WorldWideScience

Sample records for charged stirling engine

  1. EXPERIMENTAL INVESTIGATION OF AN AIR CHARGED LOW POWERED STIRLING ENGINE

    Directory of Open Access Journals (Sweden)

    Can ÇINAR

    2004-01-01

    Full Text Available In this study, an air charged, low powered manufactured ? type Stirling engine was investigated experimentally. Tests were conducted at 800, 900 and 1000 °C hot source temperatures, 1, 1.5, 2, 2.5, 3, 3.5 bars air charge pressure. The variation of engine power depending on the charge pressure and hot source temperature for two different heat transfer area was investigated experimentally. Maximum output power was obtained at 1000 °C and 3 bars charge pressure as 58 W at 441 rpm. Engine speed was reached at 846 rpm without load.

  2. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    Science.gov (United States)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    The signal distortion inherent to pressure transmission lines in free-piston Stirling engine research is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving the helium-charged free-piston Stirling engines. The underdamped flow regime is described, the primary resonance frequency is derived, and the pressure phase and amplitude distortion are discussed. The scope and limitation of the dynamic response analysis are considered.

  3. Stirling cycle engine

    Science.gov (United States)

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  4. Stirling Engine Cycle Efficiency

    OpenAIRE

    Naddaf, Nasrollah

    2012-01-01

    ABSTRACT This study strives to provide a clear explanation of the Stirling engine and its efficiency using new automation technology and the Lab View software. This heat engine was invented by Stirling, a Scottish in 1918. The engine’s working principles are based on the laws of thermodynamics and ability of volume expansion of ideal gases at different temperatures. Basically there are three types of Stirling engines: the gamma, beta and alpha models. The commissioner of the thesis ...

  5. Stirling engine application study

    Science.gov (United States)

    Teagan, W. P.; Cunningham, D.

    1983-01-01

    A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.

  6. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  7. Stirling Engine Controller

    Science.gov (United States)

    Blaze, Gina M.

    2004-01-01

    Stirling technology is being developed to replace RTG s (Radioisotope Thermoelectric Generators), more specifically a stirling convertor, which is a stirling engine coupled to a linear alternator. Over the past three decades, the stirling engine has been designed to perform different functions. Stirling convertors have been designed to decrease fuel consumption in automobiles. They have also been designed for terrestrial and space applications. Currently NASA Glenn is using the convertor for space based applications. A stiring converter is a better means of power for deep space mission and "dusty" mission, like the Mars Rovers, than solar panels because it is not affected by dust. Spirit and Opportunity, two Mars rovers currently navigating the planet, are losing their ability to generate electricity because dust is collecting on their solar panels. Opportunity is losing more energy because its robotic arm has a heater with a switch that can not be turned off. The heater is not needed at night, but yet still runs. This generates a greater loss of electricity and in turn diminishes the performance of the rover. The stirling cycle has the potential to provide very efficient conversion of heat energy to electric a1 energy, more so than RTG's. The stirling engine converts the thermal energy produced by the decaying radioisotope to mechanical energy; the linear alternator converts this into electricity. convertor. Since the early 1990's tests have been performed to maximize the efficiency of the stirling converter. Many months, even years, are dedicated to preparing and performing tests. Currently, two stirling convertors #'s 13 and 14, which were developed by Stirling Technology Company, are on an extended operation test. As of June 7th, the two convertors reached 7,500 hours each of operation. Before the convertors could run unattended, many safety precautions had to be examined. So, special instrumentation and circuits were developed to detect off nominal conditions

  8. Stirling engine design manual

    Science.gov (United States)

    Martini, W. R.

    1978-01-01

    This manual is intended to serve both as an introduction to Stirling engine analysis methods and as a key to the open literature on Stirling engines. Over 800 references are listed and these are cross referenced by date of publication, author and subject. Engine analysis is treated starting from elementary principles and working through cycles analysis. Analysis methodologies are classified as first, second or third order depending upon degree of complexity and probable application; first order for preliminary engine studies, second order for performance prediction and engine optimization, and third order for detailed hardware evaluation and engine research. A few comparisons between theory and experiment are made. A second order design procedure is documented step by step with calculation sheets and a worked out example to follow. Current high power engines are briefly described and a directory of companies and individuals who are active in Stirling engine development is included. Much remains to be done. Some of the more complicated and potentially very useful design procedures are now only referred to. Future support will enable a more thorough job of comparing all available design procedures against experimental data which should soon be available.

  9. Stirling engine power control

    Science.gov (United States)

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  10. The Stirling engine

    International Nuclear Information System (INIS)

    Dunn, P.D.

    1989-01-01

    The Stirling engine can be used with any heat source including direct flame, heating from oil, gas, wood or coal combustors, by solar and by nuclear energy. As an alternative to conventional combustors fuels such as coal, oil, gas, vegetable waste can be combusted in a fluidized bed. The engine can be heated by coupling it directly to one of these sources of heat or it can be separated from the heat source and the heat transported by a heat pipe. There is clearly considerable flexibility in the choice of heat source. A major economic penalty is the need for a high temperature heat exchanger to transfer the heat to the engine working fluid from the heat source. Since in order to achieve good heat transfer a large surface area is needed and hence a complicated arrangement of small bore piping. Since the working fluid is not consumed an expensive substance such as helium can be used; however, if the power is to be extracted by a mechanical shaft it is necessary to design a seal between the engine body and the output shaft which will not allow any significant loss of helium. The seal problem is still one of the major technical difficulties in the development of Stirling engines using Helium or Hydrogen as the working fluid. For this reason interest in using air as the working fluid in lower speed engines has revived. 14 refs, 19 figs

  11. Predictive modeling of performance of a helium charged Stirling engine using an artificial neural network

    International Nuclear Information System (INIS)

    Özgören, Yaşar Önder; Çetinkaya, Selim; Sarıdemir, Suat; Çiçek, Adem; Kara, Fuat

    2013-01-01

    Highlights: ► Max torque and power values were obtained at 3.5 bar Pch, 1273 K Hst and 1.4:1 r. ► According to ANOVA, the most influential parameter on power was Hst with 48.75%. ► According to ANOVA, the most influential parameter on torque was Hst with 41.78%. ► ANN (R 2 = 99.8% for T, P) was superior to regression method (R 2 = 92% for T, 81% for P). ► LM was the best learning algorithm in predicting both power and torque. - Abstract: In this study, an artificial neural network (ANN) model was developed to predict the torque and power of a beta-type Stirling engine using helium as the working fluid. The best results were obtained by 5-11-7-1 and 5-13-7-1 network architectures, with double hidden layers for the torque and power respectively. For these network architectures, the Levenberg–Marquardt (LM) learning algorithm was used. Engine performance values predicted with the developed ANN model were compared with the actual performance values measured experimentally, and substantially coinciding results were observed. After ANN training, correlation coefficients (R 2 ) of both engine performance values for testing and training data were very close to 1. Similarly, root-mean-square error (RMSE) and mean error percentage (MEP) values for the testing and training data were less than 0.02% and 3.5% respectively. These results showed that the ANN is an acceptable model for prediction of the torque and power of the beta-type Stirling engine

  12. Stirling Engine with Unidirectional Gas Flow

    OpenAIRE

    Blumbergs, Ilmars

    2014-01-01

    In this study, a Stirling engine with unidirectional gas flow configuration of beta type Stirling engine is described and studied from kinematic and thermodynamics points of view. Some aspects of the Stirling engine with unidirectional gas flow engine are compared to classic beta type Stirling engines. The aim of research has been to develop a new type of Stirling engine, using SolidWorks 3D design software and Flow Simulation software. In the development process, special attention has been d...

  13. Stirling Engine Configuration Selection

    Directory of Open Access Journals (Sweden)

    Jose Egas

    2018-03-01

    Full Text Available Unlike internal combustion engines, Stirling engines can be designed to work with many drive mechanisms based on the three primary configurations, alpha, beta and gamma. Hundreds of different combinations of configuration and mechanical drives have been proposed. Few succeed beyond prototypes. A reason for poor success is the use of inappropriate configuration and drive mechanisms, which leads to low power to weight ratio and reduced economic viability. The large number of options, the lack of an objective comparison method, and the absence of a selection criteria force designers to make random choices. In this article, the pressure—volume diagrams and compression ratios of machines of equal dimensions, using the main (alpha, beta and gamma crank based configurations as well as rhombic drive and Ross yoke mechanisms, are obtained. The existence of a direct relation between the optimum compression ratio and the temperature ratio is derived from the ideal Stirling cycle, and the usability of an empirical low temperature difference compression ratio equation for high temperature difference applications is tested using experimental data. It is shown that each machine has a different compression ratio, making it more or less suitable for a specific application, depending on the temperature difference reachable.

  14. Stirling Engine Gets Revisited

    Science.gov (United States)

    Thompson, Frank

    2010-01-01

    One of the basic truths regarding energy conversion is that no thermodynamic cycle can be devised that is more efficient than a Carnot cycle operating between the same temperature limits. The efficiency of the Stirling cycle (patented by Rev. Robert Stirling in 1816) can approach that of the Carnot cycle and yet has not had the commercial success…

  15. The Stirling engine accelerates.; Der Stirling-Motor gibt Gas.

    Energy Technology Data Exchange (ETDEWEB)

    Pfannstiel, Dieter [DiWiTech - Ingenieurpraxis fuer technische und wissenschaftliche Dienstleistungen, Breitenbach a.H. (Germany)

    2010-01-15

    At this moment, Stirling engines are the most outstanding micro technology of combined heat and power generation. The free piston machine combines the principle of the conventional Stirling engine with a modern linear generator for power generation utilizing waste heat for the heating of houses or hot water tanks. All large manufacturers concern themselves with this technology and develop devices based on the Stirling engine. The overview contribution under consideration describes the current level of development of the Stirling devices of different manufacturers. In nearly two years, these devices will serially be produced in the market.

  16. Automotive Stirling Engine Development Program

    Science.gov (United States)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)

    1983-01-01

    Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.

  17. Stirling engine with pressurized crankcase

    Science.gov (United States)

    Corey, John A.

    1988-01-01

    A two piston Stirling engine wherein the pistons are coupled to a common crankshaft via bearing means, the pistons include pad means to minimize friction between the pistons and the cylinders during reciprocation of the pistons, means for pressurizing the engine crankcase, and means for cooling the crankshaft and the bearing means eliminating the need for oil in the crankcase.

  18. Free-Piston Stirling Engines

    Science.gov (United States)

    Shaltens, Richard K.

    1989-01-01

    Engines promise cost-effective solar-power generation. Report describes two concepts for Stirling-engine systems for conversion of solar heat to electrical energy. Recognized most promising technologies for meeting U.S. Department of Energy goals for performance and cost for terrestrial electrical-energy sources.

  19. Automotive Stirling Engine Development Project

    Science.gov (United States)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  20. The Stirling engine mechanism optimization

    Directory of Open Access Journals (Sweden)

    Jiří Podešva

    2016-03-01

    Full Text Available A special type of the gas engine with external combustion is called Stirling engine. The mechanism has two pistons with two volumes inside. The pistons are connected together through cooler, regenerator and warmer. The engine effectivity depends on the piston movement behaviour. The usual sinusoidal time curve leads to low effectiveness. The quick movement from lower to upper position with a certain delay in both top and bottom dead centres is more effective. The paper deals with three types of mechanisms, analyzing the piston movement, and their behavior. Special emphasize is taken to the piston movement regime.

  1. Downsizing assessment of automotive Stirling engines

    Science.gov (United States)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  2. Stirling engine design manual, 2nd edition

    Science.gov (United States)

    Martini, W. R.

    1983-01-01

    This manual is intended to serve as an introduction to Stirling cycle heat engines, as a key to the available literature on Stirling engines and to identify nonproprietary Stirling engine design methodologies. Two different fully described Stirling engines are discussed. Engine design methods are categorized as first order, second order, and third order with increased order number indicating increased complexity. FORTRAN programs are listed for both an isothermal second order design program and an adiabatic second order design program. Third order methods are explained and enumerated. In this second edition of the manual the references are updated. A revised personal and corporate author index is given and an expanded directory lists over 80 individuals and companies active in Stirling engines.

  3. CHP from Updraft Gasifier and Stirling Engine

    DEFF Research Database (Denmark)

    Jensen, N.; Werling, J.; Carlsen, Henrik

    2002-01-01

    The combination of thermal gasification with a Stirling engine is an interesting concept for use in small combined heat and power plants based on biomass. By combining the two technologies a synergism can potentially be achieved. Technical problems, e.g. gas cleaning and fouling of the Stirling...... engine heat exchanger, can be eliminated and the overall electric efficiency of the system can be improved. At the Technical University of Denmark a Stirling engine fueled by gasification gas has been developed. In this engine the combustion system and the geometry of the hot heat exchanger...... of the Stirling engine has been adapted to the use of a gas with a low specific energy content and a high content of tar and particles. In the spring of 2001 a demonstration plant has been built in the western part of Denmark where this Stirling engine is combined with an updraft gasifier. A mathematical...

  4. Solar powered Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  5. Automotive Stirling engine development program: A success

    Science.gov (United States)

    Tabata, W. K.

    1987-01-01

    The original 5-yr Automotive Stirling Engine Development Program has been extended to 10 years due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

  6. Demonstration Experiments with a Stirling Engine.

    Science.gov (United States)

    Deacon, Christopher G.; And Others

    1994-01-01

    Describes an investigation with the primary purpose of allowing students to generate and interpret a pressure/volume diagram of a Stirling engine. Explains how the Stirling engine can be used to demonstrate the principles of operation of a refrigerator and a heat pump. (DDR)

  7. Self-pressurizing Stirling engine

    Science.gov (United States)

    Bennett, Charles L.

    2010-10-12

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  8. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  9. Variable displacement alpha-type Stirling engine

    Science.gov (United States)

    Homutescu, V. M.; Bălănescu, D. T.; Panaite, C. E.; Atanasiu, M. V.

    2016-08-01

    The basic design and construction of an alpha-type Stirling engine with on load variable displacement is presented. The variable displacement is obtained through a planar quadrilateral linkage with one on load movable ground link. The physico-mathematical model used for analyzing the variable displacement alpha-type Stirling engine behavior is an isothermal model that takes into account the real movement of the pistons. Performances and power adjustment capabilities of such alpha-type Stirling engine are calculated and analyzed. An exemplification through the use of the numerical simulation was performed in this regard.

  10. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  11. Rotary Stirling-Cycle Engine And Generator

    Science.gov (United States)

    Chandler, Joseph A.

    1990-01-01

    Proposed electric-power generator comprises three motor generators coordinated by microprocessor and driven by rotary Stirling-cycle heat engine. Combination offers thermodynamic efficiency of Stirling cycle, relatively low vibration, and automatic adjustment of operating parameters to suit changing load on generator. Rotary Stirling cycle engine converts heat to power via compression and expansion of working gas between three pairs of rotary pistons on three concentric shafts in phased motion. Three motor/generators each connected to one of concentric shafts, can alternately move and be moved by pistons. Microprocessor coordinates their operation, including switching between motor and generator modes at appropriate times during each cycle.

  12. Recent Stirling engine loss - understanding results

    International Nuclear Information System (INIS)

    Tew, R.C.; Thieme, L.G.; Dudenhoefer, J.E.

    1994-01-01

    For several years, the National Aeronautics and Space Administration and other US Government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASA's objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed

  13. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    Science.gov (United States)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  14. Parametric study on beta-type Stirling engine

    International Nuclear Information System (INIS)

    Abuelyamen, A.; Ben-Mansour, R.; Abualhamayel, H.; Mokheimer, Esmail M.A.

    2017-01-01

    Highlights: • A parametric study of laminar flow for a β-type Stirling engine was performed. • The optimum charge pressure varies from gas to another. • Stirling engine runs better below the optimum charge pressure for H 2 and He. • Power output increases with temperature while thermal efficiency decreases. • For air and He, output power increases with temperature differences (T H − T C ). - Abstract: In this work, a parametric study on a β-type Stirling engine with no regenerator was conducted numerically using ANSYS fluent 14.5 software. The three parameters that were studied are; initial charge pressure, thermal boundary condition; and three different types of working fluids (Air, He and H 2 ). Variable thermal properties of these gases were adopted to get more realistic results. The results include a comparison of the amount of heat transfer, power output, and thermal efficiency. It was found that the best engine performance is achieved when H 2 gas is used as working fluid. Moreover, results revealed that each of the power output and the efficiency has different optimum charge pressure. Additionally, it was found that there is a small variation in the pressure across the engine chambers, which results in miss matching between the net heat transfer rates and power output calculated from PV-diagram. This error is higher when the air is used as working fluid, especially at high charge pressure.

  15. Advanced radioisotope heat source for Stirling Engines

    International Nuclear Information System (INIS)

    Dobry, T.J.; Walberg, G.

    2001-01-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions

  16. Cost estimating Brayton and Stirling engines

    Science.gov (United States)

    Fortgang, H. R.

    1980-01-01

    Brayton and Stirling engines were analyzed for cost and selling price for production quantities ranging from 1000 to 400,000 units per year. Parts and components were subjected to indepth scrutiny to determine optimum manufacturing processes coupled with make or buy decisions on materials and small parts. Tooling and capital equipment costs were estimated for each detail and/or assembly. For low annual production volumes, the Brayton engine appears to have a lower cost and selling price than the Stirling Engine. As annual production quantities increase, the Stirling becomes a lower cost engine than the Brayton. Both engines could benefit cost wise if changes were made in materials, design and manufacturing process as annual production quantities increase.

  17. Improving Free-Piston Stirling Engine Specific Power

    Science.gov (United States)

    Briggs, Maxwell H.

    2015-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  18. Fast Whole-Engine Stirling Analysis

    Science.gov (United States)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2007-01-01

    An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.

  19. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  20. Experimental research on the Stirling engine

    Science.gov (United States)

    Ishizaki, Y.; Tani, Y.; Haramura, N.

    1982-01-01

    Experiments on Stirling engines of the 50 KW class were conducted to clarify the characteristics of the engine and its problems. The problems involve durability of the high temperature heat exchanger which is exposed to high flame temperatures above 1600 C, thermal distortion and high temperature corrosion of the devices near combustion, and of the preheater.

  1. Single-piston alternative to Stirling engines

    International Nuclear Information System (INIS)

    Glushenkov, Maxim; Sprenkeler, Martin; Kronberg, Alexander; Kirillov, Valeriy

    2012-01-01

    Highlights: ► Thermodynamic analysis of an unconventional heat engine. ► The engine has a number of advantages compared to state-of-the-art Stirling engines. ► The engine can to be fuelled with “difficult” fuels and used for micro-CHP systems. ► The energy conversion efficiency can be as high as 40–50%. ► A prototype of the engine was demonstrated. -- Abstract: Thermodynamic analysis of an unconventional heat engine was performed. The engine studied has a number of advantages compared to state-of-the-art Stirling engines. The main advantage of the engine proposed is its simplicity. A power piston is integral with a displacer and a heat regenerator. It allows solving the problem of the high-temperature sealing of the piston and the displacer typical of all types of Stirling engines. In addition the design proposed provides ideal use of the displacer volume eliminating heat losses from outside gas circuit. Both strokes of the piston are working ones in contrary to any other types of piston engines. The engine can be considered as maintenance-free as it has no piston rings or any other rubbing components requiring lubrication. The only seal is contactless and wear free. It is located in the cold part of the cylinder. As a result the leakage rate in operation can be one-two orders of magnitude as small as that in Stirling engines. Balancing of the engine is much easy compared to Stirling engines with two reciprocating masses because of the only moving part inside the engine cylinder. The engine suits ideally to be fuelled with “difficult” fuels such as bio oil and can be used as a prime mover for micro-CHP systems. The thermodynamic model developed incorporates non-ideal features of the cycle, such as specific regenerator efficiency, dead volumes and other geometrical parameters of the engine. The model shows that the energy efficiency is highly sensitive to regenerator performance. For realistic geometric and operating parameters and the

  2. MANUFACTURING AND TESTING OF A V-TYPE STIRLING ENGINE

    Directory of Open Access Journals (Sweden)

    B. Demir

    2012-01-01

    Full Text Available In this study, a V-type Stirling engine with 163 cc total swept volume was designed and manufactured. Air was used as working fluid. Performance tests were conducted at the range of 1-3 bar charge pressure and within the range of hot source temperature 700-1050 °C. Experimental results are given. Variation of engine power and torque with hot source temperature at various air charge pressure are tested. Also variation of engine torque with engine speed for different air charge pressure are tested. According to experimental analysis, the maximum engine power was obtained as 21.334 W at 1050 ˚C hot source temperature and 1.5 bars charge pressure.

  3. Two piston V-type Stirling engine

    Science.gov (United States)

    Corey, John A.

    1987-01-01

    A two piston Stirling engine which includes a heat exchanger arrangement placing the cooler and regenerator directly adjacent the compression space for minimal cold duct volume; a sealing arrangement which eliminates the need for piston seals, crossheads and piston rods; and a simplified power control system.

  4. Piston rod seal for a Stirling engine

    Science.gov (United States)

    Shapiro, Wilbur

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  5. Numerical simulation for the design analysis of kinematic Stirling engines

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2015-01-01

    Highlights: • A thermodynamic analysis for kinematic Stirling engines was presented. • The analysis integrated thermal, mechanical and thermodynamic interactions. • The analyses considered geometrical and operational parameters. • The results allowed to map the performance of the engine. • The analysis allow the design assessment of Stirling engines. - Abstract: The Stirling engine is a closed-cycle regenerative system that presents good theoretical properties. These include a high thermodynamic efficiency, low emissions levels thanks to a controlled external heat source, and multi-fuel capability among others. However, the performance of actual prototypes largely differs from the mentioned theoretical potential. Actual engine prototypes present low electrical power outputs and high energy losses. These are mainly attributed to the complex interaction between the different components of the engine, and the challenging heat transfer and fluid dynamics requirements. Furthermore, the integration of the engine into decentralized energy systems such as the Combined Heat and Power systems (CHP) entails additional complications. These has increased the need for engineering tools that could assess design improvements, considering a broader range of parameters that would influence the engine performance when integrated within overall systems. Following this trend, the current work aimed to implement an analysis that could integrate the thermodynamics, and the thermal and mechanical interactions that influence the performance of kinematic Stirling engines. In particular for their use in Combined Heat and Power systems. The mentioned analysis was applied for the study of an engine prototype that presented very low experimental performance. The numerical methodology was selected for the identification of possible causes that limited the performance. This analysis is based on a second order Stirling engine model that was previously developed and validated. The

  6. Stirling engine with air working fluid

    Science.gov (United States)

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  7. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  8. Structural design of Stirling engine with free pistons

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  9. Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Duan, Chen; Wang, Xinggang; Shu, Shuiming; Jing, Changwei; Chang, Huawei

    2014-01-01

    Highlights: • An improved thermodynamic model taking into account irreversibility parameter was developed. • A multi-objective optimization method for designing Stirling engine was investigated. • Multi-objective particle swarm optimization algorithm was adopted in the area of Stirling engine for the first time. - Abstract: In the recent years, the interest in Stirling engine has remarkably increased due to its ability to use any heat source from outside including solar energy, fossil fuels and biomass. A large number of studies have been done on Stirling cycle analysis. In the present study, a mathematical model based on thermodynamic analysis of Stirling engine considering regenerative losses and internal irreversibilities has been developed. Power output, thermal efficiency and the cycle irreversibility parameter of Stirling engine are optimized simultaneously using Particle Swarm Optimization (PSO) algorithm, which is more effective than traditional genetic algorithms. In this optimization problem, some important parameters of Stirling engine are considered as decision variables, such as temperatures of the working fluid both in the high temperature isothermal process and in the low temperature isothermal process, dead volume ratios of each heat exchanger, volumes of each working spaces, effectiveness of the regenerator, and the system charge pressure. The Pareto optimal frontier is obtained and the final design solution has been selected by Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP). Results show that the proposed multi-objective optimization approach can significantly outperform traditional single objective approaches

  10. A high performance thermoacoustic Stirling-engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [Energy research Centre of the Netherlands (ECN), PO Box 1, 1755 ZG Petten (Netherlands)

    2011-11-10

    In thermoacoustic systems heat is converted into acoustic energy and vice versa. These systems use inert gases as working medium and have no moving parts which makes the thermoacoustic technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a sustainable and environmentally friendly way. A thermoacoustic Stirling heat engine is designed and built which achieves a record performance of 49% of the Carnot efficiency. The design and performance of the engine is presented. The engine has no moving parts and is made up of few simple components.

  11. Composite Matrix Regenerator for Stirling Engines

    Science.gov (United States)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  12. Double acting stirling engine phase control

    Science.gov (United States)

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  13. Tests Of A Stirling-Engine Power Converter

    Science.gov (United States)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  14. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  15. Initial testing of a variable-stroke Stirling engine

    Science.gov (United States)

    Thieme, L. G.

    1985-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. The engine is described, initial steady-state test data taken at Lewis are presented, a major drive system failure and subsequent modifications are described. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.

  16. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  17. Ross-Stirling engines: Variations on a theme

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G; Fauvel, R

    1986-01-01

    A new mechanism called the Ross linkage offers the prospect for compact, lightweight, long-lived, relatively low-cost, Stirling engines with excellent prospects for early commercial developed for various applications. Ross-Stirling engines are unusually compact, with installation envelope about one-third of conventional engines, piston side forces are virtually eliminated facilitating the use of dry lubricated or close tolerance, gas lubricated seals and the linkage geometry automatically favors the large bore/short ratios preferred for Stirling engines. The linkage is simple to make with few moving parts so that cost is relatively low. Various potential or actual embodiments of Ross-Stirling engines are reviewed including Stirling-Stirling gas-fired heat pumps, multicylinder power systems and cryocoolers. The system has sufficient flexibility to readily accommodate widely disparate piston stroke and cylinder diameters. Most work has been done so far with two-piston Stirling engines but the same linkage may be adopted for piston-displacer Stirling engines. 6 refs., 10 figs.

  18. Stability analysis of free piston Stirling engines

    Science.gov (United States)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  19. Stirling cycle engines inner workings and design

    CERN Document Server

    Organ, Allan J

    2013-01-01

    Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concep

  20. Loss terms in free-piston Stirling engine models

    Science.gov (United States)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  1. Stirling engines for biomass – what is the problem?

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    2005-01-01

    The External combustion of the Stirling engine makes it very attractive for small-scale Combined Heat and Power (CHP) plants using bio-fuels. Especially wood chips are an attractive fuel because of the high melting point and the low content of ash. Unfortunately, it is more complicated than...... expected to use bio-fuels for a Stirling engine. The high temperature in the hot heat exchanger transferring heat from the combustion to the Stirling engine combined with the low heating value of the fuel reduce the obtainable efficiency of the plant. The limitations of the combustion temperature in order...... to avoid melted ash in the combustion chamber decrease the obtainable efficiency even further. If a Stirling engine, which has an efficiency of 28,5% using natural gas, is converted into utilization of bio-fuel, the efficiency will decrease to 17,5%. Another problem for utilization of bio-fuels in Stirling...

  2. Potential impacts of Brayton and Stirling cycle engines

    Science.gov (United States)

    Heft, R. C.

    1980-01-01

    Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.

  3. Modeling for Control of a Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    García–Canseco, Eloísa; Scherpen, Jacquelien M.A.; Kuindersma, Marnix

    2009-01-01

    In this paper we derive the dynamic model of a four–cylinder double–acting wobble–yoke Stirling engine. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control system perspective to obtain a useful model for the analysis and

  4. Modeling for Control of a Wobble-Yoke Stirling Engine

    NARCIS (Netherlands)

    Garcia Canseco, E.; Scherpen, J.M.A.; Kuindersma, M.

    2009-01-01

    In this paper we derive the dynamical model of a four–cylinder double–acting wobble–yoke Stirling engine introduced originally by [1, 2]. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems perspective to obtain a

  5. 40 kW Stirling Engine for Solid Fuel

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Trærup, Jens

    1996-01-01

    The external combustion in a Stirling engine makes it very attractive for utilisation of solid fuels in decentralised combined heat and power (CHP) plants. Only a few projects have concentrated on the development of Stirling engines specifically for biomass. In this project, a Stirling engine has...... been designed primarily for utilisation of wood chips. Maximum shaft power is 40 kW corresponding to an electric output of 36 kW. Biomass needs more space in the combustion chamber compared to gas and liquid fuels, and a large heat transfer area is necessary. The design of the new Stirling engine has...... been adapted to the special demands of combustion of wood chips, resulting in a large engine compared to engines for gas or liquid fuels. The engine has four-cylinders arranged in a square. The design is made as a hermetic unit, where the alternator is built into the pressurised crankcase so...

  6. Stirling engine alternatives for the terrestrial solar application

    Science.gov (United States)

    Stearns, J.

    1985-01-01

    The first phase of the present study of Stirling engine alternatives for solar thermal-electric generation has been completed. Development risk levels are considered to be high for all engines evaluated. Free-piston type and Ringbom-type Stirling engine-alternators are not yet developed for the 25 to 50-kW electrical power range, although smaller machines have demonstrated the inherent robustness of the machines. Kinematic-type Stirling engines are presently achieving a 3500 hr lifetime or longer on critical components, and lifetime must still be further extended for the solar application. Operational and technical characteristics of all types of Stirling engines have been reviewed with engine developers. Technical work of merit in progress in each engine development organization should be recognized and supported in an appropriate manner.

  7. Commissioning and Performance Analysis of WhisperGen Stirling Engine

    Science.gov (United States)

    Pradip, Prashant Kaliram

    Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.

  8. Creep rupture behavior of Stirling engine materials

    Science.gov (United States)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  9. Ceramic applications in the advanced Stirling automotive engine

    Science.gov (United States)

    Tomazic, W. A.; Cairelli, J. E.

    1978-01-01

    The requirements of the ideal Stirling cycle, as well as basic types of practical engines are described. Advantages, disadvantages, and problem areas of these Stirling engines are discussed. The potential for ceramic components is also considered. Currently ceramics are used in only two areas, the air preheater and insulating tiles between the burner and the heater head. For the advanced Stirling engine to achieve high efficiency and low cost, the principal components are expected to be made from ceramic materials, including the heater head, air preheater, regenerator, the burner and the power piston. Supporting research and technology programs for ceramic component development are briefly described.

  10. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  11. Stirling engine control mechanism and method

    Science.gov (United States)

    Dineen, John J.

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  12. Optimal design of Stirling heat engine using an advanced ...

    Indian Academy of Sciences (India)

    R V Rao

    The comparisons of the proposed algorithm are made with those obtained by using the decision-making methods like linear ... cooling water and had improved the thermal efficiency of ... integrated system of a free-piston Stirling engine and an.

  13. Dynamics of the Ross-Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Doige, A G; Walker, G

    1986-01-01

    A computer model has been developed for the simulation of the dynamic loading in a Stirling engine having a Ross linkage as the drive mechanism. The model is based on a complete theoretical formulation of the dynamics of the system. The masses and moments of inertia of all moving components have been included in the model. The computer program can be used for determining the effect of changes in many design parameters on the geometry, velocities, accelerations, dynamic loading and reactions at all pin connections and engine-mount locations. In this paper, emphasis is given to assessing the general characteristics of the reaction forces at the pin connections and to the reduction of overall engine shaking forces by simple balancing methods. The most heavily loaded element in the engine is the pin connecting the crank and the yoke. The force at that location is a combination of a static load produced by gas pressure in the cylinders and a combined inertia load for the whole engine which increases with the square of the rotational speed. 6 refs., 12 figs., 2 tabs.

  14. Performance comparison of a novel configuration of beta-type Stirling engines with rhombic drive engine

    International Nuclear Information System (INIS)

    Solmaz, Hamit; Karabulut, Halit

    2014-01-01

    Highlights: • The paper describes a novel arrangement of a beta-type Stirling engine. • Its performance was compared with rhombic drive engine. • The power output of the engine was found to be greater than rhombic drive. • Efficiency was found to be higher than rhombic drive at the same working fluid mass. • Efficiency was found to be lower than rhombic drive at the same charge pressure. - Abstract: This study presents a beta type Stirling engine mechanism and its performance analysis. The displacer motion of the engine is performed by a lever mechanism. The performance of the engine was investigated via comparing with a rhombic-drive engine possessing an equal sided rhombic. Comparison was made for kinematic behaviors, power and thermal efficiency. For comparison; the piston swept volume, the inner heat transfer area, the hot and cold end temperatures, the inner heat transfer coefficient, charge pressure and dead volumes were kept equal for both engines. As working fluid the helium was used. Thermodynamic treatments of engines were performed via the nodal analysis. The power of the lever driven engine was found to be greater than the power of the rhombic drive engine. Under the equal charge pressure, the thermal efficiency of the lever driven engine was found to be lower than the efficiency of the rhombic drive engine however, under the equal working fluid mass the thermal efficiency of the lever driven engine was found to be greater than that of the rhombic drive engine. The external volume and mass of the lever driven engine is lower than the rhombic drive engine

  15. Output characteristics of Stirling thermoacoustic engine

    International Nuclear Information System (INIS)

    Sun Daming; Qiu Limin; Wang Bo; Xiao Yong; Zhao Liang

    2008-01-01

    A thermoacoustic engine (TE), which converts thermal energy into acoustic power by the thermoacoustic effect, shows several advantages due to the absence of moving parts, such as high reliability and long lifetime associated with reduced manufacturing costs. Power output and efficiency are important criteria of the performance of a TE. In order to increase the acoustic power output and thermal efficiency of a Stirling TE, the acoustic power distribution in the engine is studied with the variable load method. It is found that the thermal efficiency is independent of the output locations along the engine under the same acoustic power output. Furthermore, when the pressure ratio is kept constant at one location along the TE, it is beneficial to increasing the thermal efficiency by exporting more acoustic power. With nitrogen of 2.5 MPa as working gas and the pressure ratio at the compliance of 1.20 in the experiments, the acoustic power is measured at the compliance and the resonator simultaneously. The maximum power output, thermal efficiency and exergy efficiency reach 390.0 W, 11.2% and 16.0%, which are increased by 51.4%, 24.4% and 19.4%, respectively, compared to those with a single R-C load with 750 ml reservoir at the compliance. This research will be instructive for increasing the efficiency and making full use of the acoustic energy of a TE

  16. A Stirling engine for use with lower quality fuels

    Science.gov (United States)

    Paul, Christopher J.

    There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.

  17. Integrated two-cylinder liquid piston Stirling engine

    Science.gov (United States)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  18. Integrated two-cylinder liquid piston Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd, E-mail: todd.sulchek@me.gatech.edu [George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  19. Integrated two-cylinder liquid piston Stirling engine

    International Nuclear Information System (INIS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-01-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  20. Simulation of Temperature Fluctuations in Stirling Engine Regenerator Matrices

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegaard; Carlsen, Henrik; Thomsen, Per Grove

    2003-01-01

    The objective of this study has been to create a model for studying the effects of fluctuations in regenerator matrix temperatures on Stirling engine performance. A one-dimensional model with axial discretisation of engine components has been formulated using the balance equations for mass, energy...... and accurately calculated. Simulation results have been compared to experimental data for a 9 kW Stirling engine and reasonable agreement has been found over a wide range of operating conditions using Helium or Nitrogen as working gas. Simulation results indicate that fluctuations in the regenerator matrix...... temperatures have significant impact on the regenerator loss, the engine power output, and the cycle efficiency....

  1. Improving Power Density of Free-Piston Stirling Engines

    Science.gov (United States)

    Briggs, Maxwell H.; Prahl, Joseph M.; Loparo, Kenneth A.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free-piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 percent using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a piston power increase of as much as 14 percent. Analytical predictions are compared to experimental data and show close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  2. Improving Free-Piston Stirling Engine Power Density

    Science.gov (United States)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  3. Large eight.cylinder Stirling engine for biofuels

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Biedermann, F.; Bovin, Jonas Kabell

    2003-01-01

    A large Stirling engine with an electric power output of 70 kW has been developed for small-scale CHP using wood chips and other sorts of biomass as fuel. The development of the engine is based on the results from the development of a four-cylinder Stirling engine with a power output of 35 k...... in the hot end connecting the expansion space with the hot end of the regenerator through the heater panel. However, this has resulted in comparably large dead volumes and flow losses in the connections between the heater and the regenerator/expansion volume. For the new eight-cylinder engine the design...... of the connections between the heater and the regenerator/expansion volume have been improved considerably, reducing the flow losses and internal dead volume. Results from simulations indicate an improvement of power output and efficiency of about 10%. A four cylinder double acting Stirling engine is basically...

  4. Micro-cogeneration units based on Stirling engine for heating and their real operation

    Science.gov (United States)

    Čierny, Jaroslav; Patsch, Marek

    2014-08-01

    This article was deal with micro-cogeneration units based on Stirling engine. We watched problematic of real working Stirling engine. The article also contain hookup of unit constructed at University of Zilina.

  5. Effective multi-objective optimization of Stirling engine systems

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2016-01-01

    Highlights: • Multi-objective optimization of three recent Stirling engine models. • Use of efficient crossover and mutation operators for real coded Genetic Algorithm. • Demonstrated supremacy of the strategy over the conventionally used algorithm. • Improvements of up to 29% in comparison to literature results. - Abstract: In this article we demonstrate the supremacy of the Non-dominated Sorting Genetic Algorithm-II with Simulated Binary Crossover and Polynomial Mutation operators for the multi-objective optimization of Stirling engine systems by providing three examples, viz., (i) finite time thermodynamic model, (ii) Stirling engine thermal model with associated irreversibility and (iii) polytropic finite speed based thermodynamics. The finite time thermodynamic model involves seven decision variables and consists of three objectives: output power, thermal efficiency and rate of entropy generation. In comparison to literature, it was observed that the used strategy provides a better Pareto front and leads to improvements of up to 29%. The performance is also evaluated on a Stirling engine thermal model which considers the associated irreversibility of the cycle and consists of three objectives involving eleven decision variables. The supremacy of the suggested strategy is also demonstrated on the experimentally validated polytropic finite speed thermodynamics based Stirling engine model for optimization involving two objectives and ten decision variables.

  6. Optimization of powered Stirling heat engine with finite speed thermodynamics

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad Ali; Pourfayaz, Fathollah; Bidi, Mokhtar; Hosseinzade, Hadi; Feidt, Michel

    2016-01-01

    Highlights: • Based on finite speed method and direct method, the optimal performance is investigated. • The effects of major parameters on the optimal performance are investigated. • The accuracy of the results was compared with previous works. - Abstract: Popular thermodynamic analyses including finite time thermodynamic analysis was lately developed based upon external irreversibilities while internal irreversibilities such as friction, pressure drop and entropy generation were not considered. The aforementioned disadvantage reduces the reliability of the finite time thermodynamic analysis in the design of an accurate Stirling engine model. Consequently, the finite time thermodynamic analysis could not sufficiently satisfy researchers for implementing in design and optimization issues. In this study, finite speed thermodynamic analysis was employed instead of finite time thermodynamic analysis for studying Stirling heat engine. The finite speed thermodynamic analysis approach is based on the first law of thermodynamics for a closed system with finite speed and the direct method. The effects of heat source temperature, regenerating effectiveness, volumetric ratio, piston stroke as well as rotational speed are included in the analysis. Moreover, maximum output power in optimal rotational speed was calculated while pressure losses in the Stirling engine were systematically considered. The result reveals the accuracy and the reliability of the finite speed thermodynamic method in thermodynamic analysis of Stirling heat engine. The outcomes can help researchers in the design of an appropriate and efficient Stirling engine.

  7. Linear Dynamics and Control of a Kinematic Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    Alvarez–Aguirre, Alejandro; García–Canseco, Eloísa; Scherpen, Jacquelien M.A.

    2010-01-01

    This paper presents a control systems approach for the modeling and control of a kinematic wobble–yoke Stirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by these authors. We show that the Stirling engine can be viewed as a

  8. Linear dynamics and control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Alvarez Aguirre, A.; Garcia Canseco, E.; Scherpen, J.M.A.

    2010-01-01

    This paper presents a control systems approachfor the modeling and control of a kinematic wobbleyokeStirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by the authors in [1]. We show that the Stirling engine can be viewed as

  9. Radioisotope power system based on derivative of existing Stirling engine

    International Nuclear Information System (INIS)

    Schock, A.; Or, C.T.; Kumar, V.

    1995-01-01

    In a recent paper, the authors presented the results of a system design study of a 75-watt(c) RSG (Radioisotope Stirling Generator) for possible application to the Pluto Fast Flyby mission. That study was based on a Stirling engine design generated by MTI (Mechanical Technology, Inc.). The MTI design was a derivative of a much larger (13 kwe) engine that they had developed and tested for NASA's LERC. Clearly, such a derivative would be a major extrapolation (downsizing) from what has actually been built and tested. To avoid that, the present paper describes a design for a 75-watt RSG system based on derivatives of a small (11-watt) engine and linear alternator system that has been under development by STC (Stirling Technology Company) for over three years and that has operated successfully for over 15,000 hours as of March 1995. Thus, the STC engines would require much less extrapolation from proven designs. The design employs a heat source consisting of two standard General Purpose Heat Source (GPHS) modules, coupled to four Stirling engines with linear alternators, any three of which could deliver the desired 75-watt(e) output if the fourth should fail. The four engines are coupled to four common radiators with redundant heatpipes for rejecting the engines' waste heat to space. The above engine and radiator redundancies promote system reliability. The paper describes detailed analyses to determine the effect of radiator geometry on system mass and performance, before and after an engine or heatpipe failure

  10. A simple method of calculating Stirling engines for engine design optimization

    Science.gov (United States)

    Martini, W. R.

    1978-01-01

    A calculation method is presented for a rhombic drive Stirling engine with a tubular heater and cooler and a screen type regenerator. Generally the equations presented describe power generation and consumption and heat losses. It is the simplest type of analysis that takes into account the conflicting requirements inherent in Stirling engine design. The method itemizes the power and heat losses for intelligent engine optimization. The results of engine analysis of the GPU-3 Stirling engine are compared with more complicated engine analysis and with engine measurements.

  11. Linear Generator for a Free Piston Stirling Engine

    Directory of Open Access Journals (Sweden)

    OROS (POP Teodora Susana

    2014-05-01

    Full Text Available In this paper we present some aspects about the design of a Stirling engine driven linear generator. There are summarised the main steps of the magnetic and electric calculations with application to a particular case of a cogeneration plant bassed on Stirling engine. The designed linear generator is of fixed coil and moving magnets type. There are presented and a finite element method (FEM simulation of magnetic field. The linear generator design starts with the characteristics of the rare earth permanent magnets existing on the market.

  12. Four-Cylinder Stirling-Engine Computer Program

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1986-01-01

    Computer program developed for simulating steady-state and transient performance of four-cylinder Stirling engine. In model, four cylinders interconnected by four working spaces. Each working space contains seven volumes: one for expansion space, heater, cooler, and compression space and three for regenerator. Thermal time constant for regenerator mass associated with each regenator gas volume. Former code generates results very quickly, since it has only 14 state variables with no energy equation. Current code then used to study various aspects of Stirling engine in much more detail. Program written in FORTRAN IV for use on IBM 370 computer.

  13. Selection of stirling engine parameter and modes of joint operation with the Topaz II

    International Nuclear Information System (INIS)

    Kirillov, E.Y.; Ogloblin, B.G.; Shalaev, A.I.

    1996-01-01

    In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated. copyright 1996 American Institute of Physics

  14. Study of temperature distribution in a Stirling engine regenerator

    International Nuclear Information System (INIS)

    Gheith, R.; Aloui, F.; Ben Nasrallah, S.

    2014-01-01

    Highlights: • A Gamma-Stirling engine is experimented to determine the optimal operation parameters. • A set of experiment reveals a difference of temperature between regenerator sides. • A phenomenon which consumes a part of the produced energy by the engine is highlighted. • A multi-objectif study based on experimental design methodology is developed. • The optimal set of operation parameters maximizing the engine power is proposed. - Abstract: A gamma Stirling engine is studied in this paper. A special care was accorded to the instrumentation of this engine and especially the instrumentation of the regenerator. A preliminarily set of experimental measurement reveals a difference of temperature between both regenerator sides. A second set of experiments was proposed to detect the influence of this phenomenon on Stirling engine performances. The asymmetry of heat transfer inside the Stirling engine regenerator’s is one of the important phenomenons which consume a part of the produced energy. Two experiments are made to find out the causes of this asymmetry. In order to know the influence of the different operation parameters on this new phenomenon the experimental design method is adopted. The experimental design is an alternative to identify the parameters sets allowing optimal Stirling engine performances. A central composite rotatable design was adopted for minimizing the asymmetry of temperature between both regenerator sides and maximizes the engine brake power. The selected four independent parameters are: heating temperature (300 °C–500 °C), initial filling pressure (3 bar–8 bar), cooling water flow rate (0.2 l/m–3 l/min) and operation time (4–20 min after study regime). The four adopted factors are experimentally varied. The results show that the heating temperature is the most significant factor for the studied phenomenon. The major damages caused by this phenomenon will be presented too

  15. Micro power/heat cogeneration incorporating a stirling engine

    International Nuclear Information System (INIS)

    Luft, S.

    2003-01-01

    The Stirling-engine for CHP-purpose developed by SOLO is a trend-setting technology. It represents the most suspicious perspective apart from the fuel-cell technology in order to become suitable to the requirements of the future power supply in the focus of the sustainability and the decentralized energy supply. The charm of the Stirling technology is based on the external combustion: a so far not known variability with the primary energy choice as well as a life span substantially extending, wear-free operation are possible thereby. The external combustion reduces also the maintenance and the emissions in a measure not known with conventional engine technologies. The development steps are finished. The result is the world-wide first concept for the commercial, stationary application of decentralized micro-CHP on Stirling technology basis, which goes into series. (orig.) [de

  16. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    International Nuclear Information System (INIS)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-01-01

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code

  17. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-03-30

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code.

  18. Automotive Stirling engine development program. [fuel economy assessment

    Science.gov (United States)

    Kitzner, E. W.

    1978-01-01

    The Ford/DOE automotive Stirling engine development program is directed towards establishing the technological and developmental base that would enable a decision on whether an engineering program should be directed at Stirling engine production. The fuel economy assessment aims to achieve, with a high degree of confidence, the ERDA proposal estimate of 20.6 MPG (gasoline) for a 4500 lb 1WC Stirling engine passenger car. The current M-H fuel economy projection for the 170 HP Stirling engine is 15.7 MPG. The confidence level for this projection is 32%. A confidence level of 29% is projected for a 22.1 MPG estimate. If all of the planned analyses and test work is accomplished at the end of the one year effort, and the projected improvements are substantiated, the confidence levels would rise to 59% for the 20.6 MPG projection and 54% for the 22.1 MPG projection. Progress achieved thus far during the fuel economy assessment is discussed.

  19. The kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants

    Science.gov (United States)

    Bowyer, J. M.

    1984-01-01

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.

  20. Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling

    Science.gov (United States)

    Tew, Roy C., Jr.

    1988-01-01

    NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

  1. RE-1000 free-piston Stirling engine update

    Science.gov (United States)

    Schreiber, J. G.

    1985-01-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  2. A transient one-dimensional numerical model for kinetic Stirling engine

    International Nuclear Information System (INIS)

    Wang, Kai; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2016-01-01

    Highlights: • A non-equilibrium thermal mode with considering loses is adopted in Stirling engine. • Good agreements are achieved for predicting various critical system parameters. • Differences between helium and hydrogen systems are highlighted and analyzed. • Pressure drop of helium system is much larger and more sensitive to frequency. - Abstract: A third-order numerical model based on one-dimensional computational fluid dynamics is developed for kinetic Stirling engines. Various loss mechanisms in Stirling engines, including gas spring hysteresis loss, shuttle loss, appendix displacer gap loss, gas leakage loss, finite speed loss, piston friction loss, pressure drop loss, heat conduction loss, mechanical loss and imperfect heat transfer, are considered and embedded into the basic control equations. The non-equilibrium thermal model is adopted for the regenerator to capture the oscillating features of the gas and solid temperatures. To improve the numerical stability and accuracy, the implicit second-order time difference scheme and the second-order upwind scheme are adopted for discretizing the time differential terms and convective terms, respectively. Experimental validations are then conducted on a beta-type Stirling engine with the extensive experimental data for diverse working conditions. The results show that the developed model has better accuracies than the previous second-order models. Good agreements are achieved for predicting various critical system parameters, including pressure-volume diagram, indicated power, brake power, indicated efficiency, brake efficiency and mechanical efficiency. In particular, both the experiments and simulations show that the Stirling engine charged with helium tends to have much lower optimal working frequencies and poorer performances compared to the hydrogen system. Based on the analyses of the losses, it reveals that the pressure drop in the flow channels plays a critical role in shaping the different

  3. Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization

    International Nuclear Information System (INIS)

    Gheith, R.; Hachem, H.; Aloui, F.; Ben Nasrallah, S.

    2015-01-01

    Highlights: • A Stirling engine was investigated to optimize its operation and its performance. • The porous medium present the highest amount of heat exchanged in a Stirling engine. • The heater characteristics are determinant points to enhance the thermal exchange in Stirling engine. • All operation parameters influence the heater performances. • Thermal and exergy heater efficiencies are sensible to temperature and pressure. - Abstract: The aim of this work is to optimize γ Stirling engine performances with a special care given to the heater. This latter consists of 20 tubes in order to increase the exchange area between the working gas and the hot source. Different parameters were chosen to evaluate numerically and experimentally the heater. The selected four independent parameters are: heating temperature (300–500 °C), initial filling pressure (3–8 bar), cooling water flow rate (0.2–3 l/min) and frequency (2–7 Hz). The amount of energy exchanged in the heater is significantly influenced by the frequency and heating temperature but it is slightly enhanced with the increase in the cooling water flow rate. The thermal and the exergy efficiencies of the heater are very sensible to the temperature and pressure variations.

  4. IECEC '91; Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, MA, Aug. 4-9, 1991. Vol. 5 - Renewable resource systems, Stirling engines and applications, systems and cycles

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Various papers on energy conversion engineering are presented. The general topics considered are: developments in nuclear power, energy from waste and biomass, system performance and materials in photovoltaics, solar thermal energy, wind energy systems, Stirling cycle analysis, Stirling cycle power, Stirling component technology, Stirling cooler/heat pump developments, Stirling engine concepts, Stirling engine design and optimization, Stirling engine dynamics and response, Stirling engine solar terrestrial, advanced cogeneration, AMTC, fossil fuel systems and technologies, marine energy

  5. Liquid air fueled open–closed cycle Stirling engine

    International Nuclear Information System (INIS)

    Xu, Weiqing; Wang, Jia; Cai, Maolin; Shi, Yan

    2015-01-01

    Highlights: • Energy of liquid air is divided into cryogenic energy and expansion energy. • Open–closed cycle Stirling mechanism is employed to improve efficiency. • The Schmidt theory is modified to describe temperature variation in cold space. - Abstract: An unconventional Stirling engine is proposed and its theoretical analysis is performed. The engine belongs to a “cryogenic heat engine” that is fueled by cryogenic medium. Conventional “cryogenic heat engine” employs liquid air as pressure source, but disregards its heat-absorbing ability. Therefore, its efficiency can only be improved by increasing vapor pressure, accordingly increasing the demand on pressure resistance and sealing. In the proposed engine, the added Stirling mechanism helps achieve its high efficiency and simplicity by utilizing the heat-absorbing ability of liquid air. On one hand, based on Stirling mechanism, gas in the hot space absorbs heat from atmosphere when expanding; gas in the cold space is cooled down by liquid air when compressed. Taking atmosphere as heat source and liquid air as heat sink, a closed Stirling cycle is formed. On the other hand, an exhaust port is set in the hot space. When expanding in the hot space, the vaporized gas is discharged through the exhaust port. Thus, an open cycle is established. To model and analyze the system, the Schmidt theory is modified to describe temperature variation in the cold space, and irreversible characteristic of regenerator is incorporated in the thermodynamic model. The results obtained from the model show that under the same working pressure, the efficiency of the proposed engine is potentially higher than that of conventional ones and to achieve the same efficiency, the working pressure could be lower with the new mechanism. Its efficiency could be improved by reducing temperature difference between the regenerator and the cold/hot space, increasing the swept volume ratio, decreasing the liquid–gas ratio. To keep

  6. Optimal power and efficiency of quantum Stirling heat engines

    Science.gov (United States)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2017-01-01

    A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.

  7. Thermodynamic analysis of a Stirling engine including regenerator dead volume

    Energy Technology Data Exchange (ETDEWEB)

    Puech, Pascal; Tishkova, Victoria [Universite de Toulouse, UPS, CNRS, CEMES, 29 rue Jeanne Marvig, F-31055 Toulouse (France)

    2011-02-15

    This paper provides a theoretical investigation on the thermodynamic analysis of a Stirling engine with linear and sinusoidal variations of the volume. The regenerator in a Stirling engine is an internal heat exchanger allowing to reach high efficiency. We used an isothermal model to analyse the net work and the heat stored in the regenerator during a complete cycle. We show that the engine efficiency with perfect regeneration doesn't depend on the regenerator dead volume but this dead volume strongly amplifies the imperfect regeneration effect. An analytical expression to estimate the improvement due to the regenerator has been proposed including the combined effects of dead volume and imperfect regeneration. This could be used at the very preliminary stage of the engine design process. (author)

  8. How to Overcome Numerical Challenges to Modeling Stirling Engines

    Science.gov (United States)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.

    2004-01-01

    Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for a range of missions, including both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent in current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-FI technique is presented in detail.

  9. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  10. Advanced Stirling Radioisotope Generator Engineering Unit 2 Anomaly Investigation

    Science.gov (United States)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2018-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically heated Stirling radioisotope generator built to date. NASA Glenn Research Center completed the assembly of the ASRG EU2 in September 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's Advanced Stirling Convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's (LM's) Engineering Development Unit (EDU) 4 controller. After just 179 hr of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hr later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from Glenn, Sunpower, and LM conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  11. Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations

    Directory of Open Access Journals (Sweden)

    Chia-En Ho

    2012-09-01

    Full Text Available This paper investigates the optimization of the performance of a solar powered Stirling engine based on finite-time thermodynamics. Heat transference in the heat exchangers between a concentrating solar collector and the Stirling engine is studied. The irreversibility of a Stirling engine is considered with the heat transfer following Newton's law. The power generated by a Stirling engine is used as an objective function for maximum power output design with the concentrating solar collector temperature and the engine thermal efficiency as the optimization parameters. The maximum output power of engine and its corresponding system parameters are determined using a genetic algorithm.

  12. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    OpenAIRE

    Aladayleh, Wail; Alahmer, Ali

    2015-01-01

    This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively....

  13. Mechanical Engineering Practice – using a simple Stirling engine as case

    DEFF Research Database (Denmark)

    Meyer, Knud Erik

    2011-01-01

    The first technical course that students in mechanical engineering take at the Technical University of Denmark is called “Mechanical Engineering Practice”. We have used a simple Stirling engine as a design-implement project. Students were asked to design and build a heat engine using materials....... The Stirling engine worked well in the drawing assignments. The Stirling engine also served as illustration of coming courses in mechanical engineering. The resulting engines had large variations in their design and most groups succeeded in building a functioning engine. However, achieved efficiencies were...... obtained by their own means and were competing on achieving the highest efficiency. We added an extra dimension to the project by making detailed measurements of the pressure variation to check simple thermodynamic models of the engine. The course had integrated lessons in sketching and technical drawing...

  14. Maximum Work of Free-Piston Stirling Engine Generators

    Science.gov (United States)

    Kojima, Shinji

    2017-04-01

    Using the method of adjoint equations described in Ref. [1], we have calculated the maximum thermal efficiencies that are theoretically attainable by free-piston Stirling and Carnot engine generators by considering the work loss due to friction and Joule heat. The net work done by the Carnot cycle is negative even when the duration of heat addition is optimized to give the maximum amount of heat addition, which is the same situation for the Brayton cycle described in our previous paper. For the Stirling cycle, the net work done is positive, and the thermal efficiency is greater than that of the Otto cycle described in our previous paper by a factor of about 2.7-1.4 for compression ratios of 5-30. The Stirling cycle is much better than the Otto, Brayton, and Carnot cycles. We have found that the optimized piston trajectories of the isothermal, isobaric, and adiabatic processes are the same when the compression ratio and the maximum volume of the same working fluid of the three processes are the same, which has facilitated the present analysis because the optimized piston trajectories of the Carnot and Stirling cycles are the same as those of the Brayton and Otto cycles, respectively.

  15. NASA/DOE automotive Stirling engine project: Overview 1986

    Science.gov (United States)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  16. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.

    Science.gov (United States)

    Rapaport, D C

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  17. Optimization design and performance analysis of a miniature stirling engine

    Science.gov (United States)

    You, Zhanping; Yang, Bo; Pan, Lisheng; Hao, Changsheng

    2017-10-01

    Under given operation conditions, a stirling engine of 2 kW is designed which takes hydrogen as working medium. Through establishment of adiabatic model, the ways are achieved about performance improving. The ways are raising the temperature of hot terminal, lowering the temperature of cold end, increasing the average cycle pressure, speeding up the speed, phase angle being 90°, stroke volume ratio approximating to 1 and increasing the performance of regenerator.

  18. A Stirling engine analysis method based upon moving gas nodes

    Science.gov (United States)

    Martini, W. R.

    1986-01-01

    A Lagrangian nodal analysis method for Stirling engines (SEs) is described, validated, and applied to a conventional SE and an isothermalized SE (with fins in the hot and cold spaces). The analysis employs a constant-mass gas node (which moves with respect to the solid nodes during each time step) instead of the fixed gas nodes of Eulerian analysis. The isothermalized SE is found to have efficiency only slightly greater than that of a conventional SE.

  19. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  20. Design and analysis of a dead volume control for a solar Stirling engine with induction generator

    International Nuclear Information System (INIS)

    Beltrán-Chacon, Ricardo; Leal-Chavez, Daniel; Sauceda, D.; Pellegrini-Cervantes, Manuel; Borunda, Mónica

    2015-01-01

    In this work, a power generation system dish/Stirling with cavity receiver and an electrical induction generator was simulated. We propose a control system using a variable-dead-volume and analyze its influence on the mechanical performance. A system with a dead volume of 160 cm"3 was designed to control the power and speed of the engine considering annual insolation, mechanical properties of the heater and the limits of frequency and voltage for the systems interconnected to the electricity network. The designed system achieves net efficient solar conversion to electric of 23.38% at an irradiance of 975 W/m"2 and allows an annual increase of 18% of the useful electrical energy compared to a system without control. - Highlights: • Numerical simulation of a nitrogen charged solar Stirling engine for electric power generation. • Design and analysis of a dead volume control for performance increase and power modulation. • Effect of dead space on average working pressure and mass flow rate. • Comparison between dead volume and average pressure control methods. • Impact of Stirling engine control settings on annual generated electric power.

  1. Preliminary Results from Simulations of Temperature Oscillations in Stirling Engine Regenerator Matrices

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2006-01-01

    The objective of this study has been to create a Stirling engine model for studying the effects of regenerator matrix temperature oscillations on Stirling engine performance. A one-dimensional model with axial discretisation of engine components has been formulated using the control volume method...

  2. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    Directory of Open Access Journals (Sweden)

    Wail Aladayleh

    2015-01-01

    Full Text Available This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.

  3. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.

    Science.gov (United States)

    Luo, E C; Dai, W; Zhang, Y; Ling, H

    2006-12-22

    In this paper, a thermally-driven thermoacoustic refrigerator system without any moving part is reported. This refrigeration system consists of a thermoacoustic-Stirling heat engine and a thermoacoustic-Stirling refrigerator; that is, the former is the driving source for the latter. Both the subsystems are designed to operate on traveling-wave mode. In the experiment, it was found that the DC-flows had significant negative effect on the heat engine and the refrigerator. To suppress these DC-flows, two flexible membranes were inserted into the two subsystems and worked very well. Then extensive experiments were made to test the influence of different parameters on refrigeration performance of the whole system. The system has so far achieved a no-load temperature of -65 degrees C, a cooling capacity of about 270 W at -20 degrees C and 405 W at 0 degrees C; in fact, the result showed a good prospect of the refrigeration system in room-temperature cooling such as food refrigeration and air-conditioning.

  4. Thermal energy storage for the Stirling engine powered automobile

    Science.gov (United States)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  5. The study, design and simulation of a free piston Stirling engine linear alternatorThe study, design and simulation of a free piston Stirling engine linear alternator

    Directory of Open Access Journals (Sweden)

    Teodora Susana Oros

    2014-12-01

    Full Text Available This paper presents a study, design and simulation of a Free Piston Stirling Engine Linear Alternator. There are presented the main steps of the magnetic and electric calculations for a permanent magnet linear alternator of fixed coil and moving magnets type. Finally, a detailed thermal, mechanical and electrical model for a Stirling engine linear alternator have been made in SIMULINK simulation program. The linear alternator simulation model uses a controllable DC voltage which simulates the linear alternator combined with a rectifier, a variable load and a DC-DC converter, which compensates for the variable nature of Stirling engine operation, and ensures a constant voltage output regardless of the load.

  6. Stochastic Stirling Engine Operating in Contact with Active Baths

    Directory of Open Access Journals (Sweden)

    Ruben Zakine

    2017-04-01

    Full Text Available A Stirling engine made of a colloidal particle in contact with a nonequilibrium bath is considered and analyzed with the tools of stochastic energetics. We model the bath by non Gaussian persistent noise acting on the colloidal particle. Depending on the chosen definition of an isothermal transformation in this nonequilibrium setting, we find that either the energetics of the engine parallels that of its equilibrium counterpart or, in the simplest case, that it ends up being less efficient. Persistence, more than non-Gaussian effects, are responsible for this result.

  7. Stochastic Stirling Engine Operating in Contact with Active Baths

    Science.gov (United States)

    Zakine, Ruben; Solon, Alexandre; Gingrich, Todd; van Wijland, Frédéric

    2017-04-01

    A Stirling engine made of a colloidal particle in contact with a nonequilibrium bath is considered and analyzed with the tools of stochastic energetics. We model the bath by non Gaussian persistent noise acting on the colloidal particle. Depending on the chosen definition of an isothermal transformation in this nonequilibrium setting, we find that either the energetics of the engine parallels that of its equilibrium counterpart or, in the simplest case, that it ends up being less efficient. Persistence, more than non Gaussian effects, are responsible for this result.

  8. Development of a Thermoacoustic Stirling Engine Technology Demonstrator

    Science.gov (United States)

    Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland

    2014-08-01

    Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.

  9. Results from tests of a Stirling engine and wood chips gasifier plant

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell; Werling, J.

    2002-01-01

    The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced....... Furthermore, the overall electric efficiency of the system can be improved. At the Technical University of Denmark a small CHP plant based on a Stirling engine and an updraft gasifier has been developed and tested successfully. The advantages of updraft gasifiers are the simplicity and that the amount...... of the Stirling engine reduces the problems with tar to a minor problem in the design of the burner. The Stirling engine, which has an electric power output of 35 kW, is specifically designed for utilisation of fuels with a content of particles. The gas burner for the engine is designed for low specific energy...

  10. Simulation, design and thermal analysis of a solar Stirling engine using MATLAB

    International Nuclear Information System (INIS)

    Shazly, J.H.; Hafez, A.Z.; El Shenawy, E.T.; Eteiba, M.B.

    2014-01-01

    Highlights: • Modeling and simulation for a prototype of the solar-powered Stirling engine. • The solar-powered Stirling engine working at the low temperature range. • Estimating output power from the solar Stirling engine using Matlab program. • Solar radiation simulation program presents a solar radiation data using MATLAB. - Abstract: This paper presents the modeling and simulation for a prototype of the solar-powered Stirling engine working at the low temperature range. A mathematical model for the thermal analysis of the solar-powered low temperature Stirling engine with heat transfer is developed using Matlab program. The model takes into consideration the effect of the absorber temperature on the thermal analysis like as radiation and convection heat transfer between the absorber and the working fluid as well as radiation and convection heat transfer between the lower temperature plate and the working fluid. Hence, the present analysis provides a theoretical guidance for designing and operating of the solar-powered low temperature Stirling engine system, as well as estimating output power from the solar Stirling engine using Matlab program. This study attempts to demonstrate the potential of the low temperature Stirling engine as an option for the prime movers for Photovoltaic tracking systems. The heat source temperature is 40–60 °C as the temperature available from the sun directly

  11. Modeling for control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Garcia-Canseco, Eloisa; Alvarez-Aguirre, Alejandro; Scherpen, Jacquelien M. A.

    In this paper we derive the dynamical model of a four-cylinder double-acting wobble-yoke Stirling engine. In addition to the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems viewpoint to analyze the dynamic properties of the engine.

  12. Design of stirling engine operating at low temperature difference

    Directory of Open Access Journals (Sweden)

    Sedlák Josef

    2018-01-01

    Full Text Available There are many sources of free energy available in the form of heat that is often simply wasted. The aim of this paper is to design and build a low temperature differential Stirling engine that would be powered exclusively from heat sources such as waste hot water or focused solar rays. A prototype is limited to a low temperature differential modification because of a choice of ABSplus plastic as a construction material for its key parts. The paper is divided into two parts. The first part covers a brief history of Stirling engine and its applications nowadays. Moreover, it describes basic principles of its operation that are supplemented by thermodynamic relations. Furthermore, an analysis of applied Fused Deposition Modelling has been done since the parts with more complex geometry had been manufactured using this additive technology. The second (experimental part covers 4 essential steps of a rapid prototyping method - Computer Aided Design of the 3D model of Stirling engine using parametric modeller Autodesk Inventor, production of its components using 3D printer uPrint, assembly and final testing. Special attention was devoted to last two steps of the process since the surfaces of the printed parts were sandpapered and sprayed. Parts, where an ABS plus plastic would have impeded the correct function, had been manufactured from aluminium and brass by cutting operations. Remaining parts had been bought in a hardware store as it would be uneconomical and unreasonable to manufacture them. Last two chapters of the paper describe final testing, mention the problems that appeared during its production and propose new approaches that could be used in the future to improve the project.

  13. β Style Free-Piston Stirling Engine Control System Research

    Directory of Open Access Journals (Sweden)

    Xu Jian

    2016-01-01

    Full Text Available For the Free-Piston Stirling Engines (FPSE control system, a three -phase bridge circuit is reused as the system output about rectifier and start inverter. When FPSE system is in the power stage, the double closed loop control strategy and optimization algorithm of PI control parameters is adopted to ensure the highest system transmission efficiency under the requirements of the system output power and guarantee the stability of the running system. The simulation results prove the effectiveness of the above research content.

  14. Integral finned heater and cooler for stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  15. Control of Stirling engine. Simplified, compressible model

    Science.gov (United States)

    Plotnikov, P. I.; Sokołowski, J.; Żochowski, A.

    2016-06-01

    A one-dimensional free boundary problem on a motion of a heavy piston in a tube filled with viscous gas is considered. The system of governing equations and boundary conditions is derived. The obtained system of differential equations can be regarded as a mathematical model of an exterior combustion engine. The existence of a weak solution to this model is proved. The problem of maximization of the total work of the engine is considered.

  16. Thermal performance of a Stirling engine powered by a solar simulator

    International Nuclear Information System (INIS)

    Aksoy, Fatih; Karabulut, Halit; Çınar, Can; Solmaz, Hamit; Özgören, Yasar Önder; Uyumaz, Ahmet

    2015-01-01

    In this study, the performance of a beta type Stirling engine which works at relatively lower temperatures was investigated using 400 W and 1000 W halogen lamps as a heat source and helium as the working fluid. The working fluid was charged into the engine block and the pressure of the working fluid was ranged from 1 to 5 bars with 1 bar increments. The halogen lamps were placed into a cavity adjacent to the hot end of the displacer cylinder, which is made of aluminum alloy. In the experiments conducted with 400 W halogen lamp, the temperature of the cavity was 623 ± 10 K. The power, torque and thermal efficiency of the engine were determined to be 37.08 W, 1.68 Nm and 9.27%, at 5 bar charge pressure. For the 1000 W halogen lamp, the temperature of the cavity was determined to be 873 ± 10 K. The power, torque and thermal efficiency of the engine were determined to be 127.17 W, 3.4 Nm and 12.85%, at the same charge pressure. The experimental thermal efficiencies of the engine were also compared with thermodynamic nodal analysis. - Highlights: • The performance of a beta type Stirling engine was investigated. • 400 and 1000 W halogen lamps were used as a solar simulator in the experiments. • Cavity temperature was measured 623 and 873 K for 400 and 1000 W lamps. • 1000 W halogen lamp provided better engine performance and thermal efficiency. • Experimental results of efficiency were compared with nodal analysis results

  17. Palm Power Free-Piston Stirling Engine Control Electronics

    Science.gov (United States)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  18. CO2 laser-driven Stirling engine. [space power applications

    Science.gov (United States)

    Lee, G.; Perry, R. L.; Carney, B.

    1978-01-01

    A 100-W Beale free-piston Stirling engine was powered remotely by a CO2 laser for long periods of time. The engine ran on both continuous-wave and pulse laser input. The working fluid was helium doped with small quantities of sulfur hexafluoride, SF6. The CO2 radiation was absorbed by the vibrational modes of the sulfur hexafluoride, which in turn transferred the energy to the helium to drive the engine. Electrical energy was obtained from a linear alternator attached to the piston of the engine. Engine pressures, volumes, and temperatures were measured to determine engine performance. It was found that the pulse radiation mode was more efficient than the continuous-wave mode. An analysis of the engine heat consumption indicated that heat losses around the cylinder and the window used to transmit the beam into the engine accounted for nearly half the energy input. The overall efficiency, that is, electrical output to laser input, was approximately 0.75%. However, this experiment was not designed for high efficiency but only to demonstrate the concept of a laser-driven engine. Based on this experiment, the engine could be modified to achieve efficiencies of perhaps 25-30%.

  19. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM. During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90 percent random fiber currently used in small approx.100 W Stirling space-power convertors-in the Reynolds Number range of interest (50 to 100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6 to 9 percent; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C

  20. Stirling Space Engine Program. Volume 1; Final Report

    Science.gov (United States)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Hardware development focused on the Component Test Power Converter (CTPC), a single cylinder, 12.5-kWe engine. Design parameters for the CTPC were 150 bar operating pressure, 70 Hz frequency, and hot-and cold-end temperatures of 1050 K and 525 K, respectively. The CTPC was also designed for integration with an annular sodium heat pipe at the hot end, which incorporated a unique "Starfish" heater head that eliminated highly stressed brazed or weld joints exposed to liquid metal and used a shaped-tubed electrochemical milling process to achieve precise positional tolerances. Selection of materials that could withstand high operating temperatures with long life were another focus. Significant progress was made in the heater head (Udimet 700 and Inconel 718 and a sodium-filled heat pipe); the alternator (polyimide-coated wire with polyimide adhesive between turns and a polyimide-impregnated fiberglass overwrap and samarium cobalt magnets); and the hydrostatic gas bearings (carbon graphite and aluminum oxide for wear couple surfaces). Tests on the CTPC were performed in three phases: cold end testing (525 K), engine testing with slot radiant heaters, and integrated heat pipe engine system testing. Each test phase was successful, with the integrated engine system demonstrating a power level of 12.5 kWe and an overall efficiency of 22 percent in its maiden test. A 1500-hour endurance test was then successfully completed. These results indicate the significant achievements made by this program that demonstrate the viability of Stirling engine technology for space applications.

  1. Many-objective thermodynamic optimization of Stirling heat engine

    International Nuclear Information System (INIS)

    Patel, Vivek; Savsani, Vimal; Mudgal, Anurag

    2017-01-01

    This paper presents a rigorous investigation of many-objective (four-objective) thermodynamic optimization of a Stirling heat engine. Many-objective optimization problem is formed by considering maximization of thermal efficiency, power output, ecological function and exergy efficiency. Multi-objective heat transfer search (MOHTS) algorithm is proposed and applied to obtain a set of Pareto-optimal points. Many objective optimization results form a solution in a four dimensional hyper objective space and for visualization it is represented on a two dimension objective space. Thus, results of four-objective optimization are represented by six Pareto fronts in two dimension objective space. These six Pareto fronts are compared with their corresponding two-objective Pareto fronts. Quantitative assessment of the obtained Pareto solutions is reported in terms of spread and the spacing measures. Different decision making approaches such as LINMAP, TOPSIS and fuzzy are used to select a final optimal solution from Pareto optimal set of many-objective optimization. Finally, to reveal the level of conflict between these objectives, distribution of each decision variable in their allowable range is also shown in two dimensional objective spaces. - Highlights: • Many-objective (i.e. four objective) optimization of Stirling engine is investigated. • MOHTS algorithm is introduced and applied to obtain a set of Pareto points. • Comparative results of many-objective and multi-objectives are presented. • Relationship of design variables in many-objective optimization are obtained. • Optimum solution is selected by using decision making approaches.

  2. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio

    2014-01-01

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  3. Cost and price estimate of Brayton and Stirling engines in selected production volumes

    Science.gov (United States)

    Fortgang, H. R.; Mayers, H. F.

    1980-01-01

    The methods used to determine the production costs and required selling price of Brayton and Stirling engines modified for use in solar power conversion units are presented. Each engine part, component and assembly was examined and evaluated to determine the costs of its material and the method of manufacture based on specific annual production volumes. Cost estimates are presented for both the Stirling and Brayton engines in annual production volumes of 1,000, 25,000, 100,000 and 400,000. At annual production volumes above 50,000 units, the costs of both engines are similar, although the Stirling engine costs are somewhat lower. It is concluded that modifications to both the Brayton and Stirling engine designs could reduce the estimated costs.

  4. Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2010-01-01

    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.

  5. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks...... for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance...

  6. Characterization of the power and efficiency of Stirling engine subsystems

    International Nuclear Information System (INIS)

    García, D.; González, M.A.; Prieto, J.I.; Herrero, S.; López, S.; Mesonero, I.; Villasante, C.

    2014-01-01

    Highlights: • We review experimental data from a V160 engine developed for cogeneration. • We also investigate the V161 solar engine. • The possible margin of improvement is evaluated for each subsystem. • The procedure is based on similarity models and thermodynamic models. • The procedure may be of general interest for other prototypes. - Abstract: The development of systems based on Stirling machines is limited by the lack of data about the performance of the various subsystems that are located between the input and output power sections. The measurement of some of the variables used to characterise these internal subsystems presents difficulties, particularly in the working gas circuit and the drive mechanism, which causes experimental reports to rarely be comprehensive enough for analysing the whole performance of the machine. In this article, we review experimental data from a V160 engine developed for cogeneration to evaluate the general validity; we also investigate one of the most successful prototypes used in dish-Stirling systems, the V161 engine, for which a seemingly small mechanical efficiency value has been recently predicted. The procedure described in this article allows the possible margin of improvement to be evaluated for each subsystem. The procedure is based on similarity models, which have been previously developed through experimental data from very different prototypes. Thermodynamic models for the gas circuit are also considered. Deduced characteristic curves show that both prototypes have an advanced degree of development as evidenced by relatively high efficiencies for each subsystem. The analyses are examples that demonstrate the qualities of dimensionless numbers in representing physical phenomena with maximum generality and physical meaning

  7. Quantum Stirling heat engine and refrigerator with single and coupled spin systems

    Science.gov (United States)

    Huang, Xiao-Li; Niu, Xin-Ya; Xiu, Xiao-Ming; Yi, Xue-Xi

    2014-02-01

    We study the reversible quantum Stirling cycle with a single spin or two coupled spins as the working substance. With the single spin as the working substance, we find that under certain conditions the reversed cycle of a heat engine is NOT a refrigerator, this feature holds true for a Stirling heat engine with an ion trapped in a shallow potential as its working substance. The efficiency of quantum Stirling heat engine can be higher than the efficiency of the Carnot engine, but the performance coefficient of the quantum Stirling refrigerator is always lower than its classical counterpart. With two coupled spins as the working substance, we find that a heat engine can turn to a refrigerator due to the increasing of the coupling constant, this can be explained by the properties of the isothermal line in the magnetic field-entropy plane.

  8. Study of Stirling Engine Efficiency Coefficient under Conditions Being Close to Real Ones

    Directory of Open Access Journals (Sweden)

    R. M. Abramian

    2013-01-01

    Full Text Available An absolute internal efficiency coefficient of the Stirling engine has been obtained without regenerator and with regenerator under conditions when van der Waals gas serves as a working medium. The paper reveals that while taking into account own volume of molecules thermal efficiency coefficient of the Stirling engine depends on mole number of the working medium  and it is slightly increasing  in comparison with the case of an ideal gas. The paper gives consideration to heat losses while the Stirling machine operates with heat regeneration. Dependence of regeneration rate on time of heat transfer has been obtained in the paper. 

  9. Stirling engine power control and motion conversion mechanism

    Science.gov (United States)

    Marks, David T.

    1983-01-01

    A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

  10. Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors

    Science.gov (United States)

    Riecke, George T.; Stotts, Robert E.

    1992-01-01

    The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

  11. Stirling engine with hydraulic power output for powering artificial hearts

    International Nuclear Information System (INIS)

    Johnston, R.P.; Noble, J.E.; Emigh, S.G.; White, M.A.; Griffith, W.R.; Perrone, R.E.

    1975-01-01

    The DWDL heart power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has already been achieved with an engine module; animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. The present System 5 can reliably meet near-term thousand-hour animal in-vivo test goals as far as the durability and efficacy of the power source are concerned. Carefully planned development of System 6 has produced major reductions in size and required input power. Research engine tests have provided the basis for achieving performance goals and the approach for further improvement is well established. The near term goal is 33 W heat input with 16 W input projected for normal physical activity. The goal of reduction of engine module volume to 0.9 liter has been achieved. Demonstrated reliability of 292 d for the engine and 35 d for the full system, as well as effectiveness of the artificial heart power source in short-term in-vivo tests indicate that life-limiting problems are now blood pump reliability and the machine-animal interface

  12. Optimum performance characteristics of a solar-driven Stirling heat engine system

    International Nuclear Information System (INIS)

    Liao, Tianjun; Lin, Jian

    2015-01-01

    Graphical abstract: T–S diagram of the SHE cycle. - Highlights: • Based on Lagrange multiplier method, the optimal performance are investigated. • The energy balance between the absorber and the hot side of Stirling heat engine is considered. • The effects of major parameters on the optimal performance are investigated. - Abstract: A solar-driven Stirling heat engine system composed of a Stirling heat engine, a solar collector, and a heat sink is presented, in which the radiation and convection heat losses of the solar collector, the heat-leak between the thermal absorber and heat sink, the regenerative losses of the Stirling heat engine, and the energy balance between the thermal absorber and the high isothermal process of the Stirling heat engine are taken into consideration. Based on the irreversible thermodynamics and Lagrange multiplier method, the maximum power output and the corresponding optimal efficiency of the system are determined and the absorber temperature that maximizes the optimal system efficiency is calculated numerically. The influences of some system parameters such as the concentrating ratio, the volume ratio during the regenerative processes and irreversibilities of heat exchange processes on the optimal efficiency are analyzed in details. The results obtained here may provide a new idea to design practical solar-driven Stirling heat engine system

  13. Application Model for a Stirling Engine Micro-Generation System in Caravans in Different European Locations

    Directory of Open Access Journals (Sweden)

    Carlos Ulloa

    2013-02-01

    Full Text Available This article describes a simple model obtained from a commercial Stirling engine and used for heating a caravan. The Stirling engine has been tested in the lab under different electrical load conditions, and the operating points obtained are presented. As an application of the model, a series of transient simulations was performed using TRNSYS. During these simulations, the caravan is traveling throughout the day and is stationary at night. Therefore, during the night-time hours, the heating system is turned on by means of the Stirling engine. The study was performed for each month of the year in different European cities. The different heating demand profiles for different cities induce variation in the electricity production, as it has been assumed that electricity is only generated when the thermal demand requires the operation of the Stirling system. As a result, a comparison of the expected power generation in different European cities is presented.

  14. Multi-objective optimization of GPU3 Stirling engine using third order analysis

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Kasaeian, Alibakhsh; Hashemabadi, Seyyed Hasan; Salimi, Morteza

    2014-01-01

    Highlights: • A third-order analysis is carried out for optimization of Stirling engine. • The triple-optimization is done on a GPU3 Stirling engine. • A multi-objective optimization is carried out for a Stirling engine. • The results are compared with an experimental previous work for checking the model improvement. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. - Abstract: Stirling engine is an external combustion engine that uses any external heat source to generate mechanical power which operates at closed cycles. These engines are good choices for using in power generation systems; because these engines present a reasonable theoretical efficiency which can be closer to the Carnot efficiency, comparing with other reciprocating thermal engines. Hence, many studies have been conducted on Stirling engines and the third order thermodynamic analysis is one of them. In this study, multi-objective optimization with four decision variables including the temperature of heat source, stroke, mean effective pressure, and the engine frequency were applied in order to increase the efficiency and output power and reduce the pressure drop. Three decision-making procedures were applied to optimize the answers from the results. At last, the applied methods were compared with the results obtained of one experimental work and a good agreement was observed

  15. 5-kWe Free-piston Stirling Engine Convertor

    Science.gov (United States)

    Chapman, Peter A.; Vitale, Nicholas A.; Walter, Thomas J.

    2008-01-01

    The high reliability, long life, and efficient operation of Free-Piston Stirling Engines (FPSEs) make them an attractive power system to meet future space power requirements with less mass, better efficiency, and less total heat exchanger area than other power convertor options. FPSEs are also flexible in configuration as they can be coupled with many potential heat sources and various heat input systems, heat rejection systems, and power management and distribution systems. Development of a 5-kWe Stirling Convertor Assembly (SCA) is underway to demonstrate the viability of an FPSE for space power. The design is a scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463. The ultimate efficiency target is 25% overall convertor efficiency (electrical power out over heat in). For the single cylinder prototype now in development, cost and time constraints required use of economical and readily available materials (steel versus beryllium) and components (a commercially available linear alternator) and thus lower efficiency. The working gas is helium at 150 bar mean pressure. The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype convertor is done via pumped liquid loops passing through shell and tube heat exchangers. The preliminary and detail designs of the convertor, controller, and support systems (heating loop, cooling loop, and helium supply system) are complete and all hardware is on order. Assembly and test of the prototype at Foster- Miller is planned for early 2008, when work will focus on characterizing convertor dynamics and steady-state operation to determine maximum power output and system efficiency. The device will then be delivered to Auburn University where assessments will include start-up and shutdown characterization and

  16. Overview of the 1985 NASA Lewis Research Center SP-100 free-piston stirling engine activities

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1985-01-01

    An overview of the 1985 (NASA) Lewis Research Center free-piston Stirling engine activities in support of the SP-100 Program is presented. The SP-100 program is being conducted in support of the Department of Advanced Research Projects Agency (DARPA) and the Department of Energy (DOE), and NASA. This effort is keyed on the design, fabrication, assembly, and testing of a 25 kW /SUB e/ Stirling space-power technology-feasibility demonstrator engine. Another facet of the SP-100 project covers the status of a 9000-hr goal endurance test conducted on a 2 kW /SUB e/ free-piston Stirling/ linear alternator system employing hydrostatic gas bearings. Dynamic balancing of the RE-1000 engine (a 1 kW /SUB e/ free-piston Stirling engine) using a passive dynamic absorber will be discussed along with the results of a parametric study showing the relationships of Stirling power converter specific weight and efficiency as functions of Stirling engine heater to cooler temperature ratio. Planned tests will be described covering a hydrodynamic gas bearing concept for potential SP-100 application

  17. The Stirling engine. Simply explained, easily constructed. 9. rev. and enl. ed.; Der Stirlingmotor. Einfach erklaert und leicht gebaut

    Energy Technology Data Exchange (ETDEWEB)

    Viebach, Dieter

    2010-07-01

    Subsequently to a easily comprehensively description of the function and characteristics of Stirling engines, the author of the book under consideration describes the construction of a model Stirling engine on the basis of clear construction drawings. A delicacy for experienced modelers: The 'amazing model', a miniature Stirling engine consisting of beverage cans, has been running with the warmth of the human hand. Even in this technically demanding model, the construction will be described accurately by detailed construction drawings.

  18. An experimental study on the performance of the moving regenerator for a γ-type twin power piston Stirling engine

    International Nuclear Information System (INIS)

    Chen, Wen-Lih; Wong, King-Leung; Chen, Hung-En

    2014-01-01

    Highlights: • Stacked-woven metal screens have been used as regenerator matrix materials. • Copper has been found as a superior regenerator matrix material than stainless steel. • Working gas flow direction has to be normal to screen surface to produce good engine performance. • Pressure drop through the regenerator plays a very important role on performance. • There exists an optimal fill factor. - Abstract: In this paper, a helium charge γ-type twin power piston Stirling engine has been studied experimentally to understand the effects of several regenerator parameters on the overall performance of the engine. The regenerator incorporated in this engine is a moving regenerator which is housed inside the displacer of the engine, and the parameters investigated include regenerator matrix material, matrices arrangement, matrix wire diameter, and fill factor. Stacked-woven metal screens have been used as regenerator matrix materials. The results include engine shaft torque, power, and efficiency versus engine speed at several engine’s hot-end temperatures. It is found that all parameters pose significant impact on engine performance. Copper is a superior regenerator material than stainless steel for the current engine; regenerator matrix screens have to be installed in a manner that the working-gas-flow direction is normal to the surface of matrix screens; very small wire diameter results in large pressure drop and reduce regenerator effectiveness; and there exists an optimal fill factor. The study offers some important information for the design of moving regenerator in a γ-type Stirling engine

  19. Commercialization possibilities of Stirling engine technology for microscale power generation in Sweden

    OpenAIRE

    Backman, Peter

    2012-01-01

    The presented master’s thesis has evaluated the possibility of commercializing a research project at the Royal Institute of Technologys (KTH) Department of Energy Technology (EGI) in Stockholm, Sweden, where a Stirling engine is used for renewable microscale power generation.  The purpose of the thesis has been to evaluate the current market situation and future prospects by composing a business plan under the working name MicroStirling. In the business plan a potential target group consistin...

  20. Dynamic model of Stirling engine crank mechanism with connected electric generator

    Directory of Open Access Journals (Sweden)

    Vlach R.

    2009-06-01

    Full Text Available This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create a dynamics model which takes into account the parameters of crankshaft, piston rods, pistons, and attached generator. For unit working, the electro-mechanical behaviour of generator is also important. That is why we experimentally verified the parameters of generator. The measured characteristics are used in a complex model of heat and power unit. Moreover, it is also possible to determine the Stirling engine torque by the help of these electro-mechanical characteristics. These values can be used e. g. for determination of optimal engine working point or for unit control.

  1. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    Science.gov (United States)

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  2. Comparison of GLIMPS and HFAST Stirling engine code predictions with experimental data

    Science.gov (United States)

    Geng, Steven M.; Tew, Roy C.

    1992-01-01

    Predictions from GLIMPS and HFAST design codes are compared with experimental data for the RE-1000 and SPRE free piston Stirling engines. Engine performance and available power loss predictions are compared. Differences exist between GLIMPS and HFAST loss predictions. Both codes require engine specific calibration to bring predictions and experimental data into agreement.

  3. Comparison of GLIMPS and HFAST Stirling engine code predictions with experimental data

    International Nuclear Information System (INIS)

    Geng, S.M.; Tew, R.C.

    1994-01-01

    Predictions from GLIMPS and HFAST design codes are compared with experimental data for the RE-1000 and SPRE free-piston Stirling engines. Engine performance and available power loss predictions are compared. Differences exist between GLIMPS and HFAST loss predictions. Both codes require engine-specific calibration to bring predictions and experimental data into agreement

  4. Analytical expression for an optimised link bar mechanism for a beta-type Stirling engine

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell

    2007-01-01

    The design of a mechanism for kinematic beta-type Stirling engines, where the displacer piston and the working piston share the same cylinder, is complicated. A well-known solution is the rhombic drive, but this solution depends on oil lubrication because of the gear wheels connecting the two...... counter rotating crank shafts. In a hermetically sealed Stirling engine it is an advantage to avoid oil in the crank case, making the application of the rhombic drive difficult. In this paper, another crank mechanism is presented, which has been developed for a 9 kW single cylinder engine. The new crank...... mechanism is a further development of the mechanism in a previous 9 kW engine. The crank mechanism for the beta-type Stirling engine is based on two four-link straight line mechanisms pointing up and down, respectively. The mechanism pointing upwards is connected to the working piston, while the mechanism...

  5. Stirling engine or heat pump having an improved seal

    Science.gov (United States)

    White, Maurice A.; Riggle, Peter; Emigh, Stuart G.

    1985-01-01

    A Stirling Engine or Heat Pump having two relatively movable machine elements for power transmission purposes includes a hermetic seal bellows interposed between the elements for separating a working gas from a pressure compensating liquid that balances pressure across the bellows to reduce bellows stress and to assure long bellows life. The volume of pressure compensating liquid displaced due to relative movement between the machine elements is minimized by enclosing the compensating liquid within a region exposed to portions of both machine elements at one axial end of a slidable interface presented between them by a clearance seal having an effective diameter of the seal bellows. Pressure equalization across the bellows is achieved by a separate hermetically sealed compensator including a movable enclosed bellows. The interior of the compensator bellows is in communication with one side of the seal bellows, and its exterior is in communication with the remaining side of the seal bellows. A buffer gas or additional liquid region can be provided at the remaining axial end of the clearnace seal, along with valved arrangements for makeup of liquid leakage through the clearance seal.

  6. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    Science.gov (United States)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  7. Performance optimum analysis of an irreversible molten carbonate fuel cell–Stirling heat engine hybrid system

    International Nuclear Information System (INIS)

    Chen, Liwei; Zhang, Houcheng; Gao, Songhua; Yan, Huixian

    2014-01-01

    A new hybrid system mainly consists of a molten carbonate fuel cell (MCFC) and a Stirling heat engine is established, where the Stirling heat engine is driven by the high-quality waste heat generated in the MCFC. Based on the electrochemistry and non-equilibrium thermodynamics, analytical expressions for the efficiency and power output of the hybrid system are derived by taking various irreversible losses into account. It shows that the performance of the MCFC can be greatly enhanced by coupling a Stirling heat engine to further convert the waste heat for power generation. By employing numerical calculations, not only the influences of multiple irreversible losses on the performance of the hybrid system are analyzed, but also the impacts of some operating conditions such as the operating temperature, input gas compositions and operating pressure on the performance of the hybrid system are also discussed. The investigation method in the present paper is feasible for some other similar energy conversion systems as well. - Highlights: • A model of MCFC–Stirling heat engine hybrid system is established. • Analytical expressions for the efficiency and power output are derived. • MCFC performance can be greatly enhanced by coupling a Stirling heat engine. • Effects of some operating conditions on the performance are discussed. • Optimum operation regions are subdivided by multi-objective optimization method

  8. An analysis of beta type Stirling engine with rhombic drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shendage, D.J.; Kedare, S.B. [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Bapat, S.L. [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2011-01-15

    Stirling engine system is one of the options for electrifying a remote community not serviceable by the grid, which can operate on energy input in the form of heat. Major hurdle for the wide-spread usage of rhombic drive beta type Stirling engine is complexity of the drive and requirement of tight tolerances for its proper functioning. However, if the operating and geometrical constraints of the system are accounted for, different feasible design options can be identified. In the present work, various aspects that need to be considered at different decision making stages of the design and development of a Stirling engine are addressed. The proposed design methodology can generate and evaluate a range of possible design alternatives which can speed up the decision making process and also provide a clear understanding of the system design considerations. The present work is mainly about the design methodology for beta type Stirling engine and the optimization of phase angle, considering the effect of overlapping volume between compression and expansion spaces. It is also noticed that variation of compression space volume with phase angle remains sinusoidal for any phase difference. The aim of the present work is to find a feasible solution which should lead to a design of a single cylinder, beta type Stirling engine of 1.5 kW{sub e} capacity for rural electrification. (author)

  9. Integration of a free-piston Stirling engine and a moving grate incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Y.C.; Hsu, T.C.; Chiou, J.S. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2008-01-15

    The feasibility of recovering the waste heat from a small-scale incinerator (designed by Industrial Technology Research Institute) and generating electric power by a linear free-piston Stirling engine is investigated in this study. A heat-transfer model is used to simulate the integration system of the Stirling engine and the incinerator. In this model, the external irreversibility is modeled by the finite temperature difference and by the actual heat transfer area, while the internal irreversibility is considered by an internal heat leakage. At a fixed source temperature and a fixed sink temperature, the optimal engine performance can be obtained by the method of Lagrange multipliers. From the energy and mass balances for the interesting incinerator with the feeding rate at 16 t/d, there is enough otherwise wasted energy for powering the Stirling engine and generate more than 50 kW of electricity. (author)

  10. Automotive Stirling engine Market and Industrial Readiness Program (MIRP), phase 1

    Science.gov (United States)

    1982-05-01

    A program, begun in 1978, has the goal of transferring Stirling engine technology from United Stirling of Sweden to the US and, then, following design, fabrication, and prototype testing, to secure US manufacturers for the engine. The ultimate objective is the large-scale commercial use of the Automotive Stirling Engine (ASE) by the year 2000. The fist phase of the Market and Industrial Readiness Program for the ASE was concerned with defining the market, product, economic and technical factors necessary to be addressed to assure a reasonable chance of ultimate commercial acceptance. Program results for this first phase are reported and discussed. These results pertain to licensing strategy development, economic analysis, market factors, product planning, market growth, cost studies, and engine performance as measured by fuel economy using conventional fuels and by vehicle speed and acceleration characteristics.

  11. Preliminary results from a numerical study on the appendix gap losses in a Stirling engine

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2005-01-01

    Analytical expressions for the losses in the displacer clearance gap, a.k.a. the appendix gap, have been refined during the last decades. But most real life Stirling engines violate the assumptions behind these expressions and hence the expressions may not be applicable. In this study the gap has...... been included directly into a one dimensional Stirling engine model. Practical aspects of the method, such as handling the moving wall in the gap while achieving an energy conserving model formulation and handling discontinuous derivatives in the equations, are discussed. A study on the convergence...... output of the engine....

  12. Scaling laws for free piston Stirling engine design: Benefits and challenges of miniaturization

    International Nuclear Information System (INIS)

    Formosa, Fabien; Fréchette, Luc G.

    2013-01-01

    This work explores the scaling effects for FPSE (free piston Stirling engines), which are known for their simple architecture and potentially high thermodynamic performances. Scaling laws are given and their potential for miniaturization is highlighted. A simple model which allows the design of the geometrical parameters of the heat exchangers, the regenerator and the masses of the pistons is proposed. It is based on the definition of six characteristic dimensionless groups. They are derived from the physics underlying the behavior of the free piston Stirling machine and their relevancy is backed up by comparisons between documented Stirling engines from the literature. Keeping constant values for each group throughout the scaling range theoretically ensures constant performance. The main losses of Stirling engine (heat conduction loss, reheat loss in the regenerator, pressure drop and gas-spring hysteresis) can be expressed as a function of the geometrical and operating parameters. Additionally, the consequences of leakage due to the manufacturing precision of pistons architectures are underlined. From the proposed scaling laws, potential power and efficiency of Stirling cycle engines at a millimeter scale can be anticipated. It appears that the power density increases with miniaturization. It is also shown that the dynamic masses related to the engine size are increased when scaling down and that the gap leakage presents the highest detrimental effects on the efficiency. These results call for dedicated architectures for micro-engines. - Highlights: • Similitude strategy is applied to Stirling engines and allows preliminary design. • New scaling laws are derived. • The power density can be increased with miniaturization. • The gap between the piston and casing is highly detrimental to the performances. • High engine operating pressure is required when miniaturizing

  13. Gas action effect of free piston Stirling engine

    International Nuclear Information System (INIS)

    Mou, Jian; Li, Wei; Li, Jinze; Hong, Guotong

    2016-01-01

    Highlights: • The gas action effect is analyzed by the method of rotation vector decomposition. • Gas force can be decomposed into motivation force and spring or inertia force. • The optimal phase angles of displacements to pressure wave have been found. - Abstract: Gas action effect of free piston Stirling engine (FPSE) is very important to solve the key problem of start-up and find the way to increase its efficiency. The gas force is a key force to free FPSE. In this paper, the gas action effect has been analyzed by the method of rotation vector decomposition. It is found that the gas forces of piston and displacer can be decomposed into two forces, one component acts as motivation force resisting the damping force to output power, the other acts as spring force or inertia force according to the phase angle of pressure wave to displacements of the displacer and piston. Only when the motivation components of both piston and displacer resist their damping forces, will the FPSE be start-up and work stably. And only when the spring force is approximately equal to inertia force of piston, will the piston need the smallest gas spring force and nearly all the gas force be put for the alternator, meanwhile the engine outputs the maximum work. In the perfect condition, the optimal phase angle of the reciprocating movements of the displacer and piston ahead of the pressure wave are 180° and 90° respectively. The analyses above are verified by a series of experiments on a FPSE designed by our laboratory.

  14. Evaluation of thermal efficiency and energy conversion of thermoacoustic Stirling engines

    International Nuclear Information System (INIS)

    Zhong Junhu; Zheng Yuli; Qing Li; Qiang Li

    2010-01-01

    Thermodynamic cycle transferring heat and work was executed in thermoacoustic engines, when the acoustic resonators substituted the moving mechanical components of the traditional heat engines. Based on the traveling-wave phasing and reversible heat transfer, thermoacoustic Stirling engines could achieve 70% of the Carnot efficiency theoretically, if the inevitable viscous dissipation in resonators was also counted as exported power. It should be pointed out an error on this efficiency evaluation in the previous literatures. More than 70% of the acoustic power production was often consumed by the side-branch resonator that was the essential configuration to build up a thermoacoustic Stirling engine. According to the simulation results and some experimental data, the actual available acoustic power consumed by the acoustic loads was restricted by the operating peak-to-mean pressure ratio, i.e. |p 1 /p m |. When the peak-to-mean pressure ratio operated on 4-6.5%, the thermal efficiency and power density of the available acoustic power reached higher levels. But the available acoustic power would approach zero when |p 1 /p m | attained 10%. It was approved that the turbulence oscillation occurred on the higher |p 1 /p m | (usually >4%) was the main reason of the excess dissipation in the side-branch resonator. This character of the available power limited the wide application of thermoacoustic Stirling engines. The evaluation of thermal efficiency and energy conversion also indicated the improving direction of thermoacoustic Stirling engines. Generators driven by the thermoacoustic Stirling engines were an effective way, due to the elimination of the side-branch resonator. To achieve a high power density and a high pressure ratio on the higher available power efficiency level, the standing-wave thermoacoustic engines might outvie the traveling-wave thermoacoustic engines. To enjoy the best features of standing-wave engines and traveling-wave engines simultaneously

  15. Stirling engine based micro co-generation system for single households

    Energy Technology Data Exchange (ETDEWEB)

    Ribberink, H.; Zutt, S.; Rabou, L.; Beckers, G. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Baijens, K.; Luttikholt, J. [Atag Verwarming BV (Netherlands)

    2000-07-01

    This paper describes the progress made in the ENATEC development program for a free piston Stirling engine based micro co-generation system that serves the supply of up to 1 kW{sub e} and up to 24 kW heat for domestic heating and/or for hot tap water production for single households at overall system efficiencies of 96%: Experiments show that the free piston Stirling engines from Stirling Technology Company run very reliably and controllably, and that the efficiency targets for the 1 kW{sub e} micro co-generation system are feasible. A ceramic foam burner with good heat transfer characteristics and low NOx emissions was developed. A demonstration micro co-generation unit was built and successfully presented. A 1 kW{sub e} free piston Stirling engine for the European market was developed. High efficiencies at full load and at part load, low emissions, low noise, and minimum maintenance make the Stirling engine based micro co-generation system an attractive candidate for the next generation of domestic boilers in Europe. (orig.)

  16. Thermodynamic model to study a solar collector for its application to Stirling engines

    International Nuclear Information System (INIS)

    Abdollahpour, Amir; Ahmadi, Mohammad H.; Mohammadi, Amir H.

    2014-01-01

    Highlights: • A thermodynamic model is presented to study a solar collector for its application to Stirling engines. • The parabolic collector is analyzed based on optical and thermal. • Effects of changing some conditions and parameters are studied. - Abstract: Energy production through clean and green sources has been paid attention over the last decades owing to high energy consumption and environmental emission. Solar energy is one of the most useful energy sources. Due to high investment cost of centralized generation of electricity and considerable loss in the network, it is necessary to look forward to decentralized electricity generation technologies. Stirling engines have high efficiency and are able to be coupled with solar energy which cannot be applied in internal combustion engines. Solar Stirling engines can be commercialized and used to generate decentralized electricity in small to medium levels. One of the most important steps to set up an efficient solar Stirling engine is choosing and designing the collector. In this study, a solar parabolic collector with 3500 W of power for its application to Stirling engines was designed and analyzed (It is the thermal inlet power for a Stirling engine). We studied the parabolic collector based on optical and thermal analysis. In this case, solar energy is focused by a concentrating mirror and transferred to a pipe containing fluid. MATLAB software was used for obtaining the parameters of the collector, with respect to the geographic, temporal, and environmental conditions, fluid inlet temperature and some other considerations. After obtaining the results of the design, we studied the effects of changing some conditions and parameters such as annular space pressure, type of the gas, wind velocity, environment temperature and absorber pipe coating

  17. Stirling Space Engine Program. Volume 2; Appendixes A, B, C and D

    Science.gov (United States)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Volume 2 of the report includes the following appendices: Appendix A: Heater Head Development (Starfish Heater Head Program, 1/10th Segment and Full-Scale Heat Pipes, and Sodium Filling and Processing); Appendix B: Component Test Power Converter (CTPC) Component Development (High-temperature Organic Materials, Heat Exchanger Fabrication, Beryllium Issues, Sodium Issues, Wear Couple Tests, Pressure Boundary Penetrations, Heating System Heaters, and Cooler Flow Test); Appendix C: Udimet Testing (Selection of the Reference Material for the Space Stirling Engine Heater Head, Udimet 720LI Creep Test Result Update, Final Summary of Space Stirling Endurance Engine Udimet 720L1 Fatigue Testing Results, Udimet 720l1 Weld Development Summary, and Udimet 720L1 Creep Test Final Results Summary), and Appendix D: CTPC Component Development Photos.

  18. Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium

    International Nuclear Information System (INIS)

    Bert, Juliette; Chrenko, Daniela; Sophy, Tonino; Le Moyne, Luis; Sirot, Frédéric

    2014-01-01

    A Stirling engine with nominal output power of 1 kW is tested using air and helium as working gases. The influence of working pressure, engine speed and temperature of the hot source is studied, analyzing instantaneous gas pressure as well as instantaneous and stationary temperature at different positions to derive the effective power. A zero dimensional finite-time thermodynamic, three zones model of a generic Stirling engine is developed and successfully validated against experimental gas temperature and pressure in each zone, providing the effective power. This validation underlines the interest of different working gases as well as different geometric configurations for different applications. Furthermore, the validated model allows parametric studies of the engine, with regard to geometry, working gas and engine kinematics. It is used in order to optimize the kinematic of a Stirling engine for different working points and gases. - Highlights: • A Stirling engine of 1 kW is tested using air and helium as working gas. • Effects of working pressure, speed and temperature on power are studied. • A zero dimensional finite-time thermodynamic, three zones model of it is validated. • The validated model is used for parametric studies and optimization of the engine

  19. Análisis de irreversibilidades en el comportamiento de un motor Stirling // Analysis of irreversibilities on performance of a Stirling engine

    Directory of Open Access Journals (Sweden)

    Juan José González-Bayón

    2011-05-01

    Full Text Available El objetivo de este estudio es determinar el efecto de las irreversibilidades (internas y externasdebidas a la transferencia de calor y las pérdidas de presión debidas a la fricción sobre elrendimiento de Segunda Ley de un motor Stirling de tipo considerando el volumen muerto. Elmotor Stirling es analizado usando un modelo matemático basado en las leyes de la termodinámicapara procesos con una velocidad finita. Se asume un modelo isotérmico de motor con volúmenes deespacio muerto en la zona caliente, zona fría y en el regenerador. Los resultados obtenidos muestranque a pesar de que teóricamente el motor Stirling posee un rendimiento igual al de Carnot, en lapráctica su rendimiento puede ser de 2 a 5 veces menor que éste, dependiendo de la eficiencia delregenerador, del volumen muerto, de la diferencia de temperatura entre fluido y focos térmicos y delas rpm a que se opere el motor.Palabras claves: motor Stirling, motor térmico regenerativo, análisis de irreversibilidades.____________________________________________________________________AbstractThe study aims to determine the effect of the internal and external irreversibilities caused by heattransfer and pressure losses due to friction on the Second Law performance of a Stirling engine tipewith death volume include. The Stirling engine is analyzed using a mathematical model based onthe laws of thermodynamics for processes with finite speed. It is assumed an isothermic model of themotor with death volume on hot zone, cold zone and regenerator. The results of this study show thatthe real cycle efficiency of the Sirling engine is approximately 2 to 5 times minor than the efficiency ofCarnot cycle as function of the regenerator efficiency, death volume, temperature difference betweenfluid and termic source and motor speed.Key words: stirling engine, regenerative heat engine, irreversibilities analysis.

  20. Thermodynamic and Thermoeconomic investigation of an Integrated Gasification SOFC and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Thermodynamic and thermoeconomic investigation of a small scale Integrated Gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kW have been performed. Woodchips are used as gasification feedstock to produce syngas which......-product and the cost of hot water was found to be 0.0214$/kWh. When compared to other renewable systems at similar scale, it shows that if both SOFC and Stirling engine technology emerges enter commercialization phase, then they can deliver electricity at a cost rate which is competitive with corresponding renewable...

  1. Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Ahmadi

    2015-02-01

    Full Text Available Different variables affect the performance of the Stirling engine and are considered in optimization and designing activities. Among these factors, torque and power have the greatest effect on the robustness of the Stirling engine, so they need to be determined with low uncertainty and high precision. In this article, the distribution of torque and power are determined using experimental data. Specifically, a novel polynomial approach is proposed to specify torque and power, on the basis of previous experimental work. This research addresses the question of whether GMDH (group method of data handling-type neural networks can be utilized to predict the torque and power based on determined parameters.

  2. Modeling the dynamic and thermodynamic operation of Stirling engines by means of an equivalent electrical circuit

    International Nuclear Information System (INIS)

    Cascella, Franco; Sorin, Mikhail; Formosa, Fabien; Teyssedou, Alberto

    2017-01-01

    Highlights: • A model based on the electrical analogy theory has been developed to predict the operation of a Stirling engine. • The models takes into account the continuity, the momentum and the energy conservation equations. • The model predicts the operating conditions of the RE100 Free piston Stirling engine. • The model is sensible to the modeling of the effects of the machine load. - Abstract: The Stirling engines are inherently efficient; their thermodynamic cycles reach the Carnot efficiency. These technologies are suitable to operate under any low temperature difference between the hot and the cold sources. For these reasons, these engines can be considered as reliable power conversion systems to promote the conversion of low-grade waste heat generated by industrial plants. The need of a model to predict the behavior of these engines is of primary importance. Nevertheless, a great difficulty is encountered in developing such a model since it is not simple to take into account coupled thermodynamic and dynamic effects. This is the main reason why several models make use of electrical analogies to describe Stirling engines (in particular, free-piston machines): by assuming the pressure equivalent to a voltage and the flow rate to an electrical current, a coupled dynamic-thermodynamic analysis of the engine can be performed. In this paper, an electrical circuit whose behavior is equivalent to that of the engine is derived from the electrical analogy theory. To this aim, we propose an electrical analogy model based on the three conservation laws (mass, momentum and energy). Since limited experimental information is available in the open literature, the results obtained with the proposed model are compared with the experimental data collected at the NASA Lewis Research center for a free-piston Stirling engine i.e., the RE-1000 engine.

  3. Performance analysis of dish solar stirling power system; Stirling engine wo mochiita taiyonetsu hatsuden system no seino yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K; Yamaguchi, I [Meiji University, Tokyo (Japan); Naito, Y; Momose, Y [Aisin Seiki Co. Ltd., Aichi (Japan)

    1996-10-27

    In order to estimate the performance of the dish solar Stirling power system, matching and control of each component system were studied, and the performance of the 25kWe class power system was estimated on the basis of direct solar radiation measured in Miyako island, Okinawa. Application of a Stirling engine to solar heat power generation is highly effective in spite of its small scale. The total system is composed of a converging system, heat receiver, engine/generator system and control system. As the simulation result, the generator output is nearly proportional to direct solar radiation, and the system efficiency approaches to a certain constant value with an increase in direct solar radiation. As accumulated solar radiation is large, the influence of slope error of the converging mirror is comparatively small. The optimum aperture opening ratio of the heat receiver determined on the basis of mean direct solar radiation (accumulated solar radiation/{Delta}t (simulated operation time of the system)), corresponds to the primary approximation of the opening ratio for a maximum total generated output under variable direct solar radiation. 6 refs., 6 figs., 1 tab.

  4. Evaluation of the potential of the Stirling engine for heavy duty application

    Science.gov (United States)

    Meijer, R. J.; Ziph, B.

    1981-01-01

    A 150 hp four cylinder heavy duty Stirling engine was evaluated. The engine uses a variable stroke power control system, swashplate drive and ceramic insulation. The sensitivity of the design to engine size and heater temperature is investigated. Optimization shows that, with porous ceramics, indicated efficiencies as high as 52% can be achieved. It is shown that the gain in engine efficiency becomes insignificant when the heater temperature is raised above 200 degrees F.

  5. Advanced 35 W Free-Piston Stirling Engine for Space Power Applications

    Science.gov (United States)

    Wood, J. Gary; Lane, Neill

    2003-01-01

    This paper presents the projected performance and overall design characteristics of a high efficiency, low mass 35 W free-piston Stirling engine design. Overall (engine plus linear alternator) thermodynamic performance greater than 50% of Carnot, with a specific power close to 100 W/kg appears to be a reasonable goal at this small power level. Supporting test data and analysis results from exiting engines are presented. Design implications of high specific power in relatively low power engines is presented and discussed.

  6. Single Phase Passive Rectification Versus Active Rectification Applied to High Power Stirling Engines

    Science.gov (United States)

    Santiago, Walter; Birchenough, Arthur G.

    2006-01-01

    Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.

  7. Computation techniques and computer programs to analyze Stirling cycle engines using characteristic dynamic energy equations

    Science.gov (United States)

    Larson, V. H.

    1982-01-01

    The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.

  8. Overview of free-piston Stirling engine technology for space power application

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. Free-piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the NASA Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology program. This program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators

  9. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  10. Application of the Open Cycle Stirling Engine Driven with Liquid Nitrogen for the Non-Polluting Automobiles

    Directory of Open Access Journals (Sweden)

    M.B. Kravchenko

    2017-10-01

    Full Text Available Progress on advancing technology of using liquid nitrogen for the non-polluting automobiles is reported. It is shown that the low exergy efficiency of the known engines fueled with liquid nitrogen has discredited the very idea of a cryomobile. The design of the open-cycle cryogenic Stirling engine is proposed. This engine allows extracting up to 57% of the exergy accumulated in liquid nitrogen. The method used to calculate of such open-cycle Stirling engine is described and the calculation results and discussion are presented. It is shown that 200 liters of liquid nitrogen is sufficient for 180 km range of cryomobile at speed of 55 km/h, while a full charge of the 300-kilogram battery of Nissan LEAF electric vehicle is sufficient for a range of 160 km. Use of liquid nitrogen or liquid air as an energy vector in a transport will not require scarce materials, and, in comparison with using of lithium-ion batteries or hydrogen, this will require less capital investment.

  11. Fort Huachuca to Benefit from New Solar Technology: Dish-Stirling System Couples Solar Power with Engine to Generate Electricity

    National Research Council Canada - National Science Library

    1995-01-01

    ... in partnership with industry. A prototype dish-Stirling solar system, which consists of a large dish of solar concentrators and a Stirling heat engine, will be installed at Fort Huachuca in July and should be in operation about two weeks later...

  12. Liquid air fueled open-closed cycle Stirling engine and its exergy analysis

    International Nuclear Information System (INIS)

    Wang, Jia; Xu, Weiqing; Ding, Shuiting; Shi, Yan; Cai, Maolin; Rehman, Ali

    2015-01-01

    An unconventional Stirling engine is proposed and its theoretical analysis is performed. The engine belongs to a “cryogenic heat engine” that is fueled by cryogenic medium. Conventional “cryogenic heat engine” employs liquid air as a pressure source, but disregards its heat-absorbing ability. Therefore, its efficiency can only be improved by increasing vapor pressure, accordingly increasing the demand on pressure resistance and sealing. In the proposed engine, a closed cycle structure of Stirling engine is added to combine with the open cycle structure of a conventional cryogenic heat engine to achieve high efficiency and simplicity by utilizing the heat-absorbing ability of liquid air. Besides, the theoretical analysis of the proposed engine is performed. The Schmidt theory is modified to model temperature variation in the cold space of the engine, and irreversible characteristic of regenerator is incorporated in the thermodynamic model. The modeling results show that under the same working pressure, the efficiency of the proposed engine is potentially higher than that of conventional ones and to achieve the same efficiency, the working pressure could be lower with the new mechanism. Composition of exergy loss in the proposed engine is analyzed. - Highlights: • Cryogenic energy is better exploited by the open-closed cycle Stirling mechanism. • The Schmidt theory is modified to model temperature variation. • Irreversible characteristics are incorporated in the thermodynamic model. • Composition of exergy loss in proposed engine is analyzed.

  13. Solar parabolic dish Stirling engine system design, simulation, and thermal analysis

    International Nuclear Information System (INIS)

    Hafez, A.Z.; Soliman, Ahmed; El-Metwally, K.A.; Ismail, I.M.

    2016-01-01

    Highlights: • Modeling and simulation for different parabolic dish Stirling engine designs using Matlab®. • The effect of solar dish design features and factors had been taken. • Estimation of output power from the solar dish using Matlab®. • The present analysis provides a theoretical guidance for designing and operating solar parabolic dish system. - Abstract: Modeling and simulation for different parabolic dish Stirling engine designs have been carried out using Matlab®. The effect of solar dish design features and factors such as material of the reflector concentrators, the shape of the reflector concentrators and the receiver, solar radiation at the concentrator, diameter of the parabolic dish concentrator, sizing the aperture area of concentrator, focal Length of the parabolic dish, the focal point diameter, sizing the aperture area of receiver, geometric concentration ratio, and rim angle have been studied. The study provides a theoretical guidance for designing and operating solar parabolic dish Stirling engines system. At Zewail city of Science and Technology, Egypt, for a 10 kW Stirling engine; The maximum solar dish Stirling engine output power estimation is 9707 W at 12:00 PM where the maximum beam solar radiation applied in solar dish concentrator is 990 W/m"2 at 12:00 PM. The performance of engine can be improved by increasing the precision of the engine parts and the heat source efficiency. The engine performance could be further increased if a better receiver working fluid is used. We can conclude that where the best time for heating the fluid and fasting the processing, the time required to heat the receiver to reach the minimum temperature for operating the Solar-powered Stirling engine for different heat transfer fluids; this will lead to more economic solar dish systems. Power output of the solar dish system is one of the most important targets in the design that show effectiveness of the system, and this has achieved when we take

  14. The Amount of Regenerated Heat Inside the Regenerator of a Stirling Engine

    Directory of Open Access Journals (Sweden)

    J. Škorpík

    2008-01-01

    Full Text Available The paper deals with analytical computing of the regenerated heat inside the regenerator of a Stirling engine. The total sum of the regenerated heat is constructed as a function of the crank angle in the case of Schmidt’s idealization. 

  15. Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system.

    Science.gov (United States)

    Sowale, Ayodeji; Kolios, Athanasios J; Fidalgo, Beatriz; Somorin, Tosin; Parker, Alison; Williams, Leon; Collins, Matt; McAdam, Ewan; Tyrrel, Sean

    2018-06-01

    The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz.

  16. Start-up and control method and apparatus for resonant free piston Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-01-01

    A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

  17. Thermoacoustic model of a modified free piston Stirling engine with a thermal buffer tube

    International Nuclear Information System (INIS)

    Yang, Qin; Luo, Ercang; Dai, Wei; Yu, Guoyao

    2012-01-01

    This article presents a modified free-piston Stirling heat engine configuration in which a thermal buffer tube is added to sandwich between the hot and cold heat exchangers. Such a modified configuration may lead to an easier fabrication and lighter weight of a free piston. To analyze the thermodynamic performance of the modified free piston Stirling heat engine, thermoacoustic theory is used. In the thermoacoustic modelling, the regenerator, the free piston, and the thermal buffer tube are given at first. Then, based on linear thermoacoustic network theory, the thermal and thermodynamic networks are presented to characterize acoustic pressure and volume flow rate distributions at different interfaces, and the global performance such as the power output, the heat input and the thermal efficiency. A free piston Stirling heat engine with several hundreds of watts mechanical power output is selected as an example. The typical operating and structure parameters are as follows: frequency around 50 Hz, mean pressure around 3.0 MPa, and a diameter of free piston around 50 mm. From the analysis, it was found that the modified free-piston Stirling heat engine has almost the same thermodynamic performance as the original design, which indicates that the modified configuration is worthy to develop in future because of its mechanical simplicity and reliability.

  18. Development and test of combustion chamber for Stirling engine heated by natural gas

    Science.gov (United States)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  19. Advanced high temperature materials for the energy efficient automotive Stirling engine

    International Nuclear Information System (INIS)

    Titran, R.H.; Stephens, J.R.

    1984-01-01

    The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72, and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper presents results of research that led to this conclusion

  20. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance-of-plant is designed and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on the lower heating value (LHV) can be achieved if all input parameters are selected conservatively. Different parameter studies are performed to analyze the system behavior under different conditions. The analysis shows that the decreasing number of stacks from a design viewpoint, indicating that plant efficiency decreases but power production remains nearly unchanged. Furthermore, the analysis shows that there is an optimum value for the utilization factor of the SOFC for the suggested plant design with the suggested input parameters. This optimum value is approximately 65%, which is a rather modest value for SOFC. In addition, introducing a methanator increases plant efficiency slightly. If SOFC operating temperature decreases due to new technology then plant efficiency will slightly be increased. Decreasing gasifier temperature, which cannot be controlled, causes the plant efficiency to increase also. - Highlights: • Design of integrated gasification with solid oxide fuel and Stirling engine. • Important plant parameters study. • Plant running on biomass with and without methanator. • Thermodynamics of integrated gasification SOFC-Stirling engine plants

  1. Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine

    Science.gov (United States)

    Jiang, Nan; Simon, Terrence W.

    2006-01-01

    The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.

  2. Multi-objective optimization of Stirling engine using non-ideal adiabatic method

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Kasaeian, Alibakhsh; Ahmadi, Mohammad H.

    2014-01-01

    Highlights: • A multi-objective optimization is carried out for a Stirling engine. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. • The results are compared with the previous works for checking the model improvement. • A proper improvement is observed using TOPSIS when comparing with the others. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great numbers of studies are conducted on Stirling engines and non-ideal adiabatic method is one of them. In the present study, the efficiency and the power loss due to pressure drop into the heat exchangers are optimized for a Stirling system using non-ideal adiabatic analysis and the second-version Non-dominated Sorting Genetic Algorithm. The optimized answers are chosen from the results using three decision-making methods. The applied methods were compared at last and the best results were obtained for the technique for order preference by similarity to ideal solution decision making method

  3. Space Power Free-Piston Stirling Engine Scaling Study

    Science.gov (United States)

    Jones, D.

    1989-01-01

    The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power

  4. Non-ideal Stirling engine thermodynamic model suitable for the integration into overall energy systems

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2014-01-01

    The reliability of modelling and simulation of energy systems strongly depends on the prediction accuracy of each system component. This is the case of Stirling engine-based systems, where an accurate modelling of the engine performance is very important to understand the overall system behaviour. In this sense, many Stirling engine analyses with different approaches have been already developed. However, there is a lack of Stirling engine models suitable for the integration into overall system simulations. In this context, this paper aims to develop a rigorous Stirling engine model that could be easily integrated into combined heat and power schemes for the overall techno-economic analysis of these systems. The model developed considers a Stirling engine with adiabatic working spaces, isothermal heat exchangers, dead volumes, and imperfect regeneration. Additionally, it considers mechanical pumping losses due to friction, limited heat transfer and thermal losses on the heat exchangers. The model is suitable for different engine configurations (alpha beta and gamma engines). It was developed using Aspen Custom Modeller ® (ACM®) as modelling software. The set of equations were solved using ACM ® equation solver for steady-state operation. However, due to the dynamic behaviour of the cycle, a C++ code was integrated to solve iteratively a set of differential equations. This resulted in a cyclic steady-state model that calculates the power output and thermal requirements of the system. The predicted efficiency and power output were compared with the numerical model and the experimental work reported by the NASA Lewis Research Centre for the GPU-3 Stirling engine. This showed average absolute errors around ±4% for the brake power, and ±5% for the brake efficiency at different frequencies. However, the model also showed large errors (±15%) for these calculations at higher frequencies and low pressures. Additional results include the calculation of the cyclic

  5. The construction of life prediction models for the design of Stirling engine heater components

    Science.gov (United States)

    Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.

    1983-01-01

    The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.

  6. Development and test of a Stirling engine driven by waste gases for the micro-CHP system

    International Nuclear Information System (INIS)

    Li Tie; Tang Dawei; Li Zhigang; Du Jinglong; Zhou Tian; Jia Yu

    2012-01-01

    In recent years, micro-CHP systems are attracting world attention. As one kind of external heating engines, Stirling engines could be applied to the micro-CHP systems driven by solar, biogas, mid-high temperature waste gases and many other heat sources. The development of a Stirling engine driven by mid-high temperature waste gases is presented first. The thermodynamic design method, the key parameters of the designed Stirling engine and its combustion chamber adapted for waste gases are described in detail. Then the performance test of the Stirling engine is carried out. During the test, the temperature of the heater head is monitored by thermocouples, and the pressure of the working fluid helium in the Stirling engine is monitored by pressure sensors. The relationships among the output shaft power, torque and speed are studied, and the pressure losses of the working fluid in the heat exchanger system are also analyzed. The test results demonstrate that the output shaft power could reach 3476 W at 1248 RPM, which is in good agreement with the predicted value of 3901 W at 1500 RPM. The test results confirm the fact that Stirling engines driven by mid-high temperature waste gases are able to achieve a valuable output power for engineering application. - Highlights: ► A β-type Stirling engine whose output power could reach about 3.5 kW is developed by ourselves. ► Waste gases are used as the heat source to drive the Stirling engine. ► Test on the relationship among the power, torque, and speed are presented. ► The pressure changing process of the working fluid in the heat exchanger system during the test is recorded and analyzed.

  7. Comparative survey of dynamic analyses of free-piston Stirling engines

    Science.gov (United States)

    Kankam, M. D.; Rauch, J. S.

    1991-01-01

    Reported dynamics analyses for evaluating the steady-state response and stability of free-piston Stirling engine (FPSE) systems are compared. Various analytical approaches are discussed to provide guidance on their salient features. Recommendations are made in the recommendations remarks for an approach which captures most of the inherent properties of the engine. Such an approach has the potential for yielding results which will closely match practical FPSE-load systems.

  8. Exergy Analysis and Optimization of an Alpha Type Stirling Engine Using the Implicit Filtering Algorithm

    Directory of Open Access Journals (Sweden)

    James A. Wills

    2017-12-01

    Full Text Available This paper presents the exergy analysis and optimization of the Stirling engine, which has enormous potential for use in the renewable energy industry as it is quiet, efficient, and can operate with a variety of different heat sources and, therefore, has multi-fuel capabilities. This work aims to present a method that can be used by a Stirling engine designer to quickly and efficiently find near-optimal or optimal Stirling engine geometry and operating conditions. The model applies the exergy analysis methodology to the ideal-adiabatic Stirling engine model. In the past, this analysis technique has only been applied to highly idealized Stirling cycle models and this study shows its use in the realm of Stirling cycle optimization when applied to a more complex model. The implicit filtering optimization algorithm is used to optimize the engine as it quickly and efficiently computes the optimal geometry and operating frequency that gives maximum net-work output at a fixed energy input. A numerical example of a 1,000 cm3 engine is presented, where the geometry and operating frequency of the engine are optimized for four different regenerator mesh types, varying heater inlet temperature and a fixed energy input of 15 kW. The WN200 mesh is seen to perform best of the four mesh types analyzed, giving the greatest net-work output and efficiency. The optimal values of several different engine parameters are presented in the work. It is shown that the net-work output and efficiency increase with increasing heater inlet temperature. The optimal dead-volume ratio, swept volume ratio, operating frequency, and phase angle are all shown to decrease with increasing heater inlet temperature. In terms of the heat exchanger geometry, the heater and cooler tubes are seen to decrease in size and the cooler and heater effectiveness is seen to decrease with increasing heater temperature, whereas the regenerator is seen to increase in size and effectiveness. In

  9. No money printing machine. The market for cogeneration units with a Stirling engine begins to increase; Keine Gelddruckmaschinen. Markt fuer Stirling-KWK-Geraete kommt in Bewegung

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Wolfgang

    2012-10-15

    The serial production of micro combined heat and power units with a Stirling engine is started. However, it is becoming apparent, that from economic reasons units of the 1-kW{sub el.}-class designed for single-family houses and two-family houses are increasingly used as a base load unit in multi-family houses and small trades.

  10. Performance analysis of different working gases for concentrated solar gas engines: Stirling & Brayton

    International Nuclear Information System (INIS)

    Sharaf Eldean, Mohamed A.; Rafi, Khwaja M.; Soliman, A.M.

    2017-01-01

    Highlights: • Different working gases are used to power on Concentrated Solar Gas Engines. • Gases are used to increase the system efficiency. • Specific heat capacity is considered a vital role for the comparison. • Brayton engine resulted higher design limits. • CO 2 is favorable as a working gas more than C 2 H 2 . - Abstract: This article presents a performance study of using different working fluids (gases) to power on Concentrated Solar Gas Engine (CSGE-Stirling and/or Brayton). Different working gases such as Monatomic (five types), Diatomic (three types) and Polyatomic (four types) are used in this investigation. The survey purported to increase the solar gas engine efficiency hence; decreasing the price of the output power. The effect of using different working gases is noticed on the engine volume, dish area, total plant area, efficiency, compression and pressure ratios thence; the Total Plant Cost (TPC, $). The results reveal that the top cycle temperature effect is reflected on the cycle by increasing the total plant efficiency (2–10%) for Brayton operational case and 5–25% for Stirling operational case. Moreover; Brayton engine resulted higher design limits against the Stirling related to total plant area, m 2 and TPC, $ while generating 1–100 MW e as an economic case study plant. C 2 H 2 achieved remarkable results however, CO 2 is considered for both cycles operation putting in consideration the gas flammability and safety issues.

  11. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.

    Science.gov (United States)

    Ling, Hong; Luo, Ercang; Dai, Wei

    2006-12-22

    Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.

  12. A thermodynamic study for the optimization of stable operation of free piston Stirling engines

    Energy Technology Data Exchange (ETDEWEB)

    Rogdakis, E.D.; Bormpilas, N.A.; Koniakos, I.K. [National Technical Univerisity, Athens (Greece). Dept. of Mechanical Engineering

    2004-03-01

    One of the most novel applications of the Stirling cycle is in the free piston configuration that was initially designed by W. Beale. In free piston Stirling engines (FPSEs), there are no mechanical linkages coupling the pistons or displacers, the motions of the reciprocating components follow the working gas pressure variations. Fillipo de Monte and G. Benvenuto have recently proposed a linearization technique of the dynamic balance equations. The aim of this paper is to predict the thermodynamic conditions for stable operation of FPSEs and their modeling. The equations of the angular velocity are solved analytically in terms of the working gas mass and the displacer-piston phase angle of the machine. Using the criterion of stable engine cyclic steady operation, a mathematically rigorous form is obtained for the main parameters of the engine. Furthermore, for simplicity reasons, thermodynamic magnitudes are obtained using the Schmidt analysis (isothermal model). (author)

  13. A thermodynamic study for the optimization of stable operation of free piston Stirling engines

    International Nuclear Information System (INIS)

    Rogdakis, E.D.; Bormpilas, N.A.; Koniakos, I.K.

    2004-01-01

    One of the most novel applications of the Stirling cycle is in the free piston configuration that was initially designed by W. Beale. In free piston Stirling engines (FPSEs), there are no mechanical linkages coupling the pistons or displacers, the motions of the reciprocating components follow the working gas pressure variations. Fillipo de Monte and G. Benvenuto have recently proposed a linearization technique of the dynamic balance equations. The aim of this paper is to predict the thermodynamic conditions for stable operation of FPSEs and their modeling. The equations of the angular velocity are solved analytically in terms of the working gas mass and the displacer-piston phase angle of the machine. Using the criterion of stable engine cyclic steady operation, a mathematically rigorous form is obtained for the main parameters of the engine. Furthermore, for simplicity reasons, thermodynamic magnitudes are obtained using the Schmidt analysis (isothermal model)

  14. Demonstration of a free piston Stirling engine driven linear alternator system. Annual report

    International Nuclear Information System (INIS)

    1978-01-01

    The objective of the program is to develop a 2 kW Free Piston Stirling Engine/Linear Alternator Energy Conversion System for an isotopic heat source with a greater than 30% overall efficiency. The work was broken up into two phases. Phase I demonstrated the feasibility of the energy conversion system through analysis and experimental testing of the individual components. Phase II is a two-year effort to design, fabricate, and test a prototype demonstrator energy conversion system. The reprt documents the work performed during October 1976 through September 1977, the first year of Phase II. Details of the tasks are presented in five major sections: (1) Linear Alternator Development; (2) Engine/Alternator System Demonstration; (3) Demonstrator Preliminary Design; (4) Demonstrator Detailed Design; and (5) Development of Free Piston Stirling Engine Computer Simulation

  15. Development of a pellet boiler with Stirling engine for m-CHP domestic application

    Energy Technology Data Exchange (ETDEWEB)

    Crema, Luigi; Alberti, Fabrizio; Bertaso, Alberto; Bozzoli, Alessandro [Fondazione Bruno Kessler (FBK), Povo, Trento (IT). Renewable Energies and Environmental Technologies Unit (REET)

    2011-12-15

    A new sustainable technology has been designed by Fondazione Bruno Kessler through its unit Renewable Energies and Environmental Technologies. This technology is realized integrating in a single system (1) a Stirling engine (mRT-1K) from a pre-engineering design of Allan J. Organ; (2) a micro-heat exchanger technology, to reduce the net transfer unit deficit on the hot side of the heat engine; (3) a customized pellet boiler, able to extract electrical and thermal power; and (4) a customized hydraulic circuit, connecting the cool side of the Stirling engine and the heat generation on the second section of the pellet boiler. The objective of this paper was to present a new technology for the micro-cogeneration of energy at a distributed level able to be integrated in domestic dwellings. Most part of the available biomass is used in buildings for the generation of thermal power for indoor heating and, in minor cases, for hot sanitary water. In the Province of Trento, 88% of the biomass is used for this purpose. The full system is actually under integration for the test phase and not yet tested. The first tests on the single components have confirmed preliminary results on the Stirling engine with respect to the tolerances, pressurization, and proper integration of the electrical generator-driven control system. The pellet boiler has been tested separately, confirming an overall thermal efficiency of 90%. (orig.)

  16. A numerical model on thermodynamic analysis of free piston Stirling engines

    Science.gov (United States)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, a new numerical thermodynamic model which bases on the energy conservation law has been used to analyze the free piston Stirling engine. In the model all data was taken from a real free piston Stirling engine which has been built in our laboratory. The energy conservation equations have been applied to expansion space and compression space of the engine. The equation includes internal energy, input power, output power, enthalpy and the heat losses. The heat losses include regenerative heat conduction loss, shuttle heat loss, seal leakage loss and the cavity wall heat conduction loss. The numerical results show that the temperature of expansion space and the temperature of compression space vary with the time. The higher regeneration effectiveness, the higher efficiency and bigger output work. It is also found that under different initial pressures, the heat source temperature, phase angle and engine work frequency pose different effects on the engine’s efficiency and power. As a result, the model is expected to be a useful tool for simulation, design and optimization of Stirling engines.

  17. Stirling engines for low-temperature solar-thermal-electric power generation

    Science.gov (United States)

    der Minassians, Artin

    This dissertation discusses the design and development of a distributed solar-thermal-electric power generation system that combines solar-thermal technology with a moderate-temperature Stirling engine to generate electricity. The conceived system incorporates low-cost materials and utilizes simple manufacturing processes. This technology is expected to achieve manufacturing cost of less than $1/W. Since solar-thermal technology is mature, the analysis, design, and experimental assessment of moderate-temperature Stirling engines is the main focus of this thesis. The design, fabrication, and test of a single-phase free-piston Stirling engine prototype is discussed. This low-power prototype is designed and fabricated as a test rig to provide a clear understanding of the Stirling cycle operation, to identify the key components and the major causes of irreversibility, and to verify corresponding theoretical models. As a component, the design of a very low-loss resonant displacer piston subsystem is discussed. The displacer piston is part of a magnetic circuit that provides both a required stiffness and actuation forces. The stillness is provided by a magnetic spring, which incorporates an array of permanent magnets and has a very linear stiffness characteristic that facilitates the frequency tuning. In this prototype, the power piston is not mechanically linked to the displacer piston and forms a mass-spring resonating subsystem with the engine chamber gas spring and has resonant frequency matched to that of the displacer. The fabricated engine prototype is successfully tested and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations, providing a sound basis for higher power Stirling engine designs for residential or commercial deployments. Multi-phase Stirling engine systems are also considered and analyzed. The modal analysis of these machines proves

  18. Multi-objective optimization of Stirling engine systems using Front-based Yin-Yang-Pair Optimization

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2017-01-01

    Highlights: • Efficient multi-objective optimization algorithm F-YYPO demonstrated. • Three Stirling engine applications with a total of eight cases. • Improvements in the objective function values of up to 30%. • Superior to the popularly used gamultiobj of MATLAB. • F-YYPO has extremely low time complexity. - Abstract: In this work, we demonstrate the performance of Front-based Yin-Yang-Pair Optimization (F-YYPO) to solve multi-objective problems related to Stirling engine systems. The performance of F-YYPO is compared with that of (i) a recently proposed multi-objective optimization algorithm (Multi-Objective Grey Wolf Optimizer) and (ii) an algorithm popularly employed in literature due to its easy accessibility (MATLAB’s inbuilt multi-objective Genetic Algorithm function: gamultiobj). We consider three Stirling engine based optimization problems: (i) the solar-dish Stirling engine system which considers objectives of output power, thermal efficiency and rate of entropy generation; (ii) Stirling engine thermal model which considers the associated irreversibility of the cycle with objectives of output power, thermal efficiency and pressure drop; and finally (iii) an experimentally validated polytropic finite speed thermodynamics based Stirling engine model also with objectives of output power and pressure drop. We observe F-YYPO to be significantly more effective as compared to its competitors in solving the problems, while requiring only a fraction of the computational time required by the other algorithms.

  19. Magnetic bearings for free-piston Stirling engines

    Science.gov (United States)

    Curwen, P. W.; Fleming, D. P.; Rao, D. K.; Wilson, D. S.

    1992-01-01

    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  20. Optimization of a 5 kW solar powered alpha stirling engine using Powell's method

    Energy Technology Data Exchange (ETDEWEB)

    Shamekhi, A. [Numeric Method Development Co., Shemiranat, Tehran (Iran, Islamic Republic of); Aliabadi, A. [MAPNA Group, Tehran (Iran, Islamic Republic of)

    2010-08-13

    Many types of Stirling engines have been built in a variety of forms and sizes since its invention in 1816. The Stirling engine offers maximum efficiency; maximum power; and minimum costs. In this study, a solar powered alpha Stirling engine was simulated using a second order method. The paper presented the governing equations, including conservation of mass; pressure losses inside the heat exchangers; pressure losses inside the regenerator; and heat transfer in the heat exchangers. Methods to optimize the parameters in order to improve engine efficiency were also discussed. The study showed that the geometric parameter of the engine influences engine performance considerably. After 20 iterations of Powell's method for engine optimization, the engine performance was optimized to the value of 25.4 percent. 18 refs., 2 tabs., 8 figs.

  1. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Sayyaadi, Hoseyn; Mohammadi, Amir H.; Barranco-Jimenez, Marco A.

    2013-01-01

    Highlights: • Thermo-economic multi-objective optimization of solar dish-Stirling engine is studied. • Application of the evolutionary algorithm is investigated. • Error analysis is done to find out the error through investigation. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great number of studies are conducted on Stirling engine and finite time thermo-economic is one of them. In the present study, the dimensionless thermo-economic objective function, thermal efficiency and dimensionless power output are optimized for a dish-Stirling system using finite time thermo-economic analysis and NSGA-II algorithm. Optimized answers are chosen from the results using three decision-making methods. Error analysis is done to find out the error through investigation

  2. Coupled thermodynamic-dynamic semi-analytical model of free piston Stirling engines

    Energy Technology Data Exchange (ETDEWEB)

    Formosa, F., E-mail: fabien.formosa@univ-savoie.f [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France)

    2011-05-15

    Research highlights: {yields} The free piston Stirling behaviour relies on its thermal and dynamic features. {yields} A global semi-analytical model for preliminary design is developed. {yields} The model compared with NASA-RE1000 experimental data shows good correlations. -- Abstract: The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standardized description of the engine allows efficient and realistic preliminary design of FPSE.

  3. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  4. Nonlinear dynamics analysis of a low-temperature-differential kinematic Stirling heat engine

    Science.gov (United States)

    Izumida, Yuki

    2018-03-01

    The low-temperature-differential (LTD) Stirling heat engine technology constitutes one of the important sustainable energy technologies. The basic question of how the rotational motion of the LTD Stirling heat engine is maintained or lost based on the temperature difference is thus a practically and physically important problem that needs to be clearly understood. Here, we approach this problem by proposing and investigating a minimal nonlinear dynamic model of an LTD kinematic Stirling heat engine. Our model is described as a driven nonlinear pendulum where the motive force is the temperature difference. The rotational state and the stationary state of the engine are described as a stable limit cycle and a stable fixed point of the dynamical equations, respectively. These two states coexist under a sufficient temperature difference, whereas the stable limit cycle does not exist under a temperature difference that is too small. Using a nonlinear bifurcation analysis, we show that the disappearance of the stable limit cycle occurs via a homoclinic bifurcation, with the temperature difference being the bifurcation parameter.

  5. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  6. Coupled thermodynamic-dynamic semi-analytical model of free piston Stirling engines

    International Nuclear Information System (INIS)

    Formosa, F.

    2011-01-01

    Research highlights: → The free piston Stirling behaviour relies on its thermal and dynamic features. → A global semi-analytical model for preliminary design is developed. → The model compared with NASA-RE1000 experimental data shows good correlations. -- Abstract: The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standardized description of the engine allows efficient and realistic preliminary design of FPSE.

  7. Optimization of solar-powered Stirling heat engine with finite-time thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yaqi, Li [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xi' an Research Institute of Hi-Tech, Xi' an, Shaanxi 710025 (China); Yaling, He; Weiwei, Wang [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2011-01-15

    A mathematical model for the overall thermal efficiency of the solar-powered high temperature differential dish-Stirling engine with finite-rate heat transfer, regenerative heat losses, conductive thermal bridging losses and finite regeneration processes time is developed. The model takes into consideration the effect of the absorber temperature and the concentrating ratio on the thermal efficiency; radiation and convection heat transfer between the absorber and the working fluid as well as convection heat transfer between the heat sink and the working fluid. The results show that the optimized absorber temperature and concentrating ratio are at about 1100 K and 1300, respectively. The thermal efficiency at optimized condition is about 34%, which is not far away from the corresponding Carnot efficiency at about 50%. Hence, the present analysis provides a new theoretical guidance for designing dish collectors and operating the Stirling heat engine system. (author)

  8. Free-piston Stirling Engine system considerations for various space power applications

    Science.gov (United States)

    Dochat, George R.; Dhar, Manmohan

    1991-01-01

    Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.

  9. Energy efficiency and economic feasibility of CCHP driven by stirling engine

    International Nuclear Information System (INIS)

    Kong, X.Q.; Wang, R.Z.; Huang, X.H.

    2004-01-01

    This paper deals with the problem of energy efficiency evaluation and economic feasibility analysis of a small scale trigeneration system for combined cooling, heating and power generation (CCHP) with an available Stirling engine. Trigeneration systems have a large potential of energy saving and economical efficiency. The decisive values for energetic efficiency evaluation of such systems are the primary energy rate and comparative primary energy saving (Δq), while the economic feasibility analysis of such systems relates the avoided cost, the total annual saving and payback period. The investigation calculates and compares the energy saving and economic efficiency of trigeneration system with Stirling engine against contemporary conventional independent cooling, heating and power, showing that a CCHP system saves fuel resources and has the assurance of economic benefits

  10. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    Science.gov (United States)

    Linker, K. L.; Rawlinson, K. S.; Smith, G.

    1991-10-01

    The Department of Energy's Solar Thermal Program has, as one of its program elements, the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc. kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  11. Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad Hossein; Sayyaadi, Hoseyn; Dehghani, Saeed; Hosseinzade, Hadi

    2013-01-01

    Highlights: • Thermodynamic model of a solar-dish Stirling engine was presented. • Thermal efficiency and output power of the engine were simultaneously maximized. • A final optimal solution was selected using several decision-making methods. • An optimal solution with least deviation from the ideal design was obtained. • Optimal solutions showed high sensitivity against variation of system parameters. - Abstract: A solar-powered high temperature differential Stirling engine was considered for optimization using multiple criteria. A thermal model was developed so that the output power and thermal efficiency of the solar Stirling system with finite rate of heat transfer, regenerative heat loss, conductive thermal bridging loss, finite regeneration process time and imperfect performance of the dish collector could be obtained. The output power and overall thermal efficiency were considered for simultaneous maximization. Multi-objective evolutionary algorithms (MOEAs) based on the NSGA-II algorithm were employed while the solar absorber temperature and the highest and lowest temperatures of the working fluid were considered the decision variables. The Pareto optimal frontier was obtained and a final optimal solution was also selected using various decision-making methods including the fuzzy Bellman–Zadeh, LINMAP and TOPSIS. It was found that multi-objective optimization could yield results with a relatively low deviation from the ideal solution in comparison to the conventional single objective approach. Furthermore, it was shown that, if the weight of thermal efficiency as one of the objective functions is considered to be greater than weight of the power objective, lower absorber temperature and low temperature ratio should be considered in the design of the Stirling engine

  12. Control scheme for power modulation of a free piston Stirling engine

    Science.gov (United States)

    Dhar, Manmohan

    1989-01-01

    The present invention relates to a control scheme for power modulation of a free-piston Stirling engine-linear alternator power generator system. The present invention includes connecting an autotransformer in series with a tuning capacitance between a linear alternator and a utility grid to maintain a constant displacement to piston stroke ratio and their relative phase angle over a wide range of operating conditions.

  13. Free-piston Stirling engine system considerations for various space power applications

    International Nuclear Information System (INIS)

    Dochat, G.R.; Dhar, M.

    1991-01-01

    The U.S. Government is evaluating power requirements for future space applications. As power requirements increase solar or nuclear dynamic systems become increasingly attractive. Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (AC, DC, high or low voltage, and fixed or variable load). This paper will review potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. Currently free-piston Stirling engine technology for space power applications is being developed under contract with NASA-Lewis Research Center. This paper will also briefly outline the program and recent progress

  14. European Stirling forum 2000. Proceedings; Europaeisches Stirling Forum 2000. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document comprises all 42 papers presented at the 'European Stirling Forum 2000', held in Osnabrueck on February 22-24, 2000. Among others, the following subjects were discussed: Thermodynamics, new developments, Stirling engines, free piston heat pumps, flow optimisation of regenerators for Stirling engines, simulation for modelling of flow and heat transfer in the gas cycle of Stirling engines, design and performance, Stirling refrigerators, economic efficiency of biomass Stirling engines, power control of a Stirling CHP system, a Stirling refrigerator for ultralow temperatures in the refrigeration industry. [German] Das vorliegende Dokument enthaelt alle (42) Beitraege der Referenten des 'Europaeischen Stirling Forums 2000', das vom 22. bis 24. Februar 2000 in Osnabrueck stattgefunden hat. Einige der behandelten Themenschwerpunkte im Zusammenhang mit der Stirling-Maschine waren die Thermodynamik, neue Entwicklungen des Kreisprozesses, Heissgasmotoren, Freikolben-Waermepumpe, stroemungstechnische Optimierung von Regeneratoren fuer Stirling-Maschinen, Simulation zur Modellierung der Stroemung und Waermeuebertragung im Gaskreislauf von Stirling-Maschinen, Entwurf und Betriebsverhalten, Stirling-Kaeltemaschine, Wirtschaftlichkeit von Biomasse-Stirlingmotoren, Leistungsregelung eines Stirling-Blockheizkraftwerks, Anwendung eines Stirling-Kuehlers, zum Ultratiefkuehlen in der Kuehlindustrie. (AKF)

  15. Preliminary Results from Simulations of Temperature Fluctuations in Stirling Engine Regenerator Matrices

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2003-01-01

    The objective of this study has been to create a model for studying effects of temperature fluctuations in regenerator matrices on Stirling engine performance. A one-dimensional model with axial discretisation of engine components has been formulated using a fixed Eulerian grid. The model contains...... that adjusts solutions so that they satisfy the necessary cyclic boundary conditions as well as integral conditions for cyclic heat transfer for walls in the engine and for the mean cycle pressure. It has been found that it is possible to accurately solve the stiff ODE system that describes the coupled...

  16. On the dynamical vs. thermodynamical performance of a β-type Stirling engine

    Science.gov (United States)

    Reséndiz-Antonio, Margarita; Santillán, Moisés

    2014-09-01

    In this work we present a simple mathematical model for a β-type Stirling engine. Despite its simplicity, the model considers all the engine’s relevant thermodynamic and mechanical aspects. The dynamic behavior of the model equation of motion is analyzed in order to obtain the sufficient conditions for engine cycling and to study the stability of the stationary regime. The performance of the engine’s thermodynamic part is also investigated. As a matter of fact, we found that it corresponds to a Carnot engine.

  17. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  18. Design and fabrication of a meso-scale stirling engine and combustor.

    Energy Technology Data Exchange (ETDEWEB)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  19. The Development of a Control System for a 5 Kilowatt Free Piston Stirling Engine Convertor

    Science.gov (United States)

    Kirby, Raymond L.; Vitale, Nick

    2008-01-01

    The new NASA Vision for Exploration, announced by President Bush in January 2004, proposes an ambitious program that plans to return astronauts to the moon by the 2018 time frame. A recent NASA study entitled "Affordable Fission Surface Power Study" recommended a 40 kWe, 900 K, NaK-cooled, Stirling convertors for 2020 launch. Use of two of the nominal 5 kW convertors allows the system to be dynamically balanced. A group of four dual-convertor combinations that would yield 40 kWe can be tested to validate the viability of Stirling technology for space fission surface power systems. The work described in this paper deals specifically with the control system for the 5 kW convertor described in the preceding paragraph. This control system is responsible for maintaining piston stroke to a setpoint in the presence of various disturbances including electrical load variations. Pulse starting of the Free Piston Stirling Engine (FPSE) convertor is also an inherent part of such a control system. Finally, the ability to throttle the engine to match the required output power is discussed in terms of setpoint control. Several novel ideas have been incorporated into the piston stroke control strategy that will engender a stable response to disturbances in the presence of midpoint drift while providing useful data regarding the position of both the power piston and displacer.

  20. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    Science.gov (United States)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2009-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.

  1. Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix temperature oscillations

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2006-01-01

    A new regenerator matrix design that improves the efficiency of a Stirling engine has been developed in a numerical study of the existing SM5 Stirling engine. A new, detailed, one-dimensional Stirling engine model that delivers results in good agreement with experimental data was used for mapping...... the per- formance of the engine, for mapping the effects of regenerator matrix temperature oscillations, and for optimising the regenerator design. The regenerator matrix temperatures were found to oscillate in two modes. The first mode was oscillation of a nearly linear axial matrix temperature profile...... while the second mode bended the ends of the axial matrix temperature profile when gas flowed into the regenerator with a temperature significantly different from the matrix temperature. The first mode of oscillation improved the efficiency of the engine but the second mode reduced both the work output...

  2. Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, K.S.; Adkins, D.R.

    1995-05-01

    This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.

  3. Experimental characterization of a small custom-built double-acting gamma-type stirling engine

    Science.gov (United States)

    Intsiful, Peter; Mensah, Francis; Thorpe, Arthur

    This paper investigates characterization of a small custom-built double-acting gamma-type stirling engine. Stirling-cycle engine is a reciprocating energy conversion machine with working spaces operating under conditions of oscillating pressure and flow. These conditions may be due to compressibility as wells as pressure and temperature fluctuations. In standard literature, research indicates that there is lack of basic physics to account for the transport phenomena that manifest themselves in the working spaces of reciprocating engines. Previous techniques involve governing equations: mass, momentum and energy. Some authors use engineering thermodynamics. None of these approaches addresses this particular engine. A technique for observing and analyzing the behavior of this engine via parametric spectral profiles has been developed, using laser beams. These profiles enabled the generation of pv-curves and other trajectories for investigating the thermos-physical and thermos-hydrodynamic phenomena that manifest in the exchangers. The engine's performance was examined. The results indicate that with current load of 35.78A, electric power of 0.505 kW was generated at a speed of 240 rpm and 29.50 percent efficiency was obtained. Nasa grants to Howard University NASA/HBCU-NHRETU & CSTEA.

  4. Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity

    International Nuclear Information System (INIS)

    Szczygieł, Ireneusz; Stanek, Wojciech; Szargut, Jan

    2016-01-01

    LNG (liquefied natural gas) delivered by means of sea-ships is pressurized and then regasified before its introduction to the system of pipelines. The utilization of cryogenic exergy of LNG for electricity production without combustion of any its portion is analyzed. For the conversion of LNG cryogenic exergy into electricity, the Stirling engine is proposed to be applied. The theoretical thermodynamic model of Stirling engine has been applied. This model is used to investigate the influence of pinch temperature in heat exchangers, engine compression ratio and dead volumes ratios on the thermodynamic parameters of the Stirling engine. The results of simulation represent the input data for investigations of thermodynamic performance of the proposed system. In order to evaluate the thermodynamic performance of the proposed process, an exergy analysis has been applied. The exergy efficiency and influence of design and operational parameters on exergy losses are determined for each of the proposed system configurations. The obtained results represent the background for advanced exergy-based analyses, including thermo-ecological cost. - Highlights: • Application of Stirling engine in LNG regasification. • Thermodynamic model of Stirling engine for cryogenic exergy recovery is applied. • Sensitivity analysis of operational parameters on system behaviour is applied. • Exergy analysis is conducted.

  5. Equivalent electrical network model approach applied to a double acting low temperature differential Stirling engine

    International Nuclear Information System (INIS)

    Formosa, Fabien; Badel, Adrien; Lottin, Jacques

    2014-01-01

    Highlights: • An equivalent electrical network modeling of Stirling engine is proposed. • This model is applied to a membrane low temperate double acting Stirling engine. • The operating conditions (self-startup and steady state behavior) are defined. • An experimental engine is presented and tested. • The model is validated against experimental results. - Abstract: This work presents a network model to simulate the periodic behavior of a double acting free piston type Stirling engine. Each component of the engine is considered independently and its equivalent electrical circuit derived. When assembled in a global electrical network, a global model of the engine is established. Its steady behavior can be obtained by the analysis of the transfer function for one phase from the piston to the expansion chamber. It is then possible to simulate the dynamic (steady state stroke and operation frequency) as well as the thermodynamic performances (output power and efficiency) for given mean pressure, heat source and heat sink temperatures. The motion amplitude especially can be determined by the spring-mass properties of the moving parts and the main nonlinear effects which are taken into account in the model. The thermodynamic features of the model have then been validated using the classical isothermal Schmidt analysis for a given stroke. A three-phase low temperature differential double acting free membrane architecture has been built and tested. The experimental results are compared with the model and a satisfactory agreement is obtained. The stroke and operating frequency are predicted with less than 2% error whereas the output power discrepancy is of about 30%. Finally, some optimization routes are suggested to improve the design and maximize the performances aiming at waste heat recovery applications

  6. Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2015-12-01

    This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.

  7. Thermodynamic analysis of a beta-type Stirling engine with rhombic drive mechanism

    International Nuclear Information System (INIS)

    Aksoy, Fatih; Cinar, Can

    2013-01-01

    Highlights: • Thermodynamic analysis of Stirling engine with rhombic-drive mechanism was performed. • The analysis was performed for smooth and grooved displacer cylinders. • The convective heat transfer coefficient was predicted using the experimental results. • The experimental results was compared with the theoretical results. - Abstract: This paper presents a theoretical investigation on kinematic and thermodynamic analysis of a beta type Stirling engine with rhombic-drive mechanism. Variations in the hot and cold volumes of the engine were calculated using kinematic relations. Two different displacer cylinders were investigated: one of them had smooth inner surface and the other had axial slots grooved into the cylinder to increase the heat transfer area. The effects of the slots grooved into the displacer cylinder inner surface on the performance were calculated using nodal analysis in Fortran. The effects of working fluid mass on cyclic work were investigated using 200, 300 and 400 W/m 2 K convective heat transfer coefficients for smooth and grooved displacer cylinders. The variation of engine power with engine speed was obtained by using the same convective heat transfer coefficients and isothermal conditions. The convective heat transfer coefficient was predicted as 104 W/m 2 K using the experimental results measured from the prototype engine under atmospheric conditions. The variation in cyclic work determined by the experimental study was also compared with the theoretical results obtained for different convective heat transfer coefficients and isothermal conditions

  8. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    Science.gov (United States)

    Stephens, J. R.

    1986-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  9. From Beale Number to Pole Placement Design of a Free Piston Stirling Engine

    Directory of Open Access Journals (Sweden)

    Zare Shahryar

    2017-12-01

    Full Text Available In this paper, pole placement-based design and analysis of a free piston Stirling engine (FPSE is presented and compared to the well-defined Beale number design technique. First, dynamic and thermodynamic equations governing the engine system are extracted. Then, linear dynamics of the free piston Stirling engine are studied using dynamic systems theory tools such as root locus. Accordingly, the effects of variations of design parameters such as mass of pistons, stiffness of springs, and frictional damping on the locations of dominant closed-loop poles are investigated. The design procedure is thus conducted to place the dominant poles of the dynamic system at desired locations on the s-plane so that the unstable dynamics, which is the required criterion for energy generation, is achieved. Next, the closed-loop poles are selected based on a desired frequency so that a periodical system is found. Consequently, the design parameters, including mass and spring stiffness for both power and displacer pistons, are obtained. Finally, the engine power is calculated through the proposed control-based analysis and the result is compared to those of the experimental work and the Beale number approach. The outcomes of this work clearly reveal the effectiveness of the control-based design technique of FPSEs compared to the well-known approaches such as Beale number.

  10. Advanced Stirling Radioisotope Generator Engineering Unit 2 (ASRG EU2) Final Assembly

    Science.gov (United States)

    Oriti, Salvatore M.

    2015-01-01

    NASA Glenn Research Center (GRC) has recently completed the assembly of a unique Stirling generator test article for laboratory experimentation. Under the Advanced Stirling Radioisotope Generator (ASRG) flight development contract, NASA GRC initiated a task to design and fabricate a flight-like generator for in-house testing. This test article was given the name ASRG Engineering Unit 2 (EU2) as it was effectively the second engineering unit to be built within the ASRG project. The intent of the test article was to duplicate Lockheed Martin's qualification unit ASRG design as much as possible to enable system-level tests not previously possible at GRC. After the cancellation of the ASRG flight development project, the decision was made to continue the EU2 build, and make use of a portion of the hardware from the flight development project. GRC and Lockheed Martin engineers collaborated to develop assembly procedures, leveraging the valuable knowledge gathered by Lockheed Martin during the ASRG development contract. The ASRG EU2 was then assembled per these procedures at GRC with Lockheed Martin engineers on site. The assembly was completed in August 2014. This paper details the components that were used for the assembly, and the assembly process itself.

  11. Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system

    International Nuclear Information System (INIS)

    Meybodi, Mehdi Aghaei; Behnia, Masud

    2013-01-01

    Methane, a major contributor to global warming, is a greenhouse gas emitted from coal mines. Abundance of coal mines and consequently a considerable amount of methane emission requires drastic measures to mitigate harmful effects of coal mining on the environment. One of the commonly adopted methods is to use emitted methane to fuel power generation systems; however, instability of fuel sources hinders the development of systems using conventional prime movers. To address this, application of Stirling engines may be considered. Here, we develop a techno-economic methodology for conducting an optimisation-based feasibility study on the application of Stirling engines as the prime movers of coal mine CHP systems from an economic and an environmental point of view. To examine the impact of environmental policies on the economics of the system, the two commonly implemented ones (i.e. a carbon tax and emissions trading scheme) are considered. The methodology was applied to a local coal mine. The results indicate that incorporating the modelled system not only leads to a substantial reduction in greenhouse gas emissions, but also to improved economics. Further, due to the heavy economic burden, the carbon tax scheme creates great incentive for coal mine industry to address the methane emissions. -- Highlights: •We study the application of Stirling engines in coal mine CHP systems. •We develop a thermo-economic approach based on the net present worth analysis. •We examine the impact of a carbon tax and ETS on the economics of the system. •The modeled system leads to a substantial reduction in greenhouse gas emissions. •Carbon tax provides a greater incentive to address the methane emissions

  12. Limitation of Piston Centre Shift in Free Piston Stirling Engines

    Energy Technology Data Exchange (ETDEWEB)

    Van der Woude, R.R. [ECN Energy in the Built Environment and Networks, Petten (Netherlands)

    2006-09-15

    Piston centre shift is one of the phenomena setting Free Piston engines apart from traditional kinematic engines. In kinematic engines the piston centre position is determined by the design of the engine's internal mechanisms. In Free Piston engines however, the piston's mid-stroke position is determined by the balance of forces acting on the piston, in particular flexure and gas pressure forces. As a result, a mean pressure difference across the piston emerging during engine operation will cause the piston mid-stroke position to shift away from the geometrical centre. This process will continue until a new balance is reached with the flexure forces counteracting the new mean pressure balance. Yet, before the new equilibrium is reached, the resulting piston centre shift may have grown to such an extent that piston overstrokes have become inevitable. In order to limit piston centre shift and prevent piston overstrokes, several solutions have been proposed in the past. Popular solutions include ingenious mechanisms to vent gas between the spaces separated by the piston, in an attempt to limit the pressure difference. Enatec however has adopted a different approach by applying a precisely determined clearance between the piston and cylinder. With the right shape the clearance effectively limits the mean pressure difference across the piston and therefore limits the extent of the piston centre drift. Taking benefit of tightly controlled tolerances of both piston and cylinder, Enatec has demonstrated the effectiveness of this simple concept in series produced engines.

  13. Demonstration Stirling Engine based Micro-CHP with ultra-low emissions

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, Rolf; Olsson, Fredrik [Carl Bro Energikonsult AB (Sweden); Paalsson, Magnus [Lund Inst. of Technology (Sweden)

    2004-03-01

    This project has been initiated in order to develop a new type of natural gas fired low emission combustion system for a Stirling engine CHP-unit, and to demonstrate and evaluate the unit with the newly developed combustion system in a CHP application. The Stirling engine technology is well developed, but mostly used in special applications and CHP-applications are scarce. The very low exhaust emissions with the new combustion system would make the Stirling engine very suitable for installation in as a CHP-unit in domestic areas. The Stirling engine used in the project has been a V161 engine produced by Solo Kleinmotoren GmbH in Sindelfingen. The unit has a nominal output of 7,5 kW{sub el} and 20 kW{sub heat} (Hot water). The new combustion system was developed at Lund University and the very strict emission targets that were set up could be achieved, both in the laboratory tests and during the site-testing period. Typical performance and emission figures measured at the site installation are: Generator output (kW): 7,3; Hot water output (kW): 15; El. efficiency (%): 25,4; Total efficiency (%): 77,8; NO{sub x} (ppm): 14; CO (ppm): 112; HC (ppm): < 1; O{sub 2} (%): 8,0; Noise level 1 m from the unit (dBA): 83. The NO{sub x} emissions were reduced with almost 97 % as compared to a standard Stirling combustion system. The emission figures are considerably lower than what could be achieved in an internal combustion engine of similar size with an oxidation catalyst (report SGC 106), while the performance figures are similar for the two technologies. The site testing was carried out during a period of 1,5 year at a site owned by Goeteborg Energi. The site comprises a building structure with workshops, offices etc. covering a ground area of 2,500 m{sup 2}. A gas fired boiler with an output of 250 kW supplies hot water to a local grid for heating and tap water. The annual heat demand is typically 285 MWh and the hot water temperatures are normally 60-80 deg C. The site

  14. Biogas and sewage gas in Stirling engines and micro gas turbines. Results of a field study; Bio- und Klaergas in Stirlingmotoren und Mikrogasturbinen. Ergebnisse einer Feldstudie

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Bernd; Wyndorps, Agnes [Hochschule Reutlingen (Germany); Bekker, Marina; Oechsner, Hans [Hohenheim Univ., Landesanstalt fuer Agrartechnik und Bioenergie, Stuttgart (Germany); Kelm, Tobias [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Stuttgart (Germany)

    2010-07-01

    In decentral heat and power generation from biogas, sewage gas, landfill gas and methane in systems with a capacity below 100 kWe, Stirling engines and micro gas turbines may have advantages over gas engines, gasoline engines, and diesel engines. This was proved in a research project in which the operation of a Stirling engine with sewage gas and a micro gas turbine with biogas were investigated. (orig.)

  15. Thermodynamic Analysis of a Woodchips Gasification Integrated with Solid Oxide Fuel Cell and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Integrated gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power application is analysed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas which is utilized for feeding the SOFC stacks for electricity...... and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on LHV (lower heating value) can be achieved. Different parameter studies are performed to analysis system behaviour under different conditions. The analysis show that increasing fuel mass flow from the design point results...

  16. Controllability of Free-piston Stirling Engine/linear Alternator Driving a Dynamic Load

    Science.gov (United States)

    Kankam, M. David; Rauch, Jeffrey S.

    1994-01-01

    This paper presents the dynamic behavior of a Free-Piston Stirling Engine/linear alternator (FPSE/LA) driving a single-phase fractional horse-power induction motor. The controllability and dynamic stability of the system are discussed by means of sensitivity effects of variations in system parameters, engine controller, operating conditions, and mechanical loading on the induction motor. The approach used expands on a combined mechanical and thermodynamic formulation employed in a previous paper. The application of state-space technique and frequency domain analysis enhances understanding of the dynamic interactions. Engine-alternator parametric sensitivity studies, similar to those of the previous paper, are summarized. Detailed discussions are provided for parametric variations which relate to the engine controller and system operating conditions. The results suggest that the controllability of a FPSE-based power system is enhanced by proper operating conditions and built-in controls.

  17. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Thermodynamic and thermoeconomic investigations of a small-scale integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kWe have been performed. Woodchips are used as gasification feedstock to produce syngas......Wh. Furthermore, hot water is considered as a by-product, and the cost of hot water is found to be 0.0214$/kWh. When compared to other renewable systems of similar scales, this result shows that if both SOFC and Stirling engine technology enter the commercialization phase, then they can deliver electricity...

  18. A thermoacoustic-Stirling heat engine: detailed study

    Science.gov (United States)

    Backhaus; Swift

    2000-06-01

    A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood.

  19. A thermoacoustic-Stirling heat engine: Detailed study

    International Nuclear Information System (INIS)

    Backhaus, S.; Swift, G. W.

    2000-01-01

    A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood. (c) 2000 Acoustical Society of America

  20. Free-piston Stirling engine conceptual design and technologies for space power, Phase 1. Final Report

    International Nuclear Information System (INIS)

    Penswick, L.B.; Beale, W.T.; Wood, J.G.

    1990-01-01

    As part of the SP-100 program, a phase 1 effort to design a free-piston Stirling engine (FPSE) for a space dynamic power conversion system was completed. SP-100 is a combined DOD/DOE/NASA program to develop nuclear power for space. This work was completed in the initial phases of the SP-100 program prior to the power conversion concept selection for the Ground Engineering System (GES). Stirling engine technology development as a growth option for SP-100 is continuing after this phase 1 effort. Following a review of various engine concepts, a single-cylinder engine with a linear alternator was selected for the remainder of the study. The relationships of specific mass and efficiency versus temperature ratio were determined for a power output of 25 kWe. This parametric study was done for a temperature ratio range of 1.5 to 2.0 and for hot-end temperatures of 875 K and 1075 K. A conceptual design of a 1080 K FPSE with a linear alternator producing 25 kWe output was completed. This was a single-cylinder engine designed for a 62,000 hour life and a temperature ratio of 2.0. The heat transport systems were pumped liquid-metal loops on both the hot and cold ends. These specifications were selected to match the SP-100 power system designs that were being evaluated at that time. The hot end of the engine used both refractory and superalloy materials; the hot-end pressure vessel featured an insulated design that allowed use of the superalloy material. The design was supported by the hardware demonstration of two of the component concepts - the hydrodynamic gas bearing for the displacer and the dynamic balance system. The hydrodynamic gas bearing was demonstrated on a test rig. The dynamic balance system was tested on the 1 kW RE-1000 engine at NASA Lewis

  1. Free-piston Stirling engine conceptual design and technologies for space power, phase 1

    Science.gov (United States)

    Penswick, L. Barry; Beale, William T.; Wood, J. Gary

    1990-01-01

    As part of the SP-100 program, a phase 1 effort to design a free-piston Stirling engine (FPSE) for a space dynamic power conversion system was completed. SP-100 is a combined DOD/DOE/NASA program to develop nuclear power for space. This work was completed in the initial phases of the SP-100 program prior to the power conversion concept selection for the Ground Engineering System (GES). Stirling engine technology development as a growth option for SP-100 is continuing after this phase 1 effort. Following a review of various engine concepts, a single-cylinder engine with a linear alternator was selected for the remainder of the study. The relationships of specific mass and efficiency versus temperature ratio were determined for a power output of 25 kWe. This parametric study was done for a temperature ratio range of 1.5 to 2.0 and for hot-end temperatures of 875 K and 1075 K. A conceptual design of a 1080 K FPSE with a linear alternator producing 25 kWe output was completed. This was a single-cylinder engine designed for a 62,000 hour life and a temperature ratio of 2.0. The heat transport systems were pumped liquid-metal loops on both the hot and cold ends. These specifications were selected to match the SP-100 power system designs that were being evaluated at that time. The hot end of the engine used both refractory and superalloy materials; the hot-end pressure vessel featured an insulated design that allowed use of the superalloy material. The design was supported by the hardware demonstration of two of the component concepts - the hydrodynamic gas bearing for the displacer and the dynamic balance system. The hydrodynamic gas bearing was demonstrated on a test rig. The dynamic balance system was tested on the 1 kW RE-1000 engine at NASA Lewis.

  2. Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-05-29

    A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

  3. Optimization of rhombic drive mechanism used in beta-type Stirling engine based on dimensionless analysis

    International Nuclear Information System (INIS)

    Cheng, Chin-Hsiang; Yang, Hang-Suin

    2014-01-01

    In the present study, optimization of rhombic drive mechanism used in a beta-type Stirling engine is performed based on a dimensionless theoretical model toward maximization of shaft work output. Displacements of the piston and the displacer with the rhombic drive mechanism and variations of volumes and pressure in the chambers of the engine are firstly expressed in dimensionless form. Secondly, Schmidt analysis is incorporated with Senft's shaft work theory to build a dimensionless thermodynamic model, which is employed to yield the dimensionless shaft work. The dimensionless model is verified with experimental data. It is found that the relative error between the experimental and the theoretical data in dimensionless shaft work is lower than 5.2%. This model is also employed to investigate the effects of the influential geometric parameters on the shaft work, and the optimization of these parameters is attempted. Eventually, design charts that help design the optimal geometry of the rhombic drive mechanism are presented in this report. - Highlights: • Specifically dealing with optimization of rhombic-drive mechanism used in Stirling engine based on dimensionless model. • Propose design charts that help determine the optimal geometric parameters of the rhombic drive mechanism. • Complete study of influential factors affecting the shaft work output

  4. A hot air driven thermoacoustic-Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-09-15

    Significant energy savings can be obtained by implementing a thermally driven heat pump into industrial or domestic applications. Such a thermally driven heat pump uses heat from a high-temperature source to drive the system which upgrades an abundantly available heat source (industrial waste heat, air, water, geothermal). A way to do this is by coupling a thermoacoustic engine with a thermoacoustic heat pump. The engine is driven by a burner and produces acoustic power and heat at the required temperature. The acoustic power is used to pump heat in the heat pump to the required temperature. This system is attractive since it uses a noble gas as working medium and has no moving mechanical parts. This paper deals with the first part of this system: the engine. In this study, hot air is used to simulate the flue gases originating from a gas burner. This is in contrast with a lot of other studies of thermoacoustic engines that use an electrical heater as heat source. Using hot air resembles to a larger extent the real world application. The engine produces about 300W of acoustic power with a performance of 41% of the Carnot efficiency at a hot air temperature of 620C.

  5. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    Science.gov (United States)

    Slaby, Jack G.

    1987-01-01

    A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.

  6. A numerical analysis on the performance of a pressurized twin power piston gamma-type Stirling engine

    International Nuclear Information System (INIS)

    Chen, Wen-Lih; Wong, King-Leung; Po, Li-Wen

    2012-01-01

    Highlights: ► A numerical model has been applied to study the performance of a gamma-type Stirling engine. ► A prototype engine has been built to correct the values of some factors in the model. ► The regeneration effectiveness is most prominent on efficiency. ► Engine speed is most effective on the engine power. ► The rotation arm and initial gas pressure are also influential factors on engine power. - Abstract: In this study, a prototype helium-changed twin-power-piston γ-type Stirling engine has been built, and some of its geometrical and operational parameters have been investigated by a numerical model. Data taken from the prototype engine have been used to correct the values of some factors in the numerical model. The results include volume and temperature variations in the expansion and compression chambers, p–v diagrams, and the effects of regeneration effectiveness, the crank radius of the power piston, the initial pressure of working gas, and the rotation speed on engine’s power and efficiency. It has been found that regeneration effectiveness poses the most prominent effect on efficiency, while engine speed is most effective on the engine power within the range of engine speed investigated in this study. This study offers invaluable guides for the design and optimization of γ-type Stirling engines with similar construction.

  7. Finite time thermodynamic analysis and optimization of solar-dish Stirling heat engine with regenerative losses

    Directory of Open Access Journals (Sweden)

    Sharma Arjun

    2011-01-01

    Full Text Available The present study investigates the performance of the solar-driven Stirling engine system to maximize the power output and thermal efficiency using the non-linearized heat loss model of the solar dish collector and the irreversible cycle model of the Stirling engine. Finite time thermodynamic analysis has been done for combined system to calculate the finite-rate heat transfer, internal heat losses in the regenerator, conductive thermal bridging losses and finite regeneration process time. The results indicate that exergy efficiency of dish system increases as the effectiveness of regenerator increases but decreases with increase in regenerative time coefficient. It is also found that optimal range of collector temperature and corresponding concentrating ratio are 1000 K~1400 K and 1100~1400, respectively in order to get maximum value of exergy efficiency. It is reported that the exergy efficiency of this dish system can reach the maximum value when operating temperature and concentrating ratio are 1150 K and 1300, respectively.

  8. Thermodynamic Performance of Heat Exchangers in a Free Piston Stirling Engine

    Directory of Open Access Journals (Sweden)

    Ayodeji Sowale

    2018-02-01

    Full Text Available There is an increasing request in energy recovery systems that are more efficient, environmentally friendly and economical. The free piston Stirling engine has been investigated due to its structural simplicity and high efficiency, coupled with its cogeneration ability. This study presents the numerical investigation of quasi-steady model of a gamma type free piston Stirling engine (FPSE, including the thermodynamic analysis of the heat exchangers. Advanced thermodynamic models are employed to derive the initial set of operational parameters of the FPSE due to the coupling of the piston’s (displacer and piston dynamics and the working process. The proximity effect of the heater and cooler on the regenerator effectiveness in relation to the heat losses, output power, net work and thermal efficiency of the FPSE are also observed and presented in this study. It can be observed that at temperatures of 541.3 °C and 49.8 °C of the heater and cooler, respectively, with heater volume of 0.004 m3, regenerator volume of 0.003 m3 and cooler volume of 0.005 m3, the FPSE produced an output performance of 996.7 W with a thermal efficiency of 23% at a frequency of 30 Hz. This approach can be employed to design effective high performance FPSE due to their complexity and also predict a satisfactory performance.

  9. Radioisotope Stirling Engine Powered Airship for Low Altitude Operation on Venus

    Science.gov (United States)

    Colozza, Anthony J.

    2012-01-01

    The feasibility of a Stirling engine powered airship for the near surface exploration of Venus was evaluated. The heat source for the Stirling engine was limited to 10 general purpose heat source (GPHS) blocks. The baseline airship utilized hydrogen as the lifting gas and the electronics and payload were enclosed in a cooled insulated pressure vessel to maintain the internal temperature at 320 K and 1 Bar pressure. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the Venus surface based on the available thermal power. The atmospheric conditions on Venus were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Venus surface. From this baseline design additional trades were made to see how other factors affected the design such as the internal temperature of the payload chamber and the flight altitude. In addition other lifting methods were evaluated such as an evacuated chamber, heated atmospheric gas and augmented heated lifting gas. However none of these methods proved viable.

  10. Multi-objective optimization and design for free piston Stirling engines based on the dimensionless power

    Science.gov (United States)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.

  11. Thermodynamic analysis of a gas turbine cycle equipped with a non-ideal adiabatic model for a double acting Stirling engine

    International Nuclear Information System (INIS)

    Korlu, Mahmood; Pirkandi, Jamasb; Maroufi, Arman

    2017-01-01

    Highlights: • A gas turbine cycle equipped with a double acting Stirling engine is proposed. • The hybrid cycle effects, efficiency and power outputs are investigated. • The energy dissipation, the net enthalpy loss and wall heat leakage are considered. • The hybrid cycle improves the efficiency from 23.6 to 38.8%. - Abstract: The aim of this study is to investigate the thermodynamic performance of a gas turbine cycle equipped with a double acting Stirling engine. A portion of gas turbine exhaust gases are allocated to providing the heat required for the Stirling engine. Employing this hybrid cycle improves gas turbine performance and power generation. The double acting Stirling engine is used in this study and the non-ideal adiabatic model is used to numerical solution. The regenerator’s net enthalpy loss, the regenerator’s wall heat leakage, the energy dissipation caused by pressure drops in heat exchangers and regenerator are the losses that were taken into account for the Stirling engine. The hybrid cycle, gas turbine governing equations and Stirling engine analyses are carried out using the Matlab software. The pressure ratio of the compressor, the inlet temperature of turbine, the porosity, length and diameter of the regenerator were chosen as essential parameters in this article. Also the hybrid cycle effects, efficiency and power outputs are investigated. The results show that the hybrid gas turbine and Stirling engine improves the efficiency from 23.6 to 38.8%.

  12. A novel active free piston Stirling engine: Modeling, development, and experiment

    International Nuclear Information System (INIS)

    Tavakolpour-Saleh, A.R.; Zare, SH.; Bahreman, H.

    2017-01-01

    Highlights: •A novel active free piston Stirling engine is modeled, fabricated, and tested. •A dynamic model of the engine is presented and experimentally validated. •A systematic way to find gas temperature within the hot and cold spaces is proposed. •The simulated thermal efficiency of 19.4% proves the potential of the concept. -- Abstract: This paper focuses on mathematical modeling, development, and experimental evaluation of a novel active free piston Stirling engine (AFPSE). First, working principles of the proposed AFPSE are described and its advantages are introduced. Then, a comprehensive mathematical model of the proposed Mechatronic system is presented using kinematic, dynamic, thermodynamic, heat transfer, and electrical equations. The Schmidt’s theory assumptions are used throughout the modeling scheme except for finite heat transfer and imperfect regeneration. Next, a systematic way to estimate the gas temperature in the expansion and compression spaces of the engine is presented taking into account the imperfect regeneration and finite heat transfer in the presented converter. Moreover, the engine performance, as well as the resonant frequency of the active converter, is investigated through simulation. Finally, the proposed AFPSE is developed and primarily tested. The obtained practical results clearly demonstrate the feasibility of generating power (i.e. 7.1 W) through thermal excitation of a one degree-of-freedom (1-DOF) dynamic system with its resonant frequency (i.e. 9.2 Hz). Furthermore, it is found that the experimental measurements are in an acceptable agreement with the simulation outcomes of the analytical model through which validity of the mathematical scheme is affirmed.

  13. CFD Modeling of Free-Piston Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.

    2001-01-01

    NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.

  14. Efficient protocols for Stirling heat engines at the micro-scale

    Science.gov (United States)

    Muratore-Ginanneschi, Paolo; Schwieger, Kay

    2015-10-01

    We investigate the thermodynamic efficiency of sub-micro-scale Stirling heat engines operating under the conditions described by overdamped stochastic thermodynamics. We show how to construct optimal protocols such that at maximum power the efficiency attains for constant isotropic mobility the universal law η=2 ηC/(4-ηC) , where ηC is the efficiency of an ideal Carnot cycle. We show that these protocols are specified by the solution of an optimal mass transport problem. Such solution can be determined explicitly using well-known Monge-Ampère-Kantorovich reconstruction algorithms. Furthermore, we show that the same law describes the efficiency of heat engines operating at maximum work over short time periods. Finally, we illustrate the straightforward extension of these results to cases when the mobility is anisotropic and temperature dependent.

  15. Free-piston Stirling engine/linear alternator 1000-hour endurance test

    Science.gov (United States)

    Rauch, J.; Dochat, G.

    1985-01-01

    The Free Piston Stirling Engine (FPSE) has the potential to be a long lived, highly reliable, power conversion device attractive for many product applications such as space, residential or remote site power. The purpose of endurance testing the FPSE was to demonstrate its potential for long life. The endurance program was directed at obtaining 1000 operational hours under various test conditions: low power, full stroke, duty cycle and stop/start. Critical performance parameters were measured to note any change and/or trend. Inspections were conducted to measure and compare critical seal/bearing clearances. The engine performed well throughout the program, completing more than 1100 hours. Hardware inspection, including the critical clearances, showed no significant change in hardware or clearance dimensions. The performance parameters did not exhibit any increasing or decreasing trends. The test program confirms the potential for long life FPSE applications.

  16. Technical and economic study of Stirling and Rankine cycle bottoming systems for heavy truck diesel engines

    Science.gov (United States)

    Kubo, I.

    1987-01-01

    Bottoming cycle concepts for heavy duty transport engine applications were studied. In particular, the following tasks were performed: (1) conceptual design and cost data development for Stirling systems; (2) life-cycle cost evaluation of three bottoming systems - organic Rankine, steam Rankine, and Stirling cycles; and (3) assessment of future directions in waste heat utilization research. Variables considered for the second task were initial capital investments, fuel savings, depreciation tax benefits, salvage values, and service/maintenance costs. The study shows that none of the three bottoming systems studied are even marginally attractive. Manufacturing costs have to be reduced by at least 65%. As a new approach, an integrated Rankine/Diesel system was proposed. It utilizes one of the diesel cylinders as an expander and capitalizes on the in-cylinder heat energy. The concept eliminates the need for the power transmission device and a sophisticated control system, and reduces the size of the exhaust evaporator. Results of an economic evaluation indicate that the system has the potential to become an attractive package for end users.

  17. A CFD parametric study on the performance of a low-temperature-differential γ-type Stirling engine

    International Nuclear Information System (INIS)

    Chen, Wen-Lih; Yang, Yu-Ching; Salazar, Jose Leon

    2015-01-01

    Highlights: • A parametric study on a low-temperature-differential Stirling engine has been conducted by using CFD. • The effects of three geometric and two operational parameters on engine performance have been investigated. • It is found that each parameter produces different effects except power piston stroke and power piston radius. • The results are useful for guiding the design of new low-temperature-differential Stirling engines. - Abstract: An in-house CFD code has been applied to a low-temperature-differential (LTD) γ-type Stirling engine to understand the effects posed by several geometrical and operational parameters on engine performance. The results include variations of pressure, temperature, and heat transfer rates within an engine cycle as well as variations of engine’s power and efficiency versus these parameters. It is found that power piston stroke and radius influence engine performance very similarly, and power and efficiency both increase as these two parameters increase. In fact, the effects of the two parameters can be assimilated into those by the parameter of compression ratio. The stroke of displacer is observed to affect strongly on heat input but weakly on power, thus causing the efficiency to decrease as it increases. As expected, both power and efficiency increase as temperature difference between the hot and cold ends increases. Lastly, engine speed is observed to pose strong positive effects on power but exert weak effects on efficiency. This study reveals the effects produced by several important parameters on engine performance, and such information is very useful for the design of new LTD Stirling engines.

  18. Multi-bottle, no compressor, mean pressure control system for a Stirling engine

    Science.gov (United States)

    Corey, John A.

    1990-01-01

    The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

  19. Hot air engines: Study of a Stirling engine and of an Ericsson engine; Moteurs thermiques a apport de chaleur externe: etude d'un moteur stirling et d'un moteur ericsson

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, S.

    2005-11-15

    In the current energy context, we attend the development of technologies of production of 'clean' energy. Thus, news prospects like thermodynamic solar energy conversion or waste energy conversion are offered to research on 'renewable energies'. Within this framework, we are interested in hot air engines: Stirling and Ericsson engines. First of all, this thesis concerns the study of a small Stirling engine on which we measured the fluid instantaneous temperature and pressure in various points. The original results obtained are compared to results from two different analyses. We conclude that these models are not suitable to explain the experimental results. Then, we study a micro-cogeneration system based on an Ericsson engine coupled with a system of natural gas combustion. An Ericsson engine is a reciprocating engine working on a JOULE cycle. The objective of this plant is to produce 11 kW of electric output as well as useful heat. In order to design this system, we carried out energetic, exergetic and exergo-economic studies. (author)

  20. Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix temperature oscillations

    International Nuclear Information System (INIS)

    Andersen, Stig Kildegard; Carlsen, Henrik; Thomsen, Per Grove

    2006-01-01

    A new regenerator matrix design that improves the efficiency of a Stirling engine has been developed in a numerical study of the existing SM5 Stirling engine. A new, detailed, one-dimensional Stirling engine model that delivers results in good agreement with experimental data was used for mapping the performance of the engine, for mapping the effects of regenerator matrix temperature oscillations, and for optimising the regenerator design. The regenerator matrix temperatures were found to oscillate in two modes. The first mode was oscillation of a nearly linear axial matrix temperature profile while the second mode bended the ends of the axial matrix temperature profile when gas flowed into the regenerator with a temperature significantly different from the matrix temperature. The first mode of oscillation improved the efficiency of the engine but the second mode reduced both the work output and efficiency of the engine. A new regenerator with three differently designed matrix sections that amplified the first mode of oscillation and reduced the second improved the efficiency of the engine from the current 32.9 to 33.2% with a 3% decrease in power output. An efficiency of 33.0% was achievable with uniform regenerator matrix properties

  1. Calibration and comparison of the NASA Lewis free-piston Stirling engine model predictions with RE-1000 test data

    Science.gov (United States)

    Geng, Steven M.

    1987-01-01

    A free-piston Stirling engine performance code is being upgraded and validated at the NASA Lewis Research Center under an interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA Lewis. Many modifications were made to the free-piston code in an attempt to decrease the calibration effort. A procedure was developed that made the code calibration process more systematic. Engine-specific calibration parameters are often used to bring predictions and experimental data into better agreement. The code was calibrated to a matrix of six experimental data points. Predictions of the calibrated free-piston code are compared with RE-1000 free-piston Stirling engine sensitivity test data taken at NASA Lewis. Resonable agreement was obtained between the code predictions and the experimental data over a wide range of engine operating conditions.

  2. A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gadeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2007-01-01

    An actual-size microfabricated regenerator comprised of a stack of 42 disks, 19 mm diameter and 0.25 mm thick, with layers of microscopic, segmented, involute-shaped flow channels was fabricated and tested. The geometry resembles layers of uniformly-spaced segmented-parallel-plates, except the plates are curved. Each disk was made from electro-plated nickel using the LiGA process. This regenerator had feature sizes close to those required for an actual Stirling engine but the overall regenerator dimensions were sized for the NASA/Sunpower oscillating-flow regenerator test rig. Testing in the oscillating-flow test rig showed the regenerator performed extremely well, significantly better than currently used random-fiber material, producing the highest figures of merit ever recorded for any regenerator tested in that rig over its approximately 20 years of use.

  3. Independently variable phase and stroke control for a double acting Stirling engine

    Science.gov (United States)

    Berchowitz, David M.

    1983-01-01

    A phase and stroke control apparatus for the pistons of a Stirling engine includes a ring on the end of each piston rod in which a pair of eccentrics is arranged in series, torque transmitting relationship. The outer eccentric is rotatably mounted in the ring and is rotated by the orbiting ring; the inner eccentric is mounted on an output shaft. The two eccentrics are mounted for rotation together within the ring during normal operation. A device is provided for rotating one eccentric with respect to another to change the effective eccentricity of the pair of eccentrics. A separately controlled phase adjustment is provided to null the phase change introduced by the change in the orientation of the outer eccentric, and also to enable the phase of the pistons to be changed independently of the stroke change.

  4. Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2014-08-01

    Full Text Available The Biomass Research Centre, section of CIRIAF, has recently developed a biomass boiler (300 kW thermal powered, fed by the poultry manure collected in a nearby livestock. All the thermal requirements of the livestock will be covered by the heat produced by gas combustion in the gasifier boiler. Within the activities carried out by the research project ENERPOLL (Energy Valorization of Poultry Manure in a Thermal Power Plant, funded by the Italian Ministry of Agriculture and Forestry, this paper aims at studying an upgrade version of the existing thermal plant, investigating and analyzing the possible applications for electricity production recovering the exceeding thermal energy. A comparison of Organic Rankine Cycle turbines and Stirling engines, to produce electricity from gasified poultry waste, is proposed, evaluating technical and economic parameters, considering actual incentives on renewable produced electricity.

  5. Ideal thermodynamic processes of oscillatory-flow regenerative engines will go to ideal stirling cycle?

    Science.gov (United States)

    Luo, Ercang

    2012-06-01

    This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.

  6. Design for micro-combined cooling, heating and power systems stirling engines and renewable power systems

    CERN Document Server

    2015-01-01

    ‘Design for Micro-Combined Cooling, Heating & Power Systems’ provides a manual for the technical and structural design of systems for supplying decentralised energy in residential buildings. It presents the micro-combined cooling, heating & power systems Stirling engines & renewable energy sources (mCCHP-SE-RES) systems in an accessible manner both for the public at large, and for professionals who conceive, design or commercialise such systems or their components.  The high performance levels of these systems are demonstrated within the final chapter by the results of an experiment in which a house is equipped with a mCCHP-SE-RES system. The reader is also familiarized with the conceptual, technical and legal aspects of modern domestic energy systems; the components that constitute these systems; and advanced algorithms for achieving the structural and technical design of such systems. In residential buildings, satisfying demands of durable development has gradually evolved from necessity to...

  7. Municipal Solid Waste Gasification with Solid Oxide Fuel Cells and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Municipal Solid Waste (MSW) can be considered a valid biomass to be used in a power plant. The major advantage is the reduction of pollutants and greenhouse gases emissions not only within large cities but also globally. Another advantage is that by th eir use it is possible to reduce the waste...... studied to optimize the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification......, waste is subject to chemical treatments through air or/and steam utilization; the result is a synthesis gas, called “Syngas” which is principally composed of hydrogen and carbon monoxide. Traces of hydrogen sulfide could also be present which can easily be separated in a desulfurization reactor...

  8. Testing of the Advanced Stirling Radioisotope Generator Engineering Unit at NASA Glenn Research Center

    Science.gov (United States)

    Lewandowski, Edward J.

    2013-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a high-efficiency generator being developed for potential use on a Discovery 12 space mission. Lockheed Martin designed and fabricated the ASRG Engineering Unit (EU) under contract to the Department of Energy. This unit was delivered to NASA Glenn Research Center in 2008 and has been undergoing extended operation testing to generate long-term performance data for an integrated system. It has also been used for tests to characterize generator operation while varying control parameters and system inputs, both when controlled with an alternating current (AC) bus and with a digital controller. The ASRG EU currently has over 27,000 hours of operation. This paper summarizes all of the tests that have been conducted on the ASRG EU over the past 3 years and provides an overview of the test results and what was learned.

  9. 3 kW Stirling engine for power and heat production

    DEFF Research Database (Denmark)

    Thorsen, Jan Eric; Bovin, Jonas Kabell; Carlsen, Henrik

    1996-01-01

    A new 3 kW Beta-type Stirling engine has been developed. The engine uses natural gas as fuel and is designed for use as a small combined heat and power plant for single family houses. The electrical power is supplied to the grid. The engine is made as a hermetic device, where the crank mechanism...... and the alternator are built into a pressurized crank casing. The engine produces 3 kW of shaft power corresponding to 2.4 kW of electric power. The heat input is 10 kW representing a shaft efficiency of 30% and an electric efficiency of 24%. Helium at 8 MPa mean pressure is used as the working gas. The crank...... for X-heads. A grease-lubricated needle and ball bearings are used in the kinematic crank mechanism. The burner includes an air preheater and a water jacket which makes it possible to utilize nearly all of the heat from the combustion gases. The performance of the engine has been tested as a function...

  10. Final report on 9 kW Stirling Engine for biogas and natural gas

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell

    2001-01-01

    The need for a simple and robust engine for natural gas and low quality gas has resulted in the design of a single cylinder, hermetic Stirling engine, which has an electric power output of 9 kW. Two engines have been built. One engine is intended for natural gas as fuel and the other is intended...... eliminates guiding forces on the pistons and the need for X-heads. Grease lubricated needle and ball bearings are used in the kinematic crank mechanism in order to avoid oil penetrating into the cylinder volumes. Working gas is Helium at 8 MPa mean pressure. The engine produce up to 11 kW of shaft power...... corresponding to approximately 10 kW of electric power. The design target was an efficiency of 26 % based on lower heat content of the gas to electricity, but only 24% were obtained. The decrease of efficiency is caused by inhomogeneous capacity flows in the air preheater and insufficient insulation...

  11. Multi-objective optimization of Stirling engine using Finite Physical Dimensions Thermodynamics (FPDT) method

    International Nuclear Information System (INIS)

    Li, Ruijie; Grosu, Lavinia; Queiros-Conde, Diogo

    2016-01-01

    Highlights: • A gamma Stirling engine has been optimized using FPDT method by multi-objective criteria. • Genetic algorithm and decision making methods were used to get Pareto frontier and optimum points. • It shows: total thermal conductance, hot temperature, stroke and diameter ratios can be improved. - Abstract: In this paper, a solar energy powered gamma type SE has been optimized using Finite Physical Dimensions Thermodynamics (FPDT) method by multi-objective criteria. Genetic algorithm was used to get the Pareto frontier, and optimum points were obtained using the decision making methods of LINMAP and TOPSIS. The optimization results have been compared with those obtained using the ecological method. It was shown that the multi-objective optimization in this paper has a better balance among the optimizing criteria (maximum mechanical power, maximum thermal efficiency and minimum entropy generation flow). The effects of the hot source temperature and the total thermal conductance of the engine on the Pareto frontier have been also studied. This sensibility study shows that an increase in the hot reservoir temperature can increase the output mechanical power, the thermal efficiency of the engine, but also the entropy generation rate. In addition to this, an increase of the total thermal conductance of the engine can strongly increase the output mechanical power and only slightly increase the thermal efficiency. These results allow us to improve the engine performance after some modifications as geometrical dimensions (diameter, stroke, heat exchange surface, etc.) and physical parameters (temperature, thermal conductivity).

  12. Mathematical modeling of the Stirling engine in terms of applying the composition of the power complex containing non-conventional and renewable energy

    Science.gov (United States)

    Gaponenko, A. M.; Kagramanova, A. A.

    2017-11-01

    The opportunity of application of Stirling engine with non-conventional and renewable sources of energy. The advantage of such use. The resulting expression for the thermal efficiency of the Stirling engine. It is shown that the work per cycle is proportional to the quantity of matter, and hence the pressure of the working fluid, the temperature difference and, to a lesser extent, depends on the expansion coefficient; efficiency of ideal Stirling cycle coincides with the efficiency of an ideal engine working on the Carnot cycle, which distinguishes a Stirling cycle from the cycles of Otto and Diesel underlying engine. It has been established that the four input parameters, the only parameter which can be easily changed during operation, and which effectively affects the operation of the engine is the phase difference. Dependence of work per cycle of the phase difference, called the phase characteristic, visually illustrates mode of operation of Stirling engine. The mathematical model of the cycle of Schmidt and the analysis of operation of Stirling engine in the approach of Schmidt with the aid of numerical analysis. To conduct numerical experiments designed program feature in the language MathLab. The results of numerical experiments are illustrated by graphical charts.

  13. Techno-economic assessment and optimization of stirling engine micro-cogeneration systems in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Alanne, Kari; Soederholm, Niklas; Siren, Kai [Dept. of Energy Technology, Helsinki University of Technology, P.O. Box 4100, 02015 TKK (Finland); Beausoleil-Morrison, Ian [Dept. of Mechanical and Aerospace Engineering, Carleton University, Ottawa (Canada)

    2010-12-15

    Micro-cogeneration offers numerous potential advantages for the supply of energy to residential buildings in the sense of improved energy efficiency and reduced environmental burdens. To realize these benefits, however, such systems must reduce energy costs, primary energy consumption, and CO{sub 2} emissions relative to conventional heating systems. In this paper, we search for optimized strategies for the integration of a Stirling engine-based micro-cogeneration system in residential buildings by comparing the performance of various system configurations and operational strategies with that of a reference system, i.e. hydronic heating and a low temperature gas boiler in standard and passive house constructions located in different climates. The IDA-ICE whole-building simulation program is employed with the Stirling engine micro-cogeneration model that was developed by IEA/ECBCS Annex 42. In this way the dynamic effects of micro-cogeneration devices, such as warm-ups and shutdowns, are accounted for. This study contributes to the research by addressing hourly changes in the fuel mix used for central electricity generation and the utilization of thermal exhaust through heat recovery. Our results suggest that an optimally operated micro-cogeneration system encompassing heat recovery and appropriate thermal storage would result in a 3-5% decrease in primary energy consumption and CO{sub 2} emissions when compared to a conventional hydronic heating system. Moreover, this configuration is capable of delivering annual savings in all the combinations of electricity and fuel price between 0.05 and 0.15 EUR kW h{sup -1}. As can be expected, these results are sensitive to the electrical energy supply mix, building type, and climate. (author)

  14. Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes

    International Nuclear Information System (INIS)

    Ferreira, Ana C.; Nunes, Manuel L.; Teixeira, José C.F.; Martins, Luís A.S.B.; Teixeira, Senhorinha F.C.F.

    2016-01-01

    Micro-cogeneration systems are a promising technology for improving the energy efficiency near the end user, allowing the optimal use of the primary energy sources and significant reductions in carbon emissions. Its use, still incipient, has a great potential for applications in the residential sector. This study aims to develop a methodology for the thermal-economic optimization of micro cogeneration units using Stirling engine as prime mover and concentrated solar energy as the heat source. The thermal-economic optimization was formulated considering the maximization of the annual worth from the system operation, subjected to the nonlinear thermodynamic and economic constraints. The physical model includes the limitations in the heat transfer processes and losses due to the pumping effects and the costing methodology was defined considering a purchase cost equation representative of each system component. Geometric and operational parameters were selected as decision variables. Numerical simulations were developed in MatLab"® programming language and the Generalized Pattern Search optimization algorithm with MADSPositiveBasis2N was used in the determination of the optimal solution. A positive annual worth for the defined input simulation conditions and the economic analysis disclosed a system, economically attractive, with a payback period of approximately 10 years. - Highlights: • Application of optimization methods to model a renewable powered Stirling engine. • The aim is to optimize design of each plant-component for the best economical outcome. • The objective function is the maximization of annual worth of micro-CHP system. • The optimal solution is sensitive to electricity feed-in-tariffs and fuel prices fluctuations. • The optimal solution is economically attractive, with a payback period of ≈10 years.

  15. Techno-economic assessment and optimization of Stirling engine micro-cogeneration systems in residential buildings

    International Nuclear Information System (INIS)

    Alanne, Kari; Soederholm, Niklas; Siren, Kai; Beausoleil-Morrison, Ian

    2010-01-01

    Micro-cogeneration offers numerous potential advantages for the supply of energy to residential buildings in the sense of improved energy efficiency and reduced environmental burdens. To realize these benefits, however, such systems must reduce energy costs, primary energy consumption, and CO 2 emissions relative to conventional heating systems. In this paper, we search for optimized strategies for the integration of a Stirling engine-based micro-cogeneration system in residential buildings by comparing the performance of various system configurations and operational strategies with that of a reference system, i.e. hydronic heating and a low temperature gas boiler in standard and passive house constructions located in different climates. The IDA-ICE whole-building simulation program is employed with the Stirling engine micro-cogeneration model that was developed by IEA/ECBCS Annex 42. In this way the dynamic effects of micro-cogeneration devices, such as warm-ups and shutdowns, are accounted for. This study contributes to the research by addressing hourly changes in the fuel mix used for central electricity generation and the utilization of thermal exhaust through heat recovery. Our results suggest that an optimally operated micro-cogeneration system encompassing heat recovery and appropriate thermal storage would result in a 3-5% decrease in primary energy consumption and CO 2 emissions when compared to a conventional hydronic heating system. Moreover, this configuration is capable of delivering annual savings in all the combinations of electricity and fuel price between 0.05 and 0.15 Euro kW h -1 . As can be expected, these results are sensitive to the electrical energy supply mix, building type, and climate.

  16. Simple Stirling engine as cogeneration unit in residential areas; Einfacher Stirling-Motor fuer die Waerme-Kraft-Kopplung (WKK) in kleinen Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Budliger, J.P.

    2000-07-01

    Free-piston Stirling engines have been recognized for long as an ideally suited unit for combined heat and power (CHP) production in homes. The considerably improved use of fossil fuel as compared to their separate production, the clean, external combustion process and low noise are major assets, favouring the use of this technology in residential areas. However, up to present, the complexity and correspondingly high cost of these units hampered their practical application. A new, simple concept has recently been devised, which can easily be controlled and operated according to demand. Cost may be reduced substantially as compared to presently known concepts, giving promise for their widespread use in residential homes, as well as in a variety of other applications. (orig.) [German] Freikolben-Stirling-Motoren sind ideale Aggregate fuer die Waerme-Kraft-Kopplung (WKK oder KWK) in kleineren Wohnhaeusern. Der Brennstoff kann wesentlich besser genutzt werden als bei getrennter Bereitung der benoetigten Heizwaerme und der elektrischen Energie. Die saubere, kontinuierliche aeussere Verbrennung und der geringe abgegebene Laerm stellen wichtige Bedingungen fuer einen erfolgreichen Einsatz solcher Systeme im Wohnbereich dar. Bisher verhinderten aber die Komplexitaet der verfuegbaren Systeme den praktischen Einsatz dieser Einheiten. Im Folgenden wird ein neues, einfaches Konzept vorgestellt, welches zuverlaessig funktioniert und auch unter Teillast, dem benoetigten Waermebedarf genau angepasst, betrieben werden kann. Die Herstellungskosten sind wesentlich geringer als bei den bisher bekannten Systemen, was ideale Voraussetzungen fuer deren verbreitete Anwendung im Haushalt, wie in vielfaeltigen anderen Einsatzgebieten darstellt. (orig.)

  17. A thermodynamic approach to compare the performance of rhombic-drive and crank-drive mechanisms for a beta-type Stirling engine

    International Nuclear Information System (INIS)

    Aksoy, F.; Solmaz, H.; Karabulut, H.; Cinar, C.; Ozgoren, Y.O.; Polat, Seyfi

    2016-01-01

    Highlights: • Rhombic drive and crank drive mechanisms of a beta type engine were compared. • Nodal analysis method was used to compare engines having different drive mechanism. • Maximum specific power was 1410 W/L for rhombic-drive engine. • Heat transfer coefficient was determined as 475 W/m"2K for rhombic-drive engine. • Rhombic drive provided higher efficiency because of its better kinematic behaviours. - Abstract: In this study, the effect of rhombic drive and crank drive mechanisms on the performance of a beta-type Stirling engine was investigated by nodal analysis. Kinematic and thermodynamic relations for both drive mechanisms were introduced and a Fortran code was written for the solution. Piston strokes, cylinder and displacer diameters, hot and cold end temperatures, regenerator volumes and heat transfer surface areas were taken equal for both engines with two different drive mechanisms. In the analysis, air was used as the working gas. Engine power and efficiency were compared for different charge pressure values, working gas mass values, heat transfer coefficients and hot end temperatures. Maximum specific engine power was 1410 W/L for the engine with rhombic drive mechanism and 1200 W/L for the engine with crank drive mechanism at 4 bars of charge pressure and 500 W/m"2K heat transfer coefficient. Rhombic drive mechanism was relatively advantageous at low working gas mass values and high hot end temperatures. In comparison with the engine having rhombic drive mechanism, the relatively poor kinematic behaviour of the engine having crank drive mechanism caused lower engine efficiency and performance. Heat transfer coefficient was also predicted by using an experimental pressure trace.

  18. Development of free-piston Stirling engine performance and optimization codes based on Martini simulation technique

    Science.gov (United States)

    Martini, William R.

    1989-01-01

    A FORTRAN computer code is described that could be used to design and optimize a free-displacer, free-piston Stirling engine similar to the RE-1000 engine made by Sunpower. The code contains options for specifying displacer and power piston motion or for allowing these motions to be calculated by a force balance. The engine load may be a dashpot, inertial compressor, hydraulic pump or linear alternator. Cycle analysis may be done by isothermal analysis or adiabatic analysis. Adiabatic analysis may be done using the Martini moving gas node analysis or the Rios second-order Runge-Kutta analysis. Flow loss and heat loss equations are included. Graphical display of engine motions and pressures and temperatures are included. Programming for optimizing up to 15 independent dimensions is included. Sample performance results are shown for both specified and unconstrained piston motions; these results are shown as generated by each of the two Martini analyses. Two sample optimization searches are shown using specified piston motion isothermal analysis. One is for three adjustable input and one is for four. Also, two optimization searches for calculated piston motion are presented for three and for four adjustable inputs. The effect of leakage is evaluated. Suggestions for further work are given.

  19. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    International Nuclear Information System (INIS)

    White, Maurice A.; Qiu Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's)

  20. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  1. Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan, Taiwan (China)

    2011-02-15

    Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism used in concentrating solar power system has been performed. A dynamic model of the mechanism is developed and then incorporated with the thermodynamic model so as to predict the transient behavior of the engine in the hot-start period. In this study, the engine is started from an initial rotational speed. The torques exerted by the flywheel of the engine at any time instant can be calculated by the dynamic model as long as the gas pressures in the chambers, the mass inertia, the friction force, and the external load have been evaluated. The instantaneous rotation speed of the engine is then determined by integration of the equation of rotational motion with respect to time, which in return affects the instantaneous variations in pressure and other thermodynamic properties of the gas inside the chambers. Therefore, the transient variations in gas properties inside the engine chambers and the dynamic behavior of the engine mechanism should be handled simultaneously via the coupling of the thermodynamic and dynamic models. An extensive parametric study of the effects of different operating and geometrical parameters has been performed, and results regarding the effects of mass moment of inertia of the flywheel, initial rotational speed, initial charged pressure, heat source temperature, phase angle, gap size, displacer length, and piston stroke on the engine transient behavior are investigated. (author)

  2. Comparison Based on Exergetic Analyses of Two Hot Air Engines: A Gamma Type Stirling Engine and an Open Joule Cycle Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Houda Hachem

    2015-10-01

    Full Text Available In this paper, a comparison of exergetic models between two hot air engines (a Gamma type Stirling prototype having a maximum output mechanical power of 500 W and an Ericsson hot air engine with a maximum power of 300 W is made. Referring to previous energetic analyses, exergetic models are set up in order to quantify the exergy destruction and efficiencies in each type of engine. The repartition of the exergy fluxes in each part of the two engines are determined and represented in Sankey diagrams, using dimensionless exergy fluxes. The results show a similar proportion in both engines of destroyed exergy compared to the exergy flux from the hot source. The compression cylinders generate the highest exergy destruction, whereas the expansion cylinders generate the lowest one. The regenerator of the Stirling engine increases the exergy resource at the inlet of the expansion cylinder, which might be also set up in the Ericsson engine, using a preheater between the exhaust air and the compressed air transferred to the hot heat exchanger.

  3. Preliminary results from a four-working space, double-acting piston, Stirling engine controls model

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1980-01-01

    A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.

  4. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.

    Science.gov (United States)

    Luo, E C; Ling, H; Dai, W; Yu, G Y

    2006-12-22

    In this paper, an experimental study of the effect of the resonator shape on the performance of a traveling-wave thermoacoustic engine is presented. Two different resonators were tested in the thermoacoustic-Stirling heat. One resonator is an iso-diameter one, and the other is a tapered one. To have a reasonable comparison reference, we keep the same traveling-wave loop, the same resonant frequency and the same operating pressure. The experiment showed that the resonator shape has significant influence on the global performance of the thermoacoustic-Stirling heat engine. The tapered resonator gives much better performance than the iso-diameter resonator. The tapered resonator system achieved a maximum pressure ratio of about 1.3, a maximum net acoustical power output of about 450 W and a highest thermoacoustic efficiency of about 25%.

  5. ADielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation

    Institute of Scientific and Technical Information of China (English)

    寿春晖; 骆仲泱; 王涛; 沈伟东; ROSENGARTEN Gary; 王诚; 倪明江; 岑可法

    2011-01-01

    In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications. The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented. A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed. The calculated results show the advantages of this spectrally selective method for solar power generation.%In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications.The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented.A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed.The calculated results show the advantages of this spectrally selective method for solar power generation.

  6. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    Science.gov (United States)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  7. Stirling Refrigerator

    Science.gov (United States)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  8. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2014-01-01

    Thermodynamic and thermoeconomic investigations of a small-scale integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120 kW e have been performed. Woodchips are used as gasification feedstock to produce syngas, which is then utilized to feed the anode side of the SOFC stacks. A thermal efficiency of 0.424 LHV (lower heating value) for the plant is found to use 89.4 kg/h of feedstock to produce the above mentioned electricity. Thermoeconomic analysis shows that the production price of electricity is 0.1204 $/kWh. Furthermore, hot water is considered as a by-product, and the cost of hot water is found to be 0.0214 $/kWh. When compared to other renewable systems of similar scales, this result shows that if both SOFC and Stirling engine technology enter the commercialization phase, then they can deliver electricity at a cost that is competitive with the corresponding renewable systems of the same size. - Highlights: • A 120 kW e integrated gasification SOFC–Stirling CHP is presented. • Effect of important parameters on plant characteristic and economy are studied. • A modest thermal efficiency of 0.41 is found after thermoeconomic optimization. • Reducing stack numbers cuts cost of electricity at expense of thermal efficiency. • The plant cost is estimated to be about 3433 $/kW when disposal costs are neglected

  9. Testing of a Stirling engine for heat + power cogeneration; Test eines Stirlingmotors zur Kraft-Waerme-Kopplung

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, M.; Heinen, J. [RWE Energy AG, Essen (Germany)

    2007-01-15

    As part of a technology evaluation of distributed energy generators, RWE Energy AG extensively tested a micro combined heat and power appliance, powered by a Stirling engine developed by the British firm Microgen Energy Limited. Microgen Energy Limited is a specialist in micro combined heat and power (microCHP) based on unique Free-Piston Stirling generator technology Microgen is working with leading appliance manufacturers to integrate its core technology into a range of innovative microCHP products. The investigations concentrated on the determination of capacity, efficiency and emissions, the grid connection and behaviour at start-up and under varying loads. This article summarises the results of the tests and gives an overview of micro-CHP technologies (CHP=combined heat and power) and their possible significance to the market in the future. (orig.)

  10. Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines

    International Nuclear Information System (INIS)

    Tyagi, S K; Kaushik, S C; Salhotra, R

    2002-01-01

    The concept of finite time thermodynamics is used to determine the ecological function of irreversible Stirling and Ericsson heat engine cycles. The ecological function is defined as the power output minus power loss (irreversibility), which is the ambient temperature times, the entropy generation rate. The ecological function is maximized with respect to cycle temperature ratio and the expressions for the corresponding power output and thermal efficiency are derived at the optimal operating conditions. The effect of different operating parameters, the effectiveness on the hot, cold and the regenerative side heat exchangers, the cycle temperature ratio, heat capacitance ratio and the internal irreversibility parameter on the maximum ecological function are studied. It is found that the effect of regenerator effectiveness is more than the hot and cold side heat exchangers and the effect of the effectiveness on cold side heat exchanger is more than the effectiveness on the hot side heat exchanger on the maximum ecological function. It is also found that the effect of internal irreversibility parameter is more than the other parameters not only on the maximum ecological function but also on the corresponding power output and the thermal efficiency

  11. Thermodynamic analysis of onset characteristics in a miniature thermoacoustic Stirling engine

    Science.gov (United States)

    Huang, Xin; Zhou, Gang; Li, Qing

    2013-06-01

    This paper analyzes the onset characteristics of a miniature thermoacoustic Stirling heat engine using the thermodynamic analysis method. The governing equations of components are reduced from the basic thermodynamic relations and the linear thermoacoustic theory. By solving the governing equation group numerically, the oscillation frequencies and onset temperatures are obtained. The dependences of the kinds of working gas, the length of resonator tube, the diameter of resonator tube, on the oscillation frequency are calculated. Meanwhile, the influences of hydraulic radius and mean pressure on the onset temperature for different working gas are also presented. The calculation results indicate that there exists an optimal dimensionless hydraulic radius to obtain the lowest onset temperature, whose value lies in the range of 0.30-0.35 for different working gases. Furthermore, the amplitude and phase relationship of pressures and volume flows are analyzed in the time-domain. Some experiments have been performed to validate the calculations. The calculation results agree well with the experimental values. Finally, an error analysis is made, giving the reasons that cause the errors of theoretical calculations.

  12. Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines

    Science.gov (United States)

    Tyagi, S. K.; Kaushik, S. C.; Salhotra, R.

    2002-10-01

    The concept of finite time thermodynamics is used to determine the ecological function of irreversible Stirling and Ericsson heat engine cycles. The ecological function is defined as the power output minus power loss (irreversibility), which is the ambient temperature times, the entropy generation rate. The ecological function is maximized with respect to cycle temperature ratio and the expressions for the corresponding power output and thermal efficiency are derived at the optimal operating conditions. The effect of different operating parameters, the effectiveness on the hot, cold and the regenerative side heat exchangers, the cycle temperature ratio, heat capacitance ratio and the internal irreversibility parameter on the maximum ecological function are studied. It is found that the effect of regenerator effectiveness is more than the hot and cold side heat exchangers and the effect of the effectiveness on cold side heat exchanger is more than the effectiveness on the hot side heat exchanger on the maximum ecological function. It is also found that the effect of internal irreversibility parameter is more than the other parameters not only on the maximum ecological function but also on the corresponding power output and the thermal efficiency.

  13. Stratified charge rotary engine for general aviation

    Science.gov (United States)

    Mount, R. E.; Parente, A. M.; Hady, W. F.

    1986-01-01

    A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.

  14. Results of study of a 1 kWel free-piston Stirling engine; Ergebnisse aus der Untersuchung eines 1 kW{sub el} Freikolben-Stirling

    Energy Technology Data Exchange (ETDEWEB)

    Keller, H.W. [VSE AG, Saarbruecken (Germany)

    2007-01-15

    Great hopes are placed in the concept of cogeneration of heat and power (HPC), with HPC viewed as the key technology in the achievement of the climate-protection targets of Kyoto. EU Directive 2004/08/EC [1] demands an HPC concept orientated around effective heat output needs, and mini-HPC systems offer great potential in this respect. The prime aim is that of enhancing energy efficiency and improving assuredness of supply. Germany, with eighteen million households connected to the natural gas supply, possesses good pre-conditions for increase of energy efficiency via the use mini-HPC systems, and various appliances in the low output range (up to 18 kW{sub el}) are already available on the market. Lacking up to now have, however, been HPC systems which are primarily suitable for use with a low energy consumption throughout the year in detached houses. Developments are at present being pursued with great urgency precisely in this segment of the market, however. A range of different concepts are being followed for the achievement of the so-called ''power-generating heating system''. Diverse concepts employing both gasoline and Stirling engines, steam-expansion engines and fuel cells are under development. (orig.)

  15. CFD Analysis of the Oscillating Flow within a Stirling Engine with an Additively Manufactured Foil Type Regenerator

    Science.gov (United States)

    Qiu, Songgang; Solomon, Laura

    2017-11-01

    The simplistic design, fuel independence, and robustness of Stirling convertors makes them the ideal choice for use in solar power and combined heat and power (CHP) applications. A lack of moving parts and the use of novel flexure bearings allows free-piston type Stirling engines to run in excess of ten years without degradation or maintenance. The key component to their overall efficiency is the regenerator. While a foil type regenerator outperforms a sintered random fiber regenerator, limitation in manufacturing and keeping uniform spacing between the foils has limited their overall use. However, with the advent of additive manufacturing, a robust foil type regenerator can be cheaply manufactured without traditional limitations. Currently, a CFD analysis of the oscillating internal flow within the novel design was conducted to evaluate the flow loses within the system. Particularly the pressure drop across the regenerator in comparison to a traditionally used random fiber regenerator. Additionally, the heat transfer and flow over the tubular heater hear was evaluated. The results of the investigation will be used to optimize the operation of the next generation of additively manufactured Stirling convertors. This research was supported by ARPA-E and West Virginia University.

  16. A combined system comprising a biomass gasifier and a Stirling engine. Design and optimisation for continuous operation; Eine Anlagenkombination aus Biomassevergaser und Stirlingmotor. Anlagendesign und Auslegung fuer den Dauerbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Huelscher, Manfred [Qalovis Farmer Automatic Energy GmbH, Laer (Germany)

    2010-07-01

    Conventional wood gasifiers consist of a gasifier, gas filter, and internal combustion engine. The contribution presents a novel system comprising a gasifier, burner, and Stirling engine. To enhance the electric efficiency, the burner is operated with air preheated via reculperation. The Stirling characteristic is known, and the gasification/combustion system can be calculated and designed on the basis of the Stirling data. The dust problem of the Stirling heat exchanger is solved by an automatic filter system, so that low-maintenance long-term operation becomes possible.

  17. Experimental study on a co-axial pulse tube cryocooler driven by a small thermoacoustic stirling engine

    Science.gov (United States)

    Chen, M.; Ju, L. Y.; Hao, H. X.

    2014-01-01

    Small scale thermoacoustic heat engines have advantages in fields like space exploration and domestic applications considering small space occupation and ease of transport. In the present paper, the influence of resonator diameter on the general performance of a small thermoacoustic Stirling engine was experimentally investigated using helium as the working gas. Reducing the diameter of the resonator appropriately is beneficial for lower onset heating temperature, lower frequency and higher pressure amplitude. Based on the pressure distribution in the small thermoacoustic engine, an outlet for the acoustic work transmission was made to combine the engine and a miniature co-axial pulse tube cooler. The cooling performance of the whole refrigeration system without any moving part was tested. Experimental results showed that further efforts are required to optimize the engine performance and its match with the co-axial pulse tube cooler in order to obtain better cooling performance, compared with its original operating condition, driven by a traditional electrical linear compressor.

  18. Small-scale CHP Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels- Development, Technology and Operating Experiences

    DEFF Research Database (Denmark)

    Obernberger, I.; Carlsen, Henrik; Biedermann, F.

    2003-01-01

    ) process and the Stirling engine process. The ORC process represents an economically interesting technology for small-scale biomass-fired combined heat and power plants in a power range between 400 and 1,500 kWel. A newly developed ORC technology with a nominal electric capacity of 1,000 kW was implemented...... in the biomass CHP plant Lienz (A) in the framework of an EU demonstration project. This plant was put in operation in February 2002. Stirling engines are a promising solution for installations with nominal electric capacities between 10 and 150 kW. A biomass CHP pilot plant based on a 35 kWel-Stirling engine...

  19. Development and experimental testing of a hybrid Stirling engine-adsorption chiller auxiliary power unit for heavy trucks

    International Nuclear Information System (INIS)

    Flannery, Barry; Lattin, Robert; Finckh, Oliver; Berresheim, Harald; Monaghan, Rory F.D.

    2017-01-01

    Highlights: • Free-piston Stirling engine for truck APU. • Waste heat driven adsorption chiller for cab air conditioning. • Reduced-order model comparing proposed system to existing technology. • Experimental test data from prototype test rig. - Abstract: This paper identifies the key technical requirements for a heavy truck auxiliary power unit (APU) and explores a potential alternative technology for use in a next-generation APU which could eliminate key problems related to emissions, noise and maintenance experienced today by conventional diesel engine-vapour compression APUs. The potential performance of a novel hybrid Stirling engine-adsorption chiller concept is investigated and benchmarked against the incumbent technology using a reduced-order model based on experimental data. Experimental results from a Stirling-adsorption system (SAS) prototype test rig are also presented which highlight system integration dynamics and overall performance. The adsorption chiller achieved an average COP of 0.42 ± 0.06 and 2.3 ± 0.1 kW_t of cooling capacity at the baseline test condition. The prototype SAS test rig demonstrates that there appear to be no major technology barriers remaining that would prevent adoption of the SAS concept in a next-generation APU. Such a system could offer a reduction of exhaust emissions, greenhouse gases (GHG), ozone-depleting substances, noise, low maintenance and the potential for fuel flexibility and higher reliability. Preliminary modelling results indicate that the proposed system could offer superior overall electrical and cooling efficiencies compared to incumbent APUs and demonstrate a payback period of 4.6 years.

  20. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Science.gov (United States)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  1. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Directory of Open Access Journals (Sweden)

    Jeong-Man Kim

    2017-05-01

    Full Text Available This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE systems. In order to implement the design of linear oscillatory generator (LOG for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  2. Energy-state formulation of lumped volume dynamic equations with application to a simplified free piston Stirling engine

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1979-01-01

    Lumped volume dynamic equations are derived using an energy-state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is also formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free-piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.

  3. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  4. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-11-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  5. Exergy assessment and optimization of a cogeneration system based on a solid oxide fuel cell integrated with a Stirling engine

    International Nuclear Information System (INIS)

    Hosseinpour, Javad; Sadeghi, Mohsen; Chitsaz, Ata; Ranjbar, Faramarz; Rosen, Marc A.

    2017-01-01

    Highlights: • A novel cogeneration system driven by a SOFC and Stirling engine is proposed. • Energy and exergy assessments are reported of a novel cogeneration system. • The energy efficiency of the combined system can be achieved 75.88%. • The highest exergy destruction occurs in the air heat exchanger. - Abstract: A cogeneration system based on a methane-fed solid oxide fuel cell (SOFC) integrated with a Stirling engine is analyzed from the viewpoints of energy and exergy. The effects on the system performance are investigated of varying four key system parameters: current density, SOFC inlet temperature, compression ratio and regenerator effectiveness. The energy efficiency of the combined system is found to be 76.32% which is about 24.61% more than that of a stand-alone SOFC plant under the same conditions. Considering exergy efficiency as the only objective function, it is found that, as the SOFC inlet temperature increases, the exergy efficiency of the cogeneration system rises to an optimal value of 56.44% and then decreases. The second law analysis also shows that the air heat exchanger has the greatest exergy destruction rate of all system components. The cooling water of the engine also can supply the heating needs for a small home.

  6. Trade-Off Study for an STC 70 W Stirling Engine

    Science.gov (United States)

    Qiu, Songgang; Peterson, Allen A.; Augenblick, Jack E.

    2005-02-01

    A high-efficiency, low-weight free-piston Stirling generator, RG-70L, has been conceptually designed. This paper reports the detailed trade-off study of newly designed RG-70L. The trades of operating frequency and piston/displacer strokes on Stirling convertor mass and efficiency are discussed. This paper shows how the operating frequency and strokes were optimized based on the trades. Losses associated with increased frequency were fully investigated and the results are discussed in the paper. Various optional linear alternator configurations are also presented and the estimated masses are reported.

  7. Overall performance of the duplex Stirling refrigerator

    International Nuclear Information System (INIS)

    Erbay, L. Berrin; Ozturk, M. Mete; Doğan, Bahadır

    2017-01-01

    Highlights: • Overall performance coefficient of duplex Stirling refrigerator was investigated. • A definite region for the coefficient of performance of the refrigerator in duplex Stirling is identified. • A definite region for the thermal efficiency of the heat engine in duplex Stirling is identified. • Benchmark values and design bounds of the duplex Stirling refrigerator were obtained. - Abstract: The duplex Stirling refrigerator is an integrated refrigerator consists of Stirling cycle engine and Stirling cycle refrigerator used for cooling. The equality of the work generation of the heat engine to the work consumption of the refrigerator is the primary constraint of the duplex Stirling. The duplex Stirling refrigerator is investigated thermodynamically by considering the effects of constructional and operational parameters which are namely the temperature ratios for heat engine and refrigerator, and the compression ratios for both sides. The primary concern is given to the parametric effects on the overall coefficient of performance of the duplex Stirling refrigerator. The given diagrams provide a design bounds and benchmark results that allows seeing the big picture about the cooling load and heat input relation. Moreover they ease to determine the corresponding work rate to the target cooling load. As regard to the obtained results, a definite region for coefficient of performance of the refrigerator and a definite region for the thermal efficiency of the heat engine of the duplex Stirling are identified.

  8. Experimental and Computational Analysis of Unidirectional Flow Through Stirling Engine Heater Head

    Science.gov (United States)

    Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Demko, Rikako

    2006-01-01

    A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long-duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multi-dimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. In the absence of transient pressure drop data for the zero mean oscillating multi-dimensional flows present in the Technology Demonstration Convertors on test at NASA Glenn Research Center, unidirectional flow pressure drop test data is used to compare against 2D and 3D computational solutions. This study focuses on tracking pressure drop and mass flow rate data for unidirectional flow though a Stirling heater head using a commercial CFD code (CFD-ACE). The commercial CFD code uses a porous-media model which is dependent on permeability and the inertial coefficient present in the linear and nonlinear terms of the Darcy-Forchheimer equation. Permeability and inertial coefficient were calculated from unidirectional flow test data. CFD simulations of the unidirectional flow test were validated using the porous-media model input parameters which increased simulation accuracy by 14 percent on average.

  9. Proceedings of the 27th intersociety energy conversion engineering conference

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book contains the proceedings of the 27th Intersociety Energy Conversion Engineering Conference. Topics included: Stirling Cycle Analysis; Stirling Cycle Models; Stirling Refrigerators/Heat Pumps and Cryocoolers; Domestic Policy; Efficiency/Conservation; Stirling Solar Terrestrial; Stirling Component Technology; Environmental Impacts; Renewable Resource Systems; Stirling Power Generation; Stirling Heat Transport System Technology; and Stirling Cycle Loss Understanding

  10. Creep-rupture behavior of candidate Stirling engine iron supperalloys in high-pressure hydrogen. Volume 2: Hydrogen creep-rupture behavior

    Science.gov (United States)

    Bhattacharyya, S.; Peterman, W.; Hales, C.

    1984-01-01

    The creep rupture behavior of nine iron base and one cobalt base candidate Stirling engine alloys is evaluated. Rupture life, minimum creep rate, and time to 1% strain data are analyzed. The 3500 h rupture life stress and stress to obtain 1% strain in 3500 h are also estimated.

  11. A computer simulation of the transient response of a 4 cylinder Stirling engine with burner and air preheater in a vehicle

    Science.gov (United States)

    Martini, W. R.

    1981-01-01

    A series of computer programs are presented with full documentation which simulate the transient behavior of a modern 4 cylinder Siemens arrangement Stirling engine with burner and air preheater. Cold start, cranking, idling, acceleration through 3 gear changes and steady speed operation are simulated. Sample results and complete operating instructions are given. A full source code listing of all programs are included.

  12. Validation of published Stirling engine design methods using engine characteristics from the literature

    Science.gov (United States)

    Martini, W. R.

    1980-01-01

    Four fully disclosed reference engines and five design methods are discussed. So far, the agreement between theory and experiment is about as good for the simpler calculation methods as it is for the more complicated methods, that is, within 20%. For the simpler methods, a one number adjustable constant can be used to reduce the error in predicting power output and efficiency over the entire operating map to less than 10%.

  13. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    Science.gov (United States)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-01-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  14. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    Science.gov (United States)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-05-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  15. Development and validation of a thermodynamic model for the performance analysis of a gamma Stirling engine prototype

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Cardozo, Evelyn; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2015-01-01

    This work presents the development and validation of a numerical model that represents the performance of a gamma Stirling engine prototype. The model follows a modular approach considering ideal adiabatic working spaces; limited internal and external heat transfer through the heat exchangers; and mechanical and thermal losses during the cycle. In addition, it includes the calculation of the mechanical efficiency taking into account the crank mechanism effectiveness and the forced work during the cycle. Consequently, the model aims to predict the work that can be effectively taken from the shaft. The model was compared with experimental data obtained in an experimental rig built for the engine prototype. The results showed an acceptable degree of accuracy when comparing with the experimental data, with errors ranging from ±1% to ±8% for the temperature in the heater side, less than ±1% error for the cooler temperatures, and ±1 to ±8% for the brake power calculations. Therefore, the model was probed adequate for study of the prototype performance. In addition, the results of the simulation reflected the limited performance obtained during the prototype experiments, and a first analysis of the results attributed this to the forced work during the cycle. The implemented model is the basis for a subsequent parametric analysis that will complement the results presented. - Highlights: • A numerical model for a Stirling engine was developed. • A mechanical efficiency analysis was included in the model. • The model was validated with experimental data of a novel prototype. • The model results permit a deeper insight into the engine operation

  16. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    Science.gov (United States)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  17. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware

    Science.gov (United States)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.

    2014-01-01

    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  18. Stirling co-generation plants - Is this the future?; Stirling-BHKWs - Zukunft oder...?

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, M.

    2000-07-01

    This article gives an overview of the history and main features of Stirling engines and their use in combined-cycle power generation. The principles behind the Stirling and its thermo-dynamic characteristics are discussed and compared with the internal combustion engine and other thermally-driven machines. The two main types of Stirling - the free-piston and the kinematic Stirling engines are discussed. Also, the important role played by the burner in the operation of Stirling engines is discussed. The use of Stirling engines as a basis for small combined heat and power (CHP) units to produce thermal heating power and electricity is examined. Three examples - the implementations made by the Solo, Whispergen and SIG companies - are looked at in detail and compared with alternative CHP-solutions using small gas engines and fuel cells. The advantages and disadvantages of these different solutions are listed.

  19. A novel single-phase flux-switching permanent magnet linear generator used for free-piston Stirling engine

    Science.gov (United States)

    Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei

    2014-05-01

    This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.

  20. Dynamic analysis of Free-Piston Stirling Engine/Linear Alternator-load system-experimentally validated

    Science.gov (United States)

    Kankam, M. David; Rauch, Jeffrey S.; Santiago, Walter

    1992-01-01

    This paper discusses the effects of variations in system parameters on the dynamic behavior of the Free-Piston Stirling Engine/Linear Alternator (FPSE/LA)-load system. The mathematical formulations incorporate both the mechanical and thermodynamic properties of the FPSE, as well as the electrical equations of the connected load. A state-space technique in the frequency domain is applied to the resulting system of equations to facilitate the evaluation of parametric impacts on the system dynamic stability. Also included is a discussion on the system transient stability as affected by sudden changes in some key operating conditions. Some representative results are correlated with experimental data to verify the model and analytic formulation accuracies. Guidelines are given for ranges of the system parameters which will ensure an overall stable operation.

  1. Simulation of a photo-solar generator for an optimal output by a parabolic photovoltaic concentrator of Stirling engine type

    Science.gov (United States)

    Kaddour, A.; Benyoucef, B.

    Solar energy is the source of the most promising energy and the powerful one among renewable energies. Photovoltaic electricity (statement) is obtained by direct transformation of the sunlight into electricity, by means of cells statement. Then, we study the operation of cells statement by the digital simulation with an aim of optimizing the output of the parabolic concentrator of Stirling engine type. The Greenius software makes it possible to carry out the digital simulation in 2D and 3D and to study the influence of the various parameters on the characteristic voltage under illumination of the cell. The results obtained enabled us to determine the extrinsic factors which depend on the environment and the intrinsic factors which result from the properties of materials used.

  2. Effects of Novel Fin Shape of High Temperature Heat Exchanger on 1 kW Class Stirling Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joon; Kim, Seok Yeon [Kookmin Univ., Seoul (Korea, Republic of)

    2017-08-15

    In this research, numerical analysis was carried out on novel and existing fins, adjusted in terms of factors such as length, spacing, and angle, of a high-temperature heat exchanger for a 1 kW class Stirling engine, designed as a prime mover for a domestic cogeneration system. The performance improvement as a result of shape optimization was confirmed with numerical analysis by including the air preheater, which was not considered during optimization. However, a negative heat flux was observed in the cylinder head portion. This phenomenon was clarified by analyzing the exhaust gas and wall surface temperature of the combustion chamber. Furthermore, assuming an ideal cycle, the effects of heat transfer enhancement on the thermodynamic cycle and system performance were predicted.

  3. Operating Experiences with a Small-scale CHP Pilot Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels

    DEFF Research Database (Denmark)

    Biedermann, F.; Carlsen, Henrik; Schoech, M.

    2003-01-01

    Within the scope of the RD&D project presented a small-scale CHP plant with a hermetic four cylinder Stirling engine for biomass fuels was developed and optimised in cooperation with the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GesmbH, an Austrian biomass furnace and boiler...... exchanger of the Stirling engine, of the air preheater and of the entire combustion system. Furthermore, the optimisation of the pneumatic cleaning system to reduce ash deposition in the hot heat exchanger is of great relevance....... manufacturer, and BIOS BIOENERGIESYSTEME GmbH, an Austrian development and engineering company. Based on the technology developed, a pilot plant was designed and erected in Austria. The nominal electric power output of the plant is 35 kWel and the nominal thermal output amounts to approx. 220 kWth. The plant...

  4. Stratified charge rotary engine combustion studies

    Science.gov (United States)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-07-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  5. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    NASA has a consistent need for radioisotope power systems (RPS) to enable robotic scientific missions for planetary exploration that has been present for over four decades and will continue into the foreseeable future, as documented in the most recent Planetary Science Decadal Study Report. As RPS have evolved throughout the years, there has also grown a desire for more efficient power systems, allowing NASA to serve as good stewards of the limited plutonium-238 (238Pu), while also supporting the ever-present need to minimize mass and potential impacts to the desired science measurements. In fact, the recent Nuclear Power Assessment Study (NPAS) released in April 2015 resulted in several key conclusion regarding RPS, including affirmation that RPS will be necessary well into the 2030s (at least) and that 238Pu is indeed a precious resource requiring efficient utilization and preservation. Stirling Radioisotope Generators (SRGs) combine a Stirling cycle engine powered by a radioisotope heater unit into a single generator system. Stirling engine technology has been under development at NASA Glenn Research Center (GRC) in partnership with the Department of Energy (DOE) since the 1970's. The most recent design, the 238Pu-fueled Advanced Stirling Radioisotope Generator (ASRG), was offered as part of the NASA Discovery 2010 Announcement of Opportunity (AO). The Step-2 selections for this AO included two ASRG-enabled concepts, the Titan Mare Explorer (TiME) and the Comet Hopper (CHopper), although the only non-nuclear concept, InSight, was ultimately chosen. The DOE's ASRG contract was terminated in 2013. Given that SRGs utilize significantly less 238Pu than traditional Radioisotope Thermoelectric Generators (RTGs) - approximately one quarter of the nuclear fuel, to produce similar electrical power output - they provide a technology worthy of consideration for meeting the aforementioned NASA objectives. NASA's RPS Program Office has recently investigated a new Stirling to

  6. Continuing Development for Free-Piston Stirling Space Power Systems

    Science.gov (United States)

    Peterson, Allen A.; Qiu, Songgang; Redinger, Darin L.; Augenblick, John E.; Petersen, Stephen L.

    2004-02-01

    Long-life radioisotope power generators based on free-piston Stirling engines are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been developing free-piston Stirling machines for over 30 years, and its family of Stirling generators is ideally suited for reliable, maintenance-free operation. This paper describes recent progress and status of the STC RemoteGen™ 55 W-class Stirling generator (RG-55), presents an overview of recent testing, and discusses how the technology demonstration design has evolved toward space-qualified hardware.

  7. A simple free-piston Sterling engine for combined heat and power generation (CHP) in the residential sector; Einfacher Stirling-Freikolben-Motor fuer die Kraft-Waerme-Kopplung (KWK) im Wohnbereich

    Energy Technology Data Exchange (ETDEWEB)

    Budliger, J.P.

    2001-07-01

    A completely static resonance tube is used in the Stirling cycle, as a substitute for a displacer piston. The Sterling system described works with only one, elastically suspended piston. The simple, cost-effective and maintenance-free basic design concept is explained in full detail, as well as some possible design types of resonance tube-charged, one-piston Stirling systems and their major advantages and performance characterisitcs. (orig./CB) [German] Anstelle eines Schwingkolbens kann auch ein voellig statisches Resonanzrohr eingesetzt werden: das resultierende Stirling-System umfasst nur noch einen einzigen, elastisch aufgehaengten Kolben. Dieses einfache, kostenguenstige und unterhaltsfreie Konzept stellt eine erwartungsvolle Loesung fuer dezentrale KWK-Anlagen dar. Im Vortrag werden einige moegliche Auslegungen solcher, mit Resonanzrohren aufgeladenen 1-Kolben-Stirling-Aggregate diskutiert, ihre wesentlichsten Eigenschaften und Leistungscharakteristiken beschrieben. (orig./CB)

  8. Development of a hot heat exchanger and a cleaning system for a 35 kW hermetic four cylinder Stirling engine for solid biomass fuels

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Marinitsch, Gerald; Schöch, Martin

    2005-01-01

    been operated for more than 9,000 hours. Operating experiences gained from these plants formed the basis for the further development of this technology. The experiences showed that the efficiency of the Stirling hot gas heat exchanger and of the hot gas heat exchanger cleaning system have to be further...... optimised. Within the scope of a RD&D project, a new hot gas heat exchanger and a new cleaning system have been developed and optimised in cooperation of the AUSTRIAN BIOENERGY CENTRE GmbH, the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GmbH, Austria, and BIOS BIOENERGIESYSTEME Gmb......H, Austria. The new design of the Stirling hot gas heat exchanger has been developed in order to optimise the performance of the engine and simplify the geometry. In this respect, an equal distribution of the heat transfer across each tube in the hot gas heat exchanger, the reduction of the internal Helium...

  9. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    Science.gov (United States)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  10. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6Al-4V components of a Stirling engine space power system

    Science.gov (United States)

    Sliney, Harold E.; Lukaszewicz, Victor; Dellacorte, Christopher

    1994-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6Al-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is the possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'back-up', self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212-coated Ti6-4, and PS212-coated Ti6-4/PM212.

  11. Numerical investigation on nonlinear effect and vortex formation of oscillatory flow throughout a short tube in a thermoacoustic Stirling engine

    Science.gov (United States)

    Yang, Peng; Chen, Hui; Liu, Yingwen

    2017-06-01

    In this paper, a two-dimensional axisymmetric model of a thermoacoustic Stirling engine with a short tube where the cross section narrows has been developed. The transient streamlines and vortex formation through short tubes with different diameters in oscillatory flow have been investigated visually by computational fluid dynamics. Three dimensionless parameters, Reynolds number (Re), Keulegan-Carpenter number (KC), and Womersley number (Wo), are used to describe the flow regime and vortex characteristic throughout the short tube. High Re and Wo numbers indicate that the oscillatory flow develops into the turbulent flow through the short tube. The KC number has a direct effect on the transition of streamlines and the development of the vortex. For a small cross section where KC ≈ 1, streamlines rotate and the vortex forms at both sides of the short tube. The vortex stays in the main flow region, and intensity varies as streamlines are convected downstream. The velocity along the radius presents a Poiseuille profile within the influence of the vortex. For a large cross section where KC < 1, streamlines pass the short tube with little rotation and the vortex disappears in the main flow region and confines near the short tube. The velocity profile tends to be flat. The nonlinear effects including instantaneous pressure drop and power dissipation throughout the short tube are also discussed. It shows that the time averaged pressure drop is generated at the cost of power dissipation. Finally, the "effectiveness" is applied to evaluate the performance of the short tube. The results suggest that increasing the diameter of the short tube is in favor of reducing power dissipation, which is beneficial to improve "effectiveness."

  12. Design and development of Stirling Engines for stationary power generation applications in the 500 to 3000 hp range. Subtask 1A report: state-of-the-art conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    The first portion of the Conceptual Design Study of Stirling Engines for Stationary Power Application in the 500 to 3000 hp range which was aimed at state-of-the-art stationary Stirling engines for a 1985 hardware demonstration is summarized. The main goals of this effort were to obtain reliable cost data for a stationary Stirling engine capable of meeting future needs for total energy/cogeneration sysems and to establish a pragmatic and conservative base design for a first generation hardware. Starting with an extensive screening effort, 4 engine types, i.e., V-type crank engine, radial engine, swashplate engine, and rhombic drive engine, and 3 heat transport systems, i.e., heat pipe, pressurized gas heat transport loop, and direct gas fired system, were selected. After a preliminary layout cycle, the rhombic drive engine was eliminated due to intolerable maintenance difficulties on the push rod seals. V, radial and swashplate engines were taken through a detailed design/layout cycle, to establish all important design features and reliable engine weights. After comparing engine layouts and analyzing qualitative and quantitative evaluation criteria, the V-crank engine was chosen as the candidate for a 1985 hardware demonstration.

  13. Basic treatment of onset conditions and transient effects in thermoacoustic Stirling engines

    NARCIS (Netherlands)

    Waele, de A.T.A.M.

    2009-01-01

    This paper treats the basics of thermoacoustic engines. The set of differential equations, which describes the dynamics of the individual components, is condensed in a single high-order differential equation which determines the time dependence of all dynamic variables. From this relation analytical

  14. Advanced Stirling Radioisotope Generator Life Certification Plan

    Science.gov (United States)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  15. High-power stirling-type pulse tube cooler for power engineering applications of high temperature superconductivity; Hochleistungspulsrohrkuehler vom Stirling-Typ fuer energietechnische Anwendungen der Hochtemperatursupraleitung

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Marc

    2015-12-15

    For the cooling of high temperature superconducting 4 MVA machines (motors or generators), a single-stage Stirling-type pulse-tube cryocooler was built. The cooling power, which the cryocooler was aimed for, is 80 - 100 W at 30 K with an electrical input power of 10 kW (8 kW pV-power). The advantages of this cooler type compared to traditional cooling concepts are an increased reliability and long maintenance intervals. While single-stage Stirling-type pulse-tube cryocoolers for the temperature range of liquid nitrogen (77 K) are already commercially available, there exist currently no commercial systems for the temperature range near 30 K, which is the important range for applications of high-temperature superconductivity. The experimental setup consisted of a 10 kW linear compressor, type 2S297W, from CFIC Inc. which was used as the pressure wave generator. The compressor was operated by a Micromaster 440 frequency inverter from Siemens, which was controlled by a custom-made computer program. The cold head was made in inline configuration, in order to avoid deflection losses. During the first cool-downs tests a temperature inhomogeneity occurred in the regenerator at low temperature and high pV-power, which was attributed to a constant mass flow (circular dc-flow) within the regenerator. This firstly observed dc-flow, generates a net energy flow from the hot end to the cold end of the regenerator, which reduces the cooling capacity considerably and hence the minimum attainable temperature is severely increased. For the design and optimization of the cold-head, a cryocooler model was initially created using the commercial simulation software Sage, which did not include the regenerator inhomogeneity seen in the experiment. For the modeling of the observed streaming inhomogeneity caused by the dc-flow, the regenerator was replaced by two identical parallel regenerators with variable transverse thermal coupling. In the inhomogeneous case (without dc-flow) the

  16. Design of a transverse-flux permanent-magnet linear generator and controller for use with a free-piston stirling engine

    Science.gov (United States)

    Zheng, Jigui; Huang, Yuping; Wu, Hongxing; Zheng, Ping

    2016-07-01

    Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.

  17. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  18. Feasibility Demonstration of a Multi-Cylinder Stirling Convertor with a Duplex Linear Alternator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Stirling Technology Company (STC) proposes to integrate an existing Multi-Cylinder Free-Piston Stirling Engine (MPFPSE) with innovative compact linear alternators....

  19. Idealization of The Real Stirling Cycle

    Directory of Open Access Journals (Sweden)

    Červenka Libor

    2016-12-01

    Full Text Available The paper presents a potential idealization of the real Stirling cycle. This idealization is performed by modifying the piston movement corresponding to the ideal Stirling cycle. The focus is on the cycle thermodynamics with respect to the indicated efficiency and indicated power. A detailed 1-D simulation model of a Stirling engine is used as a tool for this assessment. The model includes real non-zero volumes of heater, regenerator, cooler and connecting pipe. The model is created in the GT Power commercial simulation software.

  20. Parametric Study of an Air Charged Franchot Engine with Novel Hot and Cold Isothermalizers

    Directory of Open Access Journals (Sweden)

    Jafar M. Daoud

    2017-12-01

    Full Text Available The Stirling engine is an external combustion engine that uses heat exchangers to enhance the addition and removal of energy. This makes the engine power-dense but expensive, less efficient and complicated. In this contribution, the Stirling engine based on the Franchot engine has novel cylindrical fins working as isothermalizers to improve heat transfer without the complications of heat exchangers. Enhancing the power density by isothermalizing work spaces is compared to the bare cylinder optimized by varying the phase angle. The theoretical analysis shows that both the adiabatic and isothermal fins increase the power and efficiency, achieving the Curzon and Ahlborn efficiency at the maximum power point. In comparison to the phase angle method, the finned engine resulted in much lower gas mass flow rate, which leads to a reduction in the regenerator pumping and enthalpy losses. Thus, the Stirling engine has the potential to be simple, cheap, efficient and power-dense, and thus can be used effectively for different applications.

  1. Stratified charge rotary aircraft engine technology enablement program

    Science.gov (United States)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  2. Numerical thermal analyses of heat exchangers for the stirling engine application

    Science.gov (United States)

    Kannapareddy, Mohan Raj

    1995-01-01

    The Regenerator, Cooler and Heater for the NASA Space Power Research Engine (SPRE) have been analyzed in detail for laminar, incompressible and oscillatory flow conditions. Each component has been analyzed independently and in detail with the regenerator being modeled as two-parallel-plates channel with a solid wall. The ends of the channel are exposed to two reservoir maintained at different temperature thus providing an axial temperature gradient along the channel. The cooler and heater components have been modeled as circular pipes with isothermal walls. Two different types of thermal boundary conditions have been investigated for the cooler and heater, namely, symmetric and asymmetric temperature inflow. In symmetric temperature inflow the flow enters the channel with the same temperature in throughout the velocity cycle whereas, in asymmetric temperature inflow the flow enters with a different temperature in each half cycle. The study was conducted over a wide range of Maximum Reynolds number (RE(max) varying from 75 to 60000, Valensi number (Va) from 2.5 to 800, and relative amplitude of fluid displacement (A(sub r) from 0.357 to 1.34. A two dimensional Finite volume method based on the SIMPLE algorithm was used to solve the governing partial differential equations. Post processing programs were developed to effectively describe the heat transfer mechanism under oscillatory flows. The computer code was validated by comparing with existing analytical solutions for oscillating flows. The thermal field have been studied with the help of temperature contour and three dimensional plots. The instantaneous friction factor, wall heat flux and heat transfer coefficient have been examined. It has been concluded that in general, the frictional factor and heat transfer coefficient are higher under oscillatory flow conditions when the Valensi number is high. Also, the thermal efficiency decreases for lower A(r) values. Further, the usual steady state definition for the

  3. Alternative thermodynamic cycle for the Stirling machine

    Science.gov (United States)

    Romanelli, Alejandro

    2017-12-01

    We develop an alternative thermodynamic cycle for the Stirling machine, where the polytropic process plays a central role. Analytical expressions for pressure and temperatures of the working gas are obtained as a function of the volume and the parameter that characterizes the polytropic process. This approach achieves closer agreement with the experimental pressure-volume diagram and can be adapted to any type of Stirling engine.

  4. Study on biogas premixed charge diesel dual fuelled engine

    International Nuclear Information System (INIS)

    Duc, Phan Minh; Wattanavichien, Kanit

    2007-01-01

    This paper presents an experimental investigation of a small IDI biogas premixed charge diesel dual fuelled CI engine used in agricultural applications. Engine performance, diesel fuel substitution, energy consumption and long term use have been concerned. The attained results show that biogas-diesel dual fuelling of this engine revealed almost no deterioration in engine performance but lower energy conversion efficiency which was offset by the reduced fuel cost of biogas over diesel. The long term use of this engine with biogas-diesel dual fuelling is feasible with some considerations

  5. Analysis and design of a dish/Stirling system for solar electric generation with a 2.7 kW air-cooled engine; Analisis y diseno de un sistema de generacion electrica termosolar con concentrador de disco parabolico y motor Stirling de 2.7 kW enfriado por aire

    Energy Technology Data Exchange (ETDEWEB)

    Beltran-Chacon, R.; Velazquez-Limon, N. [Universidad Autonoma de Baja California, Baja California (Mexico)]. E-mails: rbeltran1@uabc.edu.mx; nicolas.velazquez@uabc.edu.mx; Sauceda-Carvajal, D. [Universidad Politecnica de Baja California, Baja California (Mexico)]. E-mail: dsaucedac@upbc.edu.mx

    2012-01-15

    This paper presents a mathematical modeling, simulation and design of a solar power system of a parabolic dish with an air-cooled Stirling engine of 2.7 kW. The model used for the solar concentrator, the cavity and the Stirling engine were successfully validated against experimental data. Based on a parametric study, the design of the components of the engine is carried out. The study shows that as system capacity increases, the overall efficiency is limited by the power required by the fan, since the design of the cooler needs greater amounts of heat removal by increasing the air flow without affecting the internal conditions of the process (mass flow of working gas and internal dimensions of the same). The system was optimized and achieves an overall efficiency of solar to electric energy conversion of 26.7%. This study shows that the use of an air-cooled Stirling engine is potentially attractive for power generation at low capacities. [Spanish] Este trabajo presenta un modelado matematico, la simulacion y diseno de un sistema de generacion electrica termosolar de disco parabolico con motor Stirling de 2.7 kW enfriado directamente por aire. El modelo utilizado para el concentrador, la cavidad y el motor Stirling, fueron validados satisfactoriamente con datos experimentales. Con base en un estudio parametrico se realizo el dimensionamiento de los componentes del motor. El estudio realizado muestra que conforme se incrementa la capacidad del sistema, la eficiencia global se ve limitada por la potencia requerida por el ventilador, dado que el diseno del enfriador necesita retirar mayores cantidades de calor aumentando el flujo de aire, sin afectar las condiciones internas del proceso (flujo masico del gas de trabajo y dimensiones internas del mismo). El sistema fue optimizado obteniendo una eficiencia global de conversion de energia solar a electrica de 26.7%. Este estudio muestra que el uso de un motor Stirling enfriado directamente por aire es potencialmente

  6. Advanced stratified charge rotary aircraft engine design study

    Science.gov (United States)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  7. Investigation of a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free-piston stirling engines

    Science.gov (United States)

    Zheng, Ping; Tong, Chengde; Zhao, Jing; Yu, Bin; Li, Lin; Bai, Jingang; Zhang, Lu

    2012-04-01

    This paper investigates a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free piston Stirling engines (FPSEs). Taking the advantages of Halbach array, a 1 kW prototype alternator is designed. Considering the rms value of electromotive force (EMF) and harmonic distortion, the optimal length ratio of the axial- and radial-magnetized permanent magnets and thicknesses of the permanent magnets are optimized by 2D finite element method. The alternator detent force, which is an important factor for smooth operation of FPSEs, is studied by optimizing slot tip and end tooth. The load and thermal performances of the final design are simulated. A prototype alternator was designed, built and tested. Experimental data indicated satisfactory design.

  8. Economic, energy and GHG emissions performance evaluation of a WhisperGen Mk IV Stirling engine μ-CHP unit in a domestic dwelling

    International Nuclear Information System (INIS)

    Conroy, G.; Duffy, A.; Ayompe, L.M.

    2014-01-01

    Highlights: • The performance of a Stirling engine MK IV micro-CHP unit was evaluated in a domestic dwelling in Ireland. • The performance of the micro-CHP was compare to that of a condensing gas boiler. • The micro-CHP unit resulted in an annual cost saving of €180 compared to the condensing gas boiler. • Electricity imported from the grid decreased by 20.8% while CO 2 emissions decreased by 16.1%. • The micro-CHP unit used 2889 kW h of gas more than the condensing gas boiler during one year of operation. - Abstract: This paper presents an assessment of the energy, economic and greenhouse gas emissions performances of a WhisperGen Mk IV Stirling engine μ-CHP unit for use in a conventional house in the Republic of Ireland. The energy performance data used in this study was obtained from a field trial carried out in Belfast, Northern Ireland during the period June 2004–July 2005 by Northern Ireland Electricity and Phoenix Gas working in collaboration with Whispertech UK. A comparative performance analysis between the μ-CHP unit and a condensing gas boiler revealed that the μ-CHP unit resulted in an annual cost saving of €180 with an incremental simple payback period of 13.8 years when compared to a condensing gas boiler. Electricity imported from the grid decreased by 20.8% while CO 2 emissions decreased by 16.1%. The μ-CHP unit used 2889 kW h of gas more than the condensing gas boiler

  9. Qualitative comparison of duplex Stirling and absorption refrigerators in domestic applications

    Energy Technology Data Exchange (ETDEWEB)

    Shao, H. [Global Cooling BV, Zutphen (Netherlands)

    2000-07-01

    A qualitative comparison has been carried out between the duplex Stirling and the absorption refrigerator for domestic applications. The duplex Stirling has many advantages over the absorption refrigerator on efficiency, modulation, suitability, operating costs, pollution reduction. Based on the state of the art of free-piston gas-bearing and linear-motor Stirling engines and coolers, it appears technically and economically feasible to develop the duplex Stirling to compete with the absorption refrigerator for heat-driven domestic refrigeration. (orig.)

  10. Analytical model for Stirling cycle machine design

    Energy Technology Data Exchange (ETDEWEB)

    Formosa, F. [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France); Despesse, G. [Laboratoire Capteurs Actionneurs et Recuperation d' Energie, CEA-LETI-MINATEC, Grenoble (France)

    2010-10-15

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined. (author)

  11. The Design, Construction, and Experimental Evaluation of a Compact Thermoacoustic-Stirling Engine Generator for Use in a micro-CHP Appliance

    Science.gov (United States)

    Wilcox, Douglas A., Jr.

    Micro combined heat and power or micro-CHP is the simultaneous generation of useful heat and electricity on a residential scale. The heat and electricity are produced at the point of use, avoiding the distribution losses associated with a centralized power plant. These appliances combine a conventional gas-fired condensing boiler with an electric power module capable of generating electricity from the heat of combustion. Currently, the leading power modules for micro-CHP appliances are free-piston Stirling engines (FPSEs) which can generate 1050 watts of electricity at a thermal-to-electric efficiency of 26%.[1] These external combustion engines have been under development for the last 25 years, with FPSE micro-CHP appliances only recently being introduced to the commercial market. Publications by developers assert unlimited service life and high efficiency, with low noise and emissions; but despite these claims, the actual reliability and cost of manufacturing has prevented their successful mass-market adoption. A Thermoacoustic-Stirling Engine Generator or TaSEG is one possible alternative to FPSE's. A TaSEG uses a thermoacoustic engine, or acoustic heat engine, which can efficiently convert high temperature heat into acoustic power while maintaining a simple design with fewer moving parts than traditional FPSE's. This simpler engine is coupled to an electrodynamic alternator capable of converting acoustic power into electricity. This thesis outlines the design, construction, and experimental evaluation of a TaSEG which is appropriate for integration with a gas burner inside of a residential micro- CHP appliance. The design methodology is discussed, focusing on how changes in the geometry affected the predicted performance. Details of its construction are given and the performance of the TaSEG is then outlined. The TaSEG can deliver 132 watts of electrical output power to an electric load with an overall measured thermal-to-electric (first law) efficiency of eta

  12. Free piston space Stirling technology program

    Science.gov (United States)

    Dochat, G. R.; Dhar, M.

    1989-01-01

    MTI recently completed an initial technology feasibility program for NASA by designing, fabricating and testing a space power demonstrator engine (SPDE). This program, which confirms the potential of free-piston Stirling engines, provided the major impetus to initiate a free-piston Stirling space engine (SSE) technology program. The accomplishments of the SPDE program are reviewed, and an overview of the SSE technology program and technical status to date is provided. It is shown that progress in both programs continues to justify its potential for either nuclear or solar space power missions.

  13. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  14. Dynamic control of a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  15. Dual Spark Plugs For Stratified-Charge Rotary Engine

    Science.gov (United States)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  16. Development of a natural gas stratified charge rotary engine

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, R.; Verdonck, W.

    1985-01-01

    A water model has been used to determine the positions of separate inlet ports for a natural gas, stratified charge rotary engine. The flow inside the combustion chamber (mainly during the induction period) has been registered by a film camera. From these tests the best locations of the inlet ports have been obtained, a prototype of this engine has been built by Audi NSU and tested in the laboratories of the university of Gent. The results of these tests, for different stratification configurations, are given. These results are comparable with the best results obtained by Audi NSU for a homogeneous natural gas rotary engine.

  17. One- and two-dimensional Stirling machine simulation using experimentally generated reversing flow turbuulence models

    International Nuclear Information System (INIS)

    Goldberg, L.F.

    1990-08-01

    The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year's funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge

  18. Proposed improvements to a model for characterizing the electrical and thermal energy performance of stirling engine micro-cogeneration devices based upon experimental observations

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, K. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ont. (Canada); Ugursal, V.I. [Dalhousie University, Halifax, NS (Canada); Beausoleil-Morrison, I. [Carleton University, 1125 Colonel By Drive, Ottawa, Ont. (Canada)

    2010-10-15

    Stirling engines (SE) are a market-ready technology suitable for residential cogeneration of heat and electricity to alleviate the increasing demand on central power grids. Advantages of this external combustion engine include high cogeneration efficiency, fuel flexibility, low noise and vibration, and low emissions. To explore and assess the feasibility of using SE based cogeneration systems in the residential sector, there is a need for an accurate and practical simulation model that can be used to conduct sensitivity and what-if analyses. A simulation model for SE based residential scale micro-cogeneration systems was recently developed; however the model is impractical due to its functional form and data requirements. Furthermore, the available experimental data lack adequate diversity to assess the model's suitability. In this paper, first the existing model is briefly presented, followed by a review of the design and implementation of a series of experiments conducted to study the performance and behaviour of the SE system and to develop extensive, and hitherto unavailable, operational data. The empirical observations are contrasted with the functional form of the existing simulation model, and improvements to the structure of the model are proposed based upon these observations. (author)

  19. Dish/Stirling for Department of Defense applications final report

    Energy Technology Data Exchange (ETDEWEB)

    Diver, R.B.; Menicucci, D.F. [Sandia National Labs., Albuquerque, NM (United States). Energy and Environment Div.

    1997-03-01

    This report describes a Strategic Environmental Research and Development Program (SERDP) project to field a dish/Stirling system at a southwestern US military facility. This project entitled ``Dish/Stirling for DoD Applications`` was started in August 1993 and was completed in September 1996. The project`s objective was to assist military facilities to field and evaluate emerging environmentally sound and potentially economical dish/Stirling technology. Dish/Stirling technology has the potential to produce electricity at competitive costs while at the same time providing a secure and environmentally benign source of power. In accordance with the SERDP charter, this project leveraged a US Department of Energy (DOE) cost-shared project between Sandia National Laboratories and Cummins Power Generation, Inc. (CPG). CPG is a wholly owned subsidiary of Cummins Engine Company, a leading manufacturer of diesel engines. To accomplish this objective, the project called for the installation of a dish/Stirling system at a military facility to establish first-hand experience in the operation of a dish/Stirling system. To scope the potential DoD market for dish/Stirling technology and to identify the site for the demonstration, a survey of southwestern US military facilities was also conducted. This report describes the project history, the Cummins dish/Stirling system, results from the military market survey, and the field test results.

  20. Analytical Solutions and Optimization of the Exo-Irreversible Schmidt Cycle with Imperfect Regeneration for the 3 Classical Types of Stirling Engine Solutions analytiques et optimisation du cycle de Schmidt irréversible à régénération imparfaite appliquées aux 3 types classiques de moteur Stirling

    Directory of Open Access Journals (Sweden)

    Rochelle P.

    2011-11-01

    Full Text Available The “old” Stirling engine is one of the most promising multi-heat source engines for the future. Simple and realistic basic models are useful to aid in optimizing a preliminary engine configuration. In addition to new proper analytical solutions for regeneration that dramatically reduce computing time, this study of the Schmidt-Stirling engine cycle is carried out from an engineer-friendly viewpoint introducing exo-irreversible heat transfers. The reference parameters are the technological or physical constraints: the maximum pressure, the maximum volume, the extreme wall temperatures and the overall thermal conductance, while the adjustable optimization variables are the volumetric compression ratio, the dead volume ratios, the volume phase-lag, the gas characteristics, the hot-to-cold conductance ratio and the regenerator efficiency. The new normalized analytical expressions for the operating characteristics of the engine: power, work, efficiency, mean pressure, maximum speed of revolution are derived, and some dimensionless and dimensional reference numbers are presented as well as power optimization examples with respect to non-dimensional speed, volume ratio and volume phase-lag angle.analytical solutions. Le “vieux” moteur Stirling est l’un des moteurs a sources multiples d’energie les plus prometteurs pour le futur. Des modeles elementaires simples et realistes sont utiles pour faciliter l’optimisation de configurations preliminaires du moteur. En plus de nouvelles solutions analytiques qui reduisent fortement le temps de calcul, cette etude du cycle moteur de Schmidt-Stirling modifie est entreprise avec le point de vue de l’ingenieur en introduisant les exo-irreversibilites dues aux transferts thermiques. Les parametres de reference sont des contraintes technologiques ou physiques : la pression maximum, le volume maximum, les temperatures de paroi extremes et la conductance totale, alors que les parametres d

  1. Combining solid biomass combustion and stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    Siemers, W.; Senkel, N. [CUTEC-Institut GmbH, Clausthal-Zellerfeld (Germany)], e-mail: werner.siemers@cutec.de

    2012-11-01

    Decentralised electricity production in combination with and based on biomass still finds some difficulties in real applications. One concept favoured in a recent project is the connection of a wood chip furmace with a Stirling engine. Because the direct exposure of the Stirling head causes numerous problems, the solution is sought in designing an indirect heat transfer system. The main challenge is the temperature level, which should be reached for high electrical efficiencies. Temperatures above 1000 deg C at the biomass combustion side are needed for an efficient heat transfer at some 850 deg C at the Stirling engine in theory. Measurements on both installations have been conducted and analyzed. After this, the design phase is started. However, no final choice on the design has been taken.

  2. Performance of V-type Stirling-cycle refrigerator for different working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Yusuf; Ataer, Omer Ercan [Erciyes University, Engineering Faculty, Mechanical Engineering Department, Melikgazi, 38 039 Kayseri (Turkey)

    2010-01-15

    The thermodynamic analysis of a V-type Stirling-cycle Refrigerator (VSR) is performed for air, hydrogen and helium as the working fluid and the performance of the VSR is investigated. The V-type Stirling-cycle refrigerator consists of expansion and compression spaces, cooler, heater and regenerator, and it is assumed that the control volumes are subjected to a periodic mass flow. The basic equations of the VSR are derived for per unit crank angle, so time does not appear in the equations. A computer program is prepared in FORTRAN, and the basic equations are solved iteratively. The mass, temperature and density of working fluid in each control volume are calculated for different charge pressures, engine speeds, and for fixed heater and cooler surface temperatures. The work, instantaneous pressure and the COP of the VSR are calculated. The results are obtained for different working fluids, and given by diagrams. (author)

  3. Engineering charge transport by heterostructuring solution-processed semiconductors

    Science.gov (United States)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  4. Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan 70101, Taiwan (China)

    2010-11-15

    This study is aimed at development of a numerical model for a beta-type Stirling engine with rhombic-drive mechanism. By taking into account the non-isothermal effects, the effectiveness of the regenerative channel, and the thermal resistance of the heating head, the energy equations for the control volumes in the expansion chamber, the compression chamber, and the regenerative channel can be derived and solved. Meanwhile, a fully developed flow velocity profile in the regenerative channel, in terms of the reciprocating velocity of the displacer and the instantaneous pressure difference between the expansion and the compression chambers, is derived for calculation of the mass flow rate through the regenerative channel. In this manner, the internal irreversibility caused by pressure difference in the two chambers and the viscous shear effects due to the motion of the reciprocating displacer on the fluid flow in the regenerative channel gap are included. Periodic variation of pressures, volumes, temperatures, masses, and heat transfers in the expansion and the compression chambers are predicted. A parametric study of the dependence of the power output and thermal efficiency on the geometrical and physical parameters, involving regenerative gap, distance between two gears, offset distance from the crank to the center of gear, and the heat source temperature, has been performed. (author)

  5. Stirling Energy Module (SEM) as Micro-CHP; Stirling Energy Module (SEM) als Mini-BHKW

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, A.

    2006-07-01

    Since many years, a lot of effort is being put into the development of combined heat and power units (CHP) for the decentralised production of electric power. For long time, the main focus was on fuel cells. In the meantime, the Stirling technology, which is based upon classical mechanical engineering and innovative technical concepts, proceeded in its development as well. The following article describes the technology and the actual state of the development of the Stirling Energy Module (SEM) for the application as Micro-CHP in one-family-houses. SEM is based on a free-piston engine with a linear power generator, producing electric power while heating. The Stirling engine is planned the be introduced into the market as a replacement for the conventional heating systems within a couple of years. (author)

  6. Thermodynamic analysis of SOFC (solid oxide fuel cell) - Stirling hybrid plants using alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated...... to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes...

  7. Plant Characteristics af a Multi-Fuel Sofc-Stirling Hybrid Configuration

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    A novel hybrid system ( kWe) for an average family house including heating is proposed. The system investigated, contains of a Solid Oxide Fuel Cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle is fed to the bottoming Stirling engine wherein additional power...... efficiency compared with the stand alone Stirling engine or SOFC plant. For the SOFC and Stirling combined configuration, the overall power production has increased by about 10% compared to the stand alone SOFC plant. System efficiencies of about 60% are achieved which is remarkable for such small plant...

  8. Thermodynamic analysis and experimental investigation of a Solo V161 Stirling cogeneration unit

    International Nuclear Information System (INIS)

    Rogdakis, E.D.; Antonakos, G.D.; Koronaki, I.P.

    2012-01-01

    In order to investigate the Stirling engine implementation technology, a Solo Stirling Engine V161 cogeneration module has been installed at the Laboratory of Applied Thermodynamics of National Technical University of Athens. A special thermodynamic analysis of the engine's performance has been conducted introducing and utilizing specially designed computing codes along with the thermal balance study of the unit. Measurements were conducted under different operational conditions concerning various heat load stages of the engine, working pressure, as well as electric power production. Analysis of the experimental results has shown that the overall performance of the Stirling unit proved very promising and quite adequate for various areal applications, equally competing with other CHP systems. The performance of the unit experienced significant stability all over the operating range. The power stand ratio 0.35 differentiates Stirling cogeneration units from others that use diverging technologies significantly. The energy savings using a Stirling CHP unit, in respect to the concurrent use of a thermal and an electrical system at the same equivalent power has revealed 36.8%. -- Highlights: ► Thermodynamic analysis of an a-type Stirling engine. ► Development of generated electrical and thermal power of the m-CHP Solo Stirling Unit to engine's load comparison. ► Stirling m-CHP until heat balance analysis. ► Evaluation of the Solo Stirling V161 unit efficiency.

  9. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6A1-4V components of a Stirling engine space power system

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher; Lukaszewicz, Victor

    1995-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6A1-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is a possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'backup,' self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212 coated Ti6-4, and Ps212 coated Ti6-4/PM212

  10. Advanced Stirling Convertor (ASC) Technology Maturation

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  11. Use of biomass as fuel for Stirling motors; Uso de biomassa como combustivel para acionamento de motores Stirling

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Robledo Wakin; Aradas, Maria Eugenia Coria; Cobas, Vladmir Rafael Melian; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Estudos em Sistemas Termicos], e-mail: robledo@unifei.edu.br

    2004-07-01

    The search to increase the electrical generation, together with the need to decrease the pollution emission, has encouraged the alternative energy sources. Nowadays around the world there are a lot of alternative energy sources incentive programs. In Brazil have PROINFA - Alternative Energy Sources Incentive Program. An example of alternative energy sources is the use of biomass as combustible. In the electrical generation, the biomass can be used directly, having it's directly combustion, and transforming the thermal energy liberated in electrical energy, or can be transformed in gas or liquid, and after use technology as internal combustion engine and gas turbine to generate electricity with these combustibles. Few technologies can be used to generate electricity burning directly to the biomass. Among these technologies, have the Stirling engine. It is possible to use this engine because the Stirling engines are external combustion engines, and it has not contact between the work gas and the flue gas. In this way, the Stirling engine needs a heat source, independent of the combustible type that will be used, including solar source. In this work will be present this technology, the different kinds of Stirling engines according to their configuration, moreover will be present the ST 05 G Stirling engine, which is a 500 W engine, acquired by University Federal of Itajuba. Also are present the tests results of this engine, and the installation to work with wood waste as combustible. (author)

  12. In-line stirling energy system

    Science.gov (United States)

    Backhaus, Scott N [Espanola, NM; Keolian, Robert [State College, PA

    2011-03-22

    A high efficiency generator is provided using a Stirling engine to amplify an acoustic wave by heating the gas in the engine in a forward mode. The engine is coupled to an alternator to convert heat input to the engine into electricity. A plurality of the engines and respective alternators can be coupled to operate in a timed sequence to produce multi-phase electricity without the need for conversion. The engine system may be operated in a reverse mode as a refrigerator/heat pump.

  13. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  14. Stirling Technology Development at NASA GRC

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2001-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDCs) built by STC includes mapping of a second pair of TDCs, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDCs with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  15. Stirling Technology Development at NASA GRC. Revised

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing, of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping, of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  16. Stirling technology development at NASA GRC

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA GRC is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a non-magnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. GRC is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at GRC when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multi-dimensional Stirling computational fluid dynamics code to significantly improve Stirling loss predictions and assist in

  17. An Engineering Tool for the Prediction of Internal Dielectric Charging

    Science.gov (United States)

    Rodgers, D. J.; Ryden, K. A.; Wrenn, G. L.; Latham, P. M.; Sorensen, J.; Levy, L.

    1998-11-01

    A practical internal charging tool has been developed. It provides an easy-to-use means for satellite engineers to predict whether on-board dielectrics are vulnerable to electrostatic discharge in the outer radiation belt. The tool is designed to simulate irradiation of single-dielectric planar or cylindrical structures with or without shielding. Analytical equations are used to describe current deposition in the dielectric. This is fast and gives charging currents to sufficient accuracy given the uncertainties in other aspects of the problem - particularly material characteristics. Time-dependent internal electric fields are calculated, taking into account the effect on conductivity of electric field, dose rate and temperature. A worst-case model of electron fluxes in the outer belt has been created specifically for the internal charging problem and is built into the code. For output, the tool gives a YES or NO decision on the susceptibility of the structure to internal electrostatic breakdown and if necessary, calculates the required changes to bring the system below the breakdown threshold. A complementary programme of laboratory irradiations has been carried out to validate the tool. The results for Epoxy-fibreglass samples show that the code models electric field realistically for a wide variety of shields, dielectric thicknesses and electron spectra. Results for Teflon samples indicate that some further experimentation is required and the radiation-induced conductivity aspects of the code have not been validated.

  18. The NASA Next Generation Stirling Technology Program Overview

    Science.gov (United States)

    Schreiber, J. G.; Shaltens, R. K.; Wong, W. A.

    2005-12-01

    NASAs Science Mission Directorate is developing the next generation Stirling technology for future Radioisotope Power Systems (RPS) for surface and deep space missions. The next generation Stirling convertor is one of two advanced power conversion technologies currently being developed for future NASA missions, and is capable of operating for both planetary atmospheres and deep space environments. The Stirling convertor (free-piston engine integrated with a linear alternator) produces about 90 We(ac) and has a specific power of about 90 We/kg. Operating conditions of Thot at 850 degree C and Trej at 90 degree C results in the Stirling convertor estimated efficiency of about 40 per cent. Using the next generation Stirling convertor in future RPS, the "system" specific power is estimated at 8 We/kg. The design lifetime is three years on the surface of Mars and fourteen years in deep space missions. Electrical power of about 160 We (BOM) is produced by two (2) free-piston Stirling convertors heated by two (2) General Purpose Heat Source (GPHS) modules. This development is being performed by Sunpower, Athens, OH with Pratt & Whitney, Rocketdyne, Canoga Park, CA under contract to Glenn Research Center (GRC), Cleveland, Ohio. GRC is guiding the independent testing and technology development for the next generation Stirling generator.

  19. Stirling Convertor Performance Mapping Test Results for Future Radioisotope Power Systems

    Science.gov (United States)

    Qiu, Songgang; Peterson, Allen A.; Faultersack, Franklyn D.; Redinger, Darin L.; Augenblick, John E.

    2004-02-01

    Long-life radioisotope-fueled generators based on free-piston Stirling convertors are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been performance-testing its Stirling generators to provide data for potential system integration contractors. This paper describes the most recent test results from the STC RemoteGen™ 55 W-class Stirling generators (RG-55). Comparisons are made between the new data and previous Stirling thermodynamic simulation models. Performance-mapping tests are presented including variations in: internal charge pressure, cold end temperature, hot end temperature, alternator temperature, input power, and variation of control voltage.

  20. New 5 Kilowatt Free-piston Stirling Space Convertor Developments

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.

    2007-01-01

    The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc. s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 W and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  1. Accomplishments in free-piston stirling tests at NASA GRC

    Science.gov (United States)

    Schreiber, Jeffrey G.; Skupinski, Robert C.

    2002-01-01

    A power system based on the Stirling Radioisotope Generator (SRG) has been identified for potential use on deep space missions, as well as for Mars rovers that may benefit from extended operation. The Department of Energy (DOE) has responsibility for developing the generator and the NASA Glenn Research Center (GRC) is supporting DOE in this effort. The generator is based on a free-piston Stirling power convertor that has been developed by the Stirling Technology Company (STC) under contract to DOE. The generator would be used as a high-efficiency alternative to the Radioisotope Thermoelectric Generators (RTGs) that have been used on many previous missions. The increased efficiency leads to a factor of 3 to 4 reduction in the inventory of plutonium required to heat the generator. GRC has been involved in the development of Stirling power conversion technology for over 25 years. The support provided to this project by GRC has many facets and draws upon the lab's scientists and engineers that have gained experience in applying their skills to the previous Stirling projects. This has created a staff with an understanding of the subtleties involved in applying their expertise to Stirling systems. Areas include materials, structures, tribology, controls, electromagnetic interference, permanent magnets, alternator analysis, structural dynamics, and cycle performance. One of the key areas of support to the project is in the performance testing of the free-piston Stirling convertors. Since these power convertors are the smallest, lowest power Stirling machines that have been tested at GRC, a new laboratory was equipped for this project. Procedures and test plans have been created, instrumentation and data systems developed, and Stirling convertors have been tested. This paper will describe the GRC test facility, the test procedures that are used, present some of the test results and outline plans for the future. .

  2. Free-piston Stirling technology for space power

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE

  3. Stirling based micro co-generation system for single households

    Energy Technology Data Exchange (ETDEWEB)

    Ribberink, J.S.; Zutt, J.G.M.; Rabou, L.P.L.M.; Beckers, G.J.J. [ECN Clean Fossil Fuels, Petten (Netherlands); Baijens, C.A.W.; Luttikholt, J.J.M. [ATAG Verwarming, Lichtenvoorde (Netherlands)

    2000-04-01

    This paper describes the progress made in the ENATEC development program for a free piston Stirling engine based micro co-generation system that serves the supply of up to 1 kW{sub e} and up to 24 kW heat for domestic heating and/or for hot tap water production for single households at overall system efficiencies of 96%. Experiments show that the free piston Stirling engines from Stirling Technology Company run very reliably and controllably, and that the efficiency targets for the 1 kW{sub e} micro co-generation system are feasible. A ceramic foam burner with good heat transfer characteristics and low NOx emissions was developed. A demonstration micro co-generation unit was built and successfully presented. A 1 kW{sub e} free piston Stirling engine for the European market was developed. High efficiencies at full load and at part load, low emissions, low noise, and minimum maintenance make the Stirling engine based micro co-generation system an attractive candidate for the next generation of domestic boilers in Europe. 5 refs.

  4. Energetic modeling and performance improvement of a free piston-kinematic displacer Stirling engine, used for electric power generation; Modelisation energetique et amelioration des performances d'un moteur Stirling a piston libre et deplaceur cinematique, destine a la production d'electricite

    Energy Technology Data Exchange (ETDEWEB)

    Seraj Mehdizadeh, N.

    1998-07-01

    This work deals with the different methods of energetic analysis that can be used to simulate a free piston-kinematic displacer Stirling engine. The free pistons directly carry the mobile part of a linear alternator, so there is a strong coupling between the thermodynamical behaviour of the engine and the characteristics of the electric circuit to which the alternator is connected. Various aspects of the engine operation are simulated: the triggering of the over-driven mode and its consequences, the influence of the excitation frequency of the displacer on the engine performance, the operation in a transient frequency mode, and the advantage of taking a non-continuous movement for the displacer. We show that if the circuit is made up of only R-L-C components whose characteristics are steady, the shift between the movement of the free pistons and that of the displacer is far from being optimized. We show that we can increase the net electric power produced by a factor varying from 4 to 10, simply by adapting the value of the resistance of the circuit.

  5. Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation

    Science.gov (United States)

    Hoffman, T.; Mack, J.; Mount, R.

    1994-01-01

    This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.

  6. A Stirling Idea

    Science.gov (United States)

    1998-01-01

    Stirling Technology Company developed the components for its BeCOOL line of Cryocoolers with the help of a series of NASA SBIRs (Small Business Innovative Research), through Goddard Space Flight Center and Marshall Space Flight Center. Features include a hermetically sealed design, compact size, and silent operation. The company has already placed several units with commercial customers for computer applications and laboratory use.

  7. Stirling in Another Context.

    Science.gov (United States)

    Papademetriou, Peter

    1981-01-01

    An analysis and a critique of how remodeling and extension of the Rice University School of Architecture, by James Stirling, Michael Wilford, and Associates, fits into the campus plan and its eclectic style established early in this century. (Author/MLF)

  8. The 1-kW solar Stirling experiment

    Science.gov (United States)

    Giandomenico, A.

    1981-01-01

    The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.

  9. Stratified charge rotary engine critical technology enablement. Volume 2: Appendixes

    Science.gov (United States)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This second volume of appendixes is a companion to Volume 1 of this report which summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation; and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems. A family of four-stage third-order explicit Runge-Kutta schemes is derived that required only two locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.

  10. Stratified Charge Rotary Engine Critical Technology Enablement, Volume 1

    Science.gov (United States)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This report summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation, and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems.

  11. Heater head for stirling engine

    Science.gov (United States)

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  12. IIT MMAE Dept. Research project the homogeneous charge thermal ignition (HCTI) engine

    OpenAIRE

    Domenech Menal, Joan Ignasi

    2011-01-01

    Nowadays the main kinds of engines that are used in ground transportation are, gasoline Spark Ignition engines and diesel Compression Ignition engines. As every day more fuel is being used by a growing number of vehicles, fuel dependency growth and a growing concern for our environment health, it is a crucial point to gain in fuel efficiency for ground transportation engines. Many approaches are being investigated, but we will focus in one kind that we call the HCTI, homogeneous charge the...

  13. Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft

    Science.gov (United States)

    Mount, Robert E.; Bartel, John; Hady, William F.

    1987-01-01

    Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.

  14. A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines. Phase III Final Report for the Radioisotope Power Conversion Technology NRA

    Science.gov (United States)

    Ibrahim, Mounir B.; Gedeon, David; Wood, Gary; McLean, Jeffrey

    2009-01-01

    Under Phase III of NASA Research Announcement contract NAS3-03124, a prototype nickel segmented-involute-foil regenerator was microfabricated and tested in a Sunpower Frequency-Test-Bed (FTB) Stirling convertor. The team for this effort consisted of Cleveland State University, Gedeon Associates, Sunpower Inc. and International Mezzo Technologies. Testing in the FTB convertor produced about the same efficiency as testing with the original random-fiber regenerator. But the high thermal conductivity of the prototype nickel regenerator was responsible for a significant performance degradation. An efficiency improvement (by a 1.04 factor, according to computer predictions) could have been achieved if the regenerator was made from a low-conductivity material. Also, the FTB convertor was not reoptimized to take full advantage of the microfabricated regenerator s low flow resistance; thus, the efficiency would likely have been even higher had the FTB been completely reoptimized. This report discusses the regenerator microfabrication process, testing of the regenerator in the Stirling FTB convertor, and the supporting analysis. Results of the pre-test computational fluid dynamics (CFD) modeling of the effects of the regenerator-test-configuration diffusers (located at each end of the regenerator) are included. The report also includes recommendations for further development of involute-foil regenerators from a higher-temperature material than nickel.

  15. Engineering Interfacial Charge Transfer in CsPbBr3 Perovskite Nanocrystals by Heterovalent Doping

    KAUST Repository

    Begum, Raihana; Parida, Manas R.; Abdelhady, Ahmed L.; Banavoth, Murali; AlYami, Noktan; Ahmed, Ghada H.; Hedhili, Mohamed N.; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Since compelling device efficiencies of perovskite solar cells have been achieved, investigative efforts have turned to understand other key challenges in these systems, such as engineering interfacial energy-level alignment and charge transfer (CT

  16. Performance and combustion characteristics of direct-injection stratified-charge rotary engines

    Science.gov (United States)

    Nguyen, Hung Lee

    1987-01-01

    Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.

  17. Engine Tune-up Service. Unit 2: Charging System. Posttests. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Richardson, Roger L.; Bacon, E. Miles

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 2, Charging System, available separately as CE 031 208. Focus of the posttest is on the testing of the charging system. One multiple choice posttest is provided, that covers the three performance objectives contained in the unit. (No answer key is…

  18. Engine Tune-up Service. Unit 2: Charging System. Review Exercise Book. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Richardson, Roger L.; Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 2, Charging System, available separately as CE 031 208. Focus of the exercises and pretests is testing the charging system. Pretests and performance checklists are provided for each of the three performance objectives contained in…

  19. Engine Tune-up Service. Unit 2: Charging System. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Richardson, Roger L.; Bacon, E. Miles

    This student guide is for Unit 2, Charging System, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with how to test the charging system. A companion review exercise book and posttests are available separately as CE 031 209-210. An introduction tells how this unit fits into the total tune-up service, defines…

  20. Power characteristics of a Stirling radioisotope power system over the life of the mission

    International Nuclear Information System (INIS)

    Schreiber, Jeffrey G.

    2001-01-01

    Stirling radioisotope power systems are presently being considered for use on long life deep space missions. Some applications that Stirling technology has been developed for in the past could control the heat input to the engine, as was the case in the Automotive Stirling Engine (ASE) program. The combustion system could change the rate at which fuel was burned in response to the Stirling heater head temperature and the desired set point. In other cases, heat input was not controlled. An example is the solar terrestrial Advanced Stirling Conversion System (ASCS), where the heat input was a function of solar intensity and the performance of the solar concentrator and receiver. The control system for this application would measure the Stirling heater head temperature and throttle the Stirling convertor to once again, maintain the Stirling heater head temperature at the desired set point. In both of these examples, the design was driven to be cost effective. In the Stirling radioisotope power system, the heat generated by the decay in plutonium is reduced with the half-life of the isotope, and the control system must be as simple as possible and still meet the mission requirements. The most simple control system would be one that allows the Stirling power convertor to autonomously change its operating conditions in direct response to the reduced heat input, with no intervention from the control system, merely seeking a new equilibrium point as the isotope decays. This paper presents an analysis of power system performance with this simple control system, which has no feedback and does not actively alter the operating point as the isotope decays

  1. Evaluation Of Different Power Conditioning Options For Stirling Generators

    Science.gov (United States)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  2. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  3. Overview of NASA supported Stirling thermodynamic loss research

    International Nuclear Information System (INIS)

    Tew, R.C.; Geng, S.M.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) is funding research to characterize Stirling machine thermodynamic losses. NASA's primary goal is to improve Stirling design codes to support engine development for space and terrestrial power. However, much of the fundamental data is applicable to Stirling cooler and heat pump applications. The research results are reviewed. Much has been learned about oscillating-flow hydrodynamics, including laminar/turbulent transition, and tabulated data has been documented for further analysis. Now, with a better understanding of the oscillator-flow field, it is time to begin measuring the effects of oscillating flow and oscillating pressure level on heat transfer in heat exchanger flow passages and in cylinders. This critical phase of the work is just beginning

  4. Proposed Modifications to Engineering Design Guidelines Related to Resistivity Measurements and Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Swaminathan, Prasanna; Jost, Randy; Brunson, Jerilyn; Green, Nelson; Frederickson, A. Robb

    2005-01-01

    A key parameter in modeling differential spacecraft charging is the resistivity of insulating materials. This determines how charge will accumulate and redistribute across the spacecraft, as well as the time scale for charge transport and dissipation. Existing spacecraft charging guidelines recommend use of tests and imported resistivity data from handbooks that are based principally upon ASTM methods that are more applicable to classical ground conditions and designed for problems associated with power loss through the dielectric, than for how long charge can be stored on an insulator. These data have been found to underestimate charging effects by one to four orders of magnitude for spacecraft charging applications. A review is presented of methods to measure the resistive of highly insulating materials, including the electrometer-resistance method, the electrometer-constant voltage method, the voltage rate-of-change method and the charge storage method. This is based on joint experimental studies conducted at NASA Jet Propulsion Laboratory and Utah State University to investigate the charge storage method and its relation to spacecraft charging. The different methods are found to be appropriate for different resistivity ranges and for different charging circumstances. A simple physics-based model of these methods allows separation of the polarization current and dark current components from long duration measurements of resistivity over day- to month-long time scales. Model parameters are directly related to the magnitude of charge transfer and storage and the rate of charge transport. The model largely explains the observed differences in resistivity found using the different methods and provides a framework for recommendations for the appropriate test method for spacecraft materials with different resistivities and applications. The proposed changes to the existing engineering guidelines are intended to provide design engineers more appropriate methods for

  5. Design of a high-performance rotary stratified-charge research aircraft engine

    Science.gov (United States)

    Jones, C.; Mount, R. E.

    1984-01-01

    The power section for an advanced rotary stratified-charge general aviation engine has been designed under contract to NASA. The single-rotor research engine of 40 cubic-inches displacement (RCI-40), now being procured for test initiation this summer, is targeted for 320 T.O. horse-power in a two-rotor production engine. The research engine is designed for operating on jet-fuel, gasoline or diesel fuel and will be used to explore applicable advanced technologies and to optimize high output performance variables. Design of major components of the engine is described in this paper.

  6. Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated. Simulations of the proposed system were conducted using different fuels, which should facilitate the use of a variety of fuels depending on availability. Here, the results for natural gas (NG), ammonia, di-methyl ether (DME), methanol and ethanol are presented and analyzed. The system behavior is further investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes. Additionally, heat is also produced to heat the family home when necessary. - Highlights: • Integrating a solid oxide fuel with a Stirling engine • Design of multi-fuel hybrid plants • Plants running on alternative fuels; natural gas, methanol, ethanol, DME and ammonia • Thermodynamic analysis of hybrid SOFC–Stirling engine plants

  7. Free-piston Stirling technology for space power

    Science.gov (United States)

    Slaby, Jack G.

    1989-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.

  8. Advanced Stirling Convertor Update

    Science.gov (United States)

    Wood, J. Gary; Carroll, Cliff; Matejczyk, Dan; Penswick, L. B.; Soendker, E.

    2006-01-01

    This paper reports on the 88 We Advanced Stirling Convertor (ASC) currently being developed under Phase II of a NASA NRA program for possible use in advanced high specific power radioisotope space power systems. An early developmental unit, the Frequency Test Bed (FTB) which was built and tested in Phase I demonstrated 36% efficiency. The ASC-1 currently being developed under Phase II, uses a high temperature heater head to allow for operation at 850 °C and is expected to have an efficiency approaching 40% (based on AC electrical out) at a temperature ratio of 3.1. The final lightweight ASC-2 convertor to be developed in Phase III is expected to have a mass of approximately 1 kg. The implementation of the ASC would allow for much higher specific power radioisotope power systems, requiring significantly less radioisotope fuel than current systems. The first run of the ASC-1 occurred in September 2005, and full temperature operation was achieved in early October 2005. Presented is an update on progress on the ASC program as well as the plans for future development. Also presented are efforts being performed to ensure the ASC has the required long life already demonstrated in free-piston Stirling cryocoolers.

  9. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    Science.gov (United States)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  10. Experimental studies of the air hybrid engine charging operation

    OpenAIRE

    Zhao, H; Ma, T; Lee, CY

    2014-01-01

    Over the last few years, theoretical and modelling studies have been carried out on the feasibility and potential of novel mild air hybrid engine concepts based on production components. These mild air hybrid concepts are able to convert vehicle brake energy into pneumatic energy in the form of compressed air stored in the air tank. The compressed air can then be used to crank-start the engine by either injecting and expanding in the cylinder or driving a production air starter. Thus, the reg...

  11. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    Science.gov (United States)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    1992-01-01

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  12. Comparaison des performances moteur à charge homogène et moteur à charge stratifiée Performance Comparison Between a Homogeneous-Charge Engine and a Stratified-Charge Engine.

    Directory of Open Access Journals (Sweden)

    Raynal B.

    2006-11-01

    Full Text Available Une évaluation des possibilités théoriques d'amélioration des moteurs actuels, faite par simulation mathématique du fonctionnement d'un moteur à allumage commandé, montre qu'un fonctionnement en mélange homogène pauvre permettrait de réduire de 16 % la consommation sur un cycle ECE chaud. Dans les mêmes conditions d'utilisation, un moteur « à charge stratifiée » idéal donnerait lieu à un gain de 41 %. Des modifications limitées du point de vue technologique ont été apportées à un moteur de série et ont permis d'étendre en mélange pauvre sa zone de fonctionnement. Les gains de consommation réalisés par rapport au moteur standard sont compris entre 5 et 10 %. Le recyclage d'une fraction modérée des gaz d'échappement permet de maintenir les émissions de NO x à moins de 5 g/essai sur cycle ECE, en conservant le gain de consommation précédent. L'analyse des performances d'un moteur Honda CVCC au banc d'essai et sur véhicule montre que les niveaux d'émissions relativement bas de ce type de moteur sont obtenus au prix d'une surconsommation importante par rapport à un véhicule équivalent équipé d'un moteur conventionnel. An evaluation of theoretical possibilities of improving existing engines, obtained by mathematical modelisation of a spark-ignition engine, shows that operating with a homogeneous lean mixture produces a 16 % reduction in consumption for a hot ECE cycle. Under the same running conditions, an ideal strotified-charge engine would produce a gain of 41 %.Limited technological modifications were made in a standard engine sa as ta extend its operating zone using a leon mixture. The consumption gains achieved compared with a standard engine are between 5 and 10%. The recycling of a moderate fraction of the exhaust gases enables NO, emissions ta be maintained at less than 5 g/test for an ECE cycle while preserving the preceding consumption gain.The performance analysis of a Honda C/CC engine on a test

  13. MEMS Stirling Cooler Development Update

    Science.gov (United States)

    Moran, Matthew E.; Wesolek, Danielle

    2003-01-01

    This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.

  14. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  15. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  16. Advanced Stirling Radioisotope Generator EU2 Anomaly Investigation

    Science.gov (United States)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2016-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically-heated Stirling radioisotope generator built to date. NASA Glenn Research Center (GRC) completed the assembly of the ASRG EU2 in September, 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's ASC-E3 Stirling convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's Engineering Development Unit (EDU) 4 controller. After just 179 hours of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hours later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January, 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from GRC, Sunpower, and Lockheed Martin conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  17. Performance of a supercharged direct-injection stratified-charge rotary combustion engine

    Science.gov (United States)

    Bartrand, Timothy A.; Willis, Edward A.

    1990-01-01

    A zero-dimensional thermodynamic performance computer model for direct-injection stratified-charge rotary combustion engines was modified and run for a single rotor supercharged engine. Operating conditions for the computer runs were a single boost pressure and a matrix of speeds, loads and engine materials. A representative engine map is presented showing the predicted range of efficient operation. After discussion of the engine map, a number of engine features are analyzed individually. These features are: heat transfer and the influence insulating materials have on engine performance and exhaust energy; intake manifold pressure oscillations and interactions with the combustion chamber; and performance losses and seal friction. Finally, code running times and convergence data are presented.

  18. Development of Electronic Load Controllers for Free-Piston Stirling Convertors Aided by Stirling Simulation Model

    Science.gov (United States)

    Regan, Timothy F.

    2004-01-01

    The free-piston Stirling convertor end-to-end modeling effort at the NASA Glenn Research Center has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor: the Stirling cycle engine, heat source, linear alternator, controller, and load. So far, it has been used in evaluating the performance of electronic controller designs. Three different controller design concepts were simulated using the model: 1) Controllers with parasitic direct current loading. 2) Controllers with parasitic alternating current loading. 3) Controllers that maintain a reference current. The free-piston Stirling convertor is an electromechanical device that operates at resonance. It is the function of the electronic load controller to ensure that the electrical load seen by the machine is always great enough to keep the amplitude of the piston and alternator oscillation at the rated value. This is done by regulating the load on the output bus. The controller monitors the instantaneous voltage, regulating it by switching loads called parasitic loads onto the bus whenever the bus voltage is too high and removing them whenever the voltage is too low. In the first type of controller, the monitor-ing and switching are done on the direct-current (dc) bus. In the second type, the alternating current bus is used. The model allows designers to test a controller concept before investing time in hardware. The simulation code used to develop the model also offers detailed models of digital and analog electronic components so that the resulting designs are realistic enough to translate directly into hardware circuits.

  19. Achievement of the charge exchange work diminishing of an internal combustion engine in part load

    Directory of Open Access Journals (Sweden)

    Stefan POSTRZEDNIK

    2012-01-01

    Full Text Available Internal combustion engines, used for driving of different cars, occurs not only at full load, but mostly at the part load. The relative load exchange work at the full (nominal engine load is significantly low. At the part load of the IC engine its energy efficiency ηe is significantly lower than in the optimal (nominal field range of the performance parameters. One of the numerous reasons of this effect is regular growing of the relative load exchange work of the IC engine. It is directly connected with the quantitative regulation method commonly used in the IC engines. From the thermodynamic point of view - the main reason of this effect is the throttling process (causing exergy losses occurring in the inlet and outlet channels. The known proposals for solving of this problem are based on applying of the fully electronic control of the motion of inlet, outlet valves and new reference cycles.The idea presented in the paper leads to diminishing the charge exchange work of the IC engines. The problem can be solved using presented in the paper a new concept of the reference cycle (called as eco-cycle of IC engine. The work of the engine basing on the eco-cycle occurs in two 3-stroke stages; the fresh air is delivered only once for both stages, but in range of each stage a new portion of fuel is burned. Normally the charge exchange occurs once during each engine cycle realized. Elaborated proposition bases on the elimination of chosen charge exchange processes and through this the dropping of the charge exchange work can be achieved.

  20. Isotope powered Stirling generator for terrestrial applications

    International Nuclear Information System (INIS)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995

  1. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode

    Directory of Open Access Journals (Sweden)

    Bhiogade Girish E.

    2017-01-01

    Full Text Available New combustion concepts have been recently developed with the purpose to tackle the problem of high emissions level of traditional direct injection Diesel engines. A good example is the premixed charge compression ignition combustion. A strategy in which early injection is used causing a burning process in which the fuel burns in the premixed condition. In compression ignition engines, soot (particulate matter and NOx emissions are an extremely unsolved issue. Premixed charge compression ignition is one of the most promising solutions that combine the advantages of both spark ignition and compression ignition combustion modes. It gives thermal efficiency close to the compression ignition engines and resolves the associated issues of high NOx and particulate matter, simultaneously. Premixing of air and fuel preparation is the challenging part to achieve premixed charge compression ignition combustion. In the present experimental study a diesel vaporizer is used to achieve premixed charge compression ignition combustion. A vaporized diesel fuel was mixed with the air to form premixed charge and inducted into the cylinder during the intake stroke. Low diesel volatility remains the main obstacle in preparing premixed air-fuel mixture. Exhaust gas re-circulation can be used to control the rate of heat release. The objective of this study is to reduce exhaust emission levels with maintaining thermal efficiency close to compression ignition engine.

  2. Developmental Considerations on the Free-piston Stirling Power Convertor for Use in Space

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2007-01-01

    Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines with rotary alternators to convert heat to electricity. These systems were proposed with lightly loaded linkages to achieve the necessary life. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability. These features have consistently been recognized by teams that have studied technology options for radioisotope power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: demonstration of life and reliability, the success achieved by Stirling cryocoolers in flight, and the overall developmental maturity of the technology for both flight and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status, and discuss the challenges that remain.

  3. Design Methodology of Camshaft Driven Charge Valves for Pneumatic Engine Starts

    Directory of Open Access Journals (Sweden)

    Moser Michael M.

    2015-01-01

    Full Text Available Idling losses constitute a significant amount of the fuel consumption of internal combustion engines. Therefore, shutting down the engine during idling phases can improve its overall efficiency. For driver acceptance a fast restart of the engine must be guaranteed. A fast engine start can be performed using a powerful electric starter and an appropriate battery which are found in hybrid electric vehicles, for example. However, these devices involve additional cost and weight. An alternative method is to use a tank with pressurized air that can be injected directly into the cylinders to start the engine pneumatically. In this paper, pneumatic engine starts using camshaft driven charge valves are discussed. A general methodology for an air-optimal charge valve design is presented which can deal with various requirements. The proposed design methodology is based on a process model representing pneumatic engine operation. A design example for a two-cylinder engine is shown, and the resulting optimized pneumatic start is experimentally verified on a test bench engine. The engine’s idling speed of 1200 rpm can be reached within 350 ms for an initial pressure in the air tank of 10 bar. A detailed system analysis highlights the characteristics of the optimal design found.

  4. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  5. Simulation program for multiple expansion Stirling machines

    International Nuclear Information System (INIS)

    Walker, G.; Weiss, M.; Fauvel, R.; Reader, G.; Bingham, E.R.

    1992-01-01

    Multiple expansion Stirling machines have been a topic of interest at the University of Calgary for some years. Recently a second-order computer simulation program with integral graphics package for Stirling cryocoolers with up to four stages of expansion were developed and made available to the Stirling community. Adaptation of the program to multiple expansion Stirling power systems is anticipated. This paper briefly introduces the program and presents a specimen result

  6. Charge transport models for reliability engineering of semiconductor devices

    International Nuclear Information System (INIS)

    Bina, M.

    2014-01-01

    The simulation of semiconductor devices is important for the assessment of device lifetimes before production. In this context, this work investigates the influence of the charge carrier transport model on the accuracy of bias temperature instability and hot-carrier degradation models in MOS devices. For this purpose, a four-state defect model based on a non-radiative multi phonon (NMP) theory is implemented to study the bias temperature instability. However, the doping concentrations typically used in nano-scale devices correspond to only a small number of dopants in the channel, leading to fluctuations of the electrostatic potential. Thus, the granularity of the doping cannot be ignored in these devices. To study the bias temperature instability in the presence of fluctuations of the electrostatic potential, the advanced drift diffusion device simulator Minimos-NT is employed. In a first effort to understand the bias temperature instability in p-channel MOSFETs at elevated temperatures, data from direct-current-current-voltage measurements is successfully reproduced using a four-state defect model. Differences between the four-state defect model and the commonly employed trapping model from Shockley, Read and Hall (SRH) have been investigated showing that the SRH model is incapable of reproducing the measurement data. This is in good agreement with the literature, where it has been extensively shown that a model based on SRH theory cannot reproduce the characteristic time constants found in BTI recovery traces. Upon inspection of recorded recovery traces after bias temperature stress in n-channel MOSFETs it is found that the gate current is strongly correlated with the drain current (recovery trace). Using a random discrete dopant model and non-equilibrium greens functions it is shown that direct tunnelling cannot explain the magnitude of the gate current reduction. Instead it is found that trap-assisted tunnelling, modelled using NMP theory, is the cause of this

  7. New 5 kW free-piston Stirling space convertor developments

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.

    2008-07-01

    The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc.'s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free-piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 h. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling convertor assembly. The characteristics of the design along with progress in developing the system will be described.

  8. Operating single quantum emitters with a compact Stirling cryocooler.

    Science.gov (United States)

    Schlehahn, A; Krüger, L; Gschrey, M; Schulze, J-H; Rodt, S; Strittmatter, A; Heindel, T; Reitzenstein, S

    2015-01-01

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g((2))(0) Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g((2))(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  9. Operating single quantum emitters with a compact Stirling cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Schlehahn, A.; Krüger, L.; Gschrey, M.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T., E-mail: tobias.heindel@tu-berlin.de; Reitzenstein, S. [Institute of Solid State Physics, Technische Universität Berlin, 10623 Berlin (Germany)

    2015-01-15

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g{sup (2)}(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g{sup (2)}(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  10. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    OpenAIRE

    Hanafi H.; Hasan M.M; Rahman M.M; Noor M.M; Kadirgama K.; Ramasamy D.

    2016-01-01

    This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend). A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5) and 10% ethanol (E10) (in vo...

  11. Performance and efficiency evaluation and heat release study of a direct-injection stratified-charge rotary engine

    Science.gov (United States)

    Nguyen, H. L.; Addy, H. E.; Bond, T. H.; Lee, C. M.; Chun, K. S.

    1987-01-01

    A computer simulation which models engine performance of the Direct Injection Stratified Charge (DISC) rotary engines was used to study the effect of variations in engine design and operating parameters on engine performance and efficiency of an Outboard Marine Corporation (OMC) experimental rotary combustion engine. Engine pressure data were used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine data were compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the rotary engine using advanced heat engine concepts such as faster combustion, reduced leakage, and turbocharging is also presented.

  12. The Tracer Gas Method of Determining the Charging Efficiency of Two-stroke-cycle Diesel Engines

    Science.gov (United States)

    Schweitzer, P H; Deluca, Frank, Jr

    1942-01-01

    A convenient method has been developed for determining the scavenging efficiency or the charging efficiency of two-stroke-cycle engines. The method consists of introducing a suitable tracer gas into the inlet air of the running engine and measuring chemically its concentration both in the inlet and exhaust gas. Monomethylamine CH(sub 3)NH(sub 2) was found suitable for the purpose as it burns almost completely during combustion, whereas the "short-circuited" portion does not burn at all and can be determined quantitatively in the exhaust. The method was tested both on four-stroke and on two-stroke engines and is considered accurate within 1 percent.

  13. Advanced Controller for the Free-Piston Stirling Convertor

    Science.gov (United States)

    Gerber, Scott S.; Jamison, Mike; Roth, Mary Ellen; Regan, Timothy F.

    2004-01-01

    The free-piston Stirling power convertor is being considered as an advanced power conversion technology to be used for future NASA deep space missions requiring long life radioisotope power systems. This technology has a conversion efficiency of over 25%, which is significantly higher than the efficiency of the Radioisotope Thermal-electric Generators (RTG) now in use. The NASA Glenn Research Center has long been recognized as a leader in Stirling technology and is responsible for the development of advanced technologies that are intended to significantly improve key characteristics of the Stirling convertor. The advanced technologies identified for development also consider the requirements of potential future missions and the new capabilities that have become available in the associated technical areas. One of the key areas identified for technology development is the engine controller. To support this activity, an advanced controller is being developed for the Stirling power convertor. This controller utilizes active power factor correction electronics and microcontroller-based controls. The object of this paper is to present an overview of the advanced controller concept with modeling, simulation and hardware test data.

  14. Advanced Controller Developed for the Free-Piston Stirling Convertor

    Science.gov (United States)

    Gerber, Scott S.

    2005-01-01

    A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.

  15. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    Science.gov (United States)

    Oriti, Salvatore, M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.

  16. Stirling Microregenerators Fabricated and Tested

    Science.gov (United States)

    Moran, Matthew E.

    2004-01-01

    A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.

  17. A parametric investigation on a solar dish-Stirling system

    Science.gov (United States)

    Gholamalizadeh, Ehsan; Chung, Jae Dong

    2018-06-01

    The aim of this study is to analyze the performance of a solar dish-Stirling system. A mathematical model for the overall thermal efficiency of the solar-powered high-temperature-differential dish-Stirling engine is described. This model takes into account pressure losses due to fluid friction which is internal to the engine, mechanical friction between the moving parts, actual heat transfer includes the effects of both internal and external irreversibilities of the cycle and finite regeneration processes time. Validation was done through comparison with the actual power output of the "EuroDish" system. Moreover, the effects of dish diameter and working fluid on the performance of the system were studied. An increase of about 7.2% was observed for the power output using hydrogen as the working fluid rather than helium. Also, the focal distance for any diameter of dish was calculated.

  18. Optimization of Stirling and Ericsson cycles by solar radiation

    Science.gov (United States)

    Badescu, V.

    This paper considers a model consisting of a source of radiation (the sun) and two energy converters. The first converter (the absorber) transforms the solar radiation into heat while the second one (which is a Stirling or Ericsson engine) uses heat to produce mechanical work. Polarization coefficients were introduced to characterize the radiation emitted by two components of the system (the sun and the first converter). The maximum conversion efficiency of solar radiation into work was studied.

  19. Small Stirling dynamic isotope power system for robotic space missions

    International Nuclear Information System (INIS)

    Bents, D.J.

    1992-08-01

    The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the US Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established

  20. Engineering of Fermi level by nin diamond junction for control of charge states of NV centers

    Science.gov (United States)

    Murai, T.; Makino, T.; Kato, H.; Shimizu, M.; Murooka, T.; Herbschleb, E. D.; Doi, Y.; Morishita, H.; Fujiwara, M.; Hatano, M.; Yamasaki, S.; Mizuochi, N.

    2018-03-01

    The charge-state control of nitrogen-vacancy (NV) centers in diamond is very important toward its applications because the NV centers undergo stochastic charge-state transitions between the negative charge state (NV-) and the neutral charge state (NV0) of the NV center upon illumination. In this letter, engineering of the Fermi level by a nin diamond junction was demonstrated for the control of the charge state of the NV centers in the intrinsic (i) layer region. By changing the size (d) of the i-layer region between the phosphorus-doped n-type layer regions (nin) from 2 μm to 10 μm, we realized the gradual change in the NV- charge-state population in the i-layer region from 60% to 80% under 532 nm excitation, which can be attributed to the band bending in the i-layer region. Also, we quantitatively simulated the changes in the Fermi level in the i-layer region depending on d with various concentrations of impurities in the i-layer region.

  1. Innovation at Stirling

    Science.gov (United States)

    1998-11-01

    The 24th Stirling Meeting of the Scottish Branch of the Institute of Physics was held on 21 May 1998. It was, for the first time, coupled to a Physics Update Course, which then continued in the Heriot-Watt University over the following two days. This encouraged many more exhibitors to come to Stirling where some 220 physics teachers were present. Ten manufacturers, five publishers and, of course, the ASE and the Institute of Physics exhibited materials during the conference. Morning In his introductory remarks Jack Woolsey reminded teachers that a great deal of information about the Scottish Qualifications Authority was available on the web (http://www.sqa.org.uk). Lorna Neill chaired the morning session, which was devoted to teaching chips and assessing pupils! Tony Joyce (Motorola) emphasized the need to invest in the skills required by the electronics industry. There has been an explosion in the demand for microchips and Motorola, together with Edinburgh University, Compugraphics and Scottish Enterprise, have produced a number of `teaching chips' which are being used throughout Britain and abroad. Les Haworth (Edinburgh University) discussed the construction, operating principles and educational relevance of MOS devices. MOSFETs, he claimed, are the best vehicle for early teaching of device physics. Andrew Moore (Balerno High School) gave an entertaining presentation in which he suggested ways of using the `teaching chips' in practice. Although there were many good information sheets with suggested experiments and investigations, teachers often found it difficult to tailor them to specific courses. To reduce hassle Andrew recommended using the Teaching Chip Project Board which was now available. It was particularly useful for practical investigations at Standard Grade. For the question session Jim Jamieson (SSERC) and Walter Whitelaw (Edinburgh Council) joined the three speakers. Ian Kennedy (Kilwinning Academy) described a fascinating system, developed in his

  2. Stability of split Stirling refrigerators

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Liang, W.

    2009-01-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the

  3. Estimation of instantaneous heat transfer coefficients for a direct-injection stratified-charge rotary engine

    Science.gov (United States)

    Lee, C. M.; Addy, H. E.; Bond, T. H.; Chun, K. S.; Lu, C. Y.

    1987-01-01

    The main objective of this report was to derive equations to estimate heat transfer coefficients in both the combustion chamber and coolant pasage of a rotary engine. This was accomplished by making detailed temperature and pressure measurements in a direct-injection stratified-charge rotary engine under a range of conditions. For each sppecific measurement point, the local physical properties of the fluids were calculated. Then an empirical correlation of the coefficients was derived by using a multiple regression program. This correlation expresses the Nusselt number as a function of the Prandtl number and Reynolds number.

  4. Development of a Wood Powder Fuelled 35 kW Stirling CHP Unit

    DEFF Research Database (Denmark)

    Pålsson, M.; Carlsen, Henrik

    2003-01-01

    For biomass fuelled CHP in sizes below 100 kW, Stirling engines are the only feasible alternative today. Using wood powder as fuel, the Stirling engine can be heated directly by the flame like when using a gaseous or liquid fuel burner. However, the combustion chamber will have to be much larger...... recirculation (CGR) a smaller air preheater can be used, while system efficiency will increase compared with using excess air for flame cooling. In a three-year project, a wood powder fuelled Stirling engine CHP unit will be developed and run in field test. The project will use the double-acting four......-cylinder Stirling engine SM3D with an electric output of 35 kW. This engine is a further development of the engine SM3B that has been developed at the Technical University of Denmark. The engine heater is being adapted for use with wood powder as fuel. During a two-year period a combustion system for this engine...

  5. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine

    Science.gov (United States)

    Cofaru, Corneliu

    2017-10-01

    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  6. Progress in Developing a New 5 Kilowatt Free-Piston Stirling Space Convertor

    International Nuclear Information System (INIS)

    Brandhorst, Henry W. Jr.; Kirby, Raymond L.; Chapman, Peter A.

    2008-01-01

    The NASA Vision for Exploration of the Moon envisions a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. In the 1990s, Mechanical Technology, Inc.'s Stirling Engine Systems Division (now a part of Foster-Miller, Inc.) developed a 25 kWe free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 We and 80 We Stirling convertor systems for use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in the Lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described

  7. Progress in Developing a New 5 Kilowatt Free-Piston Stirling Space Convertor

    Science.gov (United States)

    Brandhorst, Henry W.; Kirby, Raymond L.; Chapman, Peter A.

    2008-01-01

    The NASA Vision for Exploration of the Moon envisions a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. In the 1990s, Mechanical Technology, Inc.'s Stirling Engine Systems Division (now a part of Foster-Miller, Inc.) developed a 25 kWe free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 We and 80 We Stirling convertor systems for use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in the Lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  8. Comparison of the Net Work Output between Stirling and Ericsson Cycles

    Directory of Open Access Journals (Sweden)

    Rui F. Costa

    2018-03-01

    Full Text Available In this paper, we compare Stirling and Ericsson cycles to determine which engine produces greater net work output for various situations. Both cycles are for external heat engines that utilize regenerators, where the difference is the nature of the regeneration process, which is constant volume for Stirling and constant pressure for Ericsson. This difference alters the performance characteristics of the two engines drastically, and our comparison reveals which one produces greater net work output based on the thermodynamic parameters. The net work output equations are derived and analysed for three different scenarios: (i equal mass and temperature limits; (ii equal mass and pressure or volume; and (iii equal temperature and pressure or volume limits. The comparison is performed by calculating when both cycles produce equal net work output and then analysing which one produces greater net work output based on how the parameters are varied. In general, the results demonstrate that Stirling engines produce more net work output at higher pressures and lower volumes, and Ericsson engines produce more net work output at lower pressures and higher volumes. For certain scenarios, threshold values are calculated to illustrate precisely when one cycle produces more net work output than the other. This paper can be used to inform the design of the engines and to determine when a Stirling or Ericsson engine should be selected for a particular application.

  9. Characterization of the Advanced Stirling Radioisotope Generator EU2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Nicholas A.

    2015-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA GRC recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's ASC-E3 Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included: measurement of convertor, controller, and generator performance and efficiency, quantification of control authority of the controller, disturbance force measurement with varying piston phase and piston amplitude, and measurement of the effect of spacecraft DC bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  10. A study of a direct-injection stratified-charge rotary engine for motor vehicle application

    Science.gov (United States)

    Kagawa, Ryoji; Okazaki, Syunki; Somyo, Nobuhiro; Akagi, Yuji

    1993-03-01

    A study of a direct-injection stratified-charge system (DISC), as applied to a rotary engine (RE) for motor vehicle usage, was undertaken. The goals of this study were improved fuel consumption and reduced exhaust emissions. These goals were thought feasible due to the high thermal efficiency associated with the DISC-RE. This was the first application of this technology to a motor vehicle engine. Stable ignition and ideal stratification systems were developed by means of numerical calculations, air-fuel mixture measurements, and actual engine tests. The use of DISC resulted in significantly improved fuel consumption and reduced exhaust emissions. The use of an exhaust gas recirculating system was studied and found to be beneficial in NOx reduction.

  11. Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine

    Science.gov (United States)

    Spanogle, J A; Hicks, C W; Foster, H H

    1934-01-01

    The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.

  12. Stirling micro cogeneration unit for single-family houses. Compact and assembly-friendly; Stirling-Mikro-BHKW fuer den Einsatz im Einfamilienhaus. Kompakt und montagefreundlich

    Energy Technology Data Exchange (ETDEWEB)

    Gimsa, Andreas [Enerlyt Technik GmbH, Potsdam (Germany)

    2010-07-01

    Enerlyt of Potsdam is a manufacturer working on a micro cogeneration unit based on a Stirling engine whose thermodynamic cycle has lower losses, e.g. by making the expansion pistons bigger than the compression pistons. The unit can be operated with various fuels. The author describes the function and state of development of the unit. (orig.)

  13. Design, Analysis and Optimization of a Solar Dish/Stirling System

    Directory of Open Access Journals (Sweden)

    Seyyed Danial Nazemi

    2016-02-01

    Full Text Available In this paper, a mathematical model by which the thermal and physical behavior of a solar dish/Stirling system was investigated, then the system was designed, analysed and optimized. In this regard, all of heat losses in a dish/Stirling system were calculated, then, the output net-work of the Stirling engine was computed, and accordingly, the system efficiency was worked out. These heat losses include convection and conduction heat losses, radiation heat losses by emission in the cavity receiver, reflection heat losses of solar energy in the parabolic dish, internal and external conduction heat losses, energy dissipation by pressure drops, and energy losses by shuttle effect in displacer piston in the Stirling engine. All of these heat losses in the parabolic dish, cavity receiver and Stirling engine were calculated using mathematical modeling in MatlabTM software. For validation of the proposed model, a 10 kW solar dish/Stirling system was designed and the simulation results were compared with the Eurodish system data with a reasonable degree of agreement. This model is used to investigate the effect of geometric and thermodynamic parameters including the aperture diameter of the parabolic dish and the cavity receiver, and the pressure of the compression space of the Stirling engine, on the system performance. By using the PSO method, which is an intelligent optimization technique, the total design was optimized and the optimal values of decision-making parameters were determined. The optimization has been done in two scenarios. In the first scenario, the optimal value of each designed parameter has been changed when the other parameters are equal to the designed case study parameters. In the second scenario, all of parameters were assumed in their optimal values. By optimization of the modeled dish/Stirling system, the total efficiency of the system improved to 0.60% in the first scenario and it increased from 21.69% to 22.62% in the second

  14. Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Mohammadi, Amir H.; Dehghani, Saeed

    2013-01-01

    Highlights: • The optimal power of an endoreversible Stirling cycle is investigated. • In the endoreversible cycle, external heat transfer processes are considered irreversible. • Optimal temperature of the heat source leading to a maximum power for the cycle is detained. • Effect of design parameters on the power and its corresponding thermal efficiency is studied. - Abstract: In this communication, the optimal power of an endoreversible Stirling cycle with perfect regeneration is investigated. In the endoreversible cycle, external heat transfer processes are irreversible. Optimal temperature of the heat source leading to a maximum power for the cycle is detained. Moreover, effect of design parameters of the Stirling engine on the maximized power of the engine and its corresponding thermal efficiency is studied

  15. Free-Piston Stirling Convertor Controller Development at NASA Glenn Research Center

    Science.gov (United States)

    Regan, Timothy

    2004-01-01

    The free-piston Stirling convertor end-to-end modeling effort at NASA Glenn Research Center (GRC) has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor - the Stirling cycle engine, linear alternator, controller, and load. This paper is concerned with controllers. It discusses three controllers that have been studied using this model. Case motion has been added to the model recently so that effects of differences between convertor components can be simulated and ameliorative control engineering techniques can be developed. One concern when applying a system comprised of interconnected mass-spring-damper components is to prevent operation in any but the intended mode. The design mode is the only desired mode of operation, but all other modes are considered in controller design.

  16. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    Directory of Open Access Journals (Sweden)

    Hanafi H.

    2016-01-01

    Full Text Available This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend. A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5 and 10% ethanol (E10 (in vol. under full load condition at variable engine speed ranging from 1000 to 2750 rpm with 250 rpm increment. The model was then validated with other researcher’s experimental result. Model consists of intake and exhaust systems, cylinder, head, valves and port geometries. Performance tests were conducted for volumetric efficiency, brake engine torque, brake power, brake mean effective pressure, brake specific fuel consumption, and brake thermal efficiency, while exhaust emissions were analyzed for carbon monoxide (CO and unburned hydrocarbons (HC. The results showed that blending diesel with ethanol increases the volumetric efficiency, brake specific fuel consumption and brake thermal efficiency, while it decreases brake engine torque, brake power and brake mean effective pressure. In term of emission characteristics, the CO emissions concentrations in the engine exhaust decrease significantly with ethanol as additive. But for HC emission, its concentration increase when apply in high engine speed. In conclusion, using Ethanol as fuel additive blend with Diesel operating in HCCI shows a good result in term of performance and emission in low speed but not recommended to use in high speed engine. Ethanol-diesel blends need to researched more to make it commercially useable.

  17. Improving the performance and fuel consumption of dual chamber stratified charge spark ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, S.C.; Pan, S.S.; Bruckbauer, J.J.; Gehrke, G.R.

    1979-09-01

    A combined experimental and theoretical investigation of the nature of the combustion processes in a dual chamber stratified charge spark ignition engine is described. This work concentrated on understanding the mixing process in the main chamber gases. A specially constructed single cylinder engine was used to both conduct experiments to study mixing effects and to obtain experimental data for the validation of the computer model which was constructed in the theoretical portion of the study. The test procedures are described. Studies were conducted on the effect of fuel injection timing on performance and emissions using the combination of orifice size and prechamber to main chamber flow rate ratio which gave the best overall compromise between emissions and performance. In general, fuel injection gave slightly higher oxides of nitrogen, but considerably lower hydrocarbon and carbon monoxide emissions than the carbureted form of the engine. Experiments with engine intake port redesign to promote swirl mixing indicated a substantial increase in the power output from the engine and, that an equivalent power levels, the nitric oxide emissions are approximately 30% lower with swirl in the main chamber than without swirl. The development of a computer simulation of the combustion process showed that a one-dimensional combustion model can be used to accurately predict trends in engine operation conditions and nitric oxide emissions even though the actual flame in the engine is not completely one-dimensional, and that a simple model for mixing of the main chamber and prechamber intake gases at the start of compression proved adequate to explain the effects of swirl, ignition timing, overall fuel air ratio, volumetric efficiency, and variations in prechamber air fuel ratio and fuel rate percentage on engine power and nitric oxide emissions. (LCL)

  18. Fuels for homogeneous charge compression ignition (HCCI) engines. Automotive fuels survey. Part 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Walwijk, M.

    2001-01-01

    Homogeneous charge compression ignition (HCCI) is a third mode of operation for internal combustion engines, beside spark ignition and conventional compression ignition. This report concentrates on the requirements that HCCI operation puts on fuels for these engines. For readers with limited time available, this summary describes the main findings. Policy makers that need some more background information may turn directly to chapter 7, 'Fuels for HCCI engines'. The rest of this report can be considered as a reference guide for more detailed information. The driving force to investigate HCCI engines is the potential of low emissions and simultaneously high energy efficiency. HCCI is gaining attention the last few years. However, HCCI engines are still in the research phase. After many experiments with prototype engines, people have now started working on computer simulations of the combustion process, to obtain a fundamental understanding of HCCI combustion and to steer future engine developments. In HCCI engines, an air/fuel mixture is prepared before it enters the combustion chamber. The homogeneous mixture is in the combustion chamber compressed to auto-ignition. Unlike in conventional engines, combustion starts at many different locations simultaneously and the speed of combustion is very high, so there is no flame front. Lean air/fuel mixtures (excess air) are used to control combustion speed. Because of the excess air, combustion temperature is relatively low, resulting in low NOx emissions. When the fuel is vaporised to a truly homogeneous mixture, complete combustion results in low particulate emissions. The most important advantages of HCCI engines are: - Emissions of NOx and particulates are very low. - Energy efficiency is high. It is comparable to diesel engines. - Many different fuels (one at a time) can be used in the HCCI concept. There are also some hurdles to overcome: - Controlling combustion is difficult, it complicates engine design

  19. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai

    2015-09-01

    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  20. Event-shape-engineering study of charge separation in heavy-ion collisions

    Science.gov (United States)

    Wen, Fufang; Bryon, Jacob; Wen, Liwen; Wang, Gang

    2018-01-01

    Recent measurements of charge-dependent azimuthal correlations in high-energy heavy-ion collisions have indicated charge-separation signals perpendicular to the reaction plane, and have been related to the chiral magnetic effect (CME). However, the correlation signal is contaminated with the background caused by the collective motion (flow) of the collision system, and an effective approach is needed to remove the flow background from the correlation. We present a method study with simplified Monte Carlo simulations and a multi-phase transport model, and develop a scheme to reveal the true CME signal via event-shape engineering with the flow vector of the particles of interest. Supported by a grant (DE-FG02-88ER40424) from U.S. Department of Energy, Office of Nuclear Physics

  1. Stratified charge rotary engine - Internal flow studies at the MSU engine research laboratory

    Science.gov (United States)

    Hamady, F.; Kosterman, J.; Chouinard, E.; Somerton, C.; Schock, H.; Chun, K.; Hicks, Y.

    1989-01-01

    High-speed visualization and laser Doppler velocimetry (LDV) systems consisting of a 40-watt copper vapor laser, mirrors, cylindrical lenses, a high speed camera, a synchronization timing system, and a particle generator were developed for the study of the fuel spray-air mixing flow characteristics within the combustion chamber of a motored rotary engine. The laser beam is focused down to a sheet approximately 1 mm thick, passing through the combustion chamber and illuminates smoke particles entrained in the intake air. The light scattered off the particles is recorded by a high speed rotating prism camera. Movies are made showing the air flow within the combustion chamber. The results of a movie showing the development of a high-speed (100 Hz) high-pressure (68.94 MPa, 10,000 psi) fuel jet are also discussed. The visualization system is synchronized so that a pulse generated by the camera triggers the laser's thyratron.

  2. Molecular Engineering for Enhanced Charge Transfer in Thin-Film Photoanode.

    Science.gov (United States)

    Kim, Jeong Soo; Kim, Byung-Man; Kim, Un-Young; Shin, HyeonOh; Nam, Jung Seung; Roh, Deok-Ho; Park, Jun-Hyeok; Kwon, Tae-Hyuk

    2017-10-11

    We developed three types of dithieno[3,2-b;2',3'-d]thiophene (DTT)-based organic sensitizers for high-performance thin photoactive TiO 2 films and investigated the simple but powerful molecular engineering of different types of bonding between the triarylamine electron donor and the conjugated DTT π-bridge by the introduction of single, double, and triple bonds. As a result, with only 1.3 μm transparent and 2.5-μm TiO 2 scattering layers, the triple-bond sensitizer (T-DAHTDTT) shows the highest power conversion efficiency (η = 8.4%; V OC = 0.73 V, J SC = 15.4 mA·cm -2 , and FF = 0.75) in an iodine electrolyte system under one solar illumination (AM 1.5, 1000 W·m -2 ), followed by the single-bond sensitizer (S-DAHTDTT) (η = 7.6%) and the double-bond sensitizer (D-DAHTDTT) (η = 6.4%). We suggest that the superior performance of T-DAHTDTT comes from enhanced intramolecular charge transfer (ICT) induced by the triple bond. Consequently, T-DAHTDTT exhibits the most active photoelectron injection and charge transport on a TiO 2 film during operation, which leads to the highest photocurrent density among the systems studied. We analyzed these correlations mainly in terms of charge injection efficiency, level of photocharge storage, and charge-transport kinetics. This study suggests that the molecular engineering of a triple bond between the electron donor and the π-bridge of a sensitizer increases the performance of dye-sensitized solar cell (DSC) with a thin photoactive film by enhancing not only J SC through improved ICT but also V OC through the evenly distributed sensitizer surface coverage.

  3. Structural Dynamics Testing of Advanced Stirling Convertor Components

    Science.gov (United States)

    Oriti, Salvatore M.; Williams, Zachary Douglas

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  4. Fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine

    Science.gov (United States)

    Abraham, J.; Bracco, F. V.

    1989-01-01

    A three-dimensional model for flows and combustion in reciprocating and rotary engines is applied to a direct-injection stratified-charge rotary engine to identify the main parameters that control its burning rate. It is concluded that the orientation of the six sprays of the main injector with respect to the air stream is important to enhance vaporization and the production of flammable mixture. In particular, no spray should be in the wake of any other spray. It was predicted that if such a condition is respected, the indicated efficiency would increase by some 6 percent at higher loads and 2 percent at lower loads. The computations led to the design of a new injector tip that has since yielded slightly better efficiency gains than predicted.

  5. Final Report on the Audit of Architect-Engineer Contracting at the Officer in Charge of Construction, Naval Facilities Engineering Command Contracts, Mediterranean, Madrid, Spain

    Science.gov (United States)

    1990-11-30

    This is our final report on the audit of Architect-Engineer Contracting for the Officer in Charge of Construction, Naval Facilities Engineering...Command Contracts, Mediterranean, for your information and use. This is the fourth in a series of reports issued as part of the audit of architect-engineer...A-E) contracting. The Contract Management Directorate made the audit from August 1989 through July 1990. When we expanded the audit scope to include

  6. Status of an advanced radioisotope space power system using free-piston Stirling technology

    International Nuclear Information System (INIS)

    White, M.A.; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

    1998-01-01

    This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel

  7. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits.

    Science.gov (United States)

    Baeg, Kang-Jun; Kim, Juhwan; Khim, Dongyoon; Caironi, Mario; Kim, Dong-Yu; You, In-Kyu; Quinn, Jordan R; Facchetti, Antonio; Noh, Yong-Young

    2011-08-01

    Ambipolar π-conjugated polymers may provide inexpensive large-area manufacturing of complementary integrated circuits (CICs) without requiring micro-patterning of the individual p- and n-channel semiconductors. However, current-generation ambipolar semiconductor-based CICs suffer from higher static power consumption, low operation frequencies, and degraded noise margins compared to complementary logics based on unipolar p- and n-channel organic field-effect transistors (OFETs). Here, we demonstrate a simple methodology to control charge injection and transport in ambipolar OFETs via engineering of the electrical contacts. Solution-processed caesium (Cs) salts, as electron-injection and hole-blocking layers at the interface between semiconductors and charge injection electrodes, significantly decrease the gold (Au) work function (∼4.1 eV) compared to that of a pristine Au electrode (∼4.7 eV). By controlling the electrode surface chemistry, excellent p-channel (hole mobility ∼0.1-0.6 cm(2)/(Vs)) and n-channel (electron mobility ∼0.1-0.3 cm(2)/(Vs)) OFET characteristics with the same semiconductor are demonstrated. Most importantly, in these OFETs the counterpart charge carrier currents are highly suppressed for depletion mode operation (I(off) 0.1-0.2 mA). Thus, high-performance, truly complementary inverters (high gain >50 and high noise margin >75% of ideal value) and ring oscillators (oscillation frequency ∼12 kHz) based on a solution-processed ambipolar polymer are demonstrated.

  8. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    International Nuclear Information System (INIS)

    Curwen, P.W.; Rao, D.K.; Wilson, D.S.

    1992-06-01

    This report describes work performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061, open-quotes A Feasibility Assessment of Magnetic Bearings for Free-Piston Stirling Space Engines.close quotes The work was performed over the period from July 1990 through August 1991. The objective of the effort was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in future long-term space missions

  9. Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The objective of the project ''Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization'' was to combine the Danish experiences with the Stirling engine and updraft gasification with the application of the FLOX gas burner technology for developing and demonstrating a flexible biomass-based small scale CHP plant with 75 kW electrical output, high power efficiency and low emissions. Further, the project has aimed at increasing the technology's reliability and decreasing the need for service. Also, the project has included the development of a control and communication system for unmanned start-up and operation of the plant. During the project the objective was altered and so the development of a new Stirling engine design was done on the 4-cylindred 35 kWe Stirling engine instead of the 8-cylindred 75 kWe Stirling engine. Focus has been on designing a more durable engine designed for easy and fast service. Cold test of the engine has been successful and now full-scale hot tests are to be performed. In the project Stirling DK has also in cooperation with project partner Danish gas Technology Centre developed the Stirling Engine with Diluted Oxidation (SEDIOX) concept which is a combustion technology based on the diluted oxidation principle. A trademark is obtained and also a patent application is filed and pending regarding the SEDIOX combustion chamber concept. All components for the Stirling gasification plant were produced and installed at Svanholm Estate. The plant consisted of one conventional combustion chamber and one SD3E-type Stirling engine. The plant was commissioned in June 2009 and 1,472 hours of operation and 43 MWh of electricity production was achieved before the plant was de-commissioned in February 2010 due to divergences between Svanholm Estate and Stirling DK. During operation the control system including remote access was tested thoroughly and with great success. The new overall

  10. Stirling/hydraulic artificial heart power source

    International Nuclear Information System (INIS)

    Johnston, R.P.; Bennett, A.; Emigh, S.G.; Griffith, W.R.; Noble, J.E.; Perrone, R.E.; White, M.A.; Martini, W.R.; Alexander, J.E.

    1977-01-01

    The REL power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has been achieved with an engine (2.6 years) and hydraulic actuator/controller (1.6 years). Peak power source efficiency is 15.5 percent on 5 to 10 watts delivered to the blood pump push plate with 33 watts steady thermal input. Planned incorporation of power source output control is expected to reduce daily average thermal input to 18 watts. Animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. Volume and weight are 0.93 liter and 2.4 kg (excluding blood pump) with an additional 0.4 liter of low temperature foam insulation required to preclude tissue thermal damage. Carefully planned development of System 7 is expected to produce major reductions in size

  11. Homogeneous charge compression ignition compared with Otto-Atkinson in a passenger car size engine

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Andreas

    2000-07-01

    The use of Homogeneous Charge Compression Ignition (HCCI) was investigated in an ordinary SI (spark ignition) engine, in this case a modified Volvo 850, working on one cylinder only, the others towed. The major purpose of this study was to examine whether there were the same kind of throttle losses in this engine as in a Diesel engine (Volvo TD 100). One reason for throttling is that HCCI causes very cold exhaust gases. The Diesel engine has a larger cylinder volume (1.6 compared to 0.5 litre), working at low engine speed (1000 rpm) and only two valves with comparably small area. The smaller Volvo 850 engine has four valves and was in this examination working at up to 3500 rpm. To make the engine run by HCCI following modifications were made. The compression was set to 20:1 by changing the piston. To affect the ignition an electrical heater was installed near the air inlet. Mixing iso-octane (ON 100) and N-heptane (ON 0) set the octane number. A couple of camshafts with different cam-profiles were used to achieve the right valve opening duration depending on which kind of combustion that was studied. There could then also be a comparison between Otto and HCCI combustion both working with wide-open throttle. To obtain comparable indicated mean effective pressure (IMEP) the engine was working with late (LIVC) or early inlet valve closing (EIVC) at SI combustion. Measurements were taken involving in-cylinder pressure, temperature, speed, fuel-consumption, emissions etc. Regarding emissions there were special consideration taken to hydrocarbon and NO{sub x}, which are known to be extremely high respectively low with HCCI combustion. Important questions that should be answered were: * How does higher engine speed affect the combustion ?, * How does the engine size affect emissions ?, * How much is the valve area affecting gas exchange losses ?, and * How high is the efficiency with HCCI compared with Otto (LIVC/EIVC) ?. The best results are achieved at an indicated mean

  12. Operational data and thermodynamic modeling of a Stirling-dish demonstration installation in desert conditions

    Science.gov (United States)

    Nilsson, Martin; Jamot, Jakob; Malm, Tommy

    2017-06-01

    To field test its Stirling-dish unit, Cleanergy AB of Sweden in Q1 2015 built a ten unit demo park in Dubai. The first STE (Solar Thermal Energy) generation of its Stirling genset, the C11S, had at its core an 11 kWel Stirling engine/generator combination. The genset was mated with a parabolic concentrator developed for the genset by a supplier. Local weather conditions in Dubai provide opportunities to test performance in an environment with high insolation and high ambient temperature. In addition, the conditions in Dubai are windy, salty, humid and dusty, historically challenging for solar technologies [1]. In Q1 2016 one of the C11S Stirling-dish units was replaced by the first prototype of Cleanergy's second generation Stirling genset, the Sunbox, and an in-house developed parabolic concentrator. Operational data from field testing during the spring of 2016 are presented and discussed and show the large performance improvement achieved with the Sunbox unit.

  13. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  14. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    Science.gov (United States)

    Lee, Chi M.; Schock, Harold J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.

  15. Free-piston Stirling component test power converter test results and potential Stirling applications

    Science.gov (United States)

    Dochat, G. R.

    1992-01-01

    As the principal contractor to NASA-Lewis Research Center, Mechanical Technology Incorporated is under contract to develop free-piston Stirling power converters in the context of the competitive multiyear Space Stirling Technology Program. The first generation Stirling power converter, the component test power converter (CTPC) initiated cold end testing in 1991, with hot testing scheduled for summer of 1992. This paper reviews the test progress of the CTPC and discusses the potential of Stirling technology for various potential missions at given point designs of 250 watts, 2500 watts, and 25,000 watts.

  16. Advanced Stirling Convertor Testing at GRC

    Science.gov (United States)

    Schifer, Nick; Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). The latest version of the ASC, deemed ASC-E3, is of a design identical to the forthcoming flight convertors. The first pair of ASC-E3 units was delivered in December 2012. GRC has begun the process of adding these units to the catalog of ongoing Stirling convertor operation. This process includes performance verification, which examines the data from various tests to validate the convertors performance to the product specification.

  17. Invited Review. Combustion instability in spray-guided stratified-charge engines. A review

    Energy Technology Data Exchange (ETDEWEB)

    Fansler, Todd D. [Univ. of Wisconsin, Madison, WI (United States); Reuss, D. L. [Univ. of Michigan, Ann Arbor, MI (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sick, V. [Univ. of Michigan, Ann Arbor, MI (United States); Dahms, R. N. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-02

    Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of the spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NOx and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.

  18. The 1988 overview of free-piston Stirling technology for space power at the NASA Lewis Research Center

    Science.gov (United States)

    Slaby, Jack G.

    1988-01-01

    The completion of the Space Power Demonstrator Engine (SPDE) testing is discussed, terminating with the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was greater than 22 percent. The SPDE recently was divided into 2 separate single cylinder engines, Space Power Research Engine (SPRE), that serves as test beds for the evaluation of key technology disciplines, which include hydrodynamic gas bearings, high efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor, the design, fabrication, test, and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE) to operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal. The first two phases of this program, the 650 K SPDE and the 1050 K SSE are emphasized.

  19. Multidimensional computer simulation of Stirling cycle engines

    Science.gov (United States)

    Hall, Charles A.; Porsching, Thomas A.

    1992-01-01

    This report summarizes the activities performed under NASA-Grant NAG3-1097 during 1991. During that period, work centered on the following tasks: (1) to investigate more effective solvers for ALGAE; (2) to modify the plotting package for ALGAE; and (3) to validate ALGAE by simulating oscillating flow problems similar to those studied by Kurzweg and Ibrahim.

  20. Online charge calibration of LHAASO-WCDA—a study with the engineering array

    Science.gov (United States)

    Gao, Bo; Chen, Ming-Jun; Gu, Min-Hao; Hao, Xin-Jun; Li, Hui-Cai; Wu, Han-Rong; Yao, Zhi-Guo; You, Xiao-Hao; Zhou, Bin

    2014-02-01

    LHAASO-WCDA is a large ground-based water Cherenkov detector array planned to be built at Shangri-La, Yunnan Province, China. As a major component of the LHAASO project, the main purpose of LHAASO-WCDA is to survey the northern sky for very-high-energy (above 100 GeV) gamma ray sources and measure the spectrum. To gain full knowledge of the water Cherenkov technique and to investigate the engineering issues, a 9-cell detector array has been built at the Yang-Ba-Jing site, neighboring the ARGO-YBJ experiment. With the array, charge calibration methods for both low and high ranges of the PMT readout are studied, whose result shows that a precision at several percentages can be reached, which can satisfy the requirement of the detector array. During the long term operation, the charge calibration stability and environmental affection are studied; in this paper, the results are discussed. These calibration methods are proposed to be applied in the future LHAASO-WCDA project.