Mapping Landslides in Lunar Impact Craters Using Chebyshev Polynomials and Dem's
Yordanov, V.; Scaioni, M.; Brunetti, M. T.; Melis, M. T.; Zinzi, A.; Giommi, P.
2016-06-01
Geological slope failure processes have been observed on the Moon surface for decades, nevertheless a detailed and exhaustive lunar landslide inventory has not been produced yet. For a preliminary survey, WAC images and DEM maps from LROC at 100 m/pixels have been exploited in combination with the criteria applied by Brunetti et al. (2015) to detect the landslides. These criteria are based on the visual analysis of optical images to recognize mass wasting features. In the literature, Chebyshev polynomials have been applied to interpolate crater cross-sections in order to obtain a parametric characterization useful for classification into different morphological shapes. Here a new implementation of Chebyshev polynomial approximation is proposed, taking into account some statistical testing of the results obtained during Least-squares estimation. The presence of landslides in lunar craters is then investigated by analyzing the absolute values off odd coefficients of estimated Chebyshev polynomials. A case study on the Cassini A crater has demonstrated the key-points of the proposed methodology and outlined the required future development to carry out.
Cosmographic analysis with Chebyshev polynomials
Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando
2018-05-01
The limits of standard cosmography are here revised addressing the problem of error propagation during statistical analyses. To do so, we propose the use of Chebyshev polynomials to parametrize cosmic distances. In particular, we demonstrate that building up rational Chebyshev polynomials significantly reduces error propagations with respect to standard Taylor series. This technique provides unbiased estimations of the cosmographic parameters and performs significatively better than previous numerical approximations. To figure this out, we compare rational Chebyshev polynomials with Padé series. In addition, we theoretically evaluate the convergence radius of (1,1) Chebyshev rational polynomial and we compare it with the convergence radii of Taylor and Padé approximations. We thus focus on regions in which convergence of Chebyshev rational functions is better than standard approaches. With this recipe, as high-redshift data are employed, rational Chebyshev polynomials remain highly stable and enable one to derive highly accurate analytical approximations of Hubble's rate in terms of the cosmographic series. Finally, we check our theoretical predictions by setting bounds on cosmographic parameters through Monte Carlo integration techniques, based on the Metropolis-Hastings algorithm. We apply our technique to high-redshift cosmic data, using the Joint Light-curve Analysis supernovae sample and the most recent versions of Hubble parameter and baryon acoustic oscillation measurements. We find that cosmography with Taylor series fails to be predictive with the aforementioned data sets, while turns out to be much more stable using the Chebyshev approach.
Superiority of legendre polynomials to Chebyshev polynomial in ...
African Journals Online (AJOL)
In this paper, we proved the superiority of Legendre polynomial to Chebyshev polynomial in solving first order ordinary differential equation with rational coefficient. We generated shifted polynomial of Chebyshev, Legendre and Canonical polynomials which deal with solving differential equation by first choosing Chebyshev ...
On the Connection Coefficients of the Chebyshev-Boubaker Polynomials
Directory of Open Access Journals (Sweden)
Paul Barry
2013-01-01
Full Text Available The Chebyshev-Boubaker polynomials are the orthogonal polynomials whose coefficient arrays are defined by ordinary Riordan arrays. Examples include the Chebyshev polynomials of the second kind and the Boubaker polynomials. We study the connection coefficients of this class of orthogonal polynomials, indicating how Riordan array techniques can lead to closed-form expressions for these connection coefficients as well as recurrence relations that define them.
Explicitly solvable complex Chebyshev approximation problems related to sine polynomials
Freund, Roland
1989-01-01
Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.
Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.
Temel, Burcin; Mills, Greg; Metiu, Horia
2008-03-27
We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the wave function Psi by minimizing the least-squares error in the function (H Psi - E Psi), where E is the desired scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for other methods, by matching the wave function in the interaction region to the correct asymptotic states at the specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy. This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed, and the Chebyshev basis set is a good alternative in such situations.
International Nuclear Information System (INIS)
Benasser Algehawi, Mohammed; Samsudin, Azman
2010-01-01
We present a method to extract key pairs needed for the Identity Based Encryption (IBE) scheme from extended Chebyshev polynomial over finite fields Z p . Our proposed scheme relies on the hard problem and the bilinear property of the extended Chebyshev polynomial over Z p . The proposed system is applicable, secure, and reliable.
Solution of linear transport equation using Chebyshev polynomials and Laplace transform
International Nuclear Information System (INIS)
Cardona, A.V.; Vilhena, M.T.M.B. de
1994-01-01
The Chebyshev polynomials and the Laplace transform are combined to solve, analytically, the linear transport equation in planar geometry, considering isotropic scattering and the one-group model. Numerical simulation is presented. (author)
Some Identities Involving the Derivative of the First Kind Chebyshev Polynomials
Directory of Open Access Journals (Sweden)
Tingting Wang
2015-01-01
Full Text Available We use the combinatorial method and algebraic manipulations to obtain several interesting identities involving the power sums of the derivative of the first kind Chebyshev polynomials. This solved an open problem proposed by Li (2015.
Quality Parameters Defined by Chebyshev Polynomials in Cold Rolling Process Chain
International Nuclear Information System (INIS)
Judin, Mika; Nylander, Jari; Larkiola, Jari; Verho, Martti
2011-01-01
The thickness profile of hot strip is of importance to profile, flatness and shape of the final cold rolled product. In this work, strip thickness and flatness profiles are decomposed into independent components by solving Chebyshev polynomials coefficients using matrix calculation. Four terms are used to characterize most common shapes of thickness and flatness profile. The calculated Chebyshev coefficients from different line measurements are combined together and analysed using neural network tools. The most common types of shapes are classified.
Deprit, A.
1975-01-01
A theory for generating segmented ephemerides is discussed as a means for fast generation and simple retrieval of nominal orbit data. Over a succession of finite intervals of time, the orbit is represented by a best approximation expressed by Chebyshev polynomials. Storage of coefficients tables for Chebyshev polynomials is seen as a method to reduce data and decrease transmission costs. A general algorithm was constructed and computer programs were designed. The possibility of storing an ephemeris for a few days in the on-board computer, or in microprocessors attached to the data collectors is suggested.
NUMERICAL SOLUTION OF SINGULAR INVERSE NODAL PROBLEM BY USING CHEBYSHEV POLYNOMIALS
NEAMATY, ABDOLALI; YILMAZ, EMRAH; AKBARPOOR, SHAHRBANOO; DABBAGHIAN, ABDOLHADI
2017-01-01
In this study, we consider Sturm-Liouville problem in two cases: the first case having no singularity and the second case having a singularity at zero. Then, we calculate the eigenvalues and the nodal points and present the uniqueness theorem for the solution of the inverse problem by using a dense subset of the nodal points in two given cases. Also, we use Chebyshev polynomials of the first kind for calculating the approximate solution of the inverse nodal problem in these cases. Finally, we...
Applying Semigroup Property of Enhanced Chebyshev Polynomials to Anonymous Authentication Protocol
Directory of Open Access Journals (Sweden)
Hong Lai
2012-01-01
Full Text Available We apply semigroup property of enhanced Chebyshev polynomials to present an anonymous authentication protocol. This paper aims at improving security and reducing computational and storage overhead. The proposed scheme not only has much lower computational complexity and cost in the initialization phase but also allows the users to choose their passwords freely. Moreover, it can provide revocation of lost or stolen smart card, which can resist man-in-the-middle attack and off-line dictionary attack together with various known attacks.
Energy Technology Data Exchange (ETDEWEB)
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
Kaporin, I. E.
2012-02-01
In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.
Directory of Open Access Journals (Sweden)
Yu-Bo Jiao
2015-01-01
Full Text Available The paper presents an effective approach for damage identification of bridge based on Chebyshev polynomial fitting and fuzzy logic systems without considering baseline model data. The modal curvature of damaged bridge can be obtained through central difference approximation based on displacement modal shape. Depending on the modal curvature of damaged structure, Chebyshev polynomial fitting is applied to acquire the curvature of undamaged one without considering baseline parameters. Therefore, modal curvature difference can be derived and used for damage localizing. Subsequently, the normalized modal curvature difference is treated as input variable of fuzzy logic systems for damage condition assessment. Numerical simulation on a simply supported bridge was carried out to demonstrate the feasibility of the proposed method.
A New Six-Parameter Model Based on Chebyshev Polynomials for Solar Cells
Directory of Open Access Journals (Sweden)
Shu-xian Lun
2015-01-01
Full Text Available This paper presents a new current-voltage (I-V model for solar cells. It has been proved that series resistance of a solar cell is related to temperature. However, the existing five-parameter model ignores the temperature dependence of series resistance and then only accurately predicts the performance of monocrystalline silicon solar cells. Therefore, this paper uses Chebyshev polynomials to describe the relationship between series resistance and temperature. This makes a new parameter called temperature coefficient for series resistance introduced into the single-diode model. Then, a new six-parameter model for solar cells is established in this paper. This new model can improve the accuracy of the traditional single-diode model and reflect the temperature dependence of series resistance. To validate the accuracy of the six-parameter model in this paper, five kinds of silicon solar cells with different technology types, that is, monocrystalline silicon, polycrystalline silicon, thin film silicon, and tripe-junction amorphous silicon, are tested at different irradiance and temperature conditions. Experiment results show that the six-parameter model proposed in this paper is an I-V model with moderate computational complexity and high precision.
Directory of Open Access Journals (Sweden)
A.K. Parida
2016-09-01
Full Text Available In this paper Chebyshev polynomial functions based locally recurrent neuro-fuzzy information system is presented for the prediction and analysis of financial and electrical energy market data. The normally used TSK-type feedforward fuzzy neural network is unable to take the full advantage of the use of the linear fuzzy rule base in accurate input–output mapping and hence the consequent part of the rule base is made nonlinear using polynomial or arithmetic basis functions. Further the Chebyshev polynomial functions provide an expanded nonlinear transformation to the input space thereby increasing its dimension for capturing the nonlinearities and chaotic variations in financial or energy market data streams. Also the locally recurrent neuro-fuzzy information system (LRNFIS includes feedback loops both at the firing strength layer and the output layer to allow signal flow both in forward and backward directions, thereby making the LRNFIS mimic a dynamic system that provides fast convergence and accuracy in predicting time series fluctuations. Instead of using forward and backward least mean square (FBLMS learning algorithm, an improved Firefly-Harmony search (IFFHS learning algorithm is used to estimate the parameters of the consequent part and feedback loop parameters for better stability and convergence. Several real world financial and energy market time series databases are used for performance validation of the proposed LRNFIS model.
Directory of Open Access Journals (Sweden)
Jianping Liu
2016-01-01
Full Text Available An operational matrix technique is proposed to solve variable order fractional differential-integral equation based on the second kind of Chebyshev polynomials in this paper. The differential operational matrix and integral operational matrix are derived based on the second kind of Chebyshev polynomials. Using two types of operational matrixes, the original equation is transformed into the arithmetic product of several dependent matrixes, which can be viewed as an algebraic system after adopting the collocation points. Further, numerical solution of original equation is obtained by solving the algebraic system. Finally, several examples show that the numerical algorithm is computationally efficient.
Shifted-modified Chebyshev filters
ŞENGÜL, Metin
2013-01-01
This paper introduces a new type of filter approximation method that utilizes shifted-modified Chebyshev filters. Construction of the new filters involves the use of shifted-modified Chebyshev polynomials that are formed using the roots of conventional Chebyshev polynomials. The study also includes 2 tables containing the shifted-modified Chebyshev polynomials and the normalized element values for the low-pass prototype filters up to degree 6. The transducer power gain, group dela...
International Nuclear Information System (INIS)
Yasa, F.; Anli, F.; Guengoer, S.
2007-01-01
We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general
International Nuclear Information System (INIS)
Haggag, M.H.; Al-Gorashi, A.K.; Machali, H.M.
2013-01-01
In this study, the integral form of the radiative transfer equation in planar slab with isotropic scattering has been studied by using the Chebyshev polynomial approximation which is called TN method. The scalar flux is expanded in terms of Chebyshev polynomials in the space variable. The expansion coefficients are solutions to a system of linear algebraic equations. Analytical expressions are given for the scalar and angular flux everywhere in the slab. Numerical calculations are done for the transmissivity and reflectivity of slabs with various values of the single scattering albedo. Calculations are also carried out for the transmitted and reflected angular intensity at the slab boundaries. Our numerical results are in a very good agreement with other results, as shown in the tables
Directory of Open Access Journals (Sweden)
Mohsen Razzaghi
2000-01-01
Full Text Available A direct method for finding the solution of variational problems using a hybrid function is discussed. The hybrid functions which consist of block-pulse functions plus Chebyshev polynomials are introduced. An operational matrix of integration and the integration of the cross product of two hybrid function vectors are presented and are utilized to reduce a variational problem to the solution of an algebraic equation. Illustrative examples are included to demonstrate the validity and applicability of the technique.
Pseudo-random bit generator based on Chebyshev map
Stoyanov, B. P.
2013-10-01
In this paper, we study a pseudo-random bit generator based on two Chebyshev polynomial maps. The novel derivative algorithm shows perfect statistical properties established by number of statistical tests.
Modified Chebyshev Collocation Method for Solving Differential Equations
Directory of Open Access Journals (Sweden)
M Ziaul Arif
2015-05-01
Full Text Available This paper presents derivation of alternative numerical scheme for solving differential equations, which is modified Chebyshev (Vieta-Lucas Polynomial collocation differentiation matrices. The Scheme of modified Chebyshev (Vieta-Lucas Polynomial collocation method is applied to both Ordinary Differential Equations (ODEs and Partial Differential Equations (PDEs cases. Finally, the performance of the proposed method is compared with finite difference method and the exact solution of the example. It is shown that modified Chebyshev collocation method more effective and accurate than FDM for some example given.
A Fast, Simple, and Stable Chebyshev--Legendre Transform Using an Asymptotic Formula
Hale, Nicholas; Townsend, Alex
2014-01-01
-known asymptotic formula for Legendre polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated by using the discrete cosine transform. Numerical results are provided to demonstrate the efficiency
The finite Fourier transform of classical polynomials
Dixit, Atul; Jiu, Lin; Moll, Victor H.; Vignat, Christophe
2014-01-01
The finite Fourier transform of a family of orthogonal polynomials $A_{n}(x)$, is the usual transform of the polynomial extended by $0$ outside their natural domain. Explicit expressions are given for the Legendre, Jacobi, Gegenbauer and Chebyshev families.
The algebra of two dimensional generalized Chebyshev-Koornwinder oscillator
International Nuclear Information System (INIS)
Borzov, V. V.; Damaskinsky, E. V.
2014-01-01
In the previous works of Borzov and Damaskinsky [“Chebyshev-Koornwinder oscillator,” Theor. Math. Phys. 175(3), 765–772 (2013)] and [“Ladder operators for Chebyshev-Koornwinder oscillator,” in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which is bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators
A Fast, Simple, and Stable Chebyshev--Legendre Transform Using an Asymptotic Formula
Hale, Nicholas
2014-02-06
A fast, simple, and numerically stable transform for converting between Legendre and Chebyshev coefficients of a degree N polynomial in O(N(log N)2/ log log N) operations is derived. The fundamental idea of the algorithm is to rewrite a well-known asymptotic formula for Legendre polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated by using the discrete cosine transform. Numerical results are provided to demonstrate the efficiency and numerical stability. Since the algorithm evaluates a Legendre expansion at an N +1 Chebyshev grid as an intermediate step, it also provides a fast transform between Legendre coefficients and values on a Chebyshev grid. © 2014 Society for Industrial and Applied Mathematics.
Application of polynomial preconditioners to conservation laws
Geurts, Bernardus J.; van Buuren, R.; Lu, H.
2000-01-01
Polynomial preconditioners which are suitable in implicit time-stepping methods for conservation laws are reviewed and analyzed. The preconditioners considered are either based on a truncation of a Neumann series or on Chebyshev polynomials for the inverse of the system-matrix. The latter class of
Chebyshev Finite Difference Method for Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Boundary
2015-09-01
Full Text Available This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivatives are described in the Caputo sense. Numerical results show that this method is of high accuracy and is more convenient and efficient for solving boundary value problems involving fractional ordinary differential equations. AMS Subject Classification: 34A08 Keywords and Phrases: Chebyshev polynomials, Gauss-Lobatto points, fractional differential equation, finite difference 1. Introduction The idea of a derivative which interpolates between the familiar integer order derivatives was introduced many years ago and has gained increasing importance only in recent years due to the development of mathematical models of a certain situations in engineering, materials science, control theory, polymer modelling etc. For example see [20, 22, 25, 26]. Most fractional order differential equations describing real life situations, in general do not have exact analytical solutions. Several numerical and approximate analytical methods for ordinary differential equation Received: December 2014; Accepted: March 2015 57 Journal of Mathematical Extension Vol. 9, No. 3, (2015, 57-71 ISSN: 1735-8299 URL: http://www.ijmex.com Chebyshev Finite Difference Method for Fractional Boundary Value Problems H. Azizi Taft Branch, Islamic Azad University Abstract. This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivative
Wang, Zhiheng; Huang, Zhu; Zhang, Wei; Xi, Guang
2015-01-01
of the computational domain. The velocities and pressure are discretized with the same order of Chebyshev polynomials, i.e., the PN-PN method. The Projection method is applied in coupling the pressure with the velocity. The present method is first validated
Energy Technology Data Exchange (ETDEWEB)
Pieper, Andreas [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Kreutzer, Moritz [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany); Alvermann, Andreas, E-mail: alvermann@physik.uni-greifswald.de [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Galgon, Martin [Bergische Universität Wuppertal (Germany); Fehske, Holger [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Hager, Georg [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany); Lang, Bruno [Bergische Universität Wuppertal (Germany); Wellein, Gerhard [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)
2016-11-15
We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need for matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10{sup 2} innermost eigenpairs of a topological insulator matrix with dimension 10{sup 9} derived from quantum physics applications.
Chebyshev and Fourier spectral methods
Boyd, John P
2001-01-01
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
UNCOUPLING LAMINAR CONJUGATE HEAT TRANSFER THROUGH CHEBYSHEV POLYNOMIAL
Directory of Open Access Journals (Sweden)
ANTONIO J. BULA
2010-01-01
verificados con la solución obtenida por medio de software CFD comercial, FIDAP ®. La solución ncluyo el cálculo del coeficiente de transferencia de calor, el número de Nusselt, el número de Biot, todos tanto local como promedio. La distribución de temperatura en la interface también fue obtenida.
Derivation of reduced model for control system design using Chebyshev techniques
International Nuclear Information System (INIS)
Bistritz, Y.
1978-07-01
New methods are developed for reduced-order modelling of high-order, linear, time-invariant systems characterized by a transfer function. The first method is based on manipulating two Chebyshev polynomial series, one representing the frequency characteristics of the high-order system and the other representing the approximating low-order model. The proposed method can be viewed as generalizing the classical Pade approximation problem, with Chebyshev polynomial series being over a desired frequency interval instead of a power series about a single frequency point. The second method is based on approximating the high-order transfer function in terms of best Chebyshev approximation on a desired domain in the complex plane. An algorithm to find for a complex function best Chebyshev rational approximations in the complex plane is suggested and its theoretical basis confirmed. The algorithm is based on a complex version of Lawson algorithm that is applied to a complex version of a rational least square approximation program. (author)
Wang, Zhiheng
2015-01-01
A simple multidomain Chebyshev pseudo-spectral method is developed for two-dimensional fluid flow and heat transfer over square cylinders. The incompressible Navier-Stokes equations with primitive variables are discretized in several subdomains of the computational domain. The velocities and pressure are discretized with the same order of Chebyshev polynomials, i.e., the PN-PN method. The Projection method is applied in coupling the pressure with the velocity. The present method is first validated by benchmark problems of natural convection in a square cavity. Then the method based on multidomains is applied to simulate fluid flow and heat transfer from square cylinders. The numerical results agree well with the existing results. © Taylor & Francis Group, LLC.
An embedded formula of the Chebyshev collocation method for stiff problems
Piao, Xiangfan; Bu, Sunyoung; Kim, Dojin; Kim, Philsu
2017-12-01
In this study, we have developed an embedded formula of the Chebyshev collocation method for stiff problems, based on the zeros of the generalized Chebyshev polynomials. A new strategy for the embedded formula, using a pair of methods to estimate the local truncation error, as performed in traditional embedded Runge-Kutta schemes, is proposed. The method is performed in such a way that not only the stability region of the embedded formula can be widened, but by allowing the usage of larger time step sizes, the total computational costs can also be reduced. In terms of concrete convergence and stability analysis, the constructed algorithm turns out to have an 8th order convergence and it exhibits A-stability. Through several numerical experimental results, we have demonstrated that the proposed method is numerically more efficient, compared to several existing implicit methods.
Freud, Géza
1971-01-01
Orthogonal Polynomials contains an up-to-date survey of the general theory of orthogonal polynomials. It deals with the problem of polynomials and reveals that the sequence of these polynomials forms an orthogonal system with respect to a non-negative m-distribution defined on the real numerical axis. Comprised of five chapters, the book begins with the fundamental properties of orthogonal polynomials. After discussing the momentum problem, it then explains the quadrature procedure, the convergence theory, and G. Szegő's theory. This book is useful for those who intend to use it as referenc
Parallel multigrid smoothing: polynomial versus Gauss-Seidel
International Nuclear Information System (INIS)
Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray
2003-01-01
Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines
Parallel multigrid smoothing: polynomial versus Gauss-Seidel
Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray
2003-07-01
Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.
Modeling Belt-Servomechanism by Chebyshev Functional Recurrent Neuro-Fuzzy Network
Huang, Yuan-Ruey; Kang, Yuan; Chu, Ming-Hui; Chang, Yeon-Pun
A novel Chebyshev functional recurrent neuro-fuzzy (CFRNF) network is developed from a combination of the Takagi-Sugeno-Kang (TSK) fuzzy model and the Chebyshev recurrent neural network (CRNN). The CFRNF network can emulate the nonlinear dynamics of a servomechanism system. The system nonlinearity is addressed by enhancing the input dimensions of the consequent parts in the fuzzy rules due to functional expansion of a Chebyshev polynomial. The back propagation algorithm is used to adjust the parameters of the antecedent membership functions as well as those of consequent functions. To verify the performance of the proposed CFRNF, the experiment of the belt servomechanism is presented in this paper. Both of identification methods of adaptive neural fuzzy inference system (ANFIS) and recurrent neural network (RNN) are also studied for modeling of the belt servomechanism. The analysis and comparison results indicate that CFRNF makes identification of complex nonlinear dynamic systems easier. It is verified that the accuracy and convergence of the CFRNF are superior to those of ANFIS and RNN by the identification results of a belt servomechanism.
Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation
Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim
2018-05-01
A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.
A NEW TOOL FOR IMAGE ANALYSIS BASED ON CHEBYSHEV RATIONAL FUNCTIONS: CHEF FUNCTIONS
International Nuclear Information System (INIS)
Jiménez-Teja, Y.; Benítez, N.
2012-01-01
We introduce a new approach to the modeling of the light distribution of galaxies, an orthonormal polar basis formed by a combination of Chebyshev rational functions and Fourier polynomials that we call CHEF functions, or CHEFs. We have developed an orthonormalization process to apply this basis to pixelized images, and implemented the method as a Python pipeline. The new basis displays remarkable flexibility, being able to accurately fit all kinds of galaxy shapes, including irregulars, spirals, ellipticals, highly compact, and highly elongated galaxies. It does this while using fewer components than similar methods, as shapelets, and without producing artifacts, due to the efficiency of the rational Chebyshev polynomials to fit quickly decaying functions like galaxy profiles. The method is linear and very stable, and therefore is capable of processing large numbers of galaxies in a fast and automated way. Due to the high quality of the fits in the central parts of the galaxies, and the efficiency of the CHEF basis modeling galaxy profiles up to very large distances, the method provides highly accurate estimates of total galaxy fluxes and ellipticities. Future papers will explore in more detail the application of the method to perform multiband photometry, morphological classification, and weak shear measurements.
On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2
Directory of Open Access Journals (Sweden)
Tian-Xiao He
2009-01-01
Full Text Available Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or polynomial sequences defined by linear recurrence relations. The applications using the method to solve some algebraic and ordinary differential equations are presented.
Liskovich, Diana; Simard, Marc
2011-01-01
Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.
Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials
Directory of Open Access Journals (Sweden)
N. Stojanovic
2016-09-01
Full Text Available A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approximations(Chebyshev, Legendre, Butterworth are shown to be a special cases of proposed approximation method.
International Nuclear Information System (INIS)
Flores-Lamas, H.
1994-01-01
An analytic expansion, to arbitrary accuracy, of the transmission integral (TI) for a single Moessbauer line is presented. This serves for calculating the effective thickness (T a ) of an absorber in Moessbauer spectroscopy even for T a >10. The new analytic expansion arises from substituting in the TI expression the exponential function by a Chebyshev polynomials series. A very fast converging series for TI is obtained and used as a test function in a least squares fit to a simulated spectrum. The test yields satisfactory results. The area and height parameters calculated were found to be in good agreement with earlier results. The present analytic method assumes that the source and absorber widths are different. ((orig.))
Directory of Open Access Journals (Sweden)
V. P. Gribkova
2014-01-01
Full Text Available The paper offers a new method for approximate solution of one type of singular integral equations for elasticity theory which have been studied by other authors. The approximate solution is found in the form of asymptotic polynomial function of a low degree (first approximation based on the Chebyshev second order polynomial. Other authors have obtained a solution (only in separate points using a method of mechanical quadrature and though they used also the Chebyshev polynomial of the second order they applied another system of junctures which were used for the creation of the required formulas.The suggested method allows not only to find an approximate solution for the whole interval in the form of polynomial, but it also makes it possible to obtain a remainder term in the form of infinite expansion where coefficients are linear functional of the given integral equation and basis functions are the Chebyshev polynomial of the second order. Such presentation of the remainder term of the first approximation permits to find a summand of the infinite series, which will serve as a start for fulfilling the given solution accuracy. This number is a degree of the asymptotic polynomial (second approximation, which will give the approximation to the exact solution with the given accuracy. The examined polynomial functions tend asymptotically to the polynomial of the best uniform approximation in the space C, created for the given operator.The paper demonstrates a convergence of the approximate solution to the exact one and provides an error estimation. The proposed algorithm for obtaining of the approximate solution and error estimation is easily realized with the help of computing technique and does not require considerable preliminary preparation during programming.
Antireflection coatings with Chebyshev or Butterworth response - Design
Baumeister, Philip
1986-12-01
The approximation of Kard (1971) is used to find values for the refractive indices of nonabsorbing layers with equal optical thickness to produce an antireflection (AR) coating for a dielectric substrate that has a Chebyshev spectral response, with application to the design of bandpass filters. The method is numerically demonstrated with the example of four-layer Chebyshev AR coatings with narrow, medium and wide bandwidths, and substrates of indices 2, 5, and 10. Approximate indices are also given for the case when the radiant reflectance/transmittance of the coating vs frequency is maximally flat (Butterworth response).
Chebyshev super spectral viscosity method for water hammer analysis
Directory of Open Access Journals (Sweden)
Hongyu Chen
2013-09-01
Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.
Elgohary, T.; Kim, D.; Turner, J.; Junkins, J.
2014-09-01
Several methods exist for integrating the motion in high order gravity fields. Some recent methods use an approximate starting orbit, and an efficient method is needed for generating warm starts that account for specific low order gravity approximations. By introducing two scalar Lagrange-like invariants and employing Leibniz product rule, the perturbed motion is integrated by a novel recursive formulation. The Lagrange-like invariants allow exact arbitrary order time derivatives. Restricting attention to the perturbations due to the zonal harmonics J2 through J6, we illustrate an idea. The recursively generated vector-valued time derivatives for the trajectory are used to develop a continuation series-based solution for propagating position and velocity. Numerical comparisons indicate performance improvements of ~ 70X over existing explicit Runge-Kutta methods while maintaining mm accuracy for the orbit predictions. The Modified Chebyshev Picard Iteration (MCPI) is an iterative path approximation method to solve nonlinear ordinary differential equations. The MCPI utilizes Picard iteration with orthogonal Chebyshev polynomial basis functions to recursively update the states. The key advantages of the MCPI are as follows: 1) Large segments of a trajectory can be approximated by evaluating the forcing function at multiple nodes along the current approximation during each iteration. 2) It can readily handle general gravity perturbations as well as non-conservative forces. 3) Parallel applications are possible. The Picard sequence converges to the solution over large time intervals when the forces are continuous and differentiable. According to the accuracy of the starting solutions, however, the MCPI may require significant number of iterations and function evaluations compared to other integrators. In this work, we provide an efficient methodology to establish good starting solutions from the continuation series method; this warm start improves the performance of the
All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials
N. Stojanovic; N. Stamenkovic; V. Stojanovic
2014-01-01
A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0), controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev f...
International Nuclear Information System (INIS)
Ramazanov, A.-R K
2005-01-01
Necessary and sufficient conditions for the best polynomial approximation with an arbitrary and, generally speaking, unbounded sign-sensitive weight to a continuous function are obtained; the components of the weight can also take infinite values, therefore the conditions obtained cover, in particular, approximation with interpolation at fixed points and one-sided approximation; in the case of the weight with components equal to 1 one arrives at Chebyshev's classical alternation theorem.
Banerjee, Amartya S; Lin, Lin; Suryanarayana, Phanish; Yang, Chao; Pask, John E
2018-06-12
We describe a novel iterative strategy for Kohn-Sham density functional theory calculations aimed at large systems (>1,000 electrons), applicable to metals and insulators alike. In lieu of explicit diagonalization of the Kohn-Sham Hamiltonian on every self-consistent field (SCF) iteration, we employ a two-level Chebyshev polynomial filter based complementary subspace strategy to (1) compute a set of vectors that span the occupied subspace of the Hamiltonian; (2) reduce subspace diagonalization to just partially occupied states; and (3) obtain those states in an efficient, scalable manner via an inner Chebyshev filter iteration. By reducing the necessary computation to just partially occupied states and obtaining these through an inner Chebyshev iteration, our approach reduces the cost of large metallic calculations significantly, while eliminating subspace diagonalization for insulating systems altogether. We describe the implementation of the method within the framework of the discontinuous Galerkin (DG) electronic structure method and show that this results in a computational scheme that can effectively tackle bulk and nano systems containing tens of thousands of electrons, with chemical accuracy, within a few minutes or less of wall clock time per SCF iteration on large-scale computing platforms. We anticipate that our method will be instrumental in pushing the envelope of large-scale ab initio molecular dynamics. As a demonstration of this, we simulate a bulk silicon system containing 8,000 atoms at finite temperature, and obtain an average SCF step wall time of 51 s on 34,560 processors; thus allowing us to carry out 1.0 ps of ab initio molecular dynamics in approximately 28 h (of wall time).
Irreducible multivariate polynomials obtained from polynomials in ...
Indian Academy of Sciences (India)
Hall, 1409 W. Green Street, Urbana, IL 61801, USA. E-mail: Nicolae. ... Theorem A. If we write an irreducible polynomial f ∈ K[X] as a sum of polynomials a0,..., an ..... This shows us that deg ai = (n − i) deg f2 for each i = 0,..., n, so min k>0.
Explicit analytical expression for the condition number of polynomials in power form
Rack, Heinz-Joachim
2017-07-01
In his influential papers [1-3] W. Gautschi has defined and reshaped the condition number κ∞ of polynomials Pn of degree ≤ n which are represented in power form on a zero-symmetric interval [-ω, ω]. Basically, κ∞ is expressed as the product of two operator norms: an explicit factor times an implicit one (the l∞-norm of the coefficient vector of the n-th Chebyshev polynomial of the first kind relative to [-ω, ω]). We provide a new proof, economize the second factor and express it by an explicit analytical formula.
Branched polynomial covering maps
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
1999-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....
Bai , Shi; Bouvier , Cyril; Kruppa , Alexander; Zimmermann , Paul
2016-01-01
International audience; The general number field sieve (GNFS) is the most efficient algo-rithm known for factoring large integers. It consists of several stages, the first one being polynomial selection. The quality of the selected polynomials can be modelled in terms of size and root properties. We propose a new kind of polynomials for GNFS: with a new degree of freedom, we further improve the size property. We demonstrate the efficiency of our algorithm by exhibiting a better polynomial tha...
National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...
Branched polynomial covering maps
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
2002-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch ...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved.......A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...
Chebyshev super spectral viscosity method for a fluidized bed model
International Nuclear Information System (INIS)
Sarra, Scott A.
2003-01-01
A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations
CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM
Directory of Open Access Journals (Sweden)
S.H. Nasseri
2011-07-01
Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.
CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM
Directory of Open Access Journals (Sweden)
S.H. Nasseri
2009-10-01
Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.
Energy Technology Data Exchange (ETDEWEB)
Spata, Michael [Old Dominion Univ., Norfolk, VA (United States)
2012-08-01
An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to measure their multipole content as a function of transverse position within the magnets.
International Nuclear Information System (INIS)
Guppy, C.B.
1962-03-01
In the methods adopted in this report transfer functions in the form of the ratio of two polynomials of the complex variable s are derived from sets of laplace transformed simultaneous differential equations. The set of algebraic simultaneous equations are solved using Cramer's Rule and this gives rise to determinants having polynomial elements. It is shown how the determinants are formed when transfer functions are specified. The procedure for finding the polynomial coefficients from a given determinant is fully described. The first method adopted is a direct one and reduces a determinant with first degree polynomial elements to secular form and follows this by an application of the similarity transformation to reduce the determinant to a form from which the polynomial coefficients can be read out directly. The programme is able to solve a single determinant with polynomial elements and this can be used to reduce an eigenvalue problem in the form of a secular determinant to polynomial form if the need arises. A description is given of the way in which the data is to be set out for solution by the programme. A description is also given of a method used in an earlier programme for solving polynomial determinants by curve fitting techniques using Chebyshev Polynomials. In this method determinants with polynomial elements of any degree can be solved. (author)
Simulation of electrically driven jet using Chebyshev collocation method
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The model of electrically driven jet is governed by a series of quasi 1D dimensionless partial differential equations(PDEs).Following the method of lines,the Chebyshev collocation method is employed to discretize the PDEs and obtain a system of differential-algebraic equations(DAEs).By differentiating constrains in DAEs twice,the system is transformed into a set of ordinary differential equations(ODEs) with invariants.Then the implicit differential equations solver "ddaskr" is used to solve the ODEs and ...
Weierstrass polynomials for links
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
1997-01-01
There is a natural way of identifying links in3-space with polynomial covering spaces over thecircle. Thereby any link in 3-space can be definedby a Weierstrass polynomial over the circle. Theequivalence relation for covering spaces over thecircle is, however, completely different from...
Nonnegativity of uncertain polynomials
Directory of Open Access Journals (Sweden)
iljak Dragoslav D.
1998-01-01
Full Text Available The purpose of this paper is to derive tests for robust nonnegativity of scalar and matrix polynomials, which are algebraic, recursive, and can be completed in finite number of steps. Polytopic families of polynomials are considered with various characterizations of parameter uncertainty including affine, multilinear, and polynomic structures. The zero exclusion condition for polynomial positivity is also proposed for general parameter dependencies. By reformulating the robust stability problem of complex polynomials as positivity of real polynomials, we obtain new sufficient conditions for robust stability involving multilinear structures, which can be tested using only real arithmetic. The obtained results are applied to robust matrix factorization, strict positive realness, and absolute stability of multivariable systems involving parameter dependent transfer function matrices.
Coastal Digital Elevation Models (DEMs)
National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation models (DEMs) of U.S. and other coasts that typically integrate ocean bathymetry and land topography. The DEMs support NOAA's mission to understand...
Research on a dem Coregistration Method Based on the SAR Imaging Geometry
Niu, Y.; Zhao, C.; Zhang, J.; Wang, L.; Li, B.; Fan, L.
2018-04-01
Due to the systematic error, especially the horizontal deviation that exists in the multi-source, multi-temporal DEMs (Digital Elevation Models), a method for high precision coregistration is needed. This paper presents a new fast DEM coregistration method based on a given SAR (Synthetic Aperture Radar) imaging geometry to overcome the divergence and time-consuming problem of the conventional DEM coregistration method. First, intensity images are simulated for two DEMs under the given SAR imaging geometry. 2D (Two-dimensional) offsets are estimated in the frequency domain using the intensity cross-correlation operation in the FFT (Fast Fourier Transform) tool, which can greatly accelerate the calculation process. Next, the transformation function between two DEMs is achieved via the robust least-square fitting of 2D polynomial operation. Accordingly, two DEMs can be precisely coregistered. Last, two DEMs, i.e., one high-resolution LiDAR (Light Detection and Ranging) DEM and one low-resolution SRTM (Shutter Radar Topography Mission) DEM, covering the Yangjiao landslide region of Chongqing are taken as an example to test the new method. The results indicate that, in most cases, this new method can achieve not only a result as much as 80 times faster than the minimum elevation difference (Least Z-difference, LZD) DEM registration method, but also more accurate and more reliable results.
Polynomial Heisenberg algebras
International Nuclear Information System (INIS)
Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M
2004-01-01
Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively
Generalizations of orthogonal polynomials
Bultheel, A.; Cuyt, A.; van Assche, W.; van Barel, M.; Verdonk, B.
2005-07-01
We give a survey of recent generalizations of orthogonal polynomials. That includes multidimensional (matrix and vector orthogonal polynomials) and multivariate versions, multipole (orthogonal rational functions) variants, and extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations are inspired by the applications in which they are applied. We also give a glimpse of these applications, which are usually generalizations of applications where classical orthogonal polynomials also play a fundamental role: moment problems, numerical quadrature, rational approximation, linear algebra, recurrence relations, and random matrices.
Extended biorthogonal matrix polynomials
Directory of Open Access Journals (Sweden)
Ayman Shehata
2017-01-01
Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.
Golden, Ryan; Cho, Ilwoo
2015-01-01
In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...
Chromatic polynomials for simplicial complexes
DEFF Research Database (Denmark)
Møller, Jesper Michael; Nord, Gesche
2016-01-01
In this note we consider s s -chromatic polynomials for finite simplicial complexes. When s=1 s=1 , the 1 1 -chromatic polynomial is just the usual graph chromatic polynomial of the 1 1 -skeleton. In general, the s s -chromatic polynomial depends on the s s -skeleton and its value at r...
Enhanced ASTER DEMs for Decadal Measurements of Glacier Elevation Changes
Girod, L.; Nuth, C.; Kääb, A.
2016-12-01
Elevation change data is critical to the understanding of a number of geophysical processes, including glaciers through the measurement their volume change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system on-board the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available today, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. We developed MMASTER, an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. Our sensor modeling does not require ground control points and thus potentially allows for automatic processing of large data volumes. When compared to ground truth data, we have assessed a ±5m accuracy in DEM differencing when using our processing method, improved from the ±30m when using the AST14DMO DEM product. We demonstrate and discuss this improved ASTER DEM quality for a number of glaciers in Greenland (See figure attached), Alaska, and Svalbard. The quality of our measurements promises to further unlock the underused potential of ASTER DEMs for glacier volume change time series on a global scale. The data produced by our method will thus help to better understand the response of glaciers to climate change and their influence on runoff and sea level.
Colouring and knot polynomials
International Nuclear Information System (INIS)
Welsh, D.J.A.
1991-01-01
These lectures will attempt to explain a connection between the recent advances in knot theory using the Jones and related knot polynomials with classical problems in combinatorics and statistical mechanics. The difficulty of some of these problems will be analysed in the context of their computational complexity. In particular we shall discuss colourings and groups valued flows in graphs, knots and the Jones and Kauffman polynomials, the Ising, Potts and percolation problems of statistical physics, computational complexity of the above problems. (author). 20 refs, 9 figs
Additive and polynomial representations
Krantz, David H; Suppes, Patrick
1971-01-01
Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz
On the Laurent polynomial rings
International Nuclear Information System (INIS)
Stefanescu, D.
1985-02-01
We describe some properties of the Laurent polynomial rings in a finite number of indeterminates over a commutative unitary ring. We study some subrings of the Laurent polynomial rings. We finally obtain two cancellation properties. (author)
Computing the Alexander Polynomial Numerically
DEFF Research Database (Denmark)
Hansen, Mikael Sonne
2006-01-01
Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically.......Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically....
Chen, Weitian; Sica, Christopher T; Meyer, Craig H
2008-11-01
Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method.
Coastal DEMs with Cross-Track Interferometry
Greidanus, H.S.F.; Huising, E.J.; Platschorre, Y.; Bree, R.J.P. van; Halsema, D. van; Vaessen, E.M.J.
1999-01-01
Digital elevation models (DEMs) are produced from airborne radar cross-track interferometric measurements. Radar DEMs recorded from perpendicular orientations are intercompared, and compared to DEMs derived from airborne laser altimetry
Discrete Chebyshev nets and a universal permutability theorem
International Nuclear Information System (INIS)
Schief, W K
2007-01-01
The Pohlmeyer-Lund-Regge system which was set down independently in the contexts of Lagrangian field theories and the relativistic motion of a string and which played a key role in the development of a geometric interpretation of soliton theory is known to appear in a variety of important guises such as the vectorial Lund-Regge equation, the O(4) nonlinear σ-model and the SU(2) chiral model. Here, it is demonstrated that these avatars may be discretized in such a manner that both integrability and equivalence are preserved. The corresponding discretization procedure is geometric and algebraic in nature and based on discrete Chebyshev nets and generalized discrete Lelieuvre formulae. In connection with the derivation of associated Baecklund transformations, it is shown that a generalized discrete Lund-Regge equation may be interpreted as a universal permutability theorem for integrable equations which admit commuting matrix Darboux transformations acting on su(2) linear representations. Three-dimensional coordinate systems and lattices of 'Lund-Regge' type related to particular continuous and discrete Zakharov-Manakov systems are obtained as a by-product of this analysis
Stochastic Estimation via Polynomial Chaos
2015-10-01
AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic
A comparison of companion matrix methods to find roots of a trigonometric polynomial
Boyd, John P.
2013-08-01
A trigonometric polynomial is a truncated Fourier series of the form fN(t)≡∑j=0Naj cos(jt)+∑j=1N bj sin(jt). It has been previously shown by the author that zeros of such a polynomial can be computed as the eigenvalues of a companion matrix with elements which are complex valued combinations of the Fourier coefficients, the "CCM" method. However, previous work provided no examples, so one goal of this new work is to experimentally test the CCM method. A second goal is introduce a new alternative, the elimination/Chebyshev algorithm, and experimentally compare it with the CCM scheme. The elimination/Chebyshev matrix (ECM) algorithm yields a companion matrix with real-valued elements, albeit at the price of usefulness only for real roots. The new elimination scheme first converts the trigonometric rootfinding problem to a pair of polynomial equations in the variables (c,s) where c≡cos(t) and s≡sin(t). The elimination method next reduces the system to a single univariate polynomial P(c). We show that this same polynomial is the resultant of the system and is also a generator of the Groebner basis with lexicographic ordering for the system. Both methods give very high numerical accuracy for real-valued roots, typically at least 11 decimal places in Matlab/IEEE 754 16 digit floating point arithmetic. The CCM algorithm is typically one or two decimal places more accurate, though these differences disappear if the roots are "Newton-polished" by a single Newton's iteration. The complex-valued matrix is accurate for complex-valued roots, too, though accuracy decreases with the magnitude of the imaginary part of the root. The cost of both methods scales as O(N3) floating point operations. In spite of intimate connections of the elimination/Chebyshev scheme to two well-established technologies for solving systems of equations, resultants and Groebner bases, and the advantages of using only real-valued arithmetic to obtain a companion matrix with real-valued elements
Polynomial optimization : Error analysis and applications
Sun, Zhao
2015-01-01
Polynomial optimization is the problem of minimizing a polynomial function subject to polynomial inequality constraints. In this thesis we investigate several hierarchies of relaxations for polynomial optimization problems. Our main interest lies in understanding their performance, in particular how
Complex Polynomial Vector Fields
DEFF Research Database (Denmark)
Dias, Kealey
vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...... of parameter spaces into structurally stable domains, and a description of the bifurcations. For this reason, the talk will focus on these questions for complex polynomial vector fields.......The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...
Roots of the Chromatic Polynomial
DEFF Research Database (Denmark)
Perrett, Thomas
The chromatic polynomial of a graph G is a univariate polynomial whose evaluation at any positive integer q enumerates the proper q-colourings of G. It was introduced in connection with the famous four colour theorem but has recently found other applications in the field of statistical physics...... extend Thomassen’s technique to the Tutte polynomial and as a consequence, deduce a density result for roots of the Tutte polynomial. This partially answers a conjecture of Jackson and Sokal. Finally, we refocus our attention on the chromatic polynomial and investigate the density of chromatic roots...
Polynomials in algebraic analysis
Multarzyński, Piotr
2012-01-01
The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...
General Reducibility and Solvability of Polynomial Equations ...
African Journals Online (AJOL)
General Reducibility and Solvability of Polynomial Equations. ... Unlike quadratic, cubic, and quartic polynomials, the general quintic and higher degree polynomials cannot be solved algebraically in terms of finite number of additions, ... Galois Theory, Solving Polynomial Systems, Polynomial factorization, Polynomial Ring ...
Chebyshev blossoming in Müntz spaces: Toward shaping with Young diagrams
Ait-Haddou, Rachid
2013-08-01
The notion of a blossom in extended Chebyshev spaces offers adequate generalizations and extra-utilities to the tools for free-form design schemes. Unfortunately, such advantages are often overshadowed by the complexity of the resulting algorithms. In this work, we show that for the case of Müntz spaces with integer exponents, the notion of a Chebyshev blossom leads to elegant algorithms whose complexities are embedded in the combinatorics of Schur functions. We express the blossom and the pseudo-affinity property in Müntz spaces in terms of Schur functions. We derive an explicit expression for the Chebyshev-Bernstein basis via an inductive argument on nested Müntz spaces. We also reveal a simple algorithm for dimension elevation. Free-form design schemes in Müntz spaces with Young diagrams as shape parameters are discussed. © 2013 Elsevier Ltd. All rights reserved.
Chebyshev blossoming in Müntz spaces: Toward shaping with Young diagrams
Ait-Haddou, Rachid; Sakane, Yusuke; Nomura, Taishin
2013-01-01
The notion of a blossom in extended Chebyshev spaces offers adequate generalizations and extra-utilities to the tools for free-form design schemes. Unfortunately, such advantages are often overshadowed by the complexity of the resulting algorithms. In this work, we show that for the case of Müntz spaces with integer exponents, the notion of a Chebyshev blossom leads to elegant algorithms whose complexities are embedded in the combinatorics of Schur functions. We express the blossom and the pseudo-affinity property in Müntz spaces in terms of Schur functions. We derive an explicit expression for the Chebyshev-Bernstein basis via an inductive argument on nested Müntz spaces. We also reveal a simple algorithm for dimension elevation. Free-form design schemes in Müntz spaces with Young diagrams as shape parameters are discussed. © 2013 Elsevier Ltd. All rights reserved.
Polynomial approximation on polytopes
Totik, Vilmos
2014-01-01
Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.
International Nuclear Information System (INIS)
Milks, Matthew M; Guise, Hubert de
2005-01-01
The construction of su(2) intelligent states is simplified using a polynomial representation of su(2). The cornerstone of the new construction is the diagonalization of a 2 x 2 matrix. The method is sufficiently simple to be easily extended to su(3), where one is required to diagonalize a single 3 x 3 matrix. For two perfectly general su(3) operators, this diagonalization is technically possible but the procedure loses much of its simplicity owing to the algebraic form of the roots of a cubic equation. Simplified expressions can be obtained by specializing the choice of su(3) operators. This simpler construction will be discussed in detail
Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators
Czech Academy of Sciences Publication Activity Database
Agahi, H.; Mesiar, Radko; Ouyang, Y.
2010-01-01
Roč. 46, č. 1 (2010), s. 83-95 ISSN 0023-5954 R&D Projects: GA ČR GA402/08/0618 Institutional research plan: CEZ:AV0Z10750506 Keywords : Sugeno integral * fuzzy measure * comonotone functions * Chebyshev's inequality Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/E/mesiar-further development of chebyshev type inequalities for sugeno integrals and t-(s-)evaluators.pdf
Agarwal, P.; El-Sayed, A. A.
2018-06-01
In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.
Abd-Elhameed, W. M.
2017-07-01
In this paper, a new formula relating Jacobi polynomials of arbitrary parameters with the squares of certain fractional Jacobi functions is derived. The derived formula is expressed in terms of a certain terminating hypergeometric function of the type _4F3(1) . With the aid of some standard reduction formulae such as Pfaff-Saalschütz's and Watson's identities, the derived formula can be reduced in simple forms which are free of any hypergeometric functions for certain choices of the involved parameters of the Jacobi polynomials and the Jacobi functions. Some other simplified formulae are obtained via employing some computer algebra algorithms such as the algorithms of Zeilberger, Petkovsek and van Hoeij. Some connection formulae between some Jacobi polynomials are deduced. From these connection formulae, some other linearization formulae of Chebyshev polynomials are obtained. As an application to some of the introduced formulae, a numerical algorithm for solving nonlinear Riccati differential equation is presented and implemented by applying a suitable spectral method.
Cosine and sine operators related to orthogonal polynomial sets on the interval [-1, 1
International Nuclear Information System (INIS)
Appl, Thomas; Schiller, Diethard H
2005-01-01
The quantization of phase is still an open problem. In the approach of Susskind and Glogower, the so-called cosine and sine operators play a fundamental role. Their eigenstates in the Fock representation are related to the Chebyshev polynomials of the second kind. Here we introduce more general cosine and sine operators whose eigenfunctions in the Fock basis are related in a similar way to arbitrary orthogonal polynomial sets on the interval [-1, 1]. To each polynomial set defined in terms of a weight function there corresponds a pair of cosine and sine operators. Depending on the symmetry of the weight function, we distinguish generalized or extended operators. Their eigenstates are used to define cosine and sine representations and probability distributions. We also consider the arccosine and arcsine operators and use their eigenstates to define cosine-phase and sine-phase distributions, respectively. Specific, numerical and graphical results are given for the classical orthogonal polynomials and for particular Fock and coherent states
Complex Polynomial Vector Fields
DEFF Research Database (Denmark)
The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...... or meromorphic (allowing poles as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...
Polynomial methods in combinatorics
Guth, Larry
2016-01-01
This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book. Some of the greatest advances in geometric combinatorics and harmonic analysis in recent years have been accompl...
Polynomial representations of GLn
Green, James A; Erdmann, Karin
2007-01-01
The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.
Polynomial representations of GLN
Green, James A
1980-01-01
The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.
Efficient computation of Laguerre polynomials
A. Gil (Amparo); J. Segura (Javier); N.M. Temme (Nico)
2017-01-01
textabstractAn efficient algorithm and a Fortran 90 module (LaguerrePol) for computing Laguerre polynomials . Ln(α)(z) are presented. The standard three-term recurrence relation satisfied by the polynomials and different types of asymptotic expansions valid for . n large and . α small, are used
Optimization over polynomials : Selected topics
Laurent, M.; Jang, Sun Young; Kim, Young Rock; Lee, Dae-Woong; Yie, Ikkwon
2014-01-01
Minimizing a polynomial function over a region defined by polynomial inequalities models broad classes of hard problems from combinatorics, geometry and optimization. New algorithmic approaches have emerged recently for computing the global minimum, by combining tools from real algebra (sums of
SOLUTION OF A MULTIVARIATE STRATIFIED SAMPLING PROBLEM THROUGH CHEBYSHEV GOAL PROGRAMMING
Directory of Open Access Journals (Sweden)
Mohd. Vaseem Ismail
2010-12-01
Full Text Available In this paper, we consider the problem of minimizing the variances for the various characters with fixed (given budget. Each convex objective function is first linearised at its minimal point where it meets the linear cost constraint. The resulting multiobjective linear programming problem is then solved by Chebyshev goal programming. A numerical example is given to illustrate the procedure.
Digitial Elevation Model (DEM) 100K
Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USG to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...
Digtial Elevation Model (DEM) 250K
Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...
Digital Elevation Model (DEM) 24K
Kansas Data Access and Support Center — Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a...
On generalized Fibonacci and Lucas polynomials
Energy Technology Data Exchange (ETDEWEB)
Nalli, Ayse [Department of Mathematics, Faculty of Sciences, Selcuk University, 42075 Campus-Konya (Turkey)], E-mail: aysenalli@yahoo.com; Haukkanen, Pentti [Department of Mathematics, Statistics and Philosophy, 33014 University of Tampere (Finland)], E-mail: mapehau@uta.fi
2009-12-15
Let h(x) be a polynomial with real coefficients. We introduce h(x)-Fibonacci polynomials that generalize both Catalan's Fibonacci polynomials and Byrd's Fibonacci polynomials and also the k-Fibonacci numbers, and we provide properties for these h(x)-Fibonacci polynomials. We also introduce h(x)-Lucas polynomials that generalize the Lucas polynomials and present properties of these polynomials. In the last section we introduce the matrix Q{sub h}(x) that generalizes the Q-matrix whose powers generate the Fibonacci numbers.
Parallel Construction of Irreducible Polynomials
DEFF Research Database (Denmark)
Frandsen, Gudmund Skovbjerg
Let arithmetic pseudo-NC^k denote the problems that can be solved by log space uniform arithmetic circuits over the finite prime field GF(p) of depth O(log^k (n + p)) and size polynomial in (n + p). We show that the problem of constructing an irreducible polynomial of specified degree over GF(p) ...... of polynomials is in arithmetic NC^3. Our algorithm works over any field and compared to other known algorithms it does not assume the ability to take p'th roots when the field has characteristic p....
Orthogonal polynomials in transport theories
International Nuclear Information System (INIS)
Dehesa, J.S.
1981-01-01
The asymptotical (k→infinity) behaviour of zeros of the polynomials gsub(k)sup((m)(ν)) encountered in the treatment of direct and inverse problems of scattering in neutron transport as well as radiative transfer theories is investigated in terms of the amplitude antiwsub(k) of the kth Legendre polynomial needed in the expansion of the scattering function. The parameters antiwsub(k) describe the anisotropy of scattering of the medium considered. In particular, it is shown that the asymptotical density of zeros of the polynomials gsub(k)sup(m)(ν) is an inverted semicircle for the anisotropic non-multiplying scattering medium
Julia Sets of Orthogonal Polynomials
DEFF Research Database (Denmark)
Christiansen, Jacob Stordal; Henriksen, Christian; Petersen, Henrik Laurberg
2018-01-01
For a probability measure with compact and non-polar support in the complex plane we relate dynamical properties of the associated sequence of orthogonal polynomials fPng to properties of the support. More precisely we relate the Julia set of Pn to the outer boundary of the support, the lled Julia...... set to the polynomial convex hull K of the support, and the Green's function associated with Pn to the Green's function for the complement of K....
An introduction to orthogonal polynomials
Chihara, Theodore S
1978-01-01
Assuming no further prerequisites than a first undergraduate course in real analysis, this concise introduction covers general elementary theory related to orthogonal polynomials. It includes necessary background material of the type not usually found in the standard mathematics curriculum. Suitable for advanced undergraduate and graduate courses, it is also appropriate for independent study. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some
Scattering theory and orthogonal polynomials
International Nuclear Information System (INIS)
Geronimo, J.S.
1977-01-01
The application of the techniques of scattering theory to the study of polynomials orthogonal on the unit circle and a finite segment of the real line is considered. The starting point is the recurrence relations satisfied by the polynomials instead of the orthogonality condition. A set of two two terms recurrence relations for polynomials orthogonal on the real line is presented and used. These recurrence relations play roles analogous to those satisfied by polynomials orthogonal on unit circle. With these recurrence formulas a Wronskian theorem is proved and the Christoffel-Darboux formula is derived. In scattering theory a fundamental role is played by the Jost function. An analogy is deferred of this function and its analytic properties and the locations of its zeros investigated. The role of the analog Jost function in various properties of these orthogonal polynomials is investigated. The techniques of inverse scattering theory are also used. The discrete analogues of the Gelfand-Levitan and Marchenko equations are derived and solved. These techniques are used to calculate asymptotic formulas for the orthogonal polynomials. Finally Szego's theorem on toeplitz and Hankel determinants is proved using the recurrence formulas and some properties of the Jost function. The techniques of inverse scattering theory are used to calculate the correction terms
Polynomial hybrid Monte Carlo algorithm for lattice QCD with an odd number of flavors
International Nuclear Information System (INIS)
Aoki, S.; Burkhalter, R.; Ishikawa, K-I.; Tominaga, S.; Fukugita, M.; Hashimoto, S.; Kaneko, T.; Kuramashi, Y.; Okawa, M.; Tsutsui, N.; Yamada, N.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Ukawa, A.; Yoshie, T.; Onogi, T.
2002-01-01
We present a polynomial hybrid Monte Carlo (PHMC) algorithm for lattice QCD with odd numbers of flavors of O(a)-improved Wilson quark action. The algorithm makes use of the non-Hermitian Chebyshev polynomial to approximate the inverse square root of the fermion matrix required for an odd number of flavors. The systematic error from the polynomial approximation is removed by a noisy Metropolis test for which a new method is developed. Investigating the property of our PHMC algorithm in the N f =2 QCD case, we find that it is as efficient as the conventional HMC algorithm for a moderately large lattice size (16 3 x48) with intermediate quark masses (m PS /m V ∼0.7-0.8). We test our odd-flavor algorithm through extensive simulations of two-flavor QCD treated as an N f =1+1 system, and comparing the results with those of the established algorithms for N f =2 QCD. These tests establish that our PHMC algorithm works on a moderately large lattice size with intermediate quark masses (16 3 x48,m PS /m V ∼0.7-0.8). Finally we experiment with the (2+1)-flavor QCD simulation on small lattices (4 3 x8 and 8 3 x16), and confirm the agreement of our results with those obtained with the R algorithm and extrapolated to a zero molecular dynamics step size
Behera, Laxmi; Chakraverty, S.
2014-03-01
Vibration analysis of nonlocal nanobeams based on Euler-Bernoulli and Timoshenko beam theories is considered. Nonlocal nanobeams are important in the bending, buckling and vibration analyses of beam-like elements in microelectromechanical or nanoelectromechanical devices. Expressions for free vibration of Euler-Bernoulli and Timoshenko nanobeams are established within the framework of Eringen's nonlocal elasticity theory. The problem has been solved previously using finite element method, Chebyshev polynomials in Rayleigh-Ritz method and using other numerical methods. In this study, numerical results for free vibration of nanobeams have been presented using simple polynomials and orthonormal polynomials in the Rayleigh-Ritz method. The advantage of the method is that one can easily handle the specified boundary conditions at the edges. To validate the present analysis, a comparison study is carried out with the results of the existing literature. The proposed method is also validated by convergence studies. Frequency parameters are found for different scaling effect parameters and boundary conditions. The study highlights that small scale effects considerably influence the free vibration of nanobeams. Nonlocal frequency parameters of nanobeams are smaller when compared to the corresponding local ones. Deflection shapes of nonlocal clamped Euler-Bernoulli nanobeams are also incorporated for different scaling effect parameters, which are affected by the small scale effect. Obtained numerical solutions provide a better representation of the vibration behavior of short and stubby micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant.
Directory of Open Access Journals (Sweden)
M. Tavassoli Kajani
2012-01-01
Full Text Available Rational Chebyshev bases and Galerkin method are used to obtain the approximate solution of a system of high-order integro-differential equations on the interval [0,∞. This method is based on replacement of the unknown functions by their truncated series of rational Chebyshev expansion. Test examples are considered to show the high accuracy, simplicity, and efficiency of this method.
All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials
Directory of Open Access Journals (Sweden)
N. Stojanovic
2014-09-01
Full Text Available A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0, controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev filters of the first and of the second kind, and also Legendre and Butterworth filters are shown to be special cases of these allpole recursive digital filters. Closed form equations for the computation of the filter coefficients are provided. The design technique is illustrated with examples.
Bannai-Ito polynomials and dressing chains
Derevyagin, Maxim; Tsujimoto, Satoshi; Vinet, Luc; Zhedanov, Alexei
2012-01-01
Schur-Delsarte-Genin (SDG) maps and Bannai-Ito polynomials are studied. SDG maps are related to dressing chains determined by quadratic algebras. The Bannai-Ito polynomials and their kernel polynomials -- the complementary Bannai-Ito polynomials -- are shown to arise in the framework of the SDG maps.
Birth-death processes and associated polynomials
van Doorn, Erik A.
2003-01-01
We consider birth-death processes on the nonnegative integers and the corresponding sequences of orthogonal polynomials called birth-death polynomials. The sequence of associated polynomials linked with a sequence of birth-death polynomials and its orthogonalizing measure can be used in the analysis
Rational Chebyshev spectral transform for the dynamics of broad-area laser diodes
International Nuclear Information System (INIS)
Javaloyes, J.; Balle, S.
2015-01-01
This manuscript details the use of the rational Chebyshev transform for describing the transverse dynamics of broad-area laser diodes and amplifiers. This spectral method can be used in combination with the delay algebraic equations approach developed in [1], which substantially reduces the computation time. The theory is presented in such a way that it encompasses the case of the Fourier spectral transform presented in [2] as a particular case. It is also extended to the consideration of index guiding with an arbitrary transverse profile. Because their domain of definition is infinite, the convergence properties of the Chebyshev rational functions allow handling the boundary conditions with higher accuracy than with the previously studied Fourier transform method. As practical examples, we solve the beam propagation problem with and without index guiding: we obtain excellent results and an improvement of the integration time between one and two orders of magnitude as compared with a fully distributed two dimensional model
Directory of Open Access Journals (Sweden)
Fakhrodin Mohammadi
2017-10-01
Full Text Available Stochastic fractional differential equations (SFDEs have been used for modeling many physical problems in the fields of turbulance, heterogeneous, flows and matrials, viscoelasticity and electromagnetic theory. In this paper, an efficient wavelet Galerkin method based on the second kind Chebyshev wavelets are proposed for approximate solution of SFDEs. In this approach, operational matrices of the second kind Chebyshev wavelets are used for reducing SFDEs to a linear system of algebraic equations that can be solved easily. Convergence and error analysis of the proposed method is considered. Some numerical examples are performed to confirm the applicability and efficiency of the proposed method.
Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot
Liang, Conghui; Ceccarelli, Marco; Takeda, Yukio
2012-12-01
In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.
On Multiple Polynomials of Capelli Type
Directory of Open Access Journals (Sweden)
S.Y. Antonov
2016-03-01
Full Text Available This paper deals with the class of Capelli polynomials in free associative algebra F{Z} (where F is an arbitrary field, Z is a countable set generalizing the construction of multiple Capelli polynomials. The fundamental properties of the introduced Capelli polynomials are provided. In particular, decomposition of the Capelli polynomials by means of the same type of polynomials is shown. Furthermore, some relations between their T -ideals are revealed. A connection between double Capelli polynomials and Capelli quasi-polynomials is established.
Improvements to the Chebyshev expansion of attenuation correction factors for cylindrical samples
International Nuclear Information System (INIS)
Mildner, D.F.R.; Carpenter, J.M.
1990-01-01
The accuracy of the Chebyshev expansion coefficients used for the calculation of attenuation correction factors for cylinderical samples has been improved. An increased order of expansion allows the method to be useful over a greater range of attenuation. It is shown that many of these coefficients are exactly zero, others are rational numbers, and others are rational frations of π -1 . The assumptions of Sears in his asymptotic expression of the attenuation correction factor are also examined. (orig.)
Rigorous Integration of Non-Linear Ordinary Differential Equations in Chebyshev Basis
Czech Academy of Sciences Publication Activity Database
Dzetkulič, Tomáš
2015-01-01
Roč. 69, č. 1 (2015), s. 183-205 ISSN 1017-1398 R&D Projects: GA MŠk OC10048; GA ČR GD201/09/H057 Institutional research plan: CEZ:AV0Z10300504 Keywords : Initial value problem * Rigorous integration * Taylor model * Chebyshev basis Subject RIV: IN - Informatics, Computer Science Impact factor: 1.366, year: 2015
Glacier Volume Change Estimation Using Time Series of Improved Aster Dems
Girod, Luc; Nuth, Christopher; Kääb, Andreas
2016-06-01
Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter seems not to be
GLACIER VOLUME CHANGE ESTIMATION USING TIME SERIES OF IMPROVED ASTER DEMS
Directory of Open Access Journals (Sweden)
L. Girod
2016-06-01
Full Text Available Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER system embarked on the Terra (EOS AM-1 satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter
The Fundamental Blossoming Inequality in Chebyshev Spaces—I: Applications to Schur Functions
Ait-Haddou, Rachid
2016-10-19
A classical theorem by Chebyshev says how to obtain the minimum and maximum values of a symmetric multiaffine function of n variables with a prescribed sum. We show that, given two functions in an Extended Chebyshev space good for design, a similar result can be stated for the minimum and maximum values of the blossom of the first function with a prescribed value for the blossom of the second one. We give a simple geometric condition on the control polygon of the planar parametric curve defined by the pair of functions ensuring the uniqueness of the solution to the corresponding optimization problem. This provides us with a fundamental blossoming inequality associated with each Extended Chebyshev space good for design. This inequality proves to be a very powerful tool to derive many classical or new interesting inequalities. For instance, applied to Müntz spaces and to rational Müntz spaces, it provides us with new inequalities involving Schur functions which generalize the classical MacLaurin’s and Newton’s inequalities. This work definitely demonstrates that, via blossoms, CAGD techniques can have important implications in other mathematical domains, e.g., combinatorics.
Noh, Myoung-Jong; Howat, Ian M.
2018-02-01
The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.
Chromatic polynomials of random graphs
International Nuclear Information System (INIS)
Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian
2010-01-01
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.
Polynomial weights and code constructions
DEFF Research Database (Denmark)
Massey, J; Costello, D; Justesen, Jørn
1973-01-01
polynomial included. This fundamental property is then used as the key to a variety of code constructions including 1) a simplified derivation of the binary Reed-Muller codes and, for any primepgreater than 2, a new extensive class ofp-ary "Reed-Muller codes," 2) a new class of "repeated-root" cyclic codes...... of long constraint length binary convolutional codes derived from2^r-ary Reed-Solomon codes, and 6) a new class ofq-ary "repeated-root" constacyclic codes with an algebraic decoding algorithm.......For any nonzero elementcof a general finite fieldGF(q), it is shown that the polynomials(x - c)^i, i = 0,1,2,cdots, have the "weight-retaining" property that any linear combination of these polynomials with coefficients inGF(q)has Hamming weight at least as great as that of the minimum degree...
Orthogonal Polynomials and Special Functions
Assche, Walter
2003-01-01
The set of lectures from the Summer School held in Leuven in 2002 provide an up-to-date account of recent developments in orthogonal polynomials and special functions, in particular for algorithms for computer algebra packages, 3nj-symbols in representation theory of Lie groups, enumeration, multivariable special functions and Dunkl operators, asymptotics via the Riemann-Hilbert method, exponential asymptotics and the Stokes phenomenon. The volume aims at graduate students and post-docs working in the field of orthogonal polynomials and special functions, and in related fields interacting with orthogonal polynomials, such as combinatorics, computer algebra, asymptotics, representation theory, harmonic analysis, differential equations, physics. The lectures are self-contained requiring only a basic knowledge of analysis and algebra, and each includes many exercises.
Symmetric functions and orthogonal polynomials
Macdonald, I G
1997-01-01
One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.
STABILITY SYSTEMS VIA HURWITZ POLYNOMIALS
Directory of Open Access Journals (Sweden)
BALTAZAR AGUIRRE HERNÁNDEZ
2017-01-01
Full Text Available To analyze the stability of a linear system of differential equations ẋ = Ax we can study the location of the roots of the characteristic polynomial pA(t associated with the matrix A. We present various criteria - algebraic and geometric - that help us to determine where the roots are located without calculating them directly.
On Modular Counting with Polynomials
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt
2006-01-01
For any integers m and l, where m has r sufficiently large (depending on l) factors, that are powers of r distinct primes, we give a construction of a (symmetric) polynomial over Z_m of degree O(\\sqrt n) that is a generalized representation (commonly also called weak representation) of the MODl f...
Global Polynomial Kernel Hazard Estimation
DEFF Research Database (Denmark)
Hiabu, Munir; Miranda, Maria Dolores Martínez; Nielsen, Jens Perch
2015-01-01
This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically redu...
Congruences concerning Legendre polynomials III
Sun, Zhi-Hong
2010-01-01
Let $p>3$ be a prime, and let $R_p$ be the set of rational numbers whose denominator is coprime to $p$. Let $\\{P_n(x)\\}$ be the Legendre polynomials. In this paper we mainly show that for $m,n,t\\in R_p$ with $m\
Two polynomial division inequalities in
Directory of Open Access Journals (Sweden)
Goetgheluck P
1998-01-01
Full Text Available This paper is a first attempt to give numerical values for constants and , in classical estimates and where is an algebraic polynomial of degree at most and denotes the -metric on . The basic tools are Markov and Bernstein inequalities.
Dirichlet polynomials, majorization, and trumping
International Nuclear Information System (INIS)
Pereira, Rajesh; Plosker, Sarah
2013-01-01
Majorization and trumping are two partial orders which have proved useful in quantum information theory. We show some relations between these two partial orders and generalized Dirichlet polynomials, Mellin transforms, and completely monotone functions. These relations are used to prove a succinct generalization of Turgut’s characterization of trumping. (paper)
The modified Gauss diagonalization of polynomial matrices
International Nuclear Information System (INIS)
Saeed, K.
1982-10-01
The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)
Sheffer and Non-Sheffer Polynomial Families
Directory of Open Access Journals (Sweden)
G. Dattoli
2012-01-01
Full Text Available By using the integral transform method, we introduce some non-Sheffer polynomial sets. Furthermore, we show how to compute the connection coefficients for particular expressions of Appell polynomials.
Automated Quality Control for Ortholmages and DEMs
DEFF Research Database (Denmark)
Höhle, Joachim; Potucková, Marketa
2005-01-01
The checking of geometric accurancy of orthoimages and digital elevation models (DEMs) is discussed. As a reference, an existing orthoimage and a second orthoimage derived from an overlapping aerial image, are used. The proposed automated procedures for checking the orthoimages and DEMs are based...
A Summation Formula for Macdonald Polynomials
de Gier, Jan; Wheeler, Michael
2016-03-01
We derive an explicit sum formula for symmetric Macdonald polynomials. Our expression contains multiple sums over the symmetric group and uses the action of Hecke generators on the ring of polynomials. In the special cases {t = 1} and {q = 0}, we recover known expressions for the monomial symmetric and Hall-Littlewood polynomials, respectively. Other specializations of our formula give new expressions for the Jack and q-Whittaker polynomials.
A New Generalisation of Macdonald Polynomials
Garbali, Alexandr; de Gier, Jan; Wheeler, Michael
2017-06-01
We introduce a new family of symmetric multivariate polynomials, whose coefficients are meromorphic functions of two parameters ( q, t) and polynomial in a further two parameters ( u, v). We evaluate these polynomials explicitly as a matrix product. At u = v = 0 they reduce to Macdonald polynomials, while at q = 0, u = v = s they recover a family of inhomogeneous symmetric functions originally introduced by Borodin.
Associated polynomials and birth-death processes
van Doorn, Erik A.
2001-01-01
We consider sequences of orthogonal polynomials with positive zeros, and pursue the question of how (partial) knowledge of the orthogonalizing measure for the {\\it associated polynomials} can lead to information about the orthogonalizing measure for the original polynomials, with a view to
ArcticDEM Validation and Accuracy Assessment
Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.
2017-12-01
ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration
BSDEs with polynomial growth generators
Directory of Open Access Journals (Sweden)
Philippe Briand
2000-01-01
Full Text Available In this paper, we give existence and uniqueness results for backward stochastic differential equations when the generator has a polynomial growth in the state variable. We deal with the case of a fixed terminal time, as well as the case of random terminal time. The need for this type of extension of the classical existence and uniqueness results comes from the desire to provide a probabilistic representation of the solutions of semilinear partial differential equations in the spirit of a nonlinear Feynman-Kac formula. Indeed, in many applications of interest, the nonlinearity is polynomial, e.g, the Allen-Cahn equation or the standard nonlinear heat and Schrödinger equations.
Quantum entanglement via nilpotent polynomials
International Nuclear Information System (INIS)
Mandilara, Aikaterini; Akulin, Vladimir M.; Smilga, Andrei V.; Viola, Lorenza
2006-01-01
We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed
Special polynomials associated with some hierarchies
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.
2008-01-01
Special polynomials associated with rational solutions of a hierarchy of equations of Painleve type are introduced. The hierarchy arises by similarity reduction from the Fordy-Gibbons hierarchy of partial differential equations. Some relations for these special polynomials are given. Differential-difference hierarchies for finding special polynomials are presented. These formulae allow us to obtain special polynomials associated with the hierarchy studied. It is shown that rational solutions of members of the Schwarz-Sawada-Kotera, the Schwarz-Kaup-Kupershmidt, the Fordy-Gibbons, the Sawada-Kotera and the Kaup-Kupershmidt hierarchies can be expressed through special polynomials of the hierarchy studied
Space complexity in polynomial calculus
Czech Academy of Sciences Publication Activity Database
Filmus, Y.; Lauria, M.; Nordström, J.; Ron-Zewi, N.; Thapen, Neil
2015-01-01
Roč. 44, č. 4 (2015), s. 1119-1153 ISSN 0097-5397 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : proof complexity * polynomial calculus * lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.841, year: 2015 http://epubs.siam.org/doi/10.1137/120895950
Codimensions of generalized polynomial identities
International Nuclear Information System (INIS)
Gordienko, Aleksei S
2010-01-01
It is proved that for every finite-dimensional associative algebra A over a field of characteristic zero there are numbers C element of Q + and t element of Z + such that gc n (A)∼Cn t d n as n→∞, where d=PI exp(A) element of Z + . Thus, Amitsur's and Regev's conjectures hold for the codimensions gc n (A) of the generalized polynomial identities. Bibliography: 6 titles.
Stable piecewise polynomial vector fields
Directory of Open Access Journals (Sweden)
Claudio Pessoa
2012-09-01
Full Text Available Let $N={y>0}$ and $S={y<0}$ be the semi-planes of $mathbb{R}^2$ having as common boundary the line $D={y=0}$. Let $X$ and $Y$ be polynomial vector fields defined in $N$ and $S$, respectively, leading to a discontinuous piecewise polynomial vector field $Z=(X,Y$. This work pursues the stability and the transition analysis of solutions of $Z$ between $N$ and $S$, started by Filippov (1988 and Kozlova (1984 and reformulated by Sotomayor-Teixeira (1995 in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields $Z_{epsilon}$, defined by averaging $X$ and $Y$. This family approaches $Z$ when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002 providing conditions on $(X,Y$ for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on $mathbb{R}^2$. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.
Estimating Coastal Digital Elevation Model (DEM) Uncertainty
Amante, C.; Mesick, S.
2017-12-01
Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.
International Nuclear Information System (INIS)
Lee, Yoon Hee; Cho, Nam Zin
2016-01-01
The code gives inaccurate results of nuclides for evaluation of source term analysis, e.g., Sr- 90, Ba-137m, Cs-137, etc. A Krylov Subspace method was suggested by Yamamoto et al. The method is based on the projection of solution space of Bateman equation to a lower dimension of Krylov subspace. It showed good accuracy in the detailed burnup chain calculation if dimension of the Krylov subspace is high enough. In this paper, we will compare the two methods in terms of accuracy and computing time. In this paper, two-block decomposition (TBD) method and Chebyshev rational approximation method (CRAM) are compared in the depletion calculations. In the two-block decomposition method, according to the magnitude of effective decay constant, the system of Bateman equation is decomposed into short- and longlived blocks. The short-lived block is calculated by the general Bateman solution and the importance concept. Matrix exponential with smaller norm is used in the long-lived block. In the Chebyshev rational approximation, there is no decomposition of the Bateman equation system, and the accuracy of the calculation is determined by the order of expansion in the partial fraction decomposition of the rational form. The coefficients in the partial fraction decomposition are determined by a Remez-type algorithm.
Energy Technology Data Exchange (ETDEWEB)
Lee, Yoon Hee; Cho, Nam Zin [KAERI, Daejeon (Korea, Republic of)
2016-05-15
The code gives inaccurate results of nuclides for evaluation of source term analysis, e.g., Sr- 90, Ba-137m, Cs-137, etc. A Krylov Subspace method was suggested by Yamamoto et al. The method is based on the projection of solution space of Bateman equation to a lower dimension of Krylov subspace. It showed good accuracy in the detailed burnup chain calculation if dimension of the Krylov subspace is high enough. In this paper, we will compare the two methods in terms of accuracy and computing time. In this paper, two-block decomposition (TBD) method and Chebyshev rational approximation method (CRAM) are compared in the depletion calculations. In the two-block decomposition method, according to the magnitude of effective decay constant, the system of Bateman equation is decomposed into short- and longlived blocks. The short-lived block is calculated by the general Bateman solution and the importance concept. Matrix exponential with smaller norm is used in the long-lived block. In the Chebyshev rational approximation, there is no decomposition of the Bateman equation system, and the accuracy of the calculation is determined by the order of expansion in the partial fraction decomposition of the rational form. The coefficients in the partial fraction decomposition are determined by a Remez-type algorithm.
Urban DEM generation, analysis and enhancements using TanDEM-X
Rossi, Cristian; Gernhardt, Stefan
2013-11-01
This paper analyzes the potential of the TanDEM-X mission for the generation of urban Digital Elevation Models (DEMs). The high resolution of the sensors and the absence of temporal decorrelation are exploited. The interferometric chain and the problems encountered for correct mapping of urban areas are analyzed first. The operational Integrated TanDEM-X Processor (ITP) algorithms are taken as reference. The ITP main product is called the raw DEM. Whereas the ITP coregistration stage is demonstrated to be robust enough, large improvements in the raw DEM such as fewer percentages of phase unwrapping errors, can be obtained by using adaptive fringe filters instead of the conventional ones in the interferogram generation stage. The shape of the raw DEM in the layover area is also shown and determined to be regular for buildings with vertical walls. Generally, in the presence of layover, the raw DEM exhibits a height ramp, resulting in a height underestimation for the affected structure. Examples provided confirm the theoretical background. The focus is centered on high resolution DEMs produced using spotlight acquisitions. In particular, a raw DEM over Berlin (Germany) with a 2.5 m raster is generated and validated. For this purpose, ITP is modified in its interferogram generation stage by adopting the Intensity Driven Adaptive Neighbourhood (IDAN) algorithm. The height Root Mean Square Error (RMSE) between the raw DEM and a reference is about 8 m for the two classes defining the urban DEM: structures and non-structures. The result can be further improved for the structure class using a DEM generated with Persistent Scatterer Interferometry. A DEM fusion is thus proposed and a drop of about 20% in the RMSE is reported.
AMDLIBAE, IBM 360 Subroutine Library, Special Function, Polynomials, Differential Equation
International Nuclear Information System (INIS)
Wang, Jesse Y.
1980-01-01
-Cotes; D158S P ANC4P: Adap. quad. using 4-th order Newton-Cotes; D161S F GAUSS: Arbitrary Gaussian weights and nodes; D162S F SQUANK: Simpson's quad. used adaptively; D252S F DDFSUB: DP Neville or Stoer sol. lin. dif. eqns.; D253S F DDFSYS: Driver for D252S; D255S F DFBND: Stoer sol. dif. eqs. with error bounds; D256S F DFBDRV: Driver for D255S; D257S F GEARDV: Gear's sol. of init. value problem; D452S F ENDACE: Numerical derivatives real analytic fn.; E206S F LSQPOL: Least squares weighted polynomial fit; E208S F1: Arbitrary function fit, least squares; E209S F CALLSQ: Driver for E206S; E212S F: General least squares fit + function eval.; E250S F VA02A: Least squares funct. min. w/o derivatives; E252S F MINMAX: Chebyshev line fit; E253S F: Arbitrary functional fit II; E256S F BGPOL: Least squares fit with polynomials; E257S F BGLSSQ: Least squares fit with arbitrary function; E350S F SMOOTH: Smoothing by cubic splines
Coghetto Roland
2016-01-01
In [21], Marco Riccardi formalized that ℝN-basis n is a basis (in the algebraic sense defined in [26]) of ℰTn${\\cal E}_T^n $ and in [20] he has formalized that ℰTn${\\cal E}_T^n $ is second-countable, we build (in the topological sense defined in [23]) a denumerable base of ℰTn${\\cal E}_T^n $.
Directory of Open Access Journals (Sweden)
Coghetto Roland
2016-06-01
Full Text Available In [21], Marco Riccardi formalized that ℝN-basis n is a basis (in the algebraic sense defined in [26] of ℰTn${\\cal E}_T^n $ and in [20] he has formalized that ℰTn${\\cal E}_T^n $ is second-countable, we build (in the topological sense defined in [23] a denumerable base of ℰTn${\\cal E}_T^n $.
2014 USACE NCMP Topobathy Lidar DEM: Oregon
National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...
2016 USGS Lidar DEM: Maine QL2
National Oceanic and Atmospheric Administration, Department of Commerce — Product: These are Digital Elevation Model (DEM) data for Franklin, Oxford, Piscataquis, and Somerset Counties, Maine as part of the required deliverables for the...
Metzner, Cornelia Beate Isabel
2007-01-01
Zielsetzung: In dieser Arbeit wird untersucht, ob bei Jugendlichen ein Zusammenhang zwischen dem Konsum von Alkopops einerseits und dem sonstigen Alkoholtrinkverhalten, dem Konsum von Zigaretten und illegalen Drogen sowie weiteren Risikoverhaltensweisen andererseits besteht, ferner ob sich Unterschiede im Verhalten von Jungen und Mädchen ergeben. Theoretischer und empirischer Hintergrund: �Alkopops�, d. h. Mischgetränke diverser Hersteller aus Likör bzw. Schnaps und Limonade sowie wein- ...
DEFF Research Database (Denmark)
Hansen, Henning Otte
2016-01-01
Teorien om landbrugets trædemølle siger, at teknologi medfører stigende produktivitet, stigende udbud og dermed faldende priser. Dermed øges behovet for ny teknologi. Det vedvarende teknologipres gavner de innovative landmænd, mens de mere afventende landmænd kun oplever de negative virkninger i...... form af prisfald. I denne artikel beskrives nærmere de enkelte elementer i trædemøllen. Samtidig vurderes trædemøllens betydning og mulige påvirkning. Det konkluderes, at trædemøllen, dens forudsætninger og afledte virkninger stadig er fuldt gældende. Det er ikke muligt for et enkelt land eller region...... af bremse trædemøllen på lang sigt. På lokalt plan kan man løse nogle sociale og økonomiske problemer skabt af trædemøllen gennem nemmere afvandring....
Algebraic polynomials with random coefficients
Directory of Open Access Journals (Sweden)
K. Farahmand
2002-01-01
Full Text Available This paper provides an asymptotic value for the mathematical expected number of points of inflections of a random polynomial of the form a0(ω+a1(ω(n11/2x+a2(ω(n21/2x2+…an(ω(nn1/2xn when n is large. The coefficients {aj(w}j=0n, w∈Ω are assumed to be a sequence of independent normally distributed random variables with means zero and variance one, each defined on a fixed probability space (A,Ω,Pr. A special case of dependent coefficients is also studied.
Improved multivariate polynomial factoring algorithm
International Nuclear Information System (INIS)
Wang, P.S.
1978-01-01
A new algorithm for factoring multivariate polynomials over the integers based on an algorithm by Wang and Rothschild is described. The new algorithm has improved strategies for dealing with the known problems of the original algorithm, namely, the leading coefficient problem, the bad-zero problem and the occurrence of extraneous factors. It has an algorithm for correctly predetermining leading coefficients of the factors. A new and efficient p-adic algorithm named EEZ is described. Bascially it is a linearly convergent variable-by-variable parallel construction. The improved algorithm is generally faster and requires less store then the original algorithm. Machine examples with comparative timing are included
Fourier series and orthogonal polynomials
Jackson, Dunham
2004-01-01
This text for undergraduate and graduate students illustrates the fundamental simplicity of the properties of orthogonal functions and their developments in related series. Starting with a definition and explanation of the elements of Fourier series, the text follows with examinations of Legendre polynomials and Bessel functions. Boundary value problems consider Fourier series in conjunction with Laplace's equation in an infinite strip and in a rectangle, with a vibrating string, in three dimensions, in a sphere, and in other circumstances. An overview of Pearson frequency functions is followe
Killings, duality and characteristic polynomials
Álvarez, Enrique; Borlaf, Javier; León, José H.
1998-03-01
In this paper the complete geometrical setting of (lowest order) abelian T-duality is explored with the help of some new geometrical tools (the reduced formalism). In particular, all invariant polynomials (the integrands of the characteristic classes) can be explicitly computed for the dual model in terms of quantities pertaining to the original one and with the help of the canonical connection whose intrinsic characterization is given. Using our formalism the physically, and T-duality invariant, relevant result that top forms are zero when there is an isometry without fixed points is easily proved. © 1998
Orthogonal polynomials and random matrices
Deift, Percy
2000-01-01
This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n {\\times} n matrices exhibit universal behavior as n {\\rightarrow} {\\infty}? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.
Introduction to Real Orthogonal Polynomials
1992-06-01
uses Green’s functions. As motivation , consider the Dirichlet problem for the unit circle in the plane, which involves finding a harmonic function u(r...xv ; a, b ; q) - TO [q-N ab+’q ; q, xq b. Orthogoy RMotion O0 (bq :q)x p.(q* ; a, b ; q) pg(q’ ; a, b ; q) (q "q), (aq)x (q ; q), (I -abq) (bq ; q... motivation and justi- fication for continued study of the intrinsic structure of orthogonal polynomials. 99 LIST OF REFERENCES 1. Deyer, W. M., ed., CRC
A companion matrix for 2-D polynomials
International Nuclear Information System (INIS)
Boudellioua, M.S.
1995-08-01
In this paper, a matrix form analogous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of 2-D linear systems theory. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. (author). 6 refs
On polynomial solutions of the Heun equation
International Nuclear Information System (INIS)
Gurappa, N; Panigrahi, Prasanta K
2004-01-01
By making use of a recently developed method to solve linear differential equations of arbitrary order, we find a wide class of polynomial solutions to the Heun equation. We construct the series solution to the Heun equation before identifying the polynomial solutions. The Heun equation extended by the addition of a term, -σ/x, is also amenable for polynomial solutions. (letter to the editor)
A new Arnoldi approach for polynomial eigenproblems
Energy Technology Data Exchange (ETDEWEB)
Raeven, F.A.
1996-12-31
In this paper we introduce a new generalization of the method of Arnoldi for matrix polynomials. The new approach is compared with the approach of rewriting the polynomial problem into a linear eigenproblem and applying the standard method of Arnoldi to the linearised problem. The algorithm that can be applied directly to the polynomial eigenproblem turns out to be more efficient, both in storage and in computation.
Bayer Demosaicking with Polynomial Interpolation.
Wu, Jiaji; Anisetti, Marco; Wu, Wei; Damiani, Ernesto; Jeon, Gwanggil
2016-08-30
Demosaicking is a digital image process to reconstruct full color digital images from incomplete color samples from an image sensor. It is an unavoidable process for many devices incorporating camera sensor (e.g. mobile phones, tablet, etc.). In this paper, we introduce a new demosaicking algorithm based on polynomial interpolation-based demosaicking (PID). Our method makes three contributions: calculation of error predictors, edge classification based on color differences, and a refinement stage using a weighted sum strategy. Our new predictors are generated on the basis of on the polynomial interpolation, and can be used as a sound alternative to other predictors obtained by bilinear or Laplacian interpolation. In this paper we show how our predictors can be combined according to the proposed edge classifier. After populating three color channels, a refinement stage is applied to enhance the image quality and reduce demosaicking artifacts. Our experimental results show that the proposed method substantially improves over existing demosaicking methods in terms of objective performance (CPSNR, S-CIELAB E, and FSIM), and visual performance.
Fermionic formula for double Kostka polynomials
Liu, Shiyuan
2016-01-01
The $X=M$ conjecture asserts that the $1D$ sum and the fermionic formula coincide up to some constant power. In the case of type $A,$ both the $1D$ sum and the fermionic formula are closely related to Kostka polynomials. Double Kostka polynomials $K_{\\Bla,\\Bmu}(t),$ indexed by two double partitions $\\Bla,\\Bmu,$ are polynomials in $t$ introduced as a generalization of Kostka polynomials. In the present paper, we consider $K_{\\Bla,\\Bmu}(t)$ in the special case where $\\Bmu=(-,\\mu'').$ We formula...
Polynomial sequences generated by infinite Hessenberg matrices
Directory of Open Access Journals (Sweden)
Verde-Star Luis
2017-01-01
Full Text Available We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.
Dabiri, Arman; Butcher, Eric A.; Nazari, Morad
2017-02-01
Compliant impacts can be modeled using linear viscoelastic constitutive models. While such impact models for realistic viscoelastic materials using integer order derivatives of force and displacement usually require a large number of parameters, compliant impact models obtained using fractional calculus, however, can be advantageous since such models use fewer parameters and successfully capture the hereditary property. In this paper, we introduce the fractional Chebyshev collocation (FCC) method as an approximation tool for numerical simulation of several linear fractional viscoelastic compliant impact models in which the overall coefficient of restitution for the impact is studied as a function of the fractional model parameters for the first time. Other relevant impact characteristics such as hysteresis curves, impact force gradient, penetration and separation depths are also studied.
Mireles James, J. D.; Murray, Maxime
2017-12-01
This paper develops a Chebyshev-Taylor spectral method for studying stable/unstable manifolds attached to periodic solutions of differential equations. The work exploits the parameterization method — a general functional analytic framework for studying invariant manifolds. Useful features of the parameterization method include the fact that it can follow folds in the embedding, recovers the dynamics on the manifold through a simple conjugacy, and admits a natural notion of a posteriori error analysis. Our approach begins by deriving a recursive system of linear differential equations describing the Taylor coefficients of the invariant manifold. We represent periodic solutions of these equations as solutions of coupled systems of boundary value problems. We discuss the implementation and performance of the method for the Lorenz system, and for the planar circular restricted three- and four-body problems. We also illustrate the use of the method as a tool for computing cycle-to-cycle connecting orbits.
Directory of Open Access Journals (Sweden)
S. S. Motsa
2014-01-01
Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Motsa, S S; Magagula, V M; Sibanda, P
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Polynomials formalism of quantum numbers
International Nuclear Information System (INIS)
Kazakov, K.V.
2005-01-01
Theoretical aspects of the recently suggested perturbation formalism based on the method of quantum number polynomials are considered in the context of the general anharmonicity problem. Using a biatomic molecule by way of example, it is demonstrated how the theory can be extrapolated to the case of vibrational-rotational interactions. As a result, an exact expression for the first coefficient of the Herman-Wallis factor is derived. In addition, the basic notions of the formalism are phenomenologically generalized and expanded to the problem of spin interaction. The concept of magneto-optical anharmonicity is introduced. As a consequence, an exact analogy is drawn with the well-known electro-optical theory of molecules, and a nonlinear dependence of the magnetic dipole moment of the system on the spin and wave variables is established [ru
Polynomial solutions of nonlinear integral equations
International Nuclear Information System (INIS)
Dominici, Diego
2009-01-01
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials
Sibling curves of quadratic polynomials | Wiggins | Quaestiones ...
African Journals Online (AJOL)
Sibling curves were demonstrated in [1, 2] as a novel way to visualize the zeroes of real valued functions. In [3] it was shown that a polynomial of degree n has n sibling curves. This paper focuses on the algebraic and geometric properites of the sibling curves of real and complex quadratic polynomials. Key words: Quadratic ...
Topological string partition functions as polynomials
International Nuclear Information System (INIS)
Yamaguchi, Satoshi; Yau Shingtung
2004-01-01
We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus. (author)
Polynomial solutions of nonlinear integral equations
Energy Technology Data Exchange (ETDEWEB)
Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu
2009-05-22
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.
A generalization of the Bernoulli polynomials
Directory of Open Access Journals (Sweden)
Pierpaolo Natalini
2003-01-01
Full Text Available A generalization of the Bernoulli polynomials and, consequently, of the Bernoulli numbers, is defined starting from suitable generating functions. Furthermore, the differential equations of these new classes of polynomials are derived by means of the factorization method introduced by Infeld and Hull (1951.
The Bessel polynomials and their differential operators
International Nuclear Information System (INIS)
Onyango Otieno, V.P.
1987-10-01
Differential operators associated with the ordinary and the generalized Bessel polynomials are defined. In each case the commutator bracket is constructed and shows that the differential operators associated with the Bessel polynomials and their generalized form are not commutative. Some applications of these operators to linear differential equations are also discussed. (author). 4 refs
Large degree asymptotics of generalized Bessel polynomials
J.L. López; N.M. Temme (Nico)
2011-01-01
textabstractAsymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the
Exceptional polynomials and SUSY quantum mechanics
Indian Academy of Sciences (India)
Abstract. We show that for the quantum mechanical problem which admit classical Laguerre/. Jacobi polynomials as solutions for the Schrödinger equations (SE), will also admit exceptional. Laguerre/Jacobi polynomials as solutions having the same eigenvalues but with the ground state missing after a modification of the ...
Connections between the matching and chromatic polynomials
Directory of Open Access Journals (Sweden)
E. J. Farrell
1992-01-01
Full Text Available The main results established are (i a connection between the matching and chromatic polynomials and (ii a formula for the matching polynomial of a general complement of a subgraph of a graph. Some deductions on matching and chromatic equivalence and uniqueness are made.
Laguerre polynomials by a harmonic oscillator
Baykal, Melek; Baykal, Ahmet
2014-09-01
The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators.
Laguerre polynomials by a harmonic oscillator
International Nuclear Information System (INIS)
Baykal, Melek; Baykal, Ahmet
2014-01-01
The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators. (paper)
On Generalisation of Polynomials in Complex Plane
Directory of Open Access Journals (Sweden)
Maslina Darus
2010-01-01
Full Text Available The generalised Bell and Laguerre polynomials of fractional-order in complex z-plane are defined. Some properties are studied. Moreover, we proved that these polynomials are univalent solutions for second order differential equations. Also, the Laguerre-type of some special functions are introduced.
Dual exponential polynomials and linear differential equations
Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne
2018-01-01
We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.
Technique for image interpolation using polynomial transforms
Escalante Ramírez, B.; Martens, J.B.; Haskell, G.G.; Hang, H.M.
1993-01-01
We present a new technique for image interpolation based on polynomial transforms. This is an image representation model that analyzes an image by locally expanding it into a weighted sum of orthogonal polynomials. In the discrete case, the image segment within every window of analysis is
Factoring polynomials over arbitrary finite fields
Lange, T.; Winterhof, A.
2000-01-01
We analyse an extension of Shoup's (Inform. Process. Lett. 33 (1990) 261–267) deterministic algorithm for factoring polynomials over finite prime fields to arbitrary finite fields. In particular, we prove the existence of a deterministic algorithm which completely factors all monic polynomials of
Large Scale Landform Mapping Using Lidar DEM
Directory of Open Access Journals (Sweden)
Türkay Gökgöz
2015-08-01
Full Text Available In this study, LIDAR DEM data was used to obtain a primary landform map in accordance with a well-known methodology. This primary landform map was generalized using the Focal Statistics tool (Majority, considering the minimum area condition in cartographic generalization in order to obtain landform maps at 1:1000 and 1:5000 scales. Both the primary and the generalized landform maps were verified visually with hillshaded DEM and an orthophoto. As a result, these maps provide satisfactory visuals of the landforms. In order to show the effect of generalization, the area of each landform in both the primary and the generalized maps was computed. Consequently, landform maps at large scales could be obtained with the proposed methodology, including generalization using LIDAR DEM.
On the number of polynomial solutions of Bernoulli and Abel polynomial differential equations
Cima, A.; Gasull, A.; Mañosas, F.
2017-12-01
In this paper we determine the maximum number of polynomial solutions of Bernoulli differential equations and of some integrable polynomial Abel differential equations. As far as we know, the tools used to prove our results have not been utilized before for studying this type of questions. We show that the addressed problems can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then we approach to these equations either applying several tools developed to study extended Fermat problems for polynomial equations, or reducing the question to the computation of the genus of some associated planar algebraic curves.
National Research Council Canada - National Science Library
Mitchell, Jason
2002-01-01
A method is presented for the generation of exact numerical coefficients found in two families of implicit Chebyshev methods for the numerical integration of first- and second-order ordinary differential equations...
Matrix product formula for Macdonald polynomials
Cantini, Luigi; de Gier, Jan; Wheeler, Michael
2015-09-01
We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik-Zamolodchikov equations, which arise by considering representations of the Zamolodchikov-Faddeev and Yang-Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1.
Matrix product formula for Macdonald polynomials
International Nuclear Information System (INIS)
Cantini, Luigi; Gier, Jan de; Michael Wheeler
2015-01-01
We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik–Zamolodchikov equations, which arise by considering representations of the Zamolodchikov–Faddeev and Yang–Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1. (paper)
Arabic text classification using Polynomial Networks
Directory of Open Access Journals (Sweden)
Mayy M. Al-Tahrawi
2015-10-01
Full Text Available In this paper, an Arabic statistical learning-based text classification system has been developed using Polynomial Neural Networks. Polynomial Networks have been recently applied to English text classification, but they were never used for Arabic text classification. In this research, we investigate the performance of Polynomial Networks in classifying Arabic texts. Experiments are conducted on a widely used Arabic dataset in text classification: Al-Jazeera News dataset. We chose this dataset to enable direct comparisons of the performance of Polynomial Networks classifier versus other well-known classifiers on this dataset in the literature of Arabic text classification. Results of experiments show that Polynomial Networks classifier is a competitive algorithm to the state-of-the-art ones in the field of Arabic text classification.
Hai, G.; Xie, H.; Chen, J.; Chen, L.; Li, R.; Tong, X.
2017-09-01
DEM Extraction from ASTER stereo pairs and three-dimensional registration by reference to ICESat laser altimetry data are carried out in upstream area of Lambert Glacier, East Antarctica. Since the study area is located in inland of East Antarctica where few textures exist, registration between DEM and ICESat data is performed. Firstly, the ASTER DEM generation is based on rational function model (RFM) and the procedure includes: a) rational polynomial coefficient (RPC) computation from ASTER metadata, b) L1A image product de-noise and destriping, c) local histogram equalization and matching, d) artificial collection of tie points and bundle adjustment, and e) coarse-to-fine hierarchical matching of five levels and grid matching. The matching results are filtered semi-automatically. Hereafter, DEM is interpolated using spline method with ground points converted from matching points. Secondly, the generated ASTER DEM is registered to ICESat data in three-dimensional space after Least-squares rigid transformation using singular value decomposition (SVD). The process is stated as: a) correspondence selection of terrain feature points from ICESat and DEM profiles, b) rigid transformation of generated ASTER DEM using selected feature correspondences based on least squares technique. The registration shows a good result that the elevation difference between DEM and ICESat data is low with a mean value less than 2 meters and the standard deviation around 7 meters. This DEM is generated and specially registered in Antarctic typical region without obvious ground rock control points and serves as true terrain input for further radar altimetry simulation.
Directory of Open Access Journals (Sweden)
Majid Tavassoli Kajani
2013-01-01
Full Text Available We propose a pseudospectral method for solving the Thomas-Fermi equation which is a nonlinear ordinary differential equation on semi-infinite interval. This approach is based on the rational third-kind Chebyshev pseudospectral method that is indeed a combination of Tau and collocation methods. This method reduces the solution of this problem to the solution of a system of algebraic equations. Comparison with some numerical solutions shows that the present solution is highly accurate.
Reich-Schupke, Stefanie; Schmeller, Wilfried; Brauer, Wolfgang Justus; Cornely, Manuel E; Faerber, Gabriele; Ludwig, Malte; Lulay, Gerd; Miller, Anya; Rapprich, Stefan; Richter, Dirk Frank; Schacht, Vivien; Schrader, Klaus; Stücker, Markus; Ure, Christian
2017-07-01
Die vorliegende überarbeitete Leitlinie zum Lipödem wurde unter der Federführung der Deutschen Gesellschaft für Phlebologie (DGP) erstellt und finanziert. Die Inhalte beruhen auf einer systematischen Literaturrecherche und dem Konsens von acht medizinischen Fachgesellschaften und Berufsverbänden. Die Leitlinie beinhaltet Empfehlungen zu Diagnostik und Therapie des Lipödems. Die Diagnose ist dabei auf der Basis von Anamnese und klinischem Befund zu stellen. Charakteristisch ist eine umschriebene, symmetrisch lokalisierte Vermehrung des Unterhautfettgewebes an den Extremitäten mit deutlicher Disproportion zum Stamm. Zusätzlich finden sich Ödeme, Hämatomneigung und eine gesteigerte Schmerzhaftigkeit der betroffenen Körperabschnitte. Weitere apparative Untersuchungen sind bisher besonderen Fragestellungen vorbehalten. Die Erkrankung ist chronisch progredient mit individuell unterschiedlichem und nicht vorhersehbarem Verlauf. Die Therapie besteht aus vier Säulen, die individuell kombiniert und an das aktuelle Beschwerdebild angepasst werden sollten: komplexe physikalische Entstauungstherapie (manuelle Lymphdrainage, Kompressionstherapie, Bewegungstherapie, Hautpflege), Liposuktion und plastisch-chirurgische Interventionen, Ernährung und körperliche Aktivität sowie ggf. additive Psychotherapie. Operative Maßnahmen sind insbesondere dann angezeigt, wenn trotz konsequent durchgeführter konservativer Therapie noch Beschwerden bestehen bzw. eine Progredienz des Befundes und/oder der Beschwerden auftritt. Eine begleitend zum Lipödem bestehende morbide Adipositas sollte vor einer Liposuktion therapeutisch angegangen werden. © 2017 The Authors | Journal compilation © Blackwell Verlag GmbH, Berlin.
on the performance of Autoregressive Moving Average Polynomial
African Journals Online (AJOL)
Timothy Ademakinwa
Distributed Lag (PDL) model, Autoregressive Polynomial Distributed Lag ... Moving Average Polynomial Distributed Lag (ARMAPDL) model. ..... Global Journal of Mathematics and Statistics. Vol. 1. ... Business and Economic Research Center.
Directory of Open Access Journals (Sweden)
Chih-Hong Lin
2016-06-01
Full Text Available A permanent magnet (PM synchronous generator system driven by wind turbine (WT, connected with smart grid via AC-DC converter and DC-AC converter, are controlled by the novel recurrent Chebyshev neural network (NN and amended particle swarm optimization (PSO to regulate output power and output voltage in two power converters in this study. Because a PM synchronous generator system driven by WT is an unknown non-linear and time-varying dynamic system, the on-line training novel recurrent Chebyshev NN control system is developed to regulate DC voltage of the AC-DC converter and AC voltage of the DC-AC converter connected with smart grid. Furthermore, the variable learning rate of the novel recurrent Chebyshev NN is regulated according to discrete-type Lyapunov function for improving the control performance and enhancing convergent speed. Finally, some experimental results are shown to verify the effectiveness of the proposed control method for a WT driving a PM synchronous generator system in smart grid.
Neck curve polynomials in neck rupture model
International Nuclear Information System (INIS)
Kurniadi, Rizal; Perkasa, Yudha S.; Waris, Abdul
2012-01-01
The Neck Rupture Model is a model that explains the scission process which has smallest radius in liquid drop at certain position. Old fashion of rupture position is determined randomly so that has been called as Random Neck Rupture Model (RNRM). The neck curve polynomials have been employed in the Neck Rupture Model for calculation the fission yield of neutron induced fission reaction of 280 X 90 with changing of order of polynomials as well as temperature. The neck curve polynomials approximation shows the important effects in shaping of fission yield curve.
ASTER Orthorectified Digital Elevation Model (DEM) V003
National Aeronautics and Space Administration — The ASTER L3 DEM and Orthorectified Images form a multi-file product that contains both the Digital Elevation Model (DEM), and the Orthorectified Image products....
Dynamics of a new family of iterative processes for quadratic polynomials
Gutiérrez, J. M.; Hernández, M. A.; Romero, N.
2010-03-01
In this work we show the presence of the well-known Catalan numbers in the study of the convergence and the dynamical behavior of a family of iterative methods for solving nonlinear equations. In fact, we introduce a family of methods, depending on a parameter . These methods reach the order of convergence m+2 when they are applied to quadratic polynomials with different roots. Newton's and Chebyshev's methods appear as particular choices of the family appear for m=0 and m=1, respectively. We make both analytical and graphical studies of these methods, which give rise to rational functions defined in the extended complex plane. Firstly, we prove that the coefficients of the aforementioned family of iterative processes can be written in terms of the Catalan numbers. Secondly, we make an incursion into its dynamical behavior. In fact, we show that the rational maps related to these methods can be written in terms of the entries of the Catalan triangle. Next we analyze its general convergence, by including some computer plots showing the intricate structure of the Universal Julia sets associated with the methods.
Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation
International Nuclear Information System (INIS)
Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi
2015-01-01
Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM
Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang
2010-09-01
This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.
Multilevel weighted least squares polynomial approximation
Haji-Ali, Abdul-Lateef; Nobile, Fabio; Tempone, Raul; Wolfers, Sö ren
2017-01-01
, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose
Polynomials in finite geometries and combinatorics
Blokhuis, A.; Walker, K.
1993-01-01
It is illustrated how elementary properties of polynomials can be used to attack extremal problems in finite and euclidean geometry, and in combinatorics. Also a new result, related to the problem of neighbourly cylinders is presented.
Polynomial analysis of ambulatory blood pressure measurements
Zwinderman, A. H.; Cleophas, T. A.; Cleophas, T. J.; van der Wall, E. E.
2001-01-01
In normotensive subjects blood pressures follow a circadian rhythm. A circadian rhythm in hypertensive patients is less well established, and may be clinically important, particularly with rigorous treatments of daytime blood pressures. Polynomial analysis of ambulatory blood pressure monitoring
Handbook on semidefinite, conic and polynomial optimization
Anjos, Miguel F
2012-01-01
This book offers the reader a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization and polynomial optimization. It covers theory, algorithms, software and applications.
Transversals of Complex Polynomial Vector Fields
DEFF Research Database (Denmark)
Dias, Kealey
Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field. Given...... a concrete polynomial, it seems to take quite a bit of work to prove that it is generic, i.e. structurally stable. This has been done for a special class of degree d polynomial vector fields having simple equilibrium points at the d roots of unity, d odd. In proving that such vector fields are generic...
Generalized catalan numbers, sequences and polynomials
KOÇ, Cemal; GÜLOĞLU, İsmail; ESİN, Songül
2010-01-01
In this paper we present an algebraic interpretation for generalized Catalan numbers. We describe them as dimensions of certain subspaces of multilinear polynomials. This description is of utmost importance in the investigation of annihilators in exterior algebras.
Schur Stability Regions for Complex Quadratic Polynomials
Cheng, Sui Sun; Huang, Shao Yuan
2010-01-01
Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)
About the solvability of matrix polynomial equations
Netzer, Tim; Thom, Andreas
2016-01-01
We study self-adjoint matrix polynomial equations in a single variable and prove existence of self-adjoint solutions under some assumptions on the leading form. Our main result is that any self-adjoint matrix polynomial equation of odd degree with non-degenerate leading form can be solved in self-adjoint matrices. We also study equations of even degree and equations in many variables.
Two polynomial representations of experimental design
Notari, Roberto; Riccomagno, Eva; Rogantin, Maria-Piera
2007-01-01
In the context of algebraic statistics an experimental design is described by a set of polynomials called the design ideal. This, in turn, is generated by finite sets of polynomials. Two types of generating sets are mostly used in the literature: Groebner bases and indicator functions. We briefly describe them both, how they are used in the analysis and planning of a design and how to switch between them. Examples include fractions of full factorial designs and designs for mixture experiments.
Rotation of 2D orthogonal polynomials
Czech Academy of Sciences Publication Activity Database
Yang, B.; Flusser, Jan; Kautský, J.
2018-01-01
Roč. 102, č. 1 (2018), s. 44-49 ISSN 0167-8655 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Rotation invariants * Orthogonal polynomials * Recurrent relation * Hermite-like polynomials * Hermite moments Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.995, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0483250.pdf
Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions
Bernal Reza, Miguel Ángel; Sala, Antonio; JAADARI, ABDELHAFIDH; Guerra, Thierry-Marie
2011-01-01
In this paper, the stability of continuous-time polynomial fuzzy models by means of a polynomial generalization of fuzzy Lyapunov functions is studied. Fuzzy Lyapunov functions have been fruitfully used in the literature for local analysis of Takagi-Sugeno models, a particular class of the polynomial fuzzy ones. Based on a recent Taylor-series approach which allows a polynomial fuzzy model to exactly represent a nonlinear model in a compact set of the state space, it is shown that a refinemen...
Vertex models, TASEP and Grothendieck polynomials
International Nuclear Information System (INIS)
Motegi, Kohei; Sakai, Kazumitsu
2013-01-01
We examine the wavefunctions and their scalar products of a one-parameter family of integrable five-vertex models. At a special point of the parameter, the model investigated is related to an irreversible interacting stochastic particle system—the so-called totally asymmetric simple exclusion process (TASEP). By combining the quantum inverse scattering method with a matrix product representation of the wavefunctions, the on-/off-shell wavefunctions of the five-vertex models are represented as a certain determinant form. Up to some normalization factors, we find that the wavefunctions are given by Grothendieck polynomials, which are a one-parameter deformation of Schur polynomials. Introducing a dual version of the Grothendieck polynomials, and utilizing the determinant representation for the scalar products of the wavefunctions, we derive a generalized Cauchy identity satisfied by the Grothendieck polynomials and their duals. Several representation theoretical formulae for the Grothendieck polynomials are also presented. As a byproduct, the relaxation dynamics such as Green functions for the periodic TASEP are found to be described in terms of the Grothendieck polynomials. (paper)
Many-body orthogonal polynomial systems
International Nuclear Information System (INIS)
Witte, N.S.
1997-03-01
The fundamental methods employed in the moment problem, involving orthogonal polynomial systems, the Lanczos algorithm, continued fraction analysis and Pade approximants has been combined with a cumulant approach and applied to the extensive many-body problem in physics. This has yielded many new exact results for many-body systems in the thermodynamic limit - for the ground state energy, for excited state gaps, for arbitrary ground state avenges - and are of a nonperturbative nature. These results flow from a confluence property of the three-term recurrence coefficients arising and define a general class of many-body orthogonal polynomials. These theorems constitute an analytical solution to the Lanczos algorithm in that they are expressed in terms of the three-term recurrence coefficients α and β. These results can also be applied approximately for non-solvable models in the form of an expansion, in a descending series of the system size. The zeroth order order this expansion is just the manifestation of the central limit theorem in which a Gaussian measure and hermite polynomials arise. The first order represents the first non-trivial order, in which classical distribution functions like the binomial distributions arise and the associated class of orthogonal polynomials are Meixner polynomials. Amongst examples of systems which have infinite order in the expansion are q-orthogonal polynomials where q depends on the system size in a particular way. (author)
Relations between Möbius and coboundary polynomials
Jurrius, R.P.M.J.
2012-01-01
It is known that, in general, the coboundary polynomial and the Möbius polynomial of a matroid do not determine each other. Less is known about more specific cases. In this paper, we will investigate if it is possible that the Möbius polynomial of a matroid, together with the Möbius polynomial of
Van der Bij, E
2005-01-01
The DEM group in the Technical Support department provides services for the fabrication of special printed circuits that are invaluable for the whole particle physics community. The capability is based around a core technology that is developed by using skills to etch and process materials that are not commonly used in industry, combined with production methods used in PCB manufacturing. The role of the prototyping facilities is to assist engineers and physicists and to offer them easy access to competencies often not available from industry. At the same time, with the expertise and production capacity available, it makes that CERN is always geared up to handle emergency situations. The design office and the assembly workshop that are also part of DEM have similar roles that lower the cost and improve the quality and maintainability of electronics developed at CERN.
Special polynomials associated with rational solutions of some hierarchies
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.
2009-01-01
New special polynomials associated with rational solutions of the Painleve hierarchies are introduced. The Hirota relations for these special polynomials are found. Differential-difference hierarchies to find special polynomials are presented. These formulae allow us to search special polynomials associated with the hierarchies. It is shown that rational solutions of the Caudrey-Dodd-Gibbon, the Kaup-Kupershmidt and the modified hierarchy for these ones can be obtained using new special polynomials.
New polynomial-based molecular descriptors with low degeneracy.
Directory of Open Access Journals (Sweden)
Matthias Dehmer
Full Text Available In this paper, we introduce a novel graph polynomial called the 'information polynomial' of a graph. This graph polynomial can be derived by using a probability distribution of the vertex set. By using the zeros of the obtained polynomial, we additionally define some novel spectral descriptors. Compared with those based on computing the ordinary characteristic polynomial of a graph, we perform a numerical study using real chemical databases. We obtain that the novel descriptors do have a high discrimination power.
Volcanic geomorphology using TanDEM-X
Poland, Michael; Kubanek, Julia
2016-04-01
Topography is perhaps the most fundamental dataset for any volcano, yet is surprisingly difficult to collect, especially during the course of an eruption. For example, photogrammetry and lidar are time-intensive and often expensive, and they cannot be employed when the surface is obscured by clouds. Ground-based surveys can operate in poor weather but have poor spatial resolution and may expose personnel to hazardous conditions. Repeat passes of synthetic aperture radar (SAR) data provide excellent spatial resolution, but topography in areas of surface change (from vegetation swaying in the wind to physical changes in the landscape) between radar passes cannot be imaged. The German Space Agency's TanDEM-X satellite system, however, solves this issue by simultaneously acquiring SAR data of the surface using a pair of orbiting satellites, thereby removing temporal change as a complicating factor in SAR-based topographic mapping. TanDEM-X measurements have demonstrated exceptional value in mapping the topography of volcanic environments in as-yet limited applications. The data provide excellent resolution (down to ~3-m pixel size) and are useful for updating topographic data at volcanoes where surface change has occurred since the most recent topographic dataset was collected. Such data can be used for applications ranging from correcting radar interferograms for topography, to modeling flow pathways in support of hazards mitigation. The most valuable contributions, however, relate to calculating volume changes related to eruptive activity. For example, limited datasets have provided critical measurements of lava dome growth and collapse at volcanoes including Merapi (Indonesia), Colima (Mexico), and Soufriere Hills (Montserrat), and of basaltic lava flow emplacement at Tolbachik (Kamchatka), Etna (Italy), and Kīlauea (Hawai`i). With topographic data spanning an eruption, it is possible to calculate eruption rates - information that might not otherwise be available
A new class of generalized polynomials associated with Hermite and Bernoulli polynomials
Directory of Open Access Journals (Sweden)
M. A. Pathan
2015-05-01
Full Text Available In this paper, we introduce a new class of generalized polynomials associated with the modified Milne-Thomson's polynomials Φ_{n}^{(α}(x,ν of degree n and order α introduced by Derre and Simsek.The concepts of Bernoulli numbers B_n, Bernoulli polynomials B_n(x, generalized Bernoulli numbers B_n(a,b, generalized Bernoulli polynomials B_n(x;a,b,c of Luo et al, Hermite-Bernoulli polynomials {_HB}_n(x,y of Dattoli et al and {_HB}_n^{(α} (x,y of Pathan are generalized to the one {_HB}_n^{(α}(x,y,a,b,c which is called the generalized polynomial depending on three positive real parameters. Numerous properties of these polynomials and some relationships between B_n, B_n(x, B_n(a,b, B_n(x;a,b,c and {}_HB_n^{(α}(x,y;a,b,c are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Bernoulli numbers and polynomials
Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials
Ait-Haddou, Rachid; Goldman, Ron
2015-01-01
We show that a weighted least squares approximation of q-Bézier coefficients provides the best polynomial degree reduction in the q-L2-norm. We also provide a finite analogue of this result with respect to finite q-lattices and we present applications of these results to q-orthogonal polynomials. © 2015 Elsevier Inc. All rights reserved.
Certain non-linear differential polynomials sharing a non zero polynomial
Directory of Open Access Journals (Sweden)
Majumder Sujoy
2015-10-01
functions sharing a nonzero polynomial and obtain two results which improves and generalizes the results due to L. Liu [Uniqueness of meromorphic functions and differential polynomials, Comput. Math. Appl., 56 (2008, 3236-3245.] and P. Sahoo [Uniqueness and weighted value sharing of meromorphic functions, Applied. Math. E-Notes., 11 (2011, 23-32.].
Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials
Ait-Haddou, Rachid
2015-06-07
We show that a weighted least squares approximation of q-Bézier coefficients provides the best polynomial degree reduction in the q-L2-norm. We also provide a finite analogue of this result with respect to finite q-lattices and we present applications of these results to q-orthogonal polynomials. © 2015 Elsevier Inc. All rights reserved.
Discrete-time state estimation for stochastic polynomial systems over polynomial observations
Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.
2018-07-01
This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.
Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach
Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer
2018-02-01
This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.
Vortices and polynomials: non-uniqueness of the Adler–Moser polynomials for the Tkachenko equation
International Nuclear Information System (INIS)
Demina, Maria V; Kudryashov, Nikolai A
2012-01-01
Stationary and translating relative equilibria of point vortices in the plane are studied. It is shown that stationary equilibria of any system containing point vortices with arbitrary choice of circulations can be described with the help of the Tkachenko equation. It is also obtained that translating relative equilibria of point vortices with arbitrary circulations can be constructed using a generalization of the Tkachenko equation. Roots of any pair of polynomials solving the Tkachenko equation and the generalized Tkachenko equation are proved to give positions of point vortices in stationary and translating relative equilibria accordingly. These results are valid even if the polynomials in a pair have multiple or common roots. It is obtained that the Adler–Moser polynomial provides non-unique polynomial solutions of the Tkachenko equation. It is shown that the generalized Tkachenko equation possesses polynomial solutions with degrees that are not triangular numbers. (paper)
Global sensitivity analysis by polynomial dimensional decomposition
Energy Technology Data Exchange (ETDEWEB)
Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)
2011-07-15
This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.
Remarks on determinants and the classical polynomials
International Nuclear Information System (INIS)
Henning, J.J.; Kranold, H.U.; Louw, D.F.B.
1986-01-01
As motivation for this formal analysis the problem of Landau damping of Bernstein modes is discussed. It is shown that in the case of a weak but finite constant external magnetic field, the analytical structure of the dispersion relations is of such a nature that longitudinal waves propagating orthogonal to the external magnetic field are also damped, contrary to normal belief. In the treatment of the linearized Vlasov equation it is found convenient to generate certain polynomials by the problem at hand and to explicitly write down expressions for these polynomials. In the course of this study methods are used that relate to elementary but fairly unknown functional relationships between power sums and coefficients of polynomials. These relationships, also called Waring functions, are derived. They are then used in other applications to give explicit expressions for the generalized Laguerre polynomials in terms of determinant functions. The properties of polynomials generated by a wide class of generating functions are investigated. These relationships are also used to obtain explicit forms for the cumulants of a distribution in terms of its moments. It is pointed out that cumulants (or moments, for that matter) do not determine a distribution function
Multilevel weighted least squares polynomial approximation
Haji-Ali, Abdul-Lateef
2017-06-30
Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi-optimal approximation in a given polynomial subspace scales, up to a logarithmic factor, linearly in the dimension of this space. However, in many applications, the computation of samples includes a numerical discretization error. Thus, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose a multilevel method that utilizes samples computed with different accuracies and is able to match the accuracy of single-level approximations with reduced computational cost. We derive complexity bounds under certain assumptions about polynomial approximability and sample work. Furthermore, we propose an adaptive algorithm for situations where such assumptions cannot be verified a priori. Finally, we provide an efficient algorithm for the sampling from optimal distributions and an analysis of computationally favorable alternative distributions. Numerical experiments underscore the practical applicability of our method.
Directory of Open Access Journals (Sweden)
Fuqiang Zhao
2017-01-01
Full Text Available In the current study, a numerical technique for solving one-dimensional fractional nonsteady heat transfer model is presented. We construct the second kind Chebyshev wavelet and then derive the operational matrix of fractional-order integration. The operational matrix of fractional-order integration is utilized to reduce the original problem to a system of linear algebraic equations, and then the numerical solutions obtained by our method are compared with those obtained by CAS wavelet method. Lastly, illustrated examples are included to demonstrate the validity and applicability of the technique.
CSIR Research Space (South Africa)
Sokoya, O
2008-05-01
Full Text Available combines both simplicity and accuracy in finding the closed form expression of the PEP. The paper is organised as follows. In Section 2, we discuss the general transmission model of the HR-STTCM and the channel model. In Section 3, we describe... the derivation of the PEP using the Gauss–Chebyshev quadrature technique and also give a numerical example. In Section 4, we use the PEP obtained in Section 3 to estimate the average BEP for slow fading channels. Section 5 concludes the paper with discussion...
Polynomial chaos functions and stochastic differential equations
International Nuclear Information System (INIS)
Williams, M.M.R.
2006-01-01
The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory
Minimal residual method stronger than polynomial preconditioning
Energy Technology Data Exchange (ETDEWEB)
Faber, V.; Joubert, W.; Knill, E. [Los Alamos National Lab., NM (United States)] [and others
1994-12-31
Two popular methods for solving symmetric and nonsymmetric systems of equations are the minimal residual method, implemented by algorithms such as GMRES, and polynomial preconditioning methods. In this study results are given on the convergence rates of these methods for various classes of matrices. It is shown that for some matrices, such as normal matrices, the convergence rates for GMRES and for the optimal polynomial preconditioning are the same, and for other matrices such as the upper triangular Toeplitz matrices, it is at least assured that if one method converges then the other must converge. On the other hand, it is shown that matrices exist for which restarted GMRES always converges but any polynomial preconditioning of corresponding degree makes no progress toward the solution for some initial error. The implications of these results for these and other iterative methods are discussed.
Fast beampattern evaluation by polynomial rooting
Häcker, P.; Uhlich, S.; Yang, B.
2011-07-01
Current automotive radar systems measure the distance, the relative velocity and the direction of objects in their environment. This information enables the car to support the driver. The direction estimation capabilities of a sensor array depend on its beampattern. To find the array configuration leading to the best angle estimation by a global optimization algorithm, a huge amount of beampatterns have to be calculated to detect their maxima. In this paper, a novel algorithm is proposed to find all maxima of an array's beampattern fast and reliably, leading to accelerated array optimizations. The algorithm works for arrays having the sensors on a uniformly spaced grid. We use a general version of the gcd (greatest common divisor) function in order to write the problem as a polynomial. We differentiate and root the polynomial to get the extrema of the beampattern. In addition, we show a method to reduce the computational burden even more by decreasing the order of the polynomial.
Twisted Polynomials and Forgery Attacks on GCM
DEFF Research Database (Denmark)
Abdelraheem, Mohamed Ahmed A. M. A.; Beelen, Peter; Bogdanov, Andrey
2015-01-01
Polynomial hashing as an instantiation of universal hashing is a widely employed method for the construction of MACs and authenticated encryption (AE) schemes, the ubiquitous GCM being a prominent example. It is also used in recent AE proposals within the CAESAR competition which aim at providing...... in an improved key recovery algorithm. As cryptanalytic applications of our twisted polynomials, we develop the first universal forgery attacks on GCM in the weak-key model that do not require nonce reuse. Moreover, we present universal weak-key forgeries for the nonce-misuse resistant AE scheme POET, which...
Polynomial Vector Fields in One Complex Variable
DEFF Research Database (Denmark)
Branner, Bodil
In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias.......In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias....
The chromatic polynomial and list colorings
DEFF Research Database (Denmark)
Thomassen, Carsten
2009-01-01
We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph.......We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph....
Complex centers of polynomial differential equations
Directory of Open Access Journals (Sweden)
Mohamad Ali M. Alwash
2007-07-01
Full Text Available We present some results on the existence and nonexistence of centers for polynomial first order ordinary differential equations with complex coefficients. In particular, we show that binomial differential equations without linear terms do not have complex centers. Classes of polynomial differential equations, with more than two terms, are presented that do not have complex centers. We also study the relation between complex centers and the Pugh problem. An algorithm is described to solve the Pugh problem for equations without complex centers. The method of proof involves phase plane analysis of the polar equations and a local study of periodic solutions.
Differential recurrence formulae for orthogonal polynomials
Directory of Open Access Journals (Sweden)
Anton L. W. von Bachhaus
1995-11-01
Full Text Available Part I - By combining a general 2nd-order linear homogeneous ordinary differential equation with the three-term recurrence relation possessed by all orthogonal polynomials, it is shown that sequences of orthogonal polynomials which satisfy a differential equation of the above mentioned type necessarily have a differentiation formula of the type: gn(xY'n(x=fn(xYn(x+Yn-1(x. Part II - A recurrence formula of the form: rn(xY'n(x+sn(xY'n+1(x+tn(xY'n-1(x=0, is derived using the result of Part I.
DEM Calibration Approach: design of experiment
Boikov, A. V.; Savelev, R. V.; Payor, V. A.
2018-05-01
The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.
Small catchments DEM creation using Unmanned Aerial Vehicles
Gafurov, A. M.
2018-01-01
Digital elevation models (DEM) are an important source of information on the terrain, allowing researchers to evaluate various exogenous processes. The higher the accuracy of DEM the better the level of the work possible. An important source of data for the construction of DEMs are point clouds obtained with terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAV). In this paper, we present the results of constructing a DEM on small catchments using UAVs. Estimation of the UAV DEM showed comparable accuracy with the TLS if real time kinematic Global Positioning System (RTK-GPS) ground control points (GCPs) and check points (CPs) were used. In this case, the main source of errors in the construction of DEMs are the errors in the referencing of survey results.
International Nuclear Information System (INIS)
Boyd, John P.; Rangan, C.; Bucksbaum, P.H.
2003-01-01
The Fourier-sine-with-mapping pseudospectral algorithm of Fattal et al. [Phys. Rev. E 53 (1996) 1217] has been applied in several quantum physics problems. Here, we compare it with pseudospectral methods using Laguerre functions and rational Chebyshev functions. We show that Laguerre and Chebyshev expansions are better suited for solving problems in the interval r in R set of [0,∞] (for example, the Coulomb-Schroedinger equation), than the Fourier-sine-mapping scheme. All three methods give similar accuracy for the hydrogen atom when the scaling parameter L is optimum, but the Laguerre and Chebyshev methods are less sensitive to variations in L. We introduce a new variant of rational Chebyshev functions which has a more uniform spacing of grid points for large r, and gives somewhat better results than the rational Chebyshev functions of Boyd [J. Comp. Phys. 70 (1987) 63
Polynomial regression analysis and significance test of the regression function
International Nuclear Information System (INIS)
Gao Zhengming; Zhao Juan; He Shengping
2012-01-01
In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)
Nonclassical Orthogonal Polynomials and Corresponding Quadratures
Fukuda, H; Alt, E O; Matveenko, A V
2004-01-01
We construct nonclassical orthogonal polynomials and calculate abscissas and weights of Gaussian quadrature for arbitrary weight and interval. The program is written by Mathematica and it works if moment integrals are given analytically. The result is a FORTRAN subroutine ready to utilize the quadrature.
Intrinsic Diophantine approximation on general polynomial surfaces
DEFF Research Database (Denmark)
Tiljeset, Morten Hein
2017-01-01
We study the Hausdorff measure and dimension of the set of intrinsically simultaneously -approximable points on a curve, surface, etc, given as a graph of integer polynomials. We obtain complete answers to these questions for algebraically “nice” manifolds. This generalizes earlier work done...
Quantum Hilbert matrices and orthogonal polynomials
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Berg, Christian
2009-01-01
Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|<1 , and for the special value they are closely related to Hankel matrice...
Algebraic polynomial system solving and applications
Bleylevens, I.W.M.
2010-01-01
The problem of computing the solutions of a system of multivariate polynomial equations can be approached by the Stetter-Möller matrix method which casts the problem into a large eigenvalue problem. This Stetter-Möller matrix method forms the starting point for the development of computational
Information-theoretic lengths of Jacobi polynomials
Energy Technology Data Exchange (ETDEWEB)
Guerrero, A; Dehesa, J S [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, Granada (Spain); Sanchez-Moreno, P, E-mail: agmartinez@ugr.e, E-mail: pablos@ugr.e, E-mail: dehesa@ugr.e [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain)
2010-07-30
The information-theoretic lengths of the Jacobi polynomials P{sup ({alpha}, {beta})}{sub n}(x), which are information-theoretic measures (Renyi, Shannon and Fisher) of their associated Rakhmanov probability density, are investigated. They quantify the spreading of the polynomials along the orthogonality interval [- 1, 1] in a complementary but different way as the root-mean-square or standard deviation because, contrary to this measure, they do not refer to any specific point of the interval. The explicit expressions of the Fisher length are given. The Renyi lengths are found by the use of the combinatorial multivariable Bell polynomials in terms of the polynomial degree n and the parameters ({alpha}, {beta}). The Shannon length, which cannot be exactly calculated because of its logarithmic functional form, is bounded from below by using sharp upper bounds to general densities on [- 1, +1] given in terms of various expectation values; moreover, its asymptotics is also pointed out. Finally, several computational issues relative to these three quantities are carefully analyzed.
Indecomposability of polynomials via Jacobian matrix
International Nuclear Information System (INIS)
Cheze, G.; Najib, S.
2007-12-01
Uni-multivariate decomposition of polynomials is a special case of absolute factorization. Recently, thanks to the Ruppert's matrix some effective results about absolute factorization have been improved. Here we show that with a jacobian matrix we can get sharper bounds for the special case of uni-multivariate decomposition. (author)
On selfadjoint functors satisfying polynomial relations
DEFF Research Database (Denmark)
Agerholm, Troels; Mazorchuk, Volodomyr
2011-01-01
We study selfadjoint functors acting on categories of finite dimen- sional modules over finite dimensional algebras with an emphasis on functors satisfying some polynomial relations. Selfadjoint func- tors satisfying several easy relations, in particular, idempotents and square roots of a sum...
Polynomial Variables and the Jacobian Problem
Indian Academy of Sciences (India)
algebra and algebraic geometry, and ... algebraically, to making the change of variables (X, Y) r--t. (X +p, Y ... aX + bY + p and eX + dY + q are linear polynomials in X, Y. ..... [5] T T Moh, On the Jacobian conjecture and the confipration of roots,.
Function approximation with polynomial regression slines
International Nuclear Information System (INIS)
Urbanski, P.
1996-01-01
Principles of the polynomial regression splines as well as algorithms and programs for their computation are presented. The programs prepared using software package MATLAB are generally intended for approximation of the X-ray spectra and can be applied in the multivariate calibration of radiometric gauges. (author)
Polynomial stabilization of some dissipative hyperbolic systems
Czech Academy of Sciences Publication Activity Database
Ammari, K.; Feireisl, Eduard; Nicaise, S.
2014-01-01
Roč. 34, č. 11 (2014), s. 4371-4388 ISSN 1078-0947 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : exponential stability * polynomial stability * observability inequality Subject RIV: BA - General Mathematics Impact factor: 0.826, year: 2014 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9924
Polynomial Asymptotes of the Second Kind
Dobbs, David E.
2011-01-01
This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…
Characteristic polynomials of linear polyacenes and their ...
Indian Academy of Sciences (India)
Coefficients of characteristic polynomials (CP) of linear polyacenes (LP) have been shown to be obtainable from Pascal's triangle by using a graph factorisation and squaring technique. Strong subspectrality existing among the members of the linear polyacene series has been shown from the derivation of the CP's. Thus it ...
Coherent states for polynomial su(2) algebra
International Nuclear Information System (INIS)
Sadiq, Muhammad; Inomata, Akira
2007-01-01
A class of generalized coherent states is constructed for a polynomial su(2) algebra in a group-free manner. As a special case, the coherent states for the cubic su(2) algebra are discussed. The states so constructed reduce to the usual SU(2) coherent states in the linear limit
Bernoulli Polynomials, Fourier Series and Zeta Numbers
DEFF Research Database (Denmark)
Scheufens, Ernst E
2013-01-01
Fourier series for Bernoulli polynomials are used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent...
Euler Polynomials, Fourier Series and Zeta Numbers
DEFF Research Database (Denmark)
Scheufens, Ernst E
2012-01-01
Fourier series for Euler polynomials is used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent series....
Automatic Control Systems Modeling by Volterra Polynomials
Directory of Open Access Journals (Sweden)
S. V. Solodusha
2012-01-01
Full Text Available The problem of the existence of the solutions of polynomial Volterra integral equations of the first kind of the second degree is considered. An algorithm of the numerical solution of one class of Volterra nonlinear systems of the first kind is developed. Numerical results for test examples are presented.
Spectral properties of birth-death polynomials
van Doorn, Erik A.
2015-01-01
We consider sequences of polynomials that are defined by a three-terms recurrence relation and orthogonal with respect to a positive measure on the nonnegative axis. By a famous result of Karlin and McGregor such sequences are instrumental in the analysis of birth-death processes. Inspired by
Spectral properties of birth-death polynomials
van Doorn, Erik A.
We consider sequences of polynomials that are defined by a three-terms recurrence relation and orthogonal with respect to a positive measure on the nonnegative axis. By a famous result of Karlin and McGregor such sequences are instrumental in the analysis of birth-death processes. Inspired by
Optimization of Cubic Polynomial Functions without Calculus
Taylor, Ronald D., Jr.; Hansen, Ryan
2008-01-01
In algebra and precalculus courses, students are often asked to find extreme values of polynomial functions in the context of solving an applied problem; but without the notion of derivative, something is lost. Either the functions are reduced to quadratics, since students know the formula for the vertex of a parabola, or solutions are…
transformation of independent variables in polynomial regression ...
African Journals Online (AJOL)
Ada
preferable when possible to work with a simple functional form in transformed variables rather than with a more complicated form in the original variables. In this paper, it is shown that linear transformations applied to independent variables in polynomial regression models affect the t ratio and hence the statistical ...
Inequalities for a Polynomial and its Derivative
Indian Academy of Sciences (India)
Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 110; Issue 2. Inequalities for a Polynomial and its Derivative. V K Jain. Volume 110 Issue 2 May 2000 pp 137- ...
Integral Inequalities for Self-Reciprocal Polynomials
Indian Academy of Sciences (India)
Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 120; Issue 2. Integral Inequalities for Self-Reciprocal Polynomials. Horst Alzer. Volume 120 Issue 2 April 2010 ...
Density of Real Zeros of the Tutte Polynomial
DEFF Research Database (Denmark)
Ok, Seongmin; Perrett, Thomas
2018-01-01
The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane. This ....... This is the first density result for the real zeros of the Tutte polynomial in a region of positive volume. Our result almost confirms a conjecture of Jackson and Sokal except for one region which is related to an open problem on flow polynomials.......The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane...
Density of Real Zeros of the Tutte Polynomial
DEFF Research Database (Denmark)
Ok, Seongmin; Perrett, Thomas
2017-01-01
The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane. This ....... This is the first density result for the real zeros of the Tutte polynomial in a region of positive volume. Our result almost confirms a conjecture of Jackson and Sokal except for one region which is related to an open problem on flow polynomials.......The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane...
Some Polynomials Associated with the r-Whitney Numbers
Indian Academy of Sciences (India)
26
Abstract. In the present article we study three families of polynomials associated with ... [29, 39] for their relations with the Bernoulli and generalized Bernoulli polynomials and ... generating functions in a similar way as in the classical cases.
On an Inequality Concerning the Polar Derivative of a Polynomial
Indian Academy of Sciences (India)
Abstract. In this paper, we present a correct proof of an -inequality concerning the polar derivative of a polynomial with restricted zeros. We also extend Zygmund's inequality to the polar derivative of a polynomial.
2-variable Laguerre matrix polynomials and Lie-algebraic techniques
International Nuclear Information System (INIS)
Khan, Subuhi; Hassan, Nader Ali Makboul
2010-01-01
The authors introduce 2-variable forms of Laguerre and modified Laguerre matrix polynomials and derive their special properties. Further, the representations of the special linear Lie algebra sl(2) and the harmonic oscillator Lie algebra G(0,1) are used to derive certain results involving these polynomials. Furthermore, the generating relations for the ordinary as well as matrix polynomials related to these matrix polynomials are derived as applications.
Algebraic limit cycles in polynomial systems of differential equations
International Nuclear Information System (INIS)
Llibre, Jaume; Zhao Yulin
2007-01-01
Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4
The generalized Yablonskii-Vorob'ev polynomials and their properties
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.; Demina, Maria V.
2008-01-01
Rational solutions of the generalized second Painleve hierarchy are classified. Representation of the rational solutions in terms of special polynomials, the generalized Yablonskii-Vorob'ev polynomials, is introduced. Differential-difference relations satisfied by the polynomials are found. Hierarchies of differential equations related to the generalized second Painleve hierarchy are derived. One of these hierarchies is a sequence of differential equations satisfied by the generalized Yablonskii-Vorob'ev polynomials
Polynomial selection in number field sieve for integer factorization
Directory of Open Access Journals (Sweden)
Gireesh Pandey
2016-09-01
Full Text Available The general number field sieve (GNFS is the fastest algorithm for factoring large composite integers which is made up by two prime numbers. Polynomial selection is an important step of GNFS. The asymptotic runtime depends on choice of good polynomial pairs. In this paper, we present polynomial selection algorithm that will be modelled with size and root properties. The correlations between polynomial coefficient and number of relations have been explored with experimental findings.
Contributions to fuzzy polynomial techniques for stability analysis and control
Pitarch Pérez, José Luis
2014-01-01
The present thesis employs fuzzy-polynomial control techniques in order to improve the stability analysis and control of nonlinear systems. Initially, it reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems, such as the more relevant results about polynomial and fuzzy polynomial systems. The basic framework uses fuzzy polynomial models by Taylor series and sum-of-squares techniques (semidefinite programming) in order to obtain stability guarantees...
Interlacing of zeros of quasi-orthogonal meixner polynomials | Driver ...
African Journals Online (AJOL)
... interlacing of zeros of quasi-orthogonal Meixner polynomials Mn(x;β; c) with the zeros of their nearest orthogonal counterparts Mt(x;β + k; c), l; n ∈ ℕ, k ∈ {1; 2}; is also discussed. Mathematics Subject Classication (2010): 33C45, 42C05. Key words: Discrete orthogonal polynomials, quasi-orthogonal polynomials, Meixner
Strong result for real zeros of random algebraic polynomials
Directory of Open Access Journals (Sweden)
T. Uno
2001-01-01
Full Text Available An estimate is given for the lower bound of real zeros of random algebraic polynomials whose coefficients are non-identically distributed dependent Gaussian random variables. Moreover, our estimated measure of the exceptional set, which is independent of the degree of the polynomials, tends to zero as the degree of the polynomial tends to infinity.
On the Lorentz degree of a product of polynomials
Ait-Haddou, Rachid
2015-01-01
In this note, we negatively answer two questions of T. Erdélyi (1991, 2010) on possible lower bounds on the Lorentz degree of product of two polynomials. We show that the correctness of one question for degree two polynomials is a direct consequence of a result of Barnard et al. (1991) on polynomials with nonnegative coefficients.
A Determinant Expression for the Generalized Bessel Polynomials
Directory of Open Access Journals (Sweden)
Sheng-liang Yang
2013-01-01
Full Text Available Using the exponential Riordan arrays, we show that a variation of the generalized Bessel polynomial sequence is of Sheffer type, and we obtain a determinant formula for the generalized Bessel polynomials. As a result, the Bessel polynomial is represented as determinant the entries of which involve Catalan numbers.
On the estimation of the degree of regression polynomial
International Nuclear Information System (INIS)
Toeroek, Cs.
1997-01-01
The mathematical functions most commonly used to model curvature in plots are polynomials. Generally, the higher the degree of the polynomial, the more complex is the trend that its graph can represent. We propose a new statistical-graphical approach based on the discrete projective transformation (DPT) to estimating the degree of polynomial that adequately describes the trend in the plot
Zeros and uniqueness of Q-difference polynomials of meromorphic ...
Indian Academy of Sciences (India)
Meromorphic functions; Nevanlinna theory; logarithmic order; uniqueness problem; difference-differential polynomial. Abstract. In this paper, we investigate the value distribution of -difference polynomials of meromorphic function of finite logarithmic order, and study the zero distribution of difference-differential polynomials ...
Uniqueness and zeros of q-shift difference polynomials
Indian Academy of Sciences (India)
In this paper, we consider the zero distributions of -shift difference polynomials of meromorphic functions with zero order, and obtain two theorems that extend the classical Hayman results on the zeros of differential polynomials to -shift difference polynomials. We also investigate the uniqueness problem of -shift ...
Polynomially Riesz elements | Živković-Zlatanović | Quaestiones ...
African Journals Online (AJOL)
A Banach algebra element ɑ ∈ A is said to be "polynomially Riesz", relative to the homomorphism T : A → B, if there exists a nonzero complex polynomial p(z) such that the image Tp ∈ B is quasinilpotent. Keywords: Homomorphism of Banach algebras, polynomially Riesz element, Fredholm spectrum, Browder element, ...
Multivariable biorthogonal continuous--discrete Wilson and Racah polynomials
International Nuclear Information System (INIS)
Tratnik, M.V.
1990-01-01
Several families of multivariable, biorthogonal, partly continuous and partly discrete, Wilson polynomials are presented. These yield limit cases that are purely continuous in some of the variables and purely discrete in the others, or purely discrete in all the variables. The latter are referred to as the multivariable biorthogonal Racah polynomials. Interesting further limit cases include the multivariable biorthogonal Hahn and dual Hahn polynomials
Commutators with idempotent values on multilinear polynomials in ...
Indian Academy of Sciences (India)
Multilinear polynomial; derivations; generalized polynomial identity; prime ring; right ideal. Abstract. Let R be a prime ring of characteristic different from 2, C its extended centroid, d a nonzero derivation of R , f ( x 1 , … , x n ) a multilinear polynomial over C , ϱ a nonzero right ideal of R and m > 1 a fixed integer such that.
Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation
Gordon, Sheldon P.; Yang, Yajun
2017-01-01
This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…
Degenerate r-Stirling Numbers and r-Bell Polynomials
Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.
2018-01-01
The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.
Impacts of DEM resolution and area threshold value uncertainty on ...
African Journals Online (AJOL)
... that DEM resolution influences the selected flow accumulation threshold value; the suitable flow accumulation threshold value increases as the DEM resolution increases, and shows greater variability for basins with lower drainage densities. The link between drainage area threshold value and stream network extraction ...
Directory of Open Access Journals (Sweden)
Tianjin Huang
2017-08-01
Full Text Available We present in this paper a polynomial fitting method applicable to segments of footprints measured by the Geoscience Laser Altimeter System (GLAS to estimate glacier thickness change. Our modification makes the method applicable to complex topography, such as a large mountain glacier. After a full analysis of the planar fitting method to characterize errors of estimates due to complex topography, we developed an improved fitting method by adjusting a binary polynomial surface to local topography. The improved method and the planar fitting method were tested on the accumulation areas of the Naimona’nyi glacier and Yanong glacier on along-track facets with lengths of 1000 m, 1500 m, 2000 m, and 2500 m, respectively. The results show that the improved method gives more reliable estimates of changes in elevation than planar fitting. The improved method was also tested on Guliya glacier with a large and relatively flat area and the Chasku Muba glacier with very complex topography. The results in these test sites demonstrate that the improved method can give estimates of glacier thickness change on glaciers with a large area and a complex topography. Additionally, the improved method based on GLAS Data and Shuttle Radar Topography Mission-Digital Elevation Model (SRTM-DEM can give estimates of glacier thickness change from 2000 to 2008/2009, since it takes the 2000 SRTM-DEM as a reference, which is a longer period than 2004 to 2008/2009, when using the GLAS data only and the planar fitting method.
Ilić, Aleksandar D.; Pavlović, Vlastimir D.
2011-01-01
A new original formulation of all pole low-pass filter functions is proposed in this article. The starting point in solving the approximation problem is a direct application of the Christoffel-Darboux formula for the set of orthogonal polynomials, including Gegenbauer orthogonal polynomials in the finite interval [-1, +1] with the application of a weighting function with a single free parameter. A general solution for the filter functions is obtained in a compact explicit form, which is shown to enable generation of the Gegenbauer filter functions in a simple way by choosing the value of the free parameter. Moreover, the proposed solution with the same criterion of approximation could be used to generate Legendre and Chebyshev filter functions of the first and second kind as well. The examples of proposed filter functions of even (10th) and odd (11th) order are illustrated. The approximation is shown to yield a good compromise solution with respect to the filter frequency characteristics (magnitude as well as phase characteristics). The influence of tolerance of the filter critical component (inductor) on the proposed magnitude and group delay characteristics of a resistively terminated LC lossless ladder filter is analysed as well. The proposed filter functions are superior in terms of the excellent magnitude characteristic, which approximates an ideal filter almost perfectly over the entire pass-band range and exhibits the summed sensitivity function better than that of a Butterworth filter. In the article, we present the filter function solution that exhibits optimum amplitude as well as optimum group delay characteristics that are of crucial importance for implementation of digital processing as well as RF analogue parts of communication networks. Derivation of the other band range filter functions, which could be realised either by continuous or digital filters, is also generally possible with the procedure proposed in this article.
Large level crossings of a random polynomial
Directory of Open Access Journals (Sweden)
Kambiz Farahmand
1987-01-01
Full Text Available We know the expected number of times that a polynomial of degree n with independent random real coefficients asymptotically crosses the level K, when K is any real value such that (K2/nÃ¢Â†Â’0 as nÃ¢Â†Â’Ã¢ÂˆÂž. The present paper shows that, when K is allowed to be large, this expected number of crossings reduces to only one. The coefficients of the polynomial are assumed to be normally distributed. It is shown that it is sufficient to let KÃ¢Â‰Â¥exp(nf where f is any function of n such that fÃ¢Â†Â’Ã¢ÂˆÂž as nÃ¢Â†Â’Ã¢ÂˆÂž.
Sparse DOA estimation with polynomial rooting
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Fernandez Grande, Efren
2015-01-01
Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve highresol......Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve...... highresolution imaging. Utilizing the dual optimal variables of the CS optimization problem, it is shown with Monte Carlo simulations that the DOAs are accurately reconstructed through polynomial rooting (Root-CS). Polynomial rooting is known to improve the resolution in several other DOA estimation methods...
On factorization of generalized Macdonald polynomials
International Nuclear Information System (INIS)
Kononov, Ya.; Morozov, A.
2016-01-01
A remarkable feature of Schur functions - the common eigenfunctions of cut-and-join operators from W ∞ - is that they factorize at the peculiar two-parametric topological locus in the space of time variables, which is known as the hook formula for quantum dimensions of representations of U q (SL N ) and which plays a big role in various applications. This factorization survives at the level of Macdonald polynomials. We look for its further generalization to generalized Macdonald polynomials (GMPs), associated in the same way with the toroidal Ding-Iohara-Miki algebras, which play the central role in modern studies in Seiberg-Witten-Nekrasov theory. In the simplest case of the first-coproduct eigenfunctions, where GMP depend on just two sets of time variables, we discover a weak factorization - on a one- (rather than four-) parametric slice of the topological locus, which is already a very non-trivial property, calling for proof and better understanding. (orig.)
Quantum Hurwitz numbers and Macdonald polynomials
Harnad, J.
2016-11-01
Parametric families in the center Z(C[Sn]) of the group algebra of the symmetric group are obtained by identifying the indeterminates in the generating function for Macdonald polynomials as commuting Jucys-Murphy elements. Their eigenvalues provide coefficients in the double Schur function expansion of 2D Toda τ-functions of hypergeometric type. Expressing these in the basis of products of power sum symmetric functions, the coefficients may be interpreted geometrically as parametric families of quantum Hurwitz numbers, enumerating weighted branched coverings of the Riemann sphere. Combinatorially, they give quantum weighted sums over paths in the Cayley graph of Sn generated by transpositions. Dual pairs of bases for the algebra of symmetric functions with respect to the scalar product in which the Macdonald polynomials are orthogonal provide both the geometrical and combinatorial significance of these quantum weighted enumerative invariants.
Polynomial chaos representation of databases on manifolds
Energy Technology Data Exchange (ETDEWEB)
Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-La-Vallée, Cedex 2 (France); Ghanem, R., E-mail: ghanem@usc.edu [University of Southern California, 210 KAP Hall, Los Angeles, CA 90089 (United States)
2017-04-15
Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. The method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.
Polynomial structures in one-loop amplitudes
International Nuclear Information System (INIS)
Britto, Ruth; Feng Bo; Yang Gang
2008-01-01
A general one-loop scattering amplitude may be expanded in terms of master integrals. The coefficients of the master integrals can be obtained from tree-level input in a two-step process. First, use known formulas to write the coefficients of (4-2ε)-dimensional master integrals; these formulas depend on an additional variable, u, which encodes the dimensional shift. Second, convert the u-dependent coefficients of (4-2ε)-dimensional master integrals to explicit coefficients of dimensionally shifted master integrals. This procedure requires the initial formulas for coefficients to have polynomial dependence on u. Here, we give a proof of this property in the case of massless propagators. The proof is constructive. Thus, as a byproduct, we produce different algebraic expressions for the scalar integral coefficients, in which the polynomial property is apparent. In these formulas, the box and pentagon contributions are separated explicitly.
Link polynomial, crossing multiplier and surgery formula
International Nuclear Information System (INIS)
Deguchi, Tetsuo; Yamada, Yasuhiko.
1989-01-01
Relations between link polynomials constructed from exactly solvable lattice models and topological field theory are reviewed. It is found that the surgery formula for a three-sphere S 3 with Wilson lines corresponds to the Markov trace constructed from the exactly solvable models. This indicates that knot theory intimately relates various important subjects such as exactly solvable models, conformal field theories and topological quantum field theories. (author)
Completeness of the ring of polynomials
DEFF Research Database (Denmark)
Thorup, Anders
2015-01-01
Consider the polynomial ring R:=k[X1,…,Xn]R:=k[X1,…,Xn] in n≥2n≥2 variables over an uncountable field k. We prove that R is complete in its adic topology, that is, the translation invariant topology in which the non-zero ideals form a fundamental system of neighborhoods of 0. In addition we pro...
Moments, positive polynomials and their applications
Lasserre, Jean Bernard
2009-01-01
Many important applications in global optimization, algebra, probability and statistics, applied mathematics, control theory, financial mathematics, inverse problems, etc. can be modeled as a particular instance of the Generalized Moment Problem (GMP) . This book introduces a new general methodology to solve the GMP when its data are polynomials and basic semi-algebraic sets. This methodology combines semidefinite programming with recent results from real algebraic geometry to provide a hierarchy of semidefinite relaxations converging to the desired optimal value. Applied on appropriate cones,
Polynomials and identities on real Banach spaces
Czech Academy of Sciences Publication Activity Database
Hájek, Petr Pavel; Kraus, M.
2012-01-01
Roč. 385, č. 2 (2012), s. 1015-1026 ISSN 0022-247X R&D Projects: GA ČR(CZ) GAP201/11/0345 Institutional research plan: CEZ:AV0Z10190503 Keywords : Polynomials on Banach spaces Subject RIV: BA - General Mathematics Impact factor: 1.050, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022247X11006743
Eye aberration analysis with Zernike polynomials
Molebny, Vasyl V.; Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.
1998-06-01
New horizons for accurate photorefractive sight correction, afforded by novel flying spot technologies, require adequate measurements of photorefractive properties of an eye. Proposed techniques of eye refraction mapping present results of measurements for finite number of points of eye aperture, requiring to approximate these data by 3D surface. A technique of wave front approximation with Zernike polynomials is described, using optimization of the number of polynomial coefficients. Criterion of optimization is the nearest proximity of the resulted continuous surface to the values calculated for given discrete points. Methodology includes statistical evaluation of minimal root mean square deviation (RMSD) of transverse aberrations, in particular, varying consecutively the values of maximal coefficient indices of Zernike polynomials, recalculating the coefficients, and computing the value of RMSD. Optimization is finished at minimal value of RMSD. Formulas are given for computing ametropia, size of the spot of light on retina, caused by spherical aberration, coma, and astigmatism. Results are illustrated by experimental data, that could be of interest for other applications, where detailed evaluation of eye parameters is needed.
ASPECTS OF DEM GENERATION FROM UAS IMAGERY
Directory of Open Access Journals (Sweden)
A. Greiwe
2013-08-01
Full Text Available Since a few years, micro UAS (unmanned aerial systems with vertical take off and landing capabilities like quadro- or octocopter are used as sensor platform for Aerophotogrammetry. Since the restricted payload of micro UAS with a total weight up of 5 kg (payload only up to 1.5 kg, these systems are often equipped with small format cameras. These cameras can be classified as amateur cameras and it is often the case, that these systems do not meet the requirements of a geometric stable camera for photogrammetric measurement purposes. However, once equipped with a suitable camera system, an UAS is an interesting alternative to expensive manned flights for small areas. The operating flight height of the above described UAS is about 50 up to 150 meters above ground level. This low flight height lead on the one hand to a very high spatial resolution of the aerial imagery. Depending on the cameras focal length and the sensor's pixel size, the ground sampling distance (GSD is usually about 1 up to 5 cm. This high resolution is useful especially for the automatic generation of homologous tie-points, which are a precondition for the image alignment (bundle block adjustment. On the other hand, the image scale depends on the object's height and the UAV operating height. Objects like mine heaps or construction sites show high variations of the object's height. As a result, operating the UAS with a constant flying height will lead to high variations in the image scale. For some processing approaches this will lead to problems e.g. the automatic tie-point generation in stereo image pairs. As precondition to all DEM generating approaches, first of all a geometric stable camera, sharp images are essentially. Well known calibration parameters are necessary for the bundle adjustment, to control the exterior orientations. It can be shown, that a simultaneous on site camera calibration may lead to misaligned aerial images. Also, the success rate of an automatic tie
Hydraulic fracturing - an attempt of DEM simulation
Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech
2017-04-01
Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.
A Polynomial Estimate of Railway Line Delay
DEFF Research Database (Denmark)
Cerreto, Fabrizio; Harrod, Steven; Nielsen, Otto Anker
2017-01-01
Railway service may be measured by the aggregate delay over a time horizon or due to an event. Timetables for railway service may dampen aggregate delay by addition of additional process time, either supplement time or buffer time. The evaluation of these variables has previously been performed...... by numerical analysis with simulation. This paper proposes an analytical estimate of aggregate delay with a polynomial form. The function returns the aggregate delay of a railway line resulting from an initial, primary, delay. Analysis of the function demonstrates that there should be a balance between the two...
Conditional Density Approximations with Mixtures of Polynomials
DEFF Research Database (Denmark)
Varando, Gherardo; López-Cruz, Pedro L.; Nielsen, Thomas Dyhre
2015-01-01
Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce...... two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities...
Digital Elevation Models (DEMs) for the main 8 Hawaiian Islands
National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation model (DEM) data are arrays of regularly spaced elevation values referenced horizontally either to a Universal Transverse Mercator (UTM) projection...
VT USGS NED Hydro-flattened DEM (30 meter) - statewide
Vermont Center for Geographic Information — (Link to Metadata) VTHYDRODEM was created to produce a "hydrologically correct" DEM, compliant with the Vermont Hydrography Dataset (VHD) in support of the "flow...
An Overview of the CapDEM Integrated Engineering Environment
National Research Council Canada - National Science Library
Lam, Sylvia; Poursina, Shiva; Spafford, Tim
2005-01-01
In order to gain a better understanding of the approach and the technology requirements to support collaborative engineering activities, the Collaborative Capability Definition, Engineering and Management (CapDEM...
2015 USACE NCMP Topobathy Lidar DEM: Avalon (NJ)
National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...
IceBridge DMS L3 Photogrammetric DEM
National Aeronautics and Space Administration — The IceBridge DMS L3 Photogrammetric DEM (IODMS3) data set contains gridded digital elevation models and orthorectified images of Greenland derived from the Digital...
2013 USACE NCMP Topobathy Lidar DEM: Niihau (HI)
National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...
2015 USACE NCMP Topobathy Lidar DEM: Sand Island (WA)
National Oceanic and Atmospheric Administration, Department of Commerce — These Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 m grid size, generated from data collected by the Coastal Zone Mapping...
2016 USACE NCMP Topobathy Lidar DEM: Gulf Coast (TX)
National Oceanic and Atmospheric Administration, Department of Commerce — These bare earth Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations at a 1 meter grid size, generated from data collected by the...
2016 NOAA Topobathy Lidar DEM: Upper Lake Michigan Islands
National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) was created from data collected by Leading Edge Geomatics using a Leica Chiroptera II Bathymetric & Topographic Sensor. The...
2015 USACE NCMP Topobathy Lidar DEM: Egmont Key (FL)
National Oceanic and Atmospheric Administration, Department of Commerce — These 1 m gridded bare earth Digital Elevation Model (DEM) files contain rasterized topobathy lidar elevations generated from data collected by the Coastal Zone...
Greenland 5 km DEM, Ice Thickness, and Bedrock Elevation Grids
National Aeronautics and Space Administration — A Digital Elevation Model (DEM), ice thickness grid, and bedrock elevation grid of Greenland acquired as part of the PARCA program are available in ASCII text format...
Boreal forest biomass classification with TanDEM-X
Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Hajnsek, Irena
2013-01-01
High spatial resolution X-band interferometric SAR data from the TanDEM-X, in the operational DEM generation mode, are sensitive to forest structure and can therefore be used for thematic boreal forest classification of forest environments. The interferometric coherence in absence of temporal decorrelation depends strongly on forest height and structure. Due to the rather homogenous structure of boreal forest, forest biomass can be derived from forest height, on the basis of allometric equati...
Neues aus dem Forschungsfeld Deutsch als Zweitsprache. Sammelrezension
Directory of Open Access Journals (Sweden)
Claus Altmayer
2015-03-01
Full Text Available Neues aus dem Forschungsfeld Deutsch als Zweitsprache. Sammelrezension (Teil 2 von Bernt Ahrenholz (Hrsg. (2009, Empirische Befunde zu DaZ-Erwerb und Sprachförderung. Beiträge aus dem 3. ‚Workshop Kinder mit Migrationshintergrund‘; Karen Schramm & Christoph Schröder (Hrsg. (2009, Empirische Zugänge zu Spracherwerb und Sprachförderung in Deutsch als Zweitsprache; Stefan Jeuk (2010, Deutsch als Zweitsprache in der Schule. Grundlagen - Diagnose – Förderung
Polynomial solutions of the Monge-Ampère equation
Energy Technology Data Exchange (ETDEWEB)
Aminov, Yu A [B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar' kov (Ukraine)
2014-11-30
The question of the existence of polynomial solutions to the Monge-Ampère equation z{sub xx}z{sub yy}−z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is a polynomial. It is proved that if f is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the x, y-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction of such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.
Linear operator pencils on Lie algebras and Laurent biorthogonal polynomials
International Nuclear Information System (INIS)
Gruenbaum, F A; Vinet, Luc; Zhedanov, Alexei
2004-01-01
We study operator pencils on generators of the Lie algebras sl 2 and the oscillator algebra. These pencils are linear in a spectral parameter λ. The corresponding generalized eigenvalue problem gives rise to some sets of orthogonal polynomials and Laurent biorthogonal polynomials (LBP) expressed in terms of the Gauss 2 F 1 and degenerate 1 F 1 hypergeometric functions. For special choices of the parameters of the pencils, we identify the resulting polynomials with the Hendriksen-van Rossum LBP which are widely believed to be the biorthogonal analogues of the classical orthogonal polynomials. This places these examples under the umbrella of the generalized bispectral problem which is considered here. Other (non-bispectral) cases give rise to some 'nonclassical' orthogonal polynomials including Tricomi-Carlitz and random-walk polynomials. An application to solutions of relativistic Toda chain is considered
Least squares orthogonal polynomial approximation in several independent variables
International Nuclear Information System (INIS)
Caprari, R.S.
1992-06-01
This paper begins with an exposition of a systematic technique for generating orthonormal polynomials in two independent variables by application of the Gram-Schmidt orthogonalization procedure of linear algebra. It is then demonstrated how a linear least squares approximation for experimental data or an arbitrary function can be generated from these polynomials. The least squares coefficients are computed without recourse to matrix arithmetic, which ensures both numerical stability and simplicity of implementation as a self contained numerical algorithm. The Gram-Schmidt procedure is then utilised to generate a complete set of orthogonal polynomials of fourth degree. A theory for the transformation of the polynomial representation from an arbitrary basis into the familiar sum of products form is presented, together with a specific implementation for fourth degree polynomials. Finally, the computational integrity of this algorithm is verified by reconstructing arbitrary fourth degree polynomials from their values at randomly chosen points in their domain. 13 refs., 1 tab
Need for higher order polynomial basis for polynomial nodal methods employed in LWR calculations
International Nuclear Information System (INIS)
Taiwo, T.A.; Palmiotti, G.
1997-01-01
The paper evaluates the accuracy and efficiency of sixth order polynomial solutions and the use of one radial node per core assembly for pressurized water reactor (PWR) core power distributions and reactivities. The computer code VARIANT was modified to calculate sixth order polynomial solutions for a hot zero power benchmark problem in which a control assembly along a core axis is assumed to be out of the core. Results are presented for the VARIANT, DIF3D-NODAL, and DIF3D-finite difference codes. The VARIANT results indicate that second order expansion of the within-node source and linear representation of the node surface currents are adequate for this problem. The results also demonstrate the improvement in the VARIANT solution when the order of the polynomial expansion of the within-node flux is increased from fourth to sixth order. There is a substantial saving in computational time for using one radial node per assembly with the sixth order expansion compared to using four or more nodes per assembly and fourth order polynomial solutions. 11 refs., 1 tab
Czech Academy of Sciences Publication Activity Database
Knížek, J.; Tichý, Petr; Beránek, L.; Šindelář, Jan; Vojtěšek, B.; Bouchal, P.; Nenutil, R.; Dedík, O.
2010-01-01
Roč. 7, č. 10 (2010), s. 48-60 ISSN 0974-5718 Grant - others:GA MZd(CZ) NS9812; GA ČR(CZ) GAP304/10/0868 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10750506 Keywords : polynomial regression * orthogonalization * numerical methods * markers * biomarkers Subject RIV: BA - General Mathematics
Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
Ndayiragije, François; Van Assche, Walter
2013-01-01
Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to $r>1$ different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Followi...
On Roots of Polynomials and Algebraically Closed Fields
Directory of Open Access Journals (Sweden)
Schwarzweller Christoph
2017-10-01
Full Text Available In this article we further extend the algebraic theory of polynomial rings in Mizar [1, 2, 3]. We deal with roots and multiple roots of polynomials and show that both the real numbers and finite domains are not algebraically closed [5, 7]. We also prove the identity theorem for polynomials and that the number of multiple roots is bounded by the polynomial’s degree [4, 6].
Open Problems Related to the Hurwitz Stability of Polynomials Segments
Directory of Open Access Journals (Sweden)
Baltazar Aguirre-Hernández
2018-01-01
Full Text Available In the framework of robust stability analysis of linear systems, the development of techniques and methods that help to obtain necessary and sufficient conditions to determine stability of convex combinations of polynomials is paramount. In this paper, knowing that Hurwitz polynomials set is not a convex set, a brief overview of some results and open problems concerning the stability of the convex combinations of Hurwitz polynomials is then provided.
General quantum polynomials: irreducible modules and Morita equivalence
International Nuclear Information System (INIS)
Artamonov, V A
1999-01-01
In this paper we continue the investigation of the structure of finitely generated modules over rings of general quantum (Laurent) polynomials. We obtain a description of the lattice of submodules of periodic finitely generated modules and describe the irreducible modules. We investigate the problem of Morita equivalence of rings of general quantum polynomials, consider properties of division rings of fractions, and solve Zariski's problem for quantum polynomials
Applications of polynomial optimization in financial risk investment
Zeng, Meilan; Fu, Hongwei
2017-09-01
Recently, polynomial optimization has many important applications in optimization, financial economics and eigenvalues of tensor, etc. This paper studies the applications of polynomial optimization in financial risk investment. We consider the standard mean-variance risk measurement model and the mean-variance risk measurement model with transaction costs. We use Lasserre's hierarchy of semidefinite programming (SDP) relaxations to solve the specific cases. The results show that polynomial optimization is effective for some financial optimization problems.
Root and Critical Point Behaviors of Certain Sums of Polynomials
Indian Academy of Sciences (India)
13
There is an extensive literature concerning roots of sums of polynomials. Many papers and books([5], [6],. [7]) have written about these polynomials. Perhaps the most immediate question of sums of polynomials,. A + B = C, is “given bounds for the roots of A and B, what bounds can be given for the roots of C?” By. Fell [3], if ...
Simulation of aspheric tolerance with polynomial fitting
Li, Jing; Cen, Zhaofeng; Li, Xiaotong
2018-01-01
The shape of the aspheric lens changes caused by machining errors, resulting in a change in the optical transfer function, which affects the image quality. At present, there is no universally recognized tolerance criterion standard for aspheric surface. To study the influence of aspheric tolerances on the optical transfer function, the tolerances of polynomial fitting are allocated on the aspheric surface, and the imaging simulation is carried out by optical imaging software. Analysis is based on a set of aspheric imaging system. The error is generated in the range of a certain PV value, and expressed as a form of Zernike polynomial, which is added to the aspheric surface as a tolerance term. Through optical software analysis, the MTF of optical system can be obtained and used as the main evaluation index. Evaluate whether the effect of the added error on the MTF of the system meets the requirements of the current PV value. Change the PV value and repeat the operation until the acceptable maximum allowable PV value is obtained. According to the actual processing technology, consider the error of various shapes, such as M type, W type, random type error. The new method will provide a certain development for the actual free surface processing technology the reference value.
Quadratic polynomial interpolation on triangular domain
Li, Ying; Zhang, Congcong; Yu, Qian
2018-04-01
In the simulation of natural terrain, the continuity of sample points are not in consonance with each other always, traditional interpolation methods often can't faithfully reflect the shape information which lie in data points. So, a new method for constructing the polynomial interpolation surface on triangular domain is proposed. Firstly, projected the spatial scattered data points onto a plane and then triangulated them; Secondly, A C1 continuous piecewise quadric polynomial patch was constructed on each vertex, all patches were required to be closed to the line-interpolation one as far as possible. Lastly, the unknown quantities were gotten by minimizing the object functions, and the boundary points were treated specially. The result surfaces preserve as many properties of data points as possible under conditions of satisfying certain accuracy and continuity requirements, not too convex meantime. New method is simple to compute and has a good local property, applicable to shape fitting of mines and exploratory wells and so on. The result of new surface is given in experiments.
On factorization of generalized Macdonald polynomials
Energy Technology Data Exchange (ETDEWEB)
Kononov, Ya. [Landau Institute for Theoretical Physics, Chernogolovka (Russian Federation); HSE, Math Department, Moscow (Russian Federation); Morozov, A. [ITEP, Moscow (Russian Federation); Institute for Information Transmission Problems, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation)
2016-08-15
A remarkable feature of Schur functions - the common eigenfunctions of cut-and-join operators from W{sub ∞} - is that they factorize at the peculiar two-parametric topological locus in the space of time variables, which is known as the hook formula for quantum dimensions of representations of U{sub q}(SL{sub N}) and which plays a big role in various applications. This factorization survives at the level of Macdonald polynomials. We look for its further generalization to generalized Macdonald polynomials (GMPs), associated in the same way with the toroidal Ding-Iohara-Miki algebras, which play the central role in modern studies in Seiberg-Witten-Nekrasov theory. In the simplest case of the first-coproduct eigenfunctions, where GMP depend on just two sets of time variables, we discover a weak factorization - on a one- (rather than four-) parametric slice of the topological locus, which is already a very non-trivial property, calling for proof and better understanding. (orig.)
Positive trigonometric polynomials and signal processing applications
Dumitrescu, Bogdan
2017-01-01
This revised edition is made up of two parts: theory and applications. Though many of the fundamental results are still valid and used, new and revised material is woven throughout the text. As with the original book, the theory of sum-of-squares trigonometric polynomials is presented unitarily based on the concept of Gram matrix (extended to Gram pair or Gram set). The programming environment has also evolved, and the books examples are changed accordingly. The applications section is organized as a collection of related problems that use systematically the theoretical results. All the problems are brought to a semi-definite programming form, ready to be solved with algorithms freely available, like those from the libraries SeDuMi, CVX and Pos3Poly. A new chapter discusses applications in super-resolution theory, where Bounded Real Lemma for trigonometric polynomials is an important tool. This revision is written to be more appealing and easier to use for new readers. < Features updated information on LMI...
On factorization of generalized Macdonald polynomials
Kononov, Ya.; Morozov, A.
2016-08-01
A remarkable feature of Schur functions—the common eigenfunctions of cut-and-join operators from W_∞ —is that they factorize at the peculiar two-parametric topological locus in the space of time variables, which is known as the hook formula for quantum dimensions of representations of U_q(SL_N) and which plays a big role in various applications. This factorization survives at the level of Macdonald polynomials. We look for its further generalization to generalized Macdonald polynomials (GMPs), associated in the same way with the toroidal Ding-Iohara-Miki algebras, which play the central role in modern studies in Seiberg-Witten-Nekrasov theory. In the simplest case of the first-coproduct eigenfunctions, where GMP depend on just two sets of time variables, we discover a weak factorization—on a one- (rather than four-) parametric slice of the topological locus, which is already a very non-trivial property, calling for proof and better understanding.
From sequences to polynomials and back, via operator orderings
Energy Technology Data Exchange (ETDEWEB)
Amdeberhan, Tewodros, E-mail: tamdeber@tulane.edu; Dixit, Atul, E-mail: adixit@tulane.edu; Moll, Victor H., E-mail: vhm@tulane.edu [Department of Mathematics, Tulane University, New Orleans, Louisiana 70118 (United States); De Angelis, Valerio, E-mail: vdeangel@xula.edu [Department of Mathematics, Xavier University of Louisiana, New Orleans, Louisiana 70125 (United States); Vignat, Christophe, E-mail: vignat@tulane.edu [Department of Mathematics, Tulane University, New Orleans, Louisiana 70118, USA and L.S.S. Supelec, Universite d' Orsay (France)
2013-12-15
Bender and Dunne [“Polynomials and operator orderings,” J. Math. Phys. 29, 1727–1731 (1988)] showed that linear combinations of words q{sup k}p{sup n}q{sup n−k}, where p and q are subject to the relation qp − pq = ı, may be expressed as a polynomial in the symbol z=1/2 (qp+pq). Relations between such polynomials and linear combinations of the transformed coefficients are explored. In particular, examples yielding orthogonal polynomials are provided.
On Multiple Interpolation Functions of the -Genocchi Polynomials
Directory of Open Access Journals (Sweden)
Jin Jeong-Hee
2010-01-01
Full Text Available Abstract Recently, many mathematicians have studied various kinds of the -analogue of Genocchi numbers and polynomials. In the work (New approach to q-Euler, Genocchi numbers and their interpolation functions, "Advanced Studies in Contemporary Mathematics, vol. 18, no. 2, pp. 105–112, 2009.", Kim defined new generating functions of -Genocchi, -Euler polynomials, and their interpolation functions. In this paper, we give another definition of the multiple Hurwitz type -zeta function. This function interpolates -Genocchi polynomials at negative integers. Finally, we also give some identities related to these polynomials.
Generalized Pseudospectral Method and Zeros of Orthogonal Polynomials
Directory of Open Access Journals (Sweden)
Oksana Bihun
2018-01-01
Full Text Available Via a generalization of the pseudospectral method for numerical solution of differential equations, a family of nonlinear algebraic identities satisfied by the zeros of a wide class of orthogonal polynomials is derived. The generalization is based on a modification of pseudospectral matrix representations of linear differential operators proposed in the paper, which allows these representations to depend on two, rather than one, sets of interpolation nodes. The identities hold for every polynomial family pνxν=0∞ orthogonal with respect to a measure supported on the real line that satisfies some standard assumptions, as long as the polynomials in the family satisfy differential equations Apν(x=qν(xpν(x, where A is a linear differential operator and each qν(x is a polynomial of degree at most n0∈N; n0 does not depend on ν. The proposed identities generalize known identities for classical and Krall orthogonal polynomials, to the case of the nonclassical orthogonal polynomials that belong to the class described above. The generalized pseudospectral representations of the differential operator A for the case of the Sonin-Markov orthogonal polynomials, also known as generalized Hermite polynomials, are presented. The general result is illustrated by new algebraic relations satisfied by the zeros of the Sonin-Markov polynomials.
Cvitaš, Marko T; Althorpe, Stuart C
2013-08-14
We extend a recently developed wave packet method for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)] to include the Chebyshev propagator. The method uses the further partitioned approach to reactant-product decoupling, which uses artificial decoupling potentials to partition the coordinate space of the reaction into separate reactant, product, and transition-state regions. Separate coordinates and basis sets can then be used that are best adapted to each region. We derive improved Chebyshev partitioning formulas which include Mandelshtam-and-Taylor-type decoupling potentials, and which are essential for the non-unitary discrete variable representations that must be used in 4-atom reactive scattering calculations. Numerical tests on the fully dimensional OH + H2 → H2O + H reaction for J = 0 show that the new version of the method is as efficient as the previously developed split-operator version. The advantages of the Chebyshev propagator (most notably the ease of parallelization for J > 0) can now be fully exploited in state-to-state reactive scattering calculations on 4-atom reactions.
Relations between zeros of special polynomials associated with the Painleve equations
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.; Demina, Maria V.
2007-01-01
A method for finding relations of roots of polynomials is presented. Our approach allows us to get a number of relations between the zeros of the classical polynomials as well as the roots of special polynomials associated with rational solutions of the Painleve equations. We apply the method to obtain the relations for the zeros of several polynomials. These are: the Hermite polynomials, the Laguerre polynomials, the Yablonskii-Vorob'ev polynomials, the generalized Okamoto polynomials, and the generalized Hermite polynomials. All the relations found can be considered as analogues of generalized Stieltjes relations
Current advances on polynomial resultant formulations
Sulaiman, Surajo; Aris, Nor'aini; Ahmad, Shamsatun Nahar
2017-08-01
Availability of computer algebra systems (CAS) lead to the resurrection of the resultant method for eliminating one or more variables from the polynomials system. The resultant matrix method has advantages over the Groebner basis and Ritt-Wu method due to their high complexity and storage requirement. This paper focuses on the current resultant matrix formulations and investigates their ability or otherwise towards producing optimal resultant matrices. A determinantal formula that gives exact resultant or a formulation that can minimize the presence of extraneous factors in the resultant formulation is often sought for when certain conditions that it exists can be determined. We present some applications of elimination theory via resultant formulations and examples are given to explain each of the presented settings.
Differential operators associated with Hermite polynomials
International Nuclear Information System (INIS)
Onyango Otieno, V.P.
1989-09-01
This paper considers the boundary value problems for the Hermite differential equation -(e -x2 y'(x))'+e -x2 y(x)=λe -x2 y(x), (x is an element of (-∞, ∞)) in both the so-called right-definite and left-definite cases based partly on a classical approach due to E.C. Titchmarsh. We then link the Titchmarsh approach with operator theoretic results in the spaces L w 2 (-∞, ∞) and H p,q 2 (-∞, ∞). The results in the left-definite case provide an indirect proof of the completeness of the Hermite polynomials in L w 2 (-∞, ∞). (author). 17 refs
Connection coefficients between Boas-Buck polynomial sets
Cheikh, Y. Ben; Chaggara, H.
2006-07-01
In this paper, a general method to express explicitly connection coefficients between two Boas-Buck polynomial sets is presented. As application, we consider some generalized hypergeometric polynomials, from which we derive some well-known results including duplication and inversion formulas.
Mathematical Use Of Polynomials Of Different End Periods Of ...
African Journals Online (AJOL)
This paper focused on how polynomials of different end period of random numbers can be used in the application of encryption and decryption of a message. Eight steps were used in generating information on how polynomials of different end periods of random numbers in the application of encryption and decryption of a ...
On the Lorentz degree of a product of polynomials
Ait-Haddou, Rachid
2015-01-01
In this note, we negatively answer two questions of T. Erdélyi (1991, 2010) on possible lower bounds on the Lorentz degree of product of two polynomials. We show that the correctness of one question for degree two polynomials is a direct consequence
Exponential time paradigms through the polynomial time lens
Drucker, A.; Nederlof, J.; Santhanam, R.; Sankowski, P.; Zaroliagis, C.
2016-01-01
We propose a general approach to modelling algorithmic paradigms for the exact solution of NP-hard problems. Our approach is based on polynomial time reductions to succinct versions of problems solvable in polynomial time. We use this viewpoint to explore and compare the power of paradigms such as
On polynomial selection for the general number field sieve
Kleinjung, Thorsten
2006-12-01
The general number field sieve (GNFS) is the asymptotically fastest algorithm for factoring large integers. Its runtime depends on a good choice of a polynomial pair. In this article we present an improvement of the polynomial selection method of Montgomery and Murphy which has been used in recent GNFS records.
A Combinatorial Proof of a Result on Generalized Lucas Polynomials
Directory of Open Access Journals (Sweden)
Laugier Alexandre
2016-09-01
Full Text Available We give a combinatorial proof of an elementary property of generalized Lucas polynomials, inspired by [1]. These polynomials in s and t are defined by the recurrence relation 〈n〉 = s〈n-1〉+t〈n-2〉 for n ≥ 2. The initial values are 〈0〉 = 2; 〈1〉= s, respectively.
Animating Nested Taylor Polynomials to Approximate a Function
Mazzone, Eric F.; Piper, Bruce R.
2010-01-01
The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…
Some Results on the Independence Polynomial of Unicyclic Graphs
Directory of Open Access Journals (Sweden)
Oboudi Mohammad Reza
2018-05-01
Full Text Available Let G be a simple graph on n vertices. An independent set in a graph is a set of pairwise non-adjacent vertices. The independence polynomial of G is the polynomial I(G,x=∑k=0ns(G,kxk$I(G,x = \\sum\
Generalized Freud's equation and level densities with polynomial
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 2. Generalized Freud's equation and level densities with polynomial potential. Akshat Boobna Saugata Ghosh. Research Articles Volume 81 ... Keywords. Orthogonal polynomial; Freud's equation; Dyson–Mehta method; methods of resolvents; level density.
Algumas anedotas sobre Demóstenes: uma releitura
Directory of Open Access Journals (Sweden)
Maddalena Vallozza
2013-06-01
Full Text Available Muitas das anedotas sobre Demóstenes estão relacionados a seus problemas de voz e a suas dificuldades no momento da hypokrisis. Eu proponho uma reinterpretação das páginas em que eles nos são transmitidos: de Quintiliano (11, 3, a principal testemunha, a Cícero (Orator 26 e 56-58, Brutus 142, De Oratore I 261 e III 213, do autor da seção sobre Demóstenes nas Vidas dos Dez Oradores (844 d-845 b à Vida de Demóstene, de Plutarco. Com base nisso, particularmente graças a Plutarco, que cita Hermipo e Demétrio de Fáleros, é possível formular a hipótese de que a tradição nasceu no Perípato, na área de interesses pela hypokrisis que demonstram o perdido Perì hypokríseos de Teofrasto e os fragmentos da Retórica de Demétrio de Fáleros.
Higher order branching of periodic orbits from polynomial isochrones
Directory of Open Access Journals (Sweden)
B. Toni
1999-09-01
Full Text Available We discuss the higher order local bifurcations of limit cycles from polynomial isochrones (linearizable centers when the linearizing transformation is explicitly known and yields a polynomial perturbation one-form. Using a method based on the relative cohomology decomposition of polynomial one-forms complemented with a step reduction process, we give an explicit formula for the overall upper bound of branch points of limit cycles in an arbitrary $n$ degree polynomial perturbation of the linear isochrone, and provide an algorithmic procedure to compute the upper bound at successive orders. We derive a complete analysis of the nonlinear cubic Hamiltonian isochrone and show that at most nine branch points of limit cycles can bifurcate in a cubic polynomial perturbation. Moreover, perturbations with exactly two, three, four, six, and nine local families of limit cycles may be constructed.
Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations
DEFF Research Database (Denmark)
Sørensen, Dan Erik Krarup
1996-01-01
We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...
q-analogue of the Krawtchouk and Meixner orthogonal polynomials
International Nuclear Information System (INIS)
Campigotto, C.; Smirnov, Yu.F.; Enikeev, S.G.
1993-06-01
The comparative analysis of Krawtchouk polynomials on a uniform grid with Wigner D-functions for the SU(2) group is presented. As a result the partnership between corresponding properties of the polynomials and D-functions is established giving the group-theoretical interpretation of the Krawtchouk polynomials properties. In order to extend such an analysis on the quantum groups SU q (2) and SU q (1,1), q-analogues of Krawtchouk and Meixner polynomials of a discrete variable are studied. The total set of characteristics of these polynomials is calculated, including the orthogonality condition, normalization factor, recurrent relation, the explicit analytic expression, the Rodrigues formula, the difference derivative formula and various particular cases and values. (R.P.) 22 refs.; 2 tabs
Primitive polynomials selection method for pseudo-random number generator
Anikin, I. V.; Alnajjar, Kh
2018-01-01
In this paper we suggested the method for primitive polynomials selection of special type. This kind of polynomials can be efficiently used as a characteristic polynomials for linear feedback shift registers in pseudo-random number generators. The proposed method consists of two basic steps: finding minimum-cost irreducible polynomials of the desired degree and applying primitivity tests to get the primitive ones. Finally two primitive polynomials, which was found by the proposed method, used in pseudorandom number generator based on fuzzy logic (FRNG) which had been suggested before by the authors. The sequences generated by new version of FRNG have low correlation magnitude, high linear complexity, less power consumption, is more balanced and have better statistical properties.
Orthogonal polynomials derived from the tridiagonal representation approach
Alhaidari, A. D.
2018-01-01
The tridiagonal representation approach is an algebraic method for solving second order differential wave equations. Using this approach in the solution of quantum mechanical problems, we encounter two new classes of orthogonal polynomials whose properties give the structure and dynamics of the corresponding physical system. For a certain range of parameters, one of these polynomials has a mix of continuous and discrete spectra making it suitable for describing physical systems with both scattering and bound states. In this work, we define these polynomials by their recursion relations and highlight some of their properties using numerical means. Due to the prime significance of these polynomials in physics, we hope that our short expose will encourage experts in the field of orthogonal polynomials to study them and derive their properties (weight functions, generating functions, asymptotics, orthogonality relations, zeros, etc.) analytically.
Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
International Nuclear Information System (INIS)
Ndayiragije, F; Van Assche, W
2013-01-01
Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to r > 1 different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Following a recent construction of Miki, Tsujimoto, Vinet and Zhedanov (for multiple Meixner polynomials of the first kind), we construct r > 1 non-Hermitian oscillator Hamiltonians in r dimensions which are simultaneously diagonalizable and for which the common eigenstates are expressed in terms of multiple Meixner polynomials of the second kind. (paper)
Polynomial fuzzy model-based approach for underactuated surface vessels
DEFF Research Database (Denmark)
Khooban, Mohammad Hassan; Vafamand, Navid; Dragicevic, Tomislav
2018-01-01
The main goal of this study is to introduce a new polynomial fuzzy model-based structure for a class of marine systems with non-linear and polynomial dynamics. The suggested technique relies on a polynomial Takagi–Sugeno (T–S) fuzzy modelling, a polynomial dynamic parallel distributed compensation...... surface vessel (USV). Additionally, in order to overcome the USV control challenges, including the USV un-modelled dynamics, complex nonlinear dynamics, external disturbances and parameter uncertainties, the polynomial fuzzy model representation is adopted. Moreover, the USV-based control structure...... and a sum-of-squares (SOS) decomposition. The new proposed approach is a generalisation of the standard T–S fuzzy models and linear matrix inequality which indicated its effectiveness in decreasing the tracking time and increasing the efficiency of the robust tracking control problem for an underactuated...
A note on some identities of derangement polynomials.
Kim, Taekyun; Kim, Dae San; Jang, Gwan-Woo; Kwon, Jongkyum
2018-01-01
The problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708 (see Carlitz in Fibonacci Q. 16(3):255-258, 1978, Clarke and Sved in Math. Mag. 66(5):299-303, 1993, Kim, Kim and Kwon in Adv. Stud. Contemp. Math. (Kyungshang) 28(1):1-11 2018. A derangement is a permutation that has no fixed points, and the derangement number [Formula: see text] is the number of fixed-point-free permutations on an n element set. In this paper, we study the derangement polynomials and investigate some interesting properties which are related to derangement numbers. Also, we study two generalizations of derangement polynomials, namely higher-order and r -derangement polynomials, and show some relations between them. In addition, we express several special polynomials in terms of the higher-order derangement polynomials by using umbral calculus.
Shean, David E.; Alexandrov, Oleg; Moratto, Zachary M.; Smith, Benjamin E.; Joughin, Ian R.; Porter, Claire; Morin, Paul
2016-06-01
We adapted the automated, open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline a processing workflow for ˜0.5 m ground sample distance (GSD) DigitalGlobe WorldView-1 and WorldView-2 along-track stereo image data, with an overview of ASP capabilities, an evaluation of ASP correlator options, benchmark test results, and two case studies of DEM accuracy. Output DEM products are posted at ˜2 m with direct geolocation accuracy of process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We are leveraging these resources to produce dense time series and regional mosaics for the Earth's polar regions.
Novel application of DEM to modelling comminution processes
International Nuclear Information System (INIS)
Delaney, Gary W; Cleary, Paul W; Sinnott, Matt D; Morrison, Rob D
2010-01-01
Comminution processes in which grains are broken down into smaller and smaller sizes represent a critical component in many industries including mineral processing, cement production, food processing and pharmaceuticals. We present a novel DEM implementation capable of realistically modelling such comminution processes. This extends on a previous implementation of DEM particle breakage that utilized spherical particles. Our new extension uses super-quadric particles, where daughter fragments with realistic size and shape distributions are packed inside a bounding parent super-quadric. We demonstrate the flexibility of our approach in different particle breakage scenarios and examine the effect of the chosen minimum resolved particle size. This incorporation of the effect of particle shape in the breakage process allows for more realistic DEM simulations to be performed, that can provide additional fundamental insights into comminution processes and into the behaviour of individual pieces of industrial machinery.
EVALUATING THE ACCURACY OF DEM GENERATION ALGORITHMS FROM UAV IMAGERY
Directory of Open Access Journals (Sweden)
J. J. Ruiz
2013-08-01
Full Text Available In this work we evaluated how the use of different positioning systems affects the accuracy of Digital Elevation Models (DEMs generated from aerial imagery obtained with Unmanned Aerial Vehicles (UAVs. In this domain, state-of-the-art DEM generation algorithms suffer from typical errors obtained by GPS/INS devices in the position measurements associated with each picture obtained. The deviations from these measurements to real world positions are about meters. The experiments have been carried out using a small quadrotor in the indoor testbed at the Center for Advanced Aerospace Technologies (CATEC. This testbed houses a system that is able to track small markers mounted on the UAV and along the scenario with millimeter precision. This provides very precise position measurements, to which we can add random noise to simulate errors in different GPS receivers. The results showed that final DEM accuracy clearly depends on the positioning information.
Influence of Terraced area DEM Resolution on RUSLE LS Factor
Zhang, Hongming; Baartman, Jantiene E. M.; Yang, Xiaomei; Gai, Lingtong; Geissen, Viollette
2017-04-01
Topography has a large impact on the erosion of soil by water. Slope steepness and slope length are combined (the LS factor) in the universal soil-loss equation (USLE) and its revised version (RUSLE) for predicting soil erosion. The LS factor is usually extracted from a digital elevation model (DEM). The grid size of the DEM will thus influence the LS factor and the subsequent calculation of soil loss. Terracing is considered as a support practice factor (P) in the USLE/RUSLE equations, which is multiplied with the other USLE/RUSLE factors. However, as terraces change the slope length and steepness, they also affect the LS factor. The effect of DEM grid size on the LS factor has not been investigated for a terraced area. We obtained a high-resolution DEM by unmanned aerial vehicles (UAVs) photogrammetry, from which the slope steepness, slope length, and LS factor were extracted. The changes in these parameters at various DEM resolutions were then analysed. The DEM produced detailed LS-factor maps, particularly for low LS factors. High (small valleys, gullies, and terrace ridges) and low (flats and terrace fields) spatial frequencies were both sensitive to changes in resolution, so the areas of higher and lower slope steepness both decreased with increasing grid size. Average slope steepness decreased and average slope length increased with grid size. Slope length, however, had a larger effect than slope steepness on the LS factor as the grid size varied. The LS factor increased when the grid size increased from 0.5 to 30-m and increased significantly at grid sizes >5-m. The LS factor was increasingly overestimated as grid size decreased. The LS factor decreased from grid sizes of 30 to 100-m, because the details of the terraced terrain were gradually lost, but the factor was still overestimated.
Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments
Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.
2008-01-01
In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.
vs. a polynomial chaos-based MCMC
Siripatana, Adil
2014-08-01
Bayesian Inference of Manning\\'s n coefficient in a Storm Surge Model Framework: comparison between Kalman lter and polynomial based method Adil Siripatana Conventional coastal ocean models solve the shallow water equations, which describe the conservation of mass and momentum when the horizontal length scale is much greater than the vertical length scale. In this case vertical pressure gradients in the momentum equations are nearly hydrostatic. The outputs of coastal ocean models are thus sensitive to the bottom stress terms de ned through the formulation of Manning\\'s n coefficients. This thesis considers the Bayesian inference problem of the Manning\\'s n coefficient in the context of storm surge based on the coastal ocean ADCIRC model. In the first part of the thesis, we apply an ensemble-based Kalman filter, the singular evolutive interpolated Kalman (SEIK) filter to estimate both a constant Manning\\'s n coefficient and a 2-D parameterized Manning\\'s coefficient on one ideal and one of more realistic domain using observation system simulation experiments (OSSEs). We study the sensitivity of the system to the ensemble size. we also access the benefits from using an in ation factor on the filter performance. To study the limitation of the Guassian restricted assumption on the SEIK lter, 5 we also implemented in the second part of this thesis a Markov Chain Monte Carlo (MCMC) method based on a Generalized Polynomial chaos (gPc) approach for the estimation of the 1-D and 2-D Mannning\\'s n coe cient. The gPc is used to build a surrogate model that imitate the ADCIRC model in order to make the computational cost of implementing the MCMC with the ADCIRC model reasonable. We evaluate the performance of the MCMC-gPc approach and study its robustness to di erent OSSEs scenario. we also compare its estimates with those resulting from SEIK in term of parameter estimates and full distributions. we present a full analysis of the solution of these two methods, of the
Topological quantum information, virtual Jones polynomials and Khovanov homology
International Nuclear Information System (INIS)
Kauffman, Louis H
2011-01-01
In this paper, we give a quantum statistical interpretation of the bracket polynomial state sum 〈K〉, the Jones polynomial V K (t) and virtual knot theory versions of the Jones polynomial, including the arrow polynomial. We use these quantum mechanical interpretations to give new quantum algorithms for these Jones polynomials. In those cases where the Khovanov homology is defined, the Hilbert space C(K) of our model is isomorphic with the chain complex for Khovanov homology with coefficients in the complex numbers. There is a natural unitary transformation U:C(K) → C(K) such that 〈K〉 = Trace(U), where 〈K〉 denotes the evaluation of the state sum model for the corresponding polynomial. We show that for the Khovanov boundary operator ∂:C(K) → C(K), we have the relationship ∂U + U∂ = 0. Consequently, the operator U acts on the Khovanov homology, and we obtain a direct relationship between the Khovanov homology and this quantum algorithm for the Jones polynomial. (paper)
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Precise baseline determination for the TanDEM-X mission
Koenig, Rolf; Moon, Yongjin; Neumayer, Hans; Wermuth, Martin; Montenbruck, Oliver; Jäggi, Adrian
The TanDEM-X mission will strive for generating a global precise Digital Elevation Model (DEM) by way of bi-static SAR in a close formation of the TerraSAR-X satellite, already launched on June 15, 2007, and the TanDEM-X satellite to be launched in May 2010. Both satellites carry the Tracking, Occultation and Ranging (TOR) payload supplied by the GFZ German Research Centre for Geosciences. The TOR consists of a high-precision dual-frequency GPS receiver, called Integrated GPS Occultation Receiver (IGOR), and a Laser retro-reflector (LRR) for precise orbit determination (POD) and atmospheric sounding. The IGOR is of vital importance for the TanDEM-X mission objectives as the millimeter level determination of the baseline or distance between the two spacecrafts is needed to derive meter level accurate DEMs. Within the TanDEM-X ground segment GFZ is responsible for the operational provision of precise baselines. For this GFZ uses two software chains, first its Earth Parameter and Orbit System (EPOS) software and second the BERNESE software, for backup purposes and quality control. In a concerted effort also the German Aerospace Center (DLR) generates precise baselines independently with a dedicated Kalman filter approach realized in its FRNS software. By the example of GRACE the generation of baselines with millimeter accuracy from on-board GPS data can be validated directly by way of comparing them to the intersatellite K-band range measurements. The K-band ranges are accurate down to the micrometer-level and therefore may be considered as truth. Both TanDEM-X baseline providers are able to generate GRACE baselines with sub-millimeter accuracy. By merging the independent baselines by GFZ and DLR, the accuracy can even be increased. The K-band validation however covers solely the along-track component as the K-band data measure just the distance between the two GRACE satellites. In addition they inhibit an un-known bias which must be modelled in the comparison, so the
Dynamics of polynomial Chaplygin gas warm inflation
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Chaudhary, Shahid [Sharif College of Engineering and Technology, Department of Mathematics, Lahore (Pakistan); Videla, Nelson [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile)
2017-11-15
In the present work, we study the consequences of a recently proposed polynomial inflationary potential in the context of the generalized, modified, and generalized cosmic Chaplygin gas models. In addition, we consider dissipative effects by coupling the inflation field to radiation, i.e., the inflationary dynamics is studied in the warm inflation scenario. We take into account a general parametrization of the dissipative coefficient Γ for describing the decay of the inflaton field into radiation. By studying the background and perturbative dynamics in the weak and strong dissipative regimes of warm inflation separately for the positive and negative quadratic and quartic potentials, we obtain expressions for the most relevant inflationary observables as the scalar power spectrum, the scalar spectral, and the tensor-to-scalar ratio. We construct the trajectories in the n{sub s}-r plane for several expressions of the dissipative coefficient and compare with the two-dimensional marginalized contours for (n{sub s}, r) from the latest Planck data. We find that our results are in agreement with WMAP9 and Planck 2015 data. (orig.)
Global sensitivity analysis using polynomial chaos expansions
International Nuclear Information System (INIS)
Sudret, Bruno
2008-01-01
Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression-based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices
Global sensitivity analysis using polynomial chaos expansions
Energy Technology Data Exchange (ETDEWEB)
Sudret, Bruno [Electricite de France, R and D Division, Site des Renardieres, F 77818 Moret-sur-Loing Cedex (France)], E-mail: bruno.sudret@edf.fr
2008-07-15
Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression-based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices.
Polynomial Chaos Surrogates for Bayesian Inference
Le Maitre, Olivier
2016-01-06
The Bayesian inference is a popular probabilistic method to solve inverse problems, such as the identification of field parameter in a PDE model. The inference rely on the Bayes rule to update the prior density of the sought field, from observations, and derive its posterior distribution. In most cases the posterior distribution has no explicit form and has to be sampled, for instance using a Markov-Chain Monte Carlo method. In practice the prior field parameter is decomposed and truncated (e.g. by means of Karhunen- Lo´eve decomposition) to recast the inference problem into the inference of a finite number of coordinates. Although proved effective in many situations, the Bayesian inference as sketched above faces several difficulties requiring improvements. First, sampling the posterior can be a extremely costly task as it requires multiple resolutions of the PDE model for different values of the field parameter. Second, when the observations are not very much informative, the inferred parameter field can highly depends on its prior which can be somehow arbitrary. These issues have motivated the introduction of reduced modeling or surrogates for the (approximate) determination of the parametrized PDE solution and hyperparameters in the description of the prior field. Our contribution focuses on recent developments in these two directions: the acceleration of the posterior sampling by means of Polynomial Chaos expansions and the efficient treatment of parametrized covariance functions for the prior field. We also discuss the possibility of making such approach adaptive to further improve its efficiency.
Scattering amplitudes from multivariate polynomial division
Energy Technology Data Exchange (ETDEWEB)
Mastrolia, Pierpaolo, E-mail: pierpaolo.mastrolia@cern.ch [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Mirabella, Edoardo, E-mail: mirabell@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Ossola, Giovanni, E-mail: GOssola@citytech.cuny.edu [New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn, NY 11201 (United States); Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 (United States); Peraro, Tiziano, E-mail: peraro@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)
2012-11-15
We show that the evaluation of scattering amplitudes can be formulated as a problem of multivariate polynomial division, with the components of the integration-momenta as indeterminates. We present a recurrence relation which, independently of the number of loops, leads to the multi-particle pole decomposition of the integrands of the scattering amplitudes. The recursive algorithm is based on the weak Nullstellensatz theorem and on the division modulo the Groebner basis associated to all possible multi-particle cuts. We apply it to dimensionally regulated one-loop amplitudes, recovering the well-known integrand-decomposition formula. Finally, we focus on the maximum-cut, defined as a system of on-shell conditions constraining the components of all the integration-momenta. By means of the Finiteness Theorem and of the Shape Lemma, we prove that the residue at the maximum-cut is parametrized by a number of coefficients equal to the number of solutions of the cut itself.
q-Bernoulli numbers and q-Bernoulli polynomials revisited
Directory of Open Access Journals (Sweden)
Kim Taekyun
2011-01-01
Full Text Available Abstract This paper performs a further investigation on the q-Bernoulli numbers and q-Bernoulli polynomials given by Acikgöz et al. (Adv Differ Equ, Article ID 951764, 9, 2010, some incorrect properties are revised. It is point out that the generating function for the q-Bernoulli numbers and polynomials is unreasonable. By using the theorem of Kim (Kyushu J Math 48, 73-86, 1994 (see Equation 9, some new generating functions for the q-Bernoulli numbers and polynomials are shown. Mathematics Subject Classification (2000 11B68, 11S40, 11S80
Generalized Freud's equation and level densities with polynomial potential
Boobna, Akshat; Ghosh, Saugata
2013-08-01
We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.
Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials
Horozov, Emil
2016-05-01
We construct new families of vector orthogonal polynomials that have the property to be eigenfunctions of some differential operator. They are extensions of the Hermite and Laguerre polynomial systems. A third family, whose first member has been found by Y. Ben Cheikh and K. Douak is also constructed. The ideas behind our approach lie in the studies of bispectral operators. We exploit automorphisms of associative algebras which transform elementary vector orthogonal polynomial systems which are eigenfunctions of a differential operator into other systems of this type.
Learning Read-constant Polynomials of Constant Degree modulo Composites
DEFF Research Database (Denmark)
Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt
2011-01-01
Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class \\textACC0ACC0. They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class...... is not known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...
Resource Management in Diffserv On DemAnd (RODA) PHR
Westberg, L.; Jacobsson, M.; de Kogel, M.; Oosthoek, S.; Partain, D.; Rexhepi, V.; Wallentin, P.; Karagiannis, Georgios
The purpose of this draft is to present the Resource Management in Diffserv (RMD) On DemAnd (RODA) Per Hop Reservation (PHR) protocol. The RODA PHR protocol is used on a per-hop basis in a Differentiated Services (Diffserv) domain and extends the Diffserv Per Hop Behavior (PHB) with resource
Spatial Characterization of Landscapes through Multifractal Analysis of DEM
Directory of Open Access Journals (Sweden)
P. L. Aguado
2014-01-01
Full Text Available Landscape evolution is driven by abiotic, biotic, and anthropic factors. The interactions among these factors and their influence at different scales create a complex dynamic. Landscapes have been shown to exhibit numerous scaling laws, from Horton’s laws to more sophisticated scaling of heights in topography and river network topology. This scaling and multiscaling analysis has the potential to characterise the landscape in terms of the statistical signature of the measure selected. The study zone is a matrix obtained from a digital elevation model (DEM (map 10 × 10 m, and height 1 m that corresponds to homogeneous region with respect to soil characteristics and climatology known as “Monte El Pardo” although the water level of a reservoir and the topography play a main role on its organization and evolution. We have investigated whether the multifractal analysis of a DEM shows common features that can be used to reveal the underlying patterns and information associated with the landscape of the DEM mapping and studied the influence of the water level of the reservoir on the applied analysis. The results show that the use of the multifractal approach with mean absolute gradient data is a useful tool for analysing the topography represented by the DEM.
Eine neue Tornaria aus dem Ostindischen Archipel (Tornaria Sunieri)
Stiasny, G.
1921-01-01
Da aus dem malayischen Archipel durch die Siboga-Monographie Spengels (2) zwar eine Anzahl Enteropneusten, jedoch nur eine einzige Tornaria bekannt worden ist, war anzunehmen, dass noch andere Tornarien in diesem Gebiete nachzuweisen sein würden. Von dieser Erwartung ausgehend wandte ich mich an
Artificial terraced field extraction based on high resolution DEMs
Na, Jiaming; Yang, Xin; Xiong, Liyang; Tang, Guoan
2017-04-01
With the increase of human activities, artificial landforms become one of the main terrain features with special geographical and hydrological value. Terraced field, as the most important artificial landscapes of the loess plateau, plays an important role in conserving soil and water. With the development of digital terrain analysis (DTA), there is a current and future need in developing a robust, repeatable and cost-effective research methodology for terraced fields. In this paper, a novel method using bidirectional DEM shaded relief is proposed for terraced field identification based on high resolution DEM, taking Zhifanggou watershed, Shannxi province as the study area. Firstly, 1m DEM is obtained by low altitude aerial photogrammetry using Unmanned Aerial Vehicle (UAV), and 0.1m DOM is also obtained as the test data. Then, the positive and negative terrain segmentation is done to acquire the area of terraced field. Finally, a bidirectional DEM shaded relief is simulated to extract the ridges of each terraced field stages. The method in this paper can get not only polygon feature of the terraced field areas but also line feature of terraced field ridges. The accuracy is 89.7% compared with the artificial interpretation result from DOM. And additional experiment shows that this method has a strong robustness as well as high accuracy.
Evaluating DEM results with FEM perspectives of load : soil interaction
Tadesse, D.
2004-01-01
Keywords: Load - soil interaction, soil structure, soil mechanical properties, FEM (Finite Element Method), Plaxis (Finite Element Code), granular particles, shear stress, DEM (Distinct Element Method),
Estimating River Surface Elevation From ArcticDEM
Dai, Chunli; Durand, Michael; Howat, Ian M.; Altenau, Elizabeth H.; Pavelsky, Tamlin M.
2018-04-01
ArcticDEM is a collection of 2-m resolution, repeat digital surface models created from stereoscopic satellite imagery. To demonstrate the potential of ArcticDEM for measuring river stages and discharges, we estimate river surface heights along a reach of Tanana River near Fairbanks, Alaska, by the precise detection of river shorelines and mapping of shorelines to land surface elevation. The river height profiles over a 15-km reach agree with in situ measurements to a standard deviation less than 30 cm. The time series of ArcticDEM-derived river heights agree with the U.S. Geological Survey gage measurements with a standard deviation of 32 cm. Using the rating curve for that gage, we obtain discharges with a validation accuracy (root-mean-square error) of 234 m3/s (23% of the mean discharge). Our results demonstrate that ArcticDEM can accurately measure spatial and temporal variations of river surfaces, providing a new and powerful data set for hydrologic analysis.
DEM-based research on the landform features of China
Tang, Guoan; Liu, Aili; Li, Fayuan; Zhou, Jieyu
2006-10-01
Landforms can be described and identified by parameterization of digital elevation model (DEM). This paper discusses the large-scale geomorphological characteristics of China based on numerical analysis of terrain parameters and develop a methodology for characterizing landforms from DEMs. The methodology is implemented as a two-step process. First, terrain variables are derived from a 1-km DEM in a given statistical unit including local relief, the earth's surface incision, elevation variance coefficient, roughness, mean slope and mean elevation. Second, every parameter regarded as a single-band image is combined into a multi-band image. Then ISODATA unsupervised classification and the Bayesian technique of Maximum Likelihood supervised classification are applied for landform classification. The resulting landforms are evaluated by the means of Stratified Sampling with respect to an existing map and the overall classification accuracy reaches to rather high value. It's shown that the derived parameters carry sufficient physiographic information and can be used for landform classification. Since the classification method integrates manifold terrain indexes, conquers the limitation of the subjective cognition, as well as a low cost, apparently it could represent an applied foreground in the classification of macroscopic relief forms. Furthermore, it exhibits significance in consummating the theory and the methodology of DEMs on digital terrain analysis.
Grain sedimentation with SPH-DEM and its validation
Robinson, M.J.; Luding, Stefan; Ramaioli, Marco; Yu, A; Dong, K; Yang, R; Luding, S
2013-01-01
Our mesoscale simulation method [M. Robinson, S. Luding, and M. Ramaioli, submitted (2013)] for multiphase fluid-particle flows couples Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) and enjoys the flexibility of meshless methods, such as being capable to handling free
a High Precision dem Extraction Method Based on Insar Data
Wang, Xinshuang; Liu, Lingling; Shi, Xiaoliang; Huang, Xitao; Geng, Wei
2018-04-01
In the 13th Five-Year Plan for Geoinformatics Business, it is proposed that the new InSAR technology should be applied to surveying and mapping production, which will become the innovation driving force of geoinformatics industry. This paper will study closely around the new outline of surveying and mapping and then achieve the TerraSAR/TanDEM data of Bin County in Shaanxi Province in X band. The studying steps are as follows; Firstly, the baseline is estimated from the orbital data; Secondly, the interferometric pairs of SAR image are accurately registered; Thirdly, the interferogram is generated; Fourth, the interferometric correlation information is estimated and the flat-earth phase is removed. In order to solve the phase noise and the discontinuity phase existing in the interferometric image of phase, a GAMMA adaptive filtering method is adopted. Aiming at the "hole" problem of missing data in low coherent area, the interpolation method of low coherent area mask is used to assist the phase unwrapping. Then, the accuracy of the interferometric baseline is estimated from the ground control points. Finally, 1 : 50000 DEM is generated, and the existing DEM data is used to verify the accuracy through statistical analysis. The research results show that the improved InSAR data processing method in this paper can obtain the high-precision DEM of the study area, exactly the same with the topography of reference DEM. The R2 can reach to 0.9648, showing a strong positive correlation.
ArcticDEM Year 3; Improving Coverage, Repetition and Resolution
Morin, P. J.; Porter, C. C.; Cloutier, M.; Howat, I.; Noh, M. J.; Willis, M. J.; Candela, S. G.; Bauer, G.; Kramer, W.; Bates, B.; Williamson, C.
2017-12-01
Surface topography is among the most fundamental data sets for geosciences, essential for disciplines ranging from glaciology to geodynamics. The ArcticDEM project is using sub-meter, commercial imagery licensed by the National Geospatial-Intelligence Agency, petascale computing, and open source photogrammetry software to produce a time-tagged 2m posting elevation model and a 5m posting mosaic of the entire Arctic region. As ArcticDEM enters its third year, the region has gone from having some of the sparsest and poorest elevation data to some of the most precise and complete data of any region on the globe. To date, we have produced and released over 80,000,000 km2 as 57,000 - 2m posting, time-stamped DEMs. The Arctic, on average, is covered four times though there are hotspots with more than 100 DEMs. In addition, the version 1 release includes a 5m posting mosaic covering the entire 20,000,000 km2 region. All products are publically available through arctidem.org, ESRI web services, and a web viewer. The final year of the project will consist of a complete refiltering of clouds/water and re-mosaicing of all elevation data. Since inception of the project, post-processing techniques have improved significantly, resulting in fewer voids, better registration, sharper coastlines, and fewer inaccuracies due to clouds. All ArcticDEM data will be released in 2018. Data, documentation, web services and web viewer are available at arcticdem.org
Parand, Kourosh; Mahdi Moayeri, Mohammad; Latifi, Sobhan; Delkhosh, Mehdi
2017-07-01
In this paper, a spectral method based on the four kinds of rational Chebyshev functions is proposed to approximate the solution of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet. First, by using the quasilinearization method (QLM), the model which is a nonlinear ordinary differential equation is converted to a sequence of linear ordinary differential equations (ODEs). By applying the proposed method on the ODEs in each iteration, the equations are converted to a system of linear algebraic equations. The results indicate the high accuracy and convergence of our method. Moreover, the effects of the Eyring-Powell fluid material parameters are discussed.
Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.
1998-01-01
We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.
International Nuclear Information System (INIS)
Avila, Ruben; Cabello-González, Ares; Ramos, Eduardo
2013-01-01
Highlights: • The Tau-Chebyshev method solves the linear fluid flow equations in spherical shells. • The fluid motion is driven by a central force proportional to the radial position. • The full Navier–Stokes equations are solved by the spectral element method. • The linear results are verified with the solution of the Navier–Stokes equations. • The solution of the linear problems is used to initiate non-linear calculations. -- Abstract: The onset of thermal convection in a non-rotating spherical shell is investigated using linear theory. The Tau-Chebyshev spectral method is used to integrate the linearized equations. We investigate the onset of thermal convection by considering two cases of the radial gravitational field (i) a local acceleration, acting radially inward, that is proportional to the distance from the center r, and (ii) a radial gravitational central force that is proportional to r −n . The former case has been widely analyzed in the literature, because it constitutes a simplified model that is usually used, in astrophysics and geophysics, and is studied here to validate the numerical method. The latter case was analyzed since the case n = 5 has been experimentally realized (by means of the dielectrophoretic effect) under microgravity condition, in the experimental container called GeoFlow, inside the International Space Station. Our study is aimed to clarify the role of (i) a radially inward central force (either proportional to r or to r −n ), (ii) a base conductive temperature distribution provided by either a uniform heat source or an imposed temperature difference between outer and inner spheres, and (iii) the aspect ratio η (ratio of the radii of the inner and outer spheres), on the critical Rayleigh number. In all cases the surface of the spheres has been assumed to be rigid. The results obtained with the linear theory based on the Tau-Chebyshev spectral method are compared with those of the integration of the full non
A summation procedure for expansions in orthogonal polynomials
International Nuclear Information System (INIS)
Garibotti, C.R.; Grinstein, F.F.
1977-01-01
Approximants to functions defined by formal series expansions in orthogonal polynomials are introduced. They are shown to be convergent even out of the elliptical domain where the original expansion converges
Classification of complex polynomial vector fields in one complex variable
DEFF Research Database (Denmark)
Branner, Bodil; Dias, Kealey
2010-01-01
This paper classifies the global structure of monic and centred one-variable complex polynomial vector fields. The classification is achieved by means of combinatorial and analytic data. More specifically, given a polynomial vector field, we construct a combinatorial invariant, describing...... the topology, and a set of analytic invariants, describing the geometry. Conversely, given admissible combinatorial and analytic data sets, we show using surgery the existence of a unique monic and centred polynomial vector field realizing the given invariants. This is the content of the Structure Theorem......, the main result of the paper. This result is an extension and refinement of Douady et al. (Champs de vecteurs polynomiaux sur C. Unpublished manuscript) classification of the structurally stable polynomial vector fields. We further review some general concepts for completeness and show that vector fields...
Skew-orthogonal polynomials and random matrix theory
Ghosh, Saugata
2009-01-01
Orthogonal polynomials satisfy a three-term recursion relation irrespective of the weight function with respect to which they are defined. This gives a simple formula for the kernel function, known in the literature as the Christoffel-Darboux sum. The availability of asymptotic results of orthogonal polynomials and the simple structure of the Christoffel-Darboux sum make the study of unitary ensembles of random matrices relatively straightforward. In this book, the author develops the theory of skew-orthogonal polynomials and obtains recursion relations which, unlike orthogonal polynomials, depend on weight functions. After deriving reduced expressions, called the generalized Christoffel-Darboux formulas (GCD), he obtains universal correlation functions and non-universal level densities for a wide class of random matrix ensembles using the GCD. The author also shows that once questions about higher order effects are considered (questions that are relevant in different branches of physics and mathematics) the ...
Numerical Simulation of Polynomial-Speed Convergence Phenomenon
Li, Yao; Xu, Hui
2017-11-01
We provide a hybrid method that captures the polynomial speed of convergence and polynomial speed of mixing for Markov processes. The hybrid method that we introduce is based on the coupling technique and renewal theory. We propose to replace some estimates in classical results about the ergodicity of Markov processes by numerical simulations when the corresponding analytical proof is difficult. After that, all remaining conclusions can be derived from rigorous analysis. Then we apply our results to seek numerical justification for the ergodicity of two 1D microscopic heat conduction models. The mixing rate of these two models are expected to be polynomial but very difficult to prove. In both examples, our numerical results match the expected polynomial mixing rate well.
Fast parallel computation of polynomials using few processors
DEFF Research Database (Denmark)
Valiant, Leslie; Skyum, Sven
1981-01-01
It is shown that any multivariate polynomial that can be computed sequentially in C steps and has degree d can be computed in parallel in 0((log d) (log C + log d)) steps using only (Cd)0(1) processors....
Guts of surfaces and the colored Jones polynomial
Futer, David; Purcell, Jessica
2013-01-01
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have p...
Solving polynomial systems using no-root elimination blending schemes
Barton, Michael
2011-01-01
Searching for the roots of (piecewise) polynomial systems of equations is a crucial problem in computer-aided design (CAD), and an efficient solution is in strong demand. Subdivision solvers are frequently used to achieve this goal; however
Optimal stability polynomials for numerical integration of initial value problems
Ketcheson, David I.; Ahmadia, Aron
2013-01-01
We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step
An algebraic approach to the non-symmetric Macdonald polynomial
International Nuclear Information System (INIS)
Nishino, Akinori; Ujino, Hideaki; Wadati, Miki
1999-01-01
In terms of the raising and lowering operators, we algebraically construct the non-symmetric Macdonald polynomials which are simultaneous eigenfunctions of the commuting Cherednik operators. We also calculate Cherednik's scalar product of them
An Elementary Proof of the Polynomial Matrix Spectral Factorization Theorem
Ephremidze, Lasha
2010-01-01
A very simple and short proof of the polynomial matrix spectral factorization theorem (on the unit circle as well as on the real line) is presented, which relies on elementary complex analysis and linear algebra.
Force prediction in cold rolling mills by polynomial methods
Directory of Open Access Journals (Sweden)
Nicu ROMAN
2007-12-01
Full Text Available A method for steel and aluminium strip thickness control is provided including a new technique for predictive rolling force estimation method by statistic model based on polynomial techniques.
Entanglement entropy and the colored Jones polynomial
Balasubramanian, Vijay; DeCross, Matthew; Fliss, Jackson; Kar, Arjun; Leigh, Robert G.; Parrikar, Onkar
2018-05-01
We study the multi-party entanglement structure of states in Chern-Simons theory created by performing the path integral on 3-manifolds with linked torus boundaries, called link complements. For gauge group SU(2), the wavefunctions of these states (in a particular basis) are the colored Jones polynomials of the corresponding links. We first review the case of U(1) Chern-Simons theory where these are stabilizer states, a fact we use to re-derive an explicit formula for the entanglement entropy across a general link bipartition. We then present the following results for SU(2) Chern-Simons theory: (i) The entanglement entropy for a bipartition of a link gives a lower bound on the genus of surfaces in the ambient S 3 separating the two sublinks. (ii) All torus links (namely, links which can be drawn on the surface of a torus) have a GHZ-like entanglement structure — i.e., partial traces leave a separable state. By contrast, through explicit computation, we test in many examples that hyperbolic links (namely, links whose complements admit hyperbolic structures) have W-like entanglement — i.e., partial traces leave a non-separable state. (iii) Finally, we consider hyperbolic links in the complexified SL(2,C) Chern-Simons theory, which is closely related to 3d Einstein gravity with a negative cosmological constant. In the limit of small Newton constant, we discuss how the entanglement structure is controlled by the Neumann-Zagier potential on the moduli space of hyperbolic structures on the link complement.
Quasi-topological Ricci polynomial gravities
Li, Yue-Zhou; Liu, Hai-Shan; Lü, H.
2018-02-01
Quasi-topological terms in gravity can be viewed as those that give no contribution to the equations of motion for a special subclass of metric ansätze. They therefore play no rôle in constructing these solutions, but can affect the general perturbations. We consider Einstein gravity extended with Ricci tensor polynomial invariants, which admits Einstein metrics with appropriate effective cosmological constants as its vacuum solutions. We construct three types of quasi-topological gravities. The first type is for the most general static metrics with spherical, toroidal or hyperbolic isometries. The second type is for the special static metrics where g tt g rr is constant. The third type is the linearized quasitopological gravities on the Einstein metrics. We construct and classify results that are either dependent on or independent of dimensions, up to the tenth order. We then consider a subset of these three types and obtain Lovelock-like quasi-topological gravities, that are independent of the dimensions. The linearized gravities on Einstein metrics on all dimensions are simply Einstein and hence ghost free. The theories become quasi-topological on static metrics in one specific dimension, but non-trivial in others. We also focus on the quasi-topological Ricci cubic invariant in four dimensions as a specific example to study its effect on holography, including shear viscosity, thermoelectric DC conductivities and butterfly velocity. In particular, we find that the holographic diffusivity bounds can be violated by the quasi-topological terms, which can induce an extra massive mode that yields a butterfly velocity unbound above.
Invariant hyperplanes and Darboux integrability of polynomial vector fields
International Nuclear Information System (INIS)
Zhang Xiang
2002-01-01
This paper is composed of two parts. In the first part, we provide an upper bound for the number of invariant hyperplanes of the polynomial vector fields in n variables. This result generalizes those given in Artes et al (1998 Pac. J. Math. 184 207-30) and Llibre and Rodriguez (2000 Bull. Sci. Math. 124 599-619). The second part gives an extension of the Darboux theory of integrability to polynomial vector fields on algebraic varieties
Interpretation of stream programs: characterizing type 2 polynomial time complexity
Férée , Hugo; Hainry , Emmanuel; Hoyrup , Mathieu; Péchoux , Romain
2010-01-01
International audience; We study polynomial time complexity of type 2 functionals. For that purpose, we introduce a first order functional stream language. We give criteria, named well-founded, on such programs relying on second order interpretation that characterize two variants of type 2 polynomial complexity including the Basic Feasible Functions (BFF). These charac- terizations provide a new insight on the complexity of stream programs. Finally, we adapt these results to functions over th...
The Combinatorial Rigidity Conjecture is False for Cubic Polynomials
DEFF Research Database (Denmark)
Henriksen, Christian
2003-01-01
We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995.......We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995....
Vanishing of Littlewood-Richardson polynomials is in P
Adve, Anshul; Robichaux, Colleen; Yong, Alexander
2017-01-01
J. DeLoera-T. McAllister and K. D. Mulmuley-H. Narayanan-M. Sohoni independently proved that determining the vanishing of Littlewood-Richardson coefficients has strongly polynomial time computational complexity. Viewing these as Schubert calculus numbers, we prove the generalization to the Littlewood-Richardson polynomials that control equivariant cohomology of Grassmannians. We construct a polytope using the edge-labeled tableau rule of H. Thomas-A. Yong. Our proof then combines a saturation...
Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials
N. Stojanovic; N. Stamenkovic; I. Krstic
2016-01-01
A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approx...
Non-existence criteria for Laurent polynomial first integrals
Directory of Open Access Journals (Sweden)
Shaoyun Shi
2003-01-01
Full Text Available In this paper we derived some simple criteria for non-existence and partial non-existence Laurent polynomial first integrals for a general nonlinear systems of ordinary differential equations $\\dot x = f(x$, $x \\in \\mathbb{R}^n$ with $f(0 = 0$. We show that if the eigenvalues of the Jacobi matrix of the vector field $f(x$ are $\\mathbb{Z}$-independent, then the system has no nontrivial Laurent polynomial integrals.
Raising and Lowering Operators for Askey-Wilson Polynomials
Directory of Open Access Journals (Sweden)
Siddhartha Sahi
2007-01-01
Full Text Available In this paper we describe two pairs of raising/lowering operators for Askey-Wilson polynomials, which result from constructions involving very different techniques. The first technique is quite elementary, and depends only on the ''classical'' properties of these polynomials, viz. the q-difference equation and the three term recurrence. The second technique is less elementary, and involves the one-variable version of the double affine Hecke algebra.
Bounds and asymptotics for orthogonal polynomials for varying weights
Levin, Eli
2018-01-01
This book establishes bounds and asymptotics under almost minimal conditions on the varying weights, and applies them to universality limits and entropy integrals. Orthogonal polynomials associated with varying weights play a key role in analyzing random matrices and other topics. This book will be of use to a wide community of mathematicians, physicists, and statisticians dealing with techniques of potential theory, orthogonal polynomials, approximation theory, as well as random matrices. .
Polynomial fuzzy observer designs: a sum-of-squares approach.
Tanaka, Kazuo; Ohtake, Hiroshi; Seo, Toshiaki; Tanaka, Motoyasu; Wang, Hua O
2012-10-01
This paper presents a sum-of-squares (SOS) approach to polynomial fuzzy observer designs for three classes of polynomial fuzzy systems. The proposed SOS-based framework provides a number of innovations and improvements over the existing linear matrix inequality (LMI)-based approaches to Takagi-Sugeno (T-S) fuzzy controller and observer designs. First, we briefly summarize previous results with respect to a polynomial fuzzy system that is a more general representation of the well-known T-S fuzzy system. Next, we propose polynomial fuzzy observers to estimate states in three classes of polynomial fuzzy systems and derive SOS conditions to design polynomial fuzzy controllers and observers. A remarkable feature of the SOS design conditions for the first two classes (Classes I and II) is that they realize the so-called separation principle, i.e., the polynomial fuzzy controller and observer for each class can be separately designed without lack of guaranteeing the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. Although, for the last class (Class III), the separation principle does not hold, we propose an algorithm to design polynomial fuzzy controller and observer satisfying the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. All the design conditions in the proposed approach can be represented in terms of SOS and are symbolically and numerically solved via the recently developed SOSTOOLS and a semidefinite-program solver, respectively. To illustrate the validity and applicability of the proposed approach, three design examples are provided. The examples demonstrate the advantages of the SOS-based approaches for the existing LMI approaches to T-S fuzzy observer designs.
Ratio asymptotics of Hermite-Pade polynomials for Nikishin systems
International Nuclear Information System (INIS)
Aptekarev, A I; Lopez, Guillermo L; Rocha, I A
2005-01-01
The existence of ratio asymptotics is proved for a sequence of multiple orthogonal polynomials with orthogonality relations distributed among a system of m finite Borel measures with support on a bounded interval of the real line which form a so-called Nikishin system. For m=1 this result reduces to Rakhmanov's celebrated theorem on the ratio asymptotics for orthogonal polynomials on the real line.
Families of superintegrable Hamiltonians constructed from exceptional polynomials
International Nuclear Information System (INIS)
Post, Sarah; Tsujimoto, Satoshi; Vinet, Luc
2012-01-01
We introduce a family of exactly-solvable two-dimensional Hamiltonians whose wave functions are given in terms of Laguerre and exceptional Jacobi polynomials. The Hamiltonians contain purely quantum terms which vanish in the classical limit leaving only a previously known family of superintegrable systems. Additional, higher-order integrals of motion are constructed from ladder operators for the considered orthogonal polynomials proving the quantum system to be superintegrable. (paper)
Lower bounds for the circuit size of partially homogeneous polynomials
Czech Academy of Sciences Publication Activity Database
Le, Hong-Van
2017-01-01
Roč. 225, č. 4 (2017), s. 639-657 ISSN 1072-3374 Institutional support: RVO:67985840 Keywords : partially homogeneous polynomials * polynomials Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) https://link.springer.com/article/10.1007/s10958-017-3483-4
Euler Polynomials and Identities for Non-Commutative Operators
De Angelis, V.; Vignat, C.
2015-01-01
Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt, expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, due to J.-C. Pain, links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Fig...
Conference on Commutative rings, integer-valued polynomials and polynomial functions
Frisch, Sophie; Glaz, Sarah; Commutative Algebra : Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions
2014-01-01
This volume presents a multi-dimensional collection of articles highlighting recent developments in commutative algebra. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non- Noetherian ring theory as well as integer-valued polynomials and functions. Specific topics include: · Homological dimensions of Prüfer-like rings · Quasi complete rings · Total graphs of rings · Properties of prime ideals over various rings · Bases for integer-valued polynomials · Boolean subrings · The portable property of domains · Probabilistic topics in Intn(D) · Closure operations in Zariski-Riemann spaces of valuation domains · Stability of do...
Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling
Chen, Huili; Liang, Qiuhua; Liu, Yong; Xie, Shuguang
2018-04-01
Digital Elevation Model (DEM) is one of the most important controlling factors determining the simulation accuracy of hydraulic models. However, the currently available global topographic data is confronted with limitations for application in 2-D hydraulic modeling, mainly due to the existence of vegetation bias, random errors and insufficient spatial resolution. A hydraulic correction method (HCM) for the SRTM DEM is proposed in this study to improve modeling accuracy. Firstly, we employ the global vegetation corrected DEM (i.e. Bare-Earth DEM), developed from the SRTM DEM to include both vegetation height and SRTM vegetation signal. Then, a newly released DEM, removing both vegetation bias and random errors (i.e. Multi-Error Removed DEM), is employed to overcome the limitation of height errors. Last, an approach to correct the Multi-Error Removed DEM is presented to account for the insufficiency of spatial resolution, ensuring flow connectivity of the river networks. The approach involves: (a) extracting river networks from the Multi-Error Removed DEM using an automated algorithm in ArcGIS; (b) correcting the location and layout of extracted streams with the aid of Google Earth platform and Remote Sensing imagery; and (c) removing the positive biases of the raised segment in the river networks based on bed slope to generate the hydraulically corrected DEM. The proposed HCM utilizes easily available data and tools to improve the flow connectivity of river networks without manual adjustment. To demonstrate the advantages of HCM, an extreme flood event in Huifa River Basin (China) is simulated on the original DEM, Bare-Earth DEM, Multi-Error removed DEM, and hydraulically corrected DEM using an integrated hydrologic-hydraulic model. A comparative analysis is subsequently performed to assess the simulation accuracy and performance of four different DEMs and favorable results have been obtained on the corrected DEM.
Der Ritter mit dem Hemd : drei Fassungen einer mittelalterlichen Erzählung
Dunphy, Graeme
2011-01-01
Unter den zahlreichen Motiven, die in der mittelalterlichen Literatur mit Frauendienst verbunden sind, gehört das vom Ritter mit dem Hemd zu den besonders interessanten. Es erscheint zunächst in dem ersten von fünf Fabliaux aus einer verlorenen Turiner Handschrift, die dem sonst unbekannten altfranzösischen Dichter Jacques de Baisieux zugeschrieben werden, einer heiteren Kurzgeschichte mit dem Titel "Des trois chevaliers et del chainse". In der vorliegenden Untersuchung gilt es, der Frage der...
An overview on polynomial approximation of NP-hard problems
Directory of Open Access Journals (Sweden)
Paschos Vangelis Th.
2009-01-01
Full Text Available The fact that polynomial time algorithm is very unlikely to be devised for an optimal solving of the NP-hard problems strongly motivates both the researchers and the practitioners to try to solve such problems heuristically, by making a trade-off between computational time and solution's quality. In other words, heuristic computation consists of trying to find not the best solution but one solution which is 'close to' the optimal one in reasonable time. Among the classes of heuristic methods for NP-hard problems, the polynomial approximation algorithms aim at solving a given NP-hard problem in poly-nomial time by computing feasible solutions that are, under some predefined criterion, as near to the optimal ones as possible. The polynomial approximation theory deals with the study of such algorithms. This survey first presents and analyzes time approximation algorithms for some classical examples of NP-hard problems. Secondly, it shows how classical notions and tools of complexity theory, such as polynomial reductions, can be matched with polynomial approximation in order to devise structural results for NP-hard optimization problems. Finally, it presents a quick description of what is commonly called inapproximability results. Such results provide limits on the approximability of the problems tackled.
Imaging characteristics of Zernike and annular polynomial aberrations.
Mahajan, Virendra N; Díaz, José Antonio
2013-04-01
The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.
Polynomial asymptotic stability of damped stochastic differential equations
Directory of Open Access Journals (Sweden)
John Appleby
2004-08-01
Full Text Available The paper studies the polynomial convergence of solutions of a scalar nonlinear It\\^{o} stochastic differential equation\\[dX(t = -f(X(t\\,dt + \\sigma(t\\,dB(t\\] where it is known, {\\it a priori}, that $\\lim_{t\\rightarrow\\infty} X(t=0$, a.s. The intensity of the stochastic perturbation $\\sigma$ is a deterministic, continuous and square integrable function, which tends to zero more quickly than a polynomially decaying function. The function $f$ obeys $\\lim_{x\\rightarrow 0}\\mbox{sgn}(xf(x/|x|^\\beta = a$, for some $\\beta>1$, and $a>0$.We study two asymptotic regimes: when $\\sigma$ tends to zero sufficiently quickly the polynomial decay rate of solutions is the same as for the deterministic equation (when $\\sigma\\equiv0$. When $\\sigma$ decays more slowly, a weaker almost sure polynomial upper bound on the decay rate of solutions is established. Results which establish the necessity for $\\sigma$ to decay polynomially in order to guarantee the almost sure polynomial decay of solutions are also proven.
NSGIC Local Govt | GIS Inventory — Digital Elevation Model (DEM) dataset current as of 2000. The county-wide DEM is published with a 20-foot grid size, though we have a more detailed DEM/DTM for some...
Accuracy of Cartosat-1 DEM and its derived attribute at multiple ...
Indian Academy of Sciences (India)
and information content was compared using mean elevation, variance and entropy statistics. Various ... required, but for local studies large scale represen- tation is ... been made to examine the effect of DEM accuracy ... accuracy of DEM is evaluated with respect to grid .... that loss of entropy is a measure of DEM quality or.
Okounkov's BC-Type Interpolation Macdonald Polynomials and Their q=1 Limit
Koornwinder, T.H.
2015-01-01
This paper surveys eight classes of polynomials associated with A-type and BC-type root systems: Jack, Jacobi, Macdonald and Koornwinder polynomials and interpolation (or shifted) Jack and Macdonald polynomials and their BC-type extensions. Among these the BC-type interpolation Jack polynomials were
Directory of Open Access Journals (Sweden)
Bangyong Sun
2014-01-01
Full Text Available The polynomial regression method is employed to calculate the relationship of device color space and CIE color space for color characterization, and the performance of different expressions with specific parameters is evaluated. Firstly, the polynomial equation for color conversion is established and the computation of polynomial coefficients is analysed. And then different forms of polynomial equations are used to calculate the RGB and CMYK’s CIE color values, while the corresponding color errors are compared. At last, an optimal polynomial expression is obtained by analysing several related parameters during color conversion, including polynomial numbers, the degree of polynomial terms, the selection of CIE visual spaces, and the linearization.
A comparative appraisal of hydrological behavior of SRTM DEM at catchment level
Sharma, Arabinda; Tiwari, K. N.
2014-11-01
The Shuttle Radar Topography Mission (SRTM) data has emerged as a global elevation data in the past one decade because of its free availability, homogeneity and consistent accuracy compared to other global elevation dataset. The present study explores the consistency in hydrological behavior of the SRTM digital elevation model (DEM) with reference to easily available regional 20 m contour interpolated DEM (TOPO DEM). Analysis ranging from simple vertical accuracy assessment to hydrological simulation of the studied Maithon catchment, using empirical USLE model and semidistributed, physical SWAT model, were carried out. Moreover, terrain analysis involving hydrological indices was performed for comparative assessment of the SRTM DEM with respect to TOPO DEM. Results reveal that the vertical accuracy of SRTM DEM (±27.58 m) in the region is less than the specified standard (±16 m). Statistical analysis of hydrological indices such as topographic wetness index (TWI), stream power index (SPI), slope length factor (SLF) and geometry number (GN) shows a significant differences in hydrological properties of the two studied DEMs. Estimation of soil erosion potentials of the catchment and conservation priorities of microwatersheds of the catchment using SRTM DEM and TOPO DEM produce considerably different results. Prediction of soil erosion potential using SRTM DEM is far higher than that obtained using TOPO DEM. Similarly, conservation priorities determined using the two DEMs are found to be agreed for only 34% of microwatersheds of the catchment. ArcSWAT simulation reveals that runoff predictions are less sensitive to selection of the two DEMs as compared to sediment yield prediction. The results obtained in the present study are vital to hydrological analysis as it helps understanding the hydrological behavior of the DEM without being influenced by the model structural as well as parameter uncertainty. It also reemphasized that SRTM DEM can be a valuable dataset for
Discriminants and functional equations for polynomials orthogonal on the unit circle
International Nuclear Information System (INIS)
Ismail, M.E.H.; Witte, N.S.
2000-01-01
We derive raising and lowering operators for orthogonal polynomials on the unit circle and find second order differential and q-difference equations for these polynomials. A general functional equation is found which allows one to relate the zeros of the orthogonal polynomials to the stationary values of an explicit quasi-energy and implies recurrences on the orthogonal polynomial coefficients. We also evaluate the discriminants and quantized discriminants of polynomials orthogonal on the unit circle
DEM analysis of FOXSI-2 microflare using AIA observations
Athiray Panchapakesan, Subramania; Glesener, Lindsay; Vievering, Juliana; Camilo Buitrago-Casas, Juan; Christe, Steven; Inglis, Andrew; Krucker, Sam; Musset, Sophie
2017-08-01
The second flight of Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment was successfully completed on 11 December 2014. FOXSI makes direct imaging and spectral observation of the Sun in hard X-rays using grazing incidence optics modules which focus X-rays onto seven focal plane detectors kept at a 2m distance, in the energy range 4 to 20 keV, to study particle acceleration and coronal heating. Significant HXR emissions were observed by FOXSI during microflare events with A0.5 and A2.5 class, as classified by GOES, that occurred during FOXSI-2 flight.Spectral analysis of FOXSI data for these events indicate presence of plasma at higher temperatures (>10MK). We attempt to study the plasma content in the corona at different temperatures, characterized by the differential emission measure (DEM), over the FOXSI-2 observed flare regions using the Atmospheric Imaging Assembly (SDO/AIA) data. We utilize AIA observations in different EUV filters that are sensitive to ionized iron lines, to determine the DEM by using a regularized inversion method. This poster will show the properties of hot plasma as derived from FOXSI-2 HXR spectra with supporting DEM analysis using AIA observations.
THE GLOBAL TANDEM-X DEM: PRODUCTION STATUS AND FIRST VALIDATION RESULTS
Directory of Open Access Journals (Sweden)
M. Huber
2012-07-01
Full Text Available The TanDEM-X mission will derive a global digital elevation model (DEM with satellite SAR interferometry. Two radar satellites (TerraSAR-X and TanDEM-X will map the Earth in a resolution and accuracy with an absolute height error of 10m and a relative height error of 2m for 90% of the data. In order to fulfill the height requirements in general two global coverages are acquired and processed. Besides the final TanDEM-X DEM, an intermediate DEM with reduced accuracy is produced after the first coverage is completed. The last step in the whole workflow for generating the TanDEM-X DEM is the calibration of remaining systematic height errors and the merge of single acquisitions to 1°x1° DEM tiles. In this paper the current status of generating the intermediate DEM and first validation results based on GPS tracks, laser scanning DEMs, SRTM data and ICESat points are shown for different test sites.
PLOTNFIT.4TH, Data Plotting and Curve Fitting by Polynomials
International Nuclear Information System (INIS)
Schiffgens, J.O.
1990-01-01
1 - Description of program or function: PLOTnFIT is used for plotting and analyzing data by fitting nth degree polynomials of basis functions to the data interactively and printing graphs of the data and the polynomial functions. It can be used to generate linear, semi-log, and log-log graphs and can automatically scale the coordinate axes to suit the data. Multiple data sets may be plotted on a single graph. An auxiliary program, READ1ST, is included which produces an on-line summary of the information contained in the PLOTnFIT reference report. 2 - Method of solution: PLOTnFIT uses the least squares method to calculate the coefficients of nth-degree (up to 10. degree) polynomials of 11 selected basis functions such that each polynomial fits the data in a least squares sense. The procedure incorporated in the code uses a linear combination of orthogonal polynomials to avoid 'i11-conditioning' and to perform the curve fitting task with single-precision arithmetic. 3 - Restrictions on the complexity of the problem - Maxima of: 225 data points per job (or graph) including all data sets 8 data sets (or tasks) per job (or graph)
Multivariate Local Polynomial Regression with Application to Shenzhen Component Index
Directory of Open Access Journals (Sweden)
Liyun Su
2011-01-01
Full Text Available This study attempts to characterize and predict stock index series in Shenzhen stock market using the concepts of multivariate local polynomial regression. Based on nonlinearity and chaos of the stock index time series, multivariate local polynomial prediction methods and univariate local polynomial prediction method, all of which use the concept of phase space reconstruction according to Takens' Theorem, are considered. To fit the stock index series, the single series changes into bivariate series. To evaluate the results, the multivariate predictor for bivariate time series based on multivariate local polynomial model is compared with univariate predictor with the same Shenzhen stock index data. The numerical results obtained by Shenzhen component index show that the prediction mean squared error of the multivariate predictor is much smaller than the univariate one and is much better than the existed three methods. Even if the last half of the training data are used in the multivariate predictor, the prediction mean squared error is smaller than the univariate predictor. Multivariate local polynomial prediction model for nonsingle time series is a useful tool for stock market price prediction.
Modelling above Ground Biomass in Tanzanian Miombo Woodlands Using TanDEM-X WorldDEM and Field Data
Directory of Open Access Journals (Sweden)
Stefano Puliti
2017-09-01
Full Text Available The use of Interferometric Synthetic Aperture Radar (InSAR data has great potential for monitoring large scale forest above ground biomass (AGB in the tropics due to the increased ability to retrieve 3D information even under cloud cover. To date; results in tropical forests have been inconsistent and further knowledge on the accuracy of models linking AGB and InSAR height data is crucial for the development of large scale forest monitoring programs. This study provides an example of the use of TanDEM-X WorldDEM data to model AGB in Tanzanian woodlands. The primary objective was to assess the accuracy of a model linking AGB with InSAR height from WorldDEM after the subtraction of ground heights. The secondary objective was to assess the possibility of obtaining InSAR height for field plots when the terrain heights were derived from global navigation satellite systems (GNSS; i.e., as an alternative to using airborne laser scanning (ALS. The results revealed that the AGB model using InSAR height had a predictive accuracy of R M S E = 24.1 t·ha−1; or 38.8% of the mean AGB when terrain heights were derived from ALS. The results were similar when using terrain heights from GNSS. The accuracy of the predicted AGB was improved when compared to a previous study using TanDEM-X for a sub-area of the area of interest and was of similar magnitude to what was achieved in the same sub-area using ALS data. Overall; this study sheds new light on the opportunities that arise from the use of InSAR data for large scale AGB modelling in tropical woodlands.
Viiding, Elo, 1974-
2002-01-01
Sisu : Die Möglichkeit des Meteorologen = Meteoroloogi võimalikkusest ; "Der Meteorologe kam 1990 in die Stadt..." = "Meteoroloog saabus linna aastal 1990..." ; "Was wäre dir "Arbeit" des Meteorologen..." = "Mis oleks meteoroloogi töö..." ; "Und ein Unglück für den Meteorologen ist es auch..." = "Ja Meteoroloogi õnnetus on veel see..." ; Angst vor dem Altwerden des Meteorologen = Hirm Meteoroloogi vanakssaamise ees ; Fest. Geschenk = Pidu. Kink ; "Wenn der Meteorologe eine Grösse sieht, ist er darüber..." = "Kui meteoroloog näeb suurust, on ta selle kohal..." ; Der Meteorologe wird im Saal erwartet = Meteoroloogi oodatakse saali ; "Das Abkommen mit der Meteorologenerwartung kündigen..." = "Katkestada leping meteoroloogiootusega..." ; "Die "Wege des Herrn" sind der Meteorologe..." = "Looja tee" on Meteoroloog..." ; Von dem Fremden, der im Saal den Meteorologen traf = Võõra lugu, kes Meteoroloogi saalis kohtas ; "Den Fremden hervorzuhusten, der von dem..." = "Köhida enesest välja võõras, kes tahtis teha..." ; Der Fremde beruhigt sich nicht = Võõras ei jää rahule
Polynomial algebra of discrete models in systems biology.
Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard
2010-07-01
An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.
Nuclear-magnetic-resonance quantum calculations of the Jones polynomial
International Nuclear Information System (INIS)
Marx, Raimund; Spoerl, Andreas; Pomplun, Nikolas; Schulte-Herbrueggen, Thomas; Glaser, Steffen J.; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Myers, John M.
2010-01-01
The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of this evaluation, however, involves many known experimental challenges. Here we present experimental results for a small-scale approximate evaluation of the Jones polynomial by nuclear magnetic resonance (NMR); in addition, we show how to escape from the limitations of NMR approaches that employ pseudopure states. Specifically, we use two spin-1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing the trefoil knot, the figure-eight knot, and the Borromean rings. After measuring the nuclear spin state of the molecule in each case, we are able to estimate the value of the Jones polynomial for each of the knots.
A Formally Verified Conflict Detection Algorithm for Polynomial Trajectories
Narkawicz, Anthony; Munoz, Cesar
2015-01-01
In air traffic management, conflict detection algorithms are used to determine whether or not aircraft are predicted to lose horizontal and vertical separation minima within a time interval assuming a trajectory model. In the case of linear trajectories, conflict detection algorithms have been proposed that are both sound, i.e., they detect all conflicts, and complete, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory models, it is possible to define detection algorithms that are either sound or complete, but not both. This paper considers the case of nonlinear aircraft trajectory models based on polynomial functions. In particular, it proposes a conflict detection algorithm that precisely determines whether, given a lookahead time, two aircraft flying polynomial trajectories are in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories are modeled as polynomial functions, the proposed algorithm is both sound and complete.
A probabilistic approach of sum rules for heat polynomials
International Nuclear Information System (INIS)
Vignat, C; Lévêque, O
2012-01-01
In this paper, we show that the sum rules for generalized Hermite polynomials derived by Daboul and Mizrahi (2005 J. Phys. A: Math. Gen. http://dx.doi.org/10.1088/0305-4470/38/2/010) and by Graczyk and Nowak (2004 C. R. Acad. Sci., Ser. 1 338 849) can be interpreted and easily recovered using a probabilistic moment representation of these polynomials. The covariance property of the raising operator of the harmonic oscillator, which is at the origin of the identities proved in Daboul and Mizrahi and the dimension reduction effect expressed in the main result of Graczyk and Nowak are both interpreted in terms of the rotational invariance of the Gaussian distributions. As an application of these results, we uncover a probabilistic moment interpretation of two classical integrals of the Wigner function that involve the associated Laguerre polynomials. (paper)
Local polynomial Whittle estimation of perturbed fractional processes
DEFF Research Database (Denmark)
Frederiksen, Per; Nielsen, Frank; Nielsen, Morten Ørregaard
We propose a semiparametric local polynomial Whittle with noise (LPWN) estimator of the memory parameter in long memory time series perturbed by a noise term which may be serially correlated. The estimator approximates the spectrum of the perturbation as well as that of the short-memory component...... of the signal by two separate polynomials. Including these polynomials we obtain a reduction in the order of magnitude of the bias, but also in‡ate the asymptotic variance of the long memory estimate by a multiplicative constant. We show that the estimator is consistent for d 2 (0; 1), asymptotically normal...... for d ε (0, 3/4), and if the spectral density is infinitely smooth near frequency zero, the rate of convergence can become arbitrarily close to the parametric rate, pn. A Monte Carlo study reveals that the LPWN estimator performs well in the presence of a serially correlated perturbation term...
Fractional order differentiation by integration with Jacobi polynomials
Liu, Dayan
2012-12-01
The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess [22], [23]. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises. © 2012 IEEE.
Synchronization of generalized Henon map using polynomial controller
International Nuclear Information System (INIS)
Lam, H.K.
2010-01-01
This Letter presents the chaos synchronization of two discrete-time generalized Henon map, namely the drive and response systems. A polynomial controller is proposed to drive the system states of the response system to follow those of the drive system. The system stability of the error system formed by the drive and response systems and the synthesis of the polynomial controller are investigated using the sum-of-squares (SOS) technique. Based on the Lyapunov stability theory, stability conditions in terms of SOS are derived to guarantee the system stability and facilitate the controller synthesis. By satisfying the SOS-based stability conditions, chaotic synchronization is achieved. The solution of the SOS-based stability conditions can be found numerically using the third-party Matlab toolbox SOSTOOLS. A simulation example is given to illustrate the merits of the proposed polynomial control approach.
The Kauffman bracket and the Jones polynomial in quantum gravity
International Nuclear Information System (INIS)
Griego, J.
1996-01-01
In the loop representation the quantum states of gravity are given by knot invariants. From general arguments concerning the loop transform of the exponential of the Chern-Simons form, a certain expansion of the Kauffman bracket knot polynomial can be formally viewed as a solution of the Hamiltonian constraint with a cosmological constant in the loop representation. The Kauffman bracket is closely related to the Jones polynomial. In this paper the operation of the Hamiltonian on the power expansions of the Kauffman bracket and Jones polynomials is analyzed. It is explicitly shown that the Kauffman bracket is a formal solution of the Hamiltonian constraint to third order in the cosmological constant. We make use of the extended loop representation of quantum gravity where the analytic calculation can be thoroughly accomplished. Some peculiarities of the extended loop calculus are considered and the significance of the results to the case of the conventional loop representation is discussed. (orig.)
Polynomial chaos expansion with random and fuzzy variables
Jacquelin, E.; Friswell, M. I.; Adhikari, S.; Dessombz, O.; Sinou, J.-J.
2016-06-01
A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.
Fractional order differentiation by integration with Jacobi polynomials
Liu, Dayan; Gibaru, O.; Perruquetti, Wilfrid; Laleg-Kirati, Taous-Meriem
2012-01-01
The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess [22], [23]. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises. © 2012 IEEE.
Real zeros of classes of random algebraic polynomials
Directory of Open Access Journals (Sweden)
K. Farahmand
2003-01-01
Full Text Available There are many known asymptotic estimates for the expected number of real zeros of an algebraic polynomial a0+a1x+a2x2+⋯+an−1xn−1 with identically distributed random coefficients. Under different assumptions for the distribution of the coefficients {aj}j=0n−1 it is shown that the above expected number is asymptotic to O(logn. This order for the expected number of zeros remains valid for the case when the coefficients are grouped into two, each group with a different variance. However, it was recently shown that if the coefficients are non-identically distributed such that the variance of the jth term is (nj the expected number of zeros of the polynomial increases to O(n. The present paper provides the value for this asymptotic formula for the polynomials with the latter variances when they are grouped into three with different patterns for their variances.
a Unified Matrix Polynomial Approach to Modal Identification
Allemang, R. J.; Brown, D. L.
1998-04-01
One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.
Euler polynomials and identities for non-commutative operators
De Angelis, Valerio; Vignat, Christophe
2015-12-01
Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.
Mertelsmann, Olaf, 1969-
2014-01-01
Arvustus: Rosche, Julia. Zwischen den Fronten. Die Rolle Estlands zwischen dem Hitler-Stalin-Pakt und dem Ende des Zweiten Weltkriegs im internationalen Kontext. Diplomica Verlag. Hamburg 2012. Unter demselben Titel mit identischem Text auch: Grin Verlag. München 2013
Local polynomial Whittle estimation covering non-stationary fractional processes
DEFF Research Database (Denmark)
Nielsen, Frank
to the non-stationary region. By approximating the short-run component of the spectrum by a polynomial, instead of a constant, in a shrinking neighborhood of zero we alleviate some of the bias that the classical local Whittle estimators is prone to. This bias reduction comes at a cost as the variance is in...... study illustrates the performance of the proposed estimator compared to the classical local Whittle estimator and the local polynomial Whittle estimator. The empirical justi.cation of the proposed estimator is shown through an analysis of credit spreads....
The algebra of Weyl symmetrised polynomials and its quantum extension
International Nuclear Information System (INIS)
Gelfand, I.M.; Fairlie, D.B.
1991-01-01
The Algebra of Weyl symmetrised polynomials in powers of Hamiltonian operators P and Q which satisfy canonical commutation relations is constructed. This algebra is shown to encompass all recent infinite dimensional algebras acting on two-dimensional phase space. In particular the Moyal bracket algebra and the Poisson bracket algebra, of which the Moyal is the unique one parameter deformation are shown to be different aspects of this infinite algebra. We propose the introduction of a second deformation, by the replacement of the Heisenberg algebra for P, Q with a q-deformed commutator, and construct algebras of q-symmetrised Polynomials. (orig.)
Skew-orthogonal polynomials, differential systems and random matrix theory
International Nuclear Information System (INIS)
Ghosh, S.
2007-01-01
We study skew-orthogonal polynomials with respect to the weight function exp[-2V (x)], with V (x) = Σ K=1 2d (u K /K)x K , u 2d > 0, d > 0. A finite subsequence of such skew-orthogonal polynomials arising in the study of Orthogonal and Symplectic ensembles of random matrices, satisfy a system of differential-difference-deformation equation. The vectors formed by such subsequence has the rank equal to the degree of the potential in the quaternion sense. These solutions satisfy certain compatibility condition and hence admit a simultaneous fundamental system of solutions. (author)
Orthogonal polynomials, Laguerre Fock space, and quasi-classical asymptotics
Engliš, Miroslav; Ali, S. Twareque
2015-07-01
Continuing our earlier investigation of the Hermite case [S. T. Ali and M. Engliš, J. Math. Phys. 55, 042102 (2014)], we study an unorthodox variant of the Berezin-Toeplitz quantization scheme associated with Laguerre polynomials. In particular, we describe a "Laguerre analogue" of the classical Fock (Segal-Bargmann) space and the relevant semi-classical asymptotics of its Toeplitz operators; the former actually turns out to coincide with the Hilbert space appearing in the construction of the well-known Barut-Girardello coherent states. Further extension to the case of Legendre polynomials is likewise discussed.
Weierstrass method for quaternionic polynomial root-finding
Falcão, M. Irene; Miranda, Fernando; Severino, Ricardo; Soares, M. Joana
2018-01-01
Quaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas which motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper we propose a Weierstrass-like method for finding simultaneously {\\sl all} the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented.
Orthogonal polynomials on the unit circle part 2 spectral theory
Simon, Barry
2013-01-01
This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrödinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegő's theorems), limit theorems for the density of the zeros of orthogonal po
Orthogonal polynomials on the unit circle part 1 classical theory
2009-01-01
This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrodinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (SzegÅ‘'s theorems), limit theorems for the density of the zeros of orthogonal po
The neighbourhood polynomial of some families of dendrimers
Nazri Husin, Mohamad; Hasni, Roslan
2018-04-01
The neighbourhood polynomial N(G,x) is generating function for the number of faces of each cardinality in the neighbourhood complex of a graph and it is defined as (G,x)={\\sum }U\\in N(G){x}|U|, where N(G) is neighbourhood complex of a graph, whose vertices of the graph and faces are subsets of vertices that have a common neighbour. A dendrimers is an artificially manufactured or synthesized molecule built up from branched units called monomers. In this paper, we compute this polynomial for some families of dendrimer.
Gaussian polynomials and content ideal in trivial extensions
International Nuclear Information System (INIS)
Bakkari, C.; Mahdou, N.
2006-12-01
The goal of this paper is to exhibit a class of Gaussian non-coherent rings R (with zero-divisors) such that wdim(R) = ∞ and fPdim(R) is always at most one and also exhibits a new class of rings (with zerodivisors) which are neither locally Noetherian nor locally domain where Gaussian polynomials have a locally principal content. For this purpose, we study the possible transfer of the 'Gaussian' property and the property 'the content ideal of a Gaussian polynomial is locally principal' to various trivial extension contexts. This article includes a brief discussion of the scopes and limits of our result. (author)
M-Polynomial and Related Topological Indices of Nanostar Dendrimers
Directory of Open Access Journals (Sweden)
Mobeen Munir
2016-09-01
Full Text Available Dendrimers are highly branched organic macromolecules with successive layers of branch units surrounding a central core. The M-polynomial of nanotubes has been vastly investigated as it produces many degree-based topological indices. These indices are invariants of the topology of graphs associated with molecular structure of nanomaterials to correlate certain physicochemical properties like boiling point, stability, strain energy, etc. of chemical compounds. In this paper, we first determine M-polynomials of some nanostar dendrimers and then recover many degree-based topological indices.
On the Lojasiewicz exponent at infinity of real polynomials
International Nuclear Information System (INIS)
Ha Huy Vui; Pham Tien Son
2007-07-01
Let f : R n → R be a nonconstant polynomial function. In this paper, using the information from 'the curve of tangency' of f, we provide a method to determine the Lojasiewicz exponent at infinity of f. As a corollary, we give a computational criterion to decide if the Lojasiewicz exponent at infinity is finite or not. Then, we obtain a formula to calculate the set of points at which the polynomial f is not proper. Moreover, a relation between the Lojasiewicz exponent at infinity of f with the problem of computing the global optimum of f is also established. (author)
Research on the method of extracting DEM based on GBInSAR
Yue, Jianping; Yue, Shun; Qiu, Zhiwei; Wang, Xueqin; Guo, Leping
2016-05-01
Precise topographical information has a very important role in geology, hydrology, natural resources survey and deformation monitoring. The extracting DEM technology based on synthetic aperture radar interferometry (InSAR) obtains the three-dimensional elevation of the target area through the phase information of the radar image data. The technology has large-scale, high-precision, all-weather features. By changing track in the location of the ground radar system up and down, it can form spatial baseline. Then we can achieve the DEM of the target area by acquiring image data from different angles. Three-dimensional laser scanning technology can quickly, efficiently and accurately obtain DEM of target area, which can verify the accuracy of DEM extracted by GBInSAR. But research on GBInSAR in extracting DEM of the target area is a little. For lack of theory and lower accuracy problems in extracting DEM based on GBInSAR now, this article conducted research and analysis on its principle deeply. The article extracted the DEM of the target area, combined with GBInSAR data. Then it compared the DEM obtained by GBInSAR with the DEM obtained by three-dimensional laser scan data and made statistical analysis and normal distribution test. The results showed the DEM obtained by GBInSAR was broadly consistent with the DEM obtained by three-dimensional laser scanning. And its accuracy is high. The difference of both DEM approximately obeys normal distribution. It indicated that extracting the DEM of target area based on GBInSAR is feasible and provided the foundation for the promotion and application of GBInSAR.
A coupled DEM-CFD method for impulse wave modelling
Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista
2015-04-01
Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been
3D DEM analyses of the 1963 Vajont rock slide
Boon, Chia Weng; Houlsby, Guy; Utili, Stefano
2013-04-01
The 1963 Vajont rock slide has been modelled using the distinct element method (DEM). The open-source DEM code, YADE (Kozicki & Donzé, 2008), was used together with the contact detection algorithm proposed by Boon et al. (2012). The critical sliding friction angle at the slide surface was sought using a strength reduction approach. A shear-softening contact model was used to model the shear resistance of the clayey layer at the slide surface. The results suggest that the critical sliding friction angle can be conservative if stability analyses are calculated based on the peak friction angles. The water table was assumed to be horizontal and the pore pressure at the clay layer was assumed to be hydrostatic. The influence of reservoir filling was marginal, increasing the sliding friction angle by only 1.6˚. The results of the DEM calculations were found to be sensitive to the orientations of the bedding planes and cross-joints. Finally, the failure mechanism was investigated and arching was found to be present at the bend of the chair-shaped slope. References Boon C.W., Houlsby G.T., Utili S. (2012). A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Computers and Geotechnics, vol 44, 73-82, doi.org/10.1016/j.compgeo.2012.03.012. Kozicki, J., & Donzé, F. V. (2008). A new open-source software developed for numerical simulations using discrete modeling methods. Computer Methods in Applied Mechanics and Engineering, 197(49-50), 4429-4443.
Optimization of Particle Search Algorithm for CFD-DEM Simulations
Directory of Open Access Journals (Sweden)
G. Baryshev
2013-09-01
Full Text Available Discrete element method has numerous applications in particle physics. However, simulating particles as discrete entities can become costly for large systems. In time-driven DEM simulation most computation time is taken by contact search stage. We propose an efficient collision detection method which is based on sorting particles by their coordinates. Using multiple sorting criteria allows minimizing number of potential neighbours and defines fitness of this approach for simulation of massive systems in 3D. This method is compared to a common approach that consists of placing particles onto a grid of cells. Advantage of the new approach is independence of simulation parameters upon particle radius and domain size.
Der antiskeptische Boden unter dem Gehirn im Tank
Müller, Olaf L.
2001-01-01
Crispin Wright hat die bislang beste Rekonstruktion von Putnams Beweis gegen die skeptische Hypothese vom Gehirn im Tank vorgelegt. Aber selbst in Wrights Fassung hat der Beweis einen Mangel: Er wird mithilfe eines Prädikates wie z.B. "Tiger" geführt und funktioniert nur, wenn man sich darauf verlassen kann, dass es Tiger wirklich gibt. Aber die Skeptikerin bestreitet, über die Existenz von Tigern bescheid zu wissen. Das Problem lässt sich dadurch beheben, dass man den Beweis – statt mit dem ...
International Nuclear Information System (INIS)
Schlünz, E.B.; Bokov, P.M.; Prinsloo, R.H.; Vuuren, J.H. van
2016-01-01
Highlights: • Unified methodology for in-core fuel management optimisation (ICFMO). • Addresses single- and multiobjective constrained and unconstrained ICFMO problems. • Augmented Chebyshev scalarising objective function with additive penalty function. • Harmony search algorithm yields high-quality solution or approximate Pareto set. • Methodology provides cycle-to-cycle optimisation decision support capabilities. - Abstract: The in-core fuel management optimisation (ICFMO) problem is the problem of finding an optimal fuel reload configuration for a nuclear reactor core. ICFMO may involve the pursuit of a single or multiple objectives, while satisfying several constraints. Very little multiobjective ICFMO research involving the fundamental notion of Pareto optimality has, however, been performed. In this paper, a unified methodology is proposed for the modelling and solution of single- and multiobjective ICFMO problems, be they constrained or unconstrained. With this methodology, ICFMO problems incorporating a variety of objectives and/or constraints may be modelled and solved rapidly, thus providing a cycle-to-cycle optimisation decision support capability for nuclear reactors. An augmented Chebyshev scalarising objective function is incorporated in the methodology for modelling any number of objectives, while an additive penalty function handles potential constraints. Furthermore, an adapted harmony search algorithm is used to solve a given ICFMO problem. The algorithm is able to yield a single solution or a nondominated set of solutions as result (depending on the number of objectives in a problem). The applicability of the methodology is demonstrated by solving (approximately) a variety of ICFMO test problems for the SAFARI-1 nuclear research reactor. The results indicate that the methodology may be used as an effective decision support tool for reactor operators tasked with designing reload configurations from cycle to cycle.
Directory of Open Access Journals (Sweden)
Mehdi Rahnama
2014-11-01
Full Text Available Extraction and interpretation of tectonic lineaments is one of the routines for mapping large areas using remote sensing data. However, this is a subjective and time-consuming process. It is difficult to choose an optimal lineament extraction method in order to reduce subjectivity and obtain vectors similar to what an analyst would manually extract. The objective of this study is the implementation, evaluation and comparison of Hough transform, segment merging and polynomial fitting methods towards automated tectonic lineament mapping. For this purpose we developed a new MATLAB-based toolbox (TecLines. The proposed toolbox capabilities were validated using a synthetic Digital Elevation Model (DEM and tested along in the Andarab fault zone (Afghanistan where specific fault structures are known. In this study, we used filters in both frequency and spatial domains and the tensor voting framework to produce binary edge maps. We used the Hough transform to extract linear image discontinuities. We used B-spline as a polynomial curve fitting method to eliminate artificial line segments that are out of interest and to link discontinuous segments with similar trends. We performed statistical analyses in order to compare the final image discontinuities maps with existing references map.
Application of grafted polynomial function in forecasting cotton ...
African Journals Online (AJOL)
A study was conducted to forecast cotton production trend with the application of a grafted polynomial function in Nigeria from 1985 through 2013. Grafted models are used in econometrics to embark on economic analysis involving time series. In economic time series, the paucity of data and their availability has always ...
A Polynomial Optimization Approach to Constant Rebalanced Portfolio Selection
Takano, Y.; Sotirov, R.
2010-01-01
We address the multi-period portfolio optimization problem with the constant rebalancing strategy. This problem is formulated as a polynomial optimization problem (POP) by using a mean-variance criterion. In order to solve the POPs of high degree, we develop a cutting-plane algorithm based on
On Dual Gabor Frame Pairs Generated by Polynomials
DEFF Research Database (Denmark)
Christensen, Ole; Rae Young, Kim
2010-01-01
We provide explicit constructions of particularly convenient dual pairs of Gabor frames. We prove that arbitrary polynomials restricted to sufficiently large intervals will generate Gabor frames, at least for small modulation parameters. Unfortunately, no similar function can generate a dual Gabo...
Learning Mixtures of Polynomials of Conditional Densities from Data
DEFF Research Database (Denmark)
L. López-Cruz, Pedro; Nielsen, Thomas Dyhre; Bielza, Concha
2013-01-01
Mixtures of polynomials (MoPs) are a non-parametric density estimation technique for hybrid Bayesian networks with continuous and discrete variables. We propose two methods for learning MoP ap- proximations of conditional densities from data. Both approaches are based on learning MoP approximatio...
Root and critical point behaviors of certain sums of polynomials
Indian Academy of Sciences (India)
Seon-Hong Kim
2018-04-24
Apr 24, 2018 ... Root and critical point behaviors of certain sums of polynomials. SEON-HONG KIM1,∗. , SUNG YOON KIM2, TAE HYUNG KIM2 and SANGHEON LEE2. 1Department of Mathematics, Sookmyung Women's University, Seoul 140-742, Korea. 2Gyeonggi Science High School, Suwon 440-800, Korea.
Computational Technique for Teaching Mathematics (CTTM): Visualizing the Polynomial's Resultant
Alves, Francisco Regis Vieira
2015-01-01
We find several applications of the Dynamic System Geogebra--DSG related predominantly to the basic mathematical concepts at the context of the learning and teaching in Brasil. However, all these works were developed in the basic level of Mathematics. On the other hand, we discuss and explore, with DSG's help, some applications of the polynomial's…
Polynomial modal analysis of lamellar diffraction gratings in conical mounting.
Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl
2016-09-01
An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.
QCD analysis of structure functions in terms of Jacobi polynomials
International Nuclear Information System (INIS)
Krivokhizhin, V.G.; Kurlovich, S.P.; Savin, I.A.; Sidorov, A.V.; Skachkov, N.B.; Sanadze, V.V.
1987-01-01
A new method of QCD-analysis of singlet and nonsinglet structure functions based on their expansion in orthogonal Jacobi polynomials is proposed. An accuracy of the method is studied and its application is demonstrated using the structure function F 2 (x,Q 2 ) obtained by the EMC Collaboration from measurements with an iron target. (orig.)
Representations for the extreme zeros of orthogonal polynomials
van Doorn, Erik A.; van Foreest, Nicky D.; Zeifman, Alexander I.
2009-01-01
We establish some representations for the smallest and largest zeros of orthogonal polynomials in terms of the parameters in the three-terms recurrence relation. As a corollary we obtain representations for the endpoints of the true interval of orthogonality. Implications of these results for the
Superiority of Bessel function over Zernicke polynomial as base ...
Indian Academy of Sciences (India)
Abstract. Here we describe the superiority of Bessel function as base function for radial expan- sion over Zernicke polynomial in the tomographic reconstruction technique. The causes for the superiority have been described in detail. The superiority has been shown both with simulated data for Kadomtsev's model for ...
Simplified polynomial representation of cross sections for reactor calculation
International Nuclear Information System (INIS)
Dias, A.M.; Sakai, M.
1985-01-01
It is shown a simplified representation of a cross section library generated by transport theory using the cell model of Wigner-Seitz for typical PWR fuel elements. The effect of burnup evolution through tables of reference cross sections and the effect of the variation of the reactor operation parameters considered by adjusted polynomials are presented. (M.C.K.) [pt
A fast numerical test of multivariate polynomial positiveness with applications
Czech Academy of Sciences Publication Activity Database
Augusta, Petr; Augustová, Petra
2018-01-01
Roč. 54, č. 2 (2018), s. 289-303 ISSN 0023-5954 Institutional support: RVO:67985556 Keywords : stability * multidimensional systems * positive polynomials * fast Fourier transforms * numerical algorithm Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 0.379, year: 2016 https://www.kybernetika.cz/content/2018/2/289/paper.pdf
Computing Tutte polynomials of contact networks in classrooms
Hincapié, Doracelly; Ospina, Juan
2013-05-01
Objective: The topological complexity of contact networks in classrooms and the potential transmission of an infectious disease were analyzed by sex and age. Methods: The Tutte polynomials, some topological properties and the number of spanning trees were used to algebraically compute the topological complexity. Computations were made with the Maple package GraphTheory. Published data of mutually reported social contacts within a classroom taken from primary school, consisting of children in the age ranges of 4-5, 7-8 and 10-11, were used. Results: The algebraic complexity of the Tutte polynomial and the probability of disease transmission increases with age. The contact networks are not bipartite graphs, gender segregation was observed especially in younger children. Conclusion: Tutte polynomials are tools to understand the topology of the contact networks and to derive numerical indexes of such topologies. It is possible to establish relationships between the Tutte polynomial of a given contact network and the potential transmission of an infectious disease within such network
Fast Parallel Computation of Polynomials Using Few Processors
DEFF Research Database (Denmark)
Valiant, Leslie G.; Skyum, Sven; Berkowitz, S.
1983-01-01
It is shown that any multivariate polynomial of degree $d$ that can be computed sequentially in $C$ steps can be computed in parallel in $O((\\log d)(\\log C + \\log d))$ steps using only $(Cd)^{O(1)} $ processors....
Mirror symmetry, toric branes and topological string amplitudes as polynomials
Energy Technology Data Exchange (ETDEWEB)
Alim, Murad
2009-07-13
The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)
Riesz transforms and Lie groups of polynomial growth
Elst, ter A.F.M.; Robinson, D.W.; Sikora, A.
1999-01-01
Let G be a Lie group of polynomial growth. We prove that the second-order Riesz transforms onL2(G; dg) are bounded if, and only if, the group is a direct product of a compact group and a nilpotent group, in which case the transforms of all orders are bounded.
Polynomial constitutive model for shape memory and pseudo elasticity
International Nuclear Information System (INIS)
Savi, M.A.; Kouzak, Z.
1995-01-01
This paper reports an one-dimensional phenomenological constitutive model for shape memory and pseudo elasticity using a polynomial expression for the free energy which is based on the classical Devonshire theory. This study identifies the main characteristics of the classical theory and introduces a simple modification to obtain better results. (author). 9 refs., 6 figs
Weighted Polynomial Approximation for Automated Detection of Inspiratory Flow Limitation
Directory of Open Access Journals (Sweden)
Sheng-Cheng Huang
2017-01-01
Full Text Available Inspiratory flow limitation (IFL is a critical symptom of sleep breathing disorders. A characteristic flattened flow-time curve indicates the presence of highest resistance flow limitation. This study involved investigating a real-time algorithm for detecting IFL during sleep. Three categories of inspiratory flow shape were collected from previous studies for use as a development set. Of these, 16 cases were labeled as non-IFL and 78 as IFL which were further categorized into minor level (20 cases and severe level (58 cases of obstruction. In this study, algorithms using polynomial functions were proposed for extracting the features of IFL. Methods using first- to third-order polynomial approximations were applied to calculate the fitting curve to obtain the mean absolute error. The proposed algorithm is described by the weighted third-order (w.3rd-order polynomial function. For validation, a total of 1,093 inspiratory breaths were acquired as a test set. The accuracy levels of the classifications produced by the presented feature detection methods were analyzed, and the performance levels were compared using a misclassification cobweb. According to the results, the algorithm using the w.3rd-order polynomial approximation achieved an accuracy of 94.14% for IFL classification. We concluded that this algorithm achieved effective automatic IFL detection during sleep.
A Genetic algorithm for evaluating the zeros (roots) of polynomial ...
African Journals Online (AJOL)
This paper presents a Genetic Algorithm software (which is a computational, search technique) for finding the zeros (roots) of any given polynomial function, and optimizing and solving N-dimensional systems of equations. The software is particularly useful since most of the classic schemes are not all embracing.
Global sensitivity analysis using sparse grid interpolation and polynomial chaos
International Nuclear Information System (INIS)
Buzzard, Gregery T.
2012-01-01
Sparse grid interpolation is widely used to provide good approximations to smooth functions in high dimensions based on relatively few function evaluations. By using an efficient conversion from the interpolating polynomial provided by evaluations on a sparse grid to a representation in terms of orthogonal polynomials (gPC representation), we show how to use these relatively few function evaluations to estimate several types of sensitivity coefficients and to provide estimates on local minima and maxima. First, we provide a good estimate of the variance-based sensitivity coefficients of Sobol' (1990) [1] and then use the gradient of the gPC representation to give good approximations to the derivative-based sensitivity coefficients described by Kucherenko and Sobol' (2009) [2]. Finally, we use the package HOM4PS-2.0 given in Lee et al. (2008) [3] to determine the critical points of the interpolating polynomial and use these to determine the local minima and maxima of this polynomial. - Highlights: ► Efficient estimation of variance-based sensitivity coefficients. ► Efficient estimation of derivative-based sensitivity coefficients. ► Use of homotopy methods for approximation of local maxima and minima.
Simplified polynomial digital predistortion for multimode software defined radios
DEFF Research Database (Denmark)
Kardaras, Georgios; Soler, José; Dittmann, Lars
2010-01-01
a simplified approach using polynomial digital predistortion in the intermediated frequency (IF) domain. It is fully implementable in software and no hardware changes are required on the digital or analog platform. The adaptation algorithm selected was Least Mean Squares because of its relevant simplicity...
Polynomial kernels for deletion to classes of acyclic digraphs
Mnich, Matthias; van Leeuwen, E.J.
2017-01-01
We consider the problem to find a set X of vertices (or arcs) with |X| ≤ k in a given digraph G such that D = G − X is an acyclic digraph. In its generality, this is Directed Feedback Vertex Set (or Directed Feedback Arc Set); the existence of a polynomial kernel for these problems is a notorious
Lie-theoretic generating relations of two variable Laguerre polynomials
International Nuclear Information System (INIS)
Khan, Subuhi; Yasmin, Ghazala
2002-07-01
Generating relations involving two variable Lagneire polynonuals L n (x, y) are derived. The process involves the construction of a three dimensional Lie algebra isomorphic to special linear algebra sl(2) with the help of Weisner's method by giving suitable interpretations to the index n of the polynomials L n (x, y). (author)