WorldWideScience

Sample records for cheese whey protein

  1. Cheese from ultrafiltered milk : whey proteins and chymosin activity

    NARCIS (Netherlands)

    Buijsse, C.A.P.

    1999-01-01

    The manufacture of (semi-)hard cheese from ultrafiltered milk (UF-cheese) enables the partial incorporation of whey proteins in the cheese, thereby increasing its yield. The transfer of whey proteins in curd from (UF-)milk was studied in relation to the degree of ultrafiltration of the milk

  2. Impact of Ovine Whey Protein Concentrates and Clarification By-Products on the Yield and Quality of Whey Cheese

    OpenAIRE

    Carlos D. Pereira; Olga Díaz; Angel Cobos

    2007-01-01

    The effects of the addition of whey protein concentrates and clarification by-products obtained from ovine cheese whey and deproteinized whey (Sorelho) on the yield and quality of the whey cheese (Requeijão) have been evaluated. Whey protein concentrates were obtained by ultrafiltration of skimmed whey and Sorelho. The clarification by-products were obtained after the treatment of the skimmed whey and Sorelho by thermocalcic precipitation and microfiltration with two membranes (0.20 and 0.65 ...

  3. Impact of Ovine Whey Protein Concentrates and Clarification By-Products on the Yield and Quality of Whey Cheese

    Directory of Open Access Journals (Sweden)

    Carlos D. Pereira

    2007-01-01

    Full Text Available The effects of the addition of whey protein concentrates and clarification by-products obtained from ovine cheese whey and deproteinized whey (Sorelho on the yield and quality of the whey cheese (Requeijão have been evaluated. Whey protein concentrates were obtained by ultrafiltration of skimmed whey and Sorelho. The clarification by-products were obtained after the treatment of the skimmed whey and Sorelho by thermocalcic precipitation and microfiltration with two membranes (0.20 and 0.65 μm pore size. Next, the liophilization of the corresponding retentates was carried out. Each powder was added in three different mass ratios: 0.5, 1.0 and 1.5 %. The addition of the powders caused higher yields of the whey cheese – mainly the one with the additional whey powder – but it did not affect the strength of the products. The retention of water and other components of whey and milk in the whey cheese was influenced by the protein composition of the powders. In relation to colour parameters, the whey cheese manufactured with ultrafiltration and microfiltration retentate powders showed lower values of ligthness than the control whey cheese – mainly the whey cheese with 1.5 % of added powders. The microstructure constituted of small aggregates in the whey cheese manufactured with ultrafiltration and 0.20-μm microfiltration retentate powders and also by large, smooth structures in the other whey cheeses, especially in batches with added Sorelho powders.

  4. Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey.

    Science.gov (United States)

    Athira, Syamala; Mann, Bimlesh; Saini, Prerna; Sharma, Rajan; Kumar, Rajesh; Singh, Ashish Kumar

    2015-11-01

    Cheese whey is a rich by-product in nutritional terms, possessing components with high biological value, excellent functional properties, and an inert flavour profile. In the present study, mozzarella cheese whey was ultra-filtrated to remove lactose and mineral. The retentate was hydrolysed with food-grade enzyme alcalase and the hydrolysis conditions (pH, temperature and time) were optimised for maximum antioxidant activity using response surface methodology. Whey protein hydrolysed for 8 h at pH 9 and 55 °C showed a maximum antioxidant activity of 1.18 ± 0.015 µmol Trolox mg(-1) protein. The antioxidant peptides were further enriched by ultra-filtration through a 3 kDa membrane. Seven peptides - β-Lg f(123-131), β-Lg f(122-131), β-Lg f(124-131), β-Lg f(123-134), β-Lg f(122-131), β-Lg f(96-100) and β-Lg f(94-100) - were identified by LC-MS/MS in the 3 kDa permeate of the hydrolysate. The incorporation of whey protein hydrolysate (WPH) in lemon whey drink (5-10 g L(-1)) increased the antioxidant activity from 76% to 90% as compared to control. Hydrolysis of ultra-filtrated retentate of whey can be an energy- and cost-effective method for the direct production of WPH from whey compared to the industrial production of WPH from whey protein concentrate. This study suggests that WPH with good nutritional and biological properties can be effectively used in health-promoting foods as a biofunctional ingredient. © 2014 Society of Chemical Industry.

  5. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides.

    Science.gov (United States)

    Yadav, Jay Shankar Singh; Yan, Song; Pilli, Sridhar; Kumar, Lalit; Tyagi, R D; Surampalli, R Y

    2015-11-01

    The byproduct of cheese-producing industries, cheese whey, is considered as an environmental pollutant due to its high BOD and COD concentrations. The high organic load of whey arises from the presence of residual milk nutrients. As demand for milk-derived products is increasing, it leads to increased production of whey, which poses a serious management problem. To overcome this problem, various technological approaches have been employed to convert whey into value-added products. These technological advancements have enhanced whey utilization and about 50% of the total produced whey is now transformed into value-added products such as whey powder, whey protein, whey permeate, bioethanol, biopolymers, hydrogen, methane, electricity bioprotein (single cell protein) and probiotics. Among various value-added products, the transformation of whey into proteinaceous products is attractive and demanding. The main important factor which is attractive for transformation of whey into proteinaceous products is the generally recognized as safe (GRAS) regulatory status of whey. Whey and whey permeate are biotransformed into proteinaceous feed and food-grade bioprotein/single cell protein through fermentation. On the other hand, whey can be directly processed to obtain whey protein concentrate, whey protein isolate, and individual whey proteins. Further, whey proteins are also transformed into bioactive peptides via enzymatic or fermentation processes. The proteinaceous products have applications as functional, nutritional and therapeutic commodities. Whey characteristics, and its transformation processes for proteinaceous products such as bioproteins, functional/nutritional protein and bioactive peptides are covered in this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Bioconversion of Cheese Waste (Whey)

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, G.W.

    1998-03-11

    The US dairy industry produces 67 billion pounds of cheese whey annually. A waste by-product of cheese production, whey consists of water, milk sugar (lactose), casein (protein), and salts amounting to about 7% total solids. Ultrafiltration is used to concentrate cheese whey into a protein-rich foodstuff; however, it too produces a waste stream, known as ''whey permeate,'' (rejected water, lactose, and salts from the membrane). Whey permeate contains about 4.5% lactose and requires treatment to reduce the high BOD (biological oxygen demand) before disposal. Ab Initio, a small business with strong chemistry and dairy processing background, desired help in developing methods for bioconversion of whey permeate lactose into lactic acid. Lactic acid is an organic acid primarily used as an acidulant in the food industry. More recently it has been used to produce polylactic acid, a biodegradable polymer and as a new method to treat meat carcasses to combat E. coli bacteria. Conversion of whey permeate to lactic acid is environmentally sound because it produces a valued product from an otherwise waste stream. FM&T has expertise in bioconversion processes and analytical techniques necessary to characterize biomass functions. The necessary engineering and analytical services for pilot biomass monitoring, process development, and purification of crude lactic acid were available at this facility.

  7. Bioconversion of Cheese Waste (Whey)

    International Nuclear Information System (INIS)

    Bohnert, G.W.

    1998-01-01

    The US dairy industry produces 67 billion pounds of cheese whey annually. A waste by-product of cheese production, whey consists of water, milk sugar (lactose), casein (protein), and salts amounting to about 7% total solids. Ultrafiltration is used to concentrate cheese whey into a protein-rich foodstuff; however, it too produces a waste stream, known as ''whey permeate,'' (rejected water, lactose, and salts from the membrane). Whey permeate contains about 4.5% lactose and requires treatment to reduce the high BOD (biological oxygen demand) before disposal. Ab Initio, a small business with strong chemistry and dairy processing background, desired help in developing methods for bioconversion of whey permeate lactose into lactic acid. Lactic acid is an organic acid primarily used as an acidulant in the food industry. More recently it has been used to produce polylactic acid, a biodegradable polymer and as a new method to treat meat carcasses to combat E. coli bacteria. Conversion of whey permeate to lactic acid is environmentally sound because it produces a valued product from an otherwise waste stream. FM and T has expertise in bioconversion processes and analytical techniques necessary to characterize biomass functions. The necessary engineering and analytical services for pilot biomass monitoring, process development, and purification of crude lactic acid were available at this facility

  8. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    Science.gov (United States)

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. Copyright © 2016. Published by Elsevier Ltd.

  9. Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2003-04-01

    Full Text Available Abstract Background Use of lactose-rich concentrates from dairy processes for the induction of recombinant gene's expression has not received much attention although they are interesting low cost substrates for production of recombinant enzymes. Applicability of dairy waste for induction of recombinant genes in Escherichia coli was studied. Clones expressing Lactobacillus phage muramidase and Lactobacillus alcohol dehydrogenase were used for the experiments. Results Shake flask cultivations in mineral salt medium showed that cheese whey or deproteinised whey induced gene expression as efficiently as IPTG (isopropyl-β-D-thiogalactopyranoside or pure lactose. Addition of yeast extract or proteolytically degraded whey proteins did not improve the recombinant protein yield. In contrast, addition of yeast extract to the well-balanced mineral salt medium decreased the product yield. Feeding with glycerol provided sufficient amount of easily assimilable carbon source during the induction period without preventing lactose intake and induction by lactose. High-cell-density fed-batch cultivations showed that product yields comparable to IPTG-induction can be achieved by feeding bacteria with a mixture of glycerol and concentrated whey permeate during the induction. Conclusion Whey and concentrated whey permeate can be applied as an alternative inducer in recombinant high-cell-density fed-batch fermentations. The yield of the recombinant product was comparable to fermentations induced by IPTG. In low-cell-density shake flask experiments the yield was higher with whey or whey permeate than with IPTG.

  10. Whey cheese: membrane technology to increase yields.

    Science.gov (United States)

    Riera, Francisco; González, Pablo; Muro, Claudia

    2016-02-01

    Sweet cheese whey has been used to obtain whey cheese without the addition of milk. Pre-treated whey was concentrated by nanofiltration (NF) at different concentration ratios (2, 2.5 and 2.8) or by reverse osmosis (RO) (2-3 times). After the concentration, whey was acidified with lactic acid until a final pH of 4.6-4.8, and heated to temperatures between 85 and 90 °C. The coagulated fraction (supernatant) was collected and freely drained over 4 h. The cheese-whey yield and protein, fat, lactose and ash recoveries in the final product were calculated. The membrane pre-concentration step caused an increase in the whey-cheese yield. The final composition of products was compared with traditional cheese-whey manufacture products (without membrane concentration). Final cheese yields found were to be between 5 and 19.6%, which are higher than those achieved using the traditional 'Requesón' process.

  11. Short communication: Potential of Fresco-style cheese whey as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme inhibitory activities.

    Science.gov (United States)

    Tarango-Hernández, S; Alarcón-Rojo, A D; Robles-Sánchez, M; Gutiérrez-Méndez, N; Rodríguez-Figueroa, J C

    2015-11-01

    Recently, traditional Mexican Fresco-style cheese production has been increasing, and the volume of cheese whey generated represents a problem. In this study, we investigated the chemical composition of Fresco-style cheese wheys and their potential as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme (ACE)-inhibitory activities. Three samples from Fresco, Panela, and Ranchero cheeses whey were physicochemically characterized. Water-soluble extracts were fractionated to obtain whey fractions with different molecular weights: 10-5, 5-3, 3-1 and wheys. All whey fractions had antioxidant and ACE-inhibitory activities. The 10-5 kDa whey fraction of Ranchero cheese had the highest Trolox equivalent antioxidant capacity (0.62 ± 0.00 mM), and the 3-1 kDa Panela and Fresco cheese whey fractions showed the highest ACE-inhibitory activity (0.57 ± 0.02 and 0.59 ± 0.04 μg/mL 50%-inhibitory concentration values, respectively). These results suggest that Fresco-style cheese wheys may be a source of protein fractions with bioactivity, and thus could be useful ingredients in the manufacture of functional foods with increased nutritional value. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Whey Protein

    Science.gov (United States)

    ... reliable information about the safety of taking whey protein if you are pregnant or breast feeding. Stay on the safe side and avoid use. Milk allergy: If you are allergic to cow's milk, avoid using whey protein.

  13. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion.

    Science.gov (United States)

    Bassan, Juliana C; Goulart, Antonio J; Nasser, Ana L M; Bezerra, Thaís M S; Garrido, Saulo S; Rustiguel, Cynthia B; Guimarães, Luis H S; Monti, Rubens

    2015-01-01

    Milk whey proteins are well known for their high biological value and versatile functional properties, characteristics that allow its wide use in the food and pharmaceutical industries. In this work, a 24 kDa protein from buffalo cheese whey was analyzed by mass spectrometry and presented homology with Bos taurus beta-lactoglobulin. In addition, the proteins present in buffalo cheese whey were hydrolyzed with pepsin and with different combinations of trypsin, chymotrypsin and carboxypeptidase-A. When the TNBS method was used the obtained hydrolysates presented DH of 55 and 62% for H1 and H2, respectively. Otherwise for the OPA method the DH was 27 and 43% for H1 and H2, respectively. The total antioxidant activities of the H1 and H2 samples with and without previous enzymatic hydrolysis, determined by DPPH using diphenyl-p-picrylhydrazyl radical, was 4.9 and 12 mM of Trolox equivalents (TE) for H2 and H2Dint, respectively. The increased concentrations for H1 and H2 samples were approximately 99% and 75%, respectively. The in vitro gastrointestinal digestion efficiency for the samples that were first hydrolyzed was higher compared with samples not submitted to previous hydrolysis. After in vitro gastrointestinal digestion, several amino acids were released in higher concentrations, and most of which were essential amino acids. These results suggest that buffalo cheese whey is a better source of bioavailable amino acids than bovine cheese whey.

  14. Cheese whey management: a review.

    Science.gov (United States)

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier

    2012-11-15

    Cheese whey is simultaneously an effluent with nutritional value and a strong organic and saline content. Cheese whey management has been focused in the development of biological treatments without valorization; biological treatments with valorization; physicochemical treatments and direct land application. In the first case, aerobic digestion is reported. In the second case, six main processes are described in the literature: anaerobic digestion, lactose hydrolysis, fermentation to ethanol, hydrogen or lactic acid and direct production of electricity through microbial fuel cells. Thermal and isoelectric precipitation, thermocalcic precipitation, coagulation/flocculation, acid precipitation, electrochemical and membrane technologies have been considered as possible and attractive physicochemical processes to valorize or treat cheese whey. The direct land application is a common and longstanding practice, although some precautions are required. In this review, these different solutions are analyzed. The paper describes the main reactors used, the influence of the main operating variables, the microorganisms or reagents employed and the characterizations of the final effluent principally in terms of chemical oxygen demand. In addition, the experimental conditions and the main results reported in the literature are compiled. Finally, the comparison between the different treatment alternatives and the presentation of potential treatment lines are postulated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Methane production from cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J Q; Liao, P H; Lo, K V

    1988-01-01

    Cheese whey was treated in a 17.5-litre laboratory-scale up-flow anaerobic sludge blanket reactor operated over a range of hydraulic retention times and organic loading rates. The reactor performance was determined in terms of methane production, volatile fatty acids conversion and chemical oxygen demand (COD) reduction. At a constant influent strength, the methane production rate decreased with decreasing hydraulic retention time. At constant hydraulic retention time the methane production rate increased as the influent strength was increased up to a concentration of 28.8 g COD litre/sup -1/. The methane production rate was similar for two influent concentrations studied at hydraulic retention times longer than 10 days. The effect of short hydraulic retention times on methane production rate was more pronounced for the higher influent concentration than for the lower influent concentration. The highest methane production rate of 9.57 litres CH/sub 4/ litre/sup -1/ feed day/sup -1/ was obtained at a loading rate of 5.96 g/sup -1/ COD litre/sup -1/ and an influent concentration of 28.8 g COD litre/sup -1/. A high treatment efficiency in terms of chemical oxygen demand reduction was obtained. In general, over 98% removal of chemical oxygen demand was achieved. The results indicated that anaerobic digestion of cheese whey using an upflow sludge blanket reactor could reduce pollution strength and produce energy for a cheese plant.

  16. Influence of using a blend of rennet casein and whey protein concentrate as protein source on the quality of Mozzarella cheese analogue.

    Science.gov (United States)

    Dhanraj, Padhiyar; Jana, Atanu; Modha, Hiral; Aparnathi, K D

    2017-03-01

    The effect of incorporating whey protein concentrate (WPC) on the quality characteristics of Mozzarella cheese analogue (MCA) based on rennet casein (RC) was studied. The proportion of RC:WPC tried out were 95:5, 90:10, and 85:15 w/w. The formulation of MCA comprised of 23.5% of blend of RC and WPC, 15% specialty vegetable fat, 2.75% trisodium citrate + disodium hydrogen orthophosphate (2.5:1, w/w), 0.07% calcium chloride, 0.6% citric acid, 1.1% NaCl, 1.5% cheese bud flavoring, and rest water. Varying the proportion of RC and WPC had a significant influence on the composition, textural properties, baking qualities and sensory quality of MCA judged as a topping on pizza pie. MCA made using protein blends (RC:WPC-90:10 or 85:15) behaved satisfactorily during pizza baking trials. However, looking at the superiority of MCA made using RC:WPC (90:10) with regard to shred quality and marginal superiority in terms of the total sensory score of cheese, judged as pizza topping, the former blend (i.e. RC:WPC, 90:10) was selected. The MCA obtained employing such protein blend had composition similar to that of Pizza cheese prepared from cheese milk and had requisite baking characteristics needed as a pizza topping. It is recommended to use a blend of RC and WPC (90:10) as the protein source in the formulation of MCA to obtain nutritionally superior cheese product having desired functional properties for its end use in baking applications.

  17. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    Science.gov (United States)

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  18. Physicochemical and Sensory Properties of Whey Cheese with Pine Nuts

    Directory of Open Access Journals (Sweden)

    Cristina Anamaria Semeniuc

    2015-11-01

    Full Text Available This study aimed to develop a value-added whey cheese through addition of pine nuts. Therefore, different concentrations of pine nuts [2, 4, 6 and 8% (w/w] were added to whey cheese. The study was designed to evaluate the influence of pine nuts on physicochemical and sensory properties of whey cheese. The addition of pine nuts resulted in an increase in fat content and total solids and a decrease in moisture content. However, no statistically significant difference was found in pH values. Sensory analysis was performed using the 9-point hedonic scale, with selected assessors. The whey cheese sample with 4% pine nuts was the most appreciated (7.6 points, followed by the classic whey cheese, whey cheese with 6 and 8% pine nuts (7.4 points, and whey cheese with 2% pine nuts (7.3 points. Nevertheless, the sensory characteristics of whey cheese were not significantly influenced by the addition of pine nuts. Whey cheese sensory profiling was successful in differential characterization of whey cheese samples.

  19. Protein characterization of pasteurized milk, cheese whey and their mixtures by using the CEM SprintTM analyzer

    Directory of Open Access Journals (Sweden)

    Igor Moura Paiva

    2016-06-01

    Full Text Available In this work, the protein analyzer SprintTM was assessed regarding its capacity of predicting addition of whey in milk. This type of practice is relatively common in dairy plants, since whey, as it is a protein component, may be added with little loss of milk protein content. Besides,its incorrect elimination contributes to environmental pollution. Mixtures of milk and whey were prepared in different levels of addition and two methods of milk partition were tested. The results indicated that the concentration of trichloroacetic acid (TCA from the selected method was not suitable for the present purpose while the chosen method using glacial acetic acid (GAA has presented a satisfactory separation of the soluble and insoluble milk components. Even though the concentration of whey protein and casein are the essential parameters for determining whey addition in milk, the use of measurements from total protein was important in order to improve the linearity of the method due to the fact that the rates whey protein/total protein and casein/total protein presented the best results concerning fraud prediction capacity. Therefore, as the equipment is a rapid, safe and efficient platform, it can be used as an alternative to be implemented in laboratories of food quality control which perform or plan to perform assays to verify the whey addition in fluid milk.

  20. Energy production by anaerobic treatment of cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Peano, L.; Ciciarelli, R.; Comino, E.; Gard, P. A.

    2009-07-01

    Anaerobic treatment and methane generation potential of cheese whey, diluted with mud, were determined in the digester of an existing wastewater treatment plant in Switzerland. Lactose, main sugar in cheese whey, can be a useful indicator to evaluate serum anaerobic treatment. Conventional parameters of anaerobic digestion (Volatile Matter, Dry Matter, Fatty Volatile Acids, total Alkali metric Title) were measured after the introduction of different whey/sludge ratio demonstrating that, despite an overcharge of whey digester, its stability is never compromised. (Author)

  1. Energy production by anaerobic treatment of cheese whey

    International Nuclear Information System (INIS)

    Peano, L.; Ciciarelli, R.; Comino, E.; Gard, P. A.

    2009-01-01

    Anaerobic treatment and methane generation potential of cheese whey, diluted with mud, were determined in the digester of an existing wastewater treatment plant in Switzerland. Lactose, main sugar in cheese whey, can be a useful indicator to evaluate serum anaerobic treatment. Conventional parameters of anaerobic digestion (Volatile Matter, Dry Matter, Fatty Volatile Acids, total Alkali metric Title) were measured after the introduction of different whey/sludge ratio demonstrating that, despite an overcharge of whey digester, its stability is never compromised. (Author)

  2. Batch cultivation of kluyveromyces fragilis in cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Beausejour, D; Leduy, A; Ramalho, R S

    1981-08-01

    Kluyveromyces fragilis was cultivated batchwise in an open pond rectangular bioreactor at 30 degrees Centigrade, 2vvm of aeration, under non-sterile conditions and uncontrolled pH. The culture medium contained 7% cheese whey powder, 0.25% KH/sub 2/PO/sub 4/, 0.5% (NH/sub 4/)/sub 2/SO/sub 4/ and was adjusted to an initial pH of 4.0 with phosphoric acid. The lactose was almost completely consumed after 16 hours and COD reduction attained 80% after 64 hours. The maximum suspended solids concentration obtained was 11.7 g/L. The cheese whey which had initially low protein and high lactose contents was converted by this system into a high protein and low lactose carbohydrate product. (Refs. 26).

  3. Batch cultivation of kluyveromyces fragilis in cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Beausejour, D; Leduy, A; Ramalho, R S

    1981-01-01

    Kluyveromyces fragilis was cultivated batchwise in an open pond rectangular bioreactor at 30 degrees Celcius with aeration, under non-sterile conditions and uncontrolled pH. The culture medium contained 7% cheese whey powder, 0.25% KH2PO4, and 0.5% (NH4)2SO4 and was adjusted to an initial pH of 4.0 with H3PO4. The lactose was almost completely consumed after 16 hours and COD reduction attained 80% after 64 hours. The maximum suspended solids concentration obtained was 11.7 g/L. The cheese whey which had initially low protein and high lactose contents was converted by this system into a high protein and low lactose carbohydrate product.

  4. Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus.

    Science.gov (United States)

    Amado, Isabel R; Vázquez, José A; Pastrana, Lorenzo; Teixeira, José A

    2016-05-01

    This study focuses on the optimisation of cheese whey formulated media for the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Culture media containing whey (W; 2.1g/L) or whey hydrolysate (WH; 2.4 g/L) gave the highest HA productions. Both W and WH produced high yields on protein consumed, suggesting cheese whey is a good nitrogen source for S. zooepidemicus production of HA. Polysaccharide concentrations of 4.0 g/L and 3.2g/L were produced in W and WH in a further scale-up to 5L bioreactors, confirming the suitability of the low-cost nitrogen source. Cheese whey culture media provided high molecular weight (>3000 kDa) HA products. This study revealed replacing the commercial peptone by the low-cost alternative could reduce HA production costs by up to a 70% compared to synthetic media. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Astringency reduction in red wine by whey proteins

    OpenAIRE

    Jauregi, Paula; Olatujoye, Jumoke B.; Cabezudo, Ignacio; Frazier, Richard A.; Gordon, Michael H.

    2016-01-01

    Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with me...

  6. Effect of multiple substrates in ethanol fermentations from cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C J; Jayanata, Y; Bajpai, R K

    1987-01-01

    Ethanol fermentations from cheese whey by Kluyveromyces marxianus CBS 397 were investigated. Cheese whey, which contains lactose as the major sugar, has been found to have small amounts of glucose and galactose, depending on the source and operating conditions. Fermentation performance was strongly influenced by the presence of glucose and galactose. However, lactose did not significantly affect the cell growth and product formation even at a high concentration. A logistical model was proposed to take into account the effect of lactose. (Refs. 6).

  7. Accelerated fermentation of cheese whey. Developing the system

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, R M; Claydon, T J

    1971-01-01

    A system for accelerated fermentation of cheese wheys requires a mixed yeast and lactose-fermenting bacterial culture. The air flow required (110 ml/min/1./1% of lactose) was proportional to the concentration of wheys in the media. Yeast cell-mass production by accelerated fermentation was equal to or greater than the whey concentration factor when compared with yeast production of single yeast strain production on unconcentrated wheys. Generally, on triple strength wheys, yeast production was approximately 1 lb/gallon of medium. Fermentation media formulas were developed with whey analysis, shake culture, and fermentor trials. The formula used with a specific whey must be adequate to supplement the mineral deficiencies in the whey and to provide trace elements and nutrients essential for maximum microbial growth. High-rate aeration was required for both respiration of the microbial culture and to purge the ferment of volatile metabolites, whose presence depressed microbial cell synthesis.

  8. Biogas yield from Sicilian kitchen waste and cheese whey

    Directory of Open Access Journals (Sweden)

    Antonio Comparetti

    2013-09-01

    Full Text Available The aim of this study is to determine the chemical composition of kitchen waste and cheese whey, as well as the biogas yield obtained from the Anaerobic Digestion (AD tests of these two raw materials. Since the separated waste collection is performed in the town of Marineo (Palermo, a sample of kitchen waste, different from food industry one and included in the Organic Fraction of Municipal Solid Waste (OFMSW, was collected from the mass stored at the households of this town. Moreover, a sample of cheese whey was collected in a Sicilian mini dairy plant, where sheep milk is processed. This investigation was carried out inside laboratory digesters of Aleksandras Stulginskis University (Lithuania. Total Solids (TS resulted 15.6% in kitchen waste and 6% in cheese whey, while both the raw materials showed a high content of organic matter, 91.1% and 79.1%, respectively. The biogas yield resulted 104.6 l kg–1 from kitchen waste and 30.6 l kg–1 from cheese whey. The biogas yield from TS resulted 672.6 l kg–1 using kitchen waste and 384.7 l kg–1 using cheese whey. The biogas yield from Volatile Solids (VS resulted 738.9 l kg–1 using kitchen waste and 410.3 l kg–1 using cheese whey.

  9. Two-stage anaerobic digestion of cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A two-stage digestion of cheese whey was studied using two anaerobic rotating biological contact reactors. The second-stage reactor receiving partially treated effluent from the first-stage reactor could be operated at a hydraulic retention time of one day. The results indicated that two-stage digestion is a feasible alternative for treating whey. 6 references.

  10. Flavor and Functional Characteristics of Whey Protein Isolates from Different Whey Sources.

    Science.gov (United States)

    Smith, T J; Foegeding, E A; Drake, M A

    2016-04-01

    This study evaluated flavor and functional characteristics of whey protein isolates (WPIs) from Cheddar, Mozzarella, Cottage cheese, and rennet casein whey. WPIs were manufactured in triplicate. Powders were rehydrated and evaluated in duplicate by descriptive sensory analysis. Volatile compounds were extracted by solid-phase microextraction followed by gas chromatography-mass spectrometry. Functional properties were evaluated by measurement of foam stability, heat stability, and protein solubility. WPI from Cheddar and Cottage cheese whey had the highest cardboard flavor, whereas sweet aromatic flavor was highest in Mozzarella WPI, and rennet casein WPI had the lowest overall flavor and aroma. Distinct sour taste and brothy/potato flavor were also noted in WPI from Cottage cheese whey. Consistent with sensory results, aldehyde concentrations were also highest in Cheddar and Cottage cheese WPI. Overrun, yield stress, and foam stability were not different (P > 0.05) among Cheddar, Mozzarella, and rennet casein WPI, but WPI foams from Cottage cheese whey had a lower overrun and air-phase fraction (P whey sources could be used in new applications due to distinct functional and flavor characteristics. © 2016 Institute of Food Technologists®

  11. Amino acid composition of cottage cheese and whey with bifidobacteria

    Directory of Open Access Journals (Sweden)

    N. S. Rodionova

    2017-01-01

    Full Text Available Breaking condition intestinal flora, the simplest way to create sensitive parts of the body microbiocenosis caused by various factors. Reasons for people microecology imbalances – antibiotics, preservatives, stress. The result is an imbalance – the number of gastrointestinal disorders, immune deficiency disorders metabolic processes in the body. Therapeutic effect of probiotic microorganisms is the result of exogenous and endometabolitov synthesis the character of the protein. Acid activity information probiotic microorganisms and the distribution of amino acids between the products and intermediates in biopotential evaluation process foods produced with probiotic microflora by fermentation. Test results from the amino acid composition of whey and quark are obtained by fermenting raw milk probiotics bifidobacterias. It was found that during the fermentation of the quark consortium, Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium adolescentis, Bifidobacterium bifidum Y enriched curd 4 of leucine and glutamine. Rate of transfer amino acids in serum to 2–6% of essential amino acids is irrelevant 3–7%. The highest value observed transient threonine, isoleucyl, lysine, valine, alanine, glycine, proline, serine. The mean value of the prototype amino acid protein curd and whey protein biological value was 71.89 and 74.58. Preservation of active forms of probiotic microorganisms after heating the bunch to 53–55 °C, lg concentration of not less than 7 (in 1 g in cottage cheese and serum. The received data are actual for formation of an information data bank, necessary for the development of prescription-component solutions of eubiotic products.

  12. Whey research

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E W

    1980-01-01

    A brief discussion of the composition of whey and its nutritional potential is followed by consideration of the less well- known areas of research in whey technology. These include the utilization of whole whey and problems of whey taint; use of lactose, by modification to lactitol, in breadmaking or as a binder for powders such as iron oxide fines in the steel industry; food uses of whey proteins e.g. in cheese, breadmaking and 'prudent diet' foods; pharmaceutical uses of whey protein concentrates as a source of lactoperoxidase; and technological research on membrane processes and ion-exchange fractionation of whey proteins.

  13. Efficient lactulose production from cheese whey using sodium carbonate.

    Science.gov (United States)

    Seo, Yeong Hwan; Park, Gwon Woo; Han, Jong-In

    2015-04-15

    An economical method of lactulose production from cheese whey was developed using sodium carbonate (Na2CO3). Three parameters such as temperature, reaction time, and Na2CO3 concentration were identified as experimental factors, and yield was selected as a response parameter. The experimental factors were optimised employing Response Surface Methodology (RSM). Maximum yield of 29.6% was obtained at reaction time of 20.41 min, Na2CO3 of 0.51% at 90 °C. To overcome this limited lactulose yield, due to the conversion of lactulose to galactose, fed batch system was applied using dried cheese whey as lactose source. By this system, limit was broken, and 15.8 g/L of lactulose is produced in hour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Comprehensive peptidomic and glycomic evaluation reveals that sweet whey permeate from colostrum is a source of milk protein-derived peptides and oligosaccharides

    NARCIS (Netherlands)

    Dallas, D.C.; Weinborn, V.; Moura Bell, de J.M.L.N.; Wang, M.; Parker, E.A.; Guerrero, A.; Hettinga, K.A.; Lebrilla, C.B.; German, J.B.; Barile, D.

    2014-01-01

    Whey permeate is a co-product obtained when cheese whey is passed through an ultrafiltration membrane to concentrate whey proteins. Whey proteins are retained by the membrane, whereas the low-molecular weight compounds such as lactose, salts, oligosaccharides and peptides pass through the membrane

  15. Iron effect on the fermentative metabolism of Clostridium acetobutylicum ATCC 824 using cheese whey as substrate

    Directory of Open Access Journals (Sweden)

    Victoria Rosalía Durán-Padilla

    2014-12-01

    Full Text Available Butanol is considered a superior liquid fuel that can replace gasoline in internal combustion engines. It is produced by acetone-butanol-ethanol (ABE fermentation using various species of solventogenic clostridia. Performance of ABE fermentation process is severely limited mostly by high cost of substrate, substrate inhibition and low solvent tolerance; leading to low product concentrations, low productivity, low yield, and difficulty in controlling culture metabolism. In order to decrease the cost per substrate and exploit a waste generated by dairy industry, this study proposes using cheese whey as substrate for ABE fermentation. It was observed that the addition of an iron source was strictly necessary for the cheese whey to be a viable substrate because this metal is needed to produce ferredoxin, a key protein in the fermentative metabolism of Clostridium acetobutylicum serving as a temporary electron acceptor. Lack of iron in the cheese whey impedes ferredoxin synthesis and therefore, restricts pyruvate-ferredoxin oxidoreductase activity leading to the production of lactic acid instead of acetone, butanol and ethanol. Moreover, the addition of FeSO4 notably improved ABE production performance by increasing butanol content (7.13 ± 1.53 g/L by 65% compared to that of FeCl3 (4.32 ± 0.94 g/L under the same fermentation conditions.

  16. Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source

    Energy Technology Data Exchange (ETDEWEB)

    Sansonetti, Sascha; Curcio, Stefano; Calabro, Vincenza; Iorio, Gabriele [Department of Engineering Modeling, University of Calabria, Ponte P. Bucci, Cubo 42/A, 87036 Rende, Cosenza (Italy)

    2009-12-15

    The aim of the present paper is to investigate the feasibility of bio-ethanol production by batch fermentation of ricotta cheese whey (''Scotta''), a dairy industry waste characterized by lactose concentration ranging from 4.5% to 5.0% (w/w) and, with respect to traditional (raw) whey, by much lower protein content. Scotta, therefore, could represent an effective non-vegetable source for renewable energy production. The microrganism used to carry out the fermentation processes was the yeast Kluyveromyces marxianus. Preliminary experiments, performed in aerobic conditions on different volumes of scotta, have shown the actual growth of the yeast. The subsequent fermentation experiments were carried out, in anaerobic conditions, on three different substrates: scotta, raw cheese whey and deproteinized whey. The experimental data have demonstrated the process feasibility: scotta is an excellent substrate for fermentation and exhibits better performance with respect to both raw cheese whey and deproteinized whey. Complete lactose consumption, indeed, was observed in the shortest time (13 h) and with the highest ethanol yield (97% of the theoretical value). (author)

  17. Use of immobilised biocatalysts in the processing of cheese whey.

    Science.gov (United States)

    Kosseva, Maria R; Panesar, Parmjit S; Kaur, Gurpreet; Kennedy, John F

    2009-12-01

    Food processing industry operations need to comply with increasingly more stringent environmental regulations related to the disposal or utilisation of by-products and wastes. These include growing restrictions on land spraying with agro-industrial wastes, and on disposal within landfill operations, and the requirements to produce end products that are stabilised and hygienic. Much of the material generated as wastes by the dairy processing industries contains components that could be utilised as substrates and nutrients in a variety of microbial/enzymatic processes, to give rise to added-value products. A good example of a waste that has received considerable attention as a source of added-value products is cheese whey. The carbohydrate reservoir of lactose (4-5%) in whey and the presence of other essential nutrients make it a good natural medium for the growth of microorganisms and a potential substrate for bioprocessing through microbial fermentation. Immobilised cell and enzyme technology has also been applied to whey bioconversion processes to improve the economics of such processes. This review focuses upon the elaboration of a range of immobilisation techniques that have been applied to produce valuable whey-based products. A comprehensive literature survey is also provided to illustrate numerous immobilisation procedures with particular emphasis upon lactose hydrolysis, and ethanol and lactic acid production using immobilised biocatalysts.

  18. Digestion of cheese whey with anaerobic rotating biological contact reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A laboratory-scale anaerobic rotating biological contact reactor receiving full strength cheese whey was studied over a range of hydraulic retention times from 11 to 5 days at 35 degrees C. Methane production rates ranging from 1.68 to 3.26 litres CH/sub 4//litre/day and a 76 to 93% reduction in chemical oxygen demand were achieved. At hydraulic retention times shorter than 5 days, steady-state operation could not be maintained for reactors receiving either full strength or diluted whey. A two-stage fermentation system was also studied; the results indicated that stable operation and treatment efficiency (89.5% COD removal) could be achieved.

  19. Effects of sodium chloride salting and substitution with potassium chloride on whey expulsion of Cheddar cheese.

    Science.gov (United States)

    Lu, Y; McMahon, D J

    2015-01-01

    A challenge in manufacturing reduced-sodium cheese is that whey expulsion after salting decreases when less salt is applied. Our objectives were (1) to determine whether changing the salting method would increase whey syneresis when making a lower sodium cheese and (2) to better understand factors contributing to salt-induced curd syneresis. Unsalted milled Cheddar curds were salted using different salting intervals (5 or 10 min), different salting levels (20, 25, or 30g/kg), different numbers of applications when using only 20g/kg salt (1, 2, or 3 applications), and salting with the equivalent of 30g/kg NaCl using a 2:1 molar ratio of NaCl and KCl. Whey from these curds was collected every 5 or 10 min until 30 or 40 min after the start of salting, and curds were subsequently pressed for 3h. Additional trials were conducted in which salted milled Cheddar cheese curd was immersed at 22°C for 6h in various solutions to determine how milled curd pieces respond to different levels of salt and Ca. The use of 10-min intervals delayed whey syneresis without influencing total whey expulsion or cheese composition after pressing. Lowering the salt level reduced whey expulsion, resulting in cheeses with higher moisture and slightly lower pH. Adding salt faster did not increase whey expulsion in reduced-salt cheese. Partial substitution with KCl restored the extent of whey expulsion. When salted milled curd was immersed in a 30g/L salt solution, there was a net influx of salt solution into the curd and curd weight increased. When curd was immersed in 60g/L salt solution, a contraction of curd occurred. Curd shrinkage was more pronounced as the salt solution concentration was increased to 90 and 120g/L. Increasing the Ca concentration in test solutions (such that both serum and total Ca in the curd increased) also promoted curd contraction, resulting in lower curd moisture and pH and less weight gain by the curd. The proportion of Ca in the curd that was bound to the para

  20. Biomethanation of salty cheese whey using multichamber anaerobic bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Chirag; Madamwar, Datta [Sardar Patel Univ., Gujarat (India)

    1998-07-01

    To obtain enriched methane content and improve anaerobic digestion of salty cheese whey after diluting with total dairy waste water, a multichamber anaerobic bioreactor has been developed using different combination of bedding materials in different chambers. Best performance has been obtained at 37''oC under the combination of polystyrene chips, pumice stones and PVC beads as supporting materials, and operating at 2 day hydraulic retention time. Maximum gas production of 3.2 litre/litre of digester/day with methane content of 68% and 83% reduction in COD have been noticed. (Author)

  1. Analysis and Application of Whey Protein Depleted Skim Milk Systems

    DEFF Research Database (Denmark)

    Sørensen, Hanne

    homogenisation (UHPH). The microfiltration will result in a milk fraction more or less depleted from whey protein, and could probably in combination with UHPH treatment contribute to milk fractions and cheeses with novel micro and macrostructures. These novel fractions could be used as new ingredients to improve......-destructive methods for this purpose. A significant changed structure was observed in skim milk depleted or partly depleted for whey protein, acidified and UHPH treated. Some of the properties of the UHPH treated skim milk depleted from whey protein observed in this study support the idea, that UHPH treatment has...... this. LF-NMR relaxation were utilised to obtain information about the water mobility (relaxation time), in diluted skim milk systems depleted from whey protein. Obtained results indicate that measuring relaxation times with LF-NMR could be difficult to utilize, since no clear relationship between...

  2. Optimization of pH, temperature and CaCl2 concentrations for Ricotta cheese production from Buffalo cheese whey using Response Surface Methodology.

    Science.gov (United States)

    Rashid, Abdul Ahid; Huma, Nuzhat; Zahoor, Tahir; Asgher, Muhammad

    2017-02-01

    The recovery of milk constituents from cheese whey is affected by various processing conditions followed during production of Ricotta cheese. The objective of the present investigation was to optimize the temperature (60-90 °C), pH (3-7) and CaCl2 concentration (2·0-6·0 mm) for maximum yield/recovery of milk constituents. The research work was carried out in two phases. In 1st phase, the influence of these processing conditions was evaluated through 20 experiments formulated by central composite design (CCD) keeping the yield as response factor. The results obtained from these experiments were used to optimize processing conditions for maximum yield using response surface methodology (RSM). The three best combinations of processing conditions (90 °C, pH 7, CaCl2 6 mm), (100 °C, pH 5, CaCl2 4 mm) and (75 °C, pH 8·4, CaCl2 4 mm) were exploited in the next phase for Ricotta cheese production from a mixture of Buffalo cheese whey and skim milk (9 : 1) to determine the influence of optimized conditions on the cheese composition. Ricotta cheeses were analyzed for various physicochemical (moisture, fat, protein, lactose, total solids, pH and acidity indicated) parameters during storage of 60 d at 4 ± 2 °C after every 15 d interval. Ricotta cheese prepared at 90 °C, pH 7 and CaCl2 6 mm exhibited the highest cheese yield, proteins and total solids, while high fat content was recorded for cheese processed at 100 °C, pH 5 and 4 mm CaCl2 concentration. A significant storage-related increase in acidity and NPN was recorded for all cheese samples.

  3. Effect of Incubation Time and Sucrose Addition on the Characteristics of Cheese Whey Yoghurt

    Science.gov (United States)

    Nurhartadi, E.; Utami, R.; Nursiwi, A.; Sari, A. M.; Widowati, E.; Sanjaya, A. P.; Esnadewi, E. A.

    2017-04-01

    The effect of incubation time and concentration of sucrose addition on the characteristics of cheese whey yogurt (lactic acid content, pH, total lactic acid bacteria, antioxidant activity, viscosity) and sensory characteristics (color, odor, flavor, consistency, and overalls) were investigated. The cheese whey yogurt fermentation process was carried out for 24h and 36h with the addition of sucrose 8, 10, and 12% (w/w) of total solid, respectively. The results showed that the lactic acid content, total lactic acid bacteria, antioxidant activity, and viscosity of cheese whey yogurt were affected by the incubation time and sucrose addition. The level of pH of yogurt which was incubated at 24h and 36h were relatively in the same levels, which were 4.51 up to 4.63. Due the sensory characteristic of cheese whey yogurt the panellists gave the high score for the cheese whey yogurt which was incubated at 24h and sucrose addition 12% (w/w) of total solid. The cheese whey yogurt has 0.41% lactic acid content; pH 4.51; 7.09 log total lactic acid bacteria cells / ml; 5.78% antioxidant activity; and 5.97 cP viscosity. The best sensory and physico-chemical characteristic of cheese whey yogurt was achieved by 24h incubation time and 12% concentration of sucrose addition.

  4. Whey: Characteristics, Applications and Health Aspects

    OpenAIRE

    Sima Khezri; Mir Mehdi Seyedsaleh; Nina Emami; Parvin Dehghan

    2016-01-01

    Cheese whey utilization is one of major concerns nowadays. Its high organic matter content (BOD and COD concentrations), in combination with the high volumes produced and limited treatment options make cheese whey a serious environmental problem. To overcome this issue, various technological approaches have been employed to convert whey into value-added products. It is now transformed into products such as whey powder, whey protein, whey permeate, bioethanol, biopolymers, hydrogen, methane...

  5. Mesophilic anaerobic digestion of a mixture of cheese whey and dairy manure

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.V.; Liao, P.H.; Chiu, C.

    1988-01-01

    Mesophilic anaerobic digestion of a mixture of cheese whey and dairy manure was investigated using an anaerobic rotating biological contact reactor operated over a range of hydraulic retention time at various organic loading rates. Dairy manure provided nutrients and acted as a buffer to the cheese whey. Rates of production of methane from the mixture were between those of cheese whey and screened dairy manure and in agreement with calculated theoretical methane production rates. Methane production rate showed a linear relationship with the organic loading rate. The highest methane production rate was 3.74 liter methane litre/sup -1/ day/sup -1/. Reduction in the chemical oxygen demand ranged from 46.3% to 67.5%. Anaerobic digestion of such mixtures could be used as an initial waste treatment for cheese whey.

  6. Health issues of whey proteins: 3. gut health promotion

    NARCIS (Netherlands)

    Gertjan Schaafsma

    2007-01-01

    This paper reviews the potential of whey protein to promote gut health. The high digestibility and specific amino acid composition of whey protein, as present in whey powder, whey protein concentrate and whey protein isolate, explain why ingestion of whey protein will exert this beneficial effect.

  7. Functionalization of whey proteins by reactive supercritical fluid extrusion

    Directory of Open Access Journals (Sweden)

    Khanitta Ruttarattanamongkol

    2012-09-01

    Full Text Available Whey protein, a by-product from cheese-making, is often used in a variety of food formulations due to its unsurpassednutritional quality and inherent functional properties. However, the possibilities for the improvement and upgrading of wheyprotein utilization still need to be explored. Reactive supercritical fluid extrusion (SCFX is a novel technique that has beenrecently reported to successfully functionalize commercially available whey proteins into a product with enhanced functionalproperties. The specific goal of this review is to provide fundamental understanding of the reinforcement mechanism andprocessing of protein functionalization by reactive SCFX process. The superimposed extrusion variables and their interactionmechanism affect the physico-chemical properties of whey proteins. By understanding the structure, functional properties andprocessing relationships of such materials, the rational design criteria for novel functionalized proteins could be developedand effectively utilized in food systems.

  8. Health issues of whey proteins: 3. Gut health promotion

    NARCIS (Netherlands)

    Schaafsma, G.

    2007-01-01

    This paper reviews the potential of whey protein to promote gut health. The high digestibility and specific amino acid composition of whey protei, as present in whey powder, whey protein concentrate and whey protein isolate, explain why ingestion of whey protein will exert this beneficial effect.

  9. Characteristic of Fermented Drink from Whey Cheese with Addition of Mango (Mangifera x odorata) Juice

    Science.gov (United States)

    Desnilasari, D.; Kumalasari, R.

    2017-12-01

    Whey cheese could be utilized become product such as fermented drink which is added by mango kweni juice to improve their acceptance. The aim of this research was to characterized physicochemical, sensory, and microbiology of fermented drink based on whey cheese with addition different concentration mango kweni juice of (0%, 5%, 10%, and 15%) by Lactobacillus casei. Color scale, viscosity, pH, total soluble solid, total free acid, fat, protein, total L. casei and sensory evaluation from panelist were examined after 24 hour of fermentation. Result showed that addition mango juice significantly affects the color scale, viscosity, pH, protein and number of L. casei of the product. The color of the product becomes more dark, red, and yellow. The product becomes more viscous. pH of the product become more acid and reduces protein content. Respectively total number of L. casei of the product increased 1 log. But addition of mango juice significantly did not affect sensory acceptance, total soluble solid, total free acid, and fat of the product. Sensory acceptance of the product range in dislike slightly and slightly like score that means formulation of the product need to be improved again.

  10. Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.

    Science.gov (United States)

    Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel

    2014-08-01

    The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology).

  11. Astringency reduction in red wine by whey proteins.

    Science.gov (United States)

    Jauregi, Paula; Olatujoye, Jumoke B; Cabezudo, Ignacio; Frazier, Richard A; Gordon, Michael H

    2016-05-15

    Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with methylcellulose as a precipitant). The two proteins showed similar selectivity for polyphenols but β-LG did not remove as much catechin. The fining agent was removed completely or to a trace level after centrifugation followed by filtration which minimises its potential allergenicity. In addition, improved understanding of protein-tannin interactions was obtained by fluorescence, size measurement and isothermal titration calorimetry (ITC). Overall this study demonstrates that whey proteins have the potential of reducing astringency in red wine and can find a place in enology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biotechnological Utilization with a Focus on Anaerobic Treatment of Cheese Whey: Current Status and Prospects

    Directory of Open Access Journals (Sweden)

    Aspasia A. Chatzipaschali

    2012-09-01

    Full Text Available Cheese whey utilization is of major concern nowadays. Its high organic matter content, in combination with the high volumes produced and limited treatment options make cheese whey a serious environmental problem. However, the potential production of biogas (methane, hydrogen or other marketable products with a simultaneous high COD reduction through appropriate treatment proves that cheese whey must be considered as an energy resource rather than a pollutant. The presence of biodegradable components in the cheese whey coupled with the advantages of anaerobic digestion processes over other treatment methods makes anaerobic digestion an attractive and suitable treatment option. This paper intends to review the most representative applications of anaerobic treatment of cheese whey currently being exploited and under research. Moreover, an effort has been made to categorize the common characteristics of the various research efforts and find a comparative basis, as far as their results are concerned. In addition, a number of dairy industries already using such anaerobic digestion systems are presented.

  13. The functional and biological properties of whey proteins: prospects for the development of functional foods

    Directory of Open Access Journals (Sweden)

    H. J. T. KORHONEN

    2008-12-01

    Full Text Available Advances in processing technologies and the accumulation of scientific data on the functional and biological properties of whey components have contributed to the growing commercial valuation of cheese whey over the last decade. New membrane separation and chromatographic techniques have made it possible to fractionate and enrich various components of whey more efficiently than before. The specific properties of these components can now be examined in greater detail and new applications developed accordingly. The utilisation of cheese whey is evolving into a new industry producing a multitude of purified ingredients for numerous purposes. The most significant areas of R&D related to whey proteins include functional foods, the rheological properties of foodstuffs, and biopharmaceuticals.

  14. Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli.

    Science.gov (United States)

    Pasotti, Lorenzo; Zucca, Susanna; Casanova, Michela; Micoli, Giuseppina; Cusella De Angelis, Maria Gabriella; Magni, Paolo

    2017-06-02

    Whey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste. The lactose to ethanol fermentation can complete whey valorization chain by decreasing dairy waste polluting potential, due to its nutritional load, and producing a biofuel from renewable source at the same time. Wild type and engineered microorganisms have been proposed as fermentation biocatalysts. However, they present different drawbacks (e.g., nutritional supplements requirement, high transcriptional demand of recombinant genes, precise oxygen level, and substrate inhibition) which limit the industrial attractiveness of such conversion process. In this work, we aim to engineer a new bacterial biocatalyst, specific for dairy waste fermentation. We metabolically engineered eight Escherichia coli strains via a new expression plasmid with the pyruvate-to-ethanol conversion genes, and we carried out the selection of the best strain among the candidates, in terms of growth in permeate, lactose consumption and ethanol formation. We finally showed that the selected engineered microbe (W strain) is able to efficiently ferment permeate and concentrated permeate, without nutritional supplements, in pH-controlled bioreactor. In the conditions tested in this work, the selected biocatalyst could complete the fermentation of permeate and concentrated permeate in about 50 and 85 h on average, producing up to 17 and 40 g/l of ethanol, respectively. To our knowledge, this is the first report showing efficient ethanol production from the lactose contained in whey permeate with engineered E. coli. The selected strain is amenable to further metabolic optimization and represents an advance towards efficient biofuel production from industrial waste stream.

  15. Enrichment and purification of casein glycomacropeptide from whey protein isolate using supercritical carbon dioxide processing and membrane filtration

    Science.gov (United States)

    Whey protein concentrates (WPC) and isolates (WPI), which are dried, concentrated forms of cheese whey, are comprised mainly of beta–lactoglobulin (beta-LG), a–lactalbumin (a-LA), and glycomacropeptide (GLY), and are added to foods to boost their nutritional and functional properties. In previous st...

  16. Characteristics of whey proteinhydrolysates from cheese whey, favors onvarious food applications

    Directory of Open Access Journals (Sweden)

    Jeewanthi Chaturika Renda Kankanamge

    2014-01-01

    Full Text Available This study was conducted to investigate theproduction of whey protein hydrolysates,examiningthe physiochemical properties withfive enzyme types named Alcalase, Protease S,Protease M, Trypsin, and Pepsin. Whey protein concentratewas adjusted by ultrafiltration,increasing the whey content to 135% that of initial levels. The hydrolysates have been shown to improve the characteristics of a number of food products, and the type of enzyme has a considerable influence on the end result of hydrolysatesproduction. Bulk density, Solubility, NPN, foaming capacity, and the degree of hydrolysis were increased with hydrolysis time. Maximum Bulk density was shownby Protease S. Pepsinand Alcalase, whichgraduallyincreasedthe foaming capacity, resulting in acomparatively lower pH and a lower degree of hydrolysis. The highestdegree of hydrolysiswas shown by Protease M. The highest NPN value was provided by Pepsin, which was much greater than that of other enzymes. There wasno significant difference in NPN according to the enzyme typeapplied. Allhydrolysates in alkaline media were shown more than 50% solubility. HMFcontents were also shown anobviousdifference with the enzyme type.

  17. Comparison of SPME Methods for Determining Volatile Compounds in Milk, Cheese, and Whey Powder

    Directory of Open Access Journals (Sweden)

    Michael H. Tunick

    2013-11-01

    Full Text Available Solid phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but conditions have to be adjusted to maximize release while not generating new compounds that are absent in the original sample. Queso Fresco, a fresh non-melting cheese, may be heated at 60 °C for 30 min; in contrast, compounds are produced in milk when exposed to light and elevated temperatures, so milk samples are heated as little as possible. Products such as dehydrated whey protein are more stable and can be exposed to longer periods (60 min of warming at lower temperature (40 °C without decomposition, allowing for capture and analysis of many minor components. The techniques for determining the volatiles in dairy products by SPME and GC-MS have to be optimized to produce reliable results with minimal modifications and analysis times.

  18. Process for the separation of proteins from acid whey

    Energy Technology Data Exchange (ETDEWEB)

    Mirabel, B

    1980-01-01

    Acid whey from cheese or casein manufacture (pH less than 4.6) and containing about 5.2 g protein/l is passed through a cation exchange resin (of silica coated with a copolymer of styrene/vinyltriethoxysilane carrying SO/sub 3/H functional groups). The proteins adsorbed on the resin (alpha-lactalbumin, beta-lactoglobulin, serum albumin and immunoglobulins) are eluated with an 0.1 M ammonia solution, concentrated under vacuum and freeze-dried, obtaining a final product with 88% undenatured protein. The products are for use in the food and pharmaceutical industries and for dietetic and veterinary purposes.

  19. Nutritional and functional properties of whey proteins concentrate and isolate

    Directory of Open Access Journals (Sweden)

    Zoran Herceg

    2006-12-01

    Full Text Available Whey protein fractions represent 18 - 20 % of total milk nitrogen content. Nutritional value in addition to diverse physico - chemical and functional properties make whey proteins highly suitable for application in foodstuffs. In the most cases, whey proteins are used because of their functional properties. Whey proteins possess favourable functional characteristics such as gelling, water binding, emulsification and foaming ability. Due to application of new process techniques (membrane fractionation techniques, it is possible to produce various whey - protein based products. The most important products based on the whey proteins are whey protein concentrates (WPC and whey protein isolates (WPI. The aim of this paper was to give comprehensive review of nutritional and functional properties of the most common used whey proteins (whey protein concentrate - WPC and whey protein isolate - WPI in the food industry.

  20. Casein - whey protein interactions in heated milk

    NARCIS (Netherlands)

    Vasbinder, Astrid Jolanda

    2002-01-01

    Heating of milk is an essential step in the processing of various dairy products, like for example yoghurt. A major consequence of the heat treatment is the denaturation of whey proteins, which either associate with the casein micelle or form soluble whey protein aggregates. By combination of

  1. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

    Science.gov (United States)

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  2. DIAFILTRATION OF ULTRAFILTRATION RETENTATE OF WHEY FROM WHITE BRINED CHEESE

    Directory of Open Access Journals (Sweden)

    Maria DUSHKOVA

    2012-03-01

    Full Text Available Whey diafiltration was carried out with a UF25-PAN polyacrylnitrilic membrane with 25 kDa molecular weight cut-off at volume reduction factors (VRF VRF=2, VRF=4, VRF=6, VRF=8, VRF=10. The values of the principal components dry matter, protein, lactose and mineral substances in the retentates and permeate obtained were established. The relative shares of protein, lactose and mineral substances in the dry matter, the concentration factor (CF values for dry matter, protein, lactose and mineral substances, and the protein retention factor (RF were determined. Linear models were created for the CF of each investigated component according to the VRF, and a logarithmic model was developed for the protein RF according to the VRF. The results obtained demonstrated the efficiency of diafiltration for deep treatment aimed at a further elimination of lactose and mineral substances and subsequent utilization of the diafiltration concentrates low in lactose and mineral substances as a liquid supplement in the manufacture of extruded cereal products.

  3. Review: elimination of bacteriophages in whey and whey products

    Directory of Open Access Journals (Sweden)

    Zeynep eAtamer

    2013-07-01

    Full Text Available As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages per mL. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV light irradiation and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favoured - rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent

  4. Review: elimination of bacteriophages in whey and whey products

    Science.gov (United States)

    Atamer, Zeynep; Samtlebe, Meike; Neve, Horst; J. Heller, Knut; Hinrichs, Joerg

    2013-01-01

    As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages mL-1. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV) light irradiation, and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favored – rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent phage accumulations

  5. Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by "Vitreoscilla hemoglobin expressing" Escherichia coli.

    Science.gov (United States)

    Akbas, Meltem Yesilcimen; Sar, Taner; Ozcelik, Busra

    2014-01-01

    This work investigated the improvement of ethanol production by engineered ethanologenic Escherichia coli to express the hemoglobin from the bacterium Vitreoscilla (VHb). Ethanologenic E. coli strain FBR5 and FBR5 transformed with the VHb gene in two constructs (strains TS3 and TS4) were grown in cheese whey (CW) medium at small and large scales, at both high and low aeration, or with whey powder (WP) or sugar beet molasses hydrolysate (SBMH) media at large scale and low aeration. Culture pH, cell growth, VHb levels, and ethanol production were evaluated after 48 h. VHb expression in TS3 and TS4 enhanced their ethanol production in CW (21-419%), in WP (17-362%), or in SBMH (48-118%) media. This work extends the findings that "VHb technology" may be useful for improving the production of ethanol from waste and byproducts of various sources.

  6. Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J.Q.; Lo, K.V.; Liao, P.H.

    1989-01-01

    Anaerobic treatment of cheese whey using a 17.5-litre up-flow anaerobic sludge blanket reactor was investigated in the laboratory. The reactor was studied over a range of influent concentration from 4.5 to 38.1 g chemical oxygen demand per litre at a constant hydraulic retention time of 5 days. The reactor start-up and the sludge acclimatization were discussed. The reactor performance in terms of methane production, volatile fatty acids conversion, sludge net growth and chemical oxygen demand reduction were also presented in this paper. Over 97% chemical oxygen demand reduction was achieved in this experiment. At the influent concentration of 38.1 g chemical oxygen demand per litre, an instability of the reactor was observed. The results indicated that the up-flow anaerobic sludge blanket reactor process could treat cheese whey effectively.

  7. Butanol production by bioconversion of cheese whey in a continuous packed bed reactor.

    Science.gov (United States)

    Raganati, F; Olivieri, G; Procentese, A; Russo, M E; Salatino, P; Marzocchella, A

    2013-06-01

    Butanol production by Clostridium acetobutylicum DSM 792 fermentation was investigated. Unsupplemented cheese whey was adopted as renewable feedstock. The conversion was successfully carried out in a biofilm packed bed reactor (PBR) for more than 3 months. The PBR was a 4 cm ID, 16 cm high glass tube with a 8 cm bed of 3mm Tygon rings, as carriers. It was operated at the dilution rate between 0.4h(-1) and 0.94 h(-1). The cheese whey conversion process was characterized in terms of metabolites production (butanol included), lactose conversion and biofilm mass. Under optimized conditions, the performances were: butanol productivity 2.66 g/Lh, butanol concentration 4.93 g/L, butanol yield 0.26 g/g, butanol selectivity of the overall solvents production 82 wt%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Protein-peptide interactions in mixtures of whey peptides and whey proteins

    NARCIS (Netherlands)

    Creusot, N.; Gruppen, H.

    2007-01-01

    The effects of several conditions on the amounts and compositions of aggregates formed in mixtures of whey protein hydrolysate, made with Bacillus licheniformis protease, and whey protein isolate were investigated using response surface methodology. Next, the peptides present in the aggregates were

  9. Whey protein: The “whey” forward for treatment of type 2 diabetes?

    Science.gov (United States)

    Mignone, Linda E; Wu, Tongzhi; Horowitz, Michael; Rayner, Christopher K

    2015-01-01

    A cost-effective nutritional approach to improve postprandial glycaemia is attractive considering the rising burden of diabetes throughout the world. Whey protein, a by-product of the cheese-making process, can be used to manipulate gut function in order to slow gastric emptying and stimulate incretin hormone secretion, thereby attenuating postprandial glycaemic excursions. The function of the gastrointestinal tract plays a pivotal role in glucose homeostasis, particularly during the postprandial period, and this review will discuss the mechanisms by which whey protein slows gastric emptying and stimulates release of gut peptides, including the incretins. Whey protein is also a rich source of amino acids, and these can directly stimulate beta cells to secrete insulin, which contributes to the reduction in postprandial glycaemia. Appetite is suppressed with consumption of whey, due to its effects on the gut-brain axis and the hypothalamus. These properties of whey protein suggest its potential in the management of type 2 diabetes. However, the optimal dose and timing of whey protein ingestion are yet to be defined, and studies are required to examine the long-term benefits of whey consumption for overall glycaemic control. PMID:26516411

  10. Antibacterial activity of different formulations of cheese and whey produced with kefir grains

    Directory of Open Access Journals (Sweden)

    Simone Weschenfelder

    Full Text Available ABSTRACT The development of different products that confer health benefits on the population is a challenge for those who work with food. The aim of this study was to elaborate two formulations of kefir cheese (C1 and C2 and whey (W1, W2, and to evaluate their in situ antibacterial activity against microorganisms of interest in food. Pasteurized milk, powdered milk and kefir grains were used in preparing the products and their percentage composition was determined. C1, C2, W1 and W2 were contaminated with five different logarithmic fractions (A = 8log to E = 4log CFU/ml of Staphylococcus aureus (ATCC 25923 and Escherichia coli (ATCC 11229, with antibacterial activity assessed over 0, 24, 48 and 72 hours of exposure. The results demonstrated the antibacterial activity of kefir cheese and whey, especially after 24 hours. Escherichia coli was the most sensitive of the bacteria, with maximum antibacterial activity seen in the cheese at population densities D and E, and in the whey at densities B, C, D and E after 48 and 72 h, showing that the in situ antibacterial activity of foods produced with kefir grains tends to be lower when compared with studies in vitro. The greater the nutrient content of the food, the lower the antibacterial activity seen, probably due to the protective action that the nutrients confer on the microorganisms against bacteriocins and the metabolites from fermentation.

  11. Performance of microbial fuel cell double chamber using mozzarella cheese whey substrate

    Science.gov (United States)

    Darmawan, M. D.; Hawa, L. C.; Argo, B. D.

    2018-03-01

    Nowadays the availability of electric energy is decreasing, hence there is a need for innovation of electric energy producer alternative; one of them is microbial fuel cell (MFC). MFC is a bioelectrochemical system generated by bacterial metabolism that utilizes organic substrate. One of the substrates that can be used is whey, a waste generated from cheese production. Therefore, this study aimed to determine the power of potential current and voltage generated from the use of whey cheese as a substrate for bacterial metabolism. In this research, double chamber system was used in microbial fuel cell reactor by using cheese whey as substrate at anode and potassium permanganate as cathode and utilizing membrane nafion 212 as membrane of proton exchange. The variable of experiment was bacteria type. The types of bacteria used in this study were Lactobacillus bulgaricus, Streptococcus thermophillus and Lactobacillus casei. While the operating time used was 100 hours. The highest current produced was 74.6 μA and the highest voltage was 529.3 mV produced by Lactobacillus bulgaricus bacteria. In this study, it was also found that the death phase of the three bacteria was at 70-80 hours.

  12. Manufacture of a beverage from cheese whey using a "tea fungus" fermentation.

    Science.gov (United States)

    Belloso-Morales, Genette; Hernández-Sánchez, Humberto

    2003-01-01

    Kombucha is a sour beverage reported to have potential health effects prepared from the fermentation of black tea and sugar with a "tea fungus", a symbiotic culture of acetic acid bacteria and yeasts. Although black tea is the preferred substrate for Kombucha fermentation, other beverages have also been tested as substrates with fair results. Cheese whey is a by-product with a good amount of fermentable lactose that has been used before in the production of beverages, so the objective of this study was to test three types of whey (fresh sweet, fresh acid and reconstituted sweet) in the elaboration of a fermented beverage using a kombucha culture as inoculum. The isolation and identification of bacteria and yeasts from the fermented tea and wheys was done along with the study of the rates of change in sugar consumption, acid production and pH decrease. Several species of acetic acid bacteria (Acetobacter aceti subsp. aceti, Gluconobacter oxydans subsp. industrius, subsp. oxydans and Gluconoacetobacter xylinus) were isolated from the different kombuchas along with the yeasts Saccharomyces cerevisiae, Kluyveromyces marxianus, and Brettanomyces bruxelensis. The main metabolic products in the fermented wheys included ethanol, lactic and acetic acids. A good growth was obtained in both sweet wheys in which a pH of 3.3 and a total acid content (mainly lactic and acetic acids) of 0.07 mol/l was reached after 96 h. The sweet whey fermented beverages contained a relatively low lactose concentration (< 12 g/l). The final ethanol content was low (5 g/l) in all the fermented wheys. The whey products were strongly sour and salty non sparkling beverages.

  13. Effect of various pre-treatments on the ultrafiltration of sweet cheese whey at about 55 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Hiddink, J; De Boer, R; Nooy, P F.C.

    1981-11-01

    The permeate flux at 55 degrees C during ultrafiltration of Gouda cheese whey (5.5% TS and 11% TS) can be readily manipulated by applying pre-treatments based on inactivation or removal of calcium. The following pre-treatments were carried out: clarification, decalcificication, desalting, pre-heating at 45, 55, and 60 degrees C for 30 minutes, pre-heating at 55 degrees C for 30 minutes combined with pH adjustment to pH 7.5, 4.5 and 3.0 and preheating at 55 degrees C for 30 minutes (coupled with addition of sodum hexametaphosphate. In particular decalification, clarification and pH adjustment to 7.5 or 3.0 gave high permeate fluxes, while pre- heating for 30 minutes resulted in a moderate flux. The pretreatment not only affects the permeate flux but also the composition and properties of the whey protein concentrate. A high ash content, which also reflects a high calcium and phosphorous content, was obtained with a pretreatment based on pH 7 5, while low ash contents were achieved by desalting and clarification. The solubility of the protein was reduced to some 60-70% if the pH of the pre-treated whey was brought to 3.0 or 7.5. Furthermore, it appeared that the influence of the type of membrane - a tubular and a plate-and-frame module were used - was of minor importance as far as the retention or the composition of the whey protein concentrate was concerned. However, the permeate flux of the two types of equipment was different. Under the applied process conditions the tubular system tended to give a higher permeate flux than did the plate-and-frame system, but the energy consumption of the former was considerably higher. (Refs. 25).

  14. The functional properties, modification and utilization of whey proteins

    Directory of Open Access Journals (Sweden)

    B. G. Venter

    1986-03-01

    Full Text Available Whey protein has an excellent nutritional value and exhibits a functional potential. In comparison with certain other food proteins, the whey protein content of essential amino acids is extremely favourable for human consumption. Depending on the heat-treatment history thereof, soluble whey proteins with utilizable functional properties, apart from high biological value, true digestibility, protein efficiency ratio and nett protein utilization, can be recovered. Various technological and chemical recovery processes have been designed. Chemically and enzymatically modified whey protein is manufactured to obtain technological and functional advantages. The important functional properties of whey proteins, namely hydration, gelation, emulsifying and foaming properties, are reviewed.

  15. Nutritional and functional properties of whey proteins concentrate and isolate

    OpenAIRE

    Zoran Herceg; Anet Režek

    2006-01-01

    Whey protein fractions represent 18 - 20 % of total milk nitrogen content. Nutritional value in addition to diverse physico - chemical and functional properties make whey proteins highly suitable for application in foodstuffs. In the most cases, whey proteins are used because of their functional properties. Whey proteins possess favourable functional characteristics such as gelling, water binding, emulsification and foaming ability. Due to application of new process techniques (membrane fract...

  16. Functionality of extrusion--texturized whey proteins.

    Science.gov (United States)

    Onwulata, C I; Konstance, R P; Cooke, P H; Farrell, H M

    2003-11-01

    Whey, a byproduct of the cheesemaking process, is concentrated by processors to make whey protein concentrates (WPC) and isolates (WPI). Only 50% of whey proteins are used in foods. In order to increase their usage, texturizing WPC, WPI, and whey albumin is proposed to create ingredients with new functionality. Extrusion processing texturizes globular proteins by shearing and stretching them into aligned or entangled fibrous bundles. In this study, WPC, WPI, and whey albumin were extruded in a twin screw extruder at approximately 38% moisture content (15.2 ml/min, feed rate 25 g/min) and, at different extrusion cook temperatures, at the same temperature for the last four zones before the die (35, 50, 75, and 100 degrees C, respectively). Protein solubility, gelation, foaming, and digestibility were determined in extrudates. Degree of extrusion-induced insolubility (denaturation) or texturization, determined by lack of solubility at pH 7 for WPI, increased from 30 to 60, 85, and 95% for the four temperature conditions 35, 50, 75, and 100 degrees C, respectively. Gel strength of extruded isolates increased initially 115% (35 degrees C) and 145% (50 degrees C), but gel strength was lost at 75 and 100 degrees C. Denaturation at these melt temperatures had minimal effect on foaming and digestibility. Varying extrusion cook temperature allowed a new controlled rate of denaturation, indicating that a texturized ingredient with a predetermined functionality based on degree of denaturation can be created.

  17. Application of Kevin-Voigt Model in Quantifying Whey Protein Adsorption on Polyethersulfone Using QCM-D

    Science.gov (United States)

    The study of protein adsorption on the membrane surface is of great importance to cheese-making processors that use polymeric membrane-based processes to recover whey protein from the process waste streams. Quartz crystal microbalance with dissipation (QCM-D) is a lab-scale, fast analytical techniq...

  18. Advances in extrusion for texturized whey proteins

    Science.gov (United States)

    Dairy proteins like whey proteins play an important role in human nutrition because of their characteristic structure and associated numerous benefits such as ease of digestion, in- vivo assimilation, creating new or maintaining the muscle mass and the unique ability of boosting immune functions. W...

  19. Fibril assembly in whey protein mixtures

    NARCIS (Netherlands)

    Bolder, S.G.

    2007-01-01

    The objective of this thesis was to study fibril assembly in mixtures of whey proteins. The effect of the composition of the protein mixture on the structures and the resulting phase behaviour was investigated. The current work has shown that beta-lactoglobulin is responsible for the fibril assembly

  20. Glycomacropeptide, a low-phenylalanine protein isolated from cheese whey, supports growth and attenuates metabolic stress in the murine model of phenylketonuria

    Science.gov (United States)

    Solverson, Patrick; Murali, Sangita G.; Brinkman, Adam S.; Nelson, David W.; Clayton, Murray K.; Yen, Chi-Liang Eric

    2012-01-01

    Phenylketonuria (PKU) is caused by a mutation in the phenylalanine (phe) hydroxylase gene and requires a low-phe diet plus amino acid (AA) formula to prevent cognitive impairment. Glycomacropeptide (GMP) contains minimal phe and provides a palatable alternative to AA formula. Our objective was to compare growth, body composition, and energy balance in Pahenu2 (PKU) and wild-type mice fed low-phe GMP, low-phe AA, or high-phe casein diets from 3–23 wk of age. The 2 × 2 × 3 design included main effects of genotype, sex, and diet. Fat and lean mass were assessed by dual-energy X-ray absorptiometry, and acute energy balance was assessed by indirect calorimetry. PKU mice showed growth and lean mass similar to wild-type littermates fed the GMP or AA diets; however, they exhibited a 3–15% increase in energy expenditure, as reflected in oxygen consumption, and a 3–30% increase in food intake. The GMP diet significantly reduced energy expenditure, food intake, and plasma phe concentration in PKU mice compared with the casein diet. The high-phe casein diet or the low-phe AA diet induced metabolic stress in PKU mice, as reflected in increased energy expenditure and intake of food and water, increased renal and spleen mass, and elevated plasma cytokine concentrations consistent with systemic inflammation. The low-phe GMP diet significantly attenuated these adverse effects. Moreover, total fat mass, %body fat, and the respiratory exchange ratio (CO2 produced/O2 consumed) were significantly lower in PKU mice fed GMP compared with AA diets. In summary, GMP provides a physiological source of low-phe dietary protein that promotes growth and attenuates the metabolic stress induced by a high-phe casein or low-phe AA diet in PKU mice. PMID:22297302

  1. Kluyveromyces lactis β-galactosidase immobilization in calcium alginate spheres and gelatin for hydrolysis of cheese whey lactose

    Directory of Open Access Journals (Sweden)

    Ana Paula Mörschbächer

    2016-05-01

    Full Text Available ABSTRACT: One of the greatest challenges for dairy industries is the correct destination of all the whey generated during cheese making, considering its high impact, the large volume created, and its technological potential. Enzymatic hydrolysis of cheese whey lactose is a biotechnological alternative. However, one of the limiting factors of its use is the relatively high cost of the enzymes, which could be lowered with the immobilization of these biocatalysts. Considering this context, the objective of this research was to evaluate the commercial Kluyveromyces lactis β-galactosidase enzyme immobilized in calcium alginate spheres and gelatin, using glutaraldehyde and concanavalin A (ConA as modifying agents in the hydrolysis of cheese whey lactose process. Results have shown that the enzyme encapsulation complexed with ConA in alginate-gelatin spheres, without glutaraldehyde in the immobilization support, has significantly increased the hydrolysis of lactose rate, achieving a maximum conversion of 72%.

  2. Deproteinization: an integrated-solution approach to increase efficiency in β-galactosidase production using cheese whey powder (CWP solution

    Directory of Open Access Journals (Sweden)

    Leandro Freire dos Santos

    2017-08-01

    Full Text Available Whey is the liquid that results from the coagulation of milk during cheese manufacture. Cheese whey is also an important environmental pollution source. The present experiment sought to compare β-galactosidase (EC 3.2.1.23 production by Aspergillus oryzae from deproteinized and un-deproteinized CWP solutions. β-galactosidase was produced by submerged fermentation in deproteinized or un-deproteinized CWP solutions. To determine the activity of the enzyme, a reaction mixture containing cell-free extract and ortho Nitrophenyl β galactoside (ONPG was used. The results indicated that β-galactosidase induction was greater when using deproteinized CWP solution compared to the un deproteinized CWP solution. These results may enable an alternative management of cheese whey, thereby decreasing its impact on the environment and producing value-added biomacromolecules.

  3. Whey utilization for single-cell protein production

    Energy Technology Data Exchange (ETDEWEB)

    Barraquio, V; Silverio, L G; Revilleza, R P; Fernadez, W L

    1980-01-01

    The production of single-cell protein by yeast assimilation of lactose in soft cheese whey was studied using Candida pseudotropicalis as a test organism. Under shake-flask cultivation conditions with deproteinized whey as the medium, lactose (initially 4.20%) was completely assimilated in 48h; cell mass was 5.56 mg/mL after 72h; and average protein content of the dried mass was approximately 11.8%. Batch cultivation using undeproteinized whey resulted in a faster lactose utilization rate from an initial 3.93% to a residual 0.56% in 12 h; cell mass was 8.41 mg/mL in 10 h; and average protein was approximately 37.7%. In a semicontinuous culture with 10 to the power of 7 viable cells/mL as initial cell concentration, 15.69 mg/mL cell mass with a mean protein content of approximately 21.4% could be produced and lactose could be considerably consumed (from an initial 4.75% to a residual 0.42%) within 13-14 h. Supplementation with (NH/sub 4/)/sub 2/S0/sub 4/ and KH/sub 2/P0/sub 4/ did not increase cell mass (12.47 mg/mL in 12 h) and hasten lactose assimulation (from initial 4.49% to residual 0.3% in 12 h). Average protein content was approximately 31%. Cell mass yield was established as 0.29 mg yeast cell/mg lactose consumed. Factors that might have affected protein content are also discussed.

  4. Evaluation of the parameters effects on the bio-ethanol production process from Ricotta Cheese Whey

    DEFF Research Database (Denmark)

    Sansonetti, Sascha; Curcio, Stefano; Calabrò, Vincenza

    2010-01-01

    composite design, constituted by 26 runs, has been carried out, and the effects of the parameters have been evaluated. Eventually, once eliminated the negligible effects, Response Surface Methodology (RSM) has been applied to optimize the four parameters values in RCW fermentation process. After......The work consists of an experimental analysis to evaluate the effects of the variables temperature (T), pH, agitation rate (K) and initial lactose concentration (L) on the batch fermentation process of Ricotta Cheese Whey (RCW) into bio-ethanol by using the yeast Kluyveromyces marxianus. A central...

  5. Electrokinetic characterization of whey protein separation

    DEFF Research Database (Denmark)

    Keiding, Kristian; Stougård, Anders; Christensen, Morten Lykkegaard

    Cross flow filtration of whey protein has been performed on 3 different membranes. The rejections have been determined by HPLC analysis of the feed and permeate. The pure membranes as well as the fouled membranes have been characterized by measurements of the streaming potential along the membrane...

  6. Tribomechanical micronization and activation of whey protein ...

    Indian Academy of Sciences (India)

    Tribomechanics is a part of physics that is concerned with the study of phenomena that appear during milling under dynamic conditions. Tribomechanical micronization and activation (TMA) of whey protein concentrates (WPC) and zeolites (type clinoptilolite) were carried out. Samples of powdered WPC and zeolite were ...

  7. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk.

    Science.gov (United States)

    Svanborg, Sigrid; Johansen, Anne-Grethe; Abrahamsen, Roger K; Skeie, Siv B

    2015-09-01

    The demand for whey protein is increasing in the food industry. Traditionally, whey protein concentrates (WPC) and isolates are produced from cheese whey. At present, microfiltration (MF) enables the utilization of whey from skim milk (SM) through milk protein fractionation. This study demonstrates that buttermilk (BM) can be a potential source for the production of a WPC with a comparable composition and functional properties to a WPC obtained by MF of SM. Through the production of WPC powder and a casein- and phospholipid (PL)-rich fraction by the MF of BM, sweet BM may be used in a more optimal and economical way. Sweet cream BM from industrial churning was skimmed before MF with 0.2-µm ceramic membranes at 55 to 58°C. The fractionations of BM and SM were performed under the same conditions using the same process, and the whey protein fractions from BM and SM were concentrated by ultrafiltration and diafiltration. The ultrafiltration and diafiltration was performed at 50°C using pasteurized tap water and a membrane with a 20-kDa cut-off to retain as little lactose as possible in the final WPC powders. The ultrafiltrates were subsequently spray dried, and their functional properties and chemical compositions were compared. The amounts of whey protein and PL in the WPC powder from BM (BMWPC) were comparable to the amounts found in the WPC from SM (SMWPC); however, the composition of the PL classes differed. The BMWPC contained less total protein, casein, and lactose compared with SMWPC, as well as higher contents of fat and citric acid. No difference in protein solubility was observed at pH values of 4.6 and 7.0, and the overrun was the same for BMWPC and SMWPC; however, the BMWPC made less stable foam than SMWPC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Continuous electrocoagulation of cheese whey wastewater: an application of Response Surface Methodology.

    Science.gov (United States)

    Tezcan Un, Umran; Kandemir, Ayse; Erginel, Nihal; Ocal, S Eren

    2014-12-15

    In this study, treatment of cheese whey wastewater was performed using a uniquely-designed continuous electrocoagulation reactor, not previously encountered in the literature. An iron horizontal rotating screw type anode was used in the continuous mode. An empirical model, in terms of effective operational factors, such as current density (40, 50, 60 mA/cm(2)), pH (3, 5, 7) and retention time (20, 40, 60 min), was developed through Response Surface Methodology. An optimal region characterized by low values of Chemical Oxygen Demand (COD) was determined. As a result of experiments, a linear effect in the removal efficiency of COD was obtained for current density and retention time, while the initial pH of the wastewater was found to have a quadratic effect in the removal efficiency of COD. The best fit nonlinear mathematical model, with a coefficient of determination value (R(2)) of 85%, was defined. An initial COD concentration of 15.500 mg/L was reduced to 2112 mg/L with a removal efficiency of 86.4%. In conclusion, it can be said that electrocoagulation was successfully applied for the treatment of cheese whey wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Decreasing methane production in hydrogenogenic UASB reactors fed with cheese whey

    International Nuclear Information System (INIS)

    Carrillo-Reyes, Julián; Celis, Lourdes B.; Alatriste-Mondragón, Felipe; Razo-Flores, Elías

    2014-01-01

    One of the problems in fermentative hydrogen producing reactors, inoculated with pre-treated anaerobic granular sludge, is the eventual methane production by hydrogen-consuming methanogens. In this study, strategies such as reduction of pH and HRT, organic shock loads and repeated biomass heat treatment were applied to hydrogenogenic UASB reactors fed with cheese whey, that showed methane production after certain time of continuous operation (between 10 and 60 days). The reduction of pH to 4.5 not only decreased methane production but also hydrogen production. Organic shock load (from 20 to 30 g COD/L-d) was the more effective strategy to decrease the methane production rate (75%) and to increase the hydrogen production rate (172%), without stopping reactor operation. Repeated heat treatment of the granular sludge was the only strategy that inhibited completely methane production, leading to high volumetric hydrogen production rates (1.67 L H 2 /L-d), however this strategy required stopping reactor operation; in addition homoacetogenesis, another hydrogen-consuming pathway, was not completely inhibited. This work demonstrated that it was possible to control the methane activity in hydrogen producing reactors using operational strategies. - Highlights: • Operational strategies control methane in hydrogen production from cheese whey. • Organic shock load increased the hydrogen production rate. • Operation pH below 5 decreased both the hydrogen and methane production. • Second biomass heat treatment inhibits completely methanogenesis. • Homoacetogens play a negative role in fermentative hydrogen production

  10. The effect of microfiltration on color, flavor, and functionality of 80% whey protein concentrate.

    Science.gov (United States)

    Qiu, Y; Smith, T J; Foegeding, E A; Drake, M A

    2015-09-01

    The residual annatto colorant in fluid Cheddar cheese whey is bleached to provide a neutral-colored final product. Currently, hydrogen peroxide (HP) and benzoyl peroxide are used for bleaching liquid whey. However, previous studies have shown that chemical bleaching causes off-flavor formation, mainly due to lipid oxidation and protein degradation. The objective of this study was to evaluate the efficacy of microfiltration (MF) on norbixin removal and to compare flavor and functionality of 80% whey protein concentrate (WPC80) from MF whey to WPC80 from whey bleached with HP or lactoperoxidase (LP). Cheddar cheese whey was manufactured from colored, pasteurized milk. The fluid whey was pasteurized and fat separated. Liquid whey was subjected to 4 different treatments: control (no bleaching; 50°C, 1 h), HP (250 mg of HP/kg; 50°C, 1 h), and LP (20 mg of HP/kg; 50°C, 1 h), or MF (microfiltration; 50°C, 1 h). The treated whey was then ultrafiltered, diafiltered, and spray-dried to 80% concentrate. The entire experiment was replicated 3 times. Proximate analyses, color, functionality, descriptive sensory and instrumental volatile analysis were conducted on WPC80. The MF and HP- and LP-bleached WPC80 displayed a 39.5, 40.9, and 92.8% norbixin decrease, respectively. The HP and LP WPC80 had higher cardboard flavors and distinct cabbage flavor compared with the unbleached and MF WPC80. Volatile compound results were consistent with sensory results. The HP and LP WPC80 were higher in lipid oxidation compounds (especially heptanal, hexanal, pentanal, 1-hexen-3-one, 2-pentylfuran, and octanal) compared with unbleached and MF WPC80. All WPC80 had >85% solubility across the pH range of 3 to 7. The microstructure of MF gels determined by confocal laser scanning showed an increased protein particle size in the gel network. MF WPC80 also had larger storage modulus values, indicating higher gel firmness. Based on bleaching efficacy comparable to chemical bleaching with HP

  11. Influence of Bovine Whey Protein Concentrate and Hydrolysate Preparation Methods on Motility in the Isolated Rat Distal Colon

    Science.gov (United States)

    Dalziel, Julie E.; Anderson, Rachel C.; Bassett, Shalome A.; Lloyd-West, Catherine M.; Haggarty, Neill W.; Roy, Nicole C.

    2016-01-01

    Whey protein concentrate (WPC) and hydrolysate (WPH) are protein ingredients used in sports, medical and pediatric formulations. Concentration and hydrolysis methods vary for whey sourced from cheese and casein co-products. The purpose of this research was to investigate the influence of whey processing methods on in vitro gastrointestinal (GI) health indicators for colonic motility, epithelial barrier integrity and immune modulation. WPCs from casein or cheese processing and WPH (11% or 19% degree of hydrolysis, DH) were compared for their effects on motility in a 1 cm section of isolated rat distal colon in an oxygenated tissue bath. Results showed that WPC decreased motility irrespective of whether it was a by-product of lactic acid or mineral acid casein production, or from cheese production. This indicated that regardless of the preparation methodology, the whey protein contained components that modulate aspects of motility within the distal colon. WPH (11% DH) increased contractile frequency by 27% in a delayed manner and WPH (19% DH) had an immediate effect on contractile properties, increasing tension by 65% and frequency by 131%. Increased motility was associated with increased hydrolysis that may be attributed to the abundance of bioactive peptides. Increased frequency of contractions by WPH (19% DH) was inhibited (by 44%) by naloxone, implicating a potential involvement of opioid receptors in modulation of motility. Trans-epithelial electrical resistance and cytokine expression assays revealed that the WPC proteins studied did not alter intestinal barrier integrity or elicit any discernible immune response. PMID:27983629

  12. Exceptional heat stability of high protein content dispersions containing whey protein particles

    NARCIS (Netherlands)

    Saglam, D.; Venema, P.; Vries, de R.J.; Linden, van der E.

    2014-01-01

    Due to aggregation and/or gelation during thermal treatment, the amount of whey proteins that can be used in the formulation of high protein foods e.g. protein drinks, is limited. The aim of this study was to replace whey proteins with whey protein particles to increase the total protein content and

  13. Sensory and Functionality Differences of Whey Protein Isolate Bleached by Hydrogen or Benzoyl Peroxide.

    Science.gov (United States)

    Smith, Tucker J; Foegeding, E Allen; Drake, MaryAnne

    2015-10-01

    Whey protein is a highly functional food ingredient used in a wide variety of applications. A large portion of fluid whey produced in the United States is derived from Cheddar cheese manufacture and contains annatto (norbixin), and therefore must be bleached. The objective of this study was to compare sensory and functionality differences between whey protein isolate (WPI) bleached by benzoyl peroxide (BP) or hydrogen peroxide (HP). HP and BP bleached WPI and unbleached controls were manufactured in triplicate. Descriptive sensory analysis and gas chromatography-mass spectrometry were conducted to determine flavor differences between treatments. Functionality differences were evaluated by measurement of foam stability, protein solubility, SDS-PAGE, and effect of NaCl concentration on gelation relative to an unbleached control. HP bleached WPI had higher concentrations of lipid oxidation and sulfur containing volatile compounds than both BP and unbleached WPI (P protein loss at pH 4.6 of WPI decreased by bleaching with either hydrogen peroxide or benzoyl peroxide (P whey with either BP or HP resulted in protein degradation, which likely contributed to functionality differences. These results demonstrate that bleaching has flavor effects as well as effects on many of the functionality characteristics of whey proteins. Whey protein isolate (WPI) is often used for its functional properties, but the effect of oxidative bleaching chemicals on the functional properties of WPI is not known. This study identifies the effects of hydrogen peroxide and benzoyl peroxide on functional and flavor characteristics of WPI bleached by hydrogen and benzoyl peroxide and provides insights for the product applications which may benefit from bleaching. © 2015 Institute of Food Technologists®

  14. Laboratory scale studies on the mesophilic anaerobic digestion of cheese whey in different digester configurations

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.V.; Liao, P.H.

    1988-02-01

    A two-phase system consisting of two reactors in series was used to study the mesophilic anaerobic digestion of cheese whey. A completely-mixed reactor and an anaerobic rotating biological contact reactor were used in series. The results indicated that ethanol and volatile fatty acids were the major products in the first reactor. Acidogenic pretreatment prior to the methanogenic phase resulted in an increase in methane production in the second reactor over that in one-stage digestion. High treatment efficiency in terms of reduction of chemical oxygen demand was also obtained for the two-phase digestion than that of the one-stage digestion. When comparing the system's performance in terms of methane production rate, the two-phase digestion had no advantage over the one-stage digestion.

  15. Anaerobic-aerobic biological treatment of a mixture of cheese whey and dairy manure

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.V.; Liao, P.H.

    1989-01-01

    The integrated anaerobic-aerobic biological treatment system consisted of an anaerobic rotating biological reactor and an aerobic sequencing batch reactor. Three sequencing batch reactors were used in the aerobic process. A mixture of cheese whey and dairy manure was successfully digested in an anaerobic rotating biological contactor which served as a first step in the waste treatment process. The methane production rate, which is dependent on the organic loading rate, ranged between 1.43 and 3.74 litres methane per litre reactor per day. As the organic loading rate increased, total methane production also increased. In the anaerobic digestion step, over 46% of chemical oxygen demand was removed. The potential pollutants were further destroyed by the aerobic treatment. More than 93% of the remaining chemical oxygen demand was removed in the sequencing batch reactors operated at 22/sup 0/C. The treatment efficiency was lower for the aerobic reactor operated at a lower temperature (10/sup 0/C). (author).

  16. Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries.

    Science.gov (United States)

    Escalante, H; Castro, L; Amaya, M P; Jaimes, L; Jaimes-Estévez, J

    2018-01-01

    Cheese whey (CW) is the main waste generated in the cheesemaking process and has high organic matter content and acidity. Therefore, CW disposal is a challenge for small to medium enterprises (SMEs) in the dairy industry that do not have any type of treatment plant. Anaerobic digestion (AD) is an attractive process for solving this problem. The aim of this research was to determine the biomethane and struvite precipitation potentials of CW from four dairy SMEs. First, changes in CW properties (organic matter and pH) were evaluated. Second, biomethane and struvite potentials were assessed using cattle slurry as inoculum. The organic matter in CW varied from 40 to 65gVS/kg, 65 to 140g COD/L, and 2 to 10g/L for VFAs depending on the sampling time and type of sample. The pH of the CW samples ranged from 3 to 6.5. In the anaerobic biodegradability analysis, methane yields reached 0.51 to 0.60L CH 4 /g VS added , which represented electrical and caloric potentials of 54 and 108kWh/m 3 for CW, respectively. Organic matter removal in all experiments was above 83%. Moreover, anaerobic digestates presented NH 4 + /PO 4 3- molar ratios between 2.6 and 4.0, which are adequate for struvite precipitation with potential production of 8.5-10.4g struvite/L CW. Finally, the use of biogas as energetic supplement and struvite as soil fertilizer, represents economics saves of US$ 6.91/m 3 CW and US$ 5.75/m 3 CW in therms of electricity and fertilizer use, respectively. The energetic, agricultural and economic potentials, evidence that AD process is a feasible alternative for cheese whey treatment. Copyright © 2017. Published by Elsevier Ltd.

  17. Invited review: Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters.

    Science.gov (United States)

    Gatti, Monica; Bottari, Benedetta; Lazzi, Camilla; Neviani, Erasmo; Mucchetti, Germano

    2014-02-01

    The robustness of the starter culture during cheese fermentation is enhanced by the presence of a rich consortium of microbes. Natural starters are consortia of microbes undoubtedly richer than selected starters. Among natural starters, natural whey starters (NWS) are the most common cultures currently used to produce different varieties of cheeses. Undefined NWS are typically used for Italian cooked, long-ripened, extra-hard, raw milk cheeses, such as Parmigiano Reggiano and Grana Padano. Together with raw milk microbiota, NWS are responsible for most cheese characteristics. The microbial ecology of these 2 cheese varieties is based on a complex interaction among starter lactic acid bacteria (SLAB) and nonstarter lactic acid bacteria (NSLAB), which are characterized by their different abilities to grow in a changing substrate. This review aims to summarize the latest findings on Parmigiano Reggiano and Grana Padano to better understand the dynamics of SLAB, which mainly arise from NWS, and NSLAB, which mainly arise from raw milk, and their possible role in determining the characteristics of these cheeses. The review is presented in 4 main sections. The first summarizes the main microbiological and chemical properties of the ripened cheese as determined by cheese-making process variables, as these variables may affect microbial growth. The second describes the microbiota of raw milk as affected by specific milk treatments, from milking to the filling of the cheese milk vat. The third describes the microbiota of NWS, and the fourth reviews the knowledge available on microbial dynamics from curd to ripened cheese. As the dynamics and functionality of complex undefined NWS is one of the most important areas of focus in current food microbiology research, this review may serve as a good starting point for implementing future studies on microbial diversity and functionality of undefined cheese starter cultures. Copyright © 2014 American Dairy Science Association

  18. Interactions between whey proteins and kaolinite surfaces

    International Nuclear Information System (INIS)

    Barral, S.; Villa-Garcia, M.A.; Rendueles, M.; Diaz, M.

    2008-01-01

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered

  19. Interactions between whey proteins and kaolinite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Barral, S. [Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Villa-Garcia, M.A. [Department of Organic and Inorganic Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)], E-mail: mavg@uniovi.es; Rendueles, M. [Project Management Area, University of Oviedo, Independencia 13, 33004 Oviedo (Spain); Diaz, M. [Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2008-07-15

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered.

  20. Intakes of whey protein hydrolysate and whole whey proteins are discriminated by LC-MS metabolomics

    DEFF Research Database (Denmark)

    Stanstrup, Jan; Rasmussen, Jakob Ewald; Ritz, Christian

    2014-01-01

    of four different whey protein fractions and establishes new hypotheses for the observed effects. Obese, non-diabetic subjects were included in the randomized, blinded, cross-over meal study. Subjects ingested a high-fat meal containing whey isolate (WI), whey concentrate hydrolysate (WH), α...... of the meals. Highly elevated plasma levels of a number of cyclic dipeptides and other AA metabolites were found following intake of the WH meal and these metabolites are primary candidates to explain the superior insulinotropic effect of WH. The manufacturing process of WH caused oxidization of methionine...... to methionine sulfoxide which in turn caused in vivo generation of N-phenylacetyl-methionine and N-phenylacetyl-methionine sulfoxide. These two compounds have not previously been described in biological systems....

  1. Ricotta Cheese Whey-Fruit-Based Beverages: Pasteurization Effects on Antioxidant Composition and Color

    Directory of Open Access Journals (Sweden)

    Anna Rizzolo

    2017-02-01

    Full Text Available In order to minimize the precipitate formation upon pasteurization for whey-fruit juice-based beverages, a novel type of functional beverage was prepared, in which whey was replaced with Ricotta-cheese whey (RCW. Aiming at evaluating the influence of fruit juice type (yellow: apple, pear; red: blueberry, strawberry and pasteurization conditions on color and antioxidants, four fruit-RCW-based beverages (juice/RCW ratio: 80/20, 14% soluble solids content were prepared and divided into two lots, and each lot was pasteurized according to different times/temperatures. After pasteurization, no formation of precipitate was observed in the bottles, even if some turbidity, ranging from 25 NTU (pear-RCW to 190 NTU (blueberry-RCW, was observed. The blending of juices with RCW caused color darkening in apple, pear, and strawberry blends, and brightening in the blueberry one. The pasteurization conditions had a greater impact on the color changes of ‘yellow’ beverages than those of the ‘red’ ones. With a lethal rate F 100 10 = 14 , there was a greater decrease in the total phenolic content (TPC in blueberry-, strawberry-, and apple-RCW beverages, and a greater decrease in the monomeric anthocyanin pigment (MAP and a smaller increase in the percent of polymeric color, in the blueberry-RCW beverage. Results on the antioxidant activity suggested that the Maillard reaction products formed in response to thermal treatment and/or the formation of anthocyanin polymers, likely compensate for the loss of antioxidant activity due to TPC and MAP degradations.

  2. Behavior of whey protein concentrates under extreme storage conditions

    Science.gov (United States)

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  3. Vitamin B12 determination in milk, whey and different by-products of ricotta cheese production by ultra performance liquid chromatography coupled with tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Adele Repossi

    2017-10-01

    Full Text Available Vitamin B12 (cobalamin is a metal complex composed of a central cobalt ion bonded to six ligands. It is essential for major biological functions such as protein, fat and carbohydrate metabolism, the maintenance of the central nervous system, and the formation of red blood cells. Since mammals cannot synthesize cobalamin, dietary intake represents the only natural source for humans. Dairy products can provide significant levels of cobalamin; moreover, the European Food Safety Authority (EFSA panel has set the recommended intake at 4 μg/day for adults. Vitamin B12 content was determined in milk and several matrices related to the process of transformation of the residual whey from Parmigiano Reggiano cheese-making to obtain ricotta cheese. In addition, vitamin B12 degradation during ricotta cheese shelf-life was studied. The analyses were performed using an ultra performance liquid chromatography-tandem mass spectrometry method. Results show that vitamin B12 amount in ricotta from dairy and experimental cheese-making brings respectively 1/8 to 1/4 of the adequate intake in adults established by EFSA. In addition, shelf-life experiment shows that cobalamine is fairly rapidly degraded in ricotta: light effect seems to be significant, even if the light exposure is short. The use of photoprotective packaging material increases B12 shelf-life in the early stage of storage.

  4. Vitamin B12 determination in milk, whey and different by-products of ricotta cheese production by ultra performance liquid chromatography coupled with tandem mass spectrometry

    Science.gov (United States)

    Repossi, Adele; Zironi, Elisa; Gazzotti, Teresa; Serraino, Andrea; Pagliuca, Giampiero

    2017-01-01

    Vitamin B12 (cobalamin) is a metal complex composed of a central cobalt ion bonded to six ligands. It is essential for major biological functions such as protein, fat and carbohydrate metabolism, the maintenance of the central nervous system, and the formation of red blood cells. Since mammals cannot synthesize cobalamin, dietary intake represents the only natural source for humans. Dairy products can provide significant levels of cobalamin; moreover, the European Food Safety Authority (EFSA) panel has set the recommended intake at 4 μg/day for adults. Vitamin B12 content was determined in milk and several matrices related to the process of transformation of the residual whey from Parmigiano Reggiano cheese-making to obtain ricotta cheese. In addition, vitamin B12 degradation during ricotta cheese shelf-life was studied. The analyses were performed using an ultra performance liquid chromatography-tandem mass spectrometry method. Results show that vitamin B12 amount in ricotta from dairy and experimental cheese-making brings respectively 1/8 to 1/4 of the adequate intake in adults established by EFSA. In addition, shelf-life experiment shows that cobalamine is fairly rapidly degraded in ricotta: light effect seems to be significant, even if the light exposure is short. The use of photoprotective packaging material increases B12 shelf-life in the early stage of storage. PMID:29564230

  5. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  6. Investigation of the protective effect of whey proteins on lactococcal phages during heat treatment at various pH.

    Science.gov (United States)

    Geagea, Hany; Gomaa, Ahmed I; Remondetto, Gabriel; Moineau, Sylvain; Subirade, Muriel

    2015-10-01

    The incorporation of whey protein concentrates (WPC) into cheese is a risky process due to the potential contamination with thermo-resistant phages of lactic acid bacteria (LAB). Furthermore, whey proteins can protect phages during heat treatment, thereby increasing the above risk. The main objective of this work was to understand this protective effect in order to better control LAB phages and maximize whey recycling in the cheese industry. First, the inactivation of a previously characterized thermo-resistant lactococcal virulent phage (P1532) was investigated at 95 °C in WPC, in individual whey components β-lactoglobulin, α-lactalbumin, and bovine serum albumin as well as under different heat and pH conditions. The structural changes of the tested proteins were also monitored by transmission FTIR spectroscopy. Phage inactivation results indicated that the protective effect of whey proteins was pH and time dependent at 95 °C and was not restricted to one component. FTIR spectra suggest that the protection is related to protein molecular structures and to the level of protein aggregates, which was more pronounced in acidic conditions. Moreover, the molecular structure of the three proteins tested was differently influenced by pH and the duration of the heat treatment. This work confirms the protective effect of WPC on phages during heat treatment and offers the first hint to explain such phenomenon. Finding the appropriate treatment of WPC to reduce the phage risk is one of the keys to improving the cheese manufacturing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Coupling digestion in a pilot-scale UASB reactor and electrochemical oxidation over BDD anode to treat diluted cheese whey.

    Science.gov (United States)

    Katsoni, Alphathanasia; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2014-11-01

    The efficiency of the anaerobic treatment of cheese whey (CW) at mesophilic conditions was investigated. In addition, the applicability of electrochemical oxidation as an advanced post-treatment for the complete removal of chemical oxygen demand (COD) from the anaerobically treated cheese whey was evaluated. The diluted cheese whey, having a pH of 6.5 and a total COD of 6 g/L, was first treated in a 600-L, pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB process, which was operated for 87 days at mesophilic conditions (32 ± 2 °C) at a hydraulic retention time (HRT) of 3 days, led to a COD removal efficiency between 66 and 97 %, while the particulate matter of the wastewater was effectively removed by entrapment in the sludge blanket of the reactor. When the anaerobic reactor effluent was post-treated over a boron-doped diamond (BDD) anode at 9 and 18 A and in the presence of NaCl as the supporting electrolyte, complete removal of COD was attained after 3-4 h of reaction. During electrochemical experiments, three groups of organochlorinated compounds, namely trihalomethanes (THMs), haloacetonitriles (HANs), and haloketons (HKs), as well as 1,2-dichloroethane (DCA) and chloropicrin were identified as by-products of the process; these, alongside free chlorine, are thought to increase the matrix ecotoxicity to Artemia salina.

  8. Beverages formulated with whey protein and added lutein

    Directory of Open Access Journals (Sweden)

    Juliana de Cássia Gomes Rocha

    Full Text Available ABSTRACT: This study aimed to develop and characterize beverages formulated with whey protein and added lutein. Beverages formulated with 0.5 (F1, 2.0 (F2, 4.0 (F3 and 6.0% w/v (F4 whey protein were physicochemically and microbiologically characterized, and sensory evaluated. The physicochemical analyses indicated that the protein content significantly changed (P0.05 with increased protein content. The F2 formulation showed the highest sensory acceptance. Beverages offer a promising alternative to whey use and enhance the value of the product by the addition of lutein.

  9. Interactions between whey proteins and salivary proteins as related to astringency of whey protein beverages at low pH.

    Science.gov (United States)

    Ye, A; Streicher, C; Singh, H

    2011-12-01

    Whey protein beverages have been shown to be astringent at low pH. In the present study, the interactions between model whey proteins (β-lactoglobulin and lactoferrin) and human saliva in the pH range from 7 to 2 were investigated using particle size, turbidity, and ζ-potential measurements and sodium dodecyl sulfate-PAGE. The correlation between the sensory results of astringency and the physicochemical data was discussed. Strong interactions between β-lactoglobulin and salivary proteins led to an increase in the particle size and turbidity of mixtures of both unheated and heated β-lactoglobulin and human saliva at pH ∼3.4. However, the large particle size and high turbidity that occurred at pH 2.0 were the result of aggregation of human salivary proteins. The intense astringency in whey protein beverages may result from these increases in particle size and turbidity at these pH values and from the aggregation and precipitation of human salivary proteins alone at pH salivary proteins in the interaction is a key factor in the perception of astringency in whey protein beverages. At any pH, the increases in particle size and turbidity were much smaller in mixtures of lactoferrin and saliva, which suggests that aggregation and precipitation may not be the only mechanism linked to the perception of astringency in whey protein. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Moisture sorption isotherms of dehydrated whey proteins

    Directory of Open Access Journals (Sweden)

    Suzana Rimac Brnčić

    2010-03-01

    Full Text Available Moisture sorption isotherms describe the relation between the moisture content of the dry material (food and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as monolayer value of two commercial powdered whey protein isolates before and after tribomechanical micronisation and enzymatic hydrolysis, respectively. At the same time it was necessary to evaluate the best moisture sorption isotherm equation to fit the experimental data. The equilibrium moisture contents in investigated samples were determined using standard gravimetric method at 20 °C. The range of water activities was 0.11 to 0.75. The monolayer moisture content was estimated from sorption data using Brunauer-Emmett-Teller (BET and Guggenheim-Anderson-de Boer (GAB models. The results have shown that tribomechanically treated whey protein isolates as well as protein hydrolizates had lower monolayer moisture content values as well as higher corresponding water activity. Therefore, in spite of the fact that they have lower moisture content, they can be storage at higher relative humidity compared to untreated samples. BET model gave better fit to experimental sorption data for a water activity range from 0.11-0.54, while GAB model gave the closest fit for a water activity to 0.75.

  11. Optimization of lipids production by Cryptococcus laurentii 11 using cheese whey with molasses

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernandes Castanha

    2014-06-01

    Full Text Available This study aimed the optimization of culture condition and composition for production of Cryptococcus laurentii 11 biomass and lipids in cheese whey medium supplemented with sugarcane molasses. The optimization of pH, fermentation time, and molasses concentration according to a full factorial statistical experimental design was followed by a Plackett-Burman experimental design, which was used to determine whether the supplementation of the culture medium by yeast extract and inorganic salts could provide a further enhancement of lipids production. The following conditions and composition of the culture medium were found to optimize biomass and lipids production: 360 h fermentation, 6.5 pH and supplementation of (g L-1: 50 molasses, 0.5 yeast extract, 4 KH2PO4, 1 Na2HPO4, 0.75 MgSO4•7H2O and 0.002 ZnSO4•H2O. Additional supplementation with inorganic salts and yeast extract was essential to optimize the production, in terms of product concentration and productivity, of neutral lipids by C. laurentii 11. Under this optimized condition, the production of total lipids increased by 133% in relation to control experiment (from 1.27 to 2.96 g L-1. The total lipids indicated a predominant (86% presence of neutral lipids with high content of 16- and 18- carbon-chain saturated and monosaturated fatty acids. This class of lipids is considered especially suitable for the production of biodiesel.

  12. Ecological risk assessment of cheese whey effluents along a medium-sized river in southwest Greece.

    Science.gov (United States)

    Karadima, Constantina; Theodoropoulos, Chris; Rouvalis, Angela; Iliopoulou-Georgudaki, Joan

    2010-01-01

    An ecological risk assessment of cheese whey effluents was applied in three critical sampling sites located in Vouraikos river (southwest Greece), while ecological classification using Water Framework Directive 2000/60/EU criteria allowed a direct comparison of toxicological and ecological data. Two invertebrates (Daphnia magna and Thamnocephalus platyurus) and the zebra fish Danio rerio were used for toxicological analyses, while the aquatic risk was calculated on the basis of the risk quotient (RQ = PEC/PNEC). Chemical classification of sites was carried out using the Nutrient Classification System, while benthic invertebrates were collected and analyzed for biological classification. Toxicological results revealed the heavy pollution load of the two sites, nearest to the point pollution source, as the PEC/PNEC ratio exceeded 1.0, while unexpectedly, no risk was detected for the most downstream site, due to the consequent interference of the riparian flora. These toxicological results were in agreement with the ecological analysis: the ecological quality of the two heavily impacted sites ranged from moderate to bad, whereas it was found good for the most downstream site. The results of the study indicate major ecological risk for almost 15 km downstream of the point pollution source and the potentiality of the water quality remediation by the riparian vegetation, proving the significance of its maintenance.

  13. Whey protein stories - an experiment in writing a multidisciplinary biography

    DEFF Research Database (Denmark)

    Jensen, Tenna; Bechschøft, Rasmus L.; Giacalone, Davide

    2016-01-01

    This is an experimental, dual-purpose article about whey protein and how to conduct interdisciplinary analyses and writings. On the one hand, this article is a multidisciplinary commodity biography, which consists of five descriptions of whey protein written by the five different research groups...... contributes to the field of food studies with a multidisciplinary biography of whey protein - including its sensory qualities and challenges, insights into its cultural history, its nutritional value and effects on the human body and an analysis of how it is perceived by people who consume it. The biography...... thereby expands upon existing understandings of whey protein while discussing the usefulness of employing the commodity biography format in interdisciplinary writing. Moreover, the article contributes to the field of interdisciplinary research by providing a practical example of a joint publication...

  14. The effect of bleaching agents on the degradation of vitamins and carotenoids in spray-dried whey protein concentrate.

    Science.gov (United States)

    Stout, M A; Park, C W; Drake, M A

    2017-10-01

    Previous research has shown that bleaching affects flavor and functionality of whey proteins. The role of different bleaching agents on vitamin and carotenoid degradation is unknown. The objective of this study was to determine the effects of bleaching whey with traditional annatto (norbixin) by hydrogen peroxide (HP), benzoyl peroxide (BP), or native lactoperoxidase (LP) on vitamin and carotenoid degradation in spray-dried whey protein concentrate 80% protein (WPC80). An alternative colorant was also evaluated. Cheddar whey colored with annatto (15 mL/454 L of milk) was manufactured, pasteurized, and fat separated and then assigned to bleaching treatments of 250 mg/kg HP, 50 mg/kg BP, or 20 mg/kg HP (LP system) at 50°C for 1 h. In addition to a control (whey with norbixin, whey from cheese milk with an alternative colorant (AltC) was evaluated. The control and AltC wheys were also heated to 50°C for 1 h. Wheys were concentrated to 80% protein by ultrafiltration and spray dried. The experiment was replicated in triplicate. Samples were taken after initial milk pasteurization, initial whey formation, after fat separation, after whey pasteurization, after bleaching, and after spray drying for vitamin and carotenoid analyses. Concentrations of retinol, a-tocopherol, water-soluble vitamins, norbixin, and other carotenoids were determined by HPLC, and volatile compounds were measured by gas chromatography-mass spectrometry. Sensory attributes of the rehydrated WPC80 were documented by a trained panel. After chemical or enzymatic bleaching, WPC80 displayed 7.0 to 33.3% reductions in retinol, β-carotene, ascorbic acid, thiamin, α-carotene, and α-tocopherol. The WPC80 bleached with BP contained significantly less of these compounds than the HP- or LP-bleached WPC80. Riboflavin, pantothenic acid, pyridoxine, nicotinic acid, and cobalamin concentrations in fluid whey were not affected by bleaching. Fat-soluble vitamins were reduced in all wheys by more than 90

  15. Cheese whey. Waste or raw material useful for foods, cosmetics and pharmaceuticals specialities?; Il siero di latte. Rifiuto o materia prima per prodotti alimentari, cosmetici e farmaceutici?

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichini, M. [ENEA, Divisione Biotecnologie e Agricoltura, Centro Ricerche Casaccia, S. Maria di Galeria, Rome (Italy); Montani, R.; Russo, C. [Inteam Srl, Genoa (Italy)

    2001-07-01

    In Italy the waste whey (7 million tons/year), coming from cheese farms (2,500) is mainly employed as pigs fodder, or discharged in illegal manner into rivers or soils. It is well known that whey represents a serious environmental problem in relation with its high pollution charge (COD=70,000 O{sub 2} ppm). On the other hand, the whey's organic components as proteins, lactose, vitamins and salts, show an high commercial interest because they are used as food additives in souses, pasta, biscuits, chocolate, beverage, baby foods, etc., in cosmetics, as creams and shampoos, and also in pharmaceutical field, especially as food integrators for body builders. The application of membrane technology, as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) permitted the recovery of the whey solute (proteins, lactose, mineral salts) and solvent as purified water. In this paper an industrial treatment process of 60 m{sup 3}/day, and the procedure for upgrading the biochemical properties of whey proteins, and consequently its commercial values, are discussed. It is also reported an economic process evaluation, obtained on the base of product recovery and process costs. [Italian] In Italia si producono circa 7 milioni di ton/anno di siero grezzo dagli oltre 2.500 caseifici sparsi sul territorio nazionale. Mentre al Nord il siero grezzo e' impiegato per l'alimentazione dei suini, al Centro-Sud viene smaltito illegalmente nei fiumi e sul terreno. Il siero di latte costituisce un problema importante del settore lattiero caseario poiche' ha una carica inquinante molto alta (COD 70.000 ppm di O{sub 2}). Il siero puo' rappresentare una fonte di sostanze nobili come proteine ad alto valore biologico, lattosio, vitamine sali minerali che trovano largo impiego nell'industria alimentare (salse, pasta, biscotti, cioccolato, bevande, baby foods, ecc., nell'industria cosmetica come creme idratanti o detergenti e nell

  16. Sustainable treatment of different high-strength cheese whey wastewaters: an innovative approach for atmospheric CO2 mitigation and fertilizer production.

    Science.gov (United States)

    Prazeres, Ana R; Rivas, Javier; Paulo, Úrsula; Ruas, Filipa; Carvalho, Fátima

    2016-07-01

    Raw cheese whey wastewater (CWW) has been treated by means of FeCl3 coagulation-flocculation, NaOH precipitation, and Ca(OH)2 precipitation. Three different types of CWW were considered: without cheese whey recovery (CWW0), 60 % cheese whey recovery (CWW60), and 80 % cheese whey recovery (CWW80). Cheese whey recovery significantly influenced the characteristics of the wastewater to be treated: organic matter, solids, turbidity, conductivity, sodium, chloride, calcium, nitrogen, potassium, and phosphorus. Initial organic load was reduced to values in the interval of 60-70 %. Application of FeCl3, NaOH, or Ca(OH)2 involved additional chemical oxygen demand (COD) depletions regardless of the CWW used. Under optimum conditions, the combination of 80 % cheese whey recovery and lime application led to 90 % reduction in COD. Turbidity (99.8%), total suspended solids (TSS) (98-99 %), oils and fats (82-96 %), phosphorus (98-99 %), potassium (96-97 %), and total coliforms (100 %) were also reduced. Sludge generated in the latter process showed excellent settling properties. This solid after filtration and natural evaporation can be used as fertilizer with limitations due to its saline nature. In an innovative, low-cost, and environmentally friendly technology, supernatant coming from the Ca(OH)2 addition was naturally neutralized in 4-6 days by atmospheric CO2 absorption without reagent addition. Consequently, a final aerobic biodegradation step can be applied for effluent polishing. This technology also allows for some atmospheric CO2 mitigation. Time requirement for the natural carbonation depends on the effluent characteristics. A precipitate rich in organic matter and nutrients and depletions of solids, sodium, phosphorus, magnesium, Kjeldahl, and ammoniacal nitrogen were also achieved during the natural carbonation.

  17. Cost effective disposal of whey

    Energy Technology Data Exchange (ETDEWEB)

    Zall, R R

    1980-01-01

    Means of reducing the problem of whey disposal are dealt with, covering inter alia the pre-treatment of cheese milk e.g., by ultrafiltration to lower the whey output, utilization of whey constituents, use of liquid whey for feeding, fermenting whey to produce methane and alcohol, and disposal of whey by irrigation of land or by purification in sewage treatment plants.

  18. Cheese

    DEFF Research Database (Denmark)

    Gregersen, Vivi Raundahl; Lucey, J.A.

    2016-01-01

    The initial step in the manufacture of most cheese varieties involves enzymatic hydrolysis of one of the milk proteins, κ-casein. The enzyme involved is called rennet. During the primary stage, κ-casein is cleaved by rennet at the Phe105–Met106 bond, resulting in a reduction in both the net...

  19. Production of a biodegradable plastic-degrading enzyme from cheese whey by the phyllosphere yeast Pseudozyma antarctica GB-4(1)W.

    Science.gov (United States)

    Watanabe, Takashi; Shinozaki, Yukiko; Suzuki, Ken; Koitabashi, Motoo; Yoshida, Shigenobu; Sameshima-Yamashita, Yuka; Kuze Kitamoto, Hiroko

    2014-08-01

    Cheese whey is a by-product of cheese production and has high concentrations of lactose (about 5%) and other nutrients. Pseudozyma antarctica produces a unique cutinase-like enzyme, named PaE, that efficiently degrades biodegradable plastics. A previous study showed that a combination of 1% oil and 0.5% lactose increased cutinase-like enzyme production by another species of yeast. In this study, to produce PaE from cheese whey, we investigated the effects of soybean oil on PaE production (expressed as biodegradable plastic-degrading activity) by P. antarctica growing on lactose or cheese whey. In flask cultures, the final PaE activity was only 0.03 U/ml when soybean oil was used as the sole carbon source, but increased to 1.79 U/ml when a limited amount of soybean oil (under 0.5%) was combined with a relatively high concentration of lactose (6%). Using a 5-L jar fermentor with lactose fed-batch cultivation and periodic soybean oil addition, about 14.6 U/ml of PaE was obtained after 5 days of cultivation. When the lactose was replaced with cheese whey, PaE production was 10.8 U/ml after 3 days of cultivation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Anaerobic digestion of cheese whey using an upflow anaerobic sludge blanket reactor: Pt. 3; Sludge and substrate profiles

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J.Q.; Lo, K.V.; Liao, P.H. (British Columbia Univ., Vancouver (CA). Dept. of Bio-Resource Engineering)

    1990-01-01

    Anaerobic treatment of cheese whey using a 17.5 litre upflow anaerobic sludge blanket reactor was investigated in the laboratory over a range of influent concentration from 4.5 to 38.1 g COD litre{sup -1} at a constant hydraulic retention time of 5 days. The results indicated that two sludge distribution regions, a sludge bed and a sludge blanket, as well as two distinct reaction phases, acidogenic and methanogenic, were formed. However, as the substrate loading was increased, the acidogenic region extended into the methanogenic region in the upper portion of the reactor until the whole region was acidogenic, leading to the failure of the reactor. (author).

  1. Conversion of beet molasses and cheese whey into fatty acid methyl esters by the yeast Cryptococcus curvatus.

    Science.gov (United States)

    Takakuwa, Naoya; Saito, Katsuichi

    2010-01-01

    Eighty-one yeast isolates from raw milk were surveyed for the production of fatty acid methyl esters (FAME). Only one species, identified as Cryptococcus curvatus, produced FAME at a detectable level. Cr. curvatus TYC-19 produced more FAME from beet molasses and cheese whey medium than other strains of the same species. In both media, the major FAME produced were linoleic and oleic acid methyl esters. Sequence analysis of the internal transcribed spacer region of ribosomal DNA indicated that TYC-19 diverged from the same species.

  2. Whey proteins have beneficial effects on intestinal enteroendocrine cells stimulating cell growth and increasing the production and secretion of incretin hormones.

    Science.gov (United States)

    Gillespie, Anna L; Calderwood, Danielle; Hobson, Laura; Green, Brian D

    2015-12-15

    Whey protein has been indicated to curb diet-induced obesity, glucose intolerance and delay the onset of type 2 diabetes mellitus. Here the effects of intact crude whey, intact individual whey proteins and beta-lactoglobulin hydrolysates on an enteroendocrine (EE) cell model were examined. STC-1 pGIP/neo cells were incubated with several concentrations of yogurt whey (YW), cheese whey (CW), beta-lactoglobulin (BLG), alpha-lactalbumin (ALA) and bovine serum albumin (BSA). The findings demonstrate that BLG stimulates EE cell proliferation, and also GLP-1 secretion (an effect which is lost following hydrolysis with chymotrypsin or trypsin). ALA is a highly potent GLP-1 secretagogue which also increases the intracellular levels of GLP-1. Conversely, whey proteins and hydrolysates had little impact on GIP secretion. This appears to be the first investigation of the effects of the three major proteins of YW and CW on EE cells. The anti-diabetic potential of whey proteins should be further investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Cheese whey valorisation: Production of valuable gaseous and liquid chemicals from lactose by aqueous phase reforming

    International Nuclear Information System (INIS)

    Remón, J.; Ruiz, J.; Oliva, M.; García, L.; Arauzo, J.

    2016-01-01

    Highlights: • Aqueous phase reforming: a promising strategy for cheese whey valorisation. • In-depth understanding of the effect of the operating conditions on the process. • Process optimisation for the selective production of valuable gas and liquid products. • High P, T, lactose concentration and spatial time favour gas production. • High T, low spatial time and the use of diluted solutions maximise liquids production. - Abstract: Cheese effluent management has become an important issue owing to its high biochemical oxygen demand and chemical oxygen demand values. Given this scenario, this work addresses the valorisation of lactose (the largest organic constituent of this waste) by aqueous phase reforming, analysing the influence of the most important operating variables (temperature, pressure, lactose concentration and mass of catalyst/lactose mass flow rate ratio) as well as optimising the process for the production of either gaseous or liquid value-added chemicals. The carbon converted into gas, liquid and solid products varied as follows: 5–41%, 33–97% and 0–59%, respectively. The gas phase was made up of a mixture of H_2 (8–58 vol.%), CO_2 (33–85 vol.%), CO (0–15 vol.%) and CH_4 (0–14 vol.%). The liquid phase consisted of a mixture of aldehydes: 0–11%, carboxylic acids: 0–22%, monohydric alcohols: 0–23%, polyhydric-alcohols: 0–48%, C3-ketones: 4–100%, C4-ketones: 0–18%, cyclic-ketones: 0–15% and furans: 0–85%. H_2 production is favoured at high pressure, elevated temperature, employing a high amount of catalyst and a concentrated lactose solution. Liquid production is preferential using diluted lactose solutions. At high pressure, the production of C3-ketones is preferential using a high temperature and a low amount of catalyst, while a medium temperature and a high amount of catalyst favours the production of furans. The production of alcohols is preferential using medium temperature and pressure and a low amount of

  4. Krcki cheese

    Directory of Open Access Journals (Sweden)

    Zvonimir Prpić

    2003-07-01

    Full Text Available Krčki cheese is autochthonous Croatian cheese from the island of Krk, which belongs to the group of hard, full-fat cheeses, produced from raw, thermally untreated sheep′s milk. Taking into consideration the fact that the last investigation of Krčki cheese was done in the middle of the last century, probably some changes in technology of Krčki cheese production have occurred since this time. Therefore, the objectives of this paper were investigate the quality of sheep′s milk for Krčki cheese production, the quality of whey (as the material for production of albumin cheese quargs and Krčki cheese, as well as the technology of Krčki cheese production on family farms on the island of Krk. Results of the composition and characteristics analyses of sheep′s milk for Krčki cheese production were as follows: milk fat 7.81%; proteins 5.59%; lactose 4.97%; total solids 19.04%; non-fat dry matter 11.06%; pH 6.66; titratable acidity 9.41 °SH, and freezing point –0.555 °C. Somatic cell count (SCC was 407 000 cells/ml and total bacterial count (cfu was 950 000/mL. Average composition of Krčki cheese was as follows: fat 37.38%; protein 23.24%; total solids 63.22%; moisture in solid non-fat 57.36%; fat in total solids 54.38%; salt 1.97%; pH 5.78; lactic acid content 1.216%; WSN/TN 10.15%, and TCASN/TN 6.28%. Microbiological analyses of Krčki cheese showed that only 55% of analysed samples were hygienically acceptable according to the Regulations of Microbial Standards for Foods (NN 46/94.. Therefore, the necessary modifications have to be introduced into technology of production of sheep′s milk and Krčki cheese in order to increase microbiological quality and to reduce variability in composition and quality of Krčki cheese between family farms. These are necessary for preparing the Krčki cheese for Protection Geographical Indication (PGI.

  5. Hydrogen production from cheese whey by catalytic steam reforming: Preliminary study using lactose as a model compound

    International Nuclear Information System (INIS)

    Remón, J.; Laseca, M.; García, L.; Arauzo, J.

    2016-01-01

    Highlights: • Steam reforming of lactose: a promising strategy for cheese whey management. • Thermodynamic and experimental analyses of the effect of the operating conditions. • Reaction pathway showing the formation of the most important gas and liquid products. • Technical/energetic assessment: H_2 rich gas, C-free liquid and neutral energy process. - Abstract: Cheese whey is a yellowish liquid by-product of the cheese making process. Owing to its high BOD and COD values, this feedstock should not be directly discharged into the environment without appropriate treatment. Before dealing with real cheese whey, this work addresses the production of a rich hydrogen gas from lactose (the largest organic constituent of this waste) by catalytic steam reforming. This reforming process has been theoretically and experimentally studied. The theoretical study examines the effect of the temperature (300–600 °C), lactose concentration (1–10 wt.%) and N_2 (0–80 cm"3 STP/min) and liquid flow (0.1–0.5 mL/min) rates on the thermodynamic composition of the gas. The results show that the temperature and lactose concentration exerted the greatest influence on the thermodynamics. The experimental study, conducted in a fixed bed reactor using a Ni-based catalyst, considers the effect of the temperature (300–600 °C), lactose concentration (1–10 wt.%) and spatial time (4–16 g catalyst min/g lactose) on the global lactose conversion, product distribution on a carbon basis (gas, liquid and solid) and the compositions of the gas and liquid phases. Complete lactose conversion was achieved under all the experimental conditions. The carbon converted into gas, liquid and solid was 2–97%, 0–66% and 0–94%, respectively. The gas phase was made up of a mixture of H_2 (0–70 vol.%), CO_2 (20–70 vol.%), CO (2–34 vol.%) and CH_4 (0–3 vol.%). The liquid phase consisted of a mixture of aldehydes, ketones, carboxylic acids, sugars, furans, alcohols and phenols

  6. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  7. Performance and carcass characteristics of lambs fed a solution of cheese whey during feedlot and pre-slaughter lairage

    Directory of Open Access Journals (Sweden)

    Fredson Vieira e Silva

    2018-03-01

    Full Text Available ABSTRACT The objective of this study was to evaluate performance and carcass and meat characteristics of lambs fed a solution of cheese whey plus water (100 g kg−1 dry matter (CW during feedlot and pre-slaughter lairage. Data were analyzed as a 2 × 2 factorial (place – feedlot and slaughterhouse, food – water or CW. We evaluated the following treatments (feedlot/slaughterhouse: CW/CW, CW/water, water/CW, and control (water/water. The lambs were given a balanced diet for 70 days in the feedlot. Slaughter started 12 h after the animals arrived at the slaughterhouse. Dry matter intake, gain-to-feed ratio, average daily gain, and body weight of lambs fed CW were similar to those of control lambs. The water/CW group consumed less of this solution than the CW/CW group in the slaughterhouse. The CW supplied as a pre-slaughter supplement reduces the drip losses of lamb carcasses provided that the animals also consume it during the feedlot period. The other carcass characteristics (carcass weight, pH, subcutaneous fat thickness, and ribeye area were similar among treatments. The meat characteristics (color, water holding capacity, cooking losses, and shear force were similar among treatments. Whey cheese added to water can be used as an ingredient of the diet for lambs and as pre-slaughter supplement, since it does not change performance and improves carcass characteristics.

  8. Hydrogen production by Escherichia coli {delta}hycA {delta}lacI using cheese whey as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Colunga, Luis Manuel; Ordonez, Leandro G.; De Leon-Rodriguez, Antonio (Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Col. Lomas 4a secc. CP 78216, San Luis Potosi, SLP. Mexico); Razo-Flores, Elias; Alatriste-Mondragon, Felipe (Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Col. Lomas 4a secc. CP 78216, San Luis Potosi, SLP. Mexico)

    2010-01-15

    This study reports a fermentative hydrogen production by Escherichia coli using cheese whey as substrate. To improve the biohydrogen production, an E. coli {delta}hycA {delta}lacI strain (WDHL) was constructed. The absence of hycA and lacI genes had a positive effect on the biohydrogen production. The strain produced 22% more biohydrogen in a shorter time than the wild-type (WT) strain. A Box-Behnken experimental design was used to optimize pH, temperature and substrate concentration. The optimal initial conditions for biohydrogen production by WDHL strain were pH 7.5, 37 C and 20 g/L of cheese whey. The specific production rate was improved from 3.29 mL H{sub 2}/optical density at 600 nm (OD{sub 600nm}) unit-h produced by WDHL under non-optimal conditions to 5.88 mL H{sub 2}/OD{sub 600nm} unit-h under optimal conditions. Using optimal initial conditions, galactose can be metabolized by WDHL strain. The maximum yield obtained was 2.74 mol H{sub 2}/mol lactose consumed, which is comparable with the yield reached in other hydrogen production processes with Clostridium sp. or mixed cultures. (author)

  9. Inhibitory substances production by Lactobacillus plantarum ST16Pa cultured in hydrolyzed cheese whey supplemented with soybean flour and their antimicrobial efficiency as biopreservatives on fresh chicken meat.

    Science.gov (United States)

    da Silva Sabo, Sabrina; Pérez-Rodríguez, Noelia; Domínguez, José Manuel; de Souza Oliveira, Ricardo Pinheiro

    2017-09-01

    Cheese whey, the main byproduct of the dairy industry, is one of the most worrisome types of industrial waste, not only because of its abundant annual global production but also because it is a notable source of environmental pollution. However, cheese whey can serve as a raw material for the production of biocomposites. In this context, in this study, we assayed the production of a bacteriocin-like inhibitory substance (BLIS) and lactate by culturing Lactobacillus plantarum ST16Pa in hydrolyzed fresh cheese whey. The process was improved by studying the enzymatic hydrolysis of cheese whey as well as its supplementation with soybean flour under microaerophilic or anaerobic conditions. Thus, the highest values of BLIS (7367.23 arbitrary units [AU]/mL) and lactate yield (Y lactate/lactose =1.39g/g) were achieved after addition of 10g/L soybean flour in microaerophilia. These conditions were successfully scaled up in a bioreactor because during complete anaerobiosis at 150rpm, L. plantarum ST16Pa attained considerable cell growth (3.14g/L), lactate concentration (14.33g/L), and BLIS activity (8082.56AU/mL). In addition, the cell-free supernatant resulting from this bioprocess showed high biopreservative efficiency in chicken breast fillets artificially contaminated with Enterococcus faecium 711 during 7days of refrigerated storage, thus indicating the potential use of this BLIS as a biopreservative in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Optimization PHAs production from dairy industry wastewater (cheese whey) by Azohydromonas lata DSMZ 1123

    OpenAIRE

    M. Sharifzadeh Baei; G.D. Najafpour; Z. Lasemi; F. Tabandeh; H. Younesi; H. Issazadeh; M. Khodabandeh

    2010-01-01

    In the present research, whey was used as useful substrate which retained from permeates of dairy industry. The obtained whey was hydrolyzed to cleave its main carbon source, lactose to glucose and galactose.The hydrolyzed products were chosen as carbon sources for the production of poly-3-hydroxybutyric acid (PHB) by Azohydromonas lata DSMZ 1123. The biosynthesis of PHA copolyesters containing 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) units from hydrolyzed whey permeate and valerat...

  11. Autolysis of Blakeslea trispora during carotene production from cheese whey in an airlift reactor.

    Science.gov (United States)

    Varzakakou, Maria; Roukas, Triantafyllos; Papaioannou, Emmanuel; Kotzekidou, Parthena; Liakopoulou-Kyriakides, Maria

    2011-01-01

    The phenomenon of autolysis in Blakeslea trispora during carotene production from deproteinized hydrolyzed whey in an airlift reactor was investigated. The process of cellular autolysis was studied by measuring the changes in carotene concentration, dry biomass, residual sugars, pH, intracellular protein, specific activity of the hydrolytic enzymes (proteases, chitinase), and micromorphology of the fungus using a computerized image analysis system. All these parameters were useful indicators of autolysis, but image analysis was found to be the most useful indicator of the onset and progress of autolysis in the culture. Autolysis of B. trispora began early in the growth phase, continued during the stationary phase, and increased significantly in the decline phase. The morphological differentiation of the fungus was a result of the degradation of the cell membrane by hydrolytic enzymes. The biosynthesis of carotenes was carried out in the exponential phase, where the phenomenon of autolysis was not intense.

  12. BIOACTIVE PEPTIDES OF THE COW MILK WHEY PROTEINS (Bos taurus

    Directory of Open Access Journals (Sweden)

    A. V. Iukalo

    2013-10-01

    Full Text Available Data on the biological functions of milk whey proteins, which are implemented at the level of their proteolytic degradation products — bioactive peptides have been reviewed. The main functions of these proteins is to provide the amino acid nutrition of mammals in the early stages of development, as well as the transport of fatty acids, retinol, involved in the synthesis of lactose, ions of calcium and iron, immune protection, antimicrobial action, etc. However, in recent years, it has been found that milk proteins like casein are precursors of biologically active peptides. Аngiotensin — converting enzyme, opioid peptides which are opiate receptor agonists, anti–microbial peptides, peptides with immunomodulatory and hypocholesterolemic action, and peptides affecting motility have been found among the products of proteolytic degradation of ?-lactoglobulin, ?-laktoalbumin, lactoferrin and milk whey albumin. Also data on the possible participation of peptides from milk whey proteins in the implementation of the biological functions of both the assimilation of calcium, antioxidant effect, the regulation of appetite, anticarcinogenic are provided. The authors assume that the phenomenon of bioactive peptides formation could be considered as an additional function of natural food proteins, which gives advantages to the mammals and has a positive effect on their development in the postnatal period. Ways of bioactive peptides formation, their resistance to action of proteolytic enzymes, the ability to cross into the bloodstream and have biological effects have been also discussed. Up to date, only a few products with bioactive peptides from milk whey proteins are obtained. Further studies of their structure, mechanism of action, ways of formation and methods of isolation are required for their wider use. Formation of functional products based on bioactive peptides from milk whey proteins will allow efficient use of milk whey, which is often a

  13. Enzyme-induced aggregation of whey proteins with Bacillus licheniformis protease

    NARCIS (Netherlands)

    Creusot, N.P.

    2006-01-01

    Whey proteins are commonly used as ingredient in food. In relation with the gelation properties of whey proteins, this thesis deals with understanding the mechanism of peptide-induced aggregation of whey protein hydrolysates made with Bacillus licheniformis protease (BLP). The results show that BLP

  14. Interaction of milk whey protein with common phenolic acids

    Science.gov (United States)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  15. Physicochemical and functional properties, microstructure, and storage stability of whey protein/polyvinylpyrrolidone based glue sticks

    Directory of Open Access Journals (Sweden)

    Guorong Wang

    2012-11-01

    Full Text Available A glue stick is comprised of solidified adhesive mounted in a lipstick-like push-up tube. Whey is a byproduct of cheese making. Direct disposal of whey can cause environmental pollution. The objective of this study was to use whey protein isolate (WPI as a natural polymer along with polyvinylpyrrolidone (PVP to develop safe glue sticks. Pre-dissolved WPI solution, PVP, sucrose, 1,2-propanediol (PG, sodium stearate, defoamer, and preservative were mixed and dissolved in water at 90 oC and then molded in push-up tubes. Chemical composition, functional properties (bonding strength, glue setting time, gel hardness, extension/retraction, and spreading properties, microstructure, and storage stability of the prototypes were evaluated in comparison with a commercial control. Results showed that all WPI/PVP prototypes had desirable bonding strength and exhibited faster setting than PVP prototypes and control. WPI could reduce gel hardness and form less compact and rougher structures than that of PVP, but there was no difference in bonding strength. PVP and sucrose could increase the hygroscopicity of glue sticks, thus increasing storage stability. Finally, the optimized prototype GS3 (major components: WPI 8.0%, PVP 12.0%, 1,2-propanediol 10.0%, sucrose 10.0%, and stearic sodium 7.0% had a comparable functionality to the commercial control. Results indicated that whey protein could be used as an adhesive polymer for glue stick formulations, which could be used to bond fiber or cellulose derived substrates such as paper.

  16. A sustainable use of Ricotta Cheese Whey for microbial biodiesel production.

    Science.gov (United States)

    Carota, Eleonora; Crognale, Silvia; D'Annibale, Alessandro; Gallo, Anna Maria; Stazi, Silvia Rita; Petruccioli, Maurizio

    2017-04-15

    The increasing demand of plant oils for biodiesel production has highlighted the need for alternative strategies based either on non-food crops or agro-industrial wastes that do not compete with food and feed production. In this context, the combined use of wastewater and oleaginous microorganisms could be a valuable production option. Ricotta cheese whey (RCW), one of the major byproducts of the dairy industry, is produced in very high and steadily increasing amounts and, due to its high organic load, its disposal is cost-prohibitive. In the present study, in order to assess the adequacy of RCW as a growth medium for lipid production, 18 strains of oleaginous yeasts were investigated in shaken flask for their growth and lipid-producing capabilities on this substrate. Among them, Cryptococcus curvatus NRRL Y-1511 and Cryptococcus laurentii UCD 68-201 adequately grew therein producing substantial amounts of lipids (6.8 and 5.1gL -1 , respectively). A high similarity between the percent fatty acid methyl esters (FAME) composition of lipids from the former and the latter strain was found with a predominance of oleic acid (52.8 vs. 48.7%) and of total saturated fatty acids (37.9 vs. 40.8%). The subsequent scale transfer of the C. laurentii UCD 68-201 lipid production process on RCW to a 3-L STR led to significantly improved biomass and total lipid productions (14.4 and 9.9gL -1 , respectively) with the biodiesel yield amounting to 32.6%. Although the C. laurentii FAME profile was modified upon process transfer, it resembled that of the Jatropha oil, a well established feedstock for biodiesel production. In conclusion, C. laurentii UCD 68-201, for which there is very limited amount of available information, turned out to be a very promising candidate for biodiesel production and wide margins of process improvement might be envisaged. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Vazquez, Gustavo; Cota-Navarro, Ciria Berenice; Razo-Flores, Elias [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico); Rosales-Colunga, Luis Manuel; de Leon-Rodriguez, Antonio [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico)

    2009-05-15

    Due to the renewed interest in finding sustainable fuels or energy carriers, biohydrogen (Bio-H{sub 2}) from biomass is a promising alternative. Fermentative Bio-H{sub 2} production was studied in a continuous stirred tank reactor (CSTR) operated during 65.6 d with cheese whey (CW) as substrate. Three hydraulic retention times (HRTs) were tested (10, 6 and 4 h) and the highest volumetric hydrogen production rate (VHPR) was attained with HRT of 6 h. Therefore, four organic loading rates (OLRs) at a fixed HRT of 6 h were tested thereafter, being: 92.4, 115.5, 138.6 and 184.4 g lactose/L/d. The highest VHPR (46.61 mmol H{sub 2}/L/h) and hydrogen molar yield (HMY) of 2.8 mol H{sub 2}/mol lactose were found at an OLR of 138.6 g lactose/L/d; a sharp fall in VHPR occurred at an OLR of 184.4 g lactose/L/d. Butyric, propionic and acetic acids were the main soluble metabolites found, with butyric-to-acetic ratios ranging from 1.0 to 2.4. Bacterial community was identified by partial sequence analysis of the 16S rRNA and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that at HRT of 10 h and 6 h were dominated by the Clostridium genus. The VHPR attained in this study is the highest reported value for a CSTR system using CW as substrate with anaerobic sludge as inoculum and represents a 33-fold increase compared to a previous study. Thus, it was demonstrated that continuous fermentative Bio-H{sub 2} production from CW can be significantly enhanced by an appropriate selection of parameters such as HRT and OLR. Enhancements in VHPR are significant because it is a critical parameter to determine the full-scale practical application of fermentation technologies that will be used for sustainable and clean energy generation. (author)

  18. Microparticulated whey proteins for improving dairy product texture

    DEFF Research Database (Denmark)

    Ipsen, Richard

    2017-01-01

    Use of microparticulated whey protein (MWP) was patented in 1988; since then much research has been conducted on use of MWP. This review provides an overview of the use and functionality of MWP in dairy applications and discusses how MWP interacts with other components in dairy matrices. For ferm......Use of microparticulated whey protein (MWP) was patented in 1988; since then much research has been conducted on use of MWP. This review provides an overview of the use and functionality of MWP in dairy applications and discusses how MWP interacts with other components in dairy matrices...

  19. Making the most of whey

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D L

    1979-01-01

    The products available from cheese whey processing are surveyed and the preparation of protein products is particularly emphasized, using ultrafiltration. The permeate from this process is used for the production of a variety of lactose syrup products with wide uses in the food industry.

  20. Whey based beverages - new generation of dairy products

    Directory of Open Access Journals (Sweden)

    Irena Jeličić

    2008-08-01

    Full Text Available Whey is a by product in the process of cheese production. Composition and characteristics of whey are depending on the production technology, the end product and the quality of used milk. Liquid whey consists of approximately 93% water and contains almost 50% of total solids present in the milk of which lactose is main constituent. Lactose is the main constituent of whey while proteins represent less than 1% of total solids. Minerals and vitamins are present in fewer amounts also. Production of whey based beverages started in 1970's and until today a wide range of different whey based beverages has been developed. They can be produced from native sweet or acid whey, from deproteinised whey, from native whey which was diluted with water, from whey powder or by whey fermentation. Non alcoholic whey beverages include wide range of products obtained by mixing native sweet, diluted or acid whey with different additives like tropical fruits (but also other fruits like apples, pears, strawberries or cranberries, crops and their products (mainly bran, isolates of vegetable proteins, CO2, chocolate, cocoa, vanilla extracts and other aromatizing agents. Special attention is being paid to production of fermented whey beverages with probiotic bacteria where the most important step is the choice of suitable culture of bacteria in order to produce functional beverage with high nutritional value and acceptable sensory characteristics. Non alcoholic whey beverages also include dietetic beverages, drinks with hydrolyzed lactose, milk like drinks and powder drinks. Whey is a very good raw material for production of alcoholic beverages due to the fact that the main constituent of the solid content is lactose (about 70%. Alcoholic whey beverages include drinks with small amount of alcohol (up to 1,5%, whey beer and whey wine. Whey beverages are suitable for wide range of consumers – from children to the elderly ones. They have very high nutritional value and good

  1. Viability of cheese whey anaerobic digestion for residue treatment and energy consumption; Viabilidade da digestao anaerobica do soro de queijo para tratamento do residuo e producao de energia

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Thais H.M. [Universidade Metodista de Piracicaba (UNIMEP), SP (Brazil); Oliveira, Antonio Joaquim de [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Departamento de Ciencias e Tecnologia Agroindustrial

    1993-06-01

    This work was undertaken to evaluate the anaerobic digestion of cheese whey (68000 mg COD/l), without and with whey pH adjustment, in complete mixture semi-continuous laboratory reactors and temperature kept at 35{+-}1{sup 0} C. Cattle manure with 8% total solids was used as seed to the reactors. The experiment was carried out for a period of 100 days. The following analysis were carried out for the experimental control: volatile acidity, alkalinity, ph, volume of biogas produced and COD. The results of this work shows that the reactors fed whey without pH correction broke down due to the high accumulation of fatty acids whereas the reactors fed with corrected whey (pH 5,5 and 6,5) obtained a better balance. Nevertheless we can say that the instability of the process was influenced by the steam of the reactor feeding. (author). 18 refs, 1 fig, 3 tabs

  2. Clinical Potential of Hyperbaric Pressure-Treated Whey Protein

    Science.gov (United States)

    Piccolomini, André F.; Kubow, Stan; Lands, Larry C.

    2015-01-01

    Whey protein (WP) from cow’s milk is a rich source of essential and branched chain amino acids. Whey protein isolates (WPI) has been demonstrated to support muscle accretion, antioxidant activity, and immune modulation. However, whey is not readily digestible due to its tight conformational structure. Treatment of WPI with hyperbaric pressure results in protein unfolding. This enhances protein digestion, and results in an altered spectrum of released peptides, and greater release of essential and branched chain amino acids. Pressurized whey protein isolates (pWPI), through a series of cell culture, animal models and clinical studies, have been demonstrated to enhance muscle accretion, reduce inflammation, improve immunity, and decrease fatigue. It is also conceivable that pWPI would be more accessible to digestive enzymes, which would allow for a more rapid proteolysis of the proteins and an increased or altered release of small bioactive peptides. The altered profile of peptides released from WP digestion could thus play a role in the modulation of the immune response and tissue glutathione (GSH) concentrations. The research to date presents potentially interesting applications for the development of new functional foods based on hyperbaric treatment of WPI to produce products with more potent nutritional and nutraceutical properties. PMID:27417773

  3. Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ghaly, A.E.; Ramkumar, D.R.

    1999-07-01

    Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and pH control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg L (as acetic acid), with acetic (28 %), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L d (0.84m{sup 3}m{sup 3} d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3 % in the total solids, chemical oxygen demand and total Kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%). (author)

  4. Composition and functionality of whey protein phospholipid concentrate and delactosed permeate.

    Science.gov (United States)

    Levin, M A; Burrington, K J; Hartel, R W

    2016-09-01

    Whey protein phospholipid concentrate (WPPC) and delactosed permeate (DLP) are 2 coproducts of cheese whey processing that are currently underused. Past research has shown that WPPC and DLP can be used together as a functional dairy ingredient in foods such as ice cream, soup, and caramel. However, the scope of the research has been limited to 1 WPPC supplier. The objective of this research was to fully characterize a range of WPPC. Four WPPC samples and 1 DLP sample were analyzed for chemical composition and functionality. This analysis showed that WPPC composition was highly variable between suppliers and lots. In addition, the functionality of the WPPC varies depending on the supplier and testing pH, and cannot be correlated with fat or protein content because of differences in processing. The addition of DLP to WPPC affects functionality. In general, WPPC has a high water-holding capacity, is relatively heat stable, has low foamability, and does not aid in emulsion stability. The gel strength and texture are highly dependent on the amount of protein. To be able to use these 2 dairy products, the composition and functionality must be fully understood. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Whey protein stories - An experiment in writing a multidisciplinary biography.

    Science.gov (United States)

    Jensen, Tenna; Bechshoeft, Rasmus L; Giacalone, Davide; Otto, Marie Haulund; Castro-Mejía, Josue; Bin Ahmad, Hajar Fauzan; Reitelseder, Søren; Jespersen, Astrid Pernille

    2016-12-01

    This is an experimental, dual-purpose article about whey protein and how to conduct interdisciplinary analyses and writings. On the one hand, this article is a multidisciplinary commodity biography, which consists of five descriptions of whey protein written by the five different research groups involved in the interdisciplinary research project CALM(Counteracting Age-related loss of Skeletal Muscle Mass). On the other hand, it is a meta-analysis, which aims to uncover and highlight examples of how the five descriptions contribute to each other with insights into the contextualisation of knowledge, contrasts between the descriptions and the new dimensions they bring to established fields of interest. The meta-analysis also contains a discussion of interdisciplinary study objects and the usefulness of the multidisciplinary commodity biography as a format for interdisciplinary publications. The article contributes to the field of food studies with a multidisciplinary biography of whey protein - including its sensory qualities and challenges, insights into its cultural history, its nutritional value and effects on the human body and an analysis of how it is perceived by people who consume it. The biography thereby expands upon existing understandings of whey protein while discussing the usefulness of employing the commodity biography format in interdisciplinary writing. Moreover, the article contributes to the field of interdisciplinary research by providing a practical example of a joint publication and reflections upon the existence, interaction and possibilities of monodisciplinary knowledge structures within interdisciplinary studies and publications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Consumer perception of astringency in clear acidic whey protein beverages.

    Science.gov (United States)

    Childs, Jessica L; Drake, MaryAnne

    2010-01-01

    Acidic whey protein beverages are a growing component of the functional food and beverage market. These beverages are also astringent, but astringency is an expected and desirable attribute of many beverages (red wine, tea, coffee) and may not necessarily be a negative attribute of acidic whey protein beverages. The goal of this study was to define the consumer perception of astringency in clear acidic whey protein beverages. Six focus groups (n=49) were held to gain understanding of consumer knowledge of astringency. Consumers were presented with beverages and asked to map them based on astringent mouthfeel and liking. Orthonasal thresholds for whey protein isolate (WPI) in water and flavored model beverages were determined using a 7-series ascending forced choice method. Mouthfeel/basic taste thresholds were determined for WPI in water. Acceptance tests on model beverages were conducted using consumers (n=120) with and without wearing nose clips. Consumers in focus groups were able to identify astringency in beverages. Astringency intensity was not directly related to dislike. The orthonasal threshold for WPI in water was lower (P astringent mouthfeel and that both flavor and astringency should be the focus of ongoing studies to improve the palatability of these products. © 2010 Institute of Food Technologists®

  7. Whey protein concentrate storage at elevated temperature and humidity

    Science.gov (United States)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  8. Deposition of heated whey proteins on a chromium oxide surface.

    NARCIS (Netherlands)

    Jeurnink, Th.; Verheul, M.; Cohen Stuart, M.A.; Kruif, de C.G.

    1996-01-01

    Whey protein solutions were given different heat treatments after which their deposition on a chromium oxide surface (the outer layer of stainless steel) was measured by reflectometry. The deposition was studied under controlled flow conditions by using a stagnation point flow configuration. The

  9. Effect of Stirring and Seeding on Whey Protein Fibril Formation

    NARCIS (Netherlands)

    Bolder, S.G.; Sagis, L.M.C.; Venema, P.; Linden, van der E.

    2007-01-01

    The effect of stirring and seeding on the formation of fibrils in whey protein isolate (WPI) solutions was studied. More fibrils of a similar length are formed when WPI is stirred during heating at pH 2 and 80 C compared to samples that were heated at rest. Addition of seeds did not show an

  10. PROTEIN & SENSORY ANALYSIS TO CHARACTERIZE MEXICAN CHIHUAHUA CHEESES

    Science.gov (United States)

    It has been established that native microflora in raw milk cheeses, including Queso Chihuahua, a Mexican cheese variety, contributes to the development of unique flavors through degradation of milk proteins resulting in the release of free amino acids and short peptides that influence the taste and ...

  11. Dominance of rumen microorganisms during cheese whey acidification: acidogenesis can be governed by a rare Selenomonas lacticifex-type fermentation.

    Science.gov (United States)

    Ntougias, Spyridon; Tsiamis, George; Soultani, Despoina; Melidis, Paraschos

    2015-11-01

    The microbial basis of acidification process during spontaneous cheese whey wastewater fermentation was decrypted by implementing both culture-dependent and culture-independent techniques. Lac tobacillus and Bifidobacterium were the predominant taxa among the microbiota growing on MRS (deMan, Rogosa, and Sharpe), while Kazachstania unispora and Dekkera anomala yeast species were also isolated. Almost all Lactobacillus isolates were heterofermentative that could ferment glucose and lactose, with most of them being related to Lactobacillus hilgardii (99.0-100 % similarity). By employing fluorescence techniques, the dominance of long crescent-shaped bacteria in the acidogenic sludge was observed. Temperature gradient gel electrophoresis (TGGE), clone library, and next-generation sequencing techniques revealed the dominance of Selenomonas lacticifex. Based on Illumina data, Selenomonas in the continuous stirred-tank reactor (CSTR) represented 70.13 ± 4.64 % of the bacterial reads, while other Veillonellaceae taxa (Megasphaera and Pectinatus) represented a notable proportion (6.54 %). Prevotella was only detected by Illumina sequencing as an important constituent of the microbial population (14.97 ± 1.71 %). Budding yeasts represented 97 % of the fungal population in the CSTR, with Yarrowia strains representing 88.85 ± 5.52 % of the fungal reads. Spontaneous cheese whey acidification can favor the dominance of rumen bacteria and here was driven by the rarely reported S. lacticifex-type fermentation, which should be taken into consideration during evaluation of acidogenesis in process simulation and modelling. Moreover, the important nervonic acid content detected indicates that acidogenic sludge can be used as a source for the production of high value-added biomedical substrates.

  12. Enhanced Electricity Generation by Using Cheese Whey Wastewater in A Single-chamber Membrane Less Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hassan A.Z. Al-Fetlawi

    2018-02-01

    Full Text Available Microbial fuel cells (MFCs are biochemical-catalyzed systems in which electricity is produced by oxidizing  biodegradable organic matters in presence of  bacteria. Many places suffer from lack of electricity infrastructure or even existence" ,"but in the same area  there is wastewater that can be used to generate clean energy". "A batch system single chamber  and  membrane-less microbial fuel cell is designed with wastewater as inoculum and fuel in the same time(before adding cheese whey at pH =7±0.4 and an operating temperature of 30 0C ". Wastewater samples are collected from the Al-Delmaj marsh site at an initial chemical oxygen demand concentration of 862 mg/l and pH of 7.8 (reduced to 7±0.4 in all experiments by adding HCL acid. Rectangular sheets of graphite and smooth surface carbon fiber of 42 cm2 surface area used for anode and cathode electrodes. The obtained results indicated that the cell performance for the cell using graphite for anode and cathode electrodes is better than that using the carbon fiber of smooth surface .the obtained  open circuit voltage and power per unit surface area (for graphite  were" 190 mV and 5.95 mW/m2 respectively ."Cheese whey as substrate was used to enhance the performance of cell to  439 mV OCV and 121.9mW/m2  maximum power density" .

  13. Characteristics of separation of carnitine and metal ions in cheese whey model solution by loose reverse osmosis membrane

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Echizen, H.; Xing, X.; Yamamoto, S.; Unno, H. [Tokyo Institute of Technology, Tokyo (Japan)

    1996-04-20

    Aiming at recovering carnitine from cheese whey by using loose reverse osmosis membranes, rejection characteristics of several components in the whey were examined by using model solutions. An electroneutral membrane was found to be most effective for the separation. The rejection of carnitine was above 0.95 independent of the pH of solutions, while monovalent metal ions showed low rejections of 0.1-0.3. On the other hand, the rejections of divalent metal ions deceased with increase of the pH, and reached a minimum of about 0.5. As a result, mono-and divalent metal ions could be removed simultaneously by adjusting the pH of the feed solutions. To clarify the effect of pH on the rejection the permeate of MgCl2 aqueous solution was examined. The rejections of MgCl2 were greatly affected by the pH and showed the same tendency as the mixed station. The effect of the pH on permeation of electrolyte was considered to be caused mainly by the adsorption of ions on the membrane. 16 refs., 6 figs., 2 tabs.

  14. Feasibility of biohydrogen production from cheese whey using a UASB reactor: Links between microbial community and reactor performance

    Energy Technology Data Exchange (ETDEWEB)

    Castello, E.; Garcia y Santos, C.; Borzacconi, L. [Chemical Engineering Institute, School of Engineering, University of the Republic, Herrera y Reissig 565, Montevideo (Uruguay); Iglesias, T.; Paolino, G.; Wenzel, J.; Etchebehere, C. [Microbiology Department, School of Science and School of Chemistry, University of the Republic, General Flores 2124, Montevideo (Uruguay)

    2009-07-15

    The present study examines the feasibility of producing hydrogen by dark fermentation using unsterilised cheese whey in a UASB reactor. A lab-scale UASB reactor was operated for more than 250 days and unsterilised whey was used as the feed. The evolution of the microbial community was studied during reactor operation using molecular biology tools (T-RFLP, 16S rRNA cloning library and FISH) and conventional microbiological techniques. The results showed that hydrogen can be produced but in low amounts. For the highest loading rate tested (20 gCOD/L.d), hydrogen production was 122 mL H{sub 2}/L.d. Maintenance of low pH (mean = 5) was insufficient to control methanogenesis; methane was produced concomitantly with hydrogen, suggesting that the methanogenic biomass adapted to the low pH conditions. Increasing the loading rate to values of 2.5 gCOD/gVSS.d favoured hydrogen production in the reactor. Microbiological studies showed the prevalence of fermentative organisms from the genera Megasphaera, Anaerotruncus, Pectinatus and Lactobacillus, which may be responsible for hydrogen production. However, the persistence of methanogenesis and the presence of other fermenters, not clearly recognised as hydrogen producers indicates that competition for the substrate may explain the low hydrogen production. (author)

  15. Effects of Hydrolysed Whey Proteins on the Techno-Functional Characteristics of Whey Protein-Based Films

    Directory of Open Access Journals (Sweden)

    Klaus Noller

    2013-03-01

    Full Text Available Pure whey protein isolate (WPI-based cast films are very brittle due to its strong formation of protein cross-linking of disulphide bonding, hydrogen bonding as well as hydrophobic and electrostatic interactions. However, this strong cross-linking is the reason for its final barrier performance. To overcome film brittleness of whey protein layers, plasticisers like glycerol are used. It reduces intermolecular interactions, increases the mobility of polymer chains and thus film flexibility can be achieved. The objective of this study was to investigate the influence of hydrolysed whey protein isolate (WPI in whey protein isolate-based cast films on their techno-functional properties. Due to the fact, that the addition of glycerol is necessary but at the same time increases the free volume in the film leading to higher oxygen and water vapour permeability, the glycerol concentration was kept constant. Cast films with different ratios of hydrolysed and not hydrolysed WPI were produced. They were characterised in order to determine the influence of the lower molecular weight caused by the addition of hydrolysed WPI on the techno-functional properties. This study showed that increasing hydrolysed WPI concentrations significantly change the mechanical properties while maintaining the oxygen and water vapour permeability. The tensile and elastic film properties decreased significantly by reducing the average molecular weight whereas the yellowish coloration and the surface tension considerably increased. This study provided new data which put researchers and material developers in a position to tailor the characteristics of whey protein based films according to their intended application and further processing.

  16. Enrichment of extruded snack products with whey protein

    Directory of Open Access Journals (Sweden)

    Mladen Brnčić

    2008-08-01

    Full Text Available Highest share in products with whey proteins addition belongs to aromatised drinks, aromatised protein bars and various dietetic preparations. In the last few years, there is increased use of the extrusion process for production of food products. This process is, besides other things, used for obtaining directly expanded products, which are immediately packed and sent on market after mechanical and thermal treatment in extruder, or after drying for a short time. One of these food products is “snack” food. Snack food is made with twin corotating screw extruders, in which raw materials are submitted to high temperatures and short time, with intensive expansion and rapid pressure drop. For the production of this category of food products, basic ingredients like corn, wheat, rye and rice, with the maximum of 9 % of proteins, are used. With the development of extrusion technology, special attention is focused on the enrichment of extruded products with different types of proteins, including proteins. In this paper, review of the newest research and achievements in embedding various types of whey concentrates in snack food will be represented. This category of food products for direct consummation is constantly increasing, and addition of whey protein concentrate adds better nutritional value and increased functionality.

  17. Evaluation of whey, milk, and delactosed permeates as salt substitutes.

    Science.gov (United States)

    Smith, S T; Metzger, L; Drake, M A

    2016-11-01

    Whey and milk permeates are by-products of high-protein dairy powder manufacture. Previous work has shown that these permeates contribute to salty taste without contributing significantly to sodium content. The objective of this study was to explore the sensory characteristics and compositional analysis of permeates from different milk and whey streams and a low-sodium product application made from them. Skim milk, Cheddar, cottage, and Mozzarella cheese whey permeates were manufactured in triplicate, and delactosed whey permeate was obtained in triplicate. Composition (protein, fat, solids, minerals) was conducted on permeates. Organic acid composition was determined using HPLC. Volatile compounds were extracted from permeates by solid phase microextraction with gas chromatography-mass spectrometry. A trained sensory panel documented sensory attributes of permeates and cream of broccoli soups with and without salt or permeates followed by consumer acceptance testing (n=105) on the soups. Cottage cheese whey permeate contained a higher lactic acid content than other permeates, which has been shown to contribute to a higher salty taste. Cottage cheese whey permeate also contained potato or brothy and caramel flavors and sour and salty tastes, whereas delactosed whey permeate had high intensities of cardboard and beefy or brothy flavors and salty taste. Milk, Cheddar, and Mozzarella cheese whey permeates were characterized by sweet taste and cooked milky flavor. Permeates with higher cardboard flavor had higher levels of aldehydes. All permeates contributed to salty taste and to salty taste perception in soups; although the control soup with added salt was perceived as saltier and was preferred by consumers over permeate soups. Soup with permeate from cottage cheese was the least liked of all soups, likely due to its sour taste. All other permeate soups scored at parity for liking. These results demonstrate the potential for milk, whey, and delactosed permeates from

  18. Functional properties of whey protein and its application in nanocomposite materials and functional foods

    Science.gov (United States)

    Walsh, Helen

    Whey is a byproduct of cheese making; whey proteins are globular proteins which can be modified and polymerized to add functional benefits, these benefits can be both nutritional and structural in foods. Modified proteins can be used in non-foods, being of particular interest in polymer films and coatings. Food packaging materials, including plastics, can linings, interior coatings of paper containers, and beverage cap sealing materials, are generally made of synthetic petroleum based compounds. These synthetic materials may pose a potential human health risk due to presence of certain chemicals such as Bisphenol A (BPA). They also add to environmental pollution, being difficult to degrade. Protein-based materials do not have the same issues as synthetics and so can be used as alternatives in many packaging types. As proteins are generally hydrophilic they must be modified structurally and their performance enhanced by the addition of waterproofing agents. Polymerization of whey proteins results in a network, adding both strength and flexibility. The most interesting of the food-safe waterproofing agents are the (large aspect ratio) nanoclays. Nanoclays are relatively inexpensive, widely available and have low environmental impact. The clay surface can be modified to make it organophilic and so compatible with organic polymers. The objective of this study is the use of polymerized whey protein (PWP), with reinforcing nanoclays, to produce flexible surface coatings which limit the transfer of contents while maintaining food safety. Four smectite and kaolin type clays, one treated and three natural were assessed for strengthening qualities and the potential waterproofing and plasticizing benefits of other additives were also analyzed. The nutritional benefits of whey proteins can also be used to enhance the protein content of various foodstuffs. Drinkable yogurt is a popular beverage in the US and other countries and is considered a functional food, especially when

  19. Proteomics in quality control: Whey protein-based supplements.

    Science.gov (United States)

    Garrido, Bruno Carius; Souza, Gustavo H M F; Lourenço, Daniela C; Fasciotti, Maíra

    2016-09-16

    The growing consumption of nutritional supplements might represent a problem, given the concern about the quality of these supplements. One of the most used supplements is whey protein (WP); because of its popularity, it has been a target of adulteration with substitute products, such as cheaper proteins with lower biological value. To investigate this type of adulteration, this study used shotgun proteomics analyses by MS(E) (multiplexed, low- and high-collision energy, data-independent acquisition) of WP-based supplements. Seventeen WP-based supplement samples were evaluated. Chicken, maize, rice, potato, soybean, and wheat proteins were considered as probable sources of bovine whey adulteration. Collectively, 523 proteins were identified across all 16 samples and replicates, with 94% of peptides inside a normal distribution within 10ppm of maximum error. In 10 of the 16 samples analyzed, only proteins from bovine whey could be detected, while in the other samples several other protein sources were detected in high concentrations, especially soybean, wheat, and rice. These results point out a probable adulteration and/or sample contamination during manufacturing that could only be detected using this proteomic approach. The present work shows how shotgun proteomics can be used to provide reliable answers in quality control matters, especially focusing on Whey Protein nutritional supplements which are a very popular subject in food and nutrition. In order to achieve an appropriate methodology, careful evaluation was performed applying extremely rigorous quality criteria, established for the proteomic analysis. These criteria and the methodological approach used in this work might serve as a guide for other authors seeking to use proteomics in quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard

    2014-01-01

    well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso...... creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p ... the placebo group (p whey group increased SCs/myonuclei from 4 % [2; 5] to 10 % [4; 16] (p 

  1. Comparative Evaluation of Cheese samples treated with Honey and ...

    African Journals Online (AJOL)

    The control treatment (A) was cheese kept in the whey, while Treatments B and C were cheese samples kept in Thyme and Honey solutions respectively. ... The crude protein was significantly higher (p<0.05) for Treatment B, then treatment A and least for treatment C. The ether extract followed the same trend as crude ...

  2. Whey protein concentration by ultrafiltration and study of functional properties

    Directory of Open Access Journals (Sweden)

    Sidiane Iltchenco

    2018-06-01

    Full Text Available ABSTRACT: This paper aim to evaluate the ultrafiltration (UF process for constituents recovery from whey. Sequences of factorial designs were performed by varying temperature (5 to 40°C and pressure (1 to 3 bar, to maximize the proteins concentration using membrane of 100kDa in dead end system. Based on the best result new experiments were performed with membrane of 50kDa and 10kDa. With the membrane of 50 the protein retention was about 3 times higher than the membrane of 100kDa. The concentrated obtained by UF membrane of 10kDa, 10°C and 2 bar in laboratory scale showed a mean protein retention of 80 %, greater protein solubility, emulsion stability and the identification of β-lactoglobulins (18.3 kDa and α-lactalbumin fractions (14.2kDa. Therefore, the use of membrane of 100 and 50kDa are became a industrially recommendable alternatives to concentration of whey proteins, and/or as a previous step to the fractionation of whey constituents using membrane ≤10kDa, aiming at future applications in different areas (food, pharmaceutical, chemical, etc..

  3. Whey protein phospholipid concentrate and delactosed permeate: Applications in caramel, ice cream, and cake.

    Science.gov (United States)

    Levin, M A; Burrington, K J; Hartel, R W

    2016-09-01

    Whey protein phospholipid concentrate (WPPC) and delactosed permeate (DLP) are 2 coproducts of cheese whey processing that are currently underutilized. Past research has shown that WPPC and DLP can be used together as a functional dairy ingredient in foods such as ice cream, soup, and caramel. However, the scope of the research has been limited to a single WPPC supplier. The variability of the composition and functionality of WPPC was previously studied. The objective of this research was to expand on the previous study and examine the potential applications of WPPC and DLP blends in foods. In ice cream, WPPC was added as a natural emulsifier to replace synthetic emulsifiers. The WPPC decreased the amount of partially coalesced fat and increased the drip-through rate. In caramel, DLP and WPPC replaced sweetened condensed skim milk and lecithin. Cold flow increased significantly, and hardness and stickiness decreased. In cake, DLP and WPPC were added as a total replacement of eggs, with no change in yield, color, or texture. Overall, WPPC and DLP can be utilized as functional dairy ingredients at a lower cost in ice cream and cake but not in chewy caramel. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Bioethanol production by inherent enzymes from rye and wheat with addition of organic farming cheese whey

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Christensen, Anne Deen; Thomsen, Mette Hedegaard

    2011-01-01

    . Throughout our studies, wheat and rye grain was used as raw material in bioethanol production with the purpose of producing in situ enzymes (during germination) for the hydrolysis of starch in the grains and compared with commercial amylase enzyme preparations. Whey permeate was incorporated into the grain...

  5. Relating the effects of protein type and content in increased-protein cheese pies to consumers' perception of satiating capacity.

    Science.gov (United States)

    Marcano, J; Varela, P; Fiszman, S

    2015-02-01

    Since proteins have been shown to have the highest satiation-inducing effects of all the macronutrients, increasing the protein level is one of the main strategies for designing foods with enhanced satiating capacity. However, few studies analyze the effect that protein addition has on the texture and flavor characteristics of the target food item to relate it to the expected satiating capacity it elicits. The present work studied cheese pies with three levels of soy and whey proteins. Since the protein level altered the rheological behavior of the batters before baking and the texture of the baked pies, the feasibility of adding several protein levels for obtaining a range of final products was investigated. A check-all-that-apply questionnaire containing 32 sensory and non-sensory characteristics of the samples was given to consumers (n = 131) who also scored the perceived samples' satiating capacity. The results showed that the type and content of protein contributed distinctive sensory characteristics to the samples that could be related to their satiating capacity perception. Harder and drier samples (high protein levels) were perceived as more satiating with less perceptible sweet and milky cheese pie characteristic flavors. Soy contributed an off-flavour. These results will contribute to a better understanding of the interrelation of all these factors, aiding the development of highly palatable solid foods with enhanced satiating capacities.

  6. Comparison of the aggregation behavior of soy and bovine whey protein hydrolysates

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Alting, A.C.; Gruppen, H.

    2007-01-01

    Abstract Soy-derived proteins (soy protein isolate, glycinin, and ß-conglycinin) and bovine whey-derived proteins (whey protein isolate, ¿-lactalbumin, ß-lactoglobulin) were hydrolyzed using subtilisin Carlsberg, chymotrypsin, trypsin, bromelain, and papain. The (in)solubility of the hydrolysates

  7. Rheology and microstructure of kefiran and whey protein mixed gels.

    Science.gov (United States)

    Kazazi, Hosayn; Khodaiyan, Faramarz; Rezaei, Karamatollah; Pishvaei, Malihe; Mohammadifar, Mohammad Amin; Moieni, Sohrab

    2017-04-01

    The effect of kefiran on cold-set gelation of whey protein isolate (WPI) at 25 °C was studied using rheological measurements and environmental scanning electron microscopy (ESEM). The gelation of samples was induced by the addition of glucono-δ-lactone to the dispersions. WPI concentration was maintained at 8% (w/v) and the concentration of kefiran varied from 0 to 0.08% (w/v). According to rheological measurements, the addition of kefiran into WPI dispersions resulted in a significant increase in the gel strength, the yield stress, and the shear stress values at the flowing point. The gelling point and gelation pH of samples decreased significantly with an increase in kefiran concentration. ESEM micrographs showed that the presence of kefiran played an important role in the microstructure formation of gels. The microstructure of kefiran-WPI mixed gels was more compact and dense, compared to the WPI gel. Depletion interactions between kefiran and whey protein aggregates can be regarded as the chief factor which was responsible for these effects. The present work demonstrated that rheological and microstructural properties of acid-induced whey protein gels were improved by the addition of kefiran.

  8. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men.

    Science.gov (United States)

    Mitchell, Cameron J; McGregor, Robin A; D'Souza, Randall F; Thorstensen, Eric B; Markworth, James F; Fanning, Aaron C; Poppitt, Sally D; Cameron-Smith, David

    2015-10-21

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring (13)C₆ phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h(-1) in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein.

  9. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate.

    Science.gov (United States)

    Rico, Carlos; Muñoz, Noelia; Rico, José Luis

    2015-01-01

    Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Authentication of Whey Protein Powders by Portable Mid-Infrared Spectrometers Combined with Pattern Recognition Analysis.

    Science.gov (United States)

    Wang, Ting; Tan, Siow Ying; Mutilangi, William; Aykas, Didem P; Rodriguez-Saona, Luis E

    2015-10-01

    The objective of this study was to develop a simple and rapid method to differentiate whey protein types (WPC, WPI, and WPH) used for beverage manufacturing by combining the spectral signature collected from portable mid-infrared spectrometers and pattern recognition analysis. Whey protein powders from different suppliers are produced using a large number of processing and compositional variables, resulting in variation in composition, concentration, protein structure, and thus functionality. Whey protein powders including whey protein isolates, whey protein concentrates and whey protein hydrolysates were obtained from different suppliers and their spectra collected using portable mid-infrared spectrometers (single and triple reflection) by pressing the powder onto an Attenuated Total Reflectance (ATR) diamond crystal with a pressure clamp. Spectra were analyzed by soft independent modeling of class analogy (SIMCA) generating a classification model showing the ability to differentiate whey protein types by forming tight clusters with interclass distance values of >3, considered to be significantly different from each other. The major bands centered at 1640 and 1580 cm(-1) were responsible for separation and were associated with differences in amide I and amide II vibrations of proteins, respectively. Another important band in whey protein clustering was associated with carboxylate vibrations of acidic amino acids (∼1570 cm(-1)). The use of a portable mid-IR spectrometer combined with pattern recognition analysis showed potential for discriminating whey protein ingredients that can help to streamline the analytical procedure so that it is more applicable for field-based screening of ingredients. A rapid, simple and accurate method was developed to authenticate commercial whey protein products by using portable mid-infrared spectrometers combined with chemometrics, which could help ensure the functionality of whey protein ingredients in food applications. © 2015

  11. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation

    NARCIS (Netherlands)

    Bolder, S.G.; Vasbinder, A.; Sagis, L.M.C.; Linden, van der E.

    2007-01-01

    Fibril formation of individual pure whey proteins and whey protein isolate (WPI) was studied. The heat-induced conversion of WPI monomers into fibrils at pH 2 and low ionic strength increased with heating time and protein concentration. Previous studies, using a precipitation method, size-exclusion

  12. Prospects for ethanol production from whey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, K R

    1978-05-01

    Whey is a by-product of the manufacture of cheese and casein. Casein whey is not as fully utilized as cheese whey although in the last five years commercial processes have been developed to recover the whey proteins, either in denatured form as lactalbumin or in their soluble form as Solac. The removal of the whey proteins makes little difference to the polluting strength or volume of the whey and a crude lactose solution - serum or permeate - remains to be processed. Many processes have been evaluated for the use of this crude lactose solution; one is microbial transformation to produce products such as methane, ethanol, acetone and butanol and etc. The technologies for these processes are well known and it is the economic evaluation which ultimately determines the feasibility of the process being considered. For the purposes of this paper, the prospects for ethanol production have been evaluated. Unless there is a significant reduction in capital costs, it is concluded that ethanol production from whey is not a viable proposition as an energy source for New Zealand. Industrial ethanol (annual imports; 3.5 x 10/sup 6/ 1 CIF value 32 c/1) and potable ethanol production may be worth contemplating.

  13. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P

  14. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota...

  15. Final report on the monitoring and optimization of the anaerobic digestion of whey at Millbank Cheese and Butter Ltd

    Energy Technology Data Exchange (ETDEWEB)

    Adams, G P

    1987-03-01

    A project is described in which a full-scale anaerobic digestion facility was used to produce biogas fuel from raw whey at a cheese factory. The purpose of the project was to optimize the operation of the full-scale facility through achievement of the design loadings, thereby generating the best economic return for the facility. Several nutrient/buffer supplement additions were evaluated at lab-scale in an attempt to devise a solution for the full-scale facility. The supplements used in this study included municipal digester supernatant from a municipal wastewater treatment plant, digested swine manure from a hog farm and caustic (NaOH). In addition, the project examines the effects of operating at thermophilic (55{sup 0}) temperature, the effect of daily additions of supplement versus weekly additions of supplement and the difference between complete mix operation and fixed film operation. The test with NaOH indicated that prolonged use caused sodium toxicity in the reactor. Loadings up to 75% of design loading were obtained with daily additives of 15% municipal digester supernatant, while those obtained with daily addition of 15% digested swine manure exceeded design loadings. Loadings obtained with thermophilic temperatures approximately equaled those obtained with mesophilic temperatures. Some initial difficulty was experienced with full-scale start-up. The optimized anaerobic digestion and energy recovery facility has an estimated net annual energy recovery of 5,252 GJ. 27 refs., 16 figs., 8 tabs

  16. Conversion of cheese whey into a fucose- and glucuronic acid-rich extracellular polysaccharide by Enterobacter A47.

    Science.gov (United States)

    Antunes, Sílvia; Freitas, Filomena; Alves, Vítor D; Grandfils, Christian; Reis, Maria A M

    2015-09-20

    Cheese whey was used as the sole substrate for the production of extracellular polysaccharides (EPS) by Enterobacter A47. An EPS concentration of 6.40 g L(-1) was reached within 3.2 days of cultivation, corresponding to a volumetric productivity of 2.00 g L(-1) d(-1). The produced EPS was mainly composed of glucuronic acid (29 mol%) and fucose (29 mol%), with lower contents of glucose and galactose (21 mol% each) and a total acyl groups content of 32 wt.%. The polymer had an average molecular weight of 1.8×10(6) Da, with a polydispersity index of 1.2, and an intrinsic viscosity of 8.0 dL g(-1). EPS aqueous solutions (1.0 wt.% in 0.01 M NaCl, at pH 8.0) presented a shear thinning behavior with a viscosity of the first Newtonian plateau approaching 0.1 Pas. This novel glucuronic acid-rich polymer possesses interesting rheological properties, which, together with its high content of glucuronic acid and fucose, two bioactive sugar monomers, confers it a great potential for use in high-value applications, such as cosmetics and pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Organic loading rate effect on the acidogenesis of cheese whey: a comparison between UASB and SBR reactors.

    Science.gov (United States)

    Calero, R; Iglesias-Iglesias, R; Kennes, C; Veiga, M C

    2017-09-16

    Volatile fatty acids (VFA) production and degree of acidification (DA) were investigated in the anaerobic treatment of cheese whey by comparison of two processes: a continuous process using a laboratory upflow anaerobic sludge blanket (UASB) reactor and a discontinuous process using a sequencing batch reactor (SBR). The main purpose of this work was to study the organic loading rate (OLR) effect on the yield of VFA in two kinds of reactors. The predominant products in the acidogenic process in both reactors were: acetate, propionate, butyrate and valerate. The maximum DA obtained was 98% in an SBR at OLR of 2.7 g COD L -1 d -1 , and 97% in the UASB at OLR at 15.1 g COD L -1 d -1 . The results revealed that the UASB reactor was more efficient at a medium OLR with a higher VFA yield, while with the SBR reactor, the maximum acidification was obtained at a lower OLR with changes in the VFA profile at different OLRs applied.

  18. Growth and development of tomato plants Lycopersicon Esculentum Mill. under different saline conditions by fertirrigation with pretreated cheese whey wastewater.

    Science.gov (United States)

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-01-01

    Pretreated cheese whey wastewater (CWW) has been used at different salinity levels: 1.75, 2.22, 3.22, 5.02 and 10.02 dS m(-1) and compared with fresh water (1.44 dS m(-1)). Two cultivars (cv.) of the tomato plant Lycopersicon Esculentum Mill. (Roma and Rio Grande) were exposed to saline conditions for 72 days. Salinity level (treatment) had no significant effects on the fresh weight and dry matter of the leaves, stems and roots. Similar results were found when specific leaf area, leaflet area, ramifications number of 1st order/plant, stem diameter and length, nodes number/stem and primary root length were considered. Conversely, the salinity level significantly influenced the Soil Plant Analysis Development (SPAD) index and the distance between nodes in the plant stem. In the first case, an increase of 21% was obtained in the salinity levels of 5.02 and 10.02 dS m(-1) for cv. Rio Grande, compared with the control run. The results showed that the pretreated CWW can be a source of nutrients for tomato plants, with reduced effects on growth and development.

  19. Effect of mixing mode on the behavior of an ASBBR with immobilized biomass in the treatment of cheese whey

    Directory of Open Access Journals (Sweden)

    L. H. S. Damasceno

    2008-06-01

    Full Text Available A hydrodynamic study of a mechanically stirred anaerobic sequencing batch biofilm reactor (ASBBR containing immobilized biomass on polyurethane foam was performed with the aim to determine homogeneity of the reactor based on total mixing time. Turbine or helix propellers were used for stirring at rotor speeds of 100, 200, 300 and 500 rpm. Experimental values obtained were fitted to a Boltzmann sigmoid. Homogenization times of the reactor were negligible when compared to the 8-h cycle time for all conditions studied. At low propeller rotations the turbine propeller showed the best performance. For higher rotations total mixing times were similar for both propellers; however the helix propeller had better homogeneity conditions. At a subsequent stage the system was operated in batch mode treating cheese whey at concentrations of 500, 1000 and 2000 mgCOD/L and rotations of 200, 300 and 500 rpm. In these assays the importance of the propeller became evident not only for mixing, but also for substrate flow across the bed containing immobilized biomass. Due to axial flow, the helix propeller offered better mass transfer conditions, evidenced by improved organic matter conversion and lower production of total volatile acids.

  20. Improving EGSB reactor performance for simultaneous bioenergy and organic acid production from cheese whey via continuous biological H2 production.

    Science.gov (United States)

    Ramos, Lucas Rodrigues; Silva, Edson Luiz

    2017-07-01

    To evaluate the influence of hydraulic retention time (HRT) and cheese whey (CW) substrate concentration (15 and 25 g lactose l -1 ) on the performance of EGSB reactors (R15 and R25, respectively) for H 2 production. A decrease in the HRT from 8 to 4 h favored the H 2 yield and H 2 production rate (HPR) in R15, with maximum values of 0.86 ± 0.11 mmol H 2 g COD -1 and 0.23 ± 0.024 l H 2 h -1 l -1 , respectively. H 2 production in R25 was also favored at a HRT of 4 h, with maximum yield and HPR values of 0.64 ± 0.023 mmol H 2 g COD -1 and 0.31 ± 0.032 l H 2 h -1 l -1 , respectively. The main metabolites produced were butyric, acetic and lactic acids. The EGSB reactor was evaluated as a viable acidogenic step in the two-stage anaerobic treatment of CW for the increase of COD removal efficiency and biomethane production.

  1. Native whey protein with high levels of leucine results in similar post-exercise muscular anabolic responses as regular whey protein: a randomized controlled trial.

    Science.gov (United States)

    Hamarsland, Håvard; Nordengen, Anne Lene; Nyvik Aas, Sigve; Holte, Kristin; Garthe, Ina; Paulsen, Gøran; Cotter, Matthew; Børsheim, Elisabet; Benestad, Haakon B; Raastad, Truls

    2017-01-01

    Protein intake is essential to maximally stimulate muscle protein synthesis, and the amino acid leucine seems to possess a superior effect on muscle protein synthesis compared to other amino acids. Native whey has higher leucine content and thus a potentially greater anabolic effect on muscle than regular whey (WPC-80). This study compared the acute anabolic effects of ingesting 2 × 20 g of native whey protein, WPC-80 or milk protein after a resistance exercise session. A total of 24 young resistance trained men and women took part in this double blind, randomized, partial crossover, controlled study. Participants received either WPC-80 and native whey ( n  = 10), in a crossover design, or milk ( n  = 12). Supplements were ingested immediately (20 g) and two hours after (20 g) a bout of heavy-load lower body resistance exercise. Blood samples and muscle biopsies were collected to measure plasma concentrations of amino acids by gas-chromatography mass spectrometry, muscle phosphorylation of p70S6K, 4E-BP1 and eEF-2 by immunoblotting, and mixed muscle protein synthesis by use of [ 2 H 5 ]phenylalanine-infusion, gas-chromatography mass spectrometry and isotope-ratio mass spectrometry. Being the main comparison, differences between native whey and WPC-80 were analysed by a one-way ANOVA and comparisons between the whey supplements and milk were analysed by a two-way ANOVA. Native whey increased blood leucine concentrations more than WPC-80 and milk ( P  whey ingestion induced a greater phosphorylation of p70S6K than milk 180 min after exercise ( P  = 0.03). Muscle protein synthesis rates increased 1-3 h hours after exercise with WPC-80 (0.119%), and 1-5 h after exercise with native whey (0.112%). Muscle protein synthesis rates were higher 1-5 h after exercise with native whey than with milk (0.112% vs. 0.064, P  = 0.023). Despite higher-magnitude increases in blood leucine concentrations with native whey, it was not superior to WPC-80

  2. Barrier, mechanical and optical properties of whey protein concentrate films

    Directory of Open Access Journals (Sweden)

    Viviane Machado Azevedo

    2014-08-01

    Full Text Available Whey is recognized as a valuable source of high quality protein and, when processed as protein concentrate, may be used in the production of biodegradable films. The objective of the study was to develop films of whey protein concentrate 80% (WPC at concentrations of 6, 8, 10 and 12% and evaluate the influence of this factor in the barrier, mechanical and optical properties of the films. Treatments showed moisture content with a mean value of 22.10% ± 0.76and high solubility values between 56.67 to 62.42%. Thus, there is little or no influence of varying the concentration of WPC in these properties and high hydrophilicity of the films. With increasing concentration of WPC, increases the water vapor permeability of the films (7.42 x 10-13 to 3.49 x 10-12 g.m-1.s-1.Pa-1. The treatment at the concentration of 6% of WPC showed a higher modulus of elasticity (287.90 ± 41.79 MPa. Thegreater rigidity in films with higher concentrations is possibly due to the greater number of bonds between molecules of the polymeric matrix. The films have the same puncture resistance. The increased concentration of WPC promotes resistance to the action of a localized force. In general, films of whey protein concentrate in the tested concentrations exhibited slightly yellowish color and transparency, and can be used in food packaging that requiring intermediate permeability to water vapor, to keep moisture and texture desired.

  3. Effect of whey protein on the In Vivo Release of Aldehydes.

    NARCIS (Netherlands)

    Weel, K.G.C.; Boelrijk, A.E.M.; Burger, J.J.; Claassen, N.E.; Gruppen, H.; Voragen, A.G.J.

    2003-01-01

    Retention of aldehydes by whey proteins in solutions buffered at a range of pH values was studied under static and dynamic headspace conditions and in vivo in exhaled air. Static headspace measurements showed a clear increase in retention in the presence of whey proteins for aldehydes with longer

  4. Fractionation of whey protein isolate with supercritical carbon dioxide – process modeling and cost estimation

    Science.gov (United States)

    An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO2) as an acid to produce enriched fractions of alpha-lactalbumin (alpha-La) and beta-lactoglobulin (beta-Lg) from a commercial whey protein isolate (WPI) containing 55% ...

  5. Ca2+-Induced Cold Set Gelation of Whey Protein Isolate Fibrils

    NARCIS (Netherlands)

    Bolder, S.G.; Hendrickx, H.; Sagis, L.M.C.; Linden, van der E.

    2006-01-01

    In this paper we describe the rheological behaviour of Ca2+-induced cold-set gels of whey protein mixtures. Coldset gels are important applications for products with a low thermal stability. In previous work [1], we determined the state diagram for whey protein mixtures that were heated for 10 h at

  6. Comparison of quality characteristics of Çökelek and Lor cheeses

    African Journals Online (AJOL)

    enoh

    2012-03-29

    Mar 29, 2012 ... amounts of casein and whey proteins and cheap products of low ... AND METHODS. Raw cows' milk and whey used in this study were obtained from the ... Fat and salt in TS of the experimental cheeses were determined by ...

  7. PRODUCTION OF FUNGAL MYCELIAL PROTEIN IN SUBMERGED CULTURE OF SOYBEAN WHEY.

    Science.gov (United States)

    FALANGHE, H; SMITH, A K; RACKIS, J J

    1964-07-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.

  8. Production of Fungal Mycelial Protein in Submerged Culture of Soybean Whey

    Science.gov (United States)

    Falanghe, Helcio; Smith, A. K.; Rackis, J. J.

    1964-01-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content. PMID:14199023

  9. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, S K; Vendelbo, M H

    2014-01-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohy......In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD...... or contraction mode effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training – irrespective of contraction mode....

  10. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways.

    Science.gov (United States)

    Corrochano, Alberto R; Buckin, Vitaly; Kelly, Phil M; Giblin, Linda

    2018-03-28

    Oxidative stress contributes to cell injury and aggravates several chronic diseases. Dietary antioxidants help the body to fight against free radicals and, therefore, avoid or reduce oxidative stress. Recently, proteins from milk whey liquid have been described as antioxidants. This review summarizes the evidence that whey products exhibit radical scavenging activity and reducing power. It examines the processing and treatment attempts to increase the antioxidant bioactivity and identifies 1 enzyme, subtilisin, which consistently produces the most potent whey fractions. The review compares whey from different milk sources and puts whey proteins in the context of other known food antioxidants. However, for efficacy, the antioxidant activity of whey proteins must not only survive processing, but also upper gut transit and arrival in the bloodstream, if whey products are to promote antioxidant levels in target organs. Studies reveal that direct cell exposure to whey samples increases intracellular antioxidants such as glutathione. However, the physiological relevance of these in vitro assays is questionable, and evidence is conflicting from dietary intervention trials, with both rats and humans, that whey products can boost cellular antioxidant biomarkers. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Dynamic gastric digestion of a commercial whey protein concentrate†.

    Science.gov (United States)

    Miralles, Beatriz; Del Barrio, Roberto; Cueva, Carolina; Recio, Isidra; Amigo, Lourdes

    2018-03-01

    A dynamic gastrointestinal simulator, simgi ® , has been applied to assess the gastric digestion of a whey protein concentrate. Samples collected from the outlet of the stomach have been compared to those resulting from the static digestion protocol INFOGEST developed on the basis of physiologically inferred conditions. Progress of digestion was followed by SDS-PAGE and LC-MS/MS. By SDS-PAGE, serum albumin and α-lactalbumin were no longer detectable at 30 and 60 min, respectively. On the contrary, β-lactoglobulin was visible up to 120 min, although in decreasing concentrations in the dynamic model due to the gastric emptying and the addition of gastric fluids. Moreover, β-lactoglobulin was partly hydrolysed by pepsin probably due to the presence of heat-denatured forms and the peptides released using both digestion models were similar. Under dynamic conditions, a stepwise increase in number of peptides over time was observed, while the static protocol generated a high number of peptides from the beginning of digestion. Whey protein digestion products using a dynamic stomach are consistent with those generated with the static protocol but the kinetic behaviour of the peptide profile emphasises the effect of the sequential pepsin addition, peristaltic shaking, and gastric emptying on protein digestibility. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Carboxymethyl cellulose (CMC whey product as protein source for growing pigs 

    Directory of Open Access Journals (Sweden)

    Matti Näsi

    1982-12-01

    Full Text Available A digestibility and balance trial was performed with three growing pigs to evaluate the nutritive value and protein utilization of a carboxymethyl cellulose(CMC whey product used to replace 50 % or 100 % of the dried skim supplement in a barley-based diet. The effect of CMC whey on clinical chemical blood parameters was also investigated. The CMC whey protein contained 39.6 % crude protein and 36.0 % true protein in DM. The proportion of CMC in the product was 18.3% of DM. CMC whey had high contents of lysine, cystine, methionine and threonine: 10.3, 2.9, 2.1 and 5.6 g/16 g N, respectively. NFE digestibility was lower on the CMC whey diet than on the skim milk diet (P < 0.05. Faecal excretion of CMC averaged 59.0 %. Protein utilization was effective on the CMC whey diet: 69.9 % of absorbed N was retained. Judging from the blood analyses, the CMC whey product did not have any detrimental effect on the metabolism or health of the pigs. The CMC whey product is well suited as a protein supplement in pig feeding because of its high contents of essential amino acids.

  13. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles

    NARCIS (Netherlands)

    Martin, A.H.; Jong, G.A.H. de

    2012-01-01

    This paper investigates the possibility for iron fortification of food using protein gel particles in which iron is entrapped using cold-set gelation. The aim is to optimize the iron encapsulation efficiency of whey protein by giving the whey protein different heat treatment prior to gelation with

  14. In Vitro Digestibility of Rapeseed and Bovine Whey Protein Mixtures.

    Science.gov (United States)

    Joehnke, Marcel Skejovic; Rehder, Alina; Sørensen, Susanne; Bjergegaard, Charlotte; Sørensen, Jens Christian; Markedal, Keld Ejdrup

    2018-01-24

    Partial replacement of animal protein sources with plant proteins is highly relevant for the food industry, but potential effects on protein digestibility need to be established. In this study, the in vitro protein digestibility (IVPD) of four protein sources and their mixtures (50:50 w/w ratio) was investigated using a transient pepsin hydrolysis (1 h) followed by pancreatin (1 h). The protein sources consisted of napin-rich rapeseed (Brassica napus L.) protein concentrates (RPCs; RP1, RP2) prepared in pilot scale and major bovine whey proteins (WPs; α-LA, alpha-lactalbumin; β-LG, beta-lactoglobulin). IVPD of individual protein sources was higher for WPs compared to RPCs. The RP2/β-LG mixture resulted in an unexpected high IVPD equivalent to β-LG protein alone. Protein mixtures containing RP1 showed a new IVPD response type due to the negative influence of a high trypsin inhibitor activity (TIA) level. Improved IVPD of RP1 alone and in protein mixtures was obtained by lowering the TIA level using dithiothreitol (DTT). These results showed that napin-rich protein products prepared by appropriate processing can be combined with specific WPs in mixtures to improve the IVPD.

  15. Whey protein-based films incorporated with oregano essential oil

    Directory of Open Access Journals (Sweden)

    Sandra Prestes Lessa Fernandes Oliveira

    Full Text Available Abstract This study aimed to prepare whey protein-based films incorporated with oregano essential oil at different concentrations, and evaluate their properties and antimicrobial activity. Films were more flexible with increasing the concentration of oregano oil and water vapor permeability was higher in the films with oregano oil. Increasing the concentration of essential oil decreased the water solubility. The solubility of control film and film with 1.5% oregano oil was 20.2 and 14.0%, respectively. The addition of 1% of oregano oil improved the resistance of the films. The tensile strength for the control film was 66.0 MPa, while for the film with 1% of oregano oil was 108.7 MPa. Films containing 1.5% oregano oil showed higher antimicrobial activity. The zone of inhibition ranged from 0 to 1.7 cm. The results showed that the whey protein-based films incorporated with oregano essential oil has potential application as active packaging.

  16. Quantitative proteomic analysis of whey proteins in the colostrum and mature milk of yak (Bos grunniens).

    Science.gov (United States)

    Yang, Yongxin; Zhao, Xiaowei; Yu, Shumin; Cao, Suizhong

    2015-02-01

    Yak (Bos grunniens) is an important natural resource in mountainous regions. To date, few studies have addressed the differences in the protein profiles of yak colostrum and milk. We used quantitative proteomics to compare the protein profiles of whey from yak colostrum and milk. Milk samples were collected from 21 yaks after calving (1 and 28 d). Whey protein profiles were generated through isobaric tag for relative and absolute quantification (iTRAQ)-labelled proteomics. We identified 183 proteins in milk whey; of these, the expression levels of 86 proteins differed significantly between the whey from colostrum and milk. Haemoglobin expression showed the greatest change; its levels were significantly higher in the whey from colostrum than in mature milk whey. Functional analysis revealed that many of the differentially expressed proteins were associated with biological regulation and response to stimuli. Further, eight differentially expressed proteins involved in the complement and coagulation cascade pathway were enriched in milk whey. These findings add to the general understanding of the protein composition of yak milk, suggest potential functions of the differentially expressed proteins, and provide novel information on the role of colostral components in calf survival. © 2014 Society of Chemical Industry.

  17. Pasting and extrusion properties of mixed carbohydrates and whey protein isolate matrices

    Science.gov (United States)

    Mixed systems of whey protein isolate (WPI) or texturized WPI (tWPI) and different starches may form weak or strong gel pastes or rigid matrices depending on interactions. The paste viscoelasticity of starches from amioca, barley, corn starch, Hylon VII, plantain, and pea starch, mixed with whey pro...

  18. Effect of whey protein and a free amino acid mixture simulating whey protein on measures of satiety in normal-weight women.

    Science.gov (United States)

    Chungchunlam, Sylvia M S; Henare, Sharon J; Ganesh, Siva; Moughan, Paul J

    2016-11-01

    Dietary protein is considered more satiating than carbohydrate, and whey protein is more satiating than other protein sources. The purported satiating effect of whey protein may be due to direct effects of the unique mixture of proteins in whey, due to the effects of peptides released upon digestion and/or its amino acid composition. The objective of the present study was to compare the satiating effects of intact whey protein isolate (WPI) or a free amino acid mixture (AAM) simulating the amino acid composition of the WPI. A single-blind completely randomised block design included twenty, healthy, adult women (age 24·2 (sem 0·8) years) of normal weight (BMI 22·7 (sem 0·4) kg/m2). Following consumption of isoenergetic (approximately 1800 kJ) preload meals enriched (52 g amino acid equivalent) with WPI or AAM, consumption of an ad libitum test meal 120 min later and subjective feelings of appetite using visual analogue scales (VAS) were determined. There were no significant differences (P=0·24) in the ad libitum test meal intakes between the WPI (268·5 (sem 27·3) g) and the AAM (238·4 (sem 22·7) g) preload meals. Subjective VAS ratings of appetite did not differ significantly between the WPI and the AAM preload meals (P>0·05). Intact whey protein and a free AAM simulating the whey protein showed similar effects on satiety. This suggests that the satiating effect of whey protein may be related to its specific amino acid composition.

  19. Physical properties, molecular structures and protein quality of texturized whey protein isolate: effect of extrusion temperature

    Science.gov (United States)

    Extrusion is a powerful food processing operation, which utilizes high temperature and high shear force to produce a product with unique physical and chemical characteristics. Texturization of whey protein isolate (WPI) through extrusion for the production of protein fortified snack foods has provid...

  20. Microstructure and Composition of Full Fat Cheddar Cheese Made with Ultrafiltered Milk Retentate

    Science.gov (United States)

    Ong, Lydia; Dagastine, Raymond R.; Kentish, Sandra E.; Gras, Sally L.

    2013-01-01

    Milk protein is often standardised prior to cheese-making using low concentration factor ultrafiltration retentate (LCUFR) but the effect of LCUFR addition on the microstructure of full fat gel, curd and Cheddar cheese is not known. In this work, Cheddar cheeses were made from cheese-milk with or without LCUFR addition using a protein concentration of 3.7%–5.8% w/w. The fat lost to sweet whey was higher in cheese made from cheese-milk without LCUFR or from cheese-milk with 5.8% w/w protein. At 5.8% w/w protein concentration, the porosity of the gel increased significantly and the fat globules within the gel and curd tended to pool together, which possibly contributed to the higher fat loss in the sweet whey. The microstructure of cheese from cheese-milk with a higher protein concentration was more compact, consistent with the increased hardness, although the cohesiveness was lower. These results highlight the potential use of LCUFR for the standardization of protein concentration in cheese-milk to 4%–5% w/w (equivalent to a casein to total protein ratio of 77%–79% w/w) to increase yield. Beyond this concentration, significant changes in the gel microstructure, cheese texture and fat loss were observed. PMID:28239117

  1. Protein denaturation and functional properties of Lenient Steam Injection heat treated whey protein concentrate

    DEFF Research Database (Denmark)

    Dickow, Jonatan Ahrens; Kaufmann, Niels; Wiking, Lars

    2012-01-01

    Whey protein concentrate (WPC) was heat treated by use of the novel heat treatment method of Lenient Steam Injection (LSI) to elucidate new functional properties in relation to heat-induced gelation of heat treated WPC. Denaturation was measured by both DSC and FPLC, and the results of the two...... methods were highly correlated. Temperatures of up to 90 °C were applicable using LSI, whereas only 68 °C could be reached by plate heat exchange before coagulation/fouling. Denaturation of whey proteins increased with increasing heat treatment temperature up to a degree of 30–35% denaturation at 90 °C...

  2. Effects of Ultrasound Treatment on Physiochemical Properties and Antimicrobial Activities of Whey Protein-Totarol Nanoparticles.

    Science.gov (United States)

    Ma, Shuang; Shi, Ce; Wang, Cuina; Guo, Mingruo

    2017-10-01

    Totarol is a natural antimicrobial compound extracted from the heartwood of Podocarpus totara, a conifer native to New Zealand. The effects of whey protein-totarol nanoparticles treated with ultrasound on the physiochemical properties and the growth of Staphylococcus aureus were investigated. The particle size of whey protein-totarol nanoparticles was reduced by ultrasound treatment from 31.24 ± 5.31 to 24.20 ± 4.02 nm, and the size distribution was also narrowed by the treatment. Viscosity and modulus data indicated that the flow behaviors of whey protein-totarol nanoparticles seemed to be Newtonian and exerted a typical viscoelastic fluid at protein content of 15% (w/v). Rheological properties were more insensitive to ultrasonic time. Time-killing assays, agar diffusion tests, the cell membrane damage analysis, and microstructure were exploited to study the antibacterial properties of whey protein-totarol nanoparticles. The MIC of whey protein-totarol nanoparticles after ultrasound treatment decreased from 4 to 2 μg/mL compared with that without ultrasound treatment. Whey protein-totarol nanoparticles treated with ultrasound resulted in a significant (P whey protein-totarol nanoparticles were 12 and 36 mm for untreated and treated with ultrasound, respectively. The cell membrane damages and the microstructure changes also proved that whey protein-totarol nanoparticles treated with ultrasound had strong antibacterial activities against S. aureus and that the antibacterial effectiveness enhanced with the increasing of ultrasonic time. These findings suggested that whey protein-totarol nanoparticles treated with ultrasound were more effective against S. aureus than untreated nanoparticles.

  3. Application of infrared portable sensor technology for predicting perceived astringency of acidic whey protein beverages.

    Science.gov (United States)

    Wang, Ting; Tan, Siow-Ying; Mutilangi, William; Plans, Marcal; Rodriguez-Saona, Luis

    2016-12-01

    Formulating whey protein beverages at acidic pH provides better clarity but the beverages typically develop an unpleasant and astringent flavor. Our aim was to evaluate the application of infrared spectroscopy and chemometrics in predicting astringency of acidic whey protein beverages. Whey protein isolate (WPI), whey protein concentrate (WPC), and whey protein hydrolysate (WPH) from different manufacturers were used to formulate beverages at pH ranging from 2.2 to 3.9. Trained panelists using the spectrum method of descriptive analysis tested the beverages providing astringency scores. A portable Fourier transform infrared spectroscopy attenuated total reflectance spectrometer was used for spectra collection that was analyzed by multivariate regression analysis (partial least squares regression) to build calibration models with the sensory astringency scores. Beverage astringency scores fluctuated from 1.9 to 5.2 units and were explained by pH, protein type (WPC, WPI, or WPH), source (manufacturer), and their interactions, revealing the complexity of astringency development in acidic whey protein beverages. The WPC and WPH beverages showed an increase in astringency as the pH of the solution was lowered, but no relationship was found for WPI beverages. The partial least squares regression analysis showed strong relationship between the reference astringency scores and the infrared predicted values (correlation coefficient >0.94), giving standard error of cross-validation ranging from 0.08 to 0.12 units, depending on whey protein type. Major absorption bands explaining astringency scores were associated with carboxylic groups and amide regions of proteins. The portable infrared technique allowed rapid prediction of astringency of acidic whey protein beverages, providing the industry a novel tool for monitoring sensory characteristics of whey-containing beverages. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.

    Science.gov (United States)

    Wong, Douglas; Vasanthan, Thava; Ozimek, Lech

    2013-12-15

    This paper investigated the enhancement of thermal gelation properties when salt-soluble pea proteins were co-gelated with whey proteins in NaCl solutions, using different blend ratios, total protein concentrations, pH, and salt concentrations. Results showed that the thermal co-gelation of pea/whey proteins blended in ratio of 2:8 in NaCl solutions showed synergistic enhancement in storage modulus, gel hardness, paste viscosity and minimum gelation concentrations. The highest synergistic enhancement was observed at pH 6.0 as compared with pH 4.0 and 8.0, and at the lower total protein concentration of 10% as compared with 16% and 22% (w/v), as well as in lower NaCl concentrations of 0.5% and 1.0% as compared with 1.5%, 2.0%, 2.5%, and 3.0% (w/v). The least gelation concentrations were also lower in the different pea/whey protein blend ratios than in pure pea or whey proteins, when dissolved in 1.0% or 2.5% (w/v) NaCl aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Physical properties of pizza Mozzarella cheese manufactured under different cheese-making conditions.

    Science.gov (United States)

    Banville, V; Morin, P; Pouliot, Y; Britten, M

    2013-08-01

    The effect of manufacturing factors on the shreddability and meltability of pizza Mozzarella cheese was studied. Four experimental cheeses were produced with 2 concentrations of denatured whey protein added to milk (0 or 0.25%) and 2 renneting pH values (6.4 or 6.5). The cheeses were aged 8, 22, or 36d before testing. Shreddability was assessed by the presence of fines, size of the shreds, and adhesion to the blade after shredding at 4, 13, or 22°C. A semi-empirical method was developed to measure the matting behavior of shreds by simulating industrial bulk packaging. Rheological measurements were performed on cheeses with and without a premelting treatment to assess melt and postmelt cheese physical properties. Lowering the pH of milk at renneting and aging the cheeses generally decreased the fines production during shredding. Adding whey protein to the cheeses also altered the fines production, but the effect varied depending on the renneting and aging conditions. The shred size distribution, adhesion to the blade, and matting behavior of the cheeses were adversely affected by increased temperature at shredding. The melting profiles obtained by rheological measurements showed that better meltability can be achieved by lowering the pH of milk at renneting or aging the cheese. The premelted cheeses were found to be softer at low temperatures (50°C) compared with the cheeses that had not undergone the premelting treatment. Understanding and controlling milk standardization, curd acidification, and cheese aging are essential for the production of Mozzarella cheese with desirable shreddability and meltability. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. The Young's Modulus, Fracture Stress, and Fracture Strain of Gellan Hydrogels Filled with Whey Protein Microparticles.

    Science.gov (United States)

    Lam, Cherry Wing Yu; Ikeda, Shinya

    2017-05-01

    Texture modifying abilities of whey protein microparticles are expected to be dependent on pH during heat-induced aggregation of whey protein in the microparticulation process. Therefore, whey protein microparticles were prepared at either pH 5.5 or 6.8 and their effects on small and large deformation properties of gellan gels containing whey protein microparticles as fillers were investigated. The majority of whey protein microparticles had diameters around 2 μm. Atomic force microscopy images showed that whey protein microparticles prepared at pH 6.8 partially collapsed and flatted by air-drying, while those prepared at pH 5.5 did not. The Young's modulus of filled gels adjusted to pH 5.5 decreased by the addition of whey protein microparticles, while those of filled gels adjusted to pH 6.8 increased with increasing volume fraction of filler particles. These results suggest that filler particles were weakly bonded to gel matrices at pH 5.5 but strongly at pH 6.8. Whey protein microparticles prepared at pH 5.5 showed more enhanced increases in the Young's modulus than those prepared at pH 6.8 at volume fractions between 0.2 and 0.4, indicating that microparticles prepared at pH 5.5 were mechanically stronger. The fracture stress of filled gels showed trends somewhat similar to those of the Young's modulus, while their fracture strains decreased by the addition of whey protein microparticles in all examined conditions, indicating that the primary effect of these filler particles was to enhance the brittleness of filled gels. © 2017 Institute of Food Technologists®.

  7. The effect of natural whey proteins on mechanisms of blood pressure regulation

    Directory of Open Access Journals (Sweden)

    Halina Car

    2014-02-01

    Full Text Available Whey is a rich natural source of peptides and amino acids. It has been reported in numerous studies that biological active peptides isolated from cow’s milk whey may affect blood pressure regulation. Studies on animals and humans have shown that α-lactalbumin and β-lactoglobulin obtained from enzymatically hydrolysed whey inhibit angiotensin converting enzyme (ACE, while lactorphins lower blood pressure by normalizing endothelial function or by opioid receptors dependent mechanism. Whey proteins or their bioactive fragments decrease total cholesterol, LDL fraction and triglycerides, thus reducing the risk factors of cardiovascular diseases. The aim of this review is to discuss the effects of whey proteins on the mechanisms of blood pressure regulation.

  8. Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese.

    Science.gov (United States)

    Wagh, Y R; Pushpadass, Heartwin A; Emerald, F Magdaline Eljeeva; Nath, B Surendra

    2014-12-01

    Casein and whey protein concentrate (WPC) films, plasticized with glycerol and sorbitol independently, were prepared by casting. The film thickness, water vapour and oxygen permeation and tensile and moisture sorption properties of the films were determined. The tensile strength (TS), tensile strain (TE) and elastic modulus (EM) of the films ranged from 0.71 to 4.58 MPa, 19.22 to 66.63 % and 2.05 to 6.93 MPa, respectively. The film properties were influenced by the type of biopolymer (casein and whey protein concentrate), plasticizer and its concentration. Increasing the plasticizer concentration, increased the film thickness, TE and water vapour permeability (WVP), but decreased the TS and EM. As the concentration of plasticizer increased to the highest level, the film thickness increased from 0.168 to 0.305 mm for glycerol-plasticized films and from 0.251 to 0.326 mm for sorbitol-plasticized films. The film thickness increased because the amount of plasticizer in the film network increased and the amount of biopolymer remained same. Casein films showed superior tensile properties as compared to WPC films. The WVP of both casein and WPC films lied between 3.87 and 13.97 g.mm./(m(2).h.kPa). The moisture sorption isotherms of both films were typical of high-protein material, and were adequately described by the GAB model. The oxygen permeability of casein films was relatively lower than that of WPC films, regardless of the plasticizer used. The sensory data revealed that the organoleptic quality of Cheddar cheese was unaffected by milk-protein film packaging.

  9. Exploitation of dark fermented effluent of cheese whey by co-culture of Rhodobacter sphaeroides and Bacillus firmus for photo-hydrogen production.

    Science.gov (United States)

    Pandey, A; Pandey, A

    2017-07-31

    In this study photo-hydrogen production from cheese whey dark fermentation (DF) effluent by the co-culture of Rhodobacter sphaeroides -NMBL-01 and Bacillus firmus - NMBL-03 has been reported. The effect of pH, initial chemical oxygen demand (COD) and the concentration effect of FeSO4.7H2O on photo-hydrogen production have been investigated. The end products of dark fermentation effluent of cheese whey were mainly comprised of soluble organic acids, i.e. butyric acid and lactic acid. The batch process was carried out under light intensity of 2.5 kLux at 32 ± 2oC without any addition of extra carbon and nitrogen source. The single parameter optimization studies revealed optimum pH 6.5, initial COD 4.71 g/L and supplementation of Fe2+ concentration 100 mg/L. The maximum cumulative hydrogen production and yield were found to be 469 ± 45.8 ml H2/L and 146.56 ± 14.31 ml H2/g COD reduced (67.9% reduction in COD) respectively. The mutual interactions among the process parameters were also investigated by three factorial Box-Behnken design of response surface methodology. The optimized experimental values were found concurrent with the calculated values obtained from the theoretical model.

  10. Whey protein potentiates the intestinotrophic action of glucagon-like peptide-2 in parenterally fed rats

    DEFF Research Database (Denmark)

    Liu, Xiaowen; Murali, Sangita G; Holst, Jens J

    2009-01-01

    protein component, casein, soy, or whey protein, potentiates the intestinal growth response to GLP-2 in rats with PN-induced mucosal hypoplasia. Rats received PN and continuous intravenous infusion of GLP-2 (100 microg/kg/day) for 7 days. Six EN groups received PN+GLP-2 for days 1-3 and partial PN+GLP-2...... plus EN for days 4-7. EN was provided by ad libitum intake of a semielemental liquid diet with different protein sources: casein, hydrolyzed soy, whey protein concentrate (WPC), and hydrolyzed WPC+casein. Controls received PN+GLP-2 alone. EN induced significantly greater jejunal sucrase activity...... whey protein, and not casein or soy, potentiated the ability of GLP-2 to reverse PN-induced mucosal hypoplasia and further increase ileal villus height, crypt depth, and mucosa cellularity compared with PN+GLP-2 alone, P whey protein to induce greater mucosal surface area...

  11. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Cetinkaya Dokgoez, F. Tuba; Keskin, Tugba; Korkmaz, Kemal S.; Syed, Hamid M. [Bioengineering Department, Faculty of Engineering, Ege University, EBILTEM, Bornova, 35100 Izmir (Turkey)

    2009-09-15

    Hydrogen (H{sub 2}) production from cheese processing wastewater via dark anaerobic fermentation was conducted using mixed microbial communities under thermophilic conditions. The effects of varying hydraulic retention time (HRT: 1, 2 and 3.5 days) and especially high organic load rates (OLR: 21, 35 and 47 g chemical oxygen demand (COD)/l/day) on biohydrogen production in a continuous stirred tank reactor were investigated. The biogas contained 5-82% (45% on average) hydrogen and the hydrogen production rate ranged from 0.3 to 7.9 l H{sub 2}/l/day (2.5 l/l/day on average). H{sub 2} yields of 22, 15 and 5 mmol/g COD (at a constant influent COD of 40 g/l) were achieved at HRT values of 3.5, 2, and 1 days, respectively. On the other hand, H{sub 2} yields were monitored to be 3, 9 and 6 mmol/g COD, for OLR values of 47, 35 and 21 g COD/l/day, when HRT was kept constant at 1 day. The total measurable volatile fatty acid concentration in the effluent (as a function of influent COD) ranged between 118 and 27,012 mg/l, which was mainly composed of acetic acid, iso-butyric acid, butyric acid, propionic acid, formate and lactate. Ethanol and acetone production was also monitored from time to time. To characterize the microbial community in the bioreactor at different HRTs, DNA in mixed liquor samples was extracted immediately for PCR amplification of 16S RNA gene using eubacterial primers corresponding to 8F and 518R. The PCR product was cloned and subjected to DNA sequencing. The sequencing results were analyzed by using MegaBlast available on NCBI website which showed 99% identity to uncultured Thermoanaerobacteriaceae bacterium. (author)

  12. Effects of heat on physicochemical properties of whey protein-stabilised emulsions

    NARCIS (Netherlands)

    Sliwinski, E.L.; Zoet, F.D.; Boekel, van M.A.J.S.; Wouters, J.T.M.; Roubos-van den Hil, P.J.

    2003-01-01

    The effect of heating has been studied for whey protein-stabilised oil-in-water emulsions (25.0% (w/w) soybean oil, 3.0% (w/w) whey protein isolate, pH 7.0). These emulsions were heated between 55 and 95 degreesC as a function of time and the effect on particle size distribution, adsorbed protein

  13. Acne located on the trunk, whey protein supplementation: Is there any association?

    Directory of Open Access Journals (Sweden)

    Fatma Pelin Cengiz

    2017-03-01

    Full Text Available Whey protein is a source of protein that was isolated from milk. Whey proteins are composed of higher levels of essential amino acids. The role of diet in acne etiology has been investigated for several years. It was established that milk and milk products can trigger acneiform lesions, and recent evidence supports the role of whey protein supplements in acne. Herein, we report 6 healthy male adolescent patients developing acne located only to the trunk after the consumption of whey protein supplements for faster bodybuilding. This is the first observation which specified the location of acneiform lesions among bodybuilders. In our opinion, a trendy and common health problem is beginning among adolescents in the gyms.

  14. Acne located on the trunk, whey protein supplementation: Is there any association?

    Science.gov (United States)

    Cengiz, Fatma Pelin; Cevirgen Cemil, Bengu; Emiroglu, Nazan; Gulsel Bahali, Anil; Onsun, Nahide

    2017-01-01

    Whey protein is a source of protein that was isolated from milk. Whey proteins are composed of higher levels of essential amino acids. The role of diet in acne etiology has been investigated for several years. It was established that milk and milk products can trigger acneiform lesions, and recent evidence supports the role of whey protein supplements in acne. Herein, we report 6 healthy male adolescent patients developing acne located only to the trunk after the consumption of whey protein supplements for faster bodybuilding. This is the first observation which specified the location of acneiform lesions among bodybuilders. In our opinion, a trendy and common health problem is beginning among adolescents in the gyms. PMID:28326292

  15. Whey Protein Improves Marathon-Induced Injury and Exercise Performance in Elite Track Runners.

    Science.gov (United States)

    Huang, Wen-Ching; Chang, Yung-Cheng; Chen, Yi-Ming; Hsu, Yi-Ju; Huang, Chi-Chang; Kan, Nai-Wen; Chen, Sheng-Shih

    2017-01-01

    Whey protein has been widely applied to athletes and the fitness field for muscle growth and performance improvement. Limited studies focused on the beneficial effects of whey on aerobic exercise according to biochemical assessments. In the current study, 12 elite male track runners were randomly assigned to whey and maltodextrin groups for 5 weeks' supplementation. The aim of this study was to investigate the effect of whey protein on physiological adaptions and exercise performance. During this period, three time points (pre-, post-, and end-test) were used to evaluate related biochemical parameters, body composition, and performance. The post-test was set 1 day after a marathon for injury status evaluation and the end-test was also assessed after 1-week recovery from endurance test. The results showed that the whey group exhibited significantly lower aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and creatine kinase indicators after the marathon (post-test), as well as at the end-test ( p <0.016). The endurance performance in twelve-minute walk/run was also significantly elevated ( p <0.012) possibly due to an increase in the muscle mass and amelioration of exercise injuries. In the current study, we demonstrated that whey protein can also be used for aerobic exercise for better physiological adaptation, in addition to resistance training. Whey protein could be also a potential nutrient supplement with a variety of benefits for amateur runners.

  16. 7 CFR 58.717 - Whey.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Whey. 58.717 Section 58.717 Agriculture Regulations of....717 Whey. Whey used in cheese products should meet the requirements equivalent to USDA Extra Grade except that the moisture requirement for dry whey may be waived. ...

  17. The Reasearch on the Anti-Fatigue Effect of Whey Protein Powder in Basketball Training.

    Science.gov (United States)

    Ronghui, Sun

    2015-01-01

    In order to observe the effects of whey protein powder on hematological indexes of players majoring in physical education in the basketball training, the authors divided the players randomly into a control group and a nutrition group. Athletes complete the 30 minutes quantitative exercise using cycle ergometer respectively before the trial and after one month trial. Then we exsanguinated immediately after exercise, extracted heparin and measured hemoglobin, red blood cell count, hematocrit and mean corpuscular volume and other hematological indices. The results showed that after taking whey protein powder, the HB, RBC, HCT of nutrition group was significantly higher that the control group. This suggests that in high-intensity training, taking whey protein powder can cause changes of HB, RBC and HCT in human body, meanwhile MCV essentially the same. So whey protein powder can improve exercise capacity, and has anti-fatigue effect.

  18. Distribution of Animal Drugs among Curd, Whey, and Milk Protein Fractions in Spiked Skim Milk and Whey.

    Science.gov (United States)

    Shappell, Nancy W; Shelver, Weilin L; Lupton, Sara J; Fanaselle, Wendy; Van Doren, Jane M; Hakk, Heldur

    2017-02-01

    It is important to understand the partitioning of drugs in processed milk and milk products, when drugs are present in raw milk, in order to estimate the potential consumer exposure. Radioisotopically labeled erythromycin, ivermectin, ketoprofen, oxytetracycline, penicillin G, sulfadimethoxine, and thiabendazole were used to evaluate the distribution of animal drugs among rennet curd, whey, and protein fractions from skim cow milk. Our previous work reported the distribution of these same drugs between skim and fat fractions of milk. Drug distribution between curd and whey was significantly correlated (R 2 = 0.70) to the drug's lipophilicity (log P), with improved correlation using log D (R 2 = 0.95). Distribution of drugs was concentration independent over the range tested (20-2000 nM). With the exception of thiabendazole and ivermectin, more drug was associated with whey protein than casein on a nmol/g protein basis (oxytetracycline experiment not performed). These results provide insights into the distribution of animal drug residues, if present in cow milk, among milk fractions, with possible extrapolation to milk products.

  19. Whey protein reduces early life weight gain in mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Britt Tranberg

    Full Text Available An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001-0.05. Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001. Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01 and glucose clearance was improved after an oral glucose challenge (P<0.05. Plasma cholesterol was lowered by whey compared to casein (P<0.001. The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05 whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey.

  20. Invited review: A commentary on predictive cheese yield formulas.

    Science.gov (United States)

    Emmons, D B; Modler, H W

    2010-12-01

    Predictive cheese yield formulas have evolved from one based only on casein and fat in 1895. Refinements have included moisture and salt in cheese and whey solids as separate factors, paracasein instead of casein, and exclusion of whey solids from moisture associated with cheese protein. The General, Barbano, and Van Slyke formulas were tested critically using yield and composition of milk, whey, and cheese from 22 vats of Cheddar cheese. The General formula is based on the sum of cheese components: fat, protein, moisture, salt, whey solids free of fat and protein, as well as milk salts associated with paracasein. The testing yielded unexpected revelations. It was startling that the sum of components in cheese was SofC) in cheese. The apparent low estimation of SofC led to the idea of adjusting upwards, for each vat, the 5 measured components in the formula by the observed SofC, as a fraction. The mean of the adjusted predicted yields as percentages of actual yields was 99.99%. The adjusted forms of the General, Barbano, and Van Slyke formulas gave predicted yields equal to the actual yields. It was apparent that unadjusted yield formulas did not accurately predict yield; however, unadjusted PY%AY can be useful as a control tool for analyses of cheese and milk. It was unexpected that total milk protein in the adjusted General formula gave the same predicted yields as casein and paracasein, indicating that casein or paracasein may not always be necessary for successful yield prediction. The use of constants for recovery of fat and protein in the adjusted General formula gave adjusted predicted yields equal to actual yields, indicating that analyses of cheese for protein and fat may not always be necessary for yield prediction. Composition of cheese was estimated using a predictive formula; actual yield was needed for estimation of composition. Adjusted formulas are recommended for estimating target yields and cheese yield efficiency. Constants for solute exclusion

  1. Emerging trends in nutraceutical applications of whey protein and its derivatives

    OpenAIRE

    Patel, Seema

    2015-01-01

    The looming food insecurity demands the utilization of nutrient-rich residues from food industries as value-added products. Whey, a dairy industry waste has been characterized to be excellent nourishment with an array of bioactive components. Whey protein comprises 20 % of total milk protein and it is rich in branched and essential amino acids, functional peptides, antioxidants and immunoglobulins. It confers benefits against a wide range of metabolic diseases such as cardiovascular complicat...

  2. Contribution to the production of lactulose-rich whey by in situ electro-isomerization of lactose and effect on whey proteins after electro-activation as confirmed by matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Kareb, Ourdia; Champagne, Claude P; Aïder, Mohammed

    2016-04-01

    Cheese-whey, a major co-product of the dairy industry, has recently been the subject of many technological applications. We studied the bioconversion of whey into valuable bio-products such as a potential lactulose prebiotic and compounds with antioxidant properties. This paper examines efficiency, safety, and economics of electro-activation as an eco-friendly technology for a maximum valorization of whey. Thus, a bottom-up approach was therefore addressed. The effect of 4 experimental parameters--low working temperatures (0, 10, and 25 °C), current intensities (400, 600, and 800 mA), volume conditions (100, 200, and 300 mL), and feed concentrations [7, 14, and 28% (wt/vol)]--on lactose-whey isomerization to lactulose under electro-activation process were studied. Structural characteristics of whey proteins and antioxidant functionality were also investigated. The results showed a compromise to be reached between both parameters. Therefore, the maximum yield of 35% of lactulose was achieved after 40 min of reaction at the working temperature of 10 °C under 400 mA electric current field and 100-mL volume conditions with using feed solution at 7% (wt/vol). The isomerization of lactose to lactulose is accomplished by subsequent degradation to galactose, but only at a very small amount. Additionally, whey electro-activation showed significantly elevated antioxidant capacity compared with the untreated samples. The enhancement of antioxidant functionality of whey electro-activation resulted from the synergistic effect of its partial hydrolysis and the formation of antioxidant components that were able to scavenge free radicals. In conclusion, the findings of this study reveal that the whey treated by the safety electro-activation technology has both lactulose-prebiotic and antioxidant properties and could have a substantial application in the manufacture of pharmaceutical and functional foods. Copyright © 2016 American Dairy Science Association. Published by Elsevier

  3. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 1 physicochemical and antibacterial properties of native and modified whey proteins at pH 2 to 7

    NARCIS (Netherlands)

    Keppler, Julia Katharina; Martin, Dierk; Garamus, Vasil M.; Berton-Carabin, Claire; Nipoti, Elia; Coenye, Tom; Schwarz, Karin

    2017-01-01

    Whey protein isolate (WPI) (∼75% β-lactoglobulin (β-LG)) is frequently used in foods as a natural emulsifying agent. However, at an acidic pH value, its emulsification capacity is greatly reduced. The covalent attachment of natural electrophilic hydrophobic molecules to WPI proteins is a

  4. Whey Protein Reduces Early Life Weight Gain in Mice Fed a High-Fat Diet

    Science.gov (United States)

    Tranberg, Britt; Hellgren, Lars I.; Lykkesfeldt, Jens; Sejrsen, Kristen; Jeamet, Aymeric; Rune, Ida; Ellekilde, Merete; Nielsen, Dennis S.; Hansen, Axel Kornerup

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (Pwhey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, Pwhey group (Pwhey compared to casein (Pwhey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey. PMID:23940754

  5. Antioxidant Effects of Sheep Whey Protein on Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Efthalia Kerasioti

    2016-01-01

    Full Text Available Excessive production of reactive oxygen species (ROS may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP from tert-butyl hydroperoxide- (tBHP- induced oxidative stress in endothelial cells (EA.hy926 were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS, protein carbonyls (CARB, and oxidized glutathione (GSSG were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL−1 increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress.

  6. Development of parmesan cheese production from local cow milk

    Science.gov (United States)

    Aliwarga, Lienda; Christianti, Elisabeth Novi; Lazarus, Chrisella

    2017-05-01

    Parmesan cheese is one of the dairy products which is used in various foods, such as pasta, bakery product, and pizza. It has a hard texture due to aging process for at least two years. Long aging period inhibited the production of parmesan cheese while consumer demands were increasing gradually. This research was conducted to figure out the effect of starter culture and rennet dose to the production of parmesan cheese. This research consists of (1) pasteurization of 1,500 ml milk at 73°C; and (2) main cheese making process that comprised of fermentation process and the addition of rennet. In latter stage, milk was converted into curd. Variations were made for the dose of bacteria culture and rennet. Both variables correlated to the fermentation time and characteristics of the produced cheese. The analysis of the produced cheese during testing stage included measured protein and cheese yield, whey pH, water activity, and moisture content. Moreover, an organoleptic test was done in a qualitative manner. The results showed that the dose of bacteria culture has a significant effect to the fermentation time, protein yield, and cheese yield. Meanwhile, rennet dose significantly affected cheese yield, pH of whey, and water activity. The highest protein yield (93.1%) was obtained at 0.6 ml of culture and 0.5 ml of rennet while the maximum cheese yield (6.81%) was achieved at 0.4 ml of culture and 0.1 ml of rennet. The water activity of produced cheeses was lower compared to the water activity of common parmesan cheese (ca. 0.6). For the organoleptic test, 0.4 ml of bacterial culture and 0.5 ml of rennet produced the most preferred cheese flavor compared to other variations.

  7. Quantification of whey proteins by reversed phase-HPLC and effectiveness of mid-infrared spectroscopy for their rapid prediction in sweet whey.

    Science.gov (United States)

    Sturaro, Alba; De Marchi, Massimo; Masi, Antonio; Cassandro, Martino

    2016-01-01

    In the dairy industry, membrane filtration is used to reduce the amount of whey waste and, simultaneously, to recover whey proteins (WP). The composition of WP can strongly affect the filtration treatment of whey, and rapid determination of WP fractions would be of interest for dairy producers to monitor WP recovery. This study aimed to develop mid-infrared spectroscopy (MIRS) prediction models for the rapid quantification of protein in sweet whey, using a validated rapid reversed phase (RP)-HPLC as a reference method. Quantified WP included α-lactalbumin (α-LA), β-lactoglobulin (β-LG) A and B, bovine serum albumin, caseinomacropeptides, and proteose peptone. Validation of RP-HPLC was performed by calculating the relative standard deviation (RSD) in repeatability and reproducibility tests for WP retention time and peak areas. Samples of liquid whey (n=187) were analyzed by RP-HPLC and scanned through MIRS to collect spectral information (900 to 4,000 cm(-1)); statistical analysis was carried out through partial least squares regression and random cross-validation procedure. Retention times in RP-HPLC method were stable (RSD between 0.03 and 0.80%), whereas the RSD of peak area (from 0.25 to 8.48%) was affected by WP relative abundance. Higher coefficients of determination in validation for MIRS model were obtained for protein fractions present in whey in large amounts, such as β-LG (0.58), total identified WP (0.58), and α-LA (0.56). Results of this study suggest that MIRS is an easy method for rapid quantification of detail protein in sweet whey, even if better resolution was achieved with the method based on RP-HPLC. The prediction of WP in sweet whey by MIRS might be used for screening and for classifying sweet whey according to its total and individual WP contents. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Biochemical studies on gamma irradiated male rats fed on whey protein concentrate

    International Nuclear Information System (INIS)

    Mohamed, N.E; Anwar, M.M.; El-bostany, N.A.

    2010-01-01

    This study carried out to investigate the possible role of whey protein protein concentrate in ameliorating some biochemical disorders induced in gamma irradiated male rats. Forty eight male albino rats were divided into four equal groups: Group 1 fed on normal diet during experimental period. Group 2 where the diet contain 15 % whey protein concentrate instead of soybean protein . Group 3 rats were exposed to whole body gamma radiation with single dose of 5 Gy and fed on the normal diet. Group 4 rate exposed to 5 Gy then fed on diet contain 15 % whey protein concentrate, the rats were decapitated after two and four weeks post irradiation. Exposure to whole body irradiation caused significant elevation of serum ALT, AST, glucose, urea, creatinine and total triiodothyronine with significant decrease in total protein, albumin and thyroxin. Irradiated rats fed on whey protein concentrate revealed significant improvement of some biochemical parameters. It could be conclude that whey protein concentrate may be considered as a useful protein source for reducing radiation injury via metabolic pathway.

  9. Production of fermented cheese whey-based beverage using kefir grains as starter culture: evaluation of morphological and microbial variations.

    Science.gov (United States)

    Magalhães, Karina Teixeira; Pereira, Maria Alcina; Nicolau, Ana; Dragone, Giuliano; Domingues, Lucília; Teixeira, José António; de Almeida Silva, João Batista; Schwan, Rosane Freitas

    2010-11-01

    Whey valorization concerns have led to recent interest on the production of whey beverage simulating kefir. In this study, the structure and microbiota of Brazilian kefir grains and beverages obtained from milk and whole/deproteinised whey was characterized using microscopy and molecular techniques. The aim was to evaluate its stability and possible shift of probiotic bacteria to the beverages. Fluorescence staining in combination with Confocal Laser Scanning Microscopy showed distribution of yeasts in macro-clusters among the grain's matrix essentially composed of polysaccharides (kefiran) and bacteria. Denaturing gradient gel electrophoresis displayed communities included yeast affiliated to Kluyveromyces marxianus, Saccharomyces cerevisiae, Kazachatania unispora, bacteria affiliated to Lactobacillus kefiranofaciens subsp. Kefirgranum, Lactobacillus kefiranofaciens subsp. Kefiranofaciens and an uncultured bacterium also related to the genus Lactobacillus. A steady structure and dominant microbiota, including probiotic bacteria, was detected in the analyzed kefir beverages and grains. This robustness is determinant for future implementation of whey-based kefir beverages.

  10. Rheology and microstructure of binary mixed gel of rice bran protein-whey: effect of heating rate and whey addition.

    Science.gov (United States)

    Rafe, Ali; Vahedi, Elnaz; Hasan-Sarei, Azadeh Ghorbani

    2016-08-01

    Rice bran protein (RBP) is a valuable plant protein which has unique nutritional and hypoallergenic properties. Whey proteins have wide applications in the food industry, such as in dairy, meat and bakery products. Whey protein concentrate (WPC), RBP and their mixtures at different ratios (1:1, 1:2, 1:5 and 1:10 w/w) were heated from 20 to 90 °C at different heating rates (0.5, 1, 5 and 10 °C min(-1) ). The storage modulus (G') and gelling point (Tgel ) of WPC were higher than those of RBP, indicating the good ability of WPC to develop stiffer networks. By increasing the proportion of WPC in mixed systems, G' was increased and Tgel was reduced. Nevertheless, the elasticity of all binary mixtures was lower than that of WPC alone. Tgel and the final G' of RBP-WPC blends were increased by raising the heating rate. The RBP-WPC mixtures developed more elastic gels than RBP alone at different heating rates. RBP had a fibrillar and lentil-like structure whose fibril assembly had smaller structures than those of WPC. The gelling structure of the mixed gel of WPC-RBP was improved by adding WPC. Indeed, by adding WPC, gels tended to show syneresis and had lower water-holding capacity. Furthermore, the gel structure was produced by adding WPC to the non-gelling RBP, which is compatible with whey and can be applied as a functional food for infants and/or adults. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Influence and comparison of thermal, ultrasonic and thermo-sonic treatments on microbiological quality and sensory properties of rennet cheese whey

    Directory of Open Access Journals (Sweden)

    Rajka Božanić

    2012-09-01

    Full Text Available Ultrasonication and thermo-sonication belong to alternative, non-thermal food processing methods. The aim of this study was to investigate the influence of different ultrasound power inputs (240 W, 320 W, 400 W without and in combination with heat pre-treatment on microbial inactivation and sensory properties of rennet cheese whey in comparison with conventional pasteurization batch processes. Ultrasonication treatments had no impact on reduction of any group of studied microorganisms. Microbial inactivation caused by thermo-sonication treatments with pre-heating to 35 °C or 45 °C increased with nominal power input and/or exposure times and was probably due to the heat improved ultrasonic cavitation. Thermo-sonication treatments at nominal power input (400 W and preheating to 55 °C were the most effective resulting in greater microbial reduction compared to that observed by simulating pasteurization processes, but occurred probably due to developed heat solely. Sensory properties after ultrasonication and thermo-sonication were considerably improved in comparison with that after simulated pasteurization processes. Mouth feel of whey samples was considerably better, there was no occurrence of sediment and colour remained unchanged in almost all samples.

  12. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; Boekel, van Tiny; Fogliano, Vincenzo; Stieger, Markus

    2016-01-01

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were

  13. Effects of different fractions of whey protein on postprandial lipid and hormone responses in type 2 diabetes

    DEFF Research Database (Denmark)

    Mortensen, L.S.; Holmer-Jensen, Jens; Hartvigsen, Merete

    2012-01-01

    Background/Objectives:Exacerbated postprandial lipid responses are associated with an increased cardiovascular risk. Dietary proteins influence postprandial lipemia differently, and whey protein has a preferential lipid-lowering effect. We compared the effects of different whey protein fractions .......European Journal of Clinical Nutrition advance online publication, 16 May 2012; doi:10.1038/ejcn.2012.48....

  14. Supplemental protein in support of muscle mass and health: advantage whey.

    Science.gov (United States)

    Devries, Michaela C; Phillips, Stuart M

    2015-03-01

    Skeletal muscle is an integral body tissue playing key roles in strength, performance, physical function, and metabolic regulation. It is essential for athletes to ensure that they have optimal amounts of muscle mass to ensure peak performance in their given sport. However, the role of maintaining muscle mass during weight loss and as we age is an emerging concept, having implications in chronic disease prevention, functional capacity, and quality of life. Higher-protein diets have been shown to: (1) promote gains in muscle mass, especially when paired with resistance training; (2) spare muscle mass loss during caloric restriction; and (3) attenuate the natural loss of muscle mass that accompanies aging. Protein quality is important to the gain and maintenance of muscle mass. Protein quality is a function of protein digestibility, amino acid content, and the resulting amino acid availability to support metabolic function. Whey protein is one of the highest-quality proteins given its amino acid content (high essential, branched-chain, and leucine amino acid content) and rapid digestibility. Consumption of whey protein has a robust ability to stimulate muscle protein synthesis. In fact, whey protein has been found to stimulate muscle protein synthesis to a greater degree than other proteins such as casein and soy. This review examines the existing data supporting the role for protein consumption, with an emphasis on whey protein, in the regulation of muscle mass and body composition in response to resistance training, caloric restriction, and aging. © 2015 Institute of Food Technologists®

  15. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    Science.gov (United States)

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  16. Interactions between whey protein isolate and gum Arabic.

    Science.gov (United States)

    Klein, Miri; Aserin, Abraham; Ben Ishai, Paul; Garti, Nissim

    2010-09-01

    In this study we have attempted to understand the nature of "charge interactions" between two negatively charged biopolymers (whey protein isolate, WPI and gum Arabic, GA) and, consequently, why their mixture exhibits better interfacial activity. Surface tension (gamma(0)) measurements indicated that at ca. 1 wt.% of the biopolymer mixture (3:1 wt. ratio) the air/water surface is saturated. At 5 wt.% the gamma(0) of the mixture is lower than the calculated co-operative value. The zeta-potential measurements revealed that the isoelectric point of the WPI:GA 3:1 wt. ratio mixture is 3.8. The zeta-potential values up to pH 6 are below those calculated. Similarly, the electrical conductivities of the mixture are lower than those calculated. All these measurements indicate: (1) partial charge neutralization in spite of the fact that both biopolymers are negative or (2) partial charge-charge interactions between the two biopolymers. The thermal heating behavior of the frozen water in the aqueous mixture studied by DSC (heating cycle of the frozen sample) clearly indicates that the two biopolymers are interacting. We calculated the enthalpy, the free energy and the chemical potential of the interactions. We found that the interactions of the biopolymers are rather weak. They are likely derived from some local positively charged domains (pH 7) on the protein that neutralize some of the negatively charged GA. These interactions form weak charge adducts. These charge adducts are sufficient to improve its adsorption into the oil-water interface and enhance the emulsion stability. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Individual whey protein components influence lipid oxidation dependent on pH

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    In emulsions, lipid oxidation is expected to be initiated at the oil-water interface. The properties of the emulsifier used and the composition at the interface is therefore expected to be of great importance for the resulting oxidation. Previous studies have shown that individual whey protein...... by affecting the preferential adsorption of whey protein components at the interface. The aim of the study was to compare lipid oxidation in 10% fish oil-in-water emulsions prepared with 1% whey protein having either a high concentration of α-lactalbumin, a high concentration of β-lactoglobulin or equal...... amounts of the two. Emulsions were prepared at pH4 and pH7. Emulsions were characterized by their droplet sizes, viscosities, and contents of proteins in the water phase. Lipid oxidation was assessed by PV and secondary volatile oxidation products. Results showed that pH greatly influenced the oxidative...

  18. Effects of whey protein and its two major protein components on satiety and food intake in normal-weight women.

    Science.gov (United States)

    Chungchunlam, Sylvia M S; Henare, Sharon J; Ganesh, Siva; Moughan, Paul J

    2017-06-01

    Protein is the most satiating macronutrient and is source dependent, with whey protein thought to be particularly satiating. The purported satiating effect of whey protein may be due to the unique mixture of proteins in whey or to the major constituent individual proteins (β-lactoglobulin and α-lactalbumin). The objective of the study was to compare the effects of isoenergetic (~2100kJ, ~500kcal) preload meals enriched (~50g protein) with either whey protein isolate (WP), β-lactoglobulin (BL) isolate or α-lactalbumin (AL) isolate, on food intake at an ad libitum test meal 120min later and subjective ratings of appetite (hunger, desire to eat, prospective food consumption and fullness) using visual analogue scales (VAS). Twenty adult normal-weight women (mean age 24.2±0.8years; mean BMI 22.7±0.4kg/m 2 ) participated in the study which used a single-blind completely randomised block design, where each subject consumed each of the three preload meals. Energy intake at the ad libitum test meal and total energy intakes (preload+test meal) did not differ between the three preload meals (p>0.05). There were no significant differences observed for the VAS scores and net incremental area under the curve (net iAUC) during the 120min following consumption of the three preload meals for subjective ratings of appetite (p>0.05). The findings show that the satiating effect of whey protein was similar to that of BL or AL individually and suggest that the major whey protein components BL and AL do not mediate the satiating effect of whey protein. The present human trial was registered with the Australian New Zealand Clinical Trials Registry (www.anzctr.org.au) as ACTRN12615000344594. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The role of whey in functional dairy food production

    Directory of Open Access Journals (Sweden)

    Ljubica Tratnik

    2003-10-01

    Full Text Available Modern life style also enhances a need for creation of better dairyproducts, in comparison with traditional ones, possessing functionalcharacteristics. Whey is consisted primarily of lactose, proteins of high nutritive value, important minerals and imunoactive compounds, as well as vitamins of B group. It can be used for fermented probiotic drinks and albumin cheese production. Using new methods of pressure membrane filtration and demineralisation the economic manufacture of whey, as a valuable source of nutrients, is enabled. The aim of this paper is to give an overview on the possibilities of sweet whey, especially whey protein concentrates, use in functional dairy products manufacture from cow’s and goat’s milk. The paper is based on the published scientific research performed in the Laboratory for Technology of Milk and Dairy Products of the Faculty of Food Technology and Biotechnology University of Zagreb.

  20. Fractal Dimension Analysis of Texture Formation of Whey Protein-Based Foods

    Directory of Open Access Journals (Sweden)

    Robi Andoyo

    2018-01-01

    Full Text Available Whey protein in the form of isolate or concentrate is widely used in food industries due to its functionality to form gel under certain condition and its nutritive value. Controlling or manipulating the formation of gel aggregates is used often to evaluate food texture. Many researchers made use of fractal analysis that provides the quantitative data (i.e., fractal dimension for fundamentally and rationally analyzing and designing whey protein-based food texture. This quantitative analysis is also done to better understand how the texture of whey protein-based food is formed. Two methods for fractal analysis were discussed in this review: image analysis (microscopy and rheology. These methods, however, have several limitations which greatly affect the accuracy of both fractal dimension values and types of aggregation obtained. This review therefore also discussed problem encountered and ways to reduce the potential errors during fractal analysis of each method.

  1. Physicochemical and microstructural characterization of gum tragacanth added whey protein based films.

    Science.gov (United States)

    Tonyali, Bade; Cikrikci, Sevil; Oztop, Mecit Halil

    2018-03-01

    Edible films of gum tragacanth (GT) with whey protein were fabricated to see how the incorporation of GT influenced whey protein based film properties. Whey protein isolate (WPI) was replaced with GT at different ratios as 0.5, 1, 1.5 and 2% of WPI. Optical, mechanical, permeability and microstructural properties, as well as moisture sorption and solubility behavior of films were measured. The findings indicated that combination of WPI and GT in film formulation led to less strength, more flexible, less soluble films with lower permeability to water and with higher opacity. The results suggested that the addition of GT to WPI could lead to obtain modified WPI based edible films with desirable properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Processing cereal grains, thin stillage, and cheese whey to fuel ethanol in a farm-scale plant

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, W R; Westby, C A

    1988-01-01

    Hydrous fuel ethanol (95%) and distiller's wet grain (DWG) were produced in a farm-scale plant from corn, wheat, and grain sorghum particles of various sizes, from corn combined with thin stillage-whey, and from various other cereal grains. These variations were made in a search to find the best set of conditions for maximizing the energy balance and minimizing the cost of ethanol production. We found that the optimum hammermill screen size for corn, wheat, and grain sorghum was 1.59 - 2.38 mm. In tests with thin stillage and whey a higher energy balance (2.91) occurred when one part whey was mixed with three parts stillage, rather than the reverse (2.69). However, the reverse (three parts whey and one part stillage) gave a lower ethanol cost ($0.45 liter/sup -1/) than the original ($0.47 liter/sup -1/). Tests with various cereal grains (corn, oats, wheat, barley, rye, and grain sorghum) gave identical energy balance values (2.26) when 10% (v/v) ethanol beers were produced. However, rye ($0.50 liter/sup -1/), grain sorghum ($0.46 liter/sup -1/), and corn ($0.51 liter/sup -1/) yielded ethanol at the lowest net cost. Recommendations for farm-scale plants are also provided.

  3. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking

    NARCIS (Netherlands)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-01-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80. °C for 15. min. During heating of w/o emulsions containing 10% (w/v) WPI

  4. Effects of Ionic Strength on the Enzymatic Hydrolysis of Diluted and Concentrated Whey Protein Isolate

    NARCIS (Netherlands)

    Butré, C.I.; Wierenga, P.A.; Gruppen, H.

    2012-01-01

    To identify the parameters that affect enzymatic hydrolysis at high substrate concentrations, whey protein isolate (1–30% w/v) was hydrolyzed by Alcalase and Neutrase at constant enzyme-to-substrate ratio. No changes were observed in the solubility and the aggregation state of the proteins. With

  5. Preparation of gluten-free bread using a meso-structured whey protein particle system

    NARCIS (Netherlands)

    Riemsdijk, van L.E.; Goot, van der A.J.; Hamer, R.J.; Boom, R.M.

    2011-01-01

    This article presents a novel method for making gluten-free bread using mesoscopically structured whey protein. The use of the meso-structured protein is based on the hypothesis that the gluten structure present in a developed wheat dough features a particle structure on a mesoscopic length scale

  6. Effect of whey protein on plasma amino acids in diabetic mice

    OpenAIRE

    HAN, TING; CAI, DONGLIAN; GENG, SHANSHAN; WANG, YING; ZHEN, HUI; WU, PEIYING

    2013-01-01

    The aim of this study was to investigate the effect of whey protein on plasma amino acid levels in a mouse model of type II diabetes, using high-performance liquid chromatography (HPLC). The composition and content of amino acids in the whey proteins were analyzed using HPLC. Type I and type II diabetic mouse models were prepared using streptozotocin (STZ) and normal mice were used as a control. The ICR mice in each group were then randomly divided into four subgroups, to which 0, 10, 20 and ...

  7. INTERACTION OF NIZKOMETILIROVANNYJ PECTINS WITH A CONCENTRATE OF PROTEINS OF WHEY

    Directory of Open Access Journals (Sweden)

    H. I. Teshaev

    2012-01-01

    Full Text Available Potentiometric titration method was used to study quality complex formation between low methylated pectin and proteins concentrated from whey. It’s shown that at рН>IEP of the lactoglobulin the interaction occurs between negatively charged chains of LM-pectin and positively charged patches of polypeptide chains. The biopolymers ratio had no significant effect on the initial pH of soluble complex formation (pHc; addition of sodium chloride decreased pHc and pK0 of complexes, which linked to electrostatic nature of complex formation between LM-pectin and whey proteins.

  8. Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food.

    Science.gov (United States)

    Ramos, Oscar L; Pereira, Ricardo N; Martins, Artur; Rodrigues, Rui; Fuciños, Clara; Teixeira, José A; Pastrana, Lorenzo; Malcata, F Xavier; Vicente, António A

    2017-05-03

    Whey proteins are widely used as nutritional and functional ingredients in formulated foods because they are relatively inexpensive, generally recognized as safe (GRAS) ingredient, and possess important biological, physical, and chemical functionalities. Denaturation and aggregation behavior of these proteins is of particular relevance toward manufacture of novel nanostructures with a number of potential uses. When these processes are properly engineered and controlled, whey proteins may be formed into nanohydrogels, nanofibrils, or nanotubes and be used as carrier of bioactive compounds. This review intends to discuss the latest understandings of nanoscale phenomena of whey protein denaturation and aggregation that may contribute for the design of protein nanostructures. Whey protein aggregation and gelation pathways under different processing and environmental conditions such as microwave heating, high voltage, and moderate electrical fields, high pressure, temperature, pH, and ionic strength were critically assessed. Moreover, several potential applications of nanohydrogels, nanofibrils, and nanotubes for controlled release of nutraceutical compounds (e.g. probiotics, vitamins, antioxidants, and peptides) were also included. Controlling the size of protein networks at nanoscale through application of different processing and environmental conditions can open perspectives for development of nanostructures with new or improved functionalities for incorporation and release of nutraceuticals in food matrices.

  9. Recovery of Whey Proteins and Enzymatic Hydrolysis of Lactose Derived from Casein Whey Using a Tangential Flow Ultrafiltration Module

    Science.gov (United States)

    Das, Bipasha; Bhattacharjee, Sangita; Bhattacharjee, Chiranjib

    2013-09-01

    In this study, ultrafiltration (UF) of pretreated casein whey was carried out in a cross-flow module fitted with 5 kDa molecular weight cut-off polyethersulfone membrane to recover whey proteins in the retentate and lactose in the permeate. Effects of processing conditions, like transmembrane pressure and pH on permeate flux and rejection were investigated and reported. The polarised layer resistance was found to increase with time during UF even in this high shear device. The lactose concentration in the permeate was measured using dinitro salicylic acid method. Enzymatic kinetic study for lactose hydrolysis was carried out at three different temperatures ranging from 30 to 50 °C using β-galactosidase enzyme. The glucose formed during lactose hydrolysis was analyzed using glucose oxidase-peroxidase method. Kinetics of enzymatic hydrolysis of lactose solution was found to follow Michaelis-Menten model and the model parameters were estimated by Lineweaver-Burk plot. The hydrolysis rate was found to be maximum (with Vmax = 5.5091 mmol/L/min) at 30 °C.

  10. Biochemical and clinical effects of Whey protein supplementation in Parkinson's disease: A pilot study.

    Science.gov (United States)

    Tosukhowong, Piyaratana; Boonla, Chanchai; Dissayabutra, Thasinas; Kaewwilai, Lalita; Muensri, Sasipa; Chotipanich, Chanisa; Joutsa, Juho; Rinne, Juha; Bhidayasiri, Roongroj

    2016-08-15

    Parkinson's disease (PD) is an oxidative stress-mediated degenerative disorder. Elevated plasma homocysteine (Hcy) is frequently found in the levodopa-treated PD patients, is associated with disease progression and is a marker of oxidative stress. Whey protein is a rich source of cysteine, and branched-chain amino acids (BCAA). It has been shown that supplementation with Whey protein increases glutathione synthesis and muscle strength. In this study, we conducted a placebo-controlled, double-blind study (NCT01662414) to investigate the effects of undenatured Whey protein isolate supplementation for 6months on plasma glutathione, plasma amino acids, and plasma Hcy in PD patients. Clinical outcome assessments included the unified Parkinson's disease rating scale (UPDRS) and striatal L-3,4-dihydroxy-6-(18)F-fluorophenylalanine (FDOPA) uptake were determined before and after supplementation. 15 patients received Whey protein, and 17 received Soy protein, served as a control group. Significant increases in plasma concentration of reduced glutathione and the ratio of reduced to oxidized glutathione were found in the Whey-supplemented patients but not in a control group. This was associated with a significant decrease of plasma levels of Hcy. The plasma levels of total glutathione were not significantly changed in either group. Plasma BCAA and essential amino acids (EAA) were significantly increased in the Whey-supplemented group only. The UPDRS and striatal FDOPA uptake in PD patients were not significantly ameliorated in either group. However, significant negative correlation was observed between the UPDRS and plasma BCAA and EAA in the pre-supplemented PD patients. This study is the first to report that Whey protein supplementation significantly increases plasma reduced glutathione, the reduced to oxidized glutathione ratio, BCAAs and EAAs in patients with PD, together with a concomitant significant reduction of plasma Hcy. However, there were no significant changes in

  11. Calcium, vitamin D, casein and whey protein intakes and periodontitis among Danish adults

    DEFF Research Database (Denmark)

    Adegboye, Amanda Ra; Boucher, Barbara J; Kongstad, Johanne

    2016-01-01

    , smoking, sucrose intake, alcohol consumption, number of teeth, daily brushing, regular visits to the dentist and chronic illness, irrespective of vitamin D intake levels. Intake of vitamin D alone was not associated severe with periodontitis. CONCLUSIONS: Intakes of Ca, casein and whey protein were......OBJECTIVE: To investigate whether intakes of Ca, vitamin D, casein and whey are associated with periodontitis and to investigate the possibility of interactions between them. DESIGN: Cross-sectional study. An Internet-based, 267-item FFQ was used to assess dietary intake. Intakes of casein (32.0 g....../d), whey proteins (9.6 g/d) and vitamin D (5.8 μg/d) were classified as within v. above the 50th percentile. Ca intake was classified as within v. below age-specific recommendations. Severe periodontitis was defined as having ≥2 inter-proximal sites with clinical attachment loss ≥6 mm (not on the same...

  12. Obtention and characterization of dried gels prepared with whey proteins, honey and hydrocolloids mixture.

    Science.gov (United States)

    Rodriguez, Ana C; Torrez Irigoyen, Martín R; Navarro, Alba S; Yamul, Diego K

    2017-11-01

    Large amounts of honey and liquid whey derived from the dairy industry are produced in Argentina. Honey is exported in bulk and whey is transformed into whey protein concentrates and isolates. The objective of this work was to investigate the effect of pH, composition and storage time on the properties of dried gels with honey, whey proteins and hydrocolloids. Color properties varied according to pH and composition. The fracture stress of dried gels prepared with corn starch was higher than that of gels prepared with guar gum in all conditions assayed. Young's modulus was higher at pH 7 for both compositions and increased with storage time. Rubbery characteristics were found in dried gels with guar gum, while both corn starch and guar gum made the microstructure rougher. Multivariate analysis showed that samples could be grouped by pH. Panelists preferred pH 7 products over acidic ones, and no significant differences in sensory properties were found using either corn starch or guar gum in the formulation. The results demonstrated that it is possible to generate a new product, which may open new applications for honey and whey in food formulations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Comparative study on the effects of whey protein isolate and isolated soy protein on healthy adults

    International Nuclear Information System (INIS)

    Ezzal-arab, A.

    2003-01-01

    The objective of study was to investigate the effects of whey protein isolate (WPI) and isolated soy protein (ISP) on total serum levels of amino acids (glutathione, methionine and cystine), triglycerides serum cholesterol, HDL-cholesterol, LDL-cholesterol, thyroxine (T 4 ) and estradiol hormone (E 2 ). The results revealed that the WPI group showed significant increased glutathione, methionine and cystine levels while the SPI group exhibited only significant decreased cystine level. The WPI group did not show significant change in T 4 thyroid activity, whereas the SPI group had significant decreased T 4 thyroid hormone. Females ingested the WPI showed significant decrease in estradiol levels compared to those in the SPI group. The data showed significant decreases in total cholesterol, triglycerides and LDL-cholesterol regardless of ingesting whey protein or soy protein while HDL-cholesterol did not show any change with both proteins. The results of this study support the hypothesis that WPI may be more conductive to good health than SPI because it can increase the levels of some amino acids which responsible for the life of the cell, enhance immunity and promote health in general

  14. Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese.

    Science.gov (United States)

    Cremonesi, Paola; Vanoni, Laura; Morandi, Stefano; Silvetti, Tiziana; Castiglioni, Bianca; Brasca, Milena

    2011-03-30

    A pentaplex PCR assay for the rapid, selective and simultaneous detection of Lactobacillus helveticus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and L. fermentum, was developed. The target sequences were a group of genes coding for beta-galactosidase production (S. thermophilus and L. delbrueckii subsp. bulgaricus), for cell-enveloped associated proteinase synthesis (L. helveticus), for dipeptide transport system production (L. delbrueckii subsp. lactis) and for arginine-ornithine antiporter protein production (L. fermentum). The analytical specificity of the assay was evaluated with 5 reference strains and 140 lactic acid bacterial strains derived from raw milk cheeses and belonging to the Lactobacillus, Streptococcus, Lactococcus and Enterococcus genera. The identification limit for each target strain was 10(3)CFU/ml. This new molecular assay was used to investigate the LAB population by direct extraction of DNA from the 12 whey cultures for Grana Padano. The pentaplex PCR assay revealed a good correspondence with microbiological analyses and allowed to identify even minor LAB community members which, can be out-competed in vitro by numerically more abundant microbial species. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex*

    OpenAIRE

    Sindayikengera, Séverin; Xia, Wen-shui

    2006-01-01

    Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and evaluated for their nutritional qualities. Their chemical composition, protein solubility, amino acid composition, essential amino acid index (EAA index), biological value (BV), nutritional index (NI), chemical score, enzymic protein efficiency ratio (E-PER) and in vitro protein d...

  16. CARACTERÍSTICAS FÍSICAS E QUÍMICAS DE BEBIDAS LÁCTEAS FERMENTADAS E PREPARADAS COM SORO DE QUEIJO MINAS FRESCAL PHYSICAL AND CHEMICAL CHARACTERISTICS OF FERMENTED DAIRY BEVERAGES USING MINAS CHEESE WHEY

    Directory of Open Access Journals (Sweden)

    Keila Emílio de ALMEIDA

    2001-08-01

    Full Text Available Nesta pesquisa procurou-se verificar as características físicas e químicas de bebidas lácteas preparadas com três concentrações de soro de queijo Minas Frescal (30, 40 e 50%, empregando-se dois tipos de culturas lácticas: uma tradicional para iogurte (YC-180 contendo cepas mistas de Streptococcus salivarus subsp. thermophilus, Lactobacillus delbrueckii subsp. lactis e Lactobacillus delbrueckii subsp. bulgaricus e outra (ABY-1 contendo cepas mistas de Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus acidophillus, Bifidobacteria e Streptococcus salivarius subsp. thermophilus. Constatou-se que as bebidas lácteas apresentaram diferença estatística no tempo zero para os teores de gordura e de extrato seco. À medida em que se elevou a proporção de soro em relação ao leite, os teores de gordura e de extrato seco diminuíram. O teor de proteína também diminuiu à medida em que se aumentou o teor de soro nas bebidas lácteas, embora a diferença não tenha sido tão acentuada quanto as observadas para os teores de gordura e de extrato seco. Em relação à lactose, não se constatou diferença entre os tratamentos. Os teores de soro não influenciaram o índice de proteólise das bebidas lácteas. Verificou-se todavia que as bebidas elaboradas com a cultura probiótica ABY-1 apresentaram valores superiores para proteólise quando comparadas às bebidas elaboradas com as culturas YC-180. As bebidas lácteas elaboradas com 30% de soro apresentaram maiores valores para viscosidade. As bebidas elaboradas com a cultura YC-180 apresentaram valores superiores para viscosidade durante o período de armazenamento.This research studies the physical and chemical characteristics of dairy beverages formulated with three different concentrations (30, 40 and 50 % of Minas cheese whey, using two kinds of dairy cultures: the traditional yogurt (YC--180 culture, holding mixed strains of Streptococcus salivarus subsp. thermophilus, Lactobacillus

  17. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.

    Science.gov (United States)

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-06-03

    Whey protein (WP) is characterized as a "fast" protein and caseinate (CA) as a "slow" protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP.

  18. Pretreated cheese whey wastewater management by agricultural reuse: chemical characterization and response of tomato plants Lycopersicon esculentum Mill. under salinity conditions.

    Science.gov (United States)

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-10-01

    The agricultural reuse of pretreated industrial wastewater resulting from cheese manufacture is shown as a suitable option for its disposal and management. This alternative presents attractive advantages from the economic and pollution control viewpoints. Pretreated cheese whey wastewater (CWW) has high contents of biodegradable organic matter, salinity and nutrients, which are essential development factors for plants with moderate to elevated salinity tolerance. Five different pretreated CWW treatments (1.75 to 10.02 dS m(-1)) have been applied in the tomato plant growth. Fresh water was used as a control run (average salinity level=1.44 dS m(-1)). Chemical characterization and indicator ratios of the leaves, stems and roots were monitored. The sodium and potassium leaf concentrations increased linearly with the salinity level in both cultivars, Roma and Rio Grande. Similar results were found in the stem sodium content. However, the toxic sodium accumulations in the cv. Roma exceeded the values obtained in the cv. Rio Grande. In this last situation, K and Ca uptake, absorption, transport and accumulation capacities were presented as tolerance mechanisms for the osmotic potential regulation of the tissues and for the ion neutralization. Consequently, Na/Ca and Na/K ratios presented lower values in the cv. Rio Grande. Na/Ca ratio increased linearly with the salinity level in leaves and stems, regardless of the cultivar. Regarding the Na/K ratio, the values demonstrated competition phenomena between the ions for the cv. Rio Grande. Despite the high chloride content of the CWW, no significant differences were observed for this nutrient in the leaves and stems. Thus, no nitrogen deficiency was demonstrated by the interaction NO3(-)/Cl(-). Nitrogen also contributes to maintain the water potential difference between the tissues and the soil. Na, P, Cl and N radicular concentrations were maximized for high salinity levels (≥2.22 dS m(-1)) of the pretreated CWW. © 2013

  19. Does whey protein supplementation affect blood pressure in hypoalbuminemic peritoneal dialysis patients?

    Directory of Open Access Journals (Sweden)

    Hassan K

    2017-08-01

    Full Text Available Kamal Hassan,1,2 Fadi Hassan3 1Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 2Department of Nephrology and Hypertension, Peritoneal Dialysis Unit, 3Department of Internal Medicine E, Galilee Medical Center, Nahariya, Israel Objective: Hypertension and hypoalbuminemia are common risk factors for cardiovascular complications in peritoneal dialysis (PD patients. Data are limited regarding the effects of whey protein consumption on blood pressure in this population. The aim of the present study was to examine if whey protein supplementation for 12 weeks to hypoalbuminemic PD patients affects their blood pressure.Patients and methods: This prospective randomized study included 36 stable PD patients with serum albumin levels <3.8 g/dL. During 12 weeks, 18 patients were instructed to consume 1.2 g/kg/day of protein and an additional whey protein supplement at a dose of 25% of the instructed daily protein (whey protein group. Eighteen patients were instructed to consume protein in the amount of 1.2 g/kg/day and an additional 25%, without whey protein supplementation (control group. Results: Compared to the control group, in the whey protein group, serum albumin levels, oncotic pressure, and dialysate ultrafiltration significantly increased (3.55±0.14 to 4.08±0.15 g/dL, P<0.001; 21.81±2.03 to 24.06±1.54 mmHg, P<0.001; 927.8±120.3 to 1,125.0±125.1 mL/day, P<0.001; respectively and were significantly higher after 12 weeks (4.08±0.15 vs 3.41±0.49 g/dL, P<0.001; 24.06±1.54 vs 22.71±1.77 mmHg, P=0.010; 1,125.0±125.1 vs 930.6±352.8 mL/day, P=0.017; respectively in the whey protein group compared to the control group. Fluid overload, the extracellular to intracellular ratio and mean arterial pressure (MAP significantly decreased (2.46±1.08 to 1.52±0.33, P<0.001; 1.080±0.142 to 0.954±0.124, P<0.001; 102.6±3.80 to 99.83±3.85, P=0.018; respectively and were significantly lower in the whey protein group after 12 weeks (1.52±0

  20. Effect of microparticulated whey protein on sensory properties of liquid and semi-solid model foods

    NARCIS (Netherlands)

    Liu, K.; Stieger, M.A.; Linden, van der E.; Velde, van de Fred

    2016-01-01

    This work describes the sensory properties of microparticulated whey protein (MWP) particles in relation to their rheological and tribological properties. The aim of this work is to obtain a better understanding of the sensory perception of MWP particles compared to oil droplets in liquid and

  1. Changes in microbial populations of WPC34 and WPC80 whey protein during long term storage

    Science.gov (United States)

    The use of whey protein (WPC34 and WPC80) as a food ingredient and as a base for making biodegradable products is increasing. The need to alleviate world hunger in arid and semi-arid regions demands that we investigate the behavior of native bacteria in these products, especially during long term st...

  2. Phase behaviour and in vitro hydrolysis of wheat starch in mixture with whey protein.

    Science.gov (United States)

    Yang, Natasha; Liu, Yingting; Ashton, John; Gorczyca, Elisabeth; Kasapis, Stefan

    2013-04-15

    Network formation of whey protein isolate (WPI) with increasing concentrations of native wheat starch (WS) has been examined. Small deformation dynamic oscillation in shear and modulated temperature differential scanning calorimetry enabled analysis of binary mixtures at the macro- and micromolecular level. Following heat induced gelation, textural hardness was measured by undertaking compression tests. Environmental scanning electron microscopy provided tangible information on network morphology of polymeric constituents. Experiments involving in vitro starch digestion also allowed for indirect assessment of phase topology in the binary mixture. The biochemical component of this work constitutes an attempt to utilise whey protein as a retardant to the enzymatic hydrolysis of starch in a model system with α-amylase enzyme. During heating, rheological profiles of binary mixtures exhibited dramatic increases in G' at temperatures more closely related to those observed for single whey protein rather than pure starch. Results from this multidisciplinary approach of analysis, utilising rheology, calorimetry and microscopy, argue for the occurrence of phase separation phenomena in the gelled systems. There is also evidence of whey protein forming the continuous phase with wheat starch being the discontinuous filler, an outcome that is explored in the in vitro study of the enzymatic hydrolysis of starch. Copyright © 2012. Published by Elsevier Ltd.

  3. Hydrolysis of Whey Protein Isolate with Bacillus licheniformis Protease: Fractionation and Identification of Aggregating Peptides

    NARCIS (Netherlands)

    Creusot, N.P.; Gruppen, H.

    2007-01-01

    The objective of this work was to identify the dominant aggregating peptides from a whey protein hydrolysate (degree of hydrolysis of 6.8%) obtained with Bacillus licheniformis protease. The aggregating peptides were fractionated with preparative reversed-phase chromatography and identified with

  4. Bioactive Whey Protein Concentrate and Lactose Stimulate Gut Function in Formula-Fed Preterm Pigs

    DEFF Research Database (Denmark)

    Li, Yanqi; Nguyen, Duc Ninh; Ryom, Karina

    2017-01-01

    OBJECTIVE:: Formula feeding is associated with compromised intestinal health in preterm neonates compared with maternal milk, but the mechanisms behind this are unclear. We hypothesized that the use of maltodextrin and whey protein concentrates (WPCs) with reduced bioactivity due to thermal-proce...

  5. Isoenergic modification of whey protein structure by denaturation and crosslinking using transglutaminase

    DEFF Research Database (Denmark)

    Stender, Emil G. P.; Koutina, Glykeria; Almdal, Kristoffer

    2018-01-01

    Transglutaminase (TG) catalyzes formation of covalent bonds between lysine and glutamine side chains and has applications in manipulation of food structure. Physical properties of a whey protein mixture (SPC) denatured either at elevated pH or by heat-treatment and followed by TG catalyzed...

  6. Changes in volatile compounds in whey protein concentrate stored at elevated temperature and humidity

    Science.gov (United States)

    Whey protein concentrate (WPC) has been recommended for use in emergency aid programs, but it is often stored overseas without temperature and relative humidity (RH) control, which may cause it to be rejected because of yellowing, off-flavors, or clumping. Therefore, the volatile compounds present ...

  7. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates.

    Science.gov (United States)

    Song, J J; Wang, Q; Du, M; Ji, X M; Mao, X Y

    2017-09-01

    Inhibition of dipeptidyl peptidase-IV (DPP-IV) activity is a promising strategy for treatment of type 2 diabetes. In the current study, DPP-IV inhibitory peptides were identified from mare whey protein hydrolysates obtained by papain. The results showed that all the mare whey protein hydrolysates obtained at various hydrolysis durations possessed more potent DPP-IV inhibitory activity compared with intact whey protein. The 4-h hydrolysates showed the greatest DPP-IV inhibitory activity with half-maximal inhibitory concentration of 0.18 mg/mL. The 2 novel peptides from 4-h hydrolysate fractions separated by successive chromatographic steps were characterized by liquid chromatography-electrospray ionization tandem mass spectrometry. The novel peptides Asn-Leu-Glu-Ile-Ile-Leu-Arg and Thr-Gln-Met-Val-Asp-Glu-Glu-Ile-Met-Glu-Lys-Phe-Arg, which corresponded to β-lactoglobulin 1 f(71-77) and β-lactoglobulin 1 f(143-155), demonstrated DPP-IV inhibitory activity with half-maximal inhibitory concentrations of 86.34 and 69.84 μM, respectively. The DPP-IV inhibitory activity of the 2 peptides was retained or even improved after simulated gastrointestinal digestion in vitro. Our findings indicate that mare whey protein-derived peptides may possess potential as functional food ingredients in the management of type 2 diabetes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Characterization and evaluation of whey protein-based biofilms as substrates for in vitro cell cultures.

    Science.gov (United States)

    Gilbert, Vanessa; Rouabhia, Mahmoud; Wang, Hongxum; Arnould, Anne-Lise; Remondetto, Gabriel; Subirade, Muriel

    2005-12-01

    Whey proteins-based biofilms were prepared using different plasticizers in order to obtain a biomaterial for the human keratinocytes and fibroblasts in vitro culture. The film properties were evaluated by Fourier Transform Infrared Spectroscopy (FTIR) technique and mechanical tests. A relationship was found between the decrease of intermolecular hydrogen bond strength and film mechanical behavior changes, expressed by a breaking stress and Young modulus values diminishing. These results allow stating that the film molecular configuration could induce dissimilarities in its mechanical properties. The films toxicity was assessed by evaluating the cutaneous cells adherence, growth, proliferation and structural stratification. Microscopic observation demonstrated that both keratinocytes and fibroblasts adhered to the biofilms. The trypan blue exclusion test showed that keratinocytes grew at a significantly high rate on all the biofilms. Structural analysis demonstrated that keratinocytes stratified when cultured on the whey protein-based biofilms and gave rise to multi-layered epidermal structures. The most organized epidermis was obtained with whey protein isolate/DEG biofilm. This structure had a well-organized basal layer under supra-basal and corneous layers. This study demonstrated that whey proteins, an inexpensive renewable resource which can be obtained readily, were non-toxic to cutaneous cells and thus they could be useful substrates for a variety of biomedical applications, including tissue engineering.

  9. Influence of whey protein concentrate addition on textural properties of corn flour extrudates

    Directory of Open Access Journals (Sweden)

    Mladen Brnčić

    2008-05-01

    Full Text Available Texture is an important propertiy of extruded snack products, and depended on extrusion process conditions, raw material properties and various ingredients properties as well. The main purpose of this research was, using twin-screw extrusion, to manufacture a direct expanded extrudate based on mixtures of corn flour and whey protein concentrate with acceptable textural properties. Mixtures were made of corn flour and three different concentrations of whey protein concentrate (7,5 %, 15 %, 22,5 %. Materials were processed in co-rotating twin-screw extruder APV Baker, MPF 50.15 under input conditions: water intake was 10,08 L/h, 12,18 L/h, 14,28 L/h, screw speed was 300 rpm; expansion temperature was 130 °C; feed rate was 70 kg/h. Textural properties: breaking strength index and expansion ratio were determined. Breaking strength index had largest value for the sample with 22,5 % of whey protein concentrate and water intake of 14,28 L/h. Sample with 7,5 % of whey protein concentrate and 10,08 L/h had largest expansion ratio. Calculated textural properties confirmed validity of samples. This results suggest that enrichment of extrudates with wpc addition up to 22,5 % to improve their nutritional value as well as their textural characteristics can be accomplished. Validation of direct expanded extrudates in dependence of its textural properties have shown validity and justification of this research.

  10. Viability of the Lactobacillus rhamnosus HN001 probiotic strain in Swiss- and Dutch-type cheese and cheese-like products.

    Science.gov (United States)

    Cichosz, Grażyna; Aljewicz, Marek; Nalepa, Beata

    2014-06-01

    The objective of this study was to determine the viability of the probiotic Lactobacillus rhamnosus HN001 in Swiss-type and Dutch-type cheese and cheese-like products (milk fat is substituted by stearin fraction of palm fat) during manufacture, ripening, and storage. The use of the probiotic L. rhamnosus HN001 in Dutch-type cheese and cheese-like products significantly (P = 0.1) changed their chemical composition (protein and fat content) and an insignificant increase (approximately 1.6% in cheese-like products and approximately 0.3% in cheese) in yield. L. rhamnosus HN001 did not affect the rate of changes in the pH of ripened cheese and cheese-like products. A minor increase in probiotic counts was observed in initial stages of production and were partially removed with whey. Ripened cheese and cheese-like products were characterized by high survival rates of probiotic bacteria which exceeded 8 log CFU/g after ripening. An insignificant reduction in the number of viable probiotic cells was noted during storage of Swiss-type and Dutch-type cheese, whereas a significant increase in probiotic cell counts was observed in cheese-like products during storage. © 2014 Institute of Food Technologists®

  11. Structure modification and functionality of whey proteins: quantitative structure-activity relationship approach.

    Science.gov (United States)

    Nakai, S; Li-Chan, E

    1985-10-01

    According to the original idea of quantitative structure-activity relationship, electric, hydrophobic, and structural parameters should be taken into consideration for elucidating functionality. Changes in these parameters are reflected in the property of protein solubility upon modification of whey proteins by heating. Although solubility is itself a functional property, it has been utilized to explain other functionalities of proteins. However, better correlations were obtained when hydrophobic parameters of the proteins were used in conjunction with solubility. Various treatments reported in the literature were applied to whey protein concentrate in an attempt to obtain whipping and gelling properties similar to those of egg white. Mapping simplex optimization was used to search for the best results. Improvement in whipping properties by pepsin hydrolysis may have been due to higher protein solubility, and good gelling properties resulting from polyphosphate treatment may have been due to an increase in exposable hydrophobicity. However, the results of angel food cake making were still unsatisfactory.

  12. Whey protein supplementation preserves postprandial myofibrillar protein synthesis during short-term energy restriction in overweight and obese adults.

    Science.gov (United States)

    Hector, Amy J; Marcotte, George R; Churchward-Venne, Tyler A; Murphy, Caoileann H; Breen, Leigh; von Allmen, Mark; Baker, Steven K; Phillips, Stuart M

    2015-02-01

    Higher dietary energy as protein during weight loss results in a greater loss of fat mass and retention of muscle mass; however, the impact of protein quality on the rates of myofibrillar protein synthesis (MPS) and lipolysis, processes that are important in the maintenance of muscle and loss of fat, respectively, are unknown. We aimed to determine how the consumption of different sources of proteins (soy or whey) during a controlled short-term (14-d) hypoenergetic diet affected MPS and lipolysis. Men (n = 19) and women (n = 21) (age 35-65 y; body mass index 28-50 kg/m(2)) completed a 14-d controlled hypoenergetic diet (-750 kcal/d). Participants were randomly assigned, double blind, to receive twice-daily supplements of isolated whey (27 g/supplement) or soy (26 g/supplement), providing a total protein intake of 1.3 ± 0.1 g/(kg · d), or isoenergetic carbohydrate (25 g maltodextrin/supplement) resulting in a total protein intake of 0.7 ± 0.1 g/(kg · d). Before and after the dietary intervention, primed continuous infusions of L-[ring-(13)C6] phenylalanine and [(2)H5]-glycerol were used to measure postabsorptive and postprandial rates of MPS and lipolysis. Preintervention, MPS was stimulated more (P whey than with soy or carbohydrate. Postintervention, postabsorptive MPS decreased similarly in all groups (all P whey group, which was less (P whey. We conclude that whey protein supplementation attenuated the decline in postprandial rates of MPS after weight loss, which may be of importance in the preservation of lean mass during longer-term weight loss interventions. This trial was registered at clinicaltrials.gov as NCT01530646. © 2015 American Society for Nutrition.

  13. Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate.

    Science.gov (United States)

    Martin, M; Kopaliani, I; Jannasch, A; Mund, C; Todorov, V; Henle, T; Deussen, A

    2015-12-01

    Angiotensin-converting enzyme inhibitors are treatment of choice in hypertensive patients. Clinically used inhibitors exhibit a structural similarity to naturally occurring peptides. This study evaluated antihypertensive and cardioprotective effects of ACE-inhibiting peptides derived from food proteins in spontaneously hypertensive rats. Isoleucine-tryptophan (in vitro IC50 for ACE = 0.7 μm), a whey protein hydrolysate containing an augmented fraction of isoleucine-tryptophan, or captopril was given to spontaneously hypertensive rats (n = 60) over 14 weeks. Two further groups, receiving either no supplement (Placebo) or intact whey protein, served as controls. Systolic blood pressure age-dependently increased in the Placebo group, whereas the blood pressure rise was effectively blunted by isoleucine-tryptophan, whey protein hydrolysate and captopril (-42 ± 3, -38 ± 5, -55 ± 4 mm Hg vs. Placebo). At study end, myocardial mass was lower in isoleucine-tryptophan and captopril groups but only partially in the hydrolysate group. Coronary flow reserve (1 μm adenosine) was improved in isoleucine-tryptophan and captopril groups. Plasma ACE activity was significantly decreased in isoleucine-tryptophan, hydrolysate and captopril groups, but in aortic tissue only after isoleucine-tryptophan or captopril treatment. This was associated with lowered expression and activity of matrix metalloproteinase-2. Following isoleucine-tryptophan and captopril treatments, gene expression of renin was significantly increased indicating an active feedback within renin-angiotensin system. Whey protein hydrolysate and isoleucine-tryptophan powerfully inhibit plasma ACE resulting in antihypertensive effects. Moreover, isoleucine-tryptophan blunts tissue ACE activity, reduces matrix metalloproteinase-2 activity and improves coronary flow reserve. Thus, whey protein hydrolysate and particularly isoleucine-tryptophan may serve as innovative food additives with the goal of attenuating

  14. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Kornaros, Michael

    2015-01-01

    The aim of this study was to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production using a two-stage anaerobic process. Two continuously stirred tank reactors (CSTRs) were used under mesophilic conditions (37°C) in order to enhance acidogenesis and methanogenesis. A mixture of pretreated ensiled sorghum, cheese whey and liquid cow manure (55:40:5, v/v/v) was used. The acidogenic reactor was operated at six different HRTs of 5, 3, 2, 1, 0.75 and 0.5d, under controlled pH5.5, whereas the methanogenic reactor was operated at three HRTs of 24, 16 and 12d. The maximum H2 productivity (2.14L/LRd) and maximum H2 yield (0.70mol H2/mol carbohydrates consumed) were observed at 0.5d HRT. On the other hand, the maximum CH4 production rate of 0.90L/LRd was achieved at HRT of 16d, whereas at lower HRT the process appeared to be inhibited and/or overloaded. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Acidogenic fermentation of the organic fraction of municipal solid waste and cheese whey for bio-plastic precursors recovery - Effects of process conditions during batch tests.

    Science.gov (United States)

    Girotto, Francesca; Lavagnolo, Maria Cristina; Pivato, Alberto; Cossu, Raffaello

    2017-12-01

    The problem of fossil fuels dependency is being addressed through sustainable bio-fuels and bio-products production worldwide. At the base of this bio-based economy there is the efficient use of biomass as non-virgin feedstock. Through acidogenic fermentation, organic waste can be valorised in order to obtain several precursors to be used for bio-plastic production. Some investigations have been done but there is still a lack of knowledge that must be filled before moving to effective full scale plants. Acidogenic fermentation batch tests were performed using food waste (FW) and cheese whey (CW) as substrates. Effects of nine different combinations of substrate to inoculum (S/I) ratio (2, 4, and 6) and initial pH (5, 7, and 9) were investigated for metabolites (acetate, butyrate, propionate, valerate, lactate, and ethanol) productions. Results showed that the most abundant metabolites deriving from FW fermentation were butyrate and acetate, mainly influenced by the S/I ratio (acetate and butyrate maximum productions of 21.4 and 34.5g/L, respectively, at S/I=6). Instead, when dealing with CW, lactate was the dominant metabolite significantly correlated with pH (lactate maximum production of 15.7g/L at pH = 9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hydrolyzed whey protein prevents the development of food allergy to β-lactoglobulin in sensitized mice.

    Science.gov (United States)

    Gomes-Santos, Ana Cristina; Fonseca, Roberta Cristelli; Lemos, Luisa; Reis, Daniela Silva; Moreira, Thaís Garcias; Souza, Adna Luciana; Silva, Mauro Ramalho; Silvestre, Marialice Pinto Coelho; Cara, Denise Carmona; Faria, Ana Maria Caetano

    2015-01-01

    Food allergy is an adverse immune response to dietary proteins. Hydrolysates are frequently used for children with milk allergy. However, hydrolysates effects afterwards are poorly studied. The aim of this study was to investigate the immunological consequences of hydrolyzed whey protein in allergic mice. For that, we developed a novel model of food allergy in BALB/c mice sensitized with alum-adsorbed β-lactoglobulin. These mice were orally challenged with either whey protein or whey hydrolysate. Whey-challenged mice had elevated levels of specific IgE and lost weight. They also presented gut inflammation, enhanced levels of SIgA and IL-5 as well as decreased production of IL-4 and IL-10 in the intestinal mucosa. Conversely, mice challenged with hydrolyzate maintained normal levels of IgE, IL-4 and IL-5 and showed no sign of gut inflammation probably due to increased IL-12 production in the gut. Thus, consumption of hydrolysate prevented the development of clinical signs of food allergy in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Influence of 8 Weeks of Whey-Protein and Leucine Supplementation on Physical and Cognitive Performance

    Science.gov (United States)

    2010-01-01

    Influence of 8 Weeks of Whey Protein and Leucine Supplementation on Physical and Cognitive Performance 5a. GONTRAGT NUMBER FA8650-04-D-6472 5b. GRANT NUMBER...investigate the ability of whey -protein and leucine supplementation to enhance physical and cognitive performance and body composition. Thirty moderately fit...composition before and after supplementing their daily diet for 8 wk with either 19.7 g of whey protein and 6.2 g leucine (WPL) or a calorie-equivalent placebo

  18. Shreddability of pizza Mozzarella cheese predicted using physicochemical properties.

    Science.gov (United States)

    Banville, V; Morin, P; Pouliot, Y; Britten, M

    2014-07-01

    This study used rheological techniques such as uniaxial compression, wire cutting, and dynamic oscillatory shear to probe the physical properties of pizza Mozzarella cheeses. Predictive models were built using compositional and textural descriptors to predict cheese shreddability. Experimental cheeses were made using milk with (0.25% wt/wt) or without denatured whey protein and renneted at pH 6.5 or 6.4. The cheeses were aged for 8, 22, or 36 d and then tested at 4, 13, or 22°C for textural attributes using 11 descriptors. Adding denatured whey protein and reducing the milk renneting pH strongly affected cheese mechanical properties, but these effects were usually dependent on testing temperature. Cheeses were generally weaker as they aged. None of the compositional or rheological descriptors taken alone could predict the shredding behavior of the cheeses. Using the stepwise method, an objective selection of a few (<4) relevant descriptors made it possible to predict the production of fines (R(2)=0.82), the percentage of long shreds (R(2)=0.67), and to a lesser degree, the adhesion of cheese to the shredding blade (R(2)=0.45). The principal component analysis markedly contrasted the adhesion of cheese to the shredding blade with other shredding properties such as the production of fines or long shreds. The predictive models and principal component analysis can help manufacturers select relevant descriptors for the development of cheese with optimal mechanical behavior under shredding conditions. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Whey pretreatments before ultrafiltration

    Directory of Open Access Journals (Sweden)

    Tuomo Tupasela

    1994-09-01

    Full Text Available Whey is a by-product of cheesemaking. Whey dry matter contains mainly lactose, but also valuable whey proteins. The aim of this study was to develop improvements to whey protein membrane isolation processes. In our trials CaCl2 -added, pH-adjusted and heat-treated wheys were found to have MF (microfiltration permeate fluxes about 30% higher than in untreated MF whey. The total solids and protein content of the MF permeates decreased compared to the original wheys. UF (ultrafiltration trials were conducted using MF whey to compare it with centrifugally separated whey. The MF whey consistently maintained an UF flux about 1.5 to 2.5 times higher than that of the separated whey. Differently treated MF whey UF permeate fluxes also showed a difference. With CaCl2 addition, pH adjustment and heat treatment, the UF permeate fluxes were about 20 to 40% higher than when only MF was used. The total solids content decreased in each trial. The protein content of the UF concentrate also decreased compared to the MF permeate. The (β-lg (β-lactoglobulin and α-la (α-lactalbumin content was almost the same in UF concentrates as in MF permeates.

  20. Proteomic Profiling Comparing the Effects of Different Heat Treatments on Camel (Camelus dromedarius) Milk Whey Proteins.

    Science.gov (United States)

    Benabdelkamel, Hicham; Masood, Afshan; Alanazi, Ibrahim O; Alzahrani, Dunia A; Alrabiah, Deema K; AlYahya, Sami A; Alfadda, Assim A

    2017-03-28

    Camel milk is consumed in the Middle East because of its high nutritional value. Traditional heating methods and the duration of heating affect the protein content and nutritional quality of the milk. We examined the denaturation of whey proteins in camel milk by assessing the effects of temperature on the whey protein profile at room temperature (RT), moderate heating at 63 °C, and at 98 °C, for 1 h. The qualitative and quantitative variations in the whey proteins before and after heat treatments were determined using quantitative 2D-difference in gel electrophoresis (DIGE)-mass spectrometry. Qualitative gel image analysis revealed a similar spot distribution between samples at RT and those heated at 63 °C, while the spot distribution between RT and samples heated at 98 °C differed. One hundred sixteen protein spots were determined to be significantly different ( p protein spots were decreased in common in both the heat-treated samples and an additional 25 spots were further decreased in the 98 °C sample. The proteins with decreased abundance included serum albumin, lactadherin, fibrinogen β and γ chain, lactotransferrin, active receptor type-2A, arginase-1, glutathione peroxidase-1 and, thiopurine S, etc. Eight protein spots were increased in common to both the samples when compared to RT and included α-lactalbumin, a glycosylation-dependent cell adhesion molecule. Whey proteins present in camel milk were less affected by heating at 63 °C than at 98 °C. This experimental study showed that denaturation increased significantly as the temperature increased from 63 to 98 °C.

  1. Effect of chitosan on the heat stability of whey protein solution as a function of pH.

    Science.gov (United States)

    Zhao, Zhengtao; Xiao, Qian

    2017-03-01

    Chitosan was reported to interact with proteins through electrostatic interactions. Their interaction was influenced by pH, which was not fully characterized. Further research on the interactions between protein and chitosan at different pH and their influence on the thermal denaturation of proteins is necessary. In this research, the effect of chitosan on the heat stability of whey protein solution at pH 4.0-6.0 was studied. At pH 4.0, a small amount chitosan was able to prevent the heat-induced denaturation and aggregation of whey protein molecules. At higher pH values (5.5 and 6.0), whey proteins complexed with chitosan through electrostatic attraction. The formation of chitosan-whey protein complexes at pH 5.5 improved the heat stability of dispersions and no precipitation could be detected up to 20 days. The dispersion with a medium amount of chitosan (chitosan:whey protein 1:5) produced the most stable particles, which had an average radius of 135 ± 14 nm and a zeta potential value of 36 ± 1 mV. In contrast, at pH 6.0 only the dispersion with a high amount of chitosan (chitosan:whey protein 1:2) showed good shelf stability up to 20 days. It was possible to produce heat-stable whey protein beverages by regulating the interaction between chitosan and whey protein molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Optimization of mold wheat bread fortified with soy flour, pea flour and whey protein concentrate.

    Science.gov (United States)

    Erben, Melina; Osella, Carlos A

    2017-07-01

    The objective of this work was to study the effect of replacing a selected wheat flour for defatted soy flour, pea flour and whey protein concentrate on both dough rheological characteristics and the performance and nutritional quality of bread. A mixture design was used to analyze the combination of the ingredients. The optimization process suggested that a mixture containing 88.8% of wheat flour, 8.2% of defatted soy flour, 0.0% of pea flour and 3.0% of whey protein concentrate could be a good combination to achieve the best fortified-bread nutritional quality. The fortified bread resulted in high protein concentration, with an increase in dietary fiber content and higher calcium levels compared with those of control (wheat flour 100%). Regarding protein quality, available lysine content was significantly higher, thus contributing with the essential amino acid requirement.

  3. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners

    DEFF Research Database (Denmark)

    Hansen, Mette; Bangsbo, Jens; Jensen, Jørgen

    2015-01-01

    This trial aimed to examine the effect of whey protein hydrolysate intake before and after exercise sessions on endurance performance and recovery in elite orienteers during a training camp. Eighteen elite orienteers participated in a randomized controlled intervention trial during a 1-week...... a strenuous 1-week training camp. The results indicate that protein supplementation in conjunction with each exercise session facilitates the recovery from strenuous training in elite orienteers....

  4. Soy versus whey protein bars: Effects on exercise training impact on lean body mass and antioxidant status

    Directory of Open Access Journals (Sweden)

    Babaknia Ari

    2004-12-01

    Full Text Available Abstract Background Although soy protein may have many health benefits derived from its associated antioxidants, many male exercisers avoid soy protein. This is due partly to a popular, but untested notion that in males, soy is inferior to whey in promoting muscle weight gain. This study provided a direct comparison between a soy product and a whey product. Methods Lean body mass gain was examined in males from a university weight training class given daily servings of micronutrient-fortified protein bars containing soy or whey protein (33 g protein/day, 9 weeks, n = 9 for each protein treatment group. Training used workouts with fairly low repetition numbers per set. A control group from the class (N = 9 did the training, but did not consume either type protein bar. Results Both the soy and whey treatment groups showed a gain in lean body mass, but the training-only group did not. The whey and training only groups, but not the soy group, showed a potentially deleterious post-training effect on two antioxidant-related related parameters. Conclusions Soy and whey protein bar products both promoted exercise training-induced lean body mass gain, but the soy had the added benefit of preserving two aspects of antioxidant function.

  5. Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet.

    Science.gov (United States)

    Monteiro, Naice E S; Roquetto, Aline R; de Pace, Fernanda; Moura, Carolina S; Santos, Andrey Dos; Yamada, Aureo T; Saad, Mário José A; Amaya-Farfan, Jaime

    2016-07-01

    High-fat diets are used to induce adverse alterations in the intestinal microbiota, or dysbiosis, generalized inflammation and metabolic stress, which ultimately may lead to obesity. The influence of dietary whey proteins, whether intact or hydrolyzed, has been reported to improve glucose homeostasis and reduce stress. Therefore, the purpose of this work was to test if dietary milk-whey proteins, both in the intact form and hydrolyzed, could have an effect on the compositional changes of the cecal microbiota that can be induced in mice when receiving a high-fat diet in combination with the standard casein. Male C57BL/6 mice were fed a control casein diet (AIN 93-G); high-fat-casein (HFCAS); high-fat-whey protein concentrate (HFWPC) and high-fat whey-protein hydrolysate (HFWPH) for 9weeks. The intestinal microbiota composition was analyzed by 16S-rRNA of the invariant (V1-V3) gene, potentially endotoxemic lipopolysaccharide (LPS) release was determined colorimetrically, and liver fat infiltration assessed by light microscopy. The high-fat diet proved to induce dysbiosis in the animals by inverting the dominance of the phylum Firmicutes over Bacteroidetes, promoted the increase of LPS and resulted in liver fat infiltration. The whey proteins, whether intact or hydrolyzed, resisted the installation of dysbiosis, prevented the surge of circulating LPS and prevented fat infiltration in the liver. It is concluded that dietary whey proteins exert metabolic actions that tend to preserve the normal microbiota profile, while mitigating liver fat deposition in mice consuming a high-fat diet for nine weeks. Such beneficial effects were not seen when casein was the dietary protein. The hydrolyzed whey protein still differed from the normal whey protein by selectively protecting the Bacteroidetes phylum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Avaliação sensorial e reológica de uma bebida achocolatada elaborada a partir de extrato hidrossolúvel de soja e soro de queijo =Sensorial and rheologic evaluation of a chocolate-based drink produced with water-soluble soybean extract and cheese whey

    Directory of Open Access Journals (Sweden)

    Ricardo Wagner Mori Moreira

    2010-10-01

    Full Text Available A soja é um alimento rico em proteínas e seu custo é menor quandocomparado à proteína animal. No entanto, ainda é pouco consumida, principalmente no Ocidente. O soro de queijo é um subproduto da indústria de laticínios, originado a partir da produção de queijos. É muito prejudicial ao meio ambiente quando descartado de forma inadequada, por ser um poluente em potencial. Seu tratamento, geralmente, é dispendioso e a sua composição é rica em nutrientes necessários para a dieta humana. Nesse contexto, foram elaboradas diferentes formulações de bebida achocolatada, contendo extratohidrossolúvel de soja (EHS e/ou soro de queijo com a finalidade de se verificar a aceitação sensorial das formulações em relação aos atributos cor, sabor e consistência. Foi também realizada a caracterização reológica das amostras, nas temperaturas de 10 e 20°C. Os resultados mostraram que a formulação elaborada somente com soro apresentou maior aceitação sensorial em relação aos atributos sabor e consistência. Em contrapartida, nessa mesma formulação, foi verificado menor índice de consistência do fluido e pseudoplasticidade.Soy is a food rich in proteins and its cost is lower when compared to animal protein. However, it is still underconsumed, especially in the Western world. Cheese whey is a byproduct of the dairy industry originated from the production of cheese, and is very harmful to the environment when disposed improperly, given that it then might become a pollutant. Its treatment is usually expensive, but its composition is quite rich in nutrients needed in the human diet. In this context, five different formulations of a chocolate-based drink were produced using soybean and/or cheese whey, with the purpose of assessing the sensorial acceptance of the formulations regarding attributes like color, flavor and consistency. For the prepared samples, rheological characterizations were also performed in the temperatures of 10

  7. Influence Of Whey Protein For Abrogating Liver Injury In Female Rats

    International Nuclear Information System (INIS)

    ANWAR, M.M.; MOHAMED, N.E.

    2009-01-01

    The objective of this study was to determine the possible benefits of whey protein concentrate (44% protein, 5% fat and 4.6% ash in dry weight) against liver injury induced by CCl 4 . It was carried out by evaluating the effect of the daily feeding of female rats on diet containing 15% whey protein instead of soybean protein for four weeks on some biochemical and histological changes in liver of female rats.The data showed that injection with CCl 4 (1 ml /kg body weight 3 times / week) caused significant decrease in body weight with disturbances in liver functions as significant increase in serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase and bilirubin and significant decrease in serum albumin, FT3 and an increase in AFP levels. A marked significant decrease in glutathione content and significant increase in lipid peroxidation was also observed in hepatic tissues. The histological examination revealed that CCl 4 treatment showed marked degenerative changes in liver hepatocytes and sinusoids.The results also showed that feeding on diet containing whey protein for two or four weeks during CCl 4 treatment minimized the disturbance of the liver functions and liver histology.

  8. Quantitative physiology of Penicillium cyclopium grown on whey for production of microbial protein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J H; Libuchi, S; Lebeault, J M

    1981-01-01

    A filamentous fungus, Penicillium cyclopium, capable of growing on deproteinized whey was isolated and characterized for the purpose of production of microbial protein. This organism has a maximum specific growth rate of 0.2/hour at pH 3.0 to 4.5 and 28 degrees C in a medium containing only ammonium nitrogen and deproteinized whey. The yield coefficients are 0.68 g biomass/g lactose, 12.0 g biomass/g nitrogen, and 2.10 g biomass/g oxygen respectively. Crude protein and total nucleic acid contents of this organism are 47.5% and 7.4% (dry cell weight basis), respectively. The profile of essential amino acids show that it could be a good source of animal feed or food protein. However there are several advantages in using fungal cells (Spicer 1971); their amino acid profile is better, the recovery of biomass from the culture broth is much easier, their filamentous structure facilitates production of texturized foodstuffs without extraction and spinning, and they are already accepted as foods in many parts of the world. The authors have selected a filamentous fungus, Penicillium cyclopium which grows fast on deproteinized whey and has a high protein content. This paper describes the quantitative physiology of this organism and the amino acid profile of its protein. (Refs. 19).

  9. Extensive dry heating-induced changes in physicochemical and immunological properties of whey proteins

    NARCIS (Netherlands)

    Liu, Fahui

    2016-01-01

    Baked milk products, e.g. milk-protein containing muffins or baked cheese, can be tolerated by most cow’s milk allergic subjects. These products were also reported to contribute to the development of immune tolerance in allergic subjects. The main objective of this thesis was to investigate the

  10. Distribution of Spiked Drugs between Milk Fat, Skim Milk, Whey, Curd, and Milk Protein Fractions: Expansion of Partitioning Models.

    Science.gov (United States)

    Lupton, Sara J; Shappell, Nancy W; Shelver, Weilin L; Hakk, Heldur

    2018-01-10

    The distributions of eight drugs (acetaminophen, acetylsalicylic acid/salicylic acid, ciprofloxacin, clarithromycin, flunixin, phenylbutazone, praziquantel, and thiamphenicol) were determined in milk products (skim milk, milk fat, curd, whey, and whey protein) and used to expand a previous model (from 7 drugs to 15 drugs) for predicting drug distribution. Phenylbutazone and praziquantel were found to distribute with the lipid and curd phases (≥50%). Flunixin distribution was lower but similar in direction (12% in milk fat, 39% in curd). Acetaminophen, ciprofloxacin, and praziquantel preferentially associated with casein proteins, whereas thiamphenicol and clarithromycin associated preferentially to whey proteins. Regression analyses for log [milk fat]/[skim milk] and log [curd]/[whey] had r 2 values of 0.63 and 0.67, respectively, with p of <0.001 for 15 drugs (7 previously tested and 8 currently tested). The robustness of the distribution model was enhanced by doubling the number of drugs originally tested.

  11. New insight on the formation of whey protein microbeads by a microfluidic system

    Science.gov (United States)

    Andoyo, Robi; Guyomarc'h, Fanny; Tabuteau, Hervé; Famelart, Marie-Hélène

    2018-02-01

    The current paper describes the formation of whey protein microbeads (WPM) having a spherical shape and a monodispersed size distribution. A microfluidic flow-focusing geometry was used to control the production of whey protein microdroplets in a hydrophobic phase. The microfluidic system consists of two inlet channels where the WPI solution and the lipophilic phase were separately injected towards the flow-focusing (FF) junction where they eventually meet, then co-flow. A whey protein isolate (WPI) solution of 150 g/kg protein and two types of hydrophobic phases, i.e. sunflower oil and n-dodecane, were tested as the continuous phase. The formation of WPM was observed microscopically. The aim of the present study was to describe the production of stable monodisperse WPM in suspension in milk ultrafiltrate using a microfluidic system. Hints to perform the control of the running parameters, i.e. choice of the hydrophobic phase or fluids flowrates, are provided. The results showed that in the sunflower oil, microdroplets had a large polydisperse size distribution, while in n-dodecane, microdroplets with narrow size distribution were obtained. Stabilization of the whey protein microdroplets through heat-gelation at 75 °C for 20 min in n-dodecane produced WPM and no change in shape nor size is observed. Meanwhile replacing the n-dodecane by MUF using centrifugation and washing caused the swelling of the WPM, but dispersity remained low. From this study, microfluidic system seemed to be a suitable method to be used for producing small quantities of monodisperse WPM.

  12. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii.

    Science.gov (United States)

    Duongthingoc, Diep; George, Paul; Katopo, Lita; Gorczyca, Elizabeth; Kasapis, Stefan

    2013-12-01

    This work investigates the effect of whey protein agglomeration on the survivability of Saccharomyces boulardii within spray dried microcapsules. It attempts to go beyond phenomenological observations by establishing a relationship between physicochemical characteristics of the polymeric matrix and its effect on probiotic endurance upon spray drying. It is well known that this type of thermal shock has lethal consequences on the yeast cells. To avoid such undesirable outcome, we take advantage of the early agglomeration phenomenon observed for whey protein by adjusting the pH value of preparations close to isoelectric point (pH 4-5). During the subsequent process of spray drying, development of whey protein agglomerates induces formation of an early crust, and the protein in this molten globular state creates a cohesive network encapsulating the yeast cells. It appears that the early crust formation at a given sample pH and temperature regime during spray drying benefits the survivability of S. boulardii within microcapsules. Copyright © 2013. Published by Elsevier Ltd.

  13. Dietary whey protein lessens several risk factors for metabolic diseases: a review

    Science.gov (United States)

    2012-01-01

    Obesity and type 2 diabetes mellitus (DM) have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1); and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress. PMID:22676328

  14. Dietary whey protein lessens several risk factors for metabolic diseases: a review

    Directory of Open Access Journals (Sweden)

    Sousa Gabriela TD

    2012-07-01

    Full Text Available Abstract Obesity and type 2 diabetes mellitus (DM have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1; and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress.

  15. The Study of Alginate and Whey Protein Hydrolyzed Suplementation Utilization for Cell Release and Microencapsulated Lactobacillus Acidophilus Viability in Probiotic Ice Cream

    Directory of Open Access Journals (Sweden)

    Purwadi Purwadi

    2013-10-01

    Full Text Available The objectives of this research were to increase viability and activity of L. acidophilus encapsulated with alginate and whey protein hydrolyzed for cell release and microencapsulated Lactobacillus acidophilus viability in probiotic ice cream. The methods used were factorial experiment using Completely Randomized Design. Data was analysed with Variance Analysis. The results showed that the interaction between alginate and whey protein hydrolyzed supplemented could be increased the function of CaCl2 and also encapsulated L. acidophilus viability. The used alginate of 1% and whey protein hydrolyzed supplemented of 0,5% produced encapsulated L. acidophilus viability higher than before, but however, the utilization of alginate of 1% and whey protein hydrolyzed supplemented of 0% could release a few cell. Therefore, the utilization of alginate 1% and whey protein hydrolyzed supplemented 0,5% in ice cream produced L. acidophilus highest than other.   Keywords :   Lactobacillus acidophilus, microencapsulation, alginate, whey protein hydrolyzed, cell release, ice cream

  16. The effects of whey protein with or without carbohydrates on resistance training adaptations

    OpenAIRE

    Hulmi, Juha; Laakso, Mia; Mero, Antti; Häkkinen, Keijo; Ahtiainen, Juha; Peltonen, Heikki

    2015-01-01

    Background: Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. Methods: A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of...

  17. Does whey protein supplementation affect blood pressure in hypoalbuminemic peritoneal dialysis patients?

    OpenAIRE

    Hassan,Kamal; Hassan,Fadi

    2017-01-01

    Kamal Hassan,1,2 Fadi Hassan3 1Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 2Department of Nephrology and Hypertension, Peritoneal Dialysis Unit, 3Department of Internal Medicine E, Galilee Medical Center, Nahariya, Israel Objective: Hypertension and hypoalbuminemia are common risk factors for cardiovascular complications in peritoneal dialysis (PD) patients. Data are limited regarding the effects of whey protein consumption on blood pressure in this population. The aim o...

  18. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study.

    Science.gov (United States)

    West, Daniel W D; Abou Sawan, Sidney; Mazzulla, Michael; Williamson, Eric; Moore, Daniel R

    2017-07-11

    No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h) and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD)) performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey) or an energy-matched placebo (CHO) immediately post-exercise (0 h), and again the following morning (~10 h of recovery). A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest). Participants ingested [ 15 N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO ( P = 0.064; effect size (ES) = 0.61, PRO vs. CHO) during overnight recovery. Over 24 h, net balance was enhanced in PRO ( P = 0.036) but not in CHO ( P = 0.84; ES = 0.69, PRO vs. CHO), which was mediated primarily by a reduction in protein breakdown (PRO protein supplementation improved MVC (ES = 0.76), REP (ES = 0.44), and peak power (ES = 0.55). In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of exercise performance after a strenuous bout of resistance exercise.

  19. Efficient mosquitocidal toxin production by Bacillus sphaericus using cheese whey permeate under both submerged and solid state fermentations.

    Science.gov (United States)

    El-Bendary, Magda A; Moharam, Maysa E; Foda, M S

    2008-05-01

    Whey permeate (WP) was used efficiently for production of mosquitocidal toxin by Bacillus sphaericus 2362 (B. sphaericus 2362) and the Egyptian isolate, B. sphaericus 14N1 (B. sphaericus 14N1) under both submerged and solid state fermentation conditions. Under submerged fermentation, high mosquitocidal activity was produced by B. sphaericus 2362 and B. sphaericus 14N1 at 50-100% and 25-70% WP, respectively. Initial pH of WP was a critical factor for toxin production by both tested organisms. The highest toxicity was obtained at initial pH 7. Egyptian isolate, B. sphaericus 14N1 was tested for growth and toxin production under solid state fermentation conditions (SSF) by using WP as moistening agent instead of distilled water. The optimum conditions for production of B. sphaericus 14N1 on wheat bran-WP medium were 10 g wheat bran/250 ml flask moistened with 10-70% WP at 50% moisture content, inoculum size ranged between 17.2x10(7) and 34.4x10(7) and 6 days incubation under static conditions at 30 degrees C. Preliminary pilot-scale production of B. sphaericus 14N1 under SSF conditions in trays proved that wheat bran-WP medium was efficient and economic for industrial production of mosquitocidal toxin by B. sphaericus.

  20. Resistance training with soy vs whey protein supplements in hyperlipidemic males

    Directory of Open Access Journals (Sweden)

    Leddy John J

    2009-03-01

    Full Text Available Abstract Background Most individuals at risk for developing cardiovascular disease (CVD can reduce risk factors through diet and exercise before resorting to drug treatment. The effect of a combination of resistance training with vegetable-based (soy versus animal-based (whey protein supplementation on CVD risk reduction has received little study. The study's purpose was to examine the effects of 12 weeks of resistance exercise training with soy versus whey protein supplementation on strength gains, body composition and serum lipid changes in overweight, hyperlipidemic men. Methods Twenty-eight overweight, male subjects (BMI 25–30 with serum cholesterol >200 mg/dl were randomly divided into 3 groups (placebo (n = 9, and soy (n = 9 or whey (n = 10 supplementation and participated in supervised resistance training for 12 weeks. Supplements were provided in a double blind fashion. Results All 3 groups had significant gains in strength, averaging 47% in all major muscle groups and significant increases in fat free mass (2.6%, with no difference among groups. Percent body fat and waist-to-hip ratio decreased significantly in all 3 groups an average of 8% and 2%, respectively, with no difference among groups. Total serum cholesterol decreased significantly, again with no difference among groups. Conclusion Participation in a 12 week resistance exercise training program significantly increased strength and improved both body composition and serum cholesterol in overweight, hypercholesterolemic men with no added benefit from protein supplementation.

  1. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode.

    Science.gov (United States)

    Farup, J; Rahbek, S K; Vendelbo, M H; Matzon, A; Hindhede, J; Bejder, A; Ringgard, S; Vissing, K

    2014-10-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohydrate group (PLA). Subjects completed 12 weeks maximal knee extensor training with one leg using eccentric contractions and the other using concentric contractions. Before and after training cross-sectional area (CSA) of m. quadriceps and patellar tendon CSA was quantified with magnetic resonance imaging and a isometric strength test was used to assess maximal voluntary contraction (MVC) and rate of force development (RFD). Quadriceps CSA increased by 7.3 ± 1.0% (P tendon CSA increased by 14.9 ± 3.1% (P effect of contraction mode. MVC and RFD increased by 15.6 ± 3.5% (P effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training - irrespective of contraction mode. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. In-vitro starch hydrolysis of chitosan incorporating whey protein and wheat starch composite gels

    Directory of Open Access Journals (Sweden)

    Natasha Yang

    2017-10-01

    Full Text Available The study examined the influence of chitosan, incorporated into whey protein and wheat starch thermo gels, on the in-vitro hydrolysis of the polysaccharide. Gels were subjected to the following external conditions containing α-amylase at constant incubation temperature of 37 °C: In the first procedure, they were immersed in phosphate buffer (0.05 M and maintained at pH 6.9 throughout the entire digestion. In the second instance, they were introduced into a salt solution, with pH and total volume adjusted at times in sync with the human gastrointestinal tract. Results indicate that low and medium molecular weight chitosan, in combination with whey protein, were effective at enhancing the protective barrier against starch degradation. Less maltose was liberated from gels containing medium molecular weight chitosan, as opposed to the low molecular weight counterpart, and results compare favorably with the outcome of the in-vitro digestion of binary whey protein and wheat starch composites. Keywords: Food science

  3. Whey protein hydrolysate and branched-chain amino acids downregulate inflammation-related genes in vascular endothelial cells.

    Science.gov (United States)

    Da Silva, Marine S; Bigo, Cyril; Barbier, Olivier; Rudkowska, Iwona

    2017-02-01

    A recent review of clinical studies reports that dairy products may improve inflammation, a key etiologic cardiovascular disease risk factor. Yet the impact of dairy proteins on inflammatory markers is controversial and could be mediated by a differential impact of whey proteins and caseins. In this study, we hypothesized that whey proteins may have a greater anti-inflammatory effect than caseins. A model of human umbilical vein endothelial cells, with or without TNF-α stimulation, was used to investigate the effect of several dairy protein compounds on inflammation. Specifically, the impact of whey proteins either isolate or hydrolysate, caseins, and their amino acids on expression of TNF, VCAM-1, SOD2, and eNOS was examined. After a 24-hour incubation period, whey protein hydrolysate, leucine, isoleucine, and valine attenuated the TNF-α-induced endothelial inflammation by normalizing TNF and eNOS gene expression. This effect was not observed in unstimulated cells. Oppositely, caseins, a whey protein/casein mixture (1:4 w/w), and glutamine aggravated the TNF-α-induced TNF and SOD2 gene expression. Yet caseins and whey protein/casein mixture decreased VCAM-1 expression in both unstimulated and stimulated human umbilical vein endothelial cells. Measurement of TNF-α in cell supernatants by immunoassay substantiates gene expression data without reaching statistical significance. Taken together, this study showed that whey proteins and their major amino acids normalize TNF-α-induced proinflammatory gene expression in endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of whey protein supplement in the elderly submitted to resistance training: systematic review and meta-analysis.

    Science.gov (United States)

    Colonetti, Tamy; Grande, Antonio Jose; Milton, Karen; Foster, Charlie; Alexandre, Maria Cecilia Manenti; Uggioni, Maria Laura Rodrigues; Rosa, Maria Inês da

    2017-05-01

    We performed a systematic review to map the evidence and analyze the effect of whey protein supplementation in the elderly submitted to resistance training. A comprehensive search on Medline, LILACS, EMBASE, and the Cochrane Library for relevant publications was conducted until August 2015. The terms used in the search were: "Resistance training"; "Whey protein"; "Elderly". A total of 632 studies were screened. Five studies were included composing a sample of 391 patients. The supplement whey protein was associated with higher total protein ingestion 9.40 (95% CI: 4.03-14.78), and with an average change in plasma leucine concentration. The supplementation was also associated with increased mixed muscle protein synthesis 1.26 (95% CI: 0.46-2.07) compared to the control group. We observed an increase in total protein intake, resulting in increased concentration of leucine and mixed muscle protein fractional synthesis rate.

  5. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    Science.gov (United States)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  6. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein

    Directory of Open Access Journals (Sweden)

    Stout Jeffrey R

    2010-06-01

    Full Text Available Abstract Regardless of age or gender, resistance training or provision of adequate amounts of dietary protein (PRO or essential amino acids (EAA can increase muscle protein synthesis (MPS in healthy adults. Combined PRO or EAA ingestion proximal to resistance training, however, can augment the post-exercise MPS response and has been shown to elicit a greater anabolic effect than exercise plus carbohydrate. Unfortunately, chronic/adaptive response data comparing the effects of different protein sources is limited. A growing body of evidence does, however, suggest that dairy PRO, and whey in particular may: 1 stimulate the greatest rise in MPS, 2 result in greater muscle cross-sectional area when combined with chronic resistance training, and 3 at least in younger individuals, enhance exercise recovery. Therefore, this review will focus on whey protein supplementation and its effects on skeletal muscle mass when combined with heavy resistance training.

  7. Functional Biomaterials: Solution Electrospinning and Gelation of Whey Protein and Pullulan

    Science.gov (United States)

    Sullivan, Stephanie Tolstedt

    Utilizing biomaterials that are biodegradable, biocompatible and edible serve well for food products as well as biomedical applications. Biomaterials whey protein and pullulan both have these characteristics. Whey proteins (WP) have been used in food products for many years and more recently in pharmaceutical products. They have the ability to form both gels and stable foams. Pullulan (PULL) has also been used in both food and pharmaceutical products, and is a highly water soluble, non-gelling polysaccharide and has been used primarily as a film former. Herein, we investigate the ability of whey protein and pullulan to form nanofibers and gels. Combining their distinct properties allows the ability to uniquely manipulate nanofiber and gel characteristics and behavior for a variety of applications, from food to even tissue scaffolding. First, we determined the electrospinnability of aqueous whey protein solutions. Both whey protein isolate (WPI) and one of its major components beta--lactoglobulin (BLG), either in native or denatured form, yielded interesting micro and nanostructures when electrosprayed; while nanofiber production required blending with a spinnable polymer, poly(ethylene oxide) (PEO). WP:PEO solutions were also successfully electrospun at acidic pH (2≤pH≤3), which could improve shelf life. Fourier Transform Infrared Reflectance (FTIR) analysis of WP:PEO fiber mat indicated some variation in WP secondary structure with varying WPI concentration (as WPI increased, % alpha-helix increased and beta-turn decreased) and pH (as pH decreased from neutral (7.5) to acidic (2), % beta-sheet decreased and alpha-helix increased). X-ray Photoelectron Spectroscopy (XPS) also confirmed the presence of WP on the surface of the blend fibers, augmenting the FTIR analysis. Interestingly, WP:PEO composite nanofibers maintained its fibrous morphology at temperatures as high as 100 °C, above the 60 °C PEO melting point. Further, we show that the blend mats retained a

  8. Short communication: Effect of whey protein addition and transglutaminase treatment on the physical and sensory properties of reduced-fat ice cream.

    Science.gov (United States)

    Danesh, Erfan; Goudarzi, Mostafa; Jooyandeh, Hossein

    2017-07-01

    The effects of whey protein addition and transglutaminase treatment, alone and in combination, on the physical and sensory properties of reduced-fat ice cream were investigated. Adding whey protein with or without enzyme treatment decreased melting rate, overrun, and hardness of the reduced-fat ice cream; however, the enzyme-treated sample had a higher melting rate and overrun and softer texture. Whey protein-fortified samples showed higher melting resistance, but lower overrun and firmer texture compared with the enzyme-treated sample without added whey protein. Whey protein addition with or without transglutaminase treatment caused an increase in apparent viscosity and a decrease in flow index of the reduced-fat ice cream; nevertheless, the flow behavior of full-fat sample was most similar to the enzyme-treated reduced-fat sample with no added whey protein. Descriptive sensory analyses showed that neither whey protein addition nor transglutaminase treatment significantly influenced the flavor and odor of reduced-fat ice cream, but they both noticeably improved the color and texture of the final product. The results of this study suggest that whey protein addition with transglutaminase treatment improves the physical and sensory properties of reduced-fat ice cream more favorably than does whey protein addition or transglutaminase treatment alone. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch-whey protein blend edible films.

    Science.gov (United States)

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-02-01

    Starch and whey protein isolate and their mixtures were used for making edible films. Moisture sorption isotherms, water vapour permeability, sorption of aroma compounds, microstructure, water contact angle and surface properties were investigated. With increasing protein content, the microstructure changes became more homogeneous. The water vapour permeability increases with both the humidity gradient and the starch content. For all films, the hygroscopicity increases with starch content. Surface properties change according to the starch/whey protein ratio and are mainly related to the polar component of the surface tension. Films composed of 80% starch and 20% whey proteins have more hydrophobic surfaces than the other films due to specific interactions. The effect of carbohydrate/protein ratio significantly influences the microstructure, the surface wettability and the barrier properties of wheat starch-whey protein blend films. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. At same leucine intake, a whey/plant protein blend is not as effective as whey to initiate a transient post prandial muscle anabolic response during a catabolic state in mini pigs.

    Directory of Open Access Journals (Sweden)

    Aurélia Revel

    Full Text Available Muscle atrophy has been explained by an anabolic resistance following food intake and an increase of dietary protein intake is recommended. To be optimal, a dietary protein has to be effective not only to initiate but also to prolong a muscle anabolic response in a catabolic state. To our knowledge, whether or not a dairy or a dairy/plant protein blend fulfills these criterions is unknown in a muscle wasting situation.Our aim was, in a control and a catabolic state, to measure continuously muscle anabolism in term of intensity and duration in response to a meal containing casein (CAS, whey (WHEY or a whey/ plant protein blend (BLEND and to evaluate the best protein source to elicit the best post prandial anabolism according to the physio-pathological state.Adult male Yucatan mini pigs were infused with U-13C-Phenylalanine and fed either CAS, WHEY or BLEND. A catabolic state was induced by a glucocorticoid treatment for 8 days (DEX. Muscle protein synthesis, proteolysis and balance were measured with the hind limb arterio-venous differences technique. Repeated time variance analysis were used to assess significant differences.In a catabolic situation, whey proteins were able to initiate muscle anabolism which remained transient in contrast to the stimulated muscle protein accretion with WHEY, CAS or BLEND in healthy conditions. Despite the same leucine intake compared to WHEY, BLEND did not restore a positive protein balance in DEX animals.Even with WHEY, the duration of the anabolic response was not optimal and has to be improved in a catabolic state. The use of BLEND remained of lower efficiency even at same leucine intake than whey.

  11. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk.

    Science.gov (United States)

    Qi, Phoebe X; Ren, Daxi; Xiao, Yingping; Tomasula, Peggy M

    2015-05-01

    The effect of homogenization alone or in combination with high-temperature, short-time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a 2-stage homogenizer at 35°C (6.9 MPa/10.3 MPa) and, along with skim milk, were subjected to HTST pasteurization (72°C for 15 s) or UHT processing (135°C for 2 s). Other whole milk samples were processed using homogenization followed by either HTST pasteurization or UHT processing. The processed skim and whole milk samples were centrifuged further to remove fat and then acidified to pH 4.6 to isolate the corresponding whey fractions, and centrifuged again. The whey fractions were then purified using dialysis and investigated using the circular dichroism, Fourier transform infrared, and Trp intrinsic fluorescence spectroscopic techniques. Results demonstrated that homogenization combined with UHT processing of milk caused not only changes in protein composition but also significant secondary structural loss, particularly in the amounts of apparent antiparallel β-sheet and α-helix, as well as diminished tertiary structural contact. In both cases of homogenization alone and followed by HTST treatments, neither caused appreciable chemical changes, nor remarkable secondary structural reduction. But disruption was evident in the tertiary structural environment of the whey proteins due to homogenization of whole milk as shown by both the near-UV circular dichroism and Trp intrinsic fluorescence. In-depth structural stability analyses revealed that even though processing of milk imposed little impairment on the secondary structural stability, the tertiary structural stability of whey protein was altered significantly. The following order was derived based on these studies: raw whole>HTST, homogenized, homogenized and pasteurized>skimmed and pasteurized, and skimmed UHT

  12. Incorporation of radiolabeled whey proteins into casein micelles by heat processing

    International Nuclear Information System (INIS)

    Noh, B.; Richardson, T.

    1989-01-01

    Skim milk was heated at .70, 95, and 140 degree C to simulate the processes of pasteurization, forewarming, and UHT sterilization, and the specific interactions between α-lactalbumin or β-lactoglobulin and the caseins studied using tracer amounts of added 14 C-labeled whey protein. Radioactivities of the whey and of the washed casein pellets from renneted skim milk were measured and the extent of the interaction estimated. Upon heating skim milk at 70 degree C for 45 s, less than 2% β-lactoglobulin and less than .3% α-lactalbumin were incorporated into the curd. Heating at 95 degree C for .5 to 20 min resulted in 58 to 85% of the β-lactoglobulin and 8 to 55% of the α-lactalbumin becoming associated with the curd. Heating at 140 degree C for 2 and 4 s caused 43 and 54% of the β-lactoglobulin and 9 and 12% of the α-lactalbumin, respectively, to be bound to the curd fraction. The radiolabeling technique is very sensitive and useful for tracing low levels of interaction between whey proteins and casein in heated milk systems

  13. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    Science.gov (United States)

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  14. Impact of whey proteins on the systemic and local intestinal level of mice with diet induced obesity.

    Science.gov (United States)

    Swiątecka, D; Złotkowska, D; Markiewicz, L H; Szyc, A M; Wróblewska, B

    2017-04-19

    Obesity is a serious public health problem and being multifactorial is difficult to tackle. Since the intestinal ecosystem's homeostasis is, at least partially, diet-dependent, its modulation may be triggered by food components that are designed to exert a modulatory action leading to a health-promoting effect. Milk whey proteins, are considered as such promising factors since they influence satiation as well as body weight and constitute the source of biologically active peptides which may modulate health status locally and systemically. This way, whey proteins are associated with obesity. Therefore, this paper is aimed at the estimation of the impact of whey proteins using a commercially available whey protein isolate on the physiological response of mice with diet-induced obesity. The physiological response was evaluated on the local-intestinal level, scrutinizing intestinal microbiota as one of the important factors in obesity and on the systemic level, analyzing the response of the organism. Whey proteins brought about the decrease of the fat mass with a simultaneous increase of the lean mass of animals with diet induced obesity, which is a promising, health-promoting effect. Whey proteins also proved to act beneficially helping restore the number of beneficial bifidobacteria in obese animals and decreasing the calorie intake and fat mass as well as the LDL level. Overall, supplementation of the high fat diet with whey proteins acted locally by restoration of the intestinal ecosystem, thus preventing dysbiosis and its effects and also acted systemically by strengthening the organism increasing the lean mass and thus hindering obesity-related detrimental effects.

  15. Sensory quality evaluation of whey-based beverages

    Directory of Open Access Journals (Sweden)

    Veronika Legarová

    2010-12-01

    Full Text Available Whey as a by-product of the cheese industry is a source of biological and functional valuable proteins. The aim of this research was to evaluate the commercial potential of whey-based dairy beverages containing a definite amount of semi-skimmed milk addition. The purpose of this paper was to improve the whey flavour via its fermentation by commercial yogurt starter cultures, and via 25 % and 50 % of milk addition. The course of fermentation was monitored by pH and titratable acidity changes. The sensory profile of non-fermented and fermented drinks was assessed using unstructured graphical scales. No significant differences in acidity were found between the samples which were fermented for 3 or 4 hours, but a significant difference was found between samples of whey drinks without milk and samples with milk addition. Fermentation by yoghurt culture did not bring statistically significant improvement of the whey drink organoleptic properties, while the addition of milk was the most important factor influencing not only the total sensory quality of the whey drinks but also their flavour, appearance, colour, viscosity and homogeneity.

  16. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    Science.gov (United States)

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically

  17. Physiochemical, texture properties, and the microstructure of set yogurt using whey protein-sodium tripolyphosphate aggregates as thickening agents.

    Science.gov (United States)

    Cheng, Jianjun; Xie, Siyu; Yin, Yuan; Feng, Xianmin; Wang, Shuai; Guo, Mingruo; Ni, Chunlei

    2017-07-01

    Polymerized whey protein-sodium tripolyphosphate can be induced to gel in an acidic environment provided during fermentation. The variety of thickening agent has an influence on texture that is an essential aspect of yogurt quality affecting consumer preference. Similar to polysaccharide stabilizers, the cold gelation properties of whey proteins can improve the body texture of yogurt products. Polymerized whey protein-sodium tripolyphosphate could be a favorable and interesting thickening agent for making set yogurt. The effects of whey protein isolate (WPI), heat-treated whey protein-sodium tripolyphosphate (WPI-STPP), heat-treated WPI and pectin on the storage properties and microstructure of yogurt were investigated. All samples were analyzed for syneresis, pH, titratable acidity, viscosity, texture profile and microstructure during storage. The results showed that incorporating heat-treated WPI-STPP had a significant impact on syneresis (32.22 ± 0.60), viscosity (10 956.67 ± 962.1) and hardness (209.24 ± 12.48) (p Yogurt fermented with modified WPI-STPP had higher levels of protein and better hardness compared with yogurt using pectin. The microstructure was observed to be a uniform and denser, complicated network. Heat-treated WPI-STPP may be useful for improving yogurt texture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Effect of hydrolyzed whey protein on surface morphology, water sorption, and glass transition temperature of a model infant formula.

    Science.gov (United States)

    Kelly, Grace M; O'Mahony, James A; Kelly, Alan L; O'Callaghan, Donal J

    2016-09-01

    Physical properties of spray-dried dairy powders depend on their composition and physical characteristics. This study investigated the effect of hydrolyzed whey protein on the microstructure and physical stability of dried model infant formula. Model infant formulas were produced containing either intact (DH 0) or hydrolyzed (DH 12) whey protein, where DH=degree of hydrolysis (%). Before spray drying, apparent viscosities of liquid feeds (at 55°C) at a shear rate of 500 s(-1) were 3.02 and 3.85 mPa·s for intact and hydrolyzed infant formulas, respectively. On reconstitution, powders with hydrolyzed whey protein had a significantly higher fat globule size and lower emulsion stability than intact whey protein powder. Lactose crystallization in powders occurred at higher relative humidity for hydrolyzed formula. The Guggenheim-Anderson-de Boer equation, fitted to sorption isotherms, showed increased monolayer moisture when intact protein was present. As expected, glass transition decreased significantly with increasing water content. Partial hydrolysis of whey protein in model infant formula resulted in altered powder particle surface morphology, lactose crystallization properties, and storage stability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Effect of Whey Supplementation on Circulating C-Reactive Protein: A Meta-Analysis of Randomized Controlled Trials

    Science.gov (United States)

    Zhou, Ling-Mei; Xu, Jia-Ying; Rao, Chun-Ping; Han, Shufen; Wan, Zhongxiao; Qin, Li-Qiang

    2015-01-01

    Whey supplementation is beneficial for human health, possibly by reducing the circulating C-reactive protein (CRP) level, a sensitive marker of inflammation. Thus, a meta-analysis of randomized controlled trials was conducted to evaluate their relationship. A systematic literature search was conducted in July, 2014, to identify eligible studies. Either a fixed-effects model or a random-effects model was used to calculate pooled effects. The meta-analysis results of nine trials showed a slight, but no significant, reduction of 0.42 mg/L (95% CI −0.96, 0.13) in CRP level with the supplementation of whey protein and its derivates. Relatively high heterogeneity across studies was observed. Subgroup analyses showed that whey significantly lowered CRP by 0.72 mg/L (95% CI −0.97, −0.47) among trials with a daily whey dose ≥20 g/day and by 0.67 mg/L (95% CI −1.21, −0.14) among trials with baseline CRP ≥3 mg/L. Meta-regression analysis revealed that the baseline CRP level was a potential effect modifier of whey supplementation in reducing CRP. In conclusion, our meta-analysis did not find sufficient evidence that whey and its derivates elicited a beneficial effect in reducing circulating CRP. However, they may significantly reduce CRP among participants with highly supplemental doses or increased baseline CRP levels. PMID:25671415

  20. Effect of Rosemary Transglutaminase on Yoghurt Fortified with Whey Protein Isolate

    Directory of Open Access Journals (Sweden)

    Ibrahim Osama

    2017-12-01

    Full Text Available Rosemary (Rosmarinus officinalis L. transglutaminase (RTGase was used to cross-link whey protein isolate (WPI and its ability to induce gelation was investigated. The rheological and textural properties of WPI were improved with RTGase treatment. Set-type yoghurts fortified with 1% WPI powder treated with RTGase at the level of 2.5 and 10 unit/g protein were studied. Chemical, rheological, textural and organoleptic properties of the yoghurt treated with RTGase were better than these of the control yoghurt.

  1. Whey and casein labelled with L-[1-13C]-leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2011-01-01

    to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials (n = 9) or one control trial (n = 8). Infusion of l-[1-(13)C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass......), or a noncaloric control drink was ingested immediately after exercise. l-[1-(13)C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments......, and myofibrillar protein synthesis. Western blots were used to investigate the Akt signaling pathway. Plasma insulin and branched-chain amino acid concentrations increased to a greater extent after ingestion of whey compared with casein. Myofibrillar protein synthesis was equally increased 1-6 h postexercise after...

  2. High Whey Protein Intake Delayed the Loss of Lean Body Mass in Healthy Old Rats, whereas Protein Type and Polyphenol/Antioxidant Supplementation Had No Effects

    Science.gov (United States)

    Mosoni, Laurent; Gatineau, Eva; Gatellier, Philippe; Migné, Carole; Savary-Auzeloux, Isabelle; Rémond, Didier; Rocher, Emilie; Dardevet, Dominique

    2014-01-01

    Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism). 3) Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism). Such comparisons and combinations were never tested before. Nutritional groups were: casein 12% protein, whey 12% protein, whey 18% protein and each of these groups were supplemented or not with polyphenols/antioxidants. During 6 months, we followed changes of weight, food intake, inflammation (plasma fibrinogen and alpha-2-macroglobulin) and body composition (DXA). After 6 months, we measured muscle mass, in vivo and ex-vivo fed and post-absorptive muscle protein synthesis, ex-vivo muscle proteolysis, and oxidative stress parameters (liver and muscle glutathione, SOD and total antioxidant activities, muscle carbonyls and TBARS). We showed that although micronutrient supplementation reduced inflammation and oxidative stress, the only factor that significantly reduced the loss of lean body mass was the increase in whey protein intake, with no detectable effect on muscle protein synthesis, and a tendency to reduce muscle proteolysis. We conclude that in healthy rats, increasing protein intake is an effective way to delay sarcopenia. PMID:25268515

  3. The effect of chitosan and whey proteins-chitosan films on the growth of Penicillium expansum in apples.

    Science.gov (United States)

    Simonaitiene, Dovile; Brink, Ieva; Sipailiene, Ausra; Leskauskaite, Daiva

    2015-05-01

    Penicillium expansum causes a major post-harvest disease of apples. The aim of this study was to investigate the inhibition effect of chitosan and whey proteins-chitosan films containing different amounts of quince and cranberry juice against P. expansum on the simulation medium and on apples. The mechanical properties of films were also evaluated. The presence of cranberry and quince juice in the composition of chitosan and whey proteins-chitosan films caused a significant (P ≤ 0.05) increase in elasticity and decrease in tensile strength of films. Chitosan and whey proteins-chitosan films with quince and cranberry juice demonstrated a significant (P ≤ 0.05) inhibition effect against P. expansum growth on the simulated medium and apples. The presence of cranberry juice in the composition of chitosan and whey proteins-chitosan films resulted in a longer lag phase and a lower P. expansum growth rate on the simulation medium in comparison with films made with the addition of quince juice. These differences were not evident when experiment was conducted with apples. Addition of quince and cranberry juice to the chitosan and whey proteins-chitosan films as natural antifungal agents has some potential for prolonging the shelf life of apples. © 2014 Society of Chemical Industry.

  4. Casein protein results in higher prandial and exercise induced whole body protein anabolism than whey protein in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Engelen, Mariëlle P K J; Rutten, Erica P A; De Castro, Carmen L N; Wouters, Emiel F M; Schols, Annemie M W J; Deutz, Nicolaas E P

    2012-09-01

    Exercise is known to improve physical functioning and health status in Chronic Obstructive Pulmonary Disease (COPD). Recently, disturbances in protein turnover and amino acid kinetics have been observed after exercise in COPD. The objective was to investigate which dairy protein is able to positively influence the protein metabolic response to exercise in COPD. 8 COPD patients and 8 healthy subjects performed a cycle test on two days while ingesting casein or whey protein. Whole body protein breakdown (WbPB), synthesis (WbPS), splanchnic amino acid extraction (SPE), and NetWbPS (=WbPS-WbPB) were measured using stable isotope methodology during 20 min of exercise (at 50% peak work load of COPD group). The controls performed a second exercise test at the same relative workload. Exercise was followed by 1 h of recovery. In the healthy group, WbPS, SPE, and NetPS were higher during casein than during whey feeding (Pexercise, independent of exercise intensity (Pexercise during casein and whey feeding in COPD (Pexercise were higher in COPD (Pexercise, lower NetPS values were found independent of protein type in both groups. Casein resulted in more protein anabolism than whey protein which was maintained during and following exercise in COPD. Optimizing protein intake might be of importance for muscle maintenance during daily physical activities in COPD. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Simultaneous Treatment of Agro-Industrial and Industrial Wastewaters: Case Studies of Cr(VI/Second Cheese Whey and Cr(VI/Winery Effluents

    Directory of Open Access Journals (Sweden)

    Triantafyllos I. Tatoulis

    2018-03-01

    Full Text Available Hexavalent chromium (Cr(VI was co-treated either with second cheese whey (SCW or winery effluents (WE using pilot-scale biological trickling filters in series under different operating conditions. Two pilot-scale filters in series using plastic support media were used in each case. The first filter (i.e., Cr-SCW-filter or Cr-WE-filter aimed at Cr(VI reduction and the partial removal of dissolved chemical oxygen demand (d-COD from SCW or WE and was inoculated with indigenous microorganisms originating from industrial sludge. The second filter in series (i.e., SCW-filter or WE-filter aimed at further d-COD removal and was inoculated with indigenous microorganisms that were isolated from SCW or WE. Various Cr(VI (5–100 mg L−1 and SCW or WE (d-COD, 1000–25,000 mg L−1 feed concentrations were tested. Based on the experimental results, the sequencing batch reactor operating mode with recirculation of 0.5 L min−1 proved very efficient since it led to complete Cr(VI reduction in the first filter in series and achieved high Cr(VI reduction rates (up to 36 and 43 mg L−1 d−1, for SCW and WW, respectively. Percentage d-COD removal for SCW and WE in the first filter was rather low, ranging from 14 to 42.5% and from 4 to 29% in the Cr-SCW-filter and Cr-WE-filter, respectively. However, the addition of the second filter in series enhanced total d-COD removal to above 97% and 90.5% for SCW and WE, respectively. The above results indicate that agro-industrial wastewater could be used as a carbon source for Cr(VI reduction, while the use of two trickling filters in series could effectively treat both industrial and agro-industrial wastewaters with very low installation and operational costs.

  6. Influence of heating and acidification on the flavor of whey protein isolate.

    Science.gov (United States)

    White, S S; Fox, K M; Jervis, S M; Drake, M A

    2013-03-01

    Previous studies have established that whey protein manufacture unit operations influence the flavor of dried whey proteins. Additionally, manufacturers generally instantize whey protein isolate (WPI; ≥ 90% protein) by agglomeration with lecithin to increase solubility and wettability. Whey protein isolate is often subjected to additional postprocessing steps in beverage manufacturing, including acidification and heat treatment. These postprocessing treatments may further influence formation or release of flavors. The objective of the first study was to characterize the effect of 2 processing steps inherent to manufacturing of acidic protein beverages (acidification and heat treatment) on the flavor of non-instant WPI. The second study sought to determine the effect of lecithin agglomeration, a common form of instantized (INST) WPI used in beverage manufacturing, on the flavor of WPI after acidification and heat treatment. In the first experiment, commercial non-instantized (NI) WPI were rehydrated and evaluated as is (control); acidified to pH 3.2; heated to 85°C for 5 min in a benchtop high temperature, short time (HTST) pasteurizer; or acidified to 3.2 and heated to 85°C for 30s (AH-HTST). In the second experiment, INST and NI commercial WPI were subsequently evaluated as control, acidified, heated, or AH-HTST. All samples were evaluated by descriptive sensory analysis, solid-phase microextraction (SPME), and gas chromatography-mass spectrometry. Acidification of NI WPI produced higher concentrations of dimethyl disulfide (DMDS) and sensory detection of potato/brothy flavors, whereas heating increased cooked/sulfur flavors. Acidification and heating increased cardboard, potato/brothy, and malty flavors and produced higher concentrations of aldehydes, ketones, and sulfur compounds. Differences between INST and NI WPI existed before treatment; INST WPI displayed cucumber flavors not present in NI WPI. After acidification, INST WPI were distinguished by higher

  7. Effects of combined β-hydroxy-β-methylbutyrate (HMB) and whey protein ingestion on symptoms of eccentric exercise-induced muscle damage.

    Science.gov (United States)

    Shirato, Minayuki; Tsuchiya, Yosuke; Sato, Teruyuki; Hamano, Saki; Gushiken, Takeshi; Kimura, Naoto; Ochi, Eisuke

    2016-01-01

    The purpose of this study was to examine the effects of combined β-hydroxy-β-methylbutyrate (HMB) and whey protein ingestion on muscle strength and damage following a single bout of eccentric exercise. Eighteen untrained male subjects were assigned to HMB and Whey protein (HMB + Whey; 3 g/day HMB and 36.6 g/day whey protein, n = 6), HMB (3 g/day, n = 6), or whey protein (36.6 g/day, n = 6) groups. Ingestion commenced 7 days before non-dominant elbow flexor eccentric exercise (30 deg/sec, 6 reps × 7 sets) and continued until 4 days post-exercise. The maximal isometric strength, muscle soreness, plasma creatine kinase (CK), lactate dehydrogenase (LDH) were assessed pre-exercise, and at 1, 2, 3, and 5 days after exercise. The change scores of maximal isometric strength significantly decreased at day 1, 2, and 5 in the whey protein group compared to pre value and that in HMB + Whey protein and HMB groups decreased at day 1 and 5. The muscle soreness significantly increased in the whey and HMB + Whey protein groups at day 3 compared to pre value (p HMB and whey protein does not have a role to inhibit muscle strength loss and soreness, and decrease in muscle damage markers after eccentric exercise in comparison with HMB and whey protein alone.

  8. The effects of whey protein with or without carbohydrates on resistance training adaptations.

    Science.gov (United States)

    Hulmi, Juha J; Laakso, Mia; Mero, Antti A; Häkkinen, Keijo; Ahtiainen, Juha P; Peltonen, Heikki

    2015-01-01

    Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of whey proteins (n = 22), isocaloric carbohydrates (maltodextrin, n = 21), or protein + carbohydrates (n = 25). Within these groups, the subjects were further randomized into two whole-body 12-week RT regimens aiming either for muscle hypertrophy and maximal strength or muscle strength, hypertrophy and power. The post-exercise drink was always ingested immediately after the exercise bout, 2-3 times per week depending on the training period. Body composition (by DXA), quadriceps femoris muscle cross-sectional area (by panoramic ultrasound), maximal strength (by dynamic and isometric leg press) and serum lipids as basic markers of cardiovascular health, were analysed before and after the intervention. Twelve-week RT led to increased fat-free mass, muscle size and strength independent of post-exercise nutrient intake (P carbohydrate group independent of the type of RT (P carbohydrate group (P carbohydrates or combination of proteins and carbohydrates did not have a major effect on muscle size or strength when ingested two to three times a week. However, whey proteins may increase abdominal fat loss and relative fat-free mass adaptations in response to resistance training when compared to fast-acting carbohydrates.

  9. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    Science.gov (United States)

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety.

  10. Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate.

    Science.gov (United States)

    Ye, Aiqian

    2008-10-15

    The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC. Copyright © 2008 Elsevier Ltd. All rights reserved.

  11. Effect of casein to whey protein ratios on the protein interactions and coagulation properties of low-fat yogurt.

    Science.gov (United States)

    Zhao, L L; Wang, X L; Tian, Q; Mao, X Y

    2016-10-01

    In this study, we investigated the effect of casein (CN) to whey protein (WP) ratios (4:1, 3:1, 2:1, and 1:1) on gelation properties and microstructure of low-fat yogurt made with reconstituted skim milk with or without addition of whey protein concentrate. The rheological properties (storage modulus, G'; yield stress; and yield strain) of the obtained low-fat yogurt were greatly enhanced, the fermentation period was shortened, and the microstructure became more compact with smaller pores as the CN:WP ratio decreased. When CN:WP was 2:1 or 1:1, the obtained yogurt coagulum showed higher G' and greater yield stress, with more compact crosslinking and smaller pores. In addition, the more of skim milk powder was replaced by whey protein concentrate, the more disulfide bonds were formed and the greater the occurrence of hydrophobic interactions during heat treatment, which can improve the rheological properties and microstructure of low-fat yogurt. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Including whey protein and whey permeate in ready-to-use supplementary food improves recovery rates in children with moderate acute malnutrition: a randomized, double-blind clinical trial.

    Science.gov (United States)

    Stobaugh, Heather C; Ryan, Kelsey N; Kennedy, Julie A; Grise, Jennifer B; Crocker, Audrey H; Thakwalakwa, Chrissie; Litkowski, Patricia E; Maleta, Kenneth M; Manary, Mark J; Trehan, Indi

    2016-03-01

    The utility of dairy ingredients in the supplementary foods used in the treatment of childhood moderate acute malnutrition (MAM) remains unsettled. We evaluated the effectiveness of a peanut-based ready-to-use supplementary food (RUSF) with soy protein compared with a novel RUSF containing dairy ingredients in the form of whey permeate and whey protein concentrate in the treatment of children with MAM. We conducted a randomized, double-blind clinical effectiveness trial involving rural Malawian and Mozambican children 6-59 mo of age with MAM treated with either soy RUSF or a novel whey RUSF treatment of ~75 kcal · kg(-1) · d(-1) for up to 12 wk. The proportion of children that recovered from MAM was significantly higher in the group that received whey RUSF (960 of 1144; 83.9%) than in the group that received soy RUSF (874 of 1086; 80.5%; P whey RUSF also demonstrated better growth markers, with a higher mean midupper arm circumference (MUAC) at the time of discharge (P whey RUSF resulted in higher recovery rates and improved growth than did soy RUSF, although the whey RUSF supplement provided less total protein and energy than the soy RUSF. This study was registered at clinicaltrials.gov as NCT01790048. © 2016 American Society for Nutrition.

  13. Addition of Fish Oil to Cream Cheese Affects Lipid Oxidation, Sensory Stability and Microstructure

    Directory of Open Access Journals (Sweden)

    Andy Horsewell

    2012-11-01

    Full Text Available The objective of this study was to investigate the differences in the oxidative stability during storage of fish oil enriched cream cheeses when fish oil was added either as neat oil or pre-emulsified oil with sodium caseinate, whey protein isolate, or a combination of milk proteins and phospholipids as emulsifier. Results showed that the addition of fish oil decreased the oxidative stability of cream cheeses regardless of the addition method, especially when the cheese was stored longer than five weeks. The oxidative stability of fish oil enriched cream cheeses was highest when fish oil was added as neat oil or in a delivery emulsion prepared with a combination of milk proteins and phospholipids. Adding the fish oil in a delivery emulsion prepared with whey protein or caseinate resulted in a less oxidative stable product. It was furthermore shown that the microstructure of the cream cheeses was affected by fish oil addition, and it was suggested that the change in microstructure was partly responsible for the oxidative stability of the cream cheeses.

  14. Effect of initial protein concentration and pH on in vitro gastric digestion of heated whey proteins.

    Science.gov (United States)

    Zhang, Sha; Vardhanabhuti, Bongkosh

    2014-02-15

    The in vitro digestion of heated whey protein aggregates having different structure and physicochemical properties was evaluated under simulated gastric conditions. Aggregates were formed by heating whey protein isolates (WPI) at 3-9% w/w initial protein concentration and pH 3.0-7.0. Results showed that high protein concentration led to formation of larger WPI aggregates with fewer remaining monomers. Aggregates formed at high protein concentrations showed slower degradation rate compared to those formed at low protein concentration. The effect of initial protein concentration on peptide release pattern was not apparent. Heating pH was a significant factor affecting digestion pattern. At pH above the isoelectric point, the majority of the proteins involved in the aggregation, and aggregates formed at pH 6.0 were more susceptible to pepsin digestion than at pH 7.0. At acidic conditions, only small amount of proteins was involved in the aggregation and heated aggregates were easily digested by pepsin, while the remaining unaggregated proteins were very resistant to gastric digestion. The potential physiological implication of these results on satiety was discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched alpha-lactalbumin and beta-lactoglobulin food ingredients

    Science.gov (United States)

    A potentially economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (SCO2) as an acid to produce enriched fractions of alpha-lactalbumin (a-LA) and beta-lactoglobulin (b-LG) from whey protein isolate. To prepare the fractions, so...

  16. Efficacy of whey protein supplementation on resistance exercise-induced changes in muscle strength, lean mass, and function in mobility-limited older adults

    Science.gov (United States)

    Whey protein supplementation may augment resistance exercise-induced increases in muscle strength and mass. Further studies are required to determine whether this effect extends to functionally compromised older adults. The objectives of the study were to compare the effects of whey protein concent...

  17. Lecevacki cheese

    Directory of Open Access Journals (Sweden)

    Siniša Matutinović

    2007-04-01

    Full Text Available In this review traditional Croatian cheeses were described as well as their importance considering globalization and industrialization in food production. The most important property of traditional cheeses is their originality and origin of milk that is incorporated in those products. As the high profitability (high price of the products is very important it is necessary to conduct one of possible protections on European level. In that sense, hard cheeses from Adriatic and Dinara areas have significant potential due to the fact that high value raw material - sheep milk produced from breed with very extensively management using natural pasture with characteristic botanical composition consisting aromatic Mediteranean plants, is used in their production. This milk is characterized with high percentage of some chemical components, especially fat and protein. Considering that fact, this milk represents the best material especially for hard cheese production. In this paper the review of milk chemical composition of the most important Croatian sheep breeds which milk is used for production of hard cheeses, was performed. The review of basic technological parameters in production of hard traditional cheeses considering type, standardization and heat treatment of milk, renneting, curd cutting and drying, dimension, salting and ripening is represented. Characterization parameters of cheese, considering chemical and physical composition, biochemical changes, dominant microflora which dominates in technological production procedure and determines taste and odour of mature cheese, are shown. The basic characteristics and technology of Lecevacki cheese production was described too, as the most important traditional cheese from Split area surroundings. This cheese type was produced on family farms as well as on industrial level for some time. Its sensory characteristics are described in the paper.

  18. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point.

    Science.gov (United States)

    de Vries, R

    2004-02-15

    Electrostatic complexation of flexible polyanions with the whey proteins alpha-lactalbumin and beta-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Huckel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that alpha-lactalbumin complexes much more strongly than beta-lactoglobulin. For alpha-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for beta-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches. Copyright 2004 American Institute of Physics

  19. Liquid Whey Protein Concentrates Produced by Ultrafiltration as Primary Raw Materials for Thermal Dairy Gels

    Directory of Open Access Journals (Sweden)

    Marta Henriques

    2017-01-01

    Full Text Available The aim of this work is to study the gelation properties of liquid whey protein concentrates (LWPC produced by ultrafiltration (UF as raw material for thermally induced gels intended for food applications. LWPC thermal gelation was performed using different types of LWPC (non-defatted, defatted and diafiltered of different protein mass fractions and pH. Most of the produced gels showed viscoelastic behaviour. Non-defatted LWPC gave stronger heat-induced gels with a more cohesive microstructure, a higher water holding capacity and also higher elastic modulus (G’ and viscous modulus (G’’. Gel properties were not improved in products with lower content of non-protein compounds. As expected, the increase in protein mass fraction positively influences protein interactions. However, the pH is responsible for the equilibrium between attraction and repulsion forces in the gel components that influence gel hardness and water holding capacity.

  20. Effect of hydrogen peroxide on improving the heat stability of whey protein isolate solutions.

    Science.gov (United States)

    Sutariya, Suresh; Patel, Hasmukh

    2017-05-15

    Whey protein isolate (WPI) solutions (12.8%w/w protein) were treated with varying concentrations of H 2 O 2 in the range of 0-0.144 H 2 O 2 to protein ratios (HTPR) by the addition of the required quantity of H 2 O 2 and deionized water. The samples were analyzed for heat stability, rheological properties, denaturation level of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA). The samples treated with H 2 O 2 concentration >0.072 (HTPR) showed significant improvement in the heat stability, and decreased whey protein denaturation and aggregation. The WPI solution treated with H 2 O 2 (>0.072 HTPR) remained in the liquid state after heat treatment at 120°C, whereas the control samples formed gel upon heat treatment. Detailed analysis of these samples suggested that the improvement in the heat stability of H 2 O 2 treated WPI solution was attributed to the significant reduction in the sulfhydryl-disulfide interchange reaction during denaturation of β-LG and α-LA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Formulation and Physicochemical Evaluation of Frozen Snacks Based on Whey Protein Isolate and Skimmed Milk

    Directory of Open Access Journals (Sweden)

    Maria Ioana MORAR

    2017-11-01

    Full Text Available Four different formulations of frozen snacks were prepared by reconstituting whey protein isolate with skimmed milk then adding different ingredients such as cocoa and vanilla (CW, cranberries and cocoa (CrC, sour cherries and vanilla (ChW, as well as cranberries, cocoa and vanilla (CrCW. Formulation with 50% skimmed milk, 15% whey protein isolate, 10% fructose, 1% vanilla, and 24% sour cherries (ChW was selected based on sensory characteristics; the addition of sour cherry significantly (p < 0.05 changed the appearance of the frozen snack and thus this formulation showed the highest score for overall acceptability (7.6 points. This product contains 16.5 g protein, 0.2 g fat, and 16.4 g carbohydrates per 100 g frozen snack that gives an energy value of approximately 133 kcal (556 kJ. Thus, ChW is a low calories snack (under 200 kcal/100 g product characterized by high-protein content and very low-fat content.

  2. Textural behavior of gels formed by rice starch and whey protein isolate: Concentration and crosshead velocities

    Directory of Open Access Journals (Sweden)

    Thiago Novaes Silva

    Full Text Available ABSTRACT Fabricated food gels involving the use of hydrocolloids are gaining polpularity as confectionery/convenience foods. Starch is commonly combined with a hydrocolloid (protein our polyssacharides, particularly in the food industry, since native starches generally do not have ideal properties for the preparation of food products. Therefore the texture studies of starch-protein mixtures could provide a new approach in producing starch-based food products, being thus acritical attribute that needs to be carefully adjusted to the consumer liking. This work investigated the texture and rheological properties of mixed gels of different concentrations of rice starch (15%, 17.5%, and 20% and whey protein isolate (0%, 3%, and 6% with different crosshead velocities (0.05, 5.0, and 10.0 mm/s using a Box-Behnken experimental design. The samples were submitted to uniaxial compression tests with 80% deformation in order to determinate the following rheological parameters: Young’s modulus, fracture stress, fracture deformation, recoverable energy, and apparent biaxial elongational viscosity. Gels with a higher rice starch concentration that were submitted to higher test velocities were more rigid and resistant, while the whey protein isolate concentration had little influence on these properties. The gels showed a higher recoverable energy when the crosshead velocity was higher, and the apparent biaxial elongational viscosity was also influenced by this factor. Therefore, mixed gels exhibit different properties depending on the rice starch concentration and crosshead velocity.

  3. Stimulation of muscle protein synthesis by whey and caseinate ingestion after resistance exercise in elderly individuals

    DEFF Research Database (Denmark)

    Dideriksen, K J; Reitelseder, S; Petersen, S G

    2011-01-01

    Sarcopenia is a well-known phenomenon in elderly individuals and resistance exercise together with sufficient amino acid (AA) availability has proved to be a counteractive implement. However, the source of AA and supplement timing require further investigation. The objective was to compare muscle...... protein synthesis (MPS) to intakes of whey and caseinate after heavy resistance exercise in healthy elderly individuals, and, furthermore, to compare the timing effect of caseinate intake. Twenty-four elderly men and women (mean ± SEM; 68 ± 1 years) were randomized to one of four groups: caseinate intake...

  4. Gastric Emptying and Gastrointestinal Transit Compared among Native and Hydrolyzed Whey and Casein Milk Proteins in an Aged Rat Model.

    Science.gov (United States)

    Dalziel, Julie E; Young, Wayne; McKenzie, Catherine M; Haggarty, Neill W; Roy, Nicole C

    2017-12-13

    Little is known about how milk proteins affect gastrointestinal (GI) transit, particularly for the elderly, in whom digestion has been observed to be slowed. We tested the hypothesis that GI transit is faster for whey than for casein and that this effect is accentuated with hydrolysates, similar to soy. Adult male rats (18 months old) were fed native whey or casein, hydrolyzed whey (WPH) or casein (CPH), hydrolyzed blend (HB; 60% whey:40% casein), or hydrolyzed soy for 14 days then treated with loperamide, prucalopride, or vehicle-control for 7 days. X-ray imaging tracked bead-transit for: gastric emptying (GE; 4 h), small intestine (SI) transit (9 h), and large intestine (LI) transit (12 h). GE for whey was 33 ± 12% faster than that for either casein or CPH. SI transit was decreased by 37 ± 9% for casein and 24 ± 6% for whey compared with hydrolyzed soy, and persisted for casein at 12 h. Although CPH and WPH did not alter transit compared with their respective intact counterparts, fecal output was increased by WPH. Slowed transit by casein was reversed by prucalopride (9-h), but not loperamide. However, rapid GE and slower SI transit for the HB compared with intact forms were inhibited by loperamide. The expected slower GI transit for casein relative to soy provided a comparative benchmark, and opioid receptor involvement was corroborated. Our findings provide new evidence that whey slowed SI transit compared with soy, independent of GE. Increased GI transit from stomach to colon for the HB compared with casein suggests that including hydrolyzed milk proteins in foods may benefit those with slowed intestinal transit.

  5. Interfacial properties of whey protein and whey protein hydrolysates and their influence on O/W emulsion stability

    NARCIS (Netherlands)

    Schroder, A.J.; Berton-Carabin, C.C.; Venema, P.; Cornacchia, L.

    2017-01-01

    Protein hydrolysates are commonly used in high-tolerance or hypoallergenic formulae. The relation between the physicochemical properties of hydrolysed proteins (i.e., size, molecular weight distribution, charge, hydrophobicity), and their emulsifying properties is not fully understood. In this work,

  6. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition.

    Science.gov (United States)

    Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D

    2016-11-01

    Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study

    Directory of Open Access Journals (Sweden)

    Daniel W. D. West

    2017-07-01

    Full Text Available No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey or an energy-matched placebo (CHO immediately post-exercise (0 h, and again the following morning (~10 h of recovery. A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest. Participants ingested [15N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO (P = 0.064; effect size (ES = 0.61, PRO vs. CHO during overnight recovery. Over 24 h, net balance was enhanced in PRO (P = 0.036 but not in CHO (P = 0.84; ES = 0.69, PRO vs. CHO, which was mediated primarily by a reduction in protein breakdown (PRO < CHO; P < 0.01. Exercise decreased repetitions to failure (REP, maximal strength (MVC, peak and mean power, and countermovement jump performance (CMJ at 0 h (all P < 0.05 vs. Pre. At 10 h, there were small-to-moderate effects for enhanced recovery of the MVC (ES = 0.56, mean power (ES = 0.49, and CMJ variables (ES: 0.27–0.49 in PRO. At 24 h, protein supplementation improved MVC (ES = 0.76, REP (ES = 0.44, and peak power (ES = 0.55. In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of

  8. Liquid and vapour water transfer through whey protein/lipid emulsion films.

    Science.gov (United States)

    Kokoszka, Sabina; Debeaufort, Frederic; Lenart, Andrzej; Voilley, Andree

    2010-08-15

    Edible films and coatings based on protein/lipid combinations are among the new products being developed in order to reduce the use of plastic packaging polymers for food applications. This study was conducted to determine the effect of rapeseed oil on selected physicochemical properties of cast whey protein films. Films were cast from heated (80 degrees C for 30 min) aqueous solutions of whey protein isolate (WPI, 100 g kg(-1) of water) containing glycerol (50 g kg(-1) of WPI) as a plasticiser and different levels of added rapeseed oil (0, 1, 2, 3 and 4% w/w of WPI). Measurements of film microstructure, laser light-scattering granulometry, differential scanning calorimetry, wetting properties and water vapour permeability (WVP) were made. The emulsion structure in the film suspension changed significantly during drying, with oil creaming and coalescence occurring. Increasing oil concentration led to a 2.5-fold increase in surface hydrophobicity and decreases in WVP and denaturation temperature (T(max)). Film structure and surface properties explain the moisture absorption and film swelling as a function of moisture level and time and consequently the WVP behaviour. Small amounts of rapeseed oil favourably affect the WVP of WPI films, particularly at higher humidities. Copyright (c) 2010 Society of Chemical Industry.

  9. Whey protein-derived biomaterials and their use as bioencapsulation and delivery systems

    Directory of Open Access Journals (Sweden)

    Subirade Muriel

    2003-01-01

    Full Text Available The emergence of bioactive food compounds (nutraceutical compounds with health benefits provides an excellent opportunity for improving public health. The incorporation of bioactive compounds into food systems is therefore of great interest to researchers in their efforts to develop innovative functional foods that may have physiological benefits or reduce the risk of disease beyond basic nutritional functions. However, the effectiveness of these products in preventing diseases relies on preserving the bioavailability of their active ingredients. This represents undoubtedly a great challenge since these molecules are generally sensitive to environmental conditions encountered in food processes (i.e., temperature oxygen, and light or in the gastrointestinal tract (i.e., pH, enzymes presence of other nutrients, which limit their activity and potential health benefits. However, bio- and microencapsulation can be used to overcome these limitations. Whey proteins, also known as the serum proteins of milk, are widely used in food products, because of their high nutritional value and their ability to form gels, emulsions, or foams. The aim of this article is to provide information on the different types of materials obtained from whey proteins and to examine their use as bioencapsulation and delivery systems.

  10. Properties of whey protein isolates extruded under acidic and alkaline conditions.

    Science.gov (United States)

    Onwulata, C I; Isobe, S; Tomasula, P M; Cooke, P H

    2006-01-01

    Whey proteins have wide acceptance and use in many products due to their beneficial nutritional properties. To further increase the amount of whey protein isolates (WPI) that may be added to products such as extruded snacks and meats, texturization of WPI is necessary. Texturization changes the folding of globular proteins to improve interaction with other ingredients and create new functional ingredients. In this study, WPI pastes (60% solids) were extruded in a twin-screw extruder at 100 degrees C with 4 pH-adjusted water streams: acidic (pH 2.0 +/- 0.2) and alkaline (pH 12.4 +/- 0.4) streams from 2 N HCl and 2 N NaOH, respectively, and acidic (pH 2.5 +/- 0.2) and alkaline (pH 11.5 +/- 0.4) electrolyzed water streams; these were compared with WPI extruded with deionized water. The effects of water acidity on WPI solubility at pH 7, color, microstructure, Rapid Visco Analyzer pasting properties, and physical structure were determined. Alkaline conditions increased insolubility caused yellowing and increased pasting properties significantly. Acidic conditions increased solubility and decreased WPI pasting properties. Subtle structural changes occurred under acidic conditions, but were more pronounced under alkaline conditions. Overall, alkaline conditions increased denaturation in the extruded WPI resulting in stringy texturized WPI products, which could be used in meat applications.

  11. Health of issues of whey proteins: 2. Weight management

    NARCIS (Netherlands)

    Schaafsma, G.

    2006-01-01

    The increasing prevalence in many countries of people with overweight and obesity is undoubtedly one of the biggest threats to public health. Dietary proteins, because of their positive effects on satiation/ satiety, may help to reduce energy intake and promote a healthy body composition with less

  12. Health issues of whey proteins: 2. Weight management

    NARCIS (Netherlands)

    Schaafsma, G.

    2006-01-01

    The increasing prevalence in many countries of people with overweight and obesity is undoubtedly one of the biggest threats to public health. Dietary proteins, because of their positive effects on satiation/satiety, may help to reduce energy intake and promote a healthy body composition with Less

  13. Nanoencapsulation of Biologically Active Peptides from Whey Proteins

    OpenAIRE

    Sebnem Tellioglu Harsa

    2014-01-01

    "Now a days consumers, in order to feed with balanced diet, prefer healthy and reliable foods. In this respect food manufacturers are trying to respond the demands of consumers by developing new types of foods such as diet foods ( low calorie foods), modified foods (organic foods) and functional foods (probiotic and prebiotics). Thus, production of nutritious, functional and beneficial foods has become a growing sector in the United States and European countries. Proteins are major source...

  14. Skeletal effect of casein and whey protein intake during catch-up growth in young male Sprague-Dawley rats.

    Science.gov (United States)

    Masarwi, Majdi; Gabet, Yankel; Dolkart, Oleg; Brosh, Tamar; Shamir, Raanan; Phillip, Moshe; Gat-Yablonski, Galia

    2016-07-01

    The aim of the present study was to determine whether the type of protein ingested influences the efficiency of catch-up (CU) growth and bone quality in fast-growing male rats. Young male Sprague-Dawley rats were either fed ad libitum (controls) or subjected to 36 d of 40 % food restriction followed by 24 or 40 d of re-feeding with either standard rat chow or iso-energetic, iso-protein diets containing milk proteins - casein or whey. In terms of body weight, CU growth was incomplete in all study groups. Despite their similar food consumption, casein-re-fed rats had a significantly higher body weight and longer humerus than whey-re-fed rats in the long term. The height of the epiphyseal growth plate (EGP) in both casein and whey groups was greater than that of rats re-fed normal chow. Microcomputed tomography yielded significant differences in bone microstructure between the casein and whey groups, with the casein-re-fed animals having greater cortical thickness in both the short and long term in addition to a higher trabecular bone fraction in the short term, although this difference disappeared in the long term. Mechanical testing confirmed the greater bone strength in rats re-fed casein. Bone quality during CU growth significantly depends on the type of protein ingested. The higher EGP in the casein- and whey-re-fed rats suggests a better growth potential with milk-based diets. These results suggest that whey may lead to slower bone growth with reduced weight gain and, as such, may serve to circumvent long-term complications of CU growth.

  15. Glycemic Response of a Carbohydrate-Protein Bar with Ewe-Goat Whey

    Directory of Open Access Journals (Sweden)

    Eirini Manthou

    2014-06-01

    Full Text Available In this study we examined the glycaemic index (GI and glycaemic load (GL of a functional food product, which contains ewe-goat whey protein and carbohydrates in a 1:1 ratio. Nine healthy volunteers, (age, 23.3 ± 3.9 years; body mass index, 24.2 ± 4.1 kg·m2; body fat %, 18.6 ± 10.0 randomly consumed either a reference food or amount of the test food both with equal carbohydrate content in two visits. In each visit, seven blood samples were collected; the first sample after an overnight fast and the remaining six at 15, 30, 45, 60, 90 and 120 min after the beginning of food consumption. Plasma glucose concentration was measured and the GI was determined by calculation of the incremental area under the curve. The GL was calculated using the equation: test food GI/100 g available carbohydrates per test food serving. The GI of the test food was found to be 5.18 ± 3.27, while the GL of one test food serving was 1.09 ± 0.68. These results indicate that the tested product can be classified as a low GI (<55 and low GL (<10 food. Given the health benefits of low glycaemic response foods and whey protein consumption, the tested food could potentially promote health beyond basic nutrition.

  16. Selective effects of whey protein concentrate on glutathione levels and apoptosis in rats with mammary tumors.

    Science.gov (United States)

    Cheng, Shih-Hsuan; Tseng, Yang-Ming; Wu, Szu-Hsien; Tsai, Shih-Meng; Tsai, Li-Yu

    2017-09-01

    Glutathione (GSH) plays an important role in antioxidant defense and regulation of apoptosis. GSH deficiency is related to many diseases, including cancer, and increased GSH levels in cancer cells are associated with chemotherapy resistance because of resistance to apoptosis. In this study, we investigated the effects of whey protein concentrate (WPC), a precursor of GSH, in rats with mammary tumors induced by treatment with 7,12-dimethylbenz(a)anthracene (DMBA). DMBA treatment results in cellular changes that mimic the initiation and promotion of carcinogenesis of breast tissue. We aimed to examine the possible preventive effects of diets containing whey protein on DMBA-induced mammary tumors in rats. The results indicate that WPC (0.334 g/kg) supplementation significantly increased the liver GSH levels by 92%, and were accompanied by low Bax/Bcl-2 ratio (from 5 to 3) and cleaved caspase-3/procaspase-3 ratio (from 2.4 to 1.2) in DMBA-treated rats. Furthermore, tumor GSH levels were decreased by 47% in WPC-supplemented rats, which resulted in increased Bax/Bcl-2 ratio (from 0.9 to 2) and cleaved caspase-3/procaspase-3 ratio (from 1.1 to 2.7). In conclusion, supplementation with WPC could selectively deplete tumor GSH levels and, therefore, WPC supplementation might be a promising strategy to overcome treatment resistance in cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Preventive Effects of Chitosan Coacervate Whey Protein on Body Composition and Immunometabolic Aspect in Obese Mice

    Directory of Open Access Journals (Sweden)

    Gabriel Inácio de Morais Honorato de Souza

    2014-01-01

    Full Text Available Functional foods containing bioactive compounds of whey may play an important role in prevention and treatment of obesity. The aim of this study was to investigate the prospects of the biotechnological process of coacervation of whey proteins (CWP in chitosan and test its antiobesogenic potential. Methods. CWP (100 mg·kg·day was administered in mice with diet-induced obesity for 8 weeks. The animals were divided into four groups: control normocaloric diet gavage with water (C or coacervate (C-CWP, and high fat diet gavage with water (HF or coacervate (HF-CWP. Results. HF-CWP reduced weight gain and serum lipid fractions and displayed reduced adiposity and insulin. Adiponectin was significantly higher in HF-CWP group when compared to the HF. The level of LPS in HF-W group was significantly higher when compared to HF-CWP. The IL-10 showed an inverse correlation between the levels of insulin and glucose in the mesenteric adipose tissue in the HF-CWP group. CWP promoted an increase in both phosphorylation AMPK and the amount of ATGL in the mesenteric adipose tissue in HF-CWP group. Conclusion. CWP was able to modulate effects, possibly due to its high biological value of proteins. We observed a protective effect against obesity and improved the inflammatory milieu of white adipose tissue.

  18. Effects of combination of whey protein intake and rehabilitation on muscle strength and daily movements in patients with hip fracture in the early postoperative period.

    Science.gov (United States)

    Niitsu, Masaya; Ichinose, Daisuke; Hirooka, Taku; Mitsutomi, Kazuhiko; Morimoto, Yoshitaka; Sarukawa, Junichiro; Nishikino, Shoichi; Yamauchi, Katsuya; Yamazaki, Kaoru

    2016-08-01

    Elderly patients can be at risk of protein catabolism and malnutrition in the early postoperative period. Whey protein includes most essential amino acids and stimulates the synthesis of muscle protein. The purpose of this study was to investigate the effect of resistance training in combination with whey protein intake in the early postoperative period. We randomized patients to a whey protein group or a control group. The former group received 32.2 g of whey protein pre- and post-rehabilitation in the early postoperative period for two weeks. Outcomes were knee extension strength on either side by Biodex 4.0, and the ability of transfer, walking, toilet use and stair use by the Barthel Index (BI). We performed initial and final assessments in the second and tenth rehabilitation sessions. A total of 38 patients were recruited: 20 in the whey protein group and 18 in the control group. Participants in the whey protein group showed significantly greater improvement in knee extension strength in the operated limb compared with the control group (F = 6.11, P = 0.02). The non-operated limb also showed a similar tendency (F = 3.51, P = 0.07). The abilities of transfer, walking and toilet use showed greater improvements in the whey protein group than in the control group by BI (P patients with hip fracture. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Interaction of sucralose with whey protein: Experimental and molecular modeling studies

    Science.gov (United States)

    Zhang, Hongmei; Sun, Shixin; Wang, Yanqing; Cao, Jian

    2017-12-01

    The objective of this research was to study the interactions of sucralose with whey protein isolate (WPI) by using the three-dimensional fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling. The results showed that the peptide strands structure of WPI had been changed by sucralose. Sucralose binding induced the secondary structural changes and increased content of aperiodic structure of WPI. Sucralose decreased the thermal stability of WPI and acted as a structure destabilizer during the thermal unfolding process of protein. In addition, the existence of sucralose decreased the reversibility of the unfolding of WPI. Nonetheless, sucralose-WPI complex was less stable than protein alone. The molecular modeling result showed that van der Waals and hydrogen bonding interactions contribute to the complexation free binding energy. There are more than one possible binding sites of WPI with sucralose by surface binding mode.

  20. The use of acid whey for the production of yogurt-type fermented beverages

    Directory of Open Access Journals (Sweden)

    Katarzyna Skryplonek

    2018-01-01

    Full Text Available Acid whey is a by-product of cheese-making industry, which, in comparison to rennet whey, has less favourable processing properties and thus it is more difficult to utilize. The aim of the study was to evaluate the quality of yogurt-type fermented beverages based on acid whey. In the beverages production yogurt bacteria cultures Streptococcus thermophilus and Lactobacillus delbruecki ssp. bulgaricus (YO-MIX, Danisco, Denmark were used. The production process included combining of pasteurized acid whey with UHT milk, unsweetened condensed milk or skimmed milk powder. Milk was incorporated to beverages in order to enrich casein content and obtain product with quality characteristics similar to fermented milk drinks. Moreover, the beverages were supplemented with oligofructose and whey protein concentrate WPC 35. The products were stored under refrigerated conditions (5±1°C for 21 days. During the storage, an assessment of physicochemical properties and sensory characteristics was carried out. In addition, the beverages were evaluated in consumer preference test. The study showed, that by combining of acid whey with milk it is possible to obtain a products similar to yogurt, although their characteristics were influenced by the composition and storage time. During storage period, the acidity increased and acetaldehyde content decreased. Moreover the deterioration of sensory properties was observed. Consumer preference test indicated, that the best sensory properties had beverages from whey and condensed milk.

  1. Rheological, functional and thermo-physical properties of ultrasound treated whey proteins with addition of sucrose or milk powder

    Directory of Open Access Journals (Sweden)

    Anet Režek Jambrak

    2011-03-01

    Full Text Available Ultrasound represents a non-thermal food processing technique and has great potential to be used in the food industry. The objective of this research was to observe ultrasound impact on physical properties of model systems prepared with whey protein isolates (WPI or whey protein concentrates (WPC with or without sucrose or milk powder addition. This kind of systems is often used in milk beverages and milk based products. Model systems with protein and milk powder or sucrose addition were treated with high power ultrasound (HPU probe of 30 kHz frequency for 5 and 10 minutes. After sonication several properties were determined and examined: solubility, emulsifying and foaming properties, rheological and thermophysical properties. Ultrasound treatment showed severe influence on all examined properties, caused by protein denaturation as a consequence of cavitation and microstreaming effects. Ultrasound treatment caused decrease in protein solubility for whey protein isolate and whey protein concentrates model systems, compared to untreated sample. There was statistically significant increase in foam volume of model systems, prepared with sucrose or milk powder and WPI after ultrasound treatment. Statistically significant decrease in emulsion activity and emulsion stability indices was observed for model systems prepared solely with isolates and concentrates. After treatment of whey protein model systems (with or without milk powder or sucrose with 30 kHz ultrasound, the changes in consistency coefficients (k were observed, but there were no significant changes in flow behaviour indices (n. After addition of milk powder or sucrose, statistically significant decrease in initial freezing and melting temperatures was observed due to the ultrasound treatment.

  2. Physicochemical Properties of Whey-Protein-Stabilized Astaxanthin Nanodispersion and Its Transport via a Caco-2 Monolayer.

    Science.gov (United States)

    Shen, Xue; Zhao, Changhui; Lu, Jing; Guo, Mingruo

    2018-02-14

    Astaxanthin nanodispersion was prepared using whey protein isolate (WPI) and polymerized whey protein (PWP) through an emulsification-evaporation technique. The physicochemical properties of the astaxanthin nanodispersion were evaluated, and the transport of astaxanthin was assessed using a Caco-2 cell monolayer model. The astaxanthin nanodispersions stabilized by WPI and PWP (2.5%, w/w) had a small particle size (121 ± 4.9 and 80.4 ± 5.9 nm, respectively), negative ζ potential (-19.3 ± 1.5 and -35.0 ± 2.2 mV, respectively), and high encapsulation efficiency (92.1 ± 2.9 and 93.5 ± 2.4%, respectively). Differential scanning calorimetry curves indicated that amorphous astaxanthin existed in both astaxanthin nanodispersions. Whey-protein-stabilized astaxanthin nanodispersion showed resistance to pepsin digestion but readily released astaxanthin after trypsin digestion. The nanodispersions showed no cytotoxicity to Caco-2 cells at a protein concentration below 10 mg/mL. WPI- and PWP-stabilized nanodispersions improved the apparent permeability coefficient (P app ) of Caco-2 cells to astaxanthin by 10.3- and 16.1-fold, respectively. The results indicated that whey-protein-stabilized nanodispersion is a good vehicle to deliver lipophilic bioactive compounds, such as astaxanthin, and to improve their bioavailability.

  3. Influence of innovative technologies on rheological and thermophysical properties of whey proteins and guar gum model systems

    Directory of Open Access Journals (Sweden)

    Greta Krešić

    2011-03-01

    Full Text Available The aim of this study was to examine the effect of high-power ultrasound (US and highpressure processing (HP on model systems composed of whey protein concentrate (WPC and whey protein isolate (WPI with or without guar gum addition. This kind of systems can be found in food production industry so the aim was to use novel food processing technologies to be utilized as a method for products development. Aqueous suspensions (10 g kg-1 of powdered whey proteins were treated with either ultrasound or high pressure. The treatment conditions were as follows: US: frequency of 30 kHz, for 5 and 10 min; HP: pressure intensity 300-600 MPa, for 5 and 10 min. Rheological and thermophysical properties were analyzed after guar gum addition (0.5 g kg-1. Ultrasound treatment showed a significant influence on all examined properties through protein denaturation caused by cavitation and microstreaming effects. High pressure caused significant increase in viscosity and consistency coefficients of model systems with and without guar addition. Significant decrease of initial freezing and initial thawing temperature was observed in all samples. With this research the direct influence of ultrasound and high-pressure treatment on the rheological and thermophysical properties of whey protein isolate and concentrate model systems with or without guar gum was demonstrated.

  4. Functional properties and sensory testing of whey protein concentrate sweetened with rebaudioside A

    Directory of Open Access Journals (Sweden)

    Paula Gimenez MILANI

    2016-02-01

    Full Text Available ABSTRACT Objective: To develop a natural dietary product with functional benefits for diabetic patients. Whey protein concentrate was obtained through the separation membrane processes and sweetened with rebaudioside A. This product was submitted to sensory testing in humans and used to evaluate possible functional properties in male Wistar rats models with diabetesMellitus induced by streptozotocin. Methods: Two concentrates were produced. Only the second showed protein content of 74.3 and 17.3% of lactose was used as supplementation in induced diabetic rats. This concentrate was obtained from the concentration by reverse osmosis system (180 k Daltons, followed by nanofiltration in a 500 k Daltons membrane and spray drying at 5.0% solution of the first concentrate developed. The concentrate was sweetened with rebaudioside A (rebaudioside A 26 mg/100 g concentrate. All procedures were performed at the Center for Studies in Natural Products, at the Universidade Estadual de Maringá. Three experimental groups were established (n=6: two groups of diabetic animals, one control group and one supplemented group; and a control group of normal mice (non-diabetic. The supplemented group received concentrates sweetened with rebaudioside A in a dose of 100 mg/kg bw/day by an esophageal tube for 35 days. Fasting, the fed state and body weight were assessed weekly for all groups. At the end of the supplementation period, the following were analyzed: plasma parameters of glucose, total cholesterol, triglycerides and fructosamine; the serum levels of aspartate aminotransferase and alanine aminotransferase, water and food intake. Organs and tissues were removed and weighed to assess mass and anatomical changes. Results: The product presented 74% of proteins and 17% of lactose and showed satisfactory sensory testing by the addition of 26 mg of rebaudioside A/100 g concentrate. Supplementation of the product reduced hyperglycemia, plasma fructosamine levels

  5. Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies

    NARCIS (Netherlands)

    Kiewiet, Mensiena B. Gea; van Esch, Betty C. A. M.; Garssen, Johan; Faas, Marijke M.; de Vos, Paul

    2017-01-01

    Scope: Partially hydrolyzed cow's milk proteins are used to prevent cow's milk allergy in children. Here we studied the immunomodulatory mechanisms of partial cow's milk hydrolysates in vivo. Methods and results: Mice were sensitized with whey or partially hydrolyzed whey using cholera toxin.

  6. Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies

    NARCIS (Netherlands)

    Kiewiet, Mensiena B. Gea; van Esch, Betty C. A. M.; Garssen, Johan; Faas, Marijke M.; de Vos, Paul

    Scope: Partially hydrolyzed cow's milk proteins are used to prevent cow's milk allergy in children. Here we studied the immunomodulatory mechanisms of partial cow's milk hydrolysates in vivo. Methods and results: Mice were sensitized with whey or partially hydrolyzed whey using cholera toxin.

  7. Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies

    NARCIS (Netherlands)

    Kiewiet, Mensiena B Gea; van Esch, Betty C A M; Garssen, Johan; Faas, Marijke M; Vos, Paul

    2017-01-01

    SCOPE: Partially hydrolyzed cow's milk proteins are used to prevent cow's milk allergy in children. Here we studied the immunomodulatory mechanisms of partial cow's milk hydrolysates in vivo. METHODS AND RESULTS: Mice were sensitized with whey or partially hydrolyzed whey using cholera toxin.

  8. The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells

    DEFF Research Database (Denmark)

    Salehi, Albert; Gunnerud, Ulrika; Muhammed, Sarheed J

    2012-01-01

    Whey protein increases postprandial serum insulin levels. This has been associated with increased serum levels of leucine, isoleucine, valine, lysine, threonine and the incretin hormone glucose-dependent insulinotropic polypeptide (GIP). We have examined the effects of these putative mediators...... of whey's action on insulin secretion from isolated mouse Langerhans islets....

  9. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS.

    Science.gov (United States)

    Yang, Mei; Cao, Xueyan; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing; Wu, Junrui

    2017-09-01

    Whey, an essential source of dietary nutrients, is widely used in dairy foods for infants. A total of 584 whey proteins in human and bovine colostrum and mature milk were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) proteomic method. The 424 differentially expressed whey proteins were identified and analyzed according to gene ontology (GO) annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, and multivariate statistical analysis. Biological processes principally involved biological regulation and response to stimulus. Major cellular components were extracellular region part and extracellular space. The most prevalent molecular function was protein binding. Twenty immune-related proteins and 13 proteins related to enzyme regulatory activity were differentially expressed in human and bovine milk. Differentially expressed whey proteins participated in many KEGG pathways, including major complement and coagulation cascades and in phagosomes. Whey proteins show obvious differences in expression in human and bovine colostrum and mature milk, with consequences for biological function. The results here increase our understanding of different whey proteomes, which could provide useful information for the development and manufacture of dairy products and nutrient food for infants. The advanced iTRAQ proteomic approach was used to analyze differentially expressed whey proteins in human and bovine colostrum and mature milk.

  10. Effect of whey protein- and carbohydrate-enriched diet on glycogen resynthesis during the first 48 h after a soccer game

    DEFF Research Database (Denmark)

    Gunnarsson, Thomas Gunnar Petursson; Bendiksen, Mads; Bischoff, R.

    2013-01-01

    The effect of a whey protein- and carbohydrate (CHO)-enriched diet on the rate of muscle glycogen resynthesis after a soccer match was examined. Sixteen elite soccer players were randomly assigned to a group ingesting a diet rich in carbohydrates and whey protein [CHO, protein, and fat content...... was 71, 21, and 8E%, respectively; high content of carbohydrates and whey protein (HCP), n¿=¿9] or a group ingesting a normal diet (55, 18, and 26E%; control [CON], n¿=¿7) during a 48-h recovery period after a soccer match. CON and three additional players carried out a 90- and 60-min simulated match...

  11. Behavior of Escherichia coli bacteria in whey protein and corn meal during twin screw extrusion processing at different temperatures

    Science.gov (United States)

    Many studies on the development of new and/ or value added nutritional meal corn and whey protein isolates for US consumers have been reported. However, information on the effect of treatment parameters on microbial safety of foods extruded below 100 deg C is limited. In this study, we investigated ...

  12. COST ESTIMATES OF TWIN SCREW EXTRUDED PRODUCTS: TEXTURIZED WHEY PROTEIN SNACKS AND CORN-SOY BLEND USED FOR EMERGENCY FEEDING

    Science.gov (United States)

    The operating costs associated with twin screw extrusion cooking of various foods are fixed for a given size and production capacity for any class of products; the greater percentage of costs arise from the choice of ingredients and the product end use. For example, extruder texturized whey proteins...

  13. Behavior of native microbial populations of WPC-34 and WPC-80 whey protein stored at different temperatures

    Science.gov (United States)

    Whey protein (WPC34 and 80) has been used as food ingredients and as a base for making biodegradable product. However, there is limited information on the behavior of native microflora associated with these products. WPC 34 and WPC80 were obtained from the manufacturer, and were stored at 5, 10, 15,...

  14. Physicochemical stability and in vitro bioaccessibility of ß-carotene nanoemulsions stabilized with whey protein-dextran conjugates

    Science.gov (United States)

    In this study, ß-carotene (BC)-loaded nanoemulsions encapsulated with native whey protein isolate (WPI) and WPI-dextran (DT, 5 kDa, 20 kDa, and 70 kDa) conjugates were prepared and the effects of glycosylation with various molecular weight DTs on the physicochemical property, lipolysis, and BC bioac...

  15. Properties of sweetened Indian yogurt (mishti dohi) as affected by added tryptic whey protein hydrolysate.

    Science.gov (United States)

    Chatterjee, Alok; Kanawjia, S K; Khetra, Yogesh

    2016-01-01

    Utilization of Indian sweetened yogurt (colloquially termed as Mishti Dohi), as vehicle for ACE inhibition and antioxidant activity, by added tryptic whey protein hydrolysate (TWPH) (@ 1, 2, 3 % v/milk), was attempted. Yogurt with 3 % TWPH exhibited non-significant (p > 0.05) difference for sensory attributes; but for body & texture; and maximum biofunctional properties, electing it for storage study (5 ± 1 °C). Flavor and body & texture scores registered significant (p antioxidant activity of control increased by 47.95 and 13.18 % and of experimental 24.58 and 13.43 %, correspondingly. Acidity rose to 1.18 % LA. Control samples conveyed 18.07 % and experimental of 20.77 % escalation for wheying-off. Tyrosine value was 27.04 μg.mL(-1). Among rheological attributes, firmness, quantified by texture analyzer TA-XT2i, dropped (p  0.05), throughout.

  16. Orange-flavored soft drink with the addition of isolated whey protein

    Directory of Open Access Journals (Sweden)

    Mirian Souza Prado

    2015-08-01

    Full Text Available Current assay developed an orange-flavored soda pop with the addition of isolated whey protein, bottled in a 2L-polyethylene terephthalate container and stored at room temperature for 90 days. Physical, chemical, microbiological and sensorial analyses were conducted periodically on the product. The physicochemical analysis showed pH 3.53, 11.5ºBrix and 224 mg of citric acid per 100 mL of the drink and the following proximal composition: protein 0.501%, humidity 88.9%, ash 0.084% and carbohydrates 10.5%. Microbiological analyses detected no microorganisms during the storage period of the drink. Sensorial analysis results had good acceptability. Results showed that the product is stable when stored at room temperature for 90 days. This beverage contains higher nutritional rates and the same calorie rates when compared to sodas and some oranges juices found on the consumer market.

  17. Whey protein processing influences formula-induced gut maturation in preterm pigs.

    Science.gov (United States)

    Li, Yanqi; Østergaard, Mette V; Jiang, Pingping; Chatterton, Dereck E W; Thymann, Thomas; Kvistgaard, Anne S; Sangild, Per T

    2013-12-01

    Immaturity of the gut predisposes preterm infants to nutritional challenges potentially leading to clinical complications such as necrotizing enterocolitis. Feeding milk formulas is associated with greater risk than fresh colostrum or milk, probably due to loss of bioactive proteins (e.g., immunoglobulins, lactoferrin, insulin-like growth factor, transforming growth factor-β) during industrial processing (e.g., pasteurization, filtration, spray-drying). We hypothesized that the processing method for whey protein concentrate (WPC) would affect gut maturation in formula-fed preterm pigs used as a model for preterm infants. Fifty-five caesarean-delivered preterm pigs were distributed into 4 groups given 1 of 4 isoenergetic diets: formula containing conventional WPC (filtration, multi-pasteurization, standard spray-drying) (CF); formula containing gently treated WPC (reduced filtration and pasteurization, gentle spray-drying) (GF); formula containing minimally treated WPC (rennet precipitation, reduced filtration, heat treatment preserve the bioactivity and nutritional value of formulas for sensitive newborns.

  18. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    Science.gov (United States)

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  19. Biosurfactants production from cheese whey

    OpenAIRE

    Rodrigues, L. R.; Teixeira, J. A.

    2008-01-01

    Biosurfactants are molecules that exhibit pronounced surface and emulsifying activities, produced by a variety of microorganisms. A host of interesting features of biosurfactants, such as higher biodegradability, lower toxicity, and effectiveness at extremes of temperature, pH and salinity; have led to a wide range of potential applications in the fields of oil recovery, environmental bioremediation, food processing and medicine. In spite of the immense potential of...

  20. Physicochemical and microbiological evaluation of corrientes artisanal cheese during ripening

    Directory of Open Access Journals (Sweden)

    Olga Myriam Vasek

    2013-03-01

    Full Text Available The aim of this study was to evaluate some physical and chemical parameters (total solids, pH, acidity, fat, acid degree value of fat, salt, protein and nitrogen fractions and their effects on the beneficial (lactic acid bacteria: LAB and undesirable microbial populations (coliforms, Escherichia coli, Staphylococcus aureus, moulds, and yeast during ripening of Artisanal Corrientes Cheese, an Argentinian cow's milk variety, to determine whether a longer ripening period than usual improve its hygienic-sanitary quality. The protein content was much higher than that of other cow's milk cheeses with similar values of fat. The larger peptides showed values three times higher in the 30 day-old cheese than those obtained in the beginning of the process. Staphylococcus aureus and Escherichia coli were detected (3.04 ± 1.48 log10 cfu/g of cheese, 2.21 ± 0.84 log10 MPN/g of cheese even at 15 and 30 days of ripening, respectively. The distribution of three hundred LAB strains classified to the genus level (lactococci:lactobacilli:leuconostocs was maintained during the ripening period. The high number of LAB in rennet may have contributed to the fermentation as a natural whey starter, unknown source of LAB for this specific cheese so far. The physicochemical changes that occur during ripening were not big enough to inhibit the growth of undesirable microorganisms.

  1. Why whey? Camel whey protein as a new dietary approach to the management of free radicals and for the treatment of different health disorders

    Science.gov (United States)

    Badr, Gamal; Ramadan, Nancy K; Sayed, Leila H; Badr, Badr M; Omar, Hossam M; Selamoglu, Zeliha

    2017-01-01

    The balance between free radicals and antioxidants is an important factor for maintaining health and slowing disease progression. The use of antioxidants, particularly natural antioxidants, has become an important strategy for dealing with this cause of widespread diseases. Natural antioxidants have been used as therapeutic tools against many diseases because they are safe, effective, and inexpensive and are among the most commonly used adjuvants in the treatment of several diseases. Camel whey protein (CWP) is considered a strong natural antioxidant because it decreases oxidative stress, enhances immune system function, and increases glutathione levels. The structure of CWP is very similar to that of other types of whey protein from different types of milk. CWP contains many components, such as lactoferrin (LF), lactalbumin, lactoglobulins, lactoperoxidase, and lysozyme, and is rich in immunoglobulins. However, in contrast to other WPs, CWP lacks β-lactoglobulin, the main cause of milk allergies in children. The components of CWP have many beneficial effects, including stimulation of both innate and adaptive immunity and anti-inflammatory, anticancer, antibacterial, and antiviral activities. Recently, it has been shown that CWP and its unique components can facilitate the treatment of impaired diabetic wound healing. However, the molecular mechanisms underlying the protective effects of CWP in human and other animal disorders are not fully understood. Therefore, the current review presents a concise summary of the scientific evidence of the beneficial effects of CWP to support its therapeutic use in disease treatment and nutritional intervention. PMID:28804604

  2. Why whey? Camel whey protein as a new dietary approach to the management of free radicals and for the treatment of different health disorders

    Directory of Open Access Journals (Sweden)

    Gamal Badr

    2017-04-01

    Full Text Available The balance between free radicals and antioxidants is an important factor for maintaining health and slowing disease progression. The use of antioxidants, particularly natural antioxidants, has become an important strategy for dealing with this cause of widespread diseases. Natural antioxidants have been used as therapeutic tools against many diseases because they are safe, effective, and inexpensive and are among the most commonly used adjuvants in the treatment of several diseases. Camel whey protein (CWP is considered a strong natural antioxidant because it decreases oxidative stress, enhances immune system function, and increases glutathione levels. The structure of CWP is very similar to that of other types of whey protein from different types of milk. CWP contains many components, such as lactoferrin (LF, lactalbumin, lactoglobulins, lactoperoxidase, and lysozyme, and is rich in immunoglobulins. However, in contrast to other WPs, CWP lacks β-lactoglobulin, the main cause of milk allergies in children. The components of CWP have many beneficial effects, including stimulation of both innate and adaptive immunity and anti-inflammatory, anticancer, antibacterial, and antiviral activities. Recently, it has been shown that CWP and its unique components can facilitate the treatment of impaired diabetic wound healing. However, the molecular mechanisms underlying the protective effects of CWP in human and other animal disorders are not fully understood. Therefore, the current review presents a concise summary of the scientific evidence of the beneficial effects of CWP to support its therapeutic use in disease treatment and nutritional intervention.

  3. Utilization of whey

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Compositions of wheys from cheesemaking and ultrafiltration are tabulated and some indications of the pollution potential and the cost of disposal of whey are given. The following treatments are described: ion exchange and electrodialysis for demineralization and deacidification; concentration by reverse osmosis, evaporation, spray drying, ''Hatmaker'' (roller) drying, and a drying technique using small Teflon balls; separation of proteins by ''Centri-Whey'' (Alfa-Laval) and ''Bel-Industrie'' heat/acid coagulation, ultrafiltration and other methods; purification and enzymic hydrolysis of lactose, and use of lactose as a substrate for protein biosynthesis by ''Bel'' (lactic acid yeast), ''Devos'' (Saccharomyces yeast) and ''Caliqua-Sireb'' (using fungi) processes. The use of whey for producing ethanol, lactic acid, vinegar, vitamins, antibiotics, enzymes and fats; and development of industrial whey processing in France are reviewed.

  4. Utilization of whey

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Compositions of wheys from cheesemaking and ultrafiltration are tabulated and some indications of the pollution potential and the cost of disposal of whey are given. The following treatments are described: ion exchange and electrodialysis for demineralization and deacidification; concentration by reverse osmosis, evaporation, spray drying, ''Hatmaker'' (roller) drying, and a drying technique using small Teflon balls; separation of proteins by ''Centri-Whey'' (Alfa-Laval) and ''Bel-Industrie'' heat/acid coagulation, ultrafiltration and other methods; purification and enzymic hydrolysis of lactose, and use of lactose as a substrate for protein biosynthesis by ''Bel'' (lactic acid yeast), ''Devos'' (Saccharomyces yeast) and ''Caliqua-Sireb'' (using fungi) processes. The use of whey for producing ethanol, lactic acid, vinegar, vitamins, antibiotics, enzymes and fats; and development of industrial whey processing in France are reviewed.

  5. Thermogenic Blend Alone or in Combination with Whey Protein Supplement Stimulates Fat Metabolism and Improves Body Composition in Mice

    Science.gov (United States)

    Vieira-Brock, Paula de Lima; Vaughan, Brent M.; Vollmer, David L.

    2018-01-01

    Background: Certain food ingredients promote thermogenesis and fat loss. Similarly, whey protein improves body composition. Due to this potential synergistic effect, a blend of thermogenic food ingredients containing African mango, citrus fruit extract, Coleus forskohlii, dihydrocapsiate, and red pepper was tested alone and in combination with a whey protein supplement for its effects on body composition in sedentary mice during high-fat diet. Objective: The objective of this study was to evaluate the interaction of thermogenic foods on improving body composition during consumption of an unhealthy diet. Materials and Methods: C57BL/6J young adult male mice (n = 12) were placed on a 60% high-fat diet for 4 weeks and subsequently randomly assigned to receive daily dosing by oral gavage of vehicle, the novel blend alone or with whey protein supplement for another 4 weeks. Body composition, thermal imaging of brown adipose tissue (BAT), mitochondrial BAT uncoupling protein 1 (UCP1), and plasma levels of leptin were assessed. Results: Novel blend alone and in combination with protein supplement attenuated body weight gain, fat, and increased surface BAT temperature in comparison to vehicle control and to baseline (P blend and whey protein supplement also significantly increased UCP1 protein expression in BAT mitochondria in comparison to vehicle control and novel blend alone (P blend stimulates thermogenesis and attenuates the gain in body weight and fat in response to high-fat diet in mice and these effects were improved when administered in combination with whey protein supplement. SUMMARY 30 days oral administration to mice of a novel blend containing African mango seed extract, citrus fruits extract, Coleus forskohlii root extract, dihydrocapsiate and red pepper fruit extract reduced body weight and fat gain in response to high-fat diet without impairing muscle mass.The novel blend stimulated thermogenesis as shown by the increased thermal imaging and UCP1 protein

  6. Swelling of whey and egg white protein hydrogels with stranded and particulate microstructures.

    Science.gov (United States)

    Li, Hui; Zhao, Lei; Chen, Xiao Dong; Mercadé-Prieto, Ruben

    2016-02-01

    Swelling of protein hydrogels in alkaline conditions strongly depends on the gel microstructure. Stranded transparent gels swell as predicted using a modified Flory-Rehner model with the net protein charge. Particulate opaque gels swell very differently, with a sudden increase at a narrow pH range. Its swelling is not controlled by the protein charge, but by the destruction of the non-covalent interactions. Comparable dissolution thresholds, one with pH and another with the degree of swelling, are observed in both types of microstructures. These conclusions are valid for both whey protein isolate (WPI) gels and egg white gels, suggesting that they are universal for all globular proteins that can form such microscructures. Differences are observed, however, from the prevalent chemical crosslinks in each protein system. Non-covalent interactions dominate WPI gels; when such interactions are destroyed at pH≥11.5 the gels swell extensively and eventually dissolve. In egg white gels, the higher degree of disulphide crosslinking allows extensive swelling when non-covalent interactions are destroyed, but dissolution only occurs at pH≥13 when covalent crosslinks are cleaved. The current study highlights that the microstructure of protein hydrogels, a unique particularity of protein systems compared to other synthetic hydrogels, defines swelling. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Whey Proteins Are More Efficient than Casein in the Recovery of Muscle Functional Properties following a Casting Induced Muscle Atrophy

    Science.gov (United States)

    Martin, Vincent; Ratel, Sébastien; Siracusa, Julien; Le Ruyet, Pascale; Savary-Auzeloux, Isabelle; Combaret, Lydie; Guillet, Christelle; Dardevet, Dominique

    2013-01-01

    The purpose of this study was to investigate the effect of whey supplementation, as compared to the standard casein diet, on the recovery of muscle functional properties after a casting-induced immobilization period. After an initial (I0) evaluation of the contractile properties of the plantarflexors (isometric torque-frequency relationship, concentric power-velocity relationship and a fatigability test), the ankle of 20 male adult rats was immobilized by casting for 8 days. During this period, rats were fed a standard diet with 13% of casein (CAS). After cast removal, rats received either the same diet or a diet with 13% of whey proteins (WHEY). A control group (n = 10), non-immobilized but pair-fed to the two other experimental groups, was also studied and fed with the CAS diet. During the recovery period, contractile properties were evaluated 7 (R7), 21 (R21) and 42 days (R42) after cast removal. The immobilization procedure induced a homogeneous depression of average isometric force at R7 (CAS: − 19.0±8.2%; WHEY: − 21.7±8.4%; P<0.001) and concentric power (CAS: − 26.8±16.4%, P<0.001; WHEY: − 13.5±21.8%, P<0.05) as compared to I0. Conversely, no significant alteration of fatigability was observed. At R21, isometric force had fully recovered in WHEY, especially for frequencies above 50 Hz, whereas it was still significantly depressed in CAS, where complete recovery occurred only at R42. Similarly, recovery of concentric power was faster at R21 in the 500−700°/s range in the WHEY group. These results suggest that recovery kinetics varied between diets, the diet with the whey proteins promoting a faster recovery of isometric force and concentric power output as compared to the casein diet. These effects were more specifically observed at force level and movement velocities that are relevant for functional abilities, and thus natural locomotion. PMID:24069411

  8. Breakfast high in whey protein or carbohydrates improves coping with workload in healthy subjects.

    Science.gov (United States)

    Sihvola, Nora; Korpela, Riitta; Henelius, Andreas; Holm, Anu; Huotilainen, Minna; Müller, Kiti; Poussa, Tuija; Pettersson, Kati; Turpeinen, Anu; Peuhkuri, Katri

    2013-11-14

    Dietary components may affect brain function and influence behaviour by inducing the synthesis of neurotransmitters. The aim of the present study was to examine the influence of consumption of a whey protein-containing breakfast drink v. a carbohydrate drink v. control on subjective and physiological responses to mental workload in simulated work. In a randomised cross-over design, ten healthy subjects (seven women, median age 26 years, median BMI 23 kg/m(2)) participated in a single-blinded, placebo-controlled study. The subjects performed demanding work-like tasks after having a breakfast drink high in protein (HP) or high in carbohydrate (HC) or a control drink on separate sessions. Subjective states were assessed using the NASA Task Load Index (NASA-TLX), the Karolinska sleepiness scale (KSS) and the modified Profile of Mood States. Heart rate was recorded during task performance. The ratio of plasma tryptophan (Trp) to the sum of the other large neutral amino acids (LNAA) and salivary cortisol were also analysed. The plasma Trp:LNAA ratio was 30 % higher after the test drinks HP (median 0·13 (μmol/l)/(μmol/l)) and HC (median 0·13 (μmol/l)/(μmol/l)) than after the control drink (median 0·10 (μmol/l)/(μmol/l)). The increase in heart rate was smaller after the HP (median 2·7 beats/min) and HC (median 1·9 beats/min) drinks when compared with the control drink (median 7·2 beats/min) during task performance. Subjective sleepiness was reduced more after the HC drink (median KSS - 1·5) than after the control drink (median KSS - 0·5). There were no significant differences between the breakfast types in the NASA-TLX index, cortisol levels or task performance. We conclude that a breakfast drink high in whey protein or carbohydrates may improve coping with mental tasks in healthy subjects.

  9. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents

    Directory of Open Access Journals (Sweden)

    Patrizia Cinelli

    2016-06-01

    Full Text Available Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET/polyethylene (PE multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at

  10. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents

    Science.gov (United States)

    Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea

    2016-01-01

    Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and

  11. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR of <2 [cm³(STP/(m²d bar] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

  12. Stimulation of muscle protein synthesis by whey and caseinate ingestion after resistance exercise in elderly individuals

    DEFF Research Database (Denmark)

    Dideriksen, K J; Reitelseder, S; Petersen, S G

    2011-01-01

    Sarcopenia is a well-known phenomenon in elderly individuals and resistance exercise together with sufficient amino acid (AA) availability has proved to be a counteractive implement. However, the source of AA and supplement timing require further investigation. The objective was to compare muscle...... protein synthesis (MPS) to intakes of whey and caseinate after heavy resistance exercise in healthy elderly individuals, and, furthermore, to compare the timing effect of caseinate intake. Twenty-four elderly men and women (mean ± SEM; 68 ± 1 years) were randomized to one of four groups: caseinate intake...... and caseinate feeding immediately after heavy resistance exercise in elderly individuals, and MPS is similar with caseinate ingestion before and after exercise....

  13. Delipidation of a whey protein concentrate by electroacidification with bipolar membranes.

    Science.gov (United States)

    Shee, Fabrice Lin Teng; Angers, Paul; Bazinet, Laurent

    2007-05-16

    The separation of residual fats from whey protein concentrates (WPC) results in a better nutritional and functional utilization of this product. Bipolar membrane electroacidification (BMEA) technology allows acidification and demineralization of solutions without any salt addition. The principle of BMEA is based on proton formation from water molecule dissociation at the bipolar membrane interface. The objective of this work was to determine the effect of an electroacidification treatment at pH 4.5 on the precipitation of lipids. WPC electroacidification was carried out with or without preliminary demineralization by conventional electrodialysis. The effect of ionic strength on lipid precipitation rates was also evaluated by dilution of the WPC samples. Lipid precipitation levels of 35-39% were obtained using the electroacidification process without a dilution step, while the combination of BMEA and dilution of the WPC resulted in a decrease in lipid content by six-fold from 0.76 to 0.21%.

  14. Stability of spray-dried beetroot extract using oligosaccharides and whey proteins.

    Science.gov (United States)

    Carmo, Eloá Lourenço do; Teodoro, Rhana Amanda Ribeiro; Félix, Pedro Henrique Campelo; Fernandes, Regiane Victória de Barros; Oliveira, Érica Resende de; Veiga, Taís Regina Lima Abreu; Borges, Soraia Vilela; Botrel, Diego Alvarenga

    2018-05-30

    The properties and stability of spray-dried beetroot extract using maltodextrin (MD), inulin (IN), and whey protein isolate (WPI) as carrier agents were evaluated. The values of moisture, betalains content, and retention were 3.33-4.24%, 348.79-385.47 mg/100 g (dry-basis), and 88.45-95.69%, respectively. Higher values of antioxidant activity were observed for the treatments using WPI. The treatment with inulin alone presented higher hygroscopicity in the moisture adsorption isotherms at 25 °C and lower thermal stability when evaluating the thermogravimetric curves. When stored at 60 °C, the use of WPI alone conferred lower stability to the beetroot extract powder. In general, the simultaneous use of IN and WPI as carrier agents resulted in good stability of the beetroot extract powder, representing an opportunity for innovation in food products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Science.gov (United States)

    He, Jin-Song; Yang, Hongwei; Zhu, Wanpeng; Mu, Tai-Hua

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum Im and the corresponding wavenumber qm could be described in terms of the power-law relationship as Im~fβ and qm~f-α, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  16. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    International Nuclear Information System (INIS)

    He Jinsong; Yang Hongwei; Zhu Wanpeng; Mu Taihua

    2010-01-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I m and the corresponding wavenumber q m could be described in terms of the power-law relationship as I m ∼f β and q m ∼f -α , respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  17. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Energy Technology Data Exchange (ETDEWEB)

    He Jinsong; Yang Hongwei; Zhu Wanpeng [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Mu Taihua, E-mail: mutaihuacaas@126.co [Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100094 (China)

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I{sub m} and the corresponding wavenumber q{sub m} could be described in terms of the power-law relationship as I{sub m}{approx}f{sup {beta}} and q{sub m}{approx}f{sup -}{alpha}, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  18. Use of γ-irradiation to produce films from whey, casein and soya proteins: structure and functionals characteristics

    International Nuclear Information System (INIS)

    Lacroix, M.; Le, T.C.; Ouattara, B.; Yu, H.; Letendre, M.; Sabato, S.F.; Mateescu, M.A.; Patterson, G.

    2002-01-01

    γ-irradiation and thermal treatments have been used to produce sterilized cross-linked films. Formulations containing variable concentrations of calcium caseinate and whey proteins (whey protein isolate (WPI) and commercial whey protein concentrate) or mixture of soya protein isolate (SPI) with WPI was investigated on the physico-chemical properties of these films. Results showed that the mechanical properties of cross-linked films improved significantly the puncture strength for all types of films. Size-exclusion chromatography showed for no cross-linked proteins, a molecular mass of around 40 kDa. The soluble fractions of the cross-linked proteins molecular distributions were between 600 and 3800 kDa. γ-irradiation seems to modify to a certain extent the conformation of proteins which will adopt structures more ordered and more stable, as suggested by X-ray diffraction analysis. Microstructure observations showed that the mechanical characteristics of these films are closely related to their microscopic structure. Water vapor permeability of films based on SPI was also significantly decreased when irradiated. Microbial resistance was also evaluated for cross-linked films. Results showed that the level of biodegradation of cross-linked films was 36% after 60 d of fermentation in the presence of Pseudomonas aeruginosa

  19. Use of {gamma}-irradiation to produce films from whey, casein and soya proteins: structure and functionals characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, M. E-mail: monique.lacroix@inrs-iaf.uquebec.ca; Le, T.C.; Ouattara, B.; Yu, H.; Letendre, M.; Sabato, S.F.; Mateescu, M.A.; Patterson, G

    2002-03-01

    {gamma}-irradiation and thermal treatments have been used to produce sterilized cross-linked films. Formulations containing variable concentrations of calcium caseinate and whey proteins (whey protein isolate (WPI) and commercial whey protein concentrate) or mixture of soya protein isolate (SPI) with WPI was investigated on the physico-chemical properties of these films. Results showed that the mechanical properties of cross-linked films improved significantly the puncture strength for all types of films. Size-exclusion chromatography showed for no cross-linked proteins, a molecular mass of around 40 kDa. The soluble fractions of the cross-linked proteins molecular distributions were between 600 and 3800 kDa. {gamma}-irradiation seems to modify to a certain extent the conformation of proteins which will adopt structures more ordered and more stable, as suggested by X-ray diffraction analysis. Microstructure observations showed that the mechanical characteristics of these films are closely related to their microscopic structure. Water vapor permeability of films based on SPI was also significantly decreased when irradiated. Microbial resistance was also evaluated for cross-linked films. Results showed that the level of biodegradation of cross-linked films was 36% after 60 d of fermentation in the presence of Pseudomonas aeruginosa.

  20. Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus)

    Science.gov (United States)

    Nicholas, K.R.; Fisher, J.A.; Muths, E.; Trott, J.; Janssens, P.A.; Reich, C.; Shaw, D.C.

    2001-01-01

    Milk collected from the red kangaroo (Macropus rufus) between day 100 and 260 of lactation showed major changes in milk composition at around day 200 of lactation, the time at which the pouch young begins to temporarily exit the pouch and eat herbage. The carbohydrate content of milk declined abruptly at this time and although there was only a small increase in total protein content, SDS PAGE analysis of milk revealed asynchrony in the secretory pattern of individual proteins. The levels of ??-lactalbumin, ??-lactoglobulin, serum albumin and transferrin remain unchanged during lactation. In contrast, the protease inhibitor cystatin, and the putative protease inhibitor whey acidic protein (WAP) first appeared in milk at elevated concentrations after approximately 150 days of lactation and then ceased to be secreted at approximately 200 days. In addition, a major whey protein, late lactation protein, was first detected in milk around the time whey acidic protein and cystatin cease to be secreted and was present at least until day 260 of lactation. The co-ordinated, but asynchronous secretion of putative protease inhibitors in milk may have several roles during lactation including tissue remodelling in the mammary gland and protecting specific proteins in milk required for physiological development of the dependent young. ?? 2001 Elsevier Science Inc.

  1. Enhanced colon cancer chemoprevention of curcumin by nanoencapsulation with whey protein.

    Science.gov (United States)

    Jayaprakasha, Guddadarangavvanahally K; Chidambara Murthy, Kotamballi N; Patil, Bhimanagouda S

    2016-10-15

    To improve bioavailability and enhance colon cancer prevention ability of curcumin, whey protein was used to nanoencapsulate at three different ratios such as 70:30, 50:50 and 35:65 for the first time. The drug loading, entrapment efficiency and structural changes of curcumin was confirmed by quantitative NMR spectroscopy. The nanoparticles prepared using the three ratios had an average diameters of 236.5±8.8, 212±3.4, and 187±11.4nm, as well as zeta (ζ) potentials of -13.1,-9.26, and -4.63mV, respectively, at pH 7.0. The cytotoxicity assay was performed for human colon and prostate cancer (SW480 and LNCap) by MTT assay and results showed significantly higher cytotoxicity of nanoencapsulated curcumin (NEC) (equivalent to 30.91, 20.70 and 16.86µM of NEC-1, 2 and 3 respectively), as compared to plain curcumin at 50µM after 72h of treatment. Cytotoxicity was also confirmed by microscopy of treated cells stained with acridine orange and propidium iodide. The cells treated with 50µM of curcumin, 30.91µM (NEC-1), 20.70µM (NEC-2) and 16.86µM (NEC-3) showed enhanced activation of p53 and elevated bax/Bcl2 expression (NEC-3), increased cytochrome-c in cytosol (NEC-2) confirming the enhanced cytotoxicity. To confirm the increased bioavailability, the intracellular curcumin was measured using fluorescence intensity. The fluorescent signal for intracellular curcumin was increased by 12, 30, and 21% for NEC-1, NEC-2, and NEC-3 respectively as compared to plain curcumin at 4h. Based on these results, we conclude that nanoencapsulated curcumin with whey protein will have potential to be considered for clinical applications for future studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions.

    Science.gov (United States)

    Assadpour, Elham; Maghsoudlou, Yahya; Jafari, Seid-Mahdi; Ghorbani, Mohammad; Aalami, Mehran

    2016-05-01

    Due to susceptibility of folic acid like many other vitamins to environmental and processing conditions, it is necessary to protect it by highly efficient methods such as micro/nano-encapsulation. Our aim was to prepare and optimize real water in oil nano-emulsions containing folic acid by a low energy (spontaneous) emulsification technique so that the final product could be encapsulated within maltodextrin-whey protein double emulsions. A non ionic surfactant (Span 80) was used for making nano-emulsions at three dispersed phase/surfactant ratios of 0.2, 0.6, and 1.0. Folic acid content was 1.0, 2.0, and 3.0mg/mL of dispersed phase by a volume fraction of 5.0, 8.5, and 12%. The final optimum nano-emulsion formulation with 12% dispersed phase, a water to surfactant ratio of 0.9 and folic acid content of 3mg/mL in dispersed phase was encapsulated within maltodextrin-whey protein double emulsions. It was found that the emulsification time for preparing nano-emulsions was between 4 to 16 h based on formulation variables. Droplet size decreased at higher surfactant contents and final nano-emulsions had a droplet size<100 nm. Shear viscosity was higher for those formulations containing more surfactant. Our results revealed that spontaneous method could be used successfully for preparing stable W/O nano-emulsions containing folic acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Whey protein lowers blood pressure and improves endothelial function and lipid biomarkers in adults with prehypertension and mild hypertension: results from the chronic Whey2Go randomized controlled trial.

    Science.gov (United States)

    Fekete, Ágnes A; Giromini, Carlotta; Chatzidiakou, Yianna; Givens, D Ian; Lovegrove, Julie A

    2016-12-01

    Cardiovascular diseases (CVDs) are the greatest cause of death globally, and their reduction is a key public-health target. High blood pressure (BP) affects 1 in 3 people in the United Kingdom, and previous studies have shown that milk consumption is associated with lower BP. We investigated whether intact milk proteins lower 24-h ambulatory blood pressure (AMBP) and other risk markers of CVD. The trial was a double-blinded, randomized, 3-way-crossover, controlled intervention study. Forty-two participants were randomly assigned to consume 2 × 28 g whey protein/d, 2 × 28 g Ca caseinate/d, or 2 × 27 g maltodextrin (control)/d for 8 wk separated by a 4-wk washout. The effects of these interventions were examined with the use of a linear mixed-model ANOVA. Thirty-eight participants completed the study. Significant reductions in 24-h BP [for systolic blood pressure (SBP): -3.9 mm Hg; for diastolic blood pressure (DBP): -2.5 mm Hg; P = 0.050 for both)] were observed after whey-protein consumption compared with control intake. After whey-protein supplementation compared with control intake, peripheral and central systolic pressures [-5.7 mm Hg (P = 0.007) and -5.4 mm Hg (P = 0.012), respectively] and mean pressures [-3.7 mm Hg (P = 0.025) and -4.0 mm Hg (P = 0.019), respectively] were also lowered. Flow-mediated dilation (FMD) increased significantly after both whey-protein and calcium-caseinate intakes compared with control intake [1.31% (P whey protein and calcium caseinate significantly lowered total cholesterol [-0.26 mmol/L (P = 0.013) and -0.20 mmol/L (P = 0.042), respectively], only whey protein decreased triacylglycerol (-0.23 mmol/L; P = 0.025) compared with the effect of the control. Soluble intercellular adhesion molecule 1 and soluble vascular cell adhesion molecule 1 were reduced after whey protein consumption (P = 0.011) and after calcium-caseinate consumption (P = 0.039), respectively, compared with after control intake. The consumption of unhydrolyzed

  4. Alcohol from whey

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    A process for ethanol production from whey is described. The lactose is fermented into alcohol via glucose and galactose of yeast. The whey must be pasteurized before fermentation in order to reduce the concentration of microorganisms in the protein fraction. The protein is separated by ultrafiltration. The whey, which is now rather free of bacteria, is introduced into the fermentation unit where yeast cultures are added to it. After fermentation, the yeast slurry is separated and processed into feeding yeast while the mash is passed on to the distillation unit. The alcohol thus produced is of very high quality and may be added to alcoholic beverages.

  5. Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex*

    Science.gov (United States)

    Sindayikengera, Séverin; Xia, Wen-shui

    2006-01-01

    Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and evaluated for their nutritional qualities. Their chemical composition, protein solubility, amino acid composition, essential amino acid index (EAA index), biological value (BV), nutritional index (NI), chemical score, enzymic protein efficiency ratio (E-PER) and in vitro protein digestibility (IVPD) were determined. The results indicated that the enzymatic hydrolysis of WPC 80 and sodium caseinate by Protamex improved the solubility and IVPD of their hydrolysates. WPC 80, sodium caseinate and their hydrolysates were high-quality proteins and had a surplus of essential amino acids compared with the FAO/WHO/UNU (1985) reference standard. The nutritive value of WPC 80 and its hydrolysates was superior to that of sodium caseinate and its hydrolysates as indicated by some nutritional parameters such as the amino acid composition, chemical score, EAA index and predicted BV. However, the E-PER was lower for the WPC hydrolysates as compared to unhydrolyzed WPC 80 but sodium caseinate and its hydrolysates did not differ significantly. The nutritional qualities of WPC 80, sodium caseinate and their hydrolysates were good and make them appropriate for food formulations or as nutritional supplements. PMID:16421963

  6. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners.

    Science.gov (United States)

    Hansen, Mette; Bangsbo, Jens; Jensen, Jørgen; Bibby, Bo Martin; Madsen, Klavs

    2015-04-01

    This trial aimed to examine the effect of whey protein hydrolysate intake before and after exercise sessions on endurance performance and recovery in elite orienteers during a training camp. Eighteen elite orienteers participated in a randomized controlled intervention trial during a 1-week training camp (13 exercise sessions). Half of the runners (PRO-CHO) ingested a protein drink before (0.3 g kg(-1)) and a protein-carbohydrate drink after (0.3 g protein kg(-1) and 1 g carbohydrate kg(-1)) each exercise session. The others ingested energy and time-matched carbohydrate drinks (CHO). A 4-km run-test with 20 control points was performed before and on the last day of the intervention. Blood and saliva were obtained in the mornings, before and after run-tests, and after the last training session. During the intervention, questionnaires were fulfilled regarding psychological sense of performance capacity and motivation. PRO-CHO and not CHO improved performance in the 4-km run-test (interaction p performance capacity during the intervention was greater in CHO (p performance and reduces markers of muscle damage during a strenuous 1-week training camp. The results indicate that protein supplementation in conjunction with each exercise session facilitates the recovery from strenuous training in elite orienteers.

  7. Effects of formulation variables on viability of L. casei loaded in whey protein-Ca alginate microparticles in simulated in vivo conditions

    OpenAIRE

    Smilkov, Katarina; Petrusevska Tozi, Lidija; Petreska Ivanovska, Tanja; Geskovski, Nikola; Petkovska, Rumenka; Glavas Dodov, Marija; Baceva, Katerina; Dimitrovski, Dejan; Mladenovska, Kristina

    2011-01-01

    The objective of this work was to assess the influence of formulation variables of L. casei loaded whey protein-Ca-alginate microparticles on probiotic survival under different conditions, representing simulated in vivo environment.

  8. Propriedades funcionais de hidrolisados obtidos a partir de concentrados protéicos de soro de leite Functional properties of whey protein hydrolysates from milk whey proteins concentrate

    Directory of Open Access Journals (Sweden)

    Maria Teresa Bertoldo Pacheco

    2005-06-01

    Full Text Available O objetivo deste trabalho foi comparar a atividade funcional de hidrolisados obtidos por diferentes sistemas enzimáticos. Foram selecionadas proteáses de origem animal (pancreatina e bacteriana (protamex e alcalase. A atividade funcional foi monitorada pela dosagem de glutationa no fígado e testes de atividade imunológica no baço para reação imunológica primária (IgM através da contagem de células formadoras de placa (CFP. Nos ensaios biológicos foram utilizados camundongos isogênicos da linhagem A/J, em dieta AIN com 20% de proteínas na forma dos hidrolisados ou de concentrado de soro de leite. O número de CFP não diferiu estatisticamente para os hidrolisados de pancreatina e protamex, sendo inferior (PThe object of this work was to compare the functional activity of whey protein concentrate (WPC and its hydrolysates produced by different enzyme systems. Pancreatin and microbial (protamex and alcalase were utilized. Functional activity was monitored by liver concentration of glutathione and primary immunological response (IgM in spleen (PFC. In the biological assays isogênic mice A/J, fed on an AIN modified diet (20% WPC or its hydrolysates were used. ThePFC number did not differ for pancreatin and protemix hydrolysates but was inferior for alcalase hydrolysate (p<0.05. Liver glutathione concentration showed a high positive correlation (r=0,992 with the PFC number in the spleen.

  9. Effects of casein, whey and soy proteins on volumetric bone density and bone strength in immunocompromised piglets

    DEFF Research Database (Denmark)

    Budek, Alicja Zofia; Bjørnvad, Charlotte; Mølgaard, Christian

    2007-01-01

    Summary:Background and aims: Bone-promoting effect of different proteins in early life, under immunocompromised conditions, is unknown. We investigated effects of milk- and plantderived proteins on bone development in immunocompromised piglets. Methods: Newborn, colostrum-deprived piglets were...... assigned to a formula based on either casein (n=11), whey (n=11) or soy (n=10) as the protein source (each 55 g/L), and equal amounts of fat, carbohydrates, calcium and phosphorus. Results & Conclusion: Despite efforts to sustain immuno-protection (sow serum and antibiotic injections), some piglets became...... sick and were early euthanised. After 6 days, bone density (peripheral quantitative computed tomography), bone mechanical strength (three-point bending test) and serum insulin-like growth factor-I (sIGF-I) (immunoassay) were measured in the surviving piglets (casein n=5, whey n=9, soy n=5)....

  10. Investigation on the Protein Degradation, Free Fatty Acid Content and Area Fraction of Poosti Cheese, Iranian Traditional Cheese Ripened in Skin

    Directory of Open Access Journals (Sweden)

    Mojgan Hemmatian

    2015-03-01

    Full Text Available Background and Objectives: In this study, the proteolysis and lipolysis of Poosti cheese produced from raw sheep milk in mountainous eastern regions of Iran were investigated during 90 days of ripening. Materials and Methods: Sodium dodecyl sulfate polyacrylamide gel electrophoresis for proteolysis (SDS-PAGE and gas chromatography (GC for free fatty acids (FFAs were applied to investigate the intensity of lipid degradation. To evaluate the Poosti cheese microstructural changes, the area fraction parameter of the scanning electron microscopy (SEM micrographs was also calculated by the Image J software. Results: The most alteration in protein profile was occurred in the first month of aging for high activity of the proteolytic microorganisms in this period. The amount of free fatty acids was depended on their length due to the variety of involved mechanisms. In addition, the microstructural parameter was considerably affected by the aging as a consequence of the effect of salt on the activity of raw milk and skin micro flora. Conclusions: The decline in proteolysis rate during the last stage of aging could be correlated with the inhibitory effects of salt on the engaged microorganisms, and increase in the pore fraction of the microstructure during the first month of Poosti cheese aging could be due to casein rearrangement and gas release by the fermentative activity of microorganisms. Keywords: Proteolysis, Lipolysis, Poosti cheese, Raw sheep milk.

  11. The Effect of a Whey Protein Supplement on Bone Mass in Older Caucasian Adults

    Science.gov (United States)

    Kerstetter, Jane E.; Brindisi, Jennifer; Sullivan, Rebecca R.; Mangano, Kelsey M.; Larocque, Sarah; Kotler, Belinda M.; Simpson, Christine A.; Cusano, Anna Maria; Gaffney-Stomberg, Erin; Kleppinger, Alison; Reynolds, Jesse; Dziura, James; Kenny, Anne M.; Insogna, Karl L.

    2015-01-01

    Context: It has been assumed that the increase in urine calcium (Ca) that accompanies an increase in dietary protein was due to increased bone resorption. However, studies using stable Ca isotopes have found that dietary protein increases Ca absorption without increasing bone resorption. Objective: The objective of the study was to investigate the impact of a moderately high protein diet on bone mineral density (BMD). Design: This was a randomized, double-blind, placebo-controlled trial of protein supplementation daily for 18 months. Setting: The study was conducted at two institutional research centers. Participants: Two hundred eight older women and men with a body mass index between 19 and 32 kg/m2 and a self-reported protein intake between 0.6 and 1.0 g/kg participated in the study. Intervention: Subjects were asked to incorporate either a 45-g whey protein or isocaloric maltodextrin supplement into their usual diet for 18 months. Main Outcome Measure: BMD by dual-energy x-ray absorptiometry, body composition, and markers of skeletal and mineral metabolism were measured at baseline and at 9 and 18 months. Results: There were no significant differences between groups for changes in L-spine BMD (primary outcome) or the other skeletal sites of interest. Truncal lean mass was significantly higher in the protein group at 18 months (P = .048). C-terminal telopeptide (P = .0414), IGF-1 (P = .0054), and urinary urea (P < .001) were also higher in the protein group at the end of the study period. There was no difference in estimated glomerular filtration rate at 18 months. Conclusion: Our data suggest that protein supplementation above the recommended dietary allowance (0.8 g/kg) may preserve fat-free mass without adversely affecting skeletal health or renal function in healthy older adults. PMID:25844619

  12. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

    Science.gov (United States)

    Babault, Nicolas; Païzis, Christos; Deley, Gaëlle; Guérin-Deremaux, Laetitia; Saniez, Marie-Hélène; Lefranc-Millot, Catherine; Allaert, François A

    2015-01-01

    The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. Results showed a significant time effect for biceps brachii muscle thickness (P Pea, Whey and Placebo, respectively; P Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups. In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products. The present trial has been registered at ClinicalTrials.gov (NCT02128516).

  13. The Relationship Between Creatine and Whey Protein Supplements Consumption and Anesthesia in Rats.

    Science.gov (United States)

    Saberi, Kianoush; Gorji Mahlabani, Mohammad Amin; Tashayoie, Mohammad; Nasiri Nejad, Farinaz

    2016-02-01

    Because the trend of pharmacotherapy is toward controlling diet rather than administration of drugs, in our study we examined the probable relationship between Creatine (Cr) or Whey (Wh) consumption and anesthesia (analgesia effect of ketamine). Creatine and Wh are among the most favorable supplements in the market. Whey is a protein, which is extracted from milk and is a rich source of amino acids. Creatine is an amino acid derivative that can change to ATP in the body. Both of these supplements result in Nitric Oxide (NO) retention, which is believed to be effective in N-Methyl-D-aspartate (NMDA) receptor analgesia. The main question of this study was whether Wh and Cr are effective on analgesic and anesthetic characteristics of ketamine and whether this is related to NO retention or amino acids' features. We divided 30 male Wistar rats to three (n = 10) groups; including Cr, Wh and sham (water only) groups. Each group was administered (by gavage) the supplements for an intermediate dosage during 25 days. After this period, they became anesthetized using a Ketamine-Xylazine (KX) and their time to anesthesia and analgesia, and total sleep time were recorded. Data were analyzed twice using the SPSS 18 software with Analysis of Variance (ANOVA) and post hoc test; first time we expunged the rats that didn't become anesthetized and the second time we included all of the samples. There was a significant P-value (P < 0.05) for total anesthesia time in the second analysis. Bonferroni multiple comparison indicated that the difference was between Cr and Sham groups (P < 0.021). The data only indicated that there might be a significant relationship between Cr consumption and total sleep time. Further studies, with rats of different gender and different dosage of supplement and anesthetics are suggested.

  14. Comparison of composition and whey protein fractions of human, camel, donkey, goat and cow milk

    Directory of Open Access Journals (Sweden)

    Halima El-Hatmi

    2015-07-01

    Full Text Available The aim of this study was to compare the physicochemical parameters of milk samples of five different species: cow, goat, donkey, camel and human. Also the analysis of whey protein profile in different milk samples was performed by anion-exchange fast protein liquid chromatography (FPLC while polyacrylamide gel electrophoresis was used to identify a single fraction. Camel milk was the most acid (pH 6.460±0.005 and the richest in total proteins (3.41±0.31 % and ash (0.750±0.102 %, whereas donkey milk had a neutral pH (7.03±0.02 and characterised by low proteins (1.12±0.40 % and fat (0.97±0.03 % content, being very close to human milk. Proteomic analysis of cow, goat, donkey, camel and human milk highlighted significant interspecies differences. Camel milk was similar to human milk in lacking of β-lactoglobulin and richness of α-lactalbumin. The knowledge gained from the proteomic comparison of the milk samples analysed within this study might be of relevance, both, in terms of identifying sources of hypoallergenic alternatives to bovine milk and detection of adulteration of milk samples and products.

  15. Protein production from whey using Penicillium cyclopium; growth parameters and cellular composition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J H; Lebeault, J M

    1981-01-01

    The growth parameters of Penicillium cyclopium were evaluated in a continuous culture system for the production of fungal protein from whey. Dilution rates were 0.05-0.20/h under constant conditions of temperature (28 degrees) and pH (3.5). The saturation coefficients in the Monod equation were 0.74 g/l for lactose and 0.14 mg/l for O/sub 2/. For a wide range of dilution rates, the yield was 0.68 g biomass/g lactose and the maintenance coefficient 0.005 g lactose/g biomass-h. The maximum biomass productivity achieved was 2 g biomass/l-h at dilution rates of 0.16-0.17/h with a lactose concentration of 20 g/l in the feed. The crude protein and total nucleic acid contents increased with a dilution rate, crude protein content was 43-54%, and total nucleic acids were 6-9% at dilution rates of 0.05-0.2/h, while the Lowry protein content was almost constant at 37.5% of dry matter.

  16. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    Science.gov (United States)

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. © 2015 Institute of Food Technologists®

  17. Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese

    OpenAIRE

    Wagh, Y. R.; Pushpadass, Heartwin A.; Emerald, F. Magdaline Eljeeva; Nath, B. Surendra

    2013-01-01

    Casein and whey protein concentrate (WPC) films, plasticized with glycerol and sorbitol independently, were prepared by casting. The film thickness, water vapour and oxygen permeation and tensile and moisture sorption properties of the films were determined. The tensile strength (TS), tensile strain (TE) and elastic modulus (EM) of the films ranged from 0.71 to 4.58 MPa, 19.22 to 66.63 % and 2.05 to 6.93 MPa, respectively. The film properties were influenced by the type of biopolymer (casein ...

  18. High-pressure homogenization of raw and pasteurized milk modifies the yield, composition, and texture of queso fresco cheese.

    Science.gov (United States)

    Escobar, D; Clark, S; Ganesan, V; Repiso, L; Waller, J; Harte, F

    2011-03-01

    High-pressure homogenization (HPH) of milk was studied as an alternative processing operation in the manufacturing of queso fresco cheese. Raw and pasteurized (65°C for 30 min) milks were subjected to HPH at 0, 100, 200, and 300 MPa and then used to manufacture queso fresco. The cheeses were evaluated for yield, moisture content, titratable acidity, nitrogen content, whey protein content, yield force, yield strain, and tactile texture by instrumental or trained panel analyses. The combination of HPH and thermal processing of milk resulted in cheeses with increased yield and moisture content. The net amount of protein transferred to the cheese per kilogram of milk remained constant for all treatments except raw milk processed at 300 MPa. The highest cheese yield, moisture content, and crumbliness were obtained for thermally processed milk subjected to HPH at 300 MPa. The principal component analysis of all measured variables showed that the variables yield, moisture content, and crumbliness were strongly correlated to each other and negatively correlated to the variables yield strain, protein content (wet basis), and sensory cohesiveness. It is suggested that the combination of thermal processing and HPH promotes thermally induced denaturation of whey protein, together with homogenization-induced dissociation of casein micelles. The combined effect results in queso fresco containing a thin casein-whey matrix that is able to better retain sweet whey. These results indicate that HPH has a strong potential for the manufacture of queso fresco with excellent yield and textural properties. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Justyna Kadzińska

    2016-01-01

    Full Text Available The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3 % of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters (d32 of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness (L*≈90. Parameter a* decreased and parameter b* and total colour difference (ΔE increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg’s equation (R2≥0.99. The tensile strength, Young’s modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.

  20. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil.

    Science.gov (United States)

    Galus, Sabina; Kadzińska, Justyna

    2016-03-01

    The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters ( d 32 ) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness ( L* ≈90). Parameter a * decreased and parameter b* and total colour difference (∆ E ) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg's equation (R 2 ≥0.99). The tensile strength, Young's modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.

  1. Consumer preferences for mild cheddar cheese flavors.

    Science.gov (United States)

    Drake, S L; Gerard, P D; Drake, M A

    2008-11-01

    Flavor is an important factor in consumer selection of cheeses. Mild Cheddar cheese is the classification used to describe Cheddar cheese that is not aged extensively and has a "mild" flavor. However, there is no legal definition or age limit for Cheddar cheese to be labeled mild, medium, or sharp, nor are the flavor profiles or flavor expectations of these cheeses specifically defined. The objectives of this study were to document the distinct flavor profiles among commercially labeled mild Cheddar cheeses, and to characterize if consumer preferences existed for specific mild Cheddar cheese flavors or flavor profiles. Flavor descriptive sensory profiles of a representative array of commercial Cheddar cheeses labeled as mild (n= 22) were determined using a trained sensory panel and an established cheese flavor sensory language. Nine representative Cheddar cheeses were selected for consumer testing. Consumers (n= 215) assessed the cheeses for overall liking and other consumer liking attributes. Internal preference mapping, cluster analysis, and discriminant analysis were conducted. Mild Cheddar cheeses were diverse in flavor with many displaying flavors typically associated with more age. Four distinct consumer clusters were identified. The key drivers of liking for mild Cheddar cheese were: color, cooked/milky, whey and brothy flavors, and sour taste. Consumers have distinct flavor and color preferences for mild Cheddar cheese. These results can help manufacturers understand consumer preferences for mild Cheddar cheese.

  2. Whey protein hydrolysate enhances HSP90 but does not alter HSP60 and HSP25 in skeletal muscle of rats.

    Directory of Open Access Journals (Sweden)

    Carolina Soares Moura

    Full Text Available Whey protein hydrolysate (WPH intake has shown to increase HSP70 expression. The aim of the present study was to investigate whether WPH intake would also influences HSP90, HSP60 and HSP25 expression, as well as associated parameters. Forty-eight male Wistar rats were divided into sedentary (unstressed and exercised (stressed groups, and were fed with three different sources of protein: whey protein (WP, whey protein hydrolysate (WPH and casein (CAS as a control, based on the AIN93G diet for 3 weeks. WPH intake increased HSP90 expression in both sedentary and exercised animals compared to WP or CAS, however no alteration was found from exercise or diet to HSP60 or HSP25. Co-chaperone Aha1 and p-HSF1 were also increased in the exercised animals fed with WPH in comparison with WP or CAS, consistent with enhanced HSP90 expression. VEGF and p-AKT were increased in the WPH exercised group. No alteration was found in BCKDH, PI3-Kinase (p85, GFAT, OGT or PGC for diet or exercise. The antioxidant system GPx, catalase and SOD showed different responses to diet and exercise. The data indicate that WPH intake enhanced factors related to cell survival, such as HSP90 and VEGF, but does not alter HSP60 or HSP25 in rat skeletal muscle.

  3. Comparison of Nitrogen Bioaccessibility from Salmon and Whey Protein Hydrolysates using a Human Gastrointestinal Model (TIM-1

    Directory of Open Access Journals (Sweden)

    Bomi Framroze

    2014-05-01

    Full Text Available Background: The TIM-1 system is a computer-controlled multi-compartmental dynamic model that closely simulates in vivo gastrointestinal tract digestion in humans. During digestion, the compounds released from meal matrix by gastric and intestinal secretions (enzymes are progressively absorbed through semipermeable membranes depending on their molecular weight. These absorbed (dialysed compounds are considered as bioaccessible, which means that they can be theoretically absorbed by the small intestine in the body. Methods: Salmon protein hydrolysate (SPH, whey protein hydrolysates extensively (WPHHigh or weakly (WPH-Low hydrolysed, non-hydrolysed whey protein isolate (WPI and mixtures of WPI:SPH (90:10, 80:20 were digested in TIM-1 using the conditions for a fast gastrointestinal transit that simulate the digestion of a liquid meal in human adults. During digestion (2 hours, samples were collected in intestinal compartments (duodenum, jejunum, and ileum and in both jejunal and ileal dialysates to determine their nitrogen content. All the products were compared in terms of kinetics of nitrogen absorption through the semipermeable membranes (bioaccessible nitrogen and nitrogen distribution throughout the intestinal compartments at the end of the 2 hour digestion. Results: After a 2 h-digestion in TIM-1, SPH was the protein substrate from which the highest amount of nitrogen (67.0% becomes available for the small intestine absorption. WPH-High had the second highest amount (56.0% of bioaccessible nitrogen while this amount decreased to 38.5–42.2% for the other protein substrates. The high nitrogen bioaccessibility of SPH is consistent with its richness in low molecular weight peptides (50% < 1000 Da. Conclusions: The results of this study indicate that SPH provides a higher proportion of bioaccessible nitrogen to a healthy adult compared to all forms of whey proteins, including extensively hydrolysed whey protein hydrolysate. The substitution of

  4. Effect of whey protein concentrate on texture of fat-free desserts: sensory and instrumental measurements

    Directory of Open Access Journals (Sweden)

    Márcia Cristina Teixeira Ribeiro Vidigal

    2012-06-01

    Full Text Available It is important to understand how changes in the product formulation can modify its characteristics. Thus, the objective of this study was to investigate the effect of whey protein concentrate (WPC on the texture of fat-free dairy desserts. The correlation between instrumental and sensory measurements was also investigated. Four formulations were prepared with different WPC concentrations (0, 1.5, 3.0, and 4.5 wt. (% and were evaluated using the texture profile analysis (TPA and rheology. Thickness was evaluated by nine trained panelists. Formulations containing WPC showed higher firmness, elasticity, chewiness, and gumminess and clearly differed from the control as indicated by principal component analysis (PCA. Flow behavior was characterized as time-dependent and pseudoplastic. Formulation with 4.5% WPC at 10 °C showed the highest thixotropic behavior. Experimental data were fitted to Herschel-Bulkley model. The addition of WPC contributed to the texture of the fat-free dairy dessert. The yield stress, apparent viscosity, and perceived thickness in the dairy desserts increased with WPC concentration. The presence of WPC promotes the formation of a stronger gel structure as a result of protein-protein interactions. The correlation between instrumental parameters and thickness provided practical results for food industries.

  5. Protein substitution to produce a processed cheese with high ...

    African Journals Online (AJOL)

    Multiple studies report the beneficial effects of BCAAs supplementation to improve plasma amino acids imbalance, several neurologic diseases, protein energy malnutrition, and subsequently the survival rate of cirrhotic patients. Methods: In the present study we used a protein substitution technique to synthesize a new ...

  6. Native whey induces higher and faster leucinemia than other whey protein supplements and milk: A randomized controlled trial

    Science.gov (United States)

    Resistance exercise and protein intake are both strong stimuli for muscle protein synthesis. The potential for a protein to acutely increase muscle protein synthesis seems partly dependent on absorption kinetics and the amino acid composition. The aim of this double-blinded randomized cross-over stu...

  7. A diet containing whey protein, glutamine, and TGFbeta modulates gut protein metabolism during chemotherapy-induced mucositis in rats.

    Science.gov (United States)

    Boukhettala, Nabile; Ibrahim, Ayman; Claeyssens, Sophie; Faure, Magali; Le Pessot, Florence; Vuichoud, Jacques; Lavoinne, Alain; Breuillé, Denis; Déchelotte, Pierre; Coëffier, Moïse

    2010-08-01

    Mucositis, a common side effect of chemotherapy, is characterized by compromised digestive function, barrier integrity and immune competence. Our aim was to evaluate the impact of a specifically designed diet Clinutren Protect (CP), which contains whey proteins, TGFbeta-rich casein, and free glutamine, on mucositis in rats. Mucositis was induced by three consecutive injections (day 0, day 1, day 2) of methotrexate (2.5 mg/kg). Rats had free access to CP or placebo diets from days -7 to 9. In the placebo diet, whey proteins and TGFbeta-rich casein were replaced by TGFbeta-free casein and glutamine by alanine. Intestinal parameters were assessed at day 3 and 9. Values, expressed as mean +/- SEM, were compared using two-way ANOVA. At day 3, villus height was markedly decreased in the placebo (296 +/- 11 microm) and CP groups (360 +/- 10 microm) compared with controls (464 +/- 27 microm), but more markedly in the placebo as compared to CP group. The intestinal damage score was also reduced in the CP compared with the placebo group. Glutathione content increased in the CP compared with the placebo group (2.2 +/- 0.2 vs. 1.7 +/- 0.2 micromol/g tissue). Gut protein metabolism was more affected in the placebo than in the CP group. The fractional synthesis rate was decreased in the placebo group (93.8 +/- 4.9%/day) compared with controls (121.5 +/- 12.1, P < 0.05), but not in the CP group (106.0 +/- 13.1). In addition, at day 9, rats exhibited improved body weight and food intake recovery in the CP compared to the placebo group. Clinutren Protect feeding reduces intestinal injury in the acute phase of methotrexate-induced mucositis in rats and improves recovery.

  8. SYMPTOMATOLOGY AND GROWTH IN INFANTS WITH COWS MILK PROTEIN INTOLERANCE USING 2 DIFFERENT WHEY-PROTEIN HYDROLYSATE BASED FORMULAS IN A PRIMARY HEALTH-CARE SETTING

    NARCIS (Netherlands)

    VERWIMP, JJM; BINDELS, JG; BARENTS, M; HEYMANS, HSA

    Both growth and the course of allergic symptoms were evaluated in 79 infants with cow's milk protein intolerance, aged three months or younger, diagnosed by standard elimination/provocation and treated with a whey-hydrolysate based infant formula: Nutrilon Pept(R) or Pepti Junior(R). The efficacy of

  9. Glucose-lowering effect of whey protein depends upon clinical characteristics of patients with type 2 diabetes

    OpenAIRE

    Almario, Rogelio U; Buchan, Wendy M; Rocke, David M; Karakas, Sidika E

    2017-01-01

    Objective Whey protein (WP) intake has been shown to reduce postprandial glycemia. Majority of WP research in type 2 diabetes (T2DM) involved acute challenge or weight loss studies. It is not known if WP supplementation can provide sustained glucose lowering. Our goal was to investigate the effects of WP on glycemia comprehensively by using continuous glucose monitoring (CGM) while avoiding the confounding effects of variable food intake through controlled feeding. Research design and methods...

  10. Quantification of Whey Protein Content in Infant Formulas by Sodium Dodecyl Sulfate-Capillary Gel Electrophoresis (SDS-CGE): Single-Laboratory Validation, First Action 2016.15.

    Science.gov (United States)

    Feng, Ping; Fuerer, Christophe; McMahon, Adrienne

    2017-03-01

    Protein separation by sodium dodecyl sulfate-capillary gel electrophoresis, followed by UV absorption at 220 nm, allows for the quantification of major proteins in raw milk. In processed dairy samples such as skim milk powder (SMP) and infant formulas, signals from individual proteins are less resolved, but caseins still migrate as one family between two groups of whey proteins. In the first group, α-lactalbumin and β-lactoglobulin migrate as two distinct peaks. Lactosylated adducts show delayed migration times and interfere with peak separation, but both native and modified forms as well as other low-MW whey proteins still elute before the caseins. The second group contains high-MW whey proteins (including bovine serum albumin, lactoferrin, and immunoglobulins) and elutes after the caseins. Caseins and whey proteins can thus be considered two distinct nonoverlapping families whose ratio can be established based on integrated areas without the need for a calibration curve. Because mass-to-area response factors for whey proteins and caseins are different, an area correction factor was determined from experimental measurement using SMP. Method performance assessed on five infant formulas showed RSDs of 0.2-1.2% (within day) and 0.5-1.1% (multiple days), with average recoveries between 97.4 and 106.4% of added whey protein. Forty-three different infant formulas and milk powders were analyzed. Of the 41 samples with manufacturer claims, the measured whey protein content was in close agreement with declared values, falling within 5% of the declared value in 76% of samples and within 10% in 95% of samples.

  11. Metabolic responses of healthy or prediabetic adults to bovine whey protein and sodium caseinate do not differ.

    Science.gov (United States)

    Hoefle, Anja S; Bangert, Adina M; Stamfort, Adelmar; Gedrich, Kurt; Rist, Manuela J; Lee, Yu-Mi; Skurk, Thomas; Daniel, Hannelore

    2015-03-01

    Casein is considered a slowly digestible protein compared with whey protein, and this may cause differences in hormone responses and the kinetics of delivering amino acids into the circulation. We investigated whether postprandial plasma hormone and metabolite responses were different when bovine casein or whey protein was co-administered with carbohydrates in healthy and prediabetic adults. White healthy male adults (n = 15) and white, well-defined male and female prediabetic adults (n = 15) received test drinks randomly on 3 different occasions at least 2 d apart which contained 50 g of maltodextrin19 (MD19) alone or in combination with 50 g of whey protein isolate (WPI) or 50 g of sodium caseinate (SC). Blood samples were collected over a 240-min time period and were analyzed for hormone profiles and defined metabolites. No evidence was found that gastric emptying was different between the 2 protein drinks. Both proteins increased peak plasma insulin concentrations in prediabetic persons by 96% compared with MD19 (each, P < 0.05), which was accompanied by a reduction of peak venous blood glucose by 21% (each, P < 0.0001) without a difference between the 2 proteins. Peak plasma glucagon concentrations increased by 101% in both groups after the protein drinks (P < 0.05). The WPI drink also increased peak plasma glucose-dependent insulinotropic polypeptide concentrations in healthy volunteers by 56% (P < 0.01). Differences in plasma metabolite concentrations in volunteers could be attributed exclusively to the differences in the amino acid composition of the 2 proteins ingested. The WPI and the SC drinks similarly reduced postprandial glucose excursions when ingested with carbohydrates in healthy and prediabetic volunteers. Under our experimental conditions, however, no evidence was found that gastrointestinal processing of the 2 protein varieties differed substantially. This trial was registered at clinicaltrials.gov as DRKS00005682. © 2015 American Society for

  12. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Anna Dąbrowska

    2017-11-01

    Full Text Available The effect of whey protein hydrolysate (WPH addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP, WPH-SMP (ratio 1:1, WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  13. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage.

    Science.gov (United States)

    Dąbrowska, Anna; Babij, Konrad; Szołtysik, Marek; Chrzanowska, Józefa

    2017-11-22

    The effect of whey protein hydrolysate (WPH) addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP), WPH-SMP (ratio 1:1), WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  14. Optimization of the formulation for preparing Lactobacillus casei loaded whey protein-Ca-alginate microparticles using full-factorial design.

    Science.gov (United States)

    Smilkov, Katarina; Petreska Ivanovska, Tanja; Petrushevska Tozi, Lidija; Petkovska, Rumenka; Hadjieva, Jasmina; Popovski, Emil; Stafilov, Trajce; Grozdanov, Anita; Mladenovska, Kristina

    2014-01-01

    This article presents specific approach for microencapsulation of Lactobacillus casei using emulsion method followed by additional coating with whey protein. Experimental design was employed using polynomial regression model at 2nd level with three independent variables, concentrations of alginate, whey protein and CaCl2. Physicochemical, biopharmaceutical and biological properties were investigated. In 11 series generated, negatively charged microparticles were obtained, with size 6.99-9.88 µm, Ca-content 0.29-0.47 mg per 10 mg microparticles, and viability of the probiotic 9.30-10.87 log10CFU/g. The viability after 24 hours in simulated gastrointestinal conditions was between 3.60 and 8.32 log10CFU/g. Optimal formulation of the microparticles that ensures survival of the probiotic and achieves controlled delivery was determined: 2.5% (w/w) alginate, 3% (w/w) CaCl2 and 3% (w/w) whey protein. The advantageous properties of the L. casei-loaded microparticles make them suitable for incorporation in functional food and/or pharmaceutical products.

  15. Bolus Ingestion of Whey Protein Immediately Post-Exercise Does Not Influence Rehydration Compared to Energy-Matched Carbohydrate Ingestion

    Directory of Open Access Journals (Sweden)

    Gethin H. Evans

    2018-06-01

    Full Text Available Whey protein is a commonly ingested nutritional supplement amongst athletes and regular exercisers; however, its role in post-exercise rehydration remains unclear. Eight healthy male and female participants completed two experimental trials involving the ingestion of 35 g of whey protein (WP or maltodextrin (MD at the onset of a rehydration period, followed by ingestion of water to a volume equivalent to 150% of the amount of body mass lost during exercise in the heat. The gastric emptying rates of the solutions were measured using 13C breath tests. Recovery was monitored for a further 3 h by the collection of blood and urine samples. The time taken to empty half of the initial solution (T1/2 was different between the trials (WP = 65.5 ± 11.4 min; MD = 56.7 ± 6.3 min; p = 0.05; however, there was no difference in cumulative urine volume throughout the recovery period (WP = 1306 ± 306 mL; MD = 1428 ± 443 mL; p = 0.314. Participants returned to net negative fluid balance 2 h after the recovery period with MD and 3 h with WP. The results of this study suggest that whey protein empties from the stomach at a slower rate than MD; however, this does not seem to exert any positive or negative effects on the maintenance of fluid balance in the post-exercise period.

  16. In vivo evaluation of whey protein-based biofilms as scaffolds for cutaneous cell cultures and biomedical applications

    International Nuclear Information System (INIS)

    Rouabhia, Mahmoud; Gilbert, Vanessa; Wang Hongxum; Subirade, Muriel

    2007-01-01

    This study evaluated the toxicity, biodegradability and immunogenicity of newly developed whey protein-based biofilms for possible use as biomaterials for medical applications. Biofilms were prepared using (A) a whey protein isolate plasticized with either diethylene glycol (DEG) or glycerol (GLY), and (B) β-lactoglobulin (βLGA) plasticized with DEG. The biofilms were implanted subcutaneously into Balb/c mice. Analyses were performed at various time points. At 15, 30 and 60 days post-implantation, no necrotic zones or exudates were present at the recipient sites. The biofilms began to degrade as early as 15 days post-implantation, as evidenced by erosion and crumbling. The macroscopic observations were supported by tissue analyses revealing no tissue necrosis or degradation and confirming that the biodegradation of the biofilms began as early as 15 days post-implantation and was almost complete after 60 days. The biodegradation was accompanied by significant leukocyte infiltration at 15 days which significantly decreased at 60 days. The absence of splenomagaly in the implanted mice confirms that these biofilms were not immunogenic. Whey protein-based biofilms are biocompatible and biodegradable and may be of interest for medical applications such as scaffolds for cutaneous cell cultures and skin recovery in burn patients

  17. In vivo evaluation of whey protein-based biofilms as scaffolds for cutaneous cell cultures and biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Rouabhia, Mahmoud [Faculte de medecine dentaire, GREB, Universite Laval, Quebec (Ciheam) G1K 7P4 (Canada); Gilbert, Vanessa [Unite de Biotechnologie, Institut des biomateriaux, Hopital Saint-Francois d' Assise, CHUQ, 10 de l' Espinay, Quebec G1L 3L5 (Canada); Wang Hongxum [Unite de Biotechnologie, Institut des biomateriaux, Hopital Saint-Francois d' Assise, CHUQ, 10 de l' Espinay, Quebec G1L 3L5 (Canada); Subirade, Muriel [Chaire de recherche du Canada sur les proteines, bio-systemes et aliments fonctionnels, Centre de Recherche INAF/STELA, Universite Laval, Quebec (Ciheam) G1K 7P4 (Canada)

    2007-03-01

    This study evaluated the toxicity, biodegradability and immunogenicity of newly developed whey protein-based biofilms for possible use as biomaterials for medical applications. Biofilms were prepared using (A) a whey protein isolate plasticized with either diethylene glycol (DEG) or glycerol (GLY), and (B) {beta}-lactoglobulin ({beta}LGA) plasticized with DEG. The biofilms were implanted subcutaneously into Balb/c mice. Analyses were performed at various time points. At 15, 30 and 60 days post-implantation, no necrotic zones or exudates were present at the recipient sites. The biofilms began to degrade as early as 15 days post-implantation, as evidenced by erosion and crumbling. The macroscopic observations were supported by tissue analyses revealing no tissue necrosis or degradation and confirming that the biodegradation of the biofilms began as early as 15 days post-implantation and was almost complete after 60 days. The biodegradation was accompanied by significant leukocyte infiltration at 15 days which significantly decreased at 60 days. The absence of splenomagaly in the implanted mice confirms that these biofilms were not immunogenic. Whey protein-based biofilms are biocompatible and biodegradable and may be of interest for medical applications such as scaffolds for cutaneous cell cultures and skin recovery in burn patients.

  18. Protein substitution to produce a processed cheese with high ...

    African Journals Online (AJOL)

    Hoida A.M. El-Shazly

    for liver enzymes; serum total and differential cholesterol profile, serum albumin, globulin and total protein along with .... Colorimetric method was used to determine AST and ALT ..... Studies on inter-organ ammonia exchange in liver cirrhosis ...

  19. Discriminating aging and protein-to-fat ratio in Cheddar cheese using sensory analysis and a potentiometric electronic tongue.

    Science.gov (United States)

    Lipkowitz, Jackie B; Ross, Carolyn F; Diako, Charles; Smith, Denise M

    2018-03-01

    The objectives of this study were to evaluate the flavor and taste attributes of full-fat Cheddar cheeses with different protein-to-fat ratios (PFR) over aging time using a descriptive sensory analysis panel and a consumer panel, and to correlate these attributes with instrumental parameters obtained by the potentiometric electronic tongue. Three Cheddar cheese formulations (PFR of 0.74, 0.85, and 1.01) were produced in triplicate and composition was verified. Cheese was aged at 7.2°C and evaluated at 2, 5, 8, 10, 11, and 12 mo by a trained panel (n = 10) for 8 flavor and 5 taste attributes and using an electronic tongue for 7 nonvolatile taste attributes. Cheese aged for 12 mo was also evaluated by a consumer sensory panel for liking and intensity attributes. Principal component analysis was performed to discriminate cheese based on aging time and PFR, whereas correlation between sensory and instrumental attributes was assessed using partial least squares regression. Descriptive sensory analysis of flavor and taste attributes differentiated Cheddar cheeses over aging time, but not among PFR formulations. The electronic tongue distinguished changes among cheese samples due to PFR formulation and aging time. The electronic tongue proved successful in characterizing the nonvolatile flavor components in Cheddar cheese and correlated with taste perceptions measured by descriptive sensory analysis. Consumer evaluations showed distinctive attribute profiles for the 3 PFR Cheddar cheese formulations. Overall, higher fat content was associated with increased flavor intensities in Cheddar cheese and drove consumer acceptability and purchase intent ratings. The electronic tongue detected smaller changes in tastes (bitter, metallic, salty, sour, spicy, sweet, and umami) of the 3 PFR formulations over time when compared with the trained panelists, who detected no differences, suggesting that the electronic tongue may be more sensitive to tastants than humans and may have the

  20. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein

    OpenAIRE

    Babault, Nicolas; Pa?zis, Christos; Deley, Ga?lle; Gu?rin-Deremaux, Laetitia; Saniez, Marie-H?l?ne; Lefranc-Millot, Catherine; Allaert, Fran?ois A

    2015-01-01

    Background The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS?) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. Methods One hundred and sixty one males, aged 18 to 35?years were enrolled in the study and underwent 12?weeks of resistance training o...

  1. Effects of hydrolysed casein, intact casein and intact whey protein on energy expenditure and appetite regulation

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist; Lorenzen, Janne Kunchel; Gomes, Sisse

    2014-01-01

    Casein and whey differ in amino acid composition and in the rate of absorption; however, the absorption rate of casein can be increased to mimic that of whey by exogenous hydrolysis. The objective of the present study was to compare the effects of hydrolysed casein (HC), intact casein (IC......) and intact whey (IW) on energy expenditure (EE) and appetite regulation, and thereby to investigate the influence of amino acid composition and the rate of absorption. In the present randomised cross-over study, twenty-four overweight and moderately obese young men and women consumed three isoenergetic...

  2. Stability and in vitro digestibility of emulsions containing lecithin and whey proteins.

    Science.gov (United States)

    Mantovani, Raphaela Araujo; Cavallieri, Ângelo Luiz Fazani; Netto, Flavia Maria; Cunha, Rosiane Lopes

    2013-09-01

    The effect of pH and high-pressure homogenization on the properties of oil-in-water (O/W) emulsions stabilized by lecithin and/or whey proteins (WPI) was evaluated. For this purpose, emulsions were characterized by visual analysis, droplet size distribution, zeta potential, electrophoresis, rheological measurements and their response to in vitro digestion. Lecithin emulsions were stable even after 7 days of storage and WPI emulsions were unstable only at pH values close to the isoelectric point (pI) of proteins. Systems containing the mixture of lecithin and WPI showed high kinetic instability at pH 3, which was attributed to the electrostatic interaction between the emulsifiers oppositely charged at this pH value. At pH 5.5 and 7, the mixture led to reduction of the droplet size with enhanced emulsion stability compared to the systems with WPI or lecithin. The stability of WPI emulsions after the addition of lecithin, especially at pH 5.5, was associated with the increase of droplet surface charge density. The in vitro digestion evaluation showed that WPI emulsion was more stable against gastrointestinal conditions.

  3. [SNACK HIGH WHEY PROTEIN IMPROVES THE LEVEL OF SATIETY AND REDUCES APPETITE HEALTHY WOMEN].

    Science.gov (United States)

    Reyna, Nadia; Moreno-Rojas, Rafael; Mendoza, Laura; Urdaneta, Andrés; Artigas, Carlos; Reyna, Eduardo; Cámara Martos, Fernando

    2015-10-01

    the nutritional content and energy density of foods is related to greater control of appetite, satiety and reducing food intake. the randomized crossover study included 20 healthy women, aged 20 and 30 years with a BMI of 20 to 24.9 kg/m2 and who completed that included 3 day trial comparing 8 hours 130 kcal snacks consumed afternoon: yoghurt with added whey protein (PSL), biscuits and chocolate. Participants consumed a standardized menu; snack was consumed 3 hours after lunch. Perceived hunger and fullness were evaluated during the afternoon until dinner voluntary intake ad libitum. They repeat the same snack 3 times. consumption of yogurt with PSL led to a further reduction of appetite in the afternoon in front of the snack of chocolate and biscuits (p snack, yogurt there was a significant reduction in caloric intake compared to other snacks (p snacks with less energy density and rich in protein (yogurt with PSL) improve the control of appetite, satiety and reduces food intake in healthy women later. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  4. Effects of incorporation of whey protein concentrate on physicochemical, texture, and microbial evaluation of developed cookies

    Directory of Open Access Journals (Sweden)

    Safa Hamid Wani

    2015-12-01

    Full Text Available Whey Protein concentrate (WPC was incorporated into cookies at different levels (0, 2, 4, and 6%. Cookies were analyzed for physicochemical, color, textural, microbial, and sensory attributes. Physicochemical analysis revealed that 6% WPC supplemented cookies shows maximum protein content (13.22%, moisture content (11.33%, fat content (23.08%, and ash content (2.02% as compared to control. However, control sample shows significantly different (p ≤ 0.05 value for crude fiber and carbohydrate content. Maximum thickness (9.63 mm, diameter (44.06 mm, and weight (9.10 g were found for control and these decreased significantly (p ≤ 0.05 with increase in WPC supplementation level in cookies. Cookie supplemented with 4% WPC showed maximum overall acceptability (4.76. Texture analysis revealed that 6% WPC supplemented cookie shows maximum cutting force (55.3 N. Lightness (L* value of cookies decreased from 67.32 to 57.94. Where as a* and b* value increased from 0.37 to 3.57 and 25.35 to 27.54, respectively. The total plate count of cookie samples was under acceptable limits.

  5. Whey protein concentrate supplementation protects rat brain against aging-induced oxidative stress and neurodegeneration.

    Science.gov (United States)

    Garg, Geetika; Singh, Sandeep; Singh, Abhishek Kumar; Rizvi, Syed Ibrahim

    2018-05-01

    Whey protein concentrate (WPC) is a rich source of sulfur-containing amino acids and is consumed as a functional food, incorporating a wide range of nutritional attributes. The purpose of this study is to evaluate the neuroprotective effect of WPC on rat brain during aging. Young (4 months) and old (24 months) male Wistar rats were supplemented with WPC (300 mg/kg body weight) for 28 days. Biomarkers of oxidative stress and antioxidant capacity in terms of ferric reducing antioxidant potential (FRAP), lipid hydroperoxide (LHP), total thiol (T-SH), protein carbonyl (PC), reactive oxygen species (ROS), nitric oxide (NO), and acetylcholinesterase (AChE) activity were measured in brain of control and experimental (WPC supplemented) groups. In addition, gene expression and histopathological studies were also performed. The results indicate that WPC augmented the level of FRAP, T-SH, and AChE in old rats as compared with the old control. Furthermore, WPC-treated groups exhibited significant reduction in LHP, PC, ROS, and NO levels in aged rats. WPC supplementation also downregulated the expression of inflammatory markers (tumor necrosis factor alpha, interleukin (IL)-1β, IL-6), and upregulated the expression of marker genes associated with autophagy (Atg3, Beclin-1, LC3B) and neurodegeneration (neuron specific enolase, Synapsin-I, MBP-2). The findings suggested WPC to be a potential functional nutritional food supplement that prevents the progression of age-related oxidative damage in Wistar rats.

  6. Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion?

    Science.gov (United States)

    2015-01-01

    Whey protein intake is associated with the modulation of energy metabolism and altered body composition both in human subjects and in animals, but the underlying mechanisms are not yet elucidated. We fed obesity-prone C57BL/6J mice high-fat diets with either casein (HF casein) or whey (HF whey) for 6 weeks. At equal energy intake and apparent fat and nitrogen digestibility, mice fed HF whey stored less energy as lipids, evident both as lower white adipose tissue mass and as reduced liver lipids, compared with HF-casein-fed mice. Explorative analyses of 48 h urine, both by 1H NMR and LC–MS metabolomic platforms, demonstrated higher urinary excretion of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic acid (identified by both platforms), and cis-aconitic acid and isocitric acid (identified by LC–MS platform) in the HF whey, relative to in the HF-casein-fed mice. Targeted LC–MS analyses revealed higher citric acid and cis-aconitic acid concentrations in fed state plasma, but not in liver of HF-whey-fed mice. We propose that enhanced urinary loss of TCA cycle metabolites drain available substrates for anabolic processes, such as lipogenesis, thereby leading to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed mice. PMID:24702026

  7. Effect of standardizing the lactose content of cheesemilk on the properties of low-moisture, part-skim Mozzarella cheese.

    Science.gov (United States)

    Moynihan, A C; Govindasamy-Lucey, S; Molitor, M; Jaeggi, J J; Johnson, M E; McSweeney, P L H; Lucey, J A

    2016-10-01

    The texture, functionality, and quality of Mozzarella cheese are affected by critical parameters such as pH and the rate of acidification. Acidification is typically controlled by the selection of starter culture and temperature used during cheesemaking, as well as techniques such as curd washing or whey dilution, to reduce the residual curd lactose content and decrease the potential for developed acidity. In this study, we explored an alternative approach: adjusting the initial lactose concentration in the milk before cheesemaking. We adjusted the concentration of substrate available to form lactic acid. We added water to decrease the lactose content of the milk, but this also decreased the protein content, so we used ultrafiltration to help maintain a constant protein concentration. We used 3 milks with different lactose-to-casein ratios: one at a high level, 1.8 (HLC, the normal level in milk); one at a medium level, 1.3 (MLC); and one at a low level, 1.0 (LLC). All milks had similar total casein (2.5%) and fat (2.5%) content. We investigated the composition, texture, and functional and sensory properties of low-moisture, part-skim Mozzarella manufactured from these milks when the cheeses were ripened at 4°C for 84d. All cheeses had similar pH values at draining and salting, resulting in cheeses with similar total calcium contents. Cheeses made with LLC milk had higher pH values than the other cheeses throughout ripening. Cheeses had similar moisture contents. The LLC and MLC cheeses had lower levels of lactose, galactose, lactic acid, and insoluble calcium compared with HLC cheese. The lactose-to-casein ratio had no effect on the levels of proteolysis. The LLC and MLC cheeses were harder than the HLC cheese during ripening. Maximum loss tangent (LT), an index of cheese meltability, was lower for the LLC cheese until 28d of ripening, but after 28d, all treatments exhibited similar maximum LT values. The temperature where LT=1 (crossover temperature), an index

  8. Amino acid fortified diets for weanling pigs replacing fish meal and whey protein concentrate: Effects on growth, immune status, and gut health.

    Science.gov (United States)

    Zhao, Yan; Weaver, Alexandra C; Fellner, Vivek; Payne, Robert L; Kim, Sung Woo

    2014-01-01

    Limited availability of fish meal and whey protein concentrate increases overall feed costs. Availability of increased number of supplemental amino acids including Lys, Met, Thr, Trp, Val, and Ile allows replacing expensive protein supplements to reduce feed costs. This study was to evaluate the effect of replacing fish meal and/or whey protein concentrate in nursery diets with 6 supplemental amino acids on growth performance and gut health of post-weaning pigs. Treatments were 1) FM-WPC: diet with fish meal (FM) and whey protein concentrate (WPC); 2) FM-AA: diet with FM and crystalline amino acids (L-Lys, L-Thr, L-Trp, DL-Met, L-Val, and L-Ile); 3) WPC-AA: diet with WPC and crystalline amino acid; and 4) AA: diet with crystalline amino acid. Pigs in FM-AA, WPC-AA, and AA had greater (P replace fish meal and/or whey protein concentrate without adverse effects on growth performance, immune status, and gut health of pigs at d 21 to 49 of age. Positive response with the use of 6 supplemental amino acids in growth during the first week of post-weaning may due to increased plasma insulin potentially improving uptake of nutrients for protein synthesis and energy utilization. The replacement of fish meal and/or whey protein concentrate with 6 supplemental amino acids could decrease the crude protein level in nursery diets, and potentially lead to substantial cost savings in expensive nursery diets.

  9. Phenylalanine flux and gastric emptying are not affected by replacement of casein with whey protein in the diet of adult cats consuming frequent small meals.

    Science.gov (United States)

    Tycholis, Tanya J; Cant, John P; Osborne, Vern R; Shoveller, Anna K

    2014-08-12

    Decreasing the rate of protein emptying from the stomach may improve efficiency of utilization of dietary amino acids for protein deposition. Some studies in rats and humans have shown casein to be more slowly released from the stomach than whey protein. To test if casein induces a slower rate of gastric emptying in cats than whey protein, L-[1-(13)C]phenylalanine (Phe) was dosed orally into 9 adult cats to estimate gastric emptying and whole-body Phe flux. Concentrations of indispensable amino acids in plasma were not significantly affected by dietary protein source. First-pass splanchnic extraction of Phe was not different between diets and averaged 50% (SEM = 3.8%). The half-time for gastric emptying averaged 9.9 min with casein and 10.3 min with whey protein, and was not significantly different between diets (SEM = 1.7 min). Phenylalanine fluxes were 45.3 and 46.5 μmol/(min · kg) for casein- and whey-based diets, respectively (SEM = 4.7 μmol/(min · kg)). In adult cats fed frequent small meals, the replacement of casein with whey protein in the diet does not affect supply or utilization of amino acids. These two milk proteins appear to be equally capable of meeting the dietary amino acid needs of cats.

  10. Interactions in heated milk model systems with different ratios of nanoparticulated whey protein at varying pH

    DEFF Research Database (Denmark)

    Liu, Guanchen; Jæger, Tanja C.; Nielsen, Søren B.

    2017-01-01

    To better understand the interactions between nanoparticulated whey protein (NWP) and other milk proteins during acidification, milk model systems were diluted to 0.5% protein concentration and adjusted to pH of 6.0-4.5 following homogenisation and heat treatment. The diluted systems with different...... concentrations of NWP (0-0.5%) were characterised in terms of particle size, viscosity, surface charge and hydrophobicity. When pH was adjusted to 5.5, aggregation was initiated at levels of NWP (0.25-0.5%) leading to significant increase in particle size and viscosity. Pure NWP (0.5%) showed largest initial...

  11. Intake of tryptophan-enriched whey protein acutely enhances recall of positive loaded words in patients with multiple sclerosis.

    Science.gov (United States)

    Lieben, Cindy K; Blokland, Arjan; Deutz, Nicolaas E; Jansen, Willemijn; Han, Gang; Hupperts, Raymond M

    2018-02-01

    Multiple sclerosis (MS) has physiological and/or immunological characteristics that diminish serotonin metabolism, a neurotransmitter associated with affective and cognitive functions. The aim was examine the acute and dose-dependent effects of a dietary tryptophan (TRP) enrichment on affective and cognitive functions in MS patients. We hypothesized that increased dietary availability of the amino acid TRP enhances serotonin concentrations and improves neuropsychological functions. In a double-blind, placebo-controlled, crossover study, MS patients with (n = 15) and without (n = 17) depressed mood ingested a whey protein mixture with 4 different amounts of TRP. Mood states, total plasma TRP and plasma TRP/ΣLNAA ratio were measured during each test session and cognitive tasks were conducted three hours after dietary intake. A fast, transient and dose-dependent increase of total plasma TRP and TRP/ΣLNAA ratio was found. Ratings of negative mood decreased over time, independent of the TRP dose. Relative to whey-only, immediate word recall and delayed recognition improved after ingestion of the lowest added TRP dose and was mainly due to better recollection for positive loaded words. Executive functions were not affected by a difference in TRP availability. A moderate addition of TRP to whey protein enhances memory processes without improving the mood state in MS. ccmo-registration number is NL32316.096.10. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    Science.gov (United States)

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Transference of lutein during cheese making, color stability, and sensory acceptance of prato cheese

    Directory of Open Access Journals (Sweden)

    Mirian Tiaki Kaneiwa Kubo

    2013-02-01

    Full Text Available The consumption of lutein is associated with the prevention and reduction of age-related macular degeneration. Its incorporation into Prato cheese as a yellowish food coloring is a valid alternative to increase the daily intake of this compound. However, part of the lutein added may be lost in the whey during the cheese making, or it can be degraded by light during storage, resulting in color changes reducing the sensory acceptance of the cheese. The objectives of this study were to determine the transference of the lutein (dye, added to the milk, in the whey, and cheese, to evaluate the effect of the lutein addition, light exposure, and storage time on the cheese color, and to verify the sensory acceptance of Prato cheese with addition of lutein. The lutein recovery of cheese was 95.25%. Color saturation (chrome increased during storage time resulting in a cheese with more intense color, but there were no changes in the hue of the cheese. Adjusting the amount of lutein added to Prato cheese may lead to greater acceptance. The high recovery of lutein in the cheese and the fact that the hue remained unchanged during storage under light showed that the incorporation of lutein into Prato cheese is feasible from a technical point of view.

  14. The relative nutritive value of irradiated spray-dried blood powder and heat-sterilized blood meal as measured in combination with whey protein

    International Nuclear Information System (INIS)

    Downes, T.E.H.; Nourse, L.D.; Siebrits, F.K.; Hastings, J.W.

    1987-01-01

    A method of processing blood meal in which nutritive value of the protein is preserved is described, since appreciable losses occur in the nutritive value of the protein when prepared by heat sterilization with drying at atmospheric pressure in steam jacketed vessels. Blood was spray dried and irradiated at an intensity of 10 kGy. Collectively the heat of spray drying and irradiation was effective in killing both the virus plaque-forming units and the bacteria, thus producing a commercially acceptable sterile product of higher nutritive value. The relative nutritive values (RNV) of 50:50 protein were 0,56 for whey protein concentrate plus heat-sterilized blood meal and 0.90 for whey protein concentrate plus irradiated spray-dried blood powder. Whey protein concentrate used as a control has a RNV of 1,0

  15. Ingestion of soy-whey blended protein augments sports performance and ameliorates exercise-induced fatigue in a rat exercise model.

    Science.gov (United States)

    Ren, Guangxu; Yi, Suqing; Zhang, Hongru; Wang, Jing

    2017-02-22

    This study sought to determine the effects of soy-whey blended protein supplementation on sports performance and related biochemical parameters after long-term training. After a week of adaptation, eighteen 6-week-old male Wistar rats were randomly assigned to 3 groups: the standard chow diet plus whey protein (Whey) group, the standard chow diet plus soy-whey blended protein (BP) group and the standard chow diet only (control) group. Each group included 6 rats for the seven-week experiment. Before the experiment, the baseline values of body weight, grasping force and time to exhaustion due to the loaded-swimming test were recorded for each group. During the experimental period, all rats performed the loaded-swimming test until exhaustion five days each week. The results showed that the mean maximum grasping force of the BP group significantly increased between the 5 th and the 7 th week (p protein for 7 weeks significantly increased the mean time to exhaustion due to swimming by 1.5-fold and 1.2-fold compared with the control and Whey groups, respectively. The plasma levels of leucine, isoleucine and valine were significantly higher at 60 min after the blended protein intervention compared with the Whey and control interventions (p protein enhanced the activities of lactate dehydrogenase and superoxide dismutase and decreased the levels of malondialdehyde in serum. These results collectively suggest that soy-whey blended protein ingestion with resistance exercise can improve sports performance and ameliorate exercise-induced fatigue in rats.

  16. Effect of sodium sulfite, sodium dodecyl sulfate, and urea on the molecular interactions and properties of whey protein isolate-based films

    Science.gov (United States)

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2016-12-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm³ (STP / standard temperature and pressure) 100 µm (m² d bar)-1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 µm (m² d)-1 measured at 50 to 0 % r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient.

  17. Development and characterization of the kefiran-whey protein isolate-TiO2 nanocomposite films.

    Science.gov (United States)

    Zolfi, Mohsen; Khodaiyan, Faramarz; Mousavi, Mohammad; Hashemi, Maryam

    2014-04-01

    Biodegradable kefiran-whey protein isolate (WPI)-titanium dioxide (TiO2) blend films were developed and characterized as a function of incorporating amount of TiO2 nanoparticles (1, 3 and 5% wt.). Results showed that the water vapor permeability, moisture content, moisture absorption and water solubility decreased by increasing the nano-TiO2 content. Mechanical tests revealed the plasticizing effect of TiO2 nanoparticles on the kefiran-WPI-TiO2 film. Addition of TiO2 nanoparticles to kefiran-WPI films significantly decreased tensile strength and Young's modulus, while increased its elongation at break. Differential scanning calorimetry data indicated that the glass transition temperature significantly changed by adding nano-TiO2. X-ray diffraction analysis also demonstrated that crystal type in kefiran-WPI was not affected by incorporation of TiO2 nanoparticles. A uniform distribution at 1 and 3% wt. loading levels of TiO2 nanoparticles was observed using scanning electron microscopy (SEM) micrographs. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The improvement of characteristics of biodegradable films made from kefiran-whey protein by nanoparticle incorporation.

    Science.gov (United States)

    Zolfi, Mohsen; Khodaiyan, Faramarz; Mousavi, Mohammad; Hashemi, Maryam

    2014-08-30

    Biodegradable kefiran-whey protein isolate (WPI) nanocomposites were produced using montmorillonite (MMT) and nano-TiO2 as nanoparticles in the percentage of 1, 3, and 5% (w/w) by a casting and solvent-evaporation method. Physical, mechanical, and water-vapor permeability (WVP) properties were determined as a function of nanoparticle concentration. The results revealed that the effect of these nanoparticles was different according to their nature and percentage. The films incorporated with 5% (w/w) MMT showed the highest tensile strength, Young's modulus, puncture strength, and the lowest WVP compared with the control and TiO2 added films. In contrast to MMT, addition of TiO2 nanoparticles due to the plasticizing effect led to a significant change in color and transparency of nanocomposite. Scanning electron microscopy (SEM) observations demonstrated the films' properties in relation to their microstructures. The surface topography results also showed a considerable increase in roughness parameters by incorporating the nanoparticles in kefiran-WPI matrix. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Activity of encapsulated Lactobacillus bulgaricus in alginate-whey protein microspheres

    Directory of Open Access Journals (Sweden)

    Meng-Yan Chen

    2014-10-01

    Full Text Available In this work, alginate-whey protein was used as wall materials for encapsulating Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus. The characteristics of encapsulated and free L. bulgaricus showed that the free L. bulgaricus lost viability after 1 min exposure to simulated gastric fluid (SGF at pH 2.0 and 2.5. However, the viability of encapsulated L. bulgaricus did not decrease in SGF at pH 2.5 for 2 h incubation. The viable numbers of encapsulated L. bulgaricus decreased less than 1.0 log unit for 2 h incubation in SGF at pH 2.0. For bile stability, only 1.2 log units and 2.0 log units viability of the encapsulated L. bulgaricus was lost in 1 and 2% bile for 1 h exposure, respectively, compared with no survival of free L. bulgaricus under the same conditions. Encapsulated L. bulgaricus was completely released from the microspheres in simulated intestinal fluid (SIF, pH 6.8 in 3 h. The viability of the encapsulated L. bulgaricus retained more 8.0 log CFU/g after stored at 4°C for four weeks. However, for free L. bulgaricus, only around 3.0 log CFU/mL was found at the same storage conditions. Results showed that the encapsulation could improve the stability of L. bulgaricus.

  20. Mathematical modelling of flux recovery during chemical cleaning of tubular membrane fouled with whey proteins

    Directory of Open Access Journals (Sweden)

    Marković Jelena Đ.

    2009-01-01

    Full Text Available Membrane process efficiency in the dairy industry is impaired by the formation of deposits during filtration processes. This work describes cleaning procedures for ceramic tubular membrane (50 nm fouled with whey proteins. Also, mathematical modelling was performed to obtain models which allow deeper insight into the mechanisms involved during cleaning procedures. The caustic solutions (0.2%w/w, 0.4%w/w and 1.0%w/w NaOH and the mixture of two commercial detergents (0.8%w/w P3-ultrasil 69+0.5% w/w P3-ultrasil 67 and 1.2% P3-ultrasil 69+0.75 P3-ultrasil 67 were used as chemical cleaning agents. The results showed that the best flux recovery was achieved with 0.4%w/w NaOH solution. After analyzing the experimental data, five parameter and six parameter kinetic models were suggested for alkali and detergent cleaning, respectively. The changes of total and specific resistances, as well as the change of the effective pore diameter and deposit thickness during cleaning are estimated by applying these models.

  1. Whey protein isolate modified by transglutaminase aggregation and emulsion gel properties

    Science.gov (United States)

    Qi, Weiwei; Chen, Chong; Liu, Mujun; Yu, Guoping; Cai, Xinghang; Guo, Peipei; Yao, Yuxiu; Mei, Sijie

    2015-07-01

    Whey protein isolate and commercial soybean salad oil were used to produce the WPI emulsion dispersions. The properties of TG-catalyzed emulsion gelation produced from WPI emulsion dispersions were investigated by the amount of TG, temperature, pH and reaction time. Specifically, the texture properties (hardness and springiness), water-holding capacity and rheological properties (G' and G") were assessed. The result of Orthogonal tests showed WPI emulsion can form better hardness and springiness gel when the ratio of TG and WPI was 20U/g, pH 7.5, treatment temperature and time were 50°C and 3 h, respectively. The microstructure of TG emulsion gels was more compact, gel pore is smaller, distribution more uniform, the oil droplets size smaller compared with untreated emulsion gels. Compared to the control of rheological properties, G' and G" were significantly increased and G' > G", results showed that the gel was solid state, and TG speeded up the process of gelation.

  2. Development of ecofriendly bionanocomposite: Whey protein isolate/pullulan films with nano-SiO2.

    Science.gov (United States)

    Hassannia-Kolaee, Mahbobeh; Khodaiyan, Faramarz; Pourahmad, Rezvan; Shahabi-Ghahfarrokhi, Iman

    2016-05-01

    During the past decade, the limitation of petroleum based polymers, the high price of oil, and the environmental concern were attracted the attention of researchers to develop biobased polymers. The composition of different biopolymers and the reinforcement with nano filler are common methods to improve the drawbacks of biopolymers. In this study whey protein isolate/pullulan (WPI/PUL) films contain 1%, 3%, and 5% (w/w) nano-SiO2 (NS) were prepared by a casting method. Tensile strength of nanocomposite films increased after increasing NS content, but elongation at break decreased, simultaneously. Water absorption, moisture content, solubility in water improved in the wake of increasing NS content because NS increase the cohesiveness of the polymer matrix and improved the barrier and water resistance properties of the films. water vapor permeability of film specimens decreased by increasing NS content. Uniform distribution of NS into polymer matrix was confirmed by scanning electron microscopy (SEM). XRD pattern and thermal analysis revealed increasing crystallinity and increasing Tg of film specimens with increasing NS content, respectively. According to our result WPI/PUL/NS films possess potential to be used as environment friendly packaging films to improve shelf life of food and can be used as promising alternative to petroleum based packaging films. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Microparticulated whey protein-pectin complex: A texture-controllable gel for low-fat mayonnaise.

    Science.gov (United States)

    Sun, Chanchan; Liu, Rui; Liang, Bin; Wu, Tao; Sui, Wenjie; Zhang, Min

    2018-06-01

    This article reports caloric value changes, stability and rheological properties of mayonnaises affected by fat mimetic based on Microparticulated whey protein (MWP) and high-methoxy pectin. Lipid was partially substituted at different levels of 20%, 40%, 60%, 80% and 100%, and the samples were referred to as FM20, FM40, FM60, FM80 and FFM, respectively. The full fat (FF) mayonnaise was used as a control experiment. For rheological properties, the addition of fat mimetic resulted in the gradual decrease of pseudoplastic behavior, relative thixotropic area and viscosity index, while elasticity index exhibited the opposite trend. After 30 days of storage, all mayonnaises except FM20 were categorized as weak gels under oscillatory tests, while FM20 displayed high storage stability. Long-term stability studies showed that the addition of the fat mimetic up to 60% could significantly enhance the storage stability of mayonnaises by preventing the coalescence and flocculation of the droplets. Both the dynamic mechanical measurement and stability study results suggested that MWP and pectin could be a potential fat mimetic used in mayonnaise. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Modifying the properties of whey protein isolate edible film by incorporating palm oil and glycerol

    Directory of Open Access Journals (Sweden)

    Vachiraya Liaotrakoon

    2018-02-01

    Full Text Available This study aimed to improve the properties of whey protein isolate (WPI films by incorporating palm oil (6, 7, and 8% w/w and glycerol (40, 50 and 60% w/w. The lightness of the films increased as glycerol levels increased, but the redness increased with the increased amount of oil content. Increasing the amounts of palm oil and glycerol improved flexibility (P<0.05, but reduced the strength of the film (P<0.05. Films with higher levels of palm oil and lower amounts of glycerol were less permeable to water vapor and oxygen, but more thermally stable. The size of particles and air bubbles in the films reduced with increased palm oil content, regardless of glycerol level. Among all formulae, the film prepared with 8% palm oil and 40% glycerol showed the best overall results. Modifying WPI films with palm oil and glycerol offers a simple technique for producing packaging with better environmental barrier properties.

  5. Whey protein isolate edible films with essential oils incorporated to improve the microbial quality of poultry.

    Science.gov (United States)

    Fernández-Pan, Idoya; Mendoza, Mauricio; Maté, Juan I

    2013-09-01

    Whey protein isolate edible films with oregano or clove essential oils (EOs) incorporated as natural antimicrobials have been developed, with the aim of enhancing the microbial quality of poultry. The effectiveness of the films was determined against both the whole and selected microbiota developed during different periods of cold storage on the surface of skinless chicken breast. Tests were conducted by using both turbidimetric and agar disc diffusion methods. The antimicrobial edible films developed showed high effectiveness against the main spoilers developed on the surface of skinless chicken breasts cold-stored for 8 days. The films based on oregano EO showed greater effectiveness than those based on clove EO. Still, clove EO could be part of an effective antimicrobial edible film. Enterobacteriaceae was the most susceptible to the effect of the films when lower concentrations of EO were incorporated. The largest inhibition surfaces obtained were provoked by films with the highest concentration of oregano EO incorporated against lactic acid bacteria. The antimicrobial edible films developed in this study inhibited the growth of the microbial populations that developed through storage of the chicken breast and caused its spoilage. The results of this research have direct application in the food industry to enhance the control of the development of spoilers such as Pseudomonas spp. or lactic acid bacteria. © 2013 Society of Chemical Industry.

  6. Drying and denaturation characteristics of whey protein isolate in the presence of lactose and trehalose.

    Science.gov (United States)

    Haque, M Amdadul; Chen, Jie; Aldred, Peter; Adhikari, Benu

    2015-06-15

    The denaturation kinetics of whey protein isolate (WPI), in the presence and absence of lactose and trehalose, was quantified in a convective air-drying environment. Single droplets of WPI, WPI-lactose and WPI-trehalose were dried in conditioned air (2.5% RH, 0.5m/s air velocity) at two temperatures (65°C and 80°C) for 500s. The initial solid concentration of these solutions was 10% (w/v) in all the samples. Approximately 68% of WPI was denatured when it was dried in the absence of sugars. Addition of 20% trehalose prevented the irreversible denaturation of WPI at both temperatures. Thirty percent lactose was required to prevent denaturation of WPI at 65°C and the same amount of lactose protected only 70% of WPI from denaturation at 80°C. The secondary structures of WPI were found to be altered by the drying-induced stresses, even in the presence of 20% trehalose and 30% lactose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Destabilization of Oil-in-Water Emulsions Formed Using Highly Hydrolyzed Whey Proteins.

    Science.gov (United States)

    Agboola; Singh; Munro; Dalgleish; Singh

    1998-01-19

    Oil-in-water emulsions (4 wt % soy oil) were prepared with 0.5-5 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis), in a two-stage homogenizer using various first-stage pressures of 10.3, 20.6, and 34.3 MPa and a constant second-stage pressure of 3.4 MPa. Destabilization studies on the emulsions were carried out for up to 24 h, using both laser light scattering and confocal laser microscopy. It was found that emulsions formed with oiling off and coalescence at all homogenization pressures. Emulsions formed with 2, 3, and 4% WPH showed coalescence and creaming only, while slight flocculation but no creaming occurred in emulsions formed with 5% WPH. Furthermore, the apparent rate of coalescence increased with homogenization pressure but decreased with WPH concentration. In contrast, the surface concentration of WPH increased with the WPH concentration in the emulsions but decreased with homogenization pressure. Analysis of WPH by high-performance liquid chromatography showed an increase in the concentration of high molecular weight peptides at the droplet surface compared to the WPH solution. This was considered very important for the stability of these oil-in-water emulsions.

  8. Impact of whey protein coating incorporated with Bifidobacterium and Lactobacillus on sliced ham properties.

    Science.gov (United States)

    Odila Pereira, Joana; Soares, José; J P Monteiro, Maria; Gomes, Ana; Pintado, Manuela

    2018-05-01

    Edible coatings/films with functional ingredients may be a solution to consumers' demands for high-quality food products and an extended shelf-life. The aim of this work was to evaluate the antimicrobial efficiency of edible coatings incorporated with probiotics on sliced ham preservation. Coatings was developed based on whey protein isolates with incorporation of Bifidobacterium animalis Bb-12® or Lactobacillus casei-01. The physicochemical analyses showed that coating decreased water and weight loss on the ham. Furthermore, color analysis showed that coated sliced ham, exhibited no color change, comparatively to uncoated slices. The edible coatings incorporating the probiotic strains inhibited detectable growth of Staphylococcus spp., Pseudomonas spp., Enterobacteriaceae and yeasts/molds, at least, for 45days of storage at 4°C. The sensory evaluation demonstrated that there was a preference for the sliced coated ham. Probiotic bacteria viable cell numbers were maintained at ca. 10 8 CFU/g throughout storage time, enabling the slice of ham to act as a suitable carrier for the beneficial bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effect of whey protein supplementation on long and short term appetite: A meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Mollahosseini, Mehdi; Shab-Bidar, Sakineh; Rahimi, Mohammad Hossein; Djafarian, Kurosh

    2017-08-01

    Specific components of dairy, such as whey proteins may have beneficial effects on body composition by suppressing appetite, although the findings of existing studies have been inconsistent. Therefore, a meta-analysis of randomized controlled trials was performed to investigate effect of whey protein supplementation on long and short term appetite. A systematic search was conducted to identify eligible publications. Means and SDs for hunger, fullness, satiety, desire to eat and prospective consumption of food, before and after intervention, were extracted and then composite appetite score (CAS) calculated. To pool data, either a fixed-effects model or a random-effects model and for assessing heterogeneity, Cochran's Q and I 2 tests were used. Eight publications met inclusion criteria that 5 records were on short term and 3 records on long term appetite. The meta-analysis showed a significant reduction in long term appetite by 4.13 mm in combined appetite score (CAS) (95% Confidence interval (CI): -6.57, -1.96; p = 0.001). No significant reduction in short term appetite was also seen (Mean difference (MD) = -0.39 95% CI = -2.07, 1.30; p = 0.653). Subgroup analyses by time showed that compared with carbohydrate, the reduction in appetite following consumption of whey consumption was not significant (MD = -0.39, 95% CI = -2.07, 1.3, p = 0.65, I 2  = 0.0%.)A significant reduction in prospective food consumption was seen (MD = -2.17, 95% CI = -3.86, -0.48). The results of our meta-analysis showed that whey protein may reduce the long and short term appetite, but our finding did not show any significant difference in appetite reduction between whey protein and carbohydrate in short duration. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  10. Transference of lutein during cheese making, color stability, and sensory acceptance of Prato cheese

    OpenAIRE

    Kubo, MTK; Maus, D; Xavier, AAO; Mercadante, AZ; Viotto, WH

    2013-01-01

    The consumption of lutein is associated with the prevention and reduction of age-related macular degeneration. Its incorporation into Prato cheese as a yellowish food coloring is a valid alternative to increase the daily intake of this compound. However, part of the lutein added may be lost in the whey during the cheese making, or it can be degraded by light during storage, resulting in color changes reducing the sensory acceptance of the cheese. The objectives of this study were to determine...

  11. Effects of an amylopectin and chromium complex on the anabolic response to a suboptimal dose of whey protein.

    Science.gov (United States)

    Ziegenfuss, T N; Lopez, H L; Kedia, A; Habowski, S M; Sandrock, J E; Raub, B; Kerksick, C M; Ferrando, A A

    2017-01-01

    Previous research has demonstrated the permissive effect of insulin on muscle protein kinetics, and the enhanced insulin sensitizing effect of chromium. In the presence of adequate whole protein and/or essential amino acids (EAA), insulin has a stimulatory effect on muscle protein synthesis, whereas in conditions of lower blood EAA concentrations, insulin has an inhibitory effect on protein breakdown. In this study, we determined the effect of an amylopectin/chromium (ACr) complex on changes in plasma concentrations of EAA, insulin, glucose, and the fractional rate of muscle protein synthesis (FSR). Using a double-blind, cross-over design, ten subjects (six men, four women) consumed 6 g whey protein + 2 g of the amylopectin-chromium complex (WPACr) or 6 g whey protein (WP) after an overnight fast. FSR was measured using a primed, continuous infusion of ring-d 5 -phenylalanine with serial muscle biopsies performed at 2, 4, and 8 h. Plasma EAA and insulin were assayed by ion-exchange chromatography and ELISA, respectively. After the biopsy at 4 h, subjects ingested their respective supplement, completed eight sets of bilateral isotonic leg extensions at 80% of their estimated 1-RM, and a final biopsy was obtained 4 h later. Both trials increased EAA similarly, with peak levels noted 30 min after ingestion. Insulin tended ( p  = 0.09) to be higher in the WPACr trial. Paired samples t-tests using baseline and 4-h post-ingestion FSR data separately for each group revealed significant increases in the WPACr group (+0.0197%/h, p  = 0.0004) and no difference in the WP group (+0.01215%/hr, p  = 0.23). Independent t-tests confirmed significant ( p  = 0.045) differences in post-treatment FSR between trials. These data indicate that the addition of ACr to a 6 g dose of whey protein (WPACr) increases the FSR response beyond what is seen with a suboptimal dose of whey protein alone.

  12. Ethanol, biomass and enzyme production for whey waste abatement

    Energy Technology Data Exchange (ETDEWEB)

    Maiorella, B L; Castillo, F J

    1984-08-01

    Methods of ethanol, biomass, and lactase production are evaluated for the treatment of whey waste. These processes can all reduce the whey BOD load of 35,000 ppm by at least 90%. Plant designs are evaluated at the scale of 25,000 l whey per day, corresponding to the output of a typical independent cheese factory. Ethanol production is the most practical of the alternatives evaluated and the waste treatment would add 7.3 US cents per kilogramme to the cost of cheese manufacture. 57 references.

  13. Whey protein isolate gel for separation: A formation, characterization, and application study

    Science.gov (United States)

    Teo, Jiunn Yeong

    Novel microporous membranes made of whey protein isolate (WPI) were developed. Aggregates of WPI comprised the bulk of the membrane, the size and packing density of which were varied by changing CaCl2 concentration (0.05--0.3M) and WPI concentration (30--40wt%), respectively. Aggregate sizes of the membranes made with 0.3M, 0.1M, 0.05M CaCl2 were roughly 1.5mum, 1mum, and 0.8mum, respectively. Skin layer of thickness about 0.5mum was found on either side of the membrane, but the thickness could reach 5mum at 0.3M CaCl2. Additionally, the porosity of the skin layer was shown to be modifiable with the addition of surfactant. Membranes were stable in hexane with flux values on the order of 1--1000gal/ft 2·d depending on the morphology of the membrane. The molecular weight cutoffs (MWCOs) of the WPI membranes with skins were evaluated using two different methods: (i) dextran marker method and (ii) protein/vitamin marker method. Membranes were found to have MWCOs of 1,000 or greater with variations when the concentration of salt used to control aggregate size, or surfactant used to modify skin properties were selected. The microporous WPI gel was also used as a cation exchanger and a hydrophobic adsorbent. The WPI cation exchanger has a maximum capacity of 68mg cupric chloride per gram dry WPI gel at neutral pH and can be regenerated effectively by reducing the pH of the solution. The WPI gel has also been found to be an excellent adsorbent for total phenolic compounds from grape extract with a partition coefficient higher than 1000 in aqueous system. The mechanism for total phenolic compounds adsorption is believed to be physical sorption, particularly sorption/condensation of total phenolic compounds in the pores and on all surfaces of WPI gel. The gel has a low extractables of 1ng/ml.g gel, and has an isoelectric point of 5.5. Although WPI gel was made into a monolith for continuous bed chromatography, channeling problems have made it very hard to evaluate the

  14. Whey protein consumption after resistance exercise reduces energy intake at a post-exercise meal.

    Science.gov (United States)

    Monteyne, Alistair; Martin, Alex; Jackson, Liam; Corrigan, Nick; Stringer, Ellen; Newey, Jack; Rumbold, Penny L S; Stevenson, Emma J; James, Lewis J

    2018-03-01

    Protein consumption after resistance exercise potentiates muscle protein synthesis, but its effects on subsequent appetite in this context are unknown. This study examined appetite and energy intake following consumption of protein- and carbohydrate-containing drinks after resistance exercise. After familiarisation, 15 resistance training males (age 21 ± 1 years, body mass 78.0 ± 11.9 kg, stature 1.78 ± 0.07 m) completed two randomised, double-blind trials, consisting of lower-body resistance exercise, followed by consumption of a whey protein (PRO 23.9 ± 3.6 g protein) or dextrose (CHO 26.5 ± 3.8 g carbohydrate) drink in the 5 min post-exercise. An ad libitum meal was served 60 min later, with subjective appetite measured throughout. Drinks were flavoured and matched for energy content and volume. The PRO drink provided 0.3 g/kg body mass protein. Ad libitum energy intake (PRO 3742 ± 994 kJ; CHO 4172 ± 1132 kJ; P = 0.007) and mean eating rate (PRO 339 ± 102 kJ/min; CHO 405 ± 154 kJ/min; P = 0.009) were lower during PRO. The change in eating rate was associated with the change in energy intake (R = 0.661, P = 0.007). No interaction effects were observed for subjective measures of appetite. The PRO drink was perceived as creamier and thicker, and less pleasant, sweet and refreshing (P consumption after resistance exercise reduces subsequent energy intake, and this might be partially mediated by a reduced eating rate. Whilst this reduced energy intake is unlikely to impair hypertrophy, it may be of value in supporting an energy deficit for weight loss.

  15. Albumen foam stability and s-ovalbumin contents in eggs coated with whey protein concentrate

    Directory of Open Access Journals (Sweden)

    ACC Alleoni

    2004-06-01

    Full Text Available Food products such as breads, cakes, crackers, meringues, ice creams and several bakery items depend on air incorporation to maintain their texture and structure during or after processing. Proteins are utilized in the food industry since they improve texture attributes through their ability to encapsulate and retain air. The objectives of this work were to quantify s-ovalbumin contents in albumen and to determine alterations in egg white foam stability in fresh eggs, and in eggs coated and non-coated with a whey protein-based concentrate film (WPC, stored at 25°C for 28 days. The volume of drained liquid was higher in non-coated eggs than in coated eggs stored at 25°C at all storage periods. The difference on the third day of storage was in the order of 59% between coated and non-coated eggs, while on the twenty-eighth day it was 202%. During the storage period, an increase in pH and drainage volume was observed for non-coated eggs. After three days, the non-coated eggs showed a s-ovalbumin content 33% higher than coated eggs; this increase jumped to 205% at 28 days of storage. There was a positive correlation between s-ovalbumin content and the volume of drained liquid for coated and non-coated eggs; in other words, when the s-ovalbumin content increased, there was an increase in the volume of drained liquid and a decrease in foam stability. WPC coating maintain egg quality, since it is an effective barrier against the loss of CO2, avoiding changes in the pH of egg white.

  16. KARAKTERISTIK FISIK, KIMIA, MIKROBIOLOGI WHEY KEFIR DAN AKTIVITASNYA TERHADAP PENGHAMBATAN ANGIOTENSIN CONVERTING ENZYME (ACE [Physical, Chemical and Microbiological Characteristics of Whey Kefir and Its Angiotensin Converting Enzyme (ACE Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Andi Febrisiantosa*

    2013-12-01

    Full Text Available This study was conducted to evaluate the characteristics of whey-based kefir products and their activity to inhibit the angiotensin converting enzyme (ACE. Kefir was produced by using many types of whey, namely SK: skim milk based kefir (control; WK: gouda cheese whey based kefir; and WKB: commercial whey powder based kefir. The experimental design was a completely randomized design. Each treatment was conducted in triplicates. Kefirs were evaluated for physical and chemical properties (pH, total titratable acidity, viscosity, protein, fat, lactose, and alcohol, microbiological (lactic acid bacteria and yeast population, peptide concentration, ACE inhibition, IC50 and Inhibition Efficiency Ratio (IER. The results showed that the types of whey used for kefir productions significantly affected the physical and chemical characteristics of the products (p0.05. The peptide concentration and ACE inhibitory activity of WK, 1.54±0.02 mg/mL and 73.07±0.91%, was significantly higher (p0.05 from the control (47.19±0.09% per mg/mL but was significantly higher (p<0.05 than that of WKB (45.75±0.18% per mg/mL. This research indicated that whey kefir is a potential source of bioactive peptide for antihypertention agent.

  17. Effect of N-Ethylmaleimide as a Blocker of Disulfide Crosslinks Formation on the Alkali-Cold Gelation of Whey Proteins.

    Directory of Open Access Journals (Sweden)

    Zhao Lei

    Full Text Available N-ethylmaleimide (NEM was used to verify that no new disulfide crosslinks were formed during the fascinating rheology of the alkali cold-gelation of whey proteins, which show Sol-Gel-Sol transitions with time at pH > 11.5. These dynamic transitions involve the formation and subsequent destruction of non-covalent interactions between soluble whey aggregates. Therefore, incubation of aggregates with NEM was expected not to affect much the rheology. Experiments show that very little additions of NEM, such as 0.5 mol per mol of protein, delayed and significantly strengthened the metastable gels formed. Interactions between whey protein aggregates were surprisingly enhanced during incubation with NEM as inferred from oscillatory rheometry at different protein concentrations, dynamic swelling, Trp fluorescence and SDS-PAGE measurements.

  18. Effect of N-Ethylmaleimide as a Blocker of Disulfide Crosslinks Formation on the Alkali-Cold Gelation of Whey Proteins

    Science.gov (United States)

    Lei, Zhao; Chen, Xiao Dong

    2016-01-01

    N-ethylmaleimide (NEM) was used to verify that no new disulfide crosslinks were formed during the fascinating rheology of the alkali cold-gelation of whey proteins, which show Sol-Gel-Sol transitions with time at pH > 11.5. These dynamic transitions involve the formation and subsequent destruction of non-covalent interactions between soluble whey aggregates. Therefore, incubation of aggregates with NEM was expected not to affect much the rheology. Experiments show that very little additions of NEM, such as 0.5 mol per mol of protein, delayed and significantly strengthened the metastable gels formed. Interactions between whey protein aggregates were surprisingly enhanced during incubation with NEM as inferred from oscillatory rheometry at different protein concentrations, dynamic swelling, Trp fluorescence and SDS-PAGE measurements. PMID:27732644

  19. Use of Whey and Whey Preparations in the Food Industry – A Review

    Directory of Open Access Journals (Sweden)

    Królczyk Jolanta B.

    2016-07-01

    Full Text Available The interest in whey and whey preparations has considerably increased in recent years. Whey and whey preparations are the so-called “forgotten treasure” and, because of their unique properties, they have been “rediscovered” and have been increasingly frequently and successfully used by various production plants in the food industry. They have also been eagerly purchased by consumers who are aware of the role of whey preparations in adequate human nutrition. For many years, there has been a tendency in the food processing industry to use substitutes of ingredients in recipes of many products. This situation can be observed in the case of foods with reduced fat and sugar, or products for lacto-ovo-vegetarians. Whey - and more specifically, its preparations - can also be used as a substitute. According to many literature sources, its use can have a positive impact not only on the consumers’ health but also on the finances of many companies, by reducing the costs of raw materials, and thus production costs. This review paper presents selected uses of whey and whey preparations in the food industry. The uses of whey discussed include: meat and meat products, reduced-fat products, yoghurts and ice creams, cheeses, bakery products, confectionery and pastry products, infant formulas, and whey drinks.

  20. Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk.

    Science.gov (United States)

    Sharma, Pankaj; Oey, Indrawati; Everett, David W

    2016-09-15

    Thermodynamics of milk components (milk fat, xanthine oxidase, caseins and whey proteins) in pulsed electric field (PEF)-treated milk were compared with thermally treated milk (63 °C for 30 min and 73 °C for 15s). PEF treatments were applied at 20 or 26 kV cm(-1) for 34 μs with or without pre-heating of milk (55 °C for 24s), using bipolar square wave pulses in a continuous mode of operation. PEF treatments did not affect the final temperatures of fat melting (Tmelting) or xanthine oxidase denaturation (Tdenaturation), whereas thermal treatments increased both the Tmelting of milk fat and the Tdenaturation for xanthine oxidase by 2-3 °C. Xanthine oxidase denaturation was ∼13% less after PEF treatments compared with the thermal treatments. The enthalpy change (ΔH of denaturation) of whey proteins decreased in the treated-milk, and denaturation increased with the treatment intensity. New endothermic peaks in the calorimetric thermograms of treated milk revealed the formation of complexes due to interactions between MFGM (milk fat globule membrane) proteins and skim milk proteins. Evidence for the adsorption of complexes onto the MFGM surface was obtained from the increase in surface hydrophobicity of proteins, revealing the presence of unfolded hydrophobic regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Physical and sensory characteristics of pellets elaborated with different levels of corn grits and whey protein concentrate

    Directory of Open Access Journals (Sweden)

    Anderson Felicori Fernandes

    2016-04-01

    Full Text Available ABSTRACT Whey has proteins of high biological value, which has been used as an ingredient in the elaboration of yogurt, milk beverages and as protein concentrates. Food extrusion stands out as one of the most efficient cooking techniques, allowing a number of product types, from soluble flour to convenience products, such as snacks, which have high acceptability by the consumers. Products processed by extrusion, such as those expanded by frying (pellets, have high carbohydrate content, and its enrichment with protein can favor its nutritional aspect. This study aimed to use the whey protein concentrate (WPC in combination with corn grits in the preparation of pellets. Absolute density, density of expanded pellets, color, crispness index, and pellet sensory acceptance were determined. For the absolute density, contents from 5% to 17% produced denser non-expanded pellets. The higher the WPC content and the temperature of the extruder, the higher the density of the expanded pellets. The crispness index was not altered by the protein content and by the extruder temperature. In the sensory analysis, the preferred samples were the ones with lower WPC levels (5%. We concluded that higher WPC values in the pellets formulation increased their density, but did not alter color and texture, as well as small WPC levels did not affect the acceptance of snacks.

  2. Whey Protein Supplementation Enhances Body Fat and Weight Loss in Women Long After Bariatric Surgery: a Randomized Controlled Trial.

    Science.gov (United States)

    Lopes Gomes, Daniela; Moehlecke, Milene; Lopes da Silva, Fernanda Bassan; Dutra, Eliane Said; D'Agord Schaan, Beatriz; Baiocchi de Carvalho, Kenia Mara

    2017-02-01

    The ideal nutritional approach for weight regain after bariatric surgery remains unclear. The objective of this study is to assess the effect of whey protein supplementation on weight loss and body composition of women who regained weight 24 or more months after bariatric surgery. This is a 16-week open-label, parallel-group, randomized controlled trial of women who regained at least 5 % of their lowest postoperative weight after a Roux-en-Y gastric bypass (RYGB). A total of 34 participants were treated with hypocaloric diet and randomized (1:1) to receive or not supplementation with whey protein, 0.5 g/kg of the ideal body weight. The primary outcomes were changes in body weight, fat free mass (FFM), and fat mass (FM), evaluated by tetrapolar bioelectrical impedance analysis (BIA). Secondary outcomes included resting energy expenditure, blood glucose, lipids, adiponectin, interleukin 6 (IL-6), and cholecystokinin levels. Statistical analyses included generalized estimating equations adjusted for age and physical activity. Fifteen patients in each group were evaluated: mean age was 45 ± 11 years, body mass index (BMI) was 35.7 ± 5.2 kg/m 2 , and time since surgery was 69 ± 23 months. Protein intake during follow-up increased by approximately 75 % in the intervention group (p = 0.01). The intervention group presented more body weight loss (1.86 kg, p = 0.017), accounted for FM loss (2.78, p = 0.021) and no change in FFM, as compared to controls (gain of 0.42 kg of body weight and 0.6 kg of FM). No differences in secondary outcomes were observed between groups. Whey protein supplementation promoted body weight and FM loss in women with long-term weight regain following RYGB.

  3. Effect of heating strategies on whey protein denaturation--Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Akkerman, M; Rauh, V M; Christensen, M; Johansen, L B; Hammershøj, M; Larsen, L B

    2016-01-01

    Previous standards in the area of effect of heat treatment processes on milk protein denaturation were based primarily on laboratory-scale analysis and determination of denaturation degrees by, for example, electrophoresis. In this study, whey protein denaturation was revisited by pilot-scale heating strategies and liquid chromatography quadrupole time-of-flight mass spectrometer (LC/MC Q-TOF) analysis. Skim milk was heat treated by the use of 3 heating strategies, namely plate heat exchanger (PHE), tubular heat exchanger (THE), and direct steam injection (DSI), under various heating temperatures (T) and holding times. The effect of heating strategy on the degree of denaturation of β-lactoglobulin and α-lactalbumin was determined using LC/MC Q-TOF of pH 4.5-soluble whey proteins. Furthermore, effect of heating strategy on the rennet-induced coagulation properties was studied by oscillatory rheometry. In addition, rennet-induced coagulation of heat-treated micellar casein concentrate subjected to PHE was studied. For skim milk, the whey protein denaturation increased significantly as T and holding time increased, regardless of heating method. High denaturation degrees were obtained for T >100°C using PHE and THE, whereas DSI resulted in significantly lower denaturation degrees, compared with PHE and THE. Rennet coagulation properties were impaired by increased T and holding time regardless of heating method, although DSI resulted in less impairment compared with PHE and THE. No significant difference was found between THE and PHE for effect on rennet coagulation time, whereas the curd firming rate was significantly larger for THE compared with PHE. Micellar casein concentrate possessed improved rennet coagulation properties compared with skim milk receiving equal heat treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Kinetics of immobilisation and release of tryptophan, riboflavin and peptides from whey protein microbeads.

    Science.gov (United States)

    O'Neill, Graham J; Egan, Thelma; Jacquier, Jean Christophe; O'Sullivan, Michael; Dolores O'Riordan, E

    2015-08-01

    This study investigated the kinetics of immobilisation and release of riboflavin, amino acids and peptides from whey microbeads. Blank whey microbeads were placed in solutions of the compounds. As the volume of microbeads added to the solution was increased, the uptake of the compounds increased, to a maximum of 95% for the pentapeptide and 56%, 57% and 45% for the dipeptide, riboflavin and tryptophan respectively, however, the rate of uptake remained constant. The rate of uptake increased with increasing molecule hydrophobicity. The opposite was observed in the release studies, the more hydrophobic compounds had lower release rate constants (kr). When whey microbeads are used as sorbents, they show excellent potential to immobilise small hydrophobic molecules and minimise subsequent diffusion, even in high moisture environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle