, is being widely used to predict the potential mechanism or biological network of certain chemicals. In this review, we initially summarize the major molecular mechanisms involved in the induction of the above mentioned diseases by endocrine disruptors. Additionally, we provide the potential markers and signaling mechanisms discovered via pathway analysis under exposure to representative endocrine disruptors, bisphenol, diethylhexylphthalate, and nonylphenol. The review emphasizes the importance of pathway analysis using bioinformatics to finding the specific mechanisms of toxic chemicals, including endocrine disruptors. PMID:25853100

  9. NEW RADIAL ABUNDANCE GRADIENTS FOR NGC 628 AND NGC 2403

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Danielle A.; Skillman, Evan D. [Department of Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Croxall, Kevin V. [Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Marble, Andrew R. [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States); Smith, J. D. [Ritter Astrophysical Observatory, University of Toledo, Toledo, OH 43606 (United States); Gordon, Karl [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Garnett, Donald R., E-mail: berg@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: croxall.5@osu.edu, E-mail: amarble@nso.edu, E-mail: jd.smith@utoledo.edu, E-mail: kgordon@stsci.edu, E-mail: robk@ast.cam.ac.uk

    2013-10-01

    Motivated by recent interstellar medium studies, we present high quality MMT and Gemini spectroscopic observations of H II regions in the nearby spiral galaxies NGC 628 and NGC 2403 in order to measure their chemical abundance gradients. Using long-slit and multi-object mask optical spectroscopy, we obtained measurements of the temperature sensitive auroral lines [O III] λ4363 and/or [N II] λ5755 at a strength of 4σ or greater in 11 H II regions in NGC 628 and 7 regions in NGC 2403. These observations allow us, for the first time, to derive an oxygen abundance gradient in NGC 628 based solely on 'direct' oxygen abundances of H II regions: 12 + log(O/H) = (8.43 ± 0.03) + (–0.017 ± 0.002) × R{sub g} (dex kpc{sup –1}), with a dispersion in log(O/H) of σ = 0.10 dex, from 14 regions with a radial coverage of ∼2-19 kpc. This is a significantly shallower slope than found by previous 'strong-line' abundance studies. In NGC 2403, we derive an oxygen abundance gradient of 12 + log(O/H) = (8.48 ± 0.04) + (–0.032 ± 0.007)× R{sub g} (dex kpc{sup –1}), with a dispersion in log(O/H) of σ = 0.07 dex, from seven H II with a radial coverage of ∼1-10 kpc. Additionally, we measure the N, S, Ne, and Ar abundances. We find the N/O ratio decreases with increasing radius for the inner disk, but reaches a plateau past R{sub 25} in NGC 628. NGC 2403 also has a negative N/O gradient with radius, but we do not sample the outer disk of the galaxy past R{sub 25} and so do not see evidence for a plateau. This bi-modal pattern measured for NGC 628 indicates dominant contributions from secondary nitrogen inside of the R{sub 25} transition and dominantly primary nitrogen farther out. As expected for α-process elements, S/O, Ne/O, and Ar/O are consistent with constant values over a range in oxygen abundance.

  10. Chemical analysis as production guide

    International Nuclear Information System (INIS)

    Bouzigues, H.; Fontaine, A.; Patigny, P.

    1975-01-01

    All piloting data of chemical processing plants are based on the results of analysis. The first part of this article describes a system of analysers adapted to the needs of the Pierrelatte plant, with management of signals collected by the factory computer. Part two shows the influence of analytical development in the establishment of material balance sheets for the Marcoule spent fuel processing plant. Part three stresses the contribution of the automation of analytical test processes at the La Hague spent fuel processing plant. In all three cases the progress in analytical methods greatly improves the safety, reliability and response time of the various operations [fr

  11. FLUORINE ABUNDANCES IN GALACTIC ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; DomInguez, I.; Cunha, K.; Hinkle, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Eriksson, K.; Wahlin, R.; Gialanella, L.; Imbriani, G.; Straniero, O.

    2010-01-01

    An analysis of the fluorine abundance in Galactic asymptotic giant branch (AGB) carbon stars (24 N-type, 5 SC-type, and 5 J-type) is presented. This study uses the state-of-the-art carbon-rich atmosphere models and improved atomic and molecular line lists in the 2.3 μm region. Significantly lower F abundances are obtained in comparison to previous studies in the literature. This difference is mainly due to molecular blends. In the case of carbon stars of SC-type, differences in the model atmospheres are also relevant. The new F enhancements are now in agreement with the most recent theoretical nucleosynthesis models in low-mass AGB stars, solving the long-standing problem of F in Galactic AGB stars. Nevertheless, some SC-type carbon stars still show larger F abundances than predicted by stellar models. The possibility that these stars are of larger mass is briefly discussed.

  12. In-Depth Global Analysis of Transcript Abundance Levels in Porcine Alveolar Macrophages Following Infection with Porcine Reproductive and Respiratory Syndrome Virus

    Directory of Open Access Journals (Sweden)

    Laura C. Miller

    2010-01-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV is a major pathogen of swine worldwide and causes considerable economic loss. Identifying specific cell signaling or activation pathways that associate with variation in PRRSV replication and macrophage function may lead to identification of novel gene targets for the control of PRRSV infection. Serial Analysis of Gene Expression (SAGE was used to create and survey the transcriptome of in vitro mock-infected and PRRSV strain VR-2332-infected porcine alveolar macrophages (PAM at 0, 6, 12, 16, and 24 hours after infection. The transcriptome data indicated changes in transcript abundance occurring in PRRSV-infected PAMs over time after infection with more than 590 unique tags with significantly altered transcript abundance levels identified (P<.01. Strikingly, innate immune genes (whose transcript abundances are typically altered in response to other pathogens or insults including IL-8, CCL4, and IL-1β showed no or very little change at any time point following infection.

  13. Invasive lionfish reduce native fish abundance on a regional scale

    Science.gov (United States)

    Ballew, Nicholas G.; Bacheler, Nathan M.; Kellison, G. Todd; Schueller, Amy M.

    2016-08-01

    Invasive lionfish pose an unprecedented threat to biodiversity and fisheries throughout Atlantic waters off of the southeastern United States, the Caribbean, and the Gulf of Mexico. Here, we employ a spatially replicated Before-After-Control-Impact analysis with temporal pairing to quantify for the first time the impact of the lionfish invasion on native fish abundance across a broad regional scale and over the entire duration of the lionfish invasion (1990-2014). Our results suggest that 1) lionfish-impacted areas off of the southeastern United States are most prevalent off-shore near the continental shelf-break but are also common near-shore and 2) in impacted areas, lionfish have reduced tomtate (a native forage fish) abundance by 45% since the invasion began. Tomtate served as a model native fish species in our analysis, and as such, it is likely that the lionfish invasion has had similar impacts on other species, some of which may be of economic importance. Barring the development of a control strategy that reverses the lionfish invasion, the abundance of lionfish in the Atlantic, Caribbean, and Gulf of Mexico will likely remain at or above current levels. Consequently, the effect of lionfish on native fish abundance will likely continue for the foreseeable future.

  14. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    Science.gov (United States)

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation.

  15. Detailed abundances from integrated-light spectroscopy: Milky Way globular clusters

    Science.gov (United States)

    Larsen, S. S.; Brodie, J. P.; Strader, J.

    2017-05-01

    Context. Integrated-light spectroscopy at high spectral resolution is rapidly maturing as a powerful way to measure detailed chemical abundances for extragalactic globular clusters (GCs). Aims: We test the performance of our analysis technique for integrated-light spectra by applying it to seven well-studied Galactic GCs that span a wide range of metallicities. Methods: Integrated-light spectra were obtained by scanning the slit of the UVES spectrograph on the ESO Very Large Telescope across the half-light diameters of the clusters. We modelled the spectra using resolved Hubble Space Telescope colour-magnitude diagrams (CMDs), as well as theoretical isochrones, in combination with standard stellar atmosphere and spectral synthesis codes. The abundances of Fe, Na, Mg, Ca, Ti, Cr, and Ba were compared with literature data for individual stars in the clusters. Results: The typical differences between iron abundances derived from our integrated-light spectra and those compiled from the literature are less than 0.1 dex. A larger difference is found for one cluster (NGC 6752), and is most likely caused primarily by stochastic fluctuations in the numbers of bright red giants within the scanned area. As expected, the α-elements (Ca, Ti) are enhanced by about 0.3 dex compared to the Solar-scaled composition, while the [Cr/Fe] ratios are close to Solar. When using up-to-date line lists, our [Mg/Fe] ratios also agree well with literature data. Our [Na/Fe] ratios are, on average, 0.08-0.14 dex lower than average values quoted in the literature, and our [Ba/Fe] ratios may be overestimated by 0.20-0.35 dex at the lowest metallicities. We find that analyses based on theoretical isochrones give very similar results to those based on resolved CMDs. Conclusions: Overall, the agreement between our integrated-light abundance measurements and the literature data is satisfactory. Refinements of the modelling procedure, such as corrections for stellar evolutionary and non-LTE effects

  16. [Relativity of commercial specification of Menthae Herba based on chemical analysis].

    Science.gov (United States)

    Ye, Dan; Zhao, Ming; Shao, Yang; Ouyang, Zhen; Peng, Hua-sheng; Han Bang-xing; Zhang, Wei-wan-qi; Gu, Xue-mei

    2015-01-01

    In order to compare the differences of 35 Menthae Herba samples collected on the market and at producing areas, the contents of six total terpenoids, the essential oil and chromatographic fingerprints were analyzed, which provided evidences for drawing up the commodity specifications and grading criteria of Menthae Herba. GC-MS method was used to analyze the chemical constituents of 35 different samples. The chromatographic fingerprints obtained by using GC were then evaluated by similarity analysis, hierarchical clustering analysis and principal component analysis. The relativity between the content of six terpenoids and the essential oil were studied. In this study, the chemical profiles of 35 samples from different producing areas had significant disparity. All samples collected in the report could be categorized into four chemical types, L-menthol, pulegone, carvone and L-menthone, but the chemical profiles had no relationship with the areas. The chromatographic fingerprints of the samples from different types were dissimilar, while the different producing areas were difficult to be separated. It was indicated that the content of volatile oil was positively correlated with the content of L-menthol and the sum of six total terpenoids. The content of the essential oil, L-menthol and the sum of six total terpenoids of Menthae Herba were considered as one of the commercial specifications and grading criteria. These results in the research could be helpful to draw up the commercial specification and grading criteria of Menthae Herba from a view of chemical information.

  17. AN IN-DEPTH STUDY OF THE ABUNDANCE PATTERN IN THE HOT INTERSTELLAR MEDIUM IN NGC 4649

    International Nuclear Information System (INIS)

    Loewenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzaku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of O. We construct steady-state solutions to the chemical evolution equations that include infall in addition to stellar mass return and Type Ia supernova (SNIa) enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649, we infer that introduction of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern toward low α/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly introduced gas is heated as it is integrated into, and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an Appendix, we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  18. THE CHEMICAL EVOLUTION OF PHOSPHORUS

    International Nuclear Information System (INIS)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-01-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together

  19. Effect of Plant Diversity on Diversity and Abundance of Arthropods in Winter Wheat Fields

    Directory of Open Access Journals (Sweden)

    A Khodashenas

    2011-02-01

    Full Text Available Abstract Plant biomass and diversity play an important role in enhancing of biodiversity of other trophic levels, specially arthropods in terrestrial ecosystems. In order to determine the effects of plants on diversity and abundance of arthropods, a study was carried out in three regions of Razavi and northern Khorasan provinces, Shirvan, Mashhad and Gonabad. In each region, high and low input fields of winter wheat and a natural system for comparison were selected. In ripening stage of wheat growth (90 stage of Zadoks, sampling was done by use of quadrate in each system with five replications. Plants in each quadrate were counted and species richness of plants was determined. Insect sampling was done by sweep net from surface of plants, then species richness and abundance of collected insects were determined. As a result, agricultural practices decreased plant species richness but diversity and abundance of insects and spiders increased in agricultural systems. Our finding revealed that abundance of insects and spiders were not affected by plant species richness and plant biomass was the main factor affecting on species richness and abundance of insects, spiders and beneficial insects. Therefore, decreasing plant species richness that arose from agricultural practices doesn’t effect on arthropods diversity and abundance and doesn’t decrease sustainability of agricultural systems. Irregular use of chemical inputs, specially pesticides, is the main factor to decreasing of plants and arthropods species richness in agricultural systems. Keywords: Plant diversity, Arthropod diversity, Arthropod abundance, Plant-insect interactions, Agricultural systems

  20. Role of Core-collapse Supernovae in Explaining Solar System Abundances of p Nuclides

    Science.gov (United States)

    Travaglio, C.; Rauscher, T.; Heger, A.; Pignatari, M.; West, C.

    2018-02-01

    The production of the heavy stable proton-rich isotopes between 74Se and 196Hg—the p nuclides—is due to the contribution from different nucleosynthesis processes, activated in different types of stars. Whereas these processes have been subject to various studies, their relative contributions to Galactic chemical evolution (GCE) are still a matter of debate. Here we investigate for the first time the nucleosynthesis of p nuclides in GCE by including metallicity and progenitor mass-dependent yields of core-collapse supernovae (ccSNe) into a chemical evolution model. We used a grid of metallicities and progenitor masses from two different sets of stellar yields and followed the contribution of ccSNe to the Galactic abundances as a function of time. In combination with previous studies on p-nucleus production in thermonuclear supernovae (SNIa), and using the same GCE description, this allows us to compare the respective roles of SNeIa and ccSNe in the production of p-nuclei in the Galaxy. The γ process in ccSN is very efficient for a wide range of progenitor masses (13 M ⊙–25 M ⊙) at solar metallicity. Since it is a secondary process with its efficiency depending on the initial abundance of heavy elements, its contribution is strongly reduced below solar metallicity. This makes it challenging to explain the inventory of the p nuclides in the solar system by the contribution from ccSNe alone. In particular, we find that ccSNe contribute less than 10% of the solar p nuclide abundances, with only a few exceptions. Due to the uncertain contribution from other nucleosynthesis sites in ccSNe, such as neutrino winds or α-rich freeze out, we conclude that the light p-nuclides 74Se, 78Kr, 84Sr, and 92Mo may either still be completely or only partially produced in ccSNe. The γ-process accounts for up to twice the relative solar abundances for 74Se in one set of stellar models and 196Hg in the other set. The solar abundance of the heaviest p nucleus 196Hg is

  1. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    Science.gov (United States)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  2. Analysis of chemical constituents in medicinal plants of selected ...

    African Journals Online (AJOL)

    Analysis of chemical constituents in medicinal plants of selected districts of Pakhtoonkhwa, Pakistan. I Hussain, R Ullah, J Khan, N Khan, M Zahoor, N Ullah, MuR Khattak, FA Khan, A Baseer, M Khurram ...

  3. Chemical composition of stars in Ruprecht 106 .

    Science.gov (United States)

    François, P.

    High resolution spectra of 9 stars belonging to the globular cluster Rup 106 have been used to determine their chemical composition. The results reveal that Ruprecht 106 exhibits abundance anomalies when compared to galactic globular cluster of similar metallicity. The chemical composition of these stars is similar to what is found in Dwarf spheroidal galaxies favoring the hypothesis that Rup 106 has not been formed in our Galaxy.

  4. 18 Sco: A solar twin rich in refractory and neutron-capture elements. Implications for chemical tagging

    Energy Technology Data Exchange (ETDEWEB)

    Meléndez, Jorge; Monroe, TalaWanda R.; Tucci Maia, Marcelo; Freitas, Fabrício C. [Departamento de Astronomia do IAG/USP, Universidade de São Paulo, Rua do Matão 1226, 05508-900 São Paulo, SP (Brazil); Ramírez, Iván [McDonald Observatory and Department of Astronomy, University of Texas at Austin (United States); Karakas, Amanda I.; Yong, David; Asplund, Martin [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bedell, Megan; Bean, Jacob [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bergemann, Maria [Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA, Cambridge (United Kingdom); Do Nascimento, José-Dias Jr.; Castro, Matthieu [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Bazot, Michael [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Alves-Brito, Alan, E-mail: jorge.melendez@iag.usp.br [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre, RS (Brazil)

    2014-08-10

    We study with unprecedented detail the chemical composition and stellar parameters of the solar twin 18 Sco in a strictly differential sense relative to the Sun. Our study is mainly based on high-resolution (R ∼ 110,000), high signal-to-noise ratio (800-1,000) Very Large Telescope UVES spectra, which allow us to achieve a precision of about 0.005 dex in differential abundances. The effective temperature and surface gravity of 18 Sco are T{sub eff} = 5823 ± 6 K and log g = 4.45 ± 0.02 dex, i.e., 18 Sco is 46 ± 6 K hotter than the Sun and log g is 0.01 ± 0.02 dex higher. Its metallicity is [Fe/H] = 0.054 ± 0.005 dex, and its microturbulence velocity is +0.02 ± 0.01 km s{sup –1} higher than solar. Our precise stellar parameters and differential isochrone analysis show that 18 Sco has a mass of 1.04 ± 0.02 M{sub ☉} and that it is ∼1.6 Gyr younger than the Sun. We use precise High Accuracy Radial velocity Planet Searcher (HARPS) radial velocities to search for planets, but none are detected. The chemical abundance pattern of 18 Sco displays a clear trend with condensation temperature, thus showing higher abundances of refractories in 18 Sco than in the Sun. Intriguingly, there are enhancements in the neutron-capture elements relative to the Sun. Despite the small element-to-element abundance differences among nearby n-capture elements (∼0.02 dex), we successfully reproduce the r-process pattern in the Solar System. This is independent evidence for the universality of the r process. Our results have important implications for chemical tagging in our Galaxy and nucleosynthesis in general.

  5. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Casey, Andrew R., E-mail: alexji@mit.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2016-11-20

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  6. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana; Casey, Andrew R.

    2016-01-01

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  7. Evolution of massive stars with mass loss: surface abundances

    International Nuclear Information System (INIS)

    Greggio, L.

    1984-01-01

    The location of theoretical stellar models in the upper part of the Hertzsprung-Russell diagram depends on a variety of poorly understood physical processes which may occur during the evolution of massive stars. The comparison between theoretical predictions and observations of the surface chemical composition of these objects can help in understanding their evolution and to set more stringent limits to the mentioned parameters. To this end, evolutionary sequences corresponding to 20, 40 and 60 solar masses have been computed up to core He exhaustion, following in detail the abundance variations of CNO, Ne and Mg isotopes. (Auth.)

  8. A TWO MICRON ALL SKY SURVEY VIEW OF THE SAGITTARIUS DWARF GALAXY. VI. s-PROCESS AND TITANIUM ABUNDANCE VARIATIONS ALONG THE SAGITTARIUS STREAM

    International Nuclear Information System (INIS)

    Chou, Mei-Yin; Majewski, Steven R.; Patterson, Richard J.; Cunha, Katia; Smith, Verne V.; Martinez-Delgado, David; Geisler, Doug

    2010-01-01

    We present high-resolution spectroscopic measurements of the abundances of the α element titanium (Ti) and s-process elements yttrium (Y) and lanthanum (La) for 59 candidate M giant members of the Sagittarius (Sgr) dwarf spheroidal (dSph) + tidal tail system pre-selected on the basis of position and radial velocity (RV). As expected, the majority of these stars show peculiar abundance patterns compared to those of nominal Milky Way (MW) stars, but as a group, the stars form a coherent picture of chemical enrichment of the Sgr dSph from [Fe/H] = -1.4 to solar abundance. This sample of spectra provides the largest number of Ti, La, and Y abundances yet measured for a dSph, and spans metallicities not typically probed by studies of the other, generally more metal-poor MW satellites. On the other hand, the overall [Ti/Fe], [Y/Fe], [La/Fe], and [La/Y] patterns with [Fe/H] of the Sgr stream plus Sgr core do, for the most part, resemble those seen in the Large Magellanic Cloud (LMC) and other dSphs, only shifted by Δ[Fe/H] ∼ +0.4 from the LMC and by ∼+1 dex from the other dSphs; these relative shifts reflect the faster and/or more efficient chemical evolution of Sgr compared to the other satellites, and show that Sgr has had an enrichment history more like the LMC than the other dSphs. By tracking the evolution of the abundance patterns along the Sgr stream we can follow the time variation of the chemical make-up of dSph stars donated to the Galactic halo by Sgr. This evolution demonstrates that while the bulk of the stars currently in the Sgr dSph is quite unlike those of the Galactic halo, an increasing number of stars farther along the Sgr stream have abundances like MW halo stars, a trend that shows clearly how the Galactic halo could have been contributed by present-day satellite galaxies even if the present chemistry of those satellites is now different from typical halo field stars. Finally, we analyze the chemical abundances of a moving group of M giants

  9. Prospects for Chemically Tagging Stars in the Galaxy

    Science.gov (United States)

    Ting, Yuan-Sen; Conroy, Charlie; Goodman, Alyssa

    2015-07-01

    It is now well-established that the elemental abundance patterns of stars hold key clues not only to their formation, but also to the assembly histories of galaxies. One of the most exciting possibilities is the use of stellar abundance patterns as “chemical tags” to identify stars that were born in the same molecular cloud. In this paper, we assess the prospects of chemical tagging as a function of several key underlying parameters. We show that in the fiducial case of 104 distinct cells in chemical space and {10}5-{10}6 stars in the survey, one can expect to detect ∼ {10}2-{10}3 groups that are ≥slant 5σ overdensities in the chemical space. However, we find that even very large overdensities in chemical space do not guarantee that the overdensity is due to a single set of stars from a common birth cloud. In fact, for our fiducial model parameters, the typical 5σ overdensity is comprised of stars from a wide range of clusters with the most dominant cluster contributing only 25% of the stars. The most important factors limiting the identification of disrupted clusters via chemical tagging are the number of chemical cells in the chemical space and the survey sampling rate of the underlying stellar population. Both of these factors can be improved through strategic observational plans. While recovering individual clusters through chemical tagging may prove challenging, we show, in agreement with previous work, that different CMFs imprint different degrees of clumpiness in chemical space. These differences provide the opportunity to statistically reconstruct the slope and high-mass cutoff of CMF and its evolution through cosmic time.

  10. Chemical Analysis of Plants that Poison Livestock: Successes, Challenges, and Opportunities.

    Science.gov (United States)

    Welch, Kevin D; Lee, Stephen T; Cook, Daniel; Gardner, Dale R; Pfister, James A

    2018-04-04

    Poisonous plants have a devastating impact on the livestock industry as well as human health. To fully understand the effects of poisonous plants, multiple scientific disciplines are required. Chemical analysis of plant secondary compounds is key to identifying the responsible toxins, characterizing their metabolism, and understanding their effects on animals and humans. In this review, we highlight some of the successes in studying poisonous plants and mitigating their toxic effects. We also highlight some of the remaining challenges and opportunities with regards to the chemical analysis of poisonous plants.

  11. Physico-chemical analysis and sensory evaluation of bread ...

    African Journals Online (AJOL)

    This study carried out the physico-chemical analysis and sensory evaluation of bread produced using different indigenous yeast isolates in order to offer an insight into the overall quality of the bread. Four (4) different yeast species were isolated from sweet orange, pineapple and palm wine. The yeasts were characterized ...

  12. Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors.

    Science.gov (United States)

    Huang, Qiongyu; Sauer, John R; Dubayah, Ralph O

    2017-09-01

    Shifts in species distributions are major fingerprint of climate change. Examining changes in species abundance structures at a continental scale enables robust evaluation of climate change influences, but few studies have conducted these evaluations due to limited data and methodological constraints. In this study, we estimate temporal changes in abundance from North American Breeding Bird Survey data at the scale of physiographic strata to examine the relative influence of different components of climatic factors and evaluate the hypothesis that shifting species distributions are multidirectional in resident bird species in North America. We quantify the direction and velocity of the abundance shifts of 57 permanent resident birds over 44 years using a centroid analysis. For species with significant abundance shifts in the centroid analysis, we conduct a more intensive correlative analysis to identify climate components most strongly associated with composite change of abundance within strata. Our analysis focus on two contrasts: the relative importance of climate extremes vs. averages, and of temperature vs. precipitation in strength of association with abundance change. Our study shows that 36 species had significant abundance shifts over the study period. The average velocity of the centroid is 5.89 km·yr -1 . The shifted distance on average covers 259 km, 9% of range extent. Our results strongly suggest that the climate change fingerprint in studied avian distributions is multidirectional. Among 6 directions with significant abundance shifts, the northwestward shift was observed in the largest number of species (n = 13). The temperature/average climate model consistently has greater predictive ability than the precipitation/extreme climate model in explaining strata-level abundance change. Our study shows heterogeneous avian responses to recent environmental changes. It highlights needs for more species-specific approaches to examine contributing

  13. Fluorine in the solar neighborhood: Chemical evolution models

    Science.gov (United States)

    Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.

    2018-04-01

    Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.

  14. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Fuensanta Sánchez Rojas

    2006-10-01

    Full Text Available Optical techniques for chemical analysis are well established and sensors based on thesetechniques are now attracting considerable attention because of their importance in applications suchas environmental monitoring, biomedical sensing, and industrial process control. On the other hand,flow injection analysis (FIA is advisable for the rapid analysis of microliter volume samples and canbe interfaced directly to the chemical process. The FIA has become a widespread automatic analyticalmethod for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, andease of assembling. In this paper, an overview of flow injection determinations by using opticalchemical sensors is provided, and instrumentation, sensor design, and applications are discussed. Thiswork summarizes the most relevant manuscripts from 1980 to date referred to analysis using opticalchemical sensors in FIA.

  15. Flow Injection Analysis and Liquid Chromatography for Multifunctional Chemical Analysis (MCA) Systems

    Science.gov (United States)

    Mayo, Ana V.; Loegel, Thomas N.; Bretz, Stacey Lowery; Danielson, Neil D.

    2013-01-01

    The large class sizes of first-year chemistry labs makes it challenging to provide students with hands-on access to instrumentation because the number of students typically far exceeds the number of research-grade instruments available to collect data. Multifunctional chemical analysis (MCA) systems provide a viable alternative for large-scale…

  16. Snow-borne nanosized particles: Abundance, distribution, composition, and significance in ice nucleation processes

    Science.gov (United States)

    Rangel-Alvarado, Rodrigo Benjamin; Nazarenko, Yevgen; Ariya, Parisa A.

    2015-11-01

    Physicochemical processes of nucleation constitute a major uncertainty in understanding aerosol-cloud interactions. To improve the knowledge of the ice nucleation process, we characterized physical, chemical, and biological properties of fresh snow using a suite of state-of-the-art techniques based on mass spectrometry, electron microscopy, chromatography, and optical particle sizing. Samples were collected at two North American Arctic sites, as part of international campaigns (2006 and 2009), and in the city of Montreal, Canada, over the last decade. Particle size distribution analyses, in the range of 3 nm to 10 µm, showed that nanosized particles are the most numerous (38-71%) in fresh snow, with a significant portion (11 to 19%) less than 100 nm in size. Particles with diameters less than 200 nm consistently exhibited relatively high ice-nucleating properties (on average ranged from -19.6 ± 2.4 to -8.1 ± 2.6°C). Chemical analysis of the nanosized fraction suggests that they contain bioorganic materials, such as amino acids, as well as inorganic compounds with similar characteristics to mineral dust. The implication of nanoparticle ubiquity and abundance in diverse snow ecosystems are discussed in the context of their importance in understanding atmospheric nucleation processes.

  17. Ecological pattern of lichen species abundance in mixed forests of Eastern Romania

    Directory of Open Access Journals (Sweden)

    Ioana Vicol

    2016-12-01

    Full Text Available The importance of this study consists in the knowledge of the ecological attributes characteristic to mixed forestry habitats and how they affect the structure of the lichen species abundances. The field activities were performed within five forest habitat types from Moldavia Province, characterised mainly by oak mixed forests, riparian mixed forests and mixed beech forests. The habitat variables, tree variables and the lichen species abundances were analysed to get informations on the structural disimilarities, on the one hand, and relationships on the other hand. Within this study no significant disimilarities were found out from abundance lichen species point of view. The lichen species abundances are a result of interactions between components of their microhabitat and macrohabitat. The correlation analysis pointed out the preferences of lichen species to their host trees, especially Quercus and Fraxinus, altitude and tree level variables as are aspect and mosses coverage. The regression analysis has highlighted that the changes in lichen species abundances are caused by macrohabitat level predictors such as host trees represented by Fraxinus. This study demonstrates that, structure of lichen species is influenced by attributes of mixed forest habitats; therefore maintaining the diversity of tree species and ensuring the continuous occurrence of forestry land is necessary for lichen and their habitat conservation.

  18. The development of chemical speciation analysis

    International Nuclear Information System (INIS)

    Martin, R.; Santana, J.L.; Lima, L.; De La Rosa, D.; Melchor, K.

    2003-01-01

    The knowledge of many metals species on the environmental, its bioaccumulation, quantification and its effect in human body has been studied by a wide researchers groups in the last two decades. The development of speciation analysis has an vertiginous advance close to the developing of novel analytical techniques. Separation and quantification at low level is a problem that's has been afford by a coupling of high resolution chromatographic techniques like HPLC and HRGC with a specific method of detection (ICP-MS or CV-AAS). This methodological approach make possible the success in chemical speciation nowadays

  19. Laser chemical analysis: the recent developments

    International Nuclear Information System (INIS)

    Mauchien, P.

    1997-01-01

    This paper gives a general overview and describes the principles of the main laser-based techniques for physical and chemical analysis, and of their recent developments. Analytical techniques using laser radiations were actually developed at the end of the 1970's. The recent evolutions concern the 3 principal techniques of laser spectroscopy currently used: Raman, fluorescence (atomic and molecular) and ablation (ICP laser ablation-plasma coupling, optical emission spectroscopy on laser-induced plasma). The description of these different techniques is illustrated with some examples of applications. (J.S.)

  20. THE BIZARRE CHEMICAL INVENTORY OF NGC 2419, AN EXTREME OUTER HALO GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Judith G.; Kirby, Evan N., E-mail: jlc@astro.caltech.edu, E-mail: enk@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-11-20

    We present new Keck/HIRES observations of six red giants in the globular cluster (GC) NGC 2419. Although the cluster is among the most distant and most luminous in the Milky Way, it was considered chemically ordinary until very recently. Our previous work showed that the near-infrared Ca II triplet line strength varied more than expected for a chemically homogeneous cluster, and that at least one star had unusual abundances of Mg and K. Here, we confirm that NGC 2419 harbors a population of stars, comprising about one-third of its mass, that is depleted in Mg by a factor of eight and enhanced in K by a factor of six with respect to the Mg-normal population. Although the majority, Mg-normal population appears to have a chemical abundance pattern indistinguishable from ordinary, inner-halo GCs, the Mg-poor population exhibits dispersions of several elements. The abundances of K and Sc are strongly anti-correlated with Mg, and some other elements (Si and Ca among others) are weakly anti-correlated with Mg. These abundance patterns suggest that the different populations of NGC 2419 sample the ejecta of diverse supernovae in addition to asymptotic giant branch ejecta. However, the abundances of Fe-peak elements except Sc show no star-to-star variation. We find no nucleosynthetic source that satisfactorily explains all of the abundance variations in this cluster. Because NGC 2419 appears like no other GC, we reiterate our previous suggestion that it is not a GC at all, but rather the core of an accreted dwarf galaxy.

  1. Environmental factors influencing butterfly abundance after a severe wildfire in Mediterranean vegetation

    Directory of Open Access Journals (Sweden)

    Serrat, A.

    2015-10-01

    Full Text Available Despite the attention given to the ecology of butterflies, little is known about their community response to wildfires in the Mediterranean region. Here, we evaluated the butterfly assemblage two years after a severe, 13,000 ha wildfire in Catalonia (NE Spain in relation to the surrounding unburned habitat. Using visual transect censuses we assessed community parameters such as abundance, diversity, species richness and equitability in burned and unburned areas. Correspondence analysis was used to analyse specific composition and relative abundance of species in the community. The influence of environmental variables on the abundance of some common species was analysed using generalized linear mixed models, taking spatial effects into account. No significant differences were found between areas for any of the community parameters, and no dominance was detected in the burned area. The structure of the vegetation and the geographical distribution of transects influenced the ordination of species and transects on the correspondence analysis plot. Generalized linear mixed models (GLMM results underscored the role of nectar availability, fire and vegetation structure on the abundance of most species studied.

  2. Herschel Observations of Extraordinary Sources: Analysi sof the HIFI 1.2 THz Wide Spectral Survey toward Orion KL II. Chemical Implications

    Science.gov (United States)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Favre, C.; Blake, G. A.; Herbst, E.; Anderson, D. E.; Hassel, G. E.

    2015-06-01

    We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a novel technique to identify those molecules emitting in the hottest gas. In particular, we find the complex nitrogen bearing species CH3CN, C2H3CN, C2H5CN, and NH2CHO systematically trace hotter gas than the oxygen bearing organics CH3OH, C2H5OH, CH3OCH3, and CH3OCHO, which do not contain nitrogen. If these complex species form predominantly on grain surfaces, this may indicate N-bearing organics are more difficult to remove from grain surfaces than O-bearing species. Another possibility is that hot (Tkin ∼ 300 K) gas phase chemistry naturally produces higher complex cyanide abundances while suppressing the formation of O-bearing complex organics. We compare our derived rotation temperatures and molecular abundances to chemical models, which include gas-phase and grain surface pathways. Abundances for a majority of the detected complex organics can be reproduced over timescales ≳105 years, with several species being underpredicted by less than 3σ. Derived rotation temperatures for most organics, furthermore, agree reasonably well with the predicted temperatures at peak abundance. We also find that sulfur bearing molecules that also contain oxygen (i.e., SO, SO2, and OCS) tend to probe the hottest gas toward Orion KL, indicating the formation pathways for these species are most efficient at high temperatures. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Relic abundance of WIMPs in non-standard cosmological scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Yimingniyazi, W.

    2007-08-06

    In this thesis we study the relic density n{sub {chi}} of non--relativistic long--lived or stable particles {chi} in various non--standard cosmological scenarios. First, we discuss the relic density in the non--standard cosmological scenario in which the temperature is too low for the particles {chi} to achieve full chemical equilibrium. We also investigated the case where {chi} particles are non--thermally produced from the decay of heavier particles in addition to the usual thermal production. In low temperature scenario, we calculate the relic abundance starting from arbitrary initial temperatures T{sub 0} of the radiation--dominated epoch and derive approximate solutions for the temperature dependence of the relic density which can accurately reproduces numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the {chi} number density. However, we can contrive a semi-analytic formula which gives the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures. We also derive the lower bound on the initial temperature T{sub 0}, assuming that the relic particle accounts for the dark matter energy density in the universe. The observed cold dark matter abundance constrains the initial temperature T{sub 0} {>=}m{sub {chi}}/23, where m{sub {chi}} is the mass of {chi}. Second, we discuss the {chi} density in the scenario where the the Hubble parameter is modified. Even in this case, an approximate formula similar to the standard one is found to be capable of predicting the final relic abundance correctly. Choosing the {chi} annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at T {proportional_to}m{sub {chi}}/20, well before Big Bang Nucleosynthesis. (orig.)

  4. Relic abundance of WIMPs in non-standard cosmological scenarios

    International Nuclear Information System (INIS)

    Yimingniyazi, W.

    2007-01-01

    In this thesis we study the relic density n χ of non--relativistic long--lived or stable particles χ in various non--standard cosmological scenarios. First, we discuss the relic density in the non--standard cosmological scenario in which the temperature is too low for the particles χ to achieve full chemical equilibrium. We also investigated the case where χ particles are non--thermally produced from the decay of heavier particles in addition to the usual thermal production. In low temperature scenario, we calculate the relic abundance starting from arbitrary initial temperatures T 0 of the radiation--dominated epoch and derive approximate solutions for the temperature dependence of the relic density which can accurately reproduces numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the χ number density. However, we can contrive a semi-analytic formula which gives the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures. We also derive the lower bound on the initial temperature T 0 , assuming that the relic particle accounts for the dark matter energy density in the universe. The observed cold dark matter abundance constrains the initial temperature T 0 ≥m χ /23, where m χ is the mass of χ. Second, we discuss the χ density in the scenario where the the Hubble parameter is modified. Even in this case, an approximate formula similar to the standard one is found to be capable of predicting the final relic abundance correctly. Choosing the χ annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at T ∝m χ /20, well before Big Bang Nucleosynthesis. (orig.)

  5. Chemical analysis of refractories by plasma spectrometry

    International Nuclear Information System (INIS)

    Coutinho, C.A.

    1990-01-01

    X-ray spectrometry has been, since the last two or three decades, the traditional procedure for the chemical analysis of refractories, due to its high degree of accuracy and speed to produce analytical results. An interesting alternative to X-ray fluorescence is provided by the Inductively Coupled Plasma Spectrometry technique, for those laboratories where wet chemistry facilities are already available or process control is not required at high speed, or investiment costs have to be low. This paper presents results obtained by plasma spectroscopy for the analysis of silico - aluminous refractories, showing calibration curves, precion and detection limits. Considerations and comparisons with X-ray fluorescence are also made. (author) [pt

  6. Multiple marker abundance profiling

    DEFF Research Database (Denmark)

    Hooper, Cornelia M.; Stevens, Tim J.; Saukkonen, Anna

    2017-01-01

    proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment...

  7. Evolution of heavy-element abundances in the galactic halo and disk

    International Nuclear Information System (INIS)

    Mathews, G.J.; Cowan, J.J.; Schramm, D.N.

    1988-05-01

    The constraints on the universal energy density and cosmological constant from cosmochronological ages and the Hubble age are reviewed. Observational evidence for the galactic chemical evolution of the heavy-element chronometers is described in the context of numerical models. The viability of the recently discovered Th/Nd stellar chronometer is discussed, along with the suggestion that high r-process abundances in metal-poor stars may have resulted from a primordial r-process, as may be required by some inhomogeneous cosmologies

  8. Larval abundance and its relation to macrofouling settlement pattern in the coastal waters of Kalpakkam, southeastern part of India.

    Science.gov (United States)

    Sahu, Gouri; Satpathy, K K; Mohanty, A K; Biswas, Sudeepta; Achary, M Smita; Sarkar, S K

    2013-02-01

    The present work revealed that salinity, water temperature, and food availability were the most crucial factors affecting the abundance of larvae and their settlement as macrofouling community in the coastal waters of Kalpakkam. Quantitative as well as qualitative results showed that late post-monsoon (April-May) and pre-monsoon (June-September) periods were found to be suitable periods for larval growth, development, and survival to adult stages for most of the organisms. Clustering of physico-chemical and biological (including larval and adult availability) data yielded two major clusters; one formed by northeast (NE) monsoon months (October-January) and the other by post-monsoon/summer (February-May) months, whereas; pre-monsoon months (June-September) were distributed between these two clusters. Among all the major macrofouler groups, only bivalves established a successful relationship between its larval abundance and adult settlement. Principal component analysis indicated good associations of bivalve larvae with polychaete larvae and adult bivalves with adult barnacles. However, biotic relation between ascidians and bryozoans was observed both in the larval as well as adult community.

  9. Forecasting global developments in the basic chemical industry for environmental policy analysis

    NARCIS (Netherlands)

    Broeren, M.L.M.|info:eu-repo/dai/nl/371687438; Saygin, D.; Patel, M.K.

    The chemical sector is the largest industrial energy user, but detailed analysis of its energy use developments lags behind other energy-intensive sectors. A cost-driven forecasting model for basic chemicals production is developed, accounting for regional production costs, demand growth and stock

  10. CHEMICAL SIGNATURES OF THE FIRST SUPERNOVAE IN THE SCULPTOR DWARF SPHEROIDAL GALAXY

    International Nuclear Information System (INIS)

    Simon, Joshua D.; Thompson, Ian B.; Shectman, Stephen A.; Jacobson, Heather R.; Frebel, Anna; Adams, Joshua J.

    2015-01-01

    We present a homogeneous chemical abundance analysis of five of the most metal-poor stars in the Sculptor dwarf spheroidal galaxy. We analyze new and archival high resolution spectroscopy from Magellan/MIKE and VLT/UVES and determine stellar parameters and abundances in a consistent way for each star. Two of the stars in our sample, at [Fe/H] = −3.5 and [Fe/H] = −3.8, are new discoveries from our Ca K survey of Sculptor, while the other three were known in the literature. We confirm that Scl 07-50 is the lowest metallicity star identified in an external galaxy, at [Fe/H] = −4.1. The two most metal-poor stars both have very unusual abundance patterns, with striking deficiencies of the α elements, while the other three stars resemble typical extremely metal-poor Milky Way halo stars. We show that the star-to-star scatter for several elements in Sculptor is larger than that for halo stars in the same metallicity range. This scatter and the uncommon abundance patterns of the lowest metallicity stars indicate that the oldest surviving Sculptor stars were enriched by a small number of earlier supernovae, perhaps weighted toward high-mass progenitors from the first generation of stars the galaxy formed

  11. Predicting small mammal and flea abundance using landform and soil properties in a plague endemic area in Lushoto District, Tanzania.

    Science.gov (United States)

    Meliyo, Joel L; Kimaro, Didas N; Msanya, Balthazar M; Mulungu, Loth S; Hieronimo, Proches; Kihupi, Nganga I; Gulinck, Hubert; Deckers, Jozef A

    2014-07-01

    Small mammals particularly rodents, are considered the primary natural hosts of plague. Literature suggests that plague persistence in natural foci has a root cause in soils. The objective of this study was to investigate the relationship between on the one hand landforms and associated soil properties, and on the other hand small mammals and fleas in West Usambara Mountains in Tanzania, a plague endemic area. Standard field survey methods coupled with Geographical Information System (GIS) technique were used to examine landform and soils characteristics. Soil samples were analysed in the laboratory for physico-chemical properties. Small mammals were trapped on pre-established landform positions and identified to genus/species level. Fleas were removed from the trapped small mammals and counted. Exploration of landform and soil data was done using ArcGIS Toolbox functions and descriptive statistical analysis. The relationships between landforms, soils, small mammals and fleas were established by generalised linear regression model (GLM) operated in R statistics software. Results show that landforms and soils influence the abundance of small mammals and fleas and their spatial distribution. The abundance of small mammals and fleas increased with increase in elevation. Small mammal species richness also increases with elevation. A landform-soil model shows that available phosphorus, slope aspect and elevation were statistically significant predictors explaining richness and abundance of small mammals. Fleas' abundance and spatial distribution were influenced by hill-shade, available phosphorus and base saturation. The study suggests that landforms and soils have a strong influence on the richness and evenness of small mammals and their fleas' abundance hence could be used to explain plague dynamics in the area.

  12. Hydrogen fluoride (HF) substance flow analysis for safe and sustainable chemical industry.

    Science.gov (United States)

    Kim, Junbeum; Hwang, Yongwoo; Yoo, Mijin; Chen, Sha; Lee, Ik-Mo

    2017-11-01

    In this study, the chemical substance flow of hydrogen fluoride (hydrofluoric acid, HF) in domestic chemical industries in 2014 was analyzed in order to provide a basic material and information for the establishment of organized management system to ensure safety during HF applications. A total of 44,751 tons of HF was made by four domestic companies (in 2014); import amount was 95,984 tons in 2014 while 21,579 tons of HF was imported in 2005. The export amount of HF was 2180 tons, of which 2074 ton (China, 1422 tons, U.S. 524 tons, and Malaysia, 128 tons) was exported for the manufacturing of semiconductors. Based on the export and import amounts, it can be inferred that HF was used for manufacturing semiconductors. The industries applications of 161,123 tons of HF were as follows: manufacturing of basic inorganic chemical substance (27,937 tons), manufacturing of other chemical products such as detergents (28,208 tons), manufacturing of flat display (24,896 tons), and manufacturing of glass container package (22,002 tons). In this study, an analysis of the chemical substance flow showed that HF was mainly used in the semiconductor industry as well as glass container manufacturing. Combined with other risk management tools and approaches in the chemical industry, the chemical substance flow analysis (CSFA) can be a useful tool and method for assessment and management. The current CSFA results provide useful information for policy making in the chemical industry and national systems. Graphical abstract Hydrogen fluoride chemical substance flows in 2014 in South Korea.

  13. High-throughput fractionation of human plasma for fast enrichment of low- and high-abundance proteins.

    Science.gov (United States)

    Breen, Lucas; Cao, Lulu; Eom, Kirsten; Srajer Gajdosik, Martina; Camara, Lila; Giacometti, Jasminka; Dupuy, Damian E; Josic, Djuro

    2012-05-01

    Fast, cost-effective and reproducible isolation of IgM from plasma is invaluable to the study of IgM and subsequent understanding of the human immune system. Additionally, vast amounts of information regarding human physiology and disease can be derived from analysis of the low abundance proteome of the plasma. In this study, methods were optimized for both the high-throughput isolation of IgM from human plasma, and the high-throughput isolation and fractionation of low abundance plasma proteins. To optimize the chromatographic isolation of IgM from human plasma, many variables were examined including chromatography resin, mobile phases, and order of chromatographic separations. Purification of IgM was achieved most successfully through isolation of immunoglobulin from human plasma using Protein A chromatography with a specific resin followed by subsequent fractionation using QA strong anion exchange chromatography. Through these optimization experiments, an additional method was established to prepare plasma for analysis of low abundance proteins. This method involved chromatographic depletion of high-abundance plasma proteins and reduction of plasma proteome complexity through further chromatographic fractionation. Purification of IgM was achieved with high purity as confirmed by SDS-PAGE and IgM-specific immunoblot. Isolation and fractionation of low abundance protein was also performed successfully, as confirmed by SDS-PAGE and mass spectrometry analysis followed by label-free quantitative spectral analysis. The level of purity of the isolated IgM allows for further IgM-specific analysis of plasma samples. The developed fractionation scheme can be used for high throughput screening of human plasma in order to identify low and high abundance proteins as potential prognostic and diagnostic disease biomarkers.

  14. Chemical analysis of steel by optical emission spectrometry

    International Nuclear Information System (INIS)

    Hayakawa, M.O.; Kajita, T.; Jeszensky, G.

    1981-01-01

    The development of the chemical analysis for special steels by optical emission spectrometry direct reading method with computer, at the Siderurgica N.S. Aparecida S.A. is presented. Results are presented for the low alloy steels and high speed steel. Also, the contribution of this method to the special steel preparation is commented. (Author) [pt

  15. Chemical and antimicrobial analysis of husk fiber aqueous extract ...

    African Journals Online (AJOL)

    Chemical and antimicrobial analysis of husk fiber aqueous extract from Cocos nucifera L. Davi Oliveira e Silva, Gabriel Rocha Martins, Antônio Jorge Ribeiro da Silva, Daniela Sales Alviano, Rodrigo Pires Nascimento, Maria Auxiliadora Coelho Kaplan, Celuta Sales Alviano ...

  16. Determinants of job stress in chemical process industry: A factor analysis approach.

    Science.gov (United States)

    Menon, Balagopal G; Praveensal, C J; Madhu, G

    2015-01-01

    Job stress is one of the active research domains in industrial safety research. The job stress can result in accidents and health related issues in workers in chemical process industries. Hence it is important to measure the level of job stress in workers so as to mitigate the same to avoid the worker's safety related problems in the industries. The objective of this study is to determine the job stress factors in the chemical process industry in Kerala state, India. This study also aims to propose a comprehensive model and an instrument framework for measuring job stress levels in the chemical process industries in Kerala, India. The data is collected through a questionnaire survey conducted in chemical process industries in Kerala. The collected data out of 1197 surveys is subjected to principal component and confirmatory factor analysis to develop the job stress factor structure. The factor analysis revealed 8 factors that influence the job stress in process industries. It is also found that the job stress in employees is most influenced by role ambiguity and the least by work environment. The study has developed an instrument framework towards measuring job stress utilizing exploratory factor analysis and structural equation modeling.

  17. Natural abundant solid state NMR studies in designed tripeptides for differentiation of multiple conformers.

    Science.gov (United States)

    Jayanthi, S; Chatterjee, Bhaswati; Raghothama, S

    2009-10-01

    Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro-(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro-(L)Pro-(L)Phe-OMe (2), and Piv-(D)Pro-(L)Pro-(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The (13)C spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C(beta) and C(gamma) carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all trans form across the di-Proline segment. The results are in agreement with the X-ray analysis. Solid state (15)N resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. (1)H chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between (1)H--(13)C. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.

  18. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents.

    Science.gov (United States)

    Witkiewicz, Zygfryd; Neffe, Slawomir; Sliwka, Ewa; Quagliano, Javier

    2018-09-03

    Recent advances in analysis of precursors, simulants and degradation products of chemical warfare agents (CWA) are reviewed. Fast and reliable analysis of precursors, simulants and CWA degradation products is extremely important at a time, when more and more terrorist groups and radical non-state organizations use or plan to use chemical weapons to achieve their own psychological, political and military goals. The review covers the open source literature analysis after the time, when the chemical weapons convention had come into force (1997). The authors stated that during last 15 years increased number of laboratories are focused not only on trace analysis of CWA (mostly nerve and blister agents) in environmental and biological samples, but the growing number of research are devoted to instrumental analysis of precursors and degradation products of these substances. The identification of low-level concentration of CWA degradation products is often more important and difficult than the original CWA, because of lower level of concentration and a very large number of compounds present in environmental and biological samples. Many of them are hydrolysis products and are present in samples in the ionic form. For this reason, two or three instrumental methods are used to perform a reliable analysis of these substances.

  19. Analysis of the plasma proteome in COPD: Novel low abundance proteins reflect the severity of lung remodeling.

    Science.gov (United States)

    Merali, Salim; Barrero, Carlos A; Bowler, Russell P; Chen, Diane Er; Criner, Gerard; Braverman, Alan; Litwin, Samuel; Yeung, Anthony; Kelsen, Steven G

    2014-04-01

    The search for COPD biomarkers has largely employed a targeted approach that focuses on plasma proteins involved in the systemic inflammatory response and in lung injury and repair. This proof of concept study was designed to test the idea that an open, unbiased, in-depth proteomics approach could identify novel, low abundance plasma proteins i.e., ng/mL concentration, which could serve as potential biomarkers. Differentially expressed proteins were identified in a discovery group with severe COPD (FEV1 <45% predicted; n = 10). Subjects with normal lung function matched for age, sex, ethnicity and smoking history served as controls (n = 10). Pooled plasma from each group was exhaustively immunodepleted of abundant proteins, d separated by 1-D gel electrophoresis and extensively fractionated prior to LC-tandem mass spectroscopy (GeLC-MS). Thirty one differentially expressed proteins were identified in the discovery group including markers of lung defense against oxidant stress, alveolar macrophage activation, and lung tissue injury and repair. Four of the 31 proteins (i.e., GRP78, soluble CD163, IL1AP and MSPT9) were measured in a separate verification group of 80 subjects with varying COPD severity by immunoassay. All 4 were significantly altered in COPD and 2 (GRP78 and soluble CD163) correlated with both FEV1 and the extent of emphysema. In-depth, plasma proteomic analysis identified a group of novel, differentially expressed, low abundance proteins that reflect known pathogenic mechanisms and the severity of lung remodeling in COPD. These proteins may also prove useful as COPD biomarkers.

  20. One Percent Determination of the Primordial Deuterium Abundance

    Science.gov (United States)

    Cooke, Ryan J.; Pettini, Max; Steidel, Charles C.

    2018-03-01

    We report a reanalysis of a near-pristine absorption system, located at a redshift {z}abs}=2.52564 toward the quasar Q1243+307, based on the combination of archival and new data obtained with the HIRES echelle spectrograph on the Keck telescope. This absorption system, which has an oxygen abundance [O/H] = ‑2.769 ± 0.028 (≃1/600 of the solar abundance), is among the lowest metallicity systems currently known where a precise measurement of the deuterium abundance is afforded. Our detailed analysis of this system concludes, on the basis of eight D I absorption lines, that the deuterium abundance of this gas cloud is {log}}10({{D}}/{{H}})=-4.622+/- 0.015, which is in very good agreement with the results previously reported by Kirkman et al., but with an improvement on the precision of this single measurement by a factor of ∼3.5. Combining this new estimate with our previous sample of six high precision and homogeneously analyzed D/H measurements, we deduce that the primordial deuterium abundance is {log}}10{({{D}}/{{H}})}{{P}}=-4.5974+/- 0.0052 or, expressed as a linear quantity, {10}5{({{D}}/{{H}})}{{P}}=2.527+/- 0.030; this value corresponds to a one percent determination of the primordial deuterium abundance. Combining our result with a big bang nucleosynthesis (BBN) calculation that uses the latest nuclear physics input, we find that the baryon density derived from BBN agrees to within 2σ of the latest results from the Planck cosmic microwave background data. Based on observations collected at the W.M. Keck Observatory which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  1. Exploring Sulfur & Argon Abundances in Planetary Nebulae as Metallicity- Indicator Surrogates for Iron in the Interstellar Medium

    Science.gov (United States)

    Kwitter, Karen B.; Henry, Richard C.

    1999-02-01

    Our primary motivation for studying S and Ar distributions in planetary nebulae (PNe) across the Galactic disk is to explore the possibility of a surrogacy between (S+Ar)/O and Fe/O for use as a metallicity indicator in the interstellar medium. The chemical history of the Galaxy is usually studied through O and Fe distributions among objects of different ages. Historically, though, Fe and O have not been measured in the same systems: Fe is easily seen in stars but hard to detect in nebulae; the reverse is true for O. We know that S and Ar abundances are not affected by PN progenitor evolution, and we therefore seek to exploit both their unaltered abundances and ease of detectability in PNe to explore their surrogacy for Fe. If proven valid, this surrogacy carries broad and important ramifications for bridging the gap between stellar and interstellar abundances in the Galaxy, and potentially beyond. Observed S/O and Ar/O gradients will also provide constraints on theoretical stellar yields of S and Ar, since they can be compared with chemical evolution models (which incorporate theoretically-predicted stellar yields, an initial mass function, and rates of star formation and infall) to help place constraints on model parameters.

  2. An assessment of the long-term impact of chemically toxic contaminants from the disposal of nuclear fuel waste

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Garisto, N.C.; Barnard, J.W.

    1987-01-01

    This paper presents a study on the potential for impact on man of chemically toxic contaminants associated with the Canadian concept for the disposal of nuclear fuel waste. The elements of concern are determined through a series of screening criteria such as elemental abundances and solubilities. A systems variability analysis approach is then used to predict the possible concentrations of these elements that may arise in the biosphere. These concentrations are compared with environmental guidelines such as permissible levels in drinking water. Conclusions are made regarding the potential for the chemically toxic contaminants to have an impact on man. 54 refs

  3. Abundances, Ionization States, Temperatures, and FIP in Solar Energetic Particles

    Science.gov (United States)

    Reames, Donald V.

    2018-04-01

    The relative abundances of chemical elements and isotopes have been our most effective tool in identifying and understanding the physical processes that control populations of energetic particles. The early surprise in solar energetic particles (SEPs) was 1000-fold enhancements in {}3He/{}4He from resonant wave-particle interactions in the small "impulsive" SEP events that emit electron beams that produce type III radio bursts. Further studies found enhancements in Fe/O, then extreme enhancements in element abundances that increase with mass-to-charge ratio A/Q, rising by a factor of 1000 from He to Au or Pb arising in magnetic reconnection regions on open field lines in solar jets. In contrast, in the largest SEP events, the "gradual" events, acceleration occurs at shock waves driven out from the Sun by fast, wide coronal mass ejections (CMEs). Averaging many events provides a measure of solar coronal abundances, but A/Q-dependent scattering during transport causes variations with time; thus if Fe scatters less than O, Fe/O is enhanced early and depleted later. To complicate matters, shock waves often reaccelerate impulsive suprathermal ions left over or trapped above active regions that have spawned many impulsive events. Direct measurements of ionization states Q show coronal temperatures of 1-2 MK for most gradual events, but impulsive events often show stripping by matter traversal after acceleration. Direct measurements of Q are difficult and often unavailable. Since both impulsive and gradual SEP events have abundance enhancements that vary as powers of A/Q, we can use abundances to deduce the probable Q-values and the source plasma temperatures during acceleration, ≈3 MK for impulsive SEPs. This new technique also allows multiple spacecraft to measure temperature variations across the face of a shock wave, measurements otherwise unavailable and provides a new understanding of abundance variations in the element He. Comparing coronal abundances from SEPs

  4. Development of chemical equilibrium analysis code 'CHEEQ'

    International Nuclear Information System (INIS)

    Nagai, Shuichiro

    2006-08-01

    'CHEEQ' code which calculates the partial pressure and the mass of the system consisting of ideal gas and pure condensed phase compounds, was developed. Characteristics of 'CHEEQ' code are as follows. All the chemical equilibrium equations were described by the formation reactions from the mono-atomic gases in order to simplify the code structure and input preparation. Chemical equilibrium conditions, Σν i μ i =0 for the gaseous compounds and precipitated condensed phase compounds and Σν i μ i > 0 for the non-precipitated condensed phase compounds, were applied. Where, ν i and μ i are stoichiometric coefficient and chemical potential of component i. Virtual solid model was introduced to perform the calculation of constant partial pressure condition. 'CHEEQ' was consisted of following 3 parts, (1) analysis code, zc132. f. (2) thermodynamic data base, zmdb01 and (3) input data file, zindb. 'CHEEQ' code can calculate the system which consisted of elements (max.20), condensed phase compounds (max.100) and gaseous compounds. (max.200). Thermodynamic data base, zmdb01 contains about 1000 elements and compounds, and 200 of them were Actinide elements and their compounds. This report describes the basic equations, the outline of the solution procedure and instructions to prepare the input data and to evaluate the calculation results. (author)

  5. Neutron activation analysis for chemical characterization of Brazilian oxo-biodegradable plastics

    International Nuclear Information System (INIS)

    Mateus Eugenio Boscaro; De Nadai Fernandes, E.A.; Marcio Arruda Bacchi; Luis Gustavo Cofani dos Santos; Cofani dos Santos, S.N.S.; Sandra Mara Martins-Franchetti

    2015-01-01

    The chemical characterization of oxo-biodegradable plastic bags was performed by neutron activation analysis. The presence of several chemical elements (As, Br, Ca, Co, Cr, Fe, Hf, K, La, Na, Sb, Sc, Ta and Zn) with large variability of mass fractions amongst samples indicates that these plastics receive additives and may have been contaminated during manufacturing process thereby becoming potential environmental pollutants. (author)

  6. Lithium abundance patterns of late-F stars: an in-depth analysis of the lithium desert

    Science.gov (United States)

    Aguilera-Gómez, Claudia; Ramírez, Iván; Chanamé, Julio

    2018-06-01

    Aims: We address the existence and origin of the lithium (Li) desert, a region in the Li-Teff plane sparsely populated by stars. Here we analyze some of the explanations that have been suggested for this region, including mixing in the late main sequence, a Li dip origin for stars with low Li abundances in the region, and a possible relation with the presence of planets. Methods: To study the Li desert, we measured the atmospheric parameters and Li abundance of 227 late-F dwarfs and subgiants, chosen to be in the Teff range of the desert and without previous Li abundance measurements. Subsequently, we complemented those with literature data to obtain a homogeneous catalog of 2318 stars, for which we compute masses and ages. We characterize stars surrounding the region of the Li desert. Results: We conclude that stars with low Li abundances below the desert are more massive and more evolved than stars above the desert. Given the unexpected presence of low Li abundance stars in this effective temperature range, we concentrate on finding their origin. We conclude that these stars with low Li abundance do not evolve from stars above the desert: at a given mass, stars with low Li (i.e., below the desert) are more metal-poor. Conclusions: Instead, we suggest that stars below the Li desert are consistent with having evolved from the Li dip, discarding the need to invoke additional mixing to explain this feature. Thus, stars below the Li desert are not peculiar and are only distinguished from other subgiants evolved from the Li dip in that their combination of atmospheric parameters locates them in a range of effective temperatures where otherwise only high Li abundance stars would be found (i.e., stars above the desert). Full Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A55This paper includes observations collected at The McDonald Observatory and

  7. Chemical ecotoxicology

    International Nuclear Information System (INIS)

    Paasivirta, J.

    1991-01-01

    This book discusses risk assessment, chemical cycles, structure-activity relations, organohalogens, oil residues, mercury, sampling and analysis of trace chemicals, and emissions from the forestry industry. Topics include: Cycles of chemicals in the environment. Rick assessment and management, strucuture and toxicity, sampling and analysis of trace chemicals in environment, interpretation of the environmental analysis results, mercury in the environment, organohalogen compounds in the environment, emissions from forestry industry, oil residues in the environment: oil spills in the marine environment

  8. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark; Badu-Tawiah, Abraham K.; Li, Anyin; Soparawalla, Santosh; Roqan, Iman S.; Cooks, Robert Graham

    2013-01-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  9. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  10. Activation analysis. A basis for chemical similarity and classification

    Energy Technology Data Exchange (ETDEWEB)

    Beeck, J OP de [Ghent Rijksuniversiteit (Belgium). Instituut voor Kernwetenschappen

    1977-01-01

    It is shown that activation analysis is especially suited to serve as a basis for determining the chemical similarity between samples defined by their trace-element concentration patterns. The general problem of classification and identification is discussed. The nature of possible classification structures and their appropriate clustering strategies is considered. A practical computer method is suggested and its application as well as the graphical representation of classification results are given. The possibility for classification using information theory is mentioned. Classification of chemical elements is discussed and practically realized after Hadamard transformation of the concentration variation patterns in a series of samples.

  11. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    International Nuclear Information System (INIS)

    Kan, C W; Lam, Y L; Yuen, C W M; Luximon, A; Lau, K W; Chen, K S

    2013-01-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  12. International Research Project on the Effects of Chemical Ageing of Polymers on Performance Properties: Chemical and Thermal Analysis

    Science.gov (United States)

    Bulluck, J. W.; Rushing, R. A.

    1996-01-01

    Work during the past six months has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted small changes in the molecular weight distribution. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Ultra- Violet Scanning Analysis, GC/Mass Spectrometry, Differential Scanning Calorimetry and Thermomechanical Analysis. In the ultra-violet analysis we noted the presence of an absorption band indicative of triene formation. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We also cast films at SWT and subjected these films to a refluxing methanol 1% ethylene diamine solution. An updated literature search was conducted using Dialog and DROLLS to identify any new papers that may have been published in the open literature since the start of this project. The updated literature search and abstracts are contained in the Appendix section of this report.

  13. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES

    International Nuclear Information System (INIS)

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Rockosi, Constance M.; Simon, Joshua D.; Geha, Marla C.; Sneden, Christopher; Sohn, Sangmo Tony; Majewski, Steven R.; Siegel, Michael

    2010-01-01

    We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 stars in eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy (MRS) combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters (GCs). We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing to high-resolution spectroscopic abundances of the same stars. For this purpose, a sample of 132 stars with published high-resolution spectroscopy in GCs, the MW halo field, and dwarf galaxies has been observed with MRS. The standard deviations of the differences in [Fe/H] and ([α/Fe]) (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.

  14. The Diversity of Chemical Composition: The Impact of Stellar Abundances on the Evolution of Stars and Habitable Zones

    Science.gov (United States)

    Truitt, Amanda R.; Young, Patrick A.

    2018-01-01

    I have investigated how stars of different mass and composition evolve, and how stellar evolution impacts the location of the habitable zone around a star. Current research into habitability of exoplanets focuses mostly on the concept of a “classical” HZ, the range of distances from a star over which liquid water could exist on a planet's surface. This is determined by the host star's luminosity and spectral characteristics; in order to gauge the habitability potential of a given system, both the evolutionary history and the detailed chemical characterization of the host star must be considered. With the ever-accelerating discovery of new exoplanets, it is imperative to develop a better understanding of what factors play a role in creating “habitable” conditions of a planet. I will discuss how stellar evolution is integral to how we define the HZ, and how this work will apply to the search for Earth-like planets in the future.I have developed a catalog of stellar evolution models for Sun-like stars with variable compositions; masses range from 0.1-1.2 Msol (spectral types M4-F4) at scaled metallicities (Z) of 0.1-1.5 Zsol, and O/Fe, C/Fe, and Mg/Fe values of 0.44-2.28, 0.58-1.72, and 0.54-1.84, respectively. I use a spread in abundance values based on observations of variability in nearby stars. It is important to understand how specific elements, not just total Z, impacts stellar lifetime. Time-dependent HZ boundaries are calculated for each track. I have also created a grid of M-dwarfs, and I am currently working to estimate stellar activity vs. age for each model.This catalog is meant to characterize potential host stars of interest. I have explored how to use existing observational data (i.e. Hypatia Catalog) for a more robust comparison to my grid of theoretical models, and I will discuss a new statistical analysis of the catalog to further refine our definition of “continuous” habitability. This work is an important step to assess whether a planet

  15. The chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A⋆⋆

    Science.gov (United States)

    Koumpia, E.; Semenov, D. A.; van der Tak, F. F. S.; Boogert, A. C. A.; Caux, E.

    2017-07-01

    Context. It is not well known what drives the chemistry of a protostellar envelope, in particular the role of the stellar mass and the protostellar outflows on the chemical enrichment of such environments. Aims: We study the chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A in order to (I) investigate the influence of the outflows on the chemistry; (II) constrain the age of our studied object; (III) compare it with a typical high-mass protostellar envelope. Methods: In our analysis we use JCMT line mapping (360-373 GHz) and HIFI pointed spectra (626.01-721.48 GHz). To study the influence of the outflow on the degree of deuteration, we compare JCMT maps of HCO+ and DCO+ with non-LTE (RADEX) models in a region that spatially covers the outflow activity of IRAS 4A. To study the envelope chemistry, we derive empirical molecular abundance profiles for the observed species using the Monte Carlo radiative transfer code (RATRAN) and adopting a 1D dust density/temperature profile from the literature. We use a combination of constant abundance profiles and abundance profiles that include jumps at two radii (T 100 K or T 30 K) to fit our observations. We compare our best-fit observed abundance profiles with the predictions from the time dependent gas grain chemical code (ALCHEMIC). Results: We detect CO, 13CO, C18O, CS, HCN, HCO+, N2H+, H2CO, CH3OH, H2O, H2S, DCO+, HDCO, D2CO, SO, SO2, SiO, HNC, CN, C2H and OCS. We divide the detected lines in three groups based on their line profiles: a) broad emission (FWHM = 4-11 km s-1), b) narrow emission (FWHMtime-dependent gas-grain chemical model for the outer envelope, with the exceptions of HCN, HNC, CN. These species along with the CO abundance require an enhanced UV field which points towards an outflow cavity. The abundances with respect to H2 are 1 to 2 orders of magnitude lower than those observed in the high mass protostellar envelope (AFGL 2591), while they are found to be similar within factors of a

  16. MEASURING DETAILED CHEMICAL ABUNDANCES FROM CO-ADDED MEDIUM-RESOLUTION SPECTRA. I. TESTS USING MILKY WAY DWARF SPHEROIDAL GALAXIES AND GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Yang Lei; Peng, Eric W.; Kirby, Evan N.; Guhathakurta, Puragra; Cheng, Lucy

    2013-01-01

    The ability to measure metallicities and α-element abundances in individual red giant branch (RGB) stars using medium-resolution spectra (R ≈ 6000) is a valuable tool for deciphering the nature of Milky Way dwarf satellites and the history of the Galactic halo. Extending such studies to more distant systems like Andromeda is beyond the ability of the current generation of telescopes, but by co-adding the spectra of similar stars, we can attain the necessary signal-to-noise ratio (S/N) to make detailed abundance measurements. In this paper, we present a method to determine metallicities and α-element abundances using the co-addition of medium-resolution spectra. We test the method of spectral co-addition using high-S/N spectra of more than 1300 RGB stars from Milky Way globular clusters and dwarf spheroidal galaxies obtained with the Keck II telescope/DEIMOS spectrograph. We group similar stars using photometric criteria and compare the weighted ensemble average abundances ([Fe/H], [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) of individual stars in each group with the measurements made on the corresponding co-added spectrum. We find a high level of agreement between the two methods, which permits us to apply this co-added spectra technique to more distant RGB stars, like stars in the M31 satellite galaxies. This paper outlines our spectral co-addition and abundance measurement methodology and describes the potential biases in making these measurements.

  17. Structure Analysis of Effective Chemical Compounds against Dengue Viruses Isolated from Isatis tinctoria.

    Science.gov (United States)

    Gao, Bo; Zhang, Jianming; Xie, Lianhui

    2018-01-01

    The history of Chinese herb research can be traced back to thousands of years ago, and the abundant knowledge accumulated for these herbs makes them good candidates for developing new natural drugs. Isatis tinctoria is probably the most well-studied Chinese herb, which has been identified to be effective against dengue fever. However, the underlying biological mechanisms are still unclear. In this study, we adopt combined methods of bioactive trace technology and phytochemical extraction and separation, to guide the isolation and purification of the effective chemical constituents on the water-soluble components of aerial parts of Isatis tinctoria . In addition, we apply polarimetry and 1D or 2D nuclear magnetic resonance (NMR) spectroscopy to identify their structures, which lay a foundation for further study on the biological mechanisms underlying medicinal effects of Isatis tinctoria using in vitro and in vivo experiments. Specifically, we identify and infer the structures of 27 types of chemical compounds named GB-1, GB-2, …, GB-27, respectively, among which GB-7 is a novel compound. Further study of these compounds is critical to reveal the secrets behind the medicinal effects of Isatis tinctoria .

  18. Structure Analysis of Effective Chemical Compounds against Dengue Viruses Isolated from Isatis tinctoria

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2018-01-01

    Full Text Available The history of Chinese herb research can be traced back to thousands of years ago, and the abundant knowledge accumulated for these herbs makes them good candidates for developing new natural drugs. Isatis tinctoria is probably the most well-studied Chinese herb, which has been identified to be effective against dengue fever. However, the underlying biological mechanisms are still unclear. In this study, we adopt combined methods of bioactive trace technology and phytochemical extraction and separation, to guide the isolation and purification of the effective chemical constituents on the water-soluble components of aerial parts of Isatis tinctoria. In addition, we apply polarimetry and 1D or 2D nuclear magnetic resonance (NMR spectroscopy to identify their structures, which lay a foundation for further study on the biological mechanisms underlying medicinal effects of Isatis tinctoria using in vitro and in vivo experiments. Specifically, we identify and infer the structures of 27 types of chemical compounds named GB-1, GB-2, …, GB-27, respectively, among which GB-7 is a novel compound. Further study of these compounds is critical to reveal the secrets behind the medicinal effects of Isatis tinctoria.

  19. SDSS IV MaNGA - metallicity and nitrogen abundance gradients in local galaxies

    Science.gov (United States)

    Belfiore, Francesco; Maiolino, Roberto; Tremonti, Christy; Sánchez, Sebastian F.; Bundy, Kevin; Bershady, Matthew; Westfall, Kyle; Lin, Lihwai; Drory, Niv; Boquien, Médéric; Thomas, Daniel; Brinkmann, Jonathan

    2017-07-01

    We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star-forming regions in a representative sample of 550 nearby galaxies in the stellar mass range 109-1011.5 M⊙ with resolved spectroscopic data from the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory survey. Using strong-line ratio diagnostics (R23 and O3N2 for metallicity and N2O2 for N/O) and referencing to the effective (half-light) radius (Re), we find that the metallicity gradient steepens with stellar mass, lying roughly flat among galaxies with log (M⋆/M⊙) = 9.0 but exhibiting slopes as steep as -0.14 dex R_e^{-1} at log (M⋆/M⊙) = 10.5 (using R23, but equivalent results are obtained using O3N2). At higher masses, these slopes remain typical in the outer regions of our sample (R > 1.5Re), but a flattening is observed in the central regions (R 2.0Re), we detect a mild flattening of the metallicity gradient in stacked profiles, although with low significance. The N/O ratio gradient provides complementary constraints on the average chemical enrichment history. Unlike the oxygen abundance, the average N/O profiles do not flatten out in the central regions of massive galaxies. The metallicity and N/O profiles both depart significantly from an exponential form, suggesting a disconnect between chemical enrichment and stellar mass surface density on local scales. In the context of inside-out growth of discs, our findings suggest that central regions of massive galaxies today have evolved to an equilibrium metallicity, while the nitrogen abundance continues to increase as a consequence of delayed secondary nucleosynthetic production.

  20. Phthalic Acid Chemical Probes Synthesized for Protein-Protein Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Chin-Jen Wu

    2013-06-01

    Full Text Available Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP. According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES was deposited on silicon dioxides (SiO2 particles and phthalate chemical probes were manufactured from phthalic acid and APTES–SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  1. [Effects of legume-oat intercropping on abundance and community structure of soil N2-fixing bacteria].

    Science.gov (United States)

    Yang, Ya Dong; Feng, Xiao Min; Hu, Yue Gao; Ren, Chang Zhong; Zeng, Zhao Hai

    2017-03-18

    In this study, real-time PCR and high-throughput sequencing approaches were employed to investigate the abundance and community structure of N 2 -fixing bacteria in a field experiment with three planting patterns (Oat monoculture, O; Soybean-oat intercropping, OSO; Mung bean-oat intercropping, OMO). The results showed that soil chemical properties varied significantly in different soil samples (P<0.05). The abundance of nifH gene varied from 1.75×10 10 to 7.37×10 10 copies·g -1 dry soil in all soil samples. The copy numbers of nifH gene in OSO and OMO were 2.18, 2.64, and 1.92, 2.57 times as much as that in O at jointing and mature stages, with a significant decline from jointing to mature stage for all treatments (P<0.05). Rarefaction curve and cove-rage results proved the nifH gene sequencing results were reliable, and the diversity index showed that the N 2 -fixing bacteria diversity of OSO was much higher than that of O. Azohydromonas, Azotobacter, Bradyrhizobium, Skermanella and other groups that could not be classified are the dominant genera, with significant differences in proportion of these dominant groups observed among all soil samples (P<0.05). Venn and PCA analysis indicated that there were greater differences of nifH gene communities between jointing and mature stages; however, the OSO and OMO had similar communities in both stages. All these results confirmed that legume-oat intercropping significantly increased the abundance and changed the community composition of N 2 -fixing bacteria in oat soils.

  2. Bark chemical analysis explains selective bark damage by rodents

    Czech Academy of Sciences Publication Activity Database

    Heroldová, Marta; Jánová, Eva; Suchomel, J.; Purchart, L.; Homolka, Miloslav

    2009-01-01

    Roč. 2, č. 2 (2009), s. 137-140 ISSN 1803-2451 R&D Projects: GA MZe QH72075 Institutional research plan: CEZ:AV0Z60930519 Keywords : bark damage * bark selection * bark chemical analysis * rowan * beech * spruce * mountain forest regeneration Subject RIV: GK - Forestry

  3. [α/Fe] ABUNDANCES OF FOUR OUTER M31 HALO STARS

    International Nuclear Information System (INIS)

    Vargas, Luis C.; Geha, Marla; Tollerud, Erik J.; Gilbert, Karoline M.; Kirby, Evan N.; Guhathakurta, Puragra

    2014-01-01

    We present alpha element to iron abundance ratios, [α/Fe], for four stars in the outer stellar halo of the Andromeda Galaxy (M31). The stars were identified as high-likelihood field halo stars by Gilbert et al. and lie at projected distances between 70 and 140 kpc from M31's center. These are the first alpha abundances measured for a halo star in a galaxy beyond the Milky Way. The stars range in metallicity between [Fe/H] = –2.2 and [Fe/H] = –1.4. The sample's average [α/Fe] ratio is +0.20 ± 0.20. The best-fit average value is elevated above solar, which is consistent with rapid chemical enrichment from Type II supernovae. The mean [α/Fe] ratio of our M31 outer halo sample agrees (within the uncertainties) with that of Milky Way inner/outer halo stars that have a comparable range of [Fe/H

  4. Deficiency in Cardiac Dystrophin Affects the Abundance of the α-/β-Dystroglycan Complex

    Directory of Open Access Journals (Sweden)

    James Lohan

    2005-01-01

    Full Text Available Although Duchenne muscular dystrophy is primarily categorised as a skeletal muscle disease, deficiency in the membrane cytoskeletal protein dystrophin also affects the heart. The central transsarcolemmal linker between the actin membrane cytoskeleton and the extracellular matrix is represented by the dystrophin-associated dystroglycans. Chemical cross-linking analysis revealed no significant differences in the dimeric status of the α-/β-dystroglycan subcomplex in the dystrophic mdx heart as compared to normal cardiac tissue. In analogy to skeletal muscle fibres, heart muscle also exhibited a greatly reduced abundance of both dystroglycans in dystrophin-deficient cells. Immunoblotting demonstrated that the degree of reduction in α-dystroglycan is more pronounced in matured mdx skeletal muscle as contrasted to the mdx heart. The fact that the deficiency in dystrophin triggers a similar pathobiochemical response in both types of muscle suggests that the cardiomyopathic complications observed in x-linked muscular dystrophy might be initiated by the loss of the dystrophin-associated surface glycoprotein complex.

  5. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1979-01-01

    The chemical evolution of disk galaxies is discussed with special reference to results obtained from studies of the oxygen abundance in H II regions. Normal spirals (including our own) display the by now well known radial abundance gradient, which is discussed on the basis of the simple enrichment model and other models. The Magellanic Clouds, on the other hand, and the barred spiral NGC 1365, have been found to have little or no abundance gradient, implying a very different sort of evolution that may involve large-scale mixing. Finally, the simple model is tested against a number of results in H II regions where the ratio of total mass to mass of residual gas can be estimated. It turns out to fit adequately the Magellanic Clouds and a number of H II regions in the outer parts of spiral galaxies, but in more inner parts it fails, as do more sophisticated models involving infall during the formation of galactic disks that have proved very successful in other respects. (Auth.)

  6. A Metastable Equilibrium Model for the Relative Abundances of Microbial Phyla in a Hot Spring

    Science.gov (United States)

    Dick, Jeffrey M.; Shock, Everett L.

    2013-01-01

    Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model