WorldWideScience

Sample records for charged peptide clusters

  1. On Charged Insulated Metallic Clusters

    Science.gov (United States)

    Dietrich, K.; Garny, M.; Pomorski, K.

    We determine the wavefunctions and eigen-values of electrons bound to a positively charged mesoscopic metallic cluster covered by an insulating surface layer. The radius of the metal core and the thickness of the insulating surface layer are of the order of a couple of Ångström. We study in particular the electromagnetic decay of externally located electrons into unoccupied internally located states which exhibits a resonance behaviour. This resonance structure has the consequence that the lifetime of the "mesoscopic atoms" may vary by up to 6 orders of magnitude depending on the values of the parameters (from sec to years).

  2. Amine reactivity with charged sulfuric acid clusters

    Directory of Open Access Journals (Sweden)

    B. R. Bzdek

    2011-08-01

    Full Text Available The distribution of charged species produced by electrospray of an ammonium sulfate solution in both positive and negative polarities is examined using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS. Positively-charged ammonium bisulfate cluster composition differs significantly from negatively-charged cluster composition. For positively-charged clusters all sulfuric acid is neutralized to bisulfate, whereas for negatively-charged clusters the degree of sulfuric acid neutralization is cluster size-dependent. With increasing cluster size (and, therefore, a decreasing role of charge, both positively- and negatively-charged cluster compositions converge toward ammonium bisulfate. The reactivity of negatively-charged sulfuric acid-ammonia clusters with dimethylamine and ammonia is also investigated by FTICR-MS. Two series of negatively-charged clusters are investigated: [(HSO4(H2SO4x] and [(NH4x(HSO4x+1(H2SO43]. Dimethylamine substitution for ammonia in [(NH4 x(HSO4 x+1(H2SO43] clusters is nearly collision-limited, and subsequent addition of dimethylamine to neutralize H2SO4 to bisulfate is within one order of magnitude of the substitution rate. Dimethylamine addition to [(HSO4 (H2SO4 x] clusters is either not observed or very slow. The results of this study indicate that amine chemistry will be evident and important only in large ambient negative ions (>m/z 400, whereas amine chemistry may be evident in small ambient positive ions. Addition of ammonia to unneutralized clusters occurs at a rate that is ~2–3 orders of magnitude slower than incorporation of dimethylamine either by substitution or addition

  3. Charge Transport Phenomena in Peptide Molecular Junctions

    Directory of Open Access Journals (Sweden)

    Alessandra Luchini

    2008-01-01

    Full Text Available Inelastic electron tunneling spectroscopy (IETS is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nanoelectronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  4. Multiply-negatively charged aluminium clusters and fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Noelle

    2008-07-15

    Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)

  5. Dynamics and thermodynamics of decay in charged clusters

    CERN Document Server

    Miller, Mark A; Moerland, Christian P; Gray, Sarah J; Gaigeot, Marie-Pierre

    2015-01-01

    We propose a method for quantifying charge-driven instabilities in clusters, based on equilibrium simulations under confinement at constant external pressure. This approach makes no assumptions about the mode of decay and allows different clusters to be compared on an equal footing. A comprehensive survey of stability in model clusters of 309 Lennard-Jones particles augmented with Coulomb interactions is presented. We proceed to examine dynamic signatures of instability, finding that rate constants for ejection of charged particles increase smoothly as a function of total charge with no sudden changes. For clusters where many particles carry charge, ejection of individual charges competes with a fission process that leads to more symmetric division of the cluster into large fragments. The rate constants for fission depend much more sensitively on total charge than those for ejection of individual particles.

  6. Peptide protected gold clusters: chemical synthesis and biomedical applications

    Science.gov (United States)

    Yuan, Qing; Wang, Yaling; Zhao, Lina; Liu, Ru; Gao, Fuping; Gao, Liang; Gao, Xueyun

    2016-06-01

    Bridging the gap between atoms and nanoparticles, noble metal clusters with atomic precision continue to attract considerable attention due to their important applications in catalysis, energy transformation, biosensing and biomedicine. Greatly different to common chemical synthesis, a one-step biomimetic synthesis of peptide-conjugated metal clusters has been developed to meet the demand of emerging bioapplications. Under mild conditions, multifunctional peptides containing metal capturing, reactive and targeting groups are rationally designed and elaborately synthesized to fabricate atomically precise peptide protected metal clusters. Among them, peptide-protected Au Cs (peptide-Au Cs) possess a great deal of exceptional advantages such as nanometer dimensions, high photostability, good biocompatibility, accurate chemical formula and specific protein targeting capacity. In this review article, we focus on the recent advances in potential theranostic fields by introducing the rising progress of peptide-Au Cs for biological imaging, biological analysis and therapeutic applications. The interactions between Au Cs and biological systems as well as potential mechanisms are also our concerned theme. We expect that the rapidly growing interest in Au Cs-based theranostic applications will attract broader concerns across various disciplines.

  7. Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels.

    Science.gov (United States)

    Berdugo, Cristina; Nalluri, Siva Krishna Mohan; Javid, Nadeem; Escuder, Beatriu; Miravet, Juan F; Ulijn, Rein V

    2015-11-25

    Coupling of peptide self-assembly to dynamic sequence exchange provides a useful approach for the discovery of self-assembling materials. In here, we demonstrate the discovery and optimization of aqueous, gel-phase nanostructures based on dynamically exchanging peptide sequences that self-select to maximize charge transfer of n-type semiconducting naphthalenediimide (NDI)-dipeptide bioconjugates with various π-electron-rich donors (dialkoxy/hydroxy/amino-naphthalene or pyrene derivatives). These gel-phase peptide libraries are characterized by spectroscopy (UV-vis and fluorescence), microscopy (TEM), HPLC, and oscillatory rheology and it is found that, of the various peptide sequences explored (tyrosine Y-NDI with tyrosine Y, phenylalanine F, leucine L, valine V, alanine A or glycine G-NH2), the optimum sequence is tyrosine-phenylalanine in each case; however, both its absolute and relative yield amplification is dictated by the properties of the donor component, indicating cooperativity of peptide sequence and donor/acceptor pairs in assembly. The methodology provides an in situ discovery tool for nanostructures that enable dynamic interfacing of supramolecular electronics with aqueous (biological) systems. PMID:26540455

  8. Role of acetylation and charge in antimicrobial peptides based on human beta-defensin-3.

    Science.gov (United States)

    Papanastasiou, Emilios Andrew; Hua, Quyen; Sandouk, Aline; Son, U Hyon; Christenson, Andrew James; Van Hoek, Monique Louise; Bishop, Barney Michael

    2009-07-01

    Cationic antimicrobial peptides are an evolutionarily ancient and essential element of innate immunity in higher organisms. The precise mechanism by which these peptides exert their antimicrobial activity on bacteria is not well understood. Decapeptides based on the C-terminus of human beta-defensin-3 were designed and evaluated to study the role of charge in defining the antimicrobial activity and selectivity of these peptides against Escherichia coli. Acetylated derivatives of these peptides were prepared in order to further evaluate how positively charged primary amines contribute to potency in these small antimicrobial peptides. These peptides enabled us to explore the relationship between net charge, charge distribution and antimicrobial activity. While the results indicate that net charge is a major factor in antimicrobial activity in these peptides, the actual relationship between charge and potency appears to be more complex.

  9. Alternating strings and clusters in suspensions of charged colloids

    CERN Document Server

    Everts, Jeffrey C; van Blaaderen, Alfons; van Roij, René

    2016-01-01

    We report the formation of alternating strings and clusters in a binary suspension of repulsive charged colloids with double layers larger than the particle size. Within a binary cell model we include many-body and charge-regulation effects under the assumption of a constant surface po- tential, and consider their repercussions on the two-particle interaction potential. We find that the formation of induced dipoles close to a charge-reversed state may explain the formation of these structures. Finally, we will touch upon the formation of dumbbells and small clusters in a one-component system, where the effective electrostatic interaction is always repulsive.

  10. EKylation: Addition of an Alternating-Charge Peptide Stabilizes Proteins.

    Science.gov (United States)

    Liu, Erik J; Sinclair, Andrew; Keefe, Andrew J; Nannenga, Brent L; Coyle, Brandon L; Baneyx, François; Jiang, Shaoyi

    2015-10-12

    For nearly 40 years, therapeutic proteins have been stabilized by chemical conjugation of polyethylene glycol (PEG), but recently zwitterionic materials have proved to be a more effective substitute. In this work, we demonstrate that genetic fusion of alternating-charge extensions consisting of anionic glutamic acid (E) and cationic lysine (K) is an effective strategy for protein stabilization. This bioinspired "EKylation" method not only confers the stabilizing benefits of poly(zwitterions) but also allows for rapid biosynthesis of target constructs. Poly(EK) peptides of different predetermined lengths were appended to the C-terminus of a native β-lactamase and its destabilized TEM-19 mutant. The EK-modified enzymes retained biological activity and exhibited increased stability to environmental stressors such as high temperature and high-salt solutions. This one-step strategy provides a broadly applicable alternative to synthetic polymer conjugation that is biocompatible and degradable. PMID:26407134

  11. PepServe: a web server for peptide analysis, clustering and visualization

    Science.gov (United States)

    Alexandridou, Anastasia; Dovrolis, Nikolas; Tsangaris, George Th.; Nikita, Konstantina; Spyrou, George

    2011-01-01

    Peptides, either as protein fragments or as naturally occurring entities are characterized by their sequence and function features. Many times the researchers need to massively manage peptide lists concerning protein identification, biomarker discovery, bioactivity, immune response or other functionalities. We present a web server that manages peptide lists in terms of feature analysis as well as interactive clustering and visualization of the given peptides. PepServe is a useful tool in the understanding of the peptide feature distribution among a group of peptides. The PepServe web application is freely available at http://bioserver-1.bioacademy.gr/Bioserver/PepServe/. PMID:21572105

  12. Simultaneous alignment and clustering of peptide data using a Gibbs sampling approach

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Lund, Ole; Nielsen, Morten

    2013-01-01

    peptide datasets, however, is a complex task, especially when the data contain multiple receptor binding motifs, and/or the motifs are found at different locations within distinct peptides.Results: The algorithm presented in this article, based on Gibbs sampling, identifies multiple specificities......Motivation: Proteins recognizing short peptide fragments play a central role in cellular signaling. As a result of high-throughput technologies, peptide-binding protein specificities can be studied using large peptide libraries at dramatically lower cost and time. Interpretation of such large...... in peptide data by performing two essential tasks simultaneously: alignment and clustering of peptide data. We apply the method to de-convolute binding motifs in a panel of peptide datasets with different degrees of complexity spanning from the simplest case of pre-aligned fixed-length peptides to cases...

  13. Charging dynamics of metal clusters in intense laser fields

    Science.gov (United States)

    Döppner, T.; Teuber, S.; Schumacher, M.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    2000-09-01

    Clusters of heavy metal atoms in strong femtosecond laser-light fields undergo multi-ionization with the loss of hundreds of electrons. The cross section largely exceeds that of corresponding isolated atoms, which leads in the case of PbN to a complete ionization of the 4f shell with a light intensity of 1.2×1015 W/cm2. Experimental investigations on Pb and Pt clusters with variable pulse widths and, for the first time, with the pump&probe technique give insight into the dynamics of the coupling of electromagnetic radiation into the clusters. Both approaches support the picture according to which, after an initial charging, the clusters expand due to Coulomb forces. This expansion is accompanied by a reduction of the electron density and at the same time by an increase of the optical sensitivity. Once the plasmon energy of the diluted nanoplasma approaches the photon energy, the charging efficiency increases significantly. The experimental observations are confirmed by random-phase approximation (RPA) calculations of the optical response, including molecular-dynamics simulations of the expanding systems.

  14. Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X

    DEFF Research Database (Denmark)

    Etzerodt, Thomas Povl; Henriksen, Jonas Rosager; Rasmussen, Palle;

    2011-01-01

    and positioning of the peptide in the membrane caused by either PA or OA acylation play a critical role in the fine-tuning of the effective charge of the peptide and thereby the fine-tuning of the peptide's selectivity between neutral and negatively charged lipid membranes. This finding is unique compared......The partitioning of the wasp venom peptide mastoparan-X (MPX) into neutral and negatively charged lipid membranes has been compared with two new synthetic analogs of MPX where the Nα-terminal of MPX was acylated with propanoic acid (PA) and octanoic acid (OA). The acylation caused a considerable...... change in the membrane partitioning properties of MPX and it was found that the shorter acylation with PA gave improved affinity and selectivity toward negatively charged membranes, whereas OA decreased the selectivity. Based on these findings, we hypothesize that minor differences in the embedding...

  15. Effect of solid surface charge on the binding behaviour of a metal-binding peptide

    OpenAIRE

    Donatan, Senem; Sarikaya, Mehmet; TAMERLER, Candan; Urgen, Mustafa

    2012-01-01

    Over the last decade, solid-binding peptides have been increasingly used as molecular building blocks coupling bio- and nanotechnology. Despite considerable research being invested in this field, the effects of many surface-related parameters that define the binding of peptide to solids are still unknown. In the quest to control biological molecules at solid interfaces and, thereby, tailoring the binding characteristics of the peptides, the use of surface charge of the solid surface may proba...

  16. Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces.

    Directory of Open Access Journals (Sweden)

    Yuri N Antonenko

    Full Text Available Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin. Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i by the decreased diffusional PLL mobility D(PLL and (ii by an increased lifetime τ(PLL of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither D(PLL nor τ(P changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.

  17. The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.

    Directory of Open Access Journals (Sweden)

    Ari Morgenthau

    Full Text Available Lactoferrin binding protein B (LbpB is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein's C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides.

  18. The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.

    Science.gov (United States)

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein's C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. PMID:24465982

  19. Peptide sequencing and characterization of post-translational modifications by enhanced ion-charging and liquid chromatography electron-transfer dissociation tandem mass spectrometry

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Giessing, Anders; Ingrell, Christian R;

    2007-01-01

    system coupled to an ESI tandem mass spectrometer. Addition of just 0.1% m-NBA changed the average charge state for the identified tryptic BSA peptides from 2.2+ to 2.6+. As a result, the predominant charge states for BSA peptides were changed from 2+ to > or =3+. To evaluate the benefits of peptide...... charge enhancement, the ETD fragmentation efficiency and Mascot peptide score were compared for BSA peptides in charge states 2+ and 3+. In all cases but one, triply charged peptides fragmented more efficiently than the analogues 2+ peptide ions. On average, triply charged peptides received a 68% higher...

  20. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain

    Directory of Open Access Journals (Sweden)

    Nederbragt Alexander J

    2009-08-01

    Full Text Available Abstract Background Cyanobacteria often produce several different oligopeptides, with unknown biological functions, by nonribosomal peptide synthetases (NRPS. Although some cyanobacterial NRPS gene cluster types are well described, the entire NRPS genomic content within a single cyanobacterial strain has never been investigated. Here we have combined a genome-wide analysis using massive parallel pyrosequencing ("454" and mass spectrometry screening of oligopeptides produced in the strain Planktothrix rubescens NIVA CYA 98 in order to identify all putative gene clusters for oligopeptides. Results Thirteen types of oligopeptides were uncovered by mass spectrometry (MS analyses. Microcystin, cyanopeptolin and aeruginosin synthetases, highly similar to already characterized NRPS, were present in the genome. Two novel NRPS gene clusters were associated with production of anabaenopeptins and microginins, respectively. Sequence-depth of the genome and real-time PCR data revealed three copies of the microginin gene cluster. Since NRPS gene cluster candidates for microviridin and oscillatorin synthesis could not be found, putative (gene encoded precursor peptide sequences to microviridin and oscillatorin were found in the genes mdnA and oscA, respectively. The genes flanking the microviridin and oscillatorin precursor genes encode putative modifying enzymes of the precursor oligopeptides. We therefore propose ribosomal pathways involving modifications and cyclisation for microviridin and oscillatorin. The microviridin, anabaenopeptin and cyanopeptolin gene clusters are situated in close proximity to each other, constituting an oligopeptide island. Conclusion Altogether seven nonribosomal peptide synthetase (NRPS gene clusters and two gene clusters putatively encoding ribosomal oligopeptide biosynthetic pathways were revealed. Our results demonstrate that whole genome shotgun sequencing combined with MS-directed determination of oligopeptides successfully

  1. Clustering of settling charged particles in turbulence: theory and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jiang; Nordsiek, Hansen; Shaw, Raymond A, E-mail: rashaw@mtu.edu [Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2010-12-15

    Atmospheric clouds, electrosprays and protoplanetary nebula (dusty plasma) contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. We have developed a theoretical description of the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions (RDFs) to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb 'terminal' speed to the turbulence dissipation velocity scale) and the settling parameter (the ratio of the gravitational terminal speed to the turbulence dissipation velocity scale). The theory is compared to measured RDFs for water particles in homogeneous, isotropic air turbulence. The RDFs are obtained from particle positions measured in three dimensions using digital holography. The measurements verify the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of 'gravity' is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity.

  2. Characterization of Protein and Peptide Binding to Nanogels Formed by Differently Charged Chitosan Derivatives

    Directory of Open Access Journals (Sweden)

    Anastasia Zubareva

    2013-07-01

    Full Text Available Chitosan (Chi is a natural biodegradable cationic polymer with remarkable potency as a vehicle for drug or vaccine delivery. Chi possesses multiple groups, which can be used both for Chi derivatization and for particle formation. The aim of this work was to produce stable nanosized range Chi gels (nanogels, NGs with different charge and to study the driving forces of complex formation between Chi NGs and proteins or peptides. Positively charged NGs of 150 nm in diameter were prepared from hexanoyl chitosan (HC by the ionotropic gelation method while negatively charged NGs of 190 nm were obtained from succinoyl Chi (SC by a Ca2+ coacervation approach. NGs were loaded with a panel of proteins or peptides with different weights and charges. We show that NGs preferentially formed complexes with oppositely charged molecules, especially peptides, as was demonstrated by gel-electrophoresis, confocal microscopy and HPLC. Complex formation was accompanied by a change in zeta-potential and decrease in size. We concluded that complex formation between Chi NGs and peptide/proteins is mediated mostly by electrostatic interactions.

  3. Cell-Penetrating Ability of Peptide Hormones: Key Role of Glycosaminoglycans Clustering

    Directory of Open Access Journals (Sweden)

    Armelle Tchoumi Neree

    2015-11-01

    Full Text Available Over the last two decades, the potential usage of cell-penetrating peptides (CPPs for the intracellular delivery of various molecules has prompted the identification of novel peptidic identities. However, cytotoxic effects and unpredicted immunological responses have often limited the use of various CPP sequences in the clinic. To overcome these issues, the usage of endogenous peptides appears as an appropriate alternative approach. The hormone pituitary adenylate-cyclase-activating polypeptide (PACAP38 has been recently identified as a novel and very efficient CPP. This 38-residue polycationic peptide is a member of the secretin/glucagon/growth hormone-releasing hormone (GHRH superfamily, with which PACAP38 shares high structural and conformational homologies. In this study, we evaluated the cell-penetrating ability of cationic peptide hormones in the context of the expression of cell surface glycosaminoglycans (GAGs. Our results indicated that among all peptides evaluated, PACAP38 was unique for its potent efficiency of cellular uptake. Interestingly, the abilities of the peptides to reach the intracellular space did not correlate with their binding affinities to sulfated GAGs, but rather to their capacity to clustered heparin in vitro. This study demonstrates that the uptake efficiency of a given cationic CPP does not necessarily correlate with its affinity to sulfated GAGs and that its ability to cluster GAGs should be considered for the identification of novel peptidic sequences with potent cellular penetrating properties.

  4. Dynamical Interactions of 5-Fluorouracil Drug with Dendritic Peptide Vectors: The Impact of Dendrimer Generation, Charge, Counterions, and Structured Water.

    Science.gov (United States)

    De Luca, Sergio; Seal, Prasenjit; Ouyang, Defang; Parekh, Harendra S; Kannam, Sridhar Kumar; Smith, Sean C

    2016-06-30

    Molecular dynamics simulations are utilized to investigate the interactions between the skin cancer drug 5-fluorouracil (5FU) and peptide-based dendritic carrier systems. We find that these drug-carrier interactions do not conform to the traditional picture of long-time retention of the drug within a hydrophobic core of the dendrimer carrier. Rather, 5FU, which is moderately soluble in its own right, experiences weak, transient chattering interactions all over the dendrimer, mediated through multiple short-lived hydrogen bonding and close contact events. We find that charge on the periphery of the dendrimer actually has a negative effect on the frequency of drug-carrier interactions due to a counterion screening effect that has not previously been observed. However, charge is nevertheless an important feature since neutral dendrimers are shown to have a significant mutual attraction that can lead to clustering or agglomeration. This clustering is prevented due to charge repulsion for the titrated dendrimers, such that they remain independent in solution. PMID:27267604

  5. Charge Exchange, from the Laboratory to Galaxy Clusters

    Science.gov (United States)

    Betancourt-Martinez, Gabriele; Beiersdorfer, Peter; Brown, Gregory; Hell, Natalie; Leutenegger, Maurice A.; Porter, Frederick S.; Reynolds, Christopher S.

    2016-04-01

    X-ray emission due to charge exchange (CX) between solar wind ions and neutrals in comets and planetary atmospheres is ubiquitous in the solar system, and is also a significant foreground in all observations from low-Earth orbit. It is also possible that CX is common astrophysically, in any environment where hot plasma and cold gas interact. A current challenge is that theoretical models of CX spectra do not always accurately describe observations, and require further experimental verification. This is especially important to focus on now, as the recent launch of Astro-H is providing us with the first high-resolution spectra of extended x-ray sources. In order to improve our understanding and modeling of CX spectra, we take advantage of the laboratory astrophysics program at the Lawrence Livermore National Laboratory and use an Electron Beam Ion Trap (EBIT) to perform CX experiments, using the EBIT Calorimeter Spectrometer. We present experimental benchmarks that can be used to develop a more comprehensive and accurate CX theory. On the observational side, we also investigate the possibility of CX occurring in the filaments around the central galaxy of the Perseus cluster, NGC 1275. We use Chandra ACIS data, combined with what we know about laboratory CX spectra, to investigate the possibility of CX being a significant contributor to the x-ray emission.

  6. PEPTIDE SOLUBILITY, STRUCTURE AND CHARGE POSITION EFFECT ON ADSORPTION BY ALUMINIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Mary Trujillo

    2008-04-01

    Full Text Available Solubility, structure and position of charges in a peptide antigen sequence can be mentioned as being amongst the basic features of adsorption. In order to study their effect on adsorption, seven analogue series were synthesized from a MSP-1 peptide sequence by systematically replacing each one of the positions in the peptide sequence by aspartic acid, glutamic acid, serine, alanine, asparagine, glutamine or lysine. Such modifications in analogue peptide sequences showed a non-regular tendency regarding solubility and adsorption data. Aspartic acid and Glutamic acid analogue series showed great improvements in adsorption, especially in peptides where Lysine in position 6 and Arginine in position 13 were replaced. Solubility of position 5 analogue was greater than the position 6 analogue in Aspartic acid series; however, the position 6 analogue showed best adsorption results whilst the Aspartic acid in position 5 analogue showed no adsorption in the same conditions. Nuclear Magnetic Resonance structural analysis revealed differences in the -helical structureextension between these analogues. The Aspartic acid in position 6, located in the polar side of the helix, may allow this analogueto fit better onto the adsorption regions suggesting that the local electrostatic charge is responsible for this behavior.

  7. High-confidence de novo peptide sequencing using positive charge derivatization and tandem MS spectra merging.

    Science.gov (United States)

    An, Mingrui; Zou, Xiao; Wang, Qingsong; Zhao, Xuyang; Wu, Jing; Xu, Li-Ming; Shen, Hong-Yan; Xiao, Xueyuan; He, Dacheng; Ji, Jianguo

    2013-05-01

    De novo peptide sequencing holds great promise in discovering new protein sequences and modifications but has often been hindered by low success rate of mass spectra interpretation, mainly due to the diversity of fragment ion types and insufficient information for each ion series. Here, we describe a novel methodology that combines highly efficient on-tip charge derivatization and tandem MS spectra merging, which greatly boosts the performance of interpretation. TMPP-Ac-OSu (succinimidyloxycarbonylmethyl tris(2,4,6-trimethoxyphenyl)phosphonium bromide) was used to derivatize peptides at N-termini on tips to reduce mass spectra complexity. Then, a novel approach of spectra merging was adopted to combine the benefits of collision-induced dissociation (CID) and electron transfer dissociation (ETD) fragmentation. We applied this methodology to rat C6 glioma cells and the Cyprinus carpio and searched the resulting peptide sequences against the protein database. Then, we achieved thousands of high-confidence peptide sequences, a level that conventional de novo sequencing methods could not reach. Next, we identified dozens of novel peptide sequences by homology searching of sequences that were fully backbone covered but unmatched during the database search. Furthermore, we randomly chose 34 sequences discovered in rat C6 cells and verified them. Finally, we conclude that this novel methodology that combines on-tip positive charge derivatization and tandem MS spectra merging will greatly facilitate the discovery of novel proteins and the proteome analysis of nonmodel organisms. PMID:23536960

  8. Delta-sleep inducing peptide entrapment in the charged macroporous matrices

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanova, Tatiana V., E-mail: sukhanovat@mail.ru [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Cell Interactions, Miklukho-Maklaya st., 16/10 Moscow (Russian Federation); Artyukhov, Alexander A.; Gurevich, Yakov M.; Semenikhina, Marina A. [Mendeleyev University of Chemical Technology of Russia, Research and Teaching Center “Biomaterials”, Miusskaya sq., 9 Moscow (Russian Federation); Prudchenko, Igor A. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Peptide Chemistry, Miklukho-Maklaya st., 16/10 Moscow (Russian Federation); Shtilman, Mikhail I. [Mendeleyev University of Chemical Technology of Russia, Research and Teaching Center “Biomaterials”, Miusskaya sq., 9 Moscow (Russian Federation); Markvicheva, Elena A. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Laboratory Polymers for Biology, Miklukho-Maklaya st., 16/10 Moscow (Russian Federation)

    2014-09-01

    Various biomolecules, for example proteins, peptides etc., entrapped in polymer matrices, impact interactions between matrix and cells, including stimulation of cell adhesion and proliferation. Delta-sleep inducing peptide (DSIP) possesses numerous beneficial properties, including its abilities in burn treatment and neuronal protection. DSIP entrapment in two macroporous polymer matrices based on copolymer of dimethylaminoethyl methacrylate and methylen-bis-acrylamide (Co-DMAEMA-MBAA) and copolymer of acrylic acid and methylen-bis-acrylamide (Co-AA-MBAA) has been studied. Quite 100% of DSIP has been entrapped into positively charged Co-DMAEMA-MBAA matrix, while the quantity of DSIP adsorbed on negatively charged Co-AA-MBAA was only 2–6%. DSIP release from Co-DMAEMA-MBAA was observed in saline solutions (0.9% NaCl and PBS) while there was no DSIP release in water or 25% ethanol, thus ionic strength was a reason of this process. - Graphical abstract: Delta-sleep inducing peptide possessing neuroprotective and wound healing properties was adsorbed on positively charged polymer matrix Co-DMAEMA-MBAA for tissue engineering. The peptide released from Co-DMAEMA-MBAA matrix in function of ionic strength of solution, pH decreasing stimulated peptide release from Co-DMAEMA-MBAA matrix for 3 h. This construction could be a base of new bioactive implants. - Highlights: • Macroporous positively charged Co-DMAEMA-MBAA matrix pore size was 20–35 μm. • DSIP was adsorbed on Co-DMAEMA-MBAA totally in 16 h. • Its release depends on ionic strength of solution (no release in 25% ethanol or water). • Co-DMAEMA-MBAA matrix swelling depends on pH and ionic strength of solution. • DSIP is destroyed in PBS and 0.9% NaCl in 5 days, but in water it was more stable.

  9. Delta-sleep inducing peptide entrapment in the charged macroporous matrices

    International Nuclear Information System (INIS)

    Various biomolecules, for example proteins, peptides etc., entrapped in polymer matrices, impact interactions between matrix and cells, including stimulation of cell adhesion and proliferation. Delta-sleep inducing peptide (DSIP) possesses numerous beneficial properties, including its abilities in burn treatment and neuronal protection. DSIP entrapment in two macroporous polymer matrices based on copolymer of dimethylaminoethyl methacrylate and methylen-bis-acrylamide (Co-DMAEMA-MBAA) and copolymer of acrylic acid and methylen-bis-acrylamide (Co-AA-MBAA) has been studied. Quite 100% of DSIP has been entrapped into positively charged Co-DMAEMA-MBAA matrix, while the quantity of DSIP adsorbed on negatively charged Co-AA-MBAA was only 2–6%. DSIP release from Co-DMAEMA-MBAA was observed in saline solutions (0.9% NaCl and PBS) while there was no DSIP release in water or 25% ethanol, thus ionic strength was a reason of this process. - Graphical abstract: Delta-sleep inducing peptide possessing neuroprotective and wound healing properties was adsorbed on positively charged polymer matrix Co-DMAEMA-MBAA for tissue engineering. The peptide released from Co-DMAEMA-MBAA matrix in function of ionic strength of solution, pH decreasing stimulated peptide release from Co-DMAEMA-MBAA matrix for 3 h. This construction could be a base of new bioactive implants. - Highlights: • Macroporous positively charged Co-DMAEMA-MBAA matrix pore size was 20–35 μm. • DSIP was adsorbed on Co-DMAEMA-MBAA totally in 16 h. • Its release depends on ionic strength of solution (no release in 25% ethanol or water). • Co-DMAEMA-MBAA matrix swelling depends on pH and ionic strength of solution. • DSIP is destroyed in PBS and 0.9% NaCl in 5 days, but in water it was more stable

  10. Strong Electrostatic Interactions Lead to Entropically Favorable Binding of Peptides to Charged Surfaces.

    Science.gov (United States)

    Sprenger, K G; Pfaendtner, Jim

    2016-06-01

    Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution

  11. Spatial distribution of ion charges in fast, partially stripped clusters traversing solid targets

    International Nuclear Information System (INIS)

    Joint statistical description of the distribution of ion charge states and the spatial structure of a cluster, made of heavy ions, allows a self-consistent generalization of the Brandt-Kitagawa variational theory, including dynamically-screened inter-ionic interactions, in a form of a non-linear integral equation. Solution of such an equation for fast clusters passing very thin foils shows the familiar reduction of charge per ion, compared to the charge on an isotactic ion, which is rather non-homogeneously distributed throughout the volume of the cluster. As a consequence, the distribution of individual ion charges in the cluster exhibits large dispersion around an average value, which drops with the increasing cluster size

  12. Spatial distribution of ion charges in fast, partially stripped clusters traversing solid targets

    CERN Document Server

    Miskovic, Z L; Goodman, F O; Wang, Y N

    2002-01-01

    Joint statistical description of the distribution of ion charge states and the spatial structure of a cluster, made of heavy ions, allows a self-consistent generalization of the Brandt-Kitagawa variational theory, including dynamically-screened inter-ionic interactions, in a form of a non-linear integral equation. Solution of such an equation for fast clusters passing very thin foils shows the familiar reduction of charge per ion, compared to the charge on an isotactic ion, which is rather non-homogeneously distributed throughout the volume of the cluster. As a consequence, the distribution of individual ion charges in the cluster exhibits large dispersion around an average value, which drops with the increasing cluster size.

  13. Effects of Charge Location on the Absorptions and Lifetimes of Protonated Tyrosine Peptides in Vacuo

    DEFF Research Database (Denmark)

    Kelly, O.; Calvert, C.R.; Greenwood, J.B.;

    2012-01-01

    ions had a maximum absorption at ~275 nm. Lifetimes after photoexcitation were found to shorten upon protonation and lengthen upon CE complexation, in accordance with the increased number of degrees of freedom and an increase in activation energies for dissociation as the mobile proton model......Nearby charges affect the electronic energy levels of chromophores, with the extent of the effect being determined by the magnitude of the charge and degree of charge-chromophore separation. The molecular configuration dictates the charge–chromophore distance. Hence, in this study, we aim to assess...... how the location of the charge influences the absorption of a set of model protonated and diprotonated peptide ions, and whether spectral differences are large enough to be identified. The studied ions were the dipeptide YK, the tripeptide KYK (Y = tyrosine; K = lysine) and their complexes with 18...

  14. Charge properties of peptides derived from casein affect their bioavailability and cytoprotection against H2O2-induced oxidative stress.

    Science.gov (United States)

    Wang, Bo; Xie, Ningning; Li, Bo

    2016-04-01

    The effects of charge properties of casein peptides on absorption stability, antioxidant activity, and cytoprotection were evaluated. Alcalase hydrolysates of casein were separated into 4 fractions by cation-exchange chromatography according to charge properties. After simulated digestion and Caco-2 cell transmembrane transport, we determined the total antioxidant capacity (Trolox equivalent antioxidative capacity and oxygen radical antioxidant activity) and nitrogen content of peptide fractions to estimate available antioxidant efficacy and bioavailability (BA) of peptides. Results showed that negatively charged peptide fractions had greater BA and antioxidant activities after digestion and absorption. The peptide permeates were used to test the cytoprotective effect against H2O2-induced oxidative damage in HepG-2 cells. All peptide permeates increased cell viability, elevated catalase activity, and decreased superoxide dismutase activity. However, negatively charged peptide fractions preserved cell viability to a greater degree. Therefore, the negatively charged peptides from casein may be potential antioxidants and could be used as ingredients in functional foods and dietary supplements. PMID:26851854

  15. Photoinitated charge separation in a hybrid titanium dioxide metalloporphyrin peptide material

    Science.gov (United States)

    Fry, H. Christopher; Liu, Yuzi; Dimitrijevic, Nada M.; Rajh, Tijana

    2014-08-01

    In natural systems, electron flow is mediated by proteins that spatially organize donor and acceptor molecules with great precision. Achieving this guided, directional flow of information is a desirable feature in photovoltaic media. Here, we design self-assembled peptide materials that organize multiple electronic components capable of performing photoinduced charge separation. Two peptides, c16-AHL3K3-CO2H and c16-AHL3K9-CO2H, self-assemble into fibres and provide a scaffold capable of binding a metalloporphyrin via histidine axial ligation and mineralize titanium dioxide (TiO2) on the lysine-rich surface of the resulting fibrous structures. Electron paramagnetic resonance studies of this self-assembled material under continuous light excitation demonstrate charge separation induced by excitation of the metalloporphyrin and mediated by the peptide assembly structure. This approach to dye-sensitized semiconducting materials offers a means to spatially control the dye molecule with respect to the semiconducting material through careful, strategic peptide design.

  16. Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin.

    Science.gov (United States)

    Bai, Yang; Liu, Shouping; Jiang, Ping; Zhou, Lei; Li, Jing; Tang, Charles; Verma, Chandra; Mu, Yuguang; Beuerman, Roger W; Pervushin, Konstantin

    2009-08-01

    Defensins are small (3-5 kDa) cysteine-rich cationic proteins found in both vertebrates and invertebrates constituting the front line of host innate immunity. Despite intensive research, bactericidal and cytotoxic mechanisms of defensins are still largely unknown. Moreover, we recently demonstrated that small peptides derived from defensins are even more potent bactericidal agents with less toxicity toward host cells. In this paper, structures of three C-terminal (R36-K45) analogues of human beta-defensin-3 were studied by 1H NMR spectroscopy and extensive molecular dynamics simulations. Because of indications that these peptides might target the inner bacterial membrane, they were reconstituted in dodecylphosphocholine or dodecylphosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] mixed micelles, and lipid bicelles mimicking the phospholipid-constituted bilayer membrane of mammalian and bacterial cells. The results show that the binding affinity and partitioning into the lipid phase and the ability to dimerize and accrete well-defined structures upon interactions with lipid membranes contribute to compactization of positive charges within peptide oligomers. The peptide charge density, mediated by corresponding three-dimensional structures, was found to directly correlate with the antimicrobial activity. These novel observations may provide a new rationale for the design of improved antimicrobial agents.

  17. Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns.

    Science.gov (United States)

    Huang, Yingying; Triscari, Joseph M; Tseng, George C; Pasa-Tolic, Ljiljana; Lipton, Mary S; Smith, Richard D; Wysocki, Vicki H

    2005-09-15

    Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describing cleavages at all Xxx-Zzz residue combinations for b and y ions reveal that the difference in basicity between Arg and Lys results in different dissociation patterns for singly charged Arg- and Lys-ending tryptic peptides. While one dominant protonation form (proton localized) exists for Arg-ending peptides, a heterogeneous population of different protonated forms or more facile interconversion of protonated forms (proton partially mobile) exists for Lys-ending peptides. Cleavage C-terminal to acidic residues dominates spectra from singly charged peptides that have a localized proton and cleavage N-terminal to Pro dominates those that have a mobile or partially mobile proton. When Pro is absent from peptides that have a mobile or partially mobile proton, cleavage at each peptide bond becomes much more prominent. Whether the above patterns can be found in b ions, y ions, or both depends on the location of the proton holder(s) in multiply protonated peptides. Enhanced cleavages C-terminal to branched aliphatic residues (Ile, Val, Leu) are observed in both b and y ions from peptides that have a mobile proton, as well as in y ions from peptides that have a partially mobile proton; enhanced cleavages N-terminal to these residues are observed in b ions from peptides that have a partially mobile proton. Statistical tools have been designed to visualize the fragmentation maps and measure the similarity between them. The pairwise cleavage patterns observed expand our knowledge of peptide gas-phase fragmentation behaviors and may be useful in algorithm development that employs

  18. Probing the Nature of Charge Transfer at Nano-Bio Interfaces: Peptides on Metal Oxide Nanoparticles.

    Science.gov (United States)

    Tarakeshwar, Pilarisetty; Palma, Julio L; Holland, Gregory P; Fromme, Petra; Yarger, Jeffery L; Mujica, Vladimiro

    2014-10-16

    Characterizing the nano-bio interface has been a long-standing endeavor in the quest for novel biosensors, biophotovoltaics, and biocompatible electronic devices. In this context, the present computational work on the interaction of two peptides, A6K (Ac-AAAAAAK-NH2) and A7 (Ac-AAAAAAA-NH2) with semiconducting TiO2 nanoparticles is an effort to understand the peptide-metal oxide nanointerface. These investigations were spurred by recent experimental observations that nanostructured semiconducting metal oxides templated with A6K peptides not only stabilize large proteins like photosystem-I (PS-I) but also exhibit enhanced charge-transfer characteristics. Our results indicate that α-helical structures of A6K are not only energetically more stabilized on TiO2 nanoparticles, but the resulting hybrids also exhibit enhanced electron transfer characteristics. This enhancement can be attributed to substantial changes in the electronic characteristics at the peptide-TiO2 interface. Apart from understanding the mechanism of electron transfer (ET) in peptide-stabilized PS-I on metal oxide nanoparticles, the current work also has implications in the development of novel solar cells and photocatalysts.

  19. Charge stripping effects from highly charged iodine ions formed from Coulomb explosion of CH3I clusters

    International Nuclear Information System (INIS)

    Iodine ions of high charge states are observed upon irradiation of methyl iodide clusters with an intense femtosecond laser pulse. All signals from multicharged ions exhibit a peak splitting in the time-of-flight mass spectra, indicating their origin from a Coulomb explosion process. These main peaks are accompanied by smaller peaks attributed to field ionization of highly charged species in the ion optics of the TOF mass spectrometer. It is shown that highly charged atomic ions formed from Coulomb explosion, upon interaction with electric field close to the mesh, can lose another electron leading to the formation of even higher charged species. The observation of this charge stripping process is evidence for the formation of highly excited ions in the course of the Coulomb explosion process, providing new insights into the mechanisms of femtosecond ionization involving multi-electron loss. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Charge separation reaction in clusters of polar molecules. MD simulations

    International Nuclear Information System (INIS)

    Rate constant of intermolecular electron transfer (ET) in a photoexcited donor-acceptor model system solvated by a cluster of polar molecules has been expressed in terms of the statistical distribution of the electrostatic potential energy difference between the reacting sites. This distribution has been calculated for a particular case of acetonitrile clusters at ∼ 120 K by MD computer simulation. The MD values of the cluster reorganization energy and the ET rate constant have been compared with the corresponding MD results for the donor-acceptor pair solvated in bulk acetonitrile and with theoretical predictions based on the continuum model. (author)

  1. Acidity-Mediated, Electrostatic Tuning of Asymmetrically Charged Peptides Interactions with Protein Nanopores.

    Science.gov (United States)

    Asandei, Alina; Chinappi, Mauro; Kang, Hee-Kyoung; Seo, Chang Ho; Mereuta, Loredana; Park, Yoonkyung; Luchian, Tudor

    2015-08-01

    Despite success in probing chemical reactions and dynamics of macromolecules on submillisecond time and nanometer length scales, a major impasse faced by nanopore technology is the need to cheaply and controllably modulate macromolecule capture and trafficking across the nanopore. We demonstrate herein that tunable charge separation engineered at the both ends of a macromolecule very efficiently modulates the dynamics of macromolecules capture and traffic through a nanometer-size pore. In the proof-of-principle approach, we employed a 36 amino acids long peptide containing at the N- and C-termini uniform patches of glutamic acids and arginines, flanking a central segment of asparagines, and we studied its capture by the α-hemolysin (α-HL) and the mean residence time inside the pore in the presence of a pH gradient across the protein. We propose a solution to effectively control the dynamics of peptide interaction with the nanopore, with both association and dissociation reaction rates of peptide-α-HL interactions spanning orders of magnitude depending upon solution acidity on the peptide addition side and the transmembrane electric potential, while preserving the amplitude of the blockade current signature. PMID:26144534

  2. Fission of Multiply Charged Cesium and Potassium Clusters in Helium Droplets - Approaching the Rayleigh Limit

    CERN Document Server

    Renzler, Michael; Daxner, Matthias; Kranabetter, Lorenz; Kuhn, Martin; Scheier, Paul; Echt, Olof

    2016-01-01

    Electron ionization of helium droplets doped with cesium or potassium results in doubly and, for cesium, triply charged cluster ions. The smallest observable doubly charged clusters are $Cs_{9}^{2+}$ and $K_{11}^{2+}$; they are a factor two smaller than reported previously. The size of potassium dications approaches the Rayleigh limit nRay for which the fission barrier is calculated to vanish, i.e. their fissilities are close to 1. Cesium dications are even smaller than nRay, implying that their fissilities have been significantly overestimated. Triply charged cesium clusters as small as $Cs_{19}^{3+}$ are observed; they are a factor 2.6 smaller than previously reported. Mechanisms that may be responsible for enhanced formation of clusters with high fissilities are discussed.

  3. Impact of peptide clustering on unbinding forces in the context of fusion mimetics

    International Nuclear Information System (INIS)

    Highlights: ► Coiled-coil peptides as SNARE mimetics for membrane fusion. ► Interaction forces assessed by colloidal probe microscopy. ► Lateral organization of lipopeptides visualized by atomic force microscopy. -- Abstract: Coiled-coil zipping and unzipping is a pivotal process in SNARE-regulated membrane fusion. In this study we examine this process mediated by a minimal model for coiled-coil formation employing force spectroscopy in the context of membrane-coated surfaces and probes. The interaction forces of several hundred pN are surprisingly low considering the proposed amount of molecular bonds in the contact zone. However, by means of high-resolution imaging employing atomic force microscopy and studying the lateral mobility of lipids and peptides as a function of coiled-coil formation, we are able to supply a detailed view on processes occurring on the membrane surfaces during force measurements. The interaction forces determined here are not only dependent on the peptide concentration on the surface, but also on the regional organization of lateral peptide clusters found prior to coiled-coil formation

  4. Interplay of electronic and geometry shell effects in properties of neutral and charged Sr clusters

    DEFF Research Database (Denmark)

    Lyalin, Andrey; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2007-01-01

    The optimized structure and electronic properties of neutral, singly, and doubly charged strontium clusters have been investigated using ab initio theoretical methods based on density-functional theory. We have systematically calculated the optimized geometries of neutral, singly, and doubly...... charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, the gap between the highest occupied and the lowest unoccupied molecular orbitals, and spectra of the density of electronic states (DOS). It is demonstrated that the...... size evolution of structural and electronic properties of strontium clusters is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It...

  5. Excess-electron and excess-hole states of charged alkali halide clusters

    Science.gov (United States)

    Honea, Eric C.; Homer, Margie L.; Whetten, R. L.

    1990-12-01

    Charged alkali halide clusters from a He-cooled laser vaporization source have been used to investigate two distinct cluster states corresponding to the excess-electron and excess-hole states of the crystal. The production method is UV-laser vaporization of an alkali metal rod into a halogen-containing He flow stream, resulting in variable cluster composition and cooling sufficient to stabilize weakly bound forms. Detection of charged clusters is accomplished without subsequent ionization by pulsed-field time-of-flight mass spectrometry of the skimmed cluster beam. Three types of positively charged sodium fluoride cluster are observed, each corresponding to a distinct physical situation: NanF+n-1 (purely ionic form), Nann+1F+n-1 (excess-electron form), and NanF+n (excess-hole form). The purely ionic clusters exhibit an abundance pattern similar to that observed in sputtering and fragmentation experiments and are explained by the stability of completed cubic microlattice structures. The excess-electron clusters, in contrast, exhibit very strong abundance maxima at n = 13 and 22, corresponding to the all-odd series (2n + 1 = jxkxl;j,k,l odd). Their high relative stability is explained by the ease of Na(0) loss except when the excess electron localizes in a lattice site to complete a cuboid structure. These may correspond to the internal F-center state predicted earlier. A localized electron model incorporating structural simulation results as account for the observed pattern. The excess-hole clusters, which had been proposed as intermediates in the ionization-induced fragmentation of neutral AHCs, exhibit a smaller variation in stability, indicating that the hole might not be well localized.

  6. Hall effect in quantum critical charge-cluster glass

    Science.gov (United States)

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-01

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ˜ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ˜ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps, Δx ˜ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.

  7. Hydrogen binding effect on charged P2 ( = 1-7) clusters

    Indian Academy of Sciences (India)

    Zhicong Fang; Xiangjun Kuang

    2013-11-01

    An all-electron (AE) calculation of the hydrogen binding effect on charged phosphorus clusters has been performed under the framework of density functional theory (DFT). Compared with the P$^{\\pm}_{2n}$ ( = 1-7) clusters, the HP$^{\\pm}_{2n}$ ( = 1-7), cluster has shorter average P-P bond length, larger binding energy and HOMOLUMO gap (HLG), higher chemical hardness and frequency of P-P mode. After binding with one hydrogen atom, the electronic structure is changed from open electronic shell to closed electronic shell. Geometrical stability, chemical stability and electronic stability are strengthened. These stability enhancements may be simply understood considering the electron pairing effect.

  8. Comprehensive decay law for emission of charged particles and exotic cluster radioactivity

    Indian Academy of Sciences (India)

    Basudeb Sahu

    2014-04-01

    A general decay formula for the emission of charged particles from metastable nuclei is developed based on the basic phenomenon of resonances occurring in quantum scattering process under Coulomb-nuclear potential. It relates the half-lives of radioactive decays with the values of the outgoing elements with masses and charges of the nuclei involved in the decay. The relation is found to be a generalization of the Geiger–Nuttall law in radioactivity and explains well all the known emissions of charged particles including clusters, alpha and proton.

  9. Neutral and charged clusters in the atmosphere - Their importance and potential role in heterogeneous catalysis

    Science.gov (United States)

    Castleman, A. W., Jr.

    1982-01-01

    An assessment is presented of current knowledge concerning the role and importance of neutral and charged clusters in atmospheric heterogeneous catalysis, with a view to the recommendation of future studies needed for progress in the quantification of aerosol formation and catalytic reactivity. It is established that nucleation from the gaseous to the aerosol state commences via the formation of clusters among molecules participating in the phase-transformation process. Nucleation may proceed in some cases by way of the formation of prenucleation embryos, which then evolve through the energy barrier and undergo phase transformation. In other cases, cluster-cluster interaction among neutral particles or stagewise building of alternate-sign ion clusters may be important in the gas-to-particle conversion process.

  10. Electronic charging of non-metallic clusters: size-selected Mo(x)S(y) clusters supported on an ultrathin alumina film on NiAl(110).

    Science.gov (United States)

    Zhou, Jing; Zhou, Jia; Camillone, Nicholas; White, Michael G

    2012-06-14

    Two photon photoemission was used to investigate the interfacial charge transfer for size-selected Mo(x)S(y) (x/y: 2/6, 4/6, 6/8, 7/10) clusters deposited on an ultrathin alumina film prepared on a NiAl(110) surface. The local work function of the surface increases with increasing cluster coverage, which is unexpected for charge transfer resulting from the formation of Mo-O bonds between the clusters and the alumina surface. By analogy with Au atoms and clusters on metal-supported ultrathin oxide films, we invoke electron tunneling from the NiAl substrate to explain the charge transfer to the Mo(x)S(y) clusters. Electron tunneling is favored by the large electron affinities of the Mo(x)S(y) clusters and the relatively low work function induced by the presence of the alumina film. The interfacial dipole moments derived from coverage-dependent measurements are cluster dependent and reflect differences in Mo(x)S(y) cluster structure and surface bonding. These results extend previous observations of electronic charging to non-metallic clusters, specifically, metal sulfides, and suggest a novel way to modify the electronic structure and reactivity of nanocatalysts for heterogeneous chemistry. PMID:22534692

  11. Evidence for charged cluster emission in 147 GeV/c π-p collisions

    International Nuclear Information System (INIS)

    A study of charged particle production in 147 GeV/c π-p collisions yields no evidence for an electrically neutral central region or corresponding rapidity plateau. The results do indicate that electric charge and transverse momentum may be locally conserved over small intervals on the rapidity axis. These results support a picture in which the observed hadrons are emitted in clusters whose quantum numbers vary as a function of rapidity and reflect the incident channel quantum numbers at the extremes of the rapidity scale. (Auth.)

  12. Charge-transfer interactions between TCNQ and silver clusters Ag20 and Ag13.

    Science.gov (United States)

    Chen, Jing; Zhang, Hanyu; Liu, Xianhu; Yuan, Chengqian; Jia, Meiye; Luo, Zhixun; Yao, Jiannian

    2016-03-14

    Interactions between tetracyanoquinodimethane (TCNQ) and two typical silver clusters Ag13 and Ag20 are studied by first-principles DFT calculations. Charge transfer (CT) from silver clusters to TCNQ molecules initiates the Ag-N bond formation at selective sites resulting in the formation of different isomers of Ag13-TCNQ and Ag20-TCNQ complexes. We show here a comprehensive spectroscopic analysis for the two CT complexes on the basis of Raman and infrared activities. Furthermore, frontier molecular orbital (FMO) and natural bond orbital (NBO) analysis of the complexes provides a vivid illustration of electron cloud overlap and interactions. The behavior of TCNQ adsorbed on the tetrahedral Ag20 cluster was even found in good agreement with the experimental measurement of TCNQ molecules on a single-crystal Ag(111) surface. This study not only endeavors to clarify the charge-transfer interactions of TCNQ with silver, but also presents a finding of enhanced charge transfer between Ag13 and TCNQ indicating potential for candidate building blocks of granular materials. PMID:26888771

  13. Charging of nanoparticles in stationary plasma in a gas aggregation cluster source

    Science.gov (United States)

    Blažek, J.; Kousal, J.; Biederman, H.; Kylián, O.; Hanuš, J.; Slavínská, D.

    2015-10-01

    Clusters that grow into nanoparticles near the magnetron target of the gas aggregation cluster source (GAS) may acquire electric charge by collecting electrons and ions or through other mechanisms like secondary- or photo-electron emissions. The region of the GAS close to magnetron may be considered as stationary plasma. The steady state charge distribution on nanoparticles can be determined by means of three possible models—fluid model, kinetic model and model employing Monte Carlo simulations—of cluster charging. In the paper the mathematical and numerical aspects of these models are analyzed in detail and close links between them are clarified. Among others it is shown that Monte Carlo simulation may be considered as a particular numerical technique of solving kinetic equations. Similarly the equations of the fluid model result, after some approximation, from averaged kinetic equations. A new algorithm solving an in principle unlimited set of kinetic equations is suggested. Its efficiency is verified on physical models based on experimental input data.

  14. Long-lived charge-separated states in ligand-stabilized silver clusters

    KAUST Repository

    Pelton, Matthew

    2012-07-25

    Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting. © 2012 American Chemical Society.

  15. Peptide-induced Asymmetric Distribution of Charged Lipids in a Vesicle Bilayer Revealed by Small-Angle Neutron Scattering

    Science.gov (United States)

    Heller, William; Qian, Shuo

    2012-02-01

    Cellular membranes are complex mixtures of lipids, proteins and other small molecules that provide functional, dynamic barriers between the cell and its environment, as well as between environments within the cell. The lipid composition of the membrane is highly specific and controlled in terms of both content and lipid localization. Here, small-angle neutron scattering and selective deuterium labeling were used to probe the impact of the membrane-active peptides melittin and alamethicin on the structure of lipid bilayers composed of a mixture of the lipids dimyristoyl phosphatidylglycerol (DMPG) and chain-perdeuterated dimyristoyl phosphatidylcholine (DMPC). We found that both peptides enriched the outer leaflet of the bilayer with the negatively charged DMPG, creating an asymmetric distribution of lipids. The level of enrichment is peptide concentration-dependent and is stronger for melittin than alamethicin. The enrichment between the inner and outer bilayer leaflets occurs at very low peptide concentrations, and increases with peptide concentration, including when the peptide adopts a membrane-spanning, pore-forming state.

  16. The medium-sized charged YbSin± (n = 7-13) clusters: A relativistic computational investigation

    International Nuclear Information System (INIS)

    Graphical abstract: The geometries and electronic properties of the medium-sized YbSin± (n = 7-13) clusters are investigated systematically by using relativistic density functional method. The medium-sized YbSin± clusters with n = 8, 9, 10, and 13 significantly deform their neutral geometries, which are confirmed by the calculated AIP and VIP values. The relative stabilities in terms of the calculated fragmentation energies exhibit that the YbSin+ (n = 8, 10, 13) and YbSin- (n = 8, 10, 12) clusters have stronger abundances than their corresponding neighbors; the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gaps of the charged clusters are increased generally as the cluster size going from n = 7 to 13; the large HOMO-LUMO gaps of charged clusters indicate that their chemical activities are weaker than those of their neutral counterparts, especially for n = 7, 10, and 13 clusters. Generally, the obtained or removed charge influences electronic and geometrical structures of the charged clusters. Research highlights: → Most of the charged YbSin (n = 7-13) clusters keep frameworks as the neutrals, and the geometries of 8a+, 9a+, 10a+, and 13a+ are significant deformed, which are reflected from the calculated VIPs and AIPs values. The charged YbSi8 cluster is actually the most stable isomer. → According to the calculated HOMO-LUMO gaps of the clusters, one finds that the HOMO-LUMO gaps for the charged YbSin (n = 7-13) clusters are smaller than those of the neutrals, reflecting that the removed or obtained charge influences the HOMO-LUMO gaps of neutral clusters. → The calculated results show that the YbSin (n = 7-13) clusters are the nonmagnetic structures because the f orbitals are filled completely, which are not involved in the chemical bonding. - Abstract: The geometries and electronic properties of the medium-sized YbSin± (n = 7-13) clusters are investigated systematically by using relativistic density functional

  17. Effect of the Surface on Charge Reduction and Desorption Kinetics of Soft Landed Peptide Ions

    Energy Technology Data Exchange (ETDEWEB)

    Hadjar, Omar; Wang, Peng; Futrell, Jean H.; Laskin, Julia

    2009-06-01

    Charge reduction and desorption kinetics of ions and neutral molecules produced by soft-landing of mass-selected singly and doubly protonated Gramicidin S (GS) on different surfaces was studied using time dependant in situ secondary ion mass spectrometry (SIMS) integrated in a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) research instrument. Soft-landing targets utilized in this study included inert self-assembled monolayers (SAMs) of 1-dodecane thiol (HSAM) and its fluorinated analog (FSAM) on gold and hydrophilic carboxyl-terminated (COOH-SAM) and amine-terminated (NH2-SAM) SAM surfaces. We observed efficient neutralization of soft-landed ions on the COOH-SAM surface, partial retention of only one proton on the HSAM surface and efficient retention of two protons on the FSAM surface. Slow desorption rates measured experimentally indicate fairly strong binding between peptide molecules and SAM surfaces with the binding energy of 20-25 kcal/mol.

  18. Generation of highly charged and energetic ions from the interaction of strong laser pulses with coinage metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Radcliffe, P.; Doeppner, T.; Schumacher, M.; Teuber, S.; Tiggesbaeumker, J.; Meiwes-Broer, K.H. [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2005-08-01

    Plasmon-enhanced ionization of free coinage metal clusters is studied under intense laser field conditions. The charging and the subsequent Coulomb explosion results in huge recoil energies of the atomic fragment ions. In a charge-resolved measurement it is found that the maximum kinetic energy scales roughly linear with the charge state. The ionization efficiency could strongly be enhanced when the pulse structure is adapted to the expansion dynamics of the cluster Coulomb explosion. Irradiation with stretched laser pulses as well as with dual pulses show that atomic charge states up to Cu{sup 10+}, Ag{sup 15+} and Au{sup 15+} are generated whenever the plasmon mode of the cluster can be successfully excited. The charging enhancement when using dual pulses gives evidence that continuous heating is not necessary in order to get maximum energy absorption. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Structures and Stabilities of Doubly-Charged $(MgO)nMg^{2+}$ (n=1-29) Cluster Ions

    CERN Document Server

    López, F; López, J M; Lopez, Francisco; Aguado, Andres; Lopez, Jose M.

    1999-01-01

    Ab initio perturbed ion plus polarization calculations are reported for doubly-charged nonstoichiometric (MgO)nMg2+ (n=1--29) cluster ions. We consider a large number of isomers with full relaxations of the geometries, and add the correlation correction to the Hartree-Fock energies for all cluster sizes. The polarization contribution is included at a semiempirical level also for all cluster sizes. Comparison is made with theoretical results for neutral (MgO)n clusters and singly-charged alkali-halide cluster ions. Our method is also compared to phenomenological pair potential models in order to asses their reliability for calculations on small ionic systems. Bulk-like rocksalt structures are predominant from n=13 on. The relative stabilities of the cluster ions against evaporation of a MgO molecule shows variations that are in excellent agreement with the experimental abundance spectra.

  20. Structural transformation of peptide amphiphile self-assembly induced by headgroup charge and size regulation

    Science.gov (United States)

    Gao, Changrui; Bedzyk, Michael; Olvera, Monica; Kewalramani, Sumit; Palmer, Liam

    The ability to control the nano and the meso-scale architecture of molecular assemblies is one of the major challenges in nanoscience. Significantly, structural transformations of amphiphilic aggregates induced by variations in environmental conditions have attracted attention due to their biotechnological relevance. Here, we study the assembly in aqueous solution for a modular series of peptide amphiphiles with 3, 2 or 1 lysine groups conjugated to a C16 carbon tail (C16K3, C16K2 and C16K1) . This system design allow us to probe how the equilibrium structure of the self-assembly can be tuned by controlling the coupling between steric (via choice of headgroup: K3, K2, or K1) and electrostatic (via solution pH) interactions. Solution small- and wide-angle X-ray scattering (SAXS/WAXS) and transmission electron microscopy (TEM) studies reveal that depending on pH and number of lysines in the lipid headgroup, amphiphiles can assemble into a range of structures: spherical micelles, bilayer ribbons and vesicles. We also perform detailed phase space mapping of pH-and headgroup size dependency of the structures of assembly over 0.1-100 nm length scales via SAXS/WAXS. The experimental results in conjunction with molecular dynamics (MD) simulations deduce quantitative relations between pH-dependent molecular charges, steric constraints and self-assembly morphologies, which is significant for developing experimental routes to obtain assembly structures with specific nano- and meso-scale features through controlled external stimuli.

  1. Bremsstrahlung of Fast Charged Particles on Clusters in a Wide Spectral Range

    International Nuclear Information System (INIS)

    Within the framework of the first Born approximation and a simple model of the structural factor, the bremsstrahlung of fast charged particles on polyatomic clusters is calculated and analyzed with regard to the polarization mechanism in a wide spectral range including a domain of high frequencies. The role of cooperative phenomena in the static and polarization channels of bremsstrahlung is investigated. It is established that these phenomena, being negligible for static bremsstrahlung, substantially influence the polarization bremsstrahlung. It is shown that the constructive interference between the contributions of the atoms of a cluster to the polarization bremsstrahlung substantially increases its intensity and changes its dependence on the basic parameters of the problem compared with the case of bremsstrahlung on an isolated atom

  2. Bremsstrahlung of fast charged particles when scattering on clusters in wide spectral range

    International Nuclear Information System (INIS)

    Within the framework of the first Born approximation and a simple model of the structural factor, the bremsstrahlung of fast charged particles on polyatomic clusters is calculated and analyzed with regard to the polarization mechanism in a wide spectral range including a domain of high frequencies. The role of cooperative phenomena in the static and polarization channels of bremsstrahlung is investigated. It is established that these phenomena, being negligible for static bremsstrahlung, substantially influence the polarization bremsstrahlung. It is shown that the constructive interference between the contributions of the atoms of a cluster to the polarization bremsstrahlung substantially increases its intensity and changes its dependence on the basic parameters of the problem compared with the case of bremsstrahlung on an isolated atom

  3. Collision of highly charged ion with clusters. Simulation study for electronic systems

    International Nuclear Information System (INIS)

    Collision of highly charged ion with cluster, for example, collision of C60-Ar8+ at E=80 KeV, was simulated by the time-dependence Kohn-Shame equation. The distribution of electron densities and the self-consistent potential were obtained. A part of C60 potential curve became depressed by the Coulomb force of ion, so that the saddle point was produced on the potential. The behavior of electron transfer on the saddle point was agreed with the classical barrier model. Time-dependent density functional method was explained. (S.Y.)

  4. Collision of highly charged ion with clusters. Simulation study for electronic systems

    Energy Technology Data Exchange (ETDEWEB)

    Yabana, Kazuhiro [Niigata Univ. (Japan)

    1997-05-01

    Collision of highly charged ion with cluster, for example, collision of C{sub 60}-Ar{sup 8+} at E=80 KeV, was simulated by the time-dependence Kohn-Shame equation. The distribution of electron densities and the self-consistent potential were obtained. A part of C{sub 60} potential curve became depressed by the Coulomb force of ion, so that the saddle point was produced on the potential. The behavior of electron transfer on the saddle point was agreed with the classical barrier model. Time-dependent density functional method was explained. (S.Y.)

  5. Analyzing Heat Capacity Profiles of Peptide-Containing Membranes: Cluster Formation of Gramicidin A

    OpenAIRE

    Ivanova, V.; Makarov, I.; Schaeffer, T.; Heimburg, T.

    2003-01-01

    The analysis of peptide and protein partitioning in lipid membranes is of high relevance for the understanding of biomembrane function. We used statistical thermodynamics analysis to demonstrate the effect of peptide mixing behavior on heat capacity profiles of lipid membranes with the aim to predict peptide aggregation from cP-profiles. This analysis was applied to interpret calorimetric data on the interaction of the antibiotic peptide gramicidin A with lipid membranes. The shape of the hea...

  6. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    Science.gov (United States)

    Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  7. Phospholipid membrane-interaction of a peptide from S4 segment of KvAP K(+) channel and the influence of the positive charges and an identified heptad repeat in its interaction with a S3 peptide.

    Science.gov (United States)

    Verma, Richa; Ghosh, Jimut Kanti

    2011-06-01

    In order to examine the ability of S3 and S4 segments of a Kv channel to interact with each other, two wild type short peptides derived from the S3 and S4 segments of KvAP channel were synthesized. Additionally, to evaluate the role of positive charges and an identified heptad repeat in the S4 segment, two S4 mutants of the same size as the S4 peptide, one with substitution of two leucine residues in the heptad repeat sequence by two alanine residues and in the other two arginine residues replaced by two glutamines residues were synthesized. Our results show that only the wild type S4 peptide, but not its mutants, self-assembled and permeabilized negatively charged phospholipid vesicles. The S3 peptide showed lesser affinity toward the same kind of lipid vesicles and localized onto its surface. However, the S3 peptide interacted only with S4 wild type peptide, but not with S4 mutants, and altered its localization onto the phospholipid membrane with increased resistance against the proteolytic enzyme, proteinase-k, in the presence of the S4 peptide. The results demonstrate that the selected, synthetic S3 and S4 segments possess the required amino acid sequences to interact with each other and show that the positive charges and the identified heptad repeat in S4 contribute to its assembly and interaction with S3 segment.

  8. Effect of oxygen content and charge on the structure, stability and optoelectronic properties of yttrium oxide clusters

    Science.gov (United States)

    Venkataramanan, Natarajan Sathiyamoorthy

    2015-07-01

    The electronic and geometrical structures of neutral and charged YOn (n=2-12) clusters have been investigated using density functional theory (DFT) with generalized gradient approximation. The oxygen atom in YOn has been found to be in oxo, peroxo and in superoxo forms. The geometrical structures and topologies of small size anionic clusters resemble that of neutral clusters. Yttrium showed higher coordination number than scandium. Computed results reveal the existence of YO10 cluster to have a penta-peroxo oxygen with a homoleptic Y(η2 -O2)5 geometrical configuration. The HOMO-LUMO gaps decrease with increasing n due to the increase in 2p orbital population of oxygen atoms. It has been shown that in these clusters bonding are predominantly ionic in nature and anions are thermodynamically more stable, due to the charge delocalization between the metal atom and oxygen ligands. YO10+ and YO12+ were found to be highly exothermic to release one and two oxygen molecules, while YO11+ dissociates though the ozonide dissociation channel. Computed absorption spectra of small clusters are mainly contributed by yttrium metal d and s valence orbitals. The absorbance spectra, shifts towards lower energy with cluster size increase, while charge has no substantial effect on the absorption spectrum.

  9. Clustering analyses in peptidomics revealed that peptide profiles of infant formulae are descriptive

    NARCIS (Netherlands)

    Lambers, T.T.; Gloerich, J.; Hoffen, E. van; Alkema, W.B.L.; Hondmann, D.H.; Tol, E.A. van

    2015-01-01

    Prompted by the accumulating evidence on bioactive moieties of milk-derived peptides, novel methods were applied to compare the peptide composition among commercially available hydrolysate formulations and to determine batch-to-batch variations of protein hydrolysate products. Despite the availabili

  10. First Observation of Charge Reduction and Desorption Kinetics of Multiply Protonated Peptides Soft Landed onto Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hadjar, Omar; Futrell, Jean H.; Laskin, Julia

    2007-12-13

    The kinetics of charge reduction and desorption of different species produced by soft-landing of mass-selected ions was studied using in situ secondary ion mass spectrometry (SIMS) in a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). The improved SIMS capability described in this work utilizes an in-line 8 keV Cs+ ion gun and allows us to interrogate the surface both during the ion deposition and after the deposition is terminated. As a model system doubly protonated ions of Gramicidin S were deposited onto a fluorinated self-assembled monolayer (FSAM) surface. Our results demonstrate for the first time that various peptide-related peaks in FT-ICR SIMS spectra follow very different kinetics. We obtained unique kinetics signatures for doubly protonated, singly protonated and neutral peptides retained on the surface and followed their evolution as a function of time. The experimental results are in excellent agreement with a kinetic model that takes into account charge reduction and thermal desorption of different species from the surface.

  11. On the ultrafast charge migration and subsequent charge directed reactivity in Cl⋯N halogen-bonded clusters following vertical ionization

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Sankhabrata; Bhattacharya, Atanu, E-mail: atanub@ipc.iisc.ernet.in [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore (India); Periyasamy, Ganga [Department of Chemistry, Central College Campus, Bangalore University, Bangalore (India)

    2015-06-28

    In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation- and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH{sub 2}, CF{sub 3}, and COOH substituents) molecules paired with NH{sub 3} (referred as ACl:NH{sub 3} complex): these complexes exhibit halogen bonds. To the best of our knowledge, this is the first report on purely electron correlation- and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31 + G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl⋯NH{sub 3} complex, the hole is predicted to migrate from the NH{sub 3}-end to the ClCN-end of the NCCl⋯NH{sub 3} complex in approximately 0.5 fs on the D{sub 0} cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H{sub 2}NCl:NH{sub 3}, F{sub 3}CCl:NH{sub 3}, and HOOCCl:NH{sub 3}, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH{sub 3} and HOCl:NH{sub 3} complexes do not exhibit any charge migration following vertical ionization to the D{sub 0} cation state, pointing to interesting halogen bond strength-dependent charge migration.

  12. On the ultrafast charge migration and subsequent charge directed reactivity in Cl⋯N halogen-bonded clusters following vertical ionization

    International Nuclear Information System (INIS)

    In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation- and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH2, CF3, and COOH substituents) molecules paired with NH3 (referred as ACl:NH3 complex): these complexes exhibit halogen bonds. To the best of our knowledge, this is the first report on purely electron correlation- and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31 + G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl⋯NH3 complex, the hole is predicted to migrate from the NH3-end to the ClCN-end of the NCCl⋯NH3 complex in approximately 0.5 fs on the D0 cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H2NCl:NH3, F3CCl:NH3, and HOOCCl:NH3, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH3 and HOCl:NH3 complexes do not exhibit any charge migration following vertical ionization to the D0 cation state, pointing to interesting halogen bond strength-dependent charge migration

  13. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    Energy Technology Data Exchange (ETDEWEB)

    Nedialkova, Lilia V.; Amat, Miguel A. [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Chemical and Biological Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); Hummer, Gerhard, E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main (Germany)

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  14. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    International Nuclear Information System (INIS)

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space

  15. Formation of charged H3O+ and OH- fragments at consistent shifts of protons in water clusters

    Science.gov (United States)

    Bednyakov, A. S.; Novakovskaya, Yu. V.

    2016-09-01

    Probable paths of consistent shifts of bridge protons within the hexamolecular rings of dodecamer water cluster at different arrangement of neighboring molecules are determined. As with individual rings, consistent shifts of protons in molecular cages are found to be promoted by contraction/extension of the oxygen skeleton. Transition states characterized by the formation of different numbers of such charged fragments as H3Oδ+, H5O 2 δ+ , and OH-, are identified. Conditions of the relatively long-term (about picoseconds) existence of the fragments in cluster systems are determined.

  16. Charge exchange processes of foil dissociation fragments of fast H+2 ions and H+n clusters

    International Nuclear Information System (INIS)

    We have measured angular and charge state distributions of atomic fragments resulting from the foil dissociation of 30-120 KeV/p H+n clusters. The fragment neutralization probability has been investigated for beam velocities above and around the Bohr velocity. At a given velocity the width of the angular distribution of neutral atoms and their yield are observed to increase with n up to n > 5 and n > 7, respectively. Moreover we have used the simpler H+2 case to propose new ideas to explain the vicinity effects observed on the charge exchange processes

  17. Investigation of the antibacterial activity and the biosynthesis gene cluster of the peptide antibiotic feglymycin

    OpenAIRE

    Rausch, Saskia

    2012-01-01

    Feglymycin ist ein aus Streptomyces sp. DSM 11171 isoliertes, lineares 13mer-Peptid, das zu einem hohen Anteil aus den nicht-proteinogenen Aminosäuren Hpg (4-Hydroxyphenylglycine) und Dpg (3,5-Dihydroxyphenylglycine) besteht. Zudem besitzt es eine interessante, alternierende Abfolge von D- und L- Aminosäuren und strukturelle Ähnlichkeiten mit den Glycopeptiden der Vancomycin-Gruppe von Antibiotika und den Glycodepsipeptid-Antibiotika Ramoplanin und Enduracidin. Außerdem besitzt Feglymycin ein...

  18. Charge and energy transfer in argon-core-neon-shell clusters irradiated by free-electron-laser pulses at 62 nm

    Science.gov (United States)

    Sugishima, A.; Iwayama, H.; Yase, S.; Murakami, H.; Nagaya, K.; Yao, M.; Fukuzawa, H.; Liu, X.-J.; Motomura, K.; Ueda, K.; Saito, N.; Foucar, L.; Rudenko, A.; Kurka, M.; Kühnel, K.-U.; Ullrich, J.; Czasch, A.; Dörner, R.; Feifel, R.; Nagasono, M.; Higashiya, A.; Yabashi, M.; Ishikawa, T.; Togashi, T.; Kimura, H.; Ohashi, H.

    2012-09-01

    The multiple ionization of Ar-core-Ne-shell clusters in intense extreme-ultraviolet laser pulses (λ˜62 nm) from the free-electron laser in Japan was investigated utilizing a momentum imaging technique. The Ar composition dependence of the kinetic energies and the yields of the fragment ions give evidence for charge transfer from the Ar core to the Ne shell. We have extended the uniformly charged sphere model originally applied to pristine clusters [Islam , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.73.041201 73, 041201(R) (2006)] to the core-shell heterogeneous clusters to estimate the amounts of charge and energy transfers.

  19. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia

    2015-02-01

    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different

  20. Temperature dependence of the deposition behavior of yttria-stabilized zirconia CVD films: approach by charged cluster model

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, I.D. [Seoul National University, Seoul (Korea); Gueroudji, L. [Korea Research Institute of Standards and Science, Taejeon (Korea); Kim, D.Y. [Seoul National University, Seoul (Korea)

    2001-03-01

    Yttria-stabilized zirconia (YSZ) films were deposited with varying temperatures of ZrCl{sub 4} between 250{approx}550 deg. C with YCl{sub 3} and the substrate at 1000 deg. C. Nanoamperes per square centimeter of the electric current were measured in the reactor during deposition and the current increased with increasing evaporation temperature of ZrCl{sub 4}. The zirconia nanometer size clusters were captured on the grid membrane near the substrate during the CVD process and observed by transmission electron microscopy (TEM). The deposition rate decreased with increasing evaporation temperature of ZrCl{sub 4}. A cauliflower-shaped structure was developed at 250 deg. C then gradually changed to a faceted-grain structure above 350 deg. C. Dependence of the growth rate and the morphological evolution on the evaporation temperature of ZrCl{sub 4} was approached by the charged cluster model. (author). 28 refs., 6 figs.

  1. De-novo design of antimicrobial peptides for plant protection.

    Directory of Open Access Journals (Sweden)

    Benjamin Zeitler

    Full Text Available This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of "healthy" food, these peptides might serve as templates for novel antibacterial and antifungal agents.

  2. Clustering

    Directory of Open Access Journals (Sweden)

    Jinfei Liu

    2013-04-01

    Full Text Available DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution..

  3. Imidate-Based Cross-Linkers for Structural Proteomics: Increased Charge of Protein and Peptide Ions and CID and ECD Fragmentation Studies

    Science.gov (United States)

    Koolen, Hector H. F.; Gomes, Alexandre F.; Schwab, Nicolas V.; Eberlin, Marcos N.; Gozzo, Fabio C.

    2014-07-01

    Chemical cross-linking is an attractive low-resolution technique for structural studies of protein complexes. Distance constraints obtained from cross-linked peptides identified by mass spectrometry (MS) are used to construct and validate protein models. Amidinating cross-linkers such as diethyl suberthioimidate (DEST) have been used successfully in chemical cross-linking experiments. In this work, the application of a commercial diimidate cross-linking reagent, dimethyl suberimidate (DMS), was evaluated with model peptides and proteins. The peptides were designed with acetylated N-termini followed by random sequences containing two Lys residues separated by an Arg residue. After cross-linking reactions, intra- and intermolecular cross-linked species were submitted to CID and ECD dissociations to study their fragmentation features in the gas phase. Fragmentation of intramolecular peptides by collision induced dissociation (CID) demonstrates a unique two-step fragmentation pathway involving formation of a ketimine as intermediate. Electron capture and electron transfer dissociation (ECD and ETD) experiments demonstrated that the cyclic moiety is not dissociated. Intermolecular species demonstrated previously described fragmentation behavior in both CID and ECD experiments. The charge state distributions (CSD) obtained after reaction with DMS were compared with those obtained with disuccinimidyl suberate (DSS). CSDs for peptides and proteins were increased after their reaction with DMS, owing to the higher basicity of DMS modified species. These features were also observed in LC-MS experiments with bovine carbonic anhydrase II (BCA) after cross-linking with DMS and tryptic proteolysis. Cross-linked peptides derived from this protein were identified at high confidence and those species were in agreement with the crystal structure of BCA.

  4. The charging of neutral dimethylamine and dimethylamine-sulphuric acid clusters using protonated acetone

    OpenAIRE

    Ruusuvuori, K.; P. Hietala; O. Kupiainen-Määttä; Jokinen, T; Junninen, H.; Sipilä, M.; Kurtén, T.; Vehkamäki, H.

    2014-01-01

    Sulphuric acid is generally considered one of the most important substances taking part in atmospheric particle formation. However, in typical atmospheric conditions in the lower troposphere sulphuric acid and water alone are unable to form particles. It has been suggested that strong bases may stabilize sulphuric acid clusters so that particle formation may occur. More to the point, amines – strong organic bases – have become the subject of interest as pos...

  5. The charging of neutral dimethylamine and dimethylamine–sulfuric acid clusters using protonated acetone

    OpenAIRE

    Ruusuvuori, K.; P. Hietala; O. Kupiainen-Määttä; Jokinen, T; Junninen, H.; Sipilä, M.; Kurtén, T.; Vehkamäki, H.

    2015-01-01

    Sulfuric acid is generally considered one of the most important substances taking part in atmospheric particle formation. However, in typical atmospheric conditions in the lower troposphere, sulfuric acid and water alone are unable to form particles. It has been suggested that strong bases may stabilize sulfuric acid clusters so that particle formation may occur. More to the point, amines – strong organic bases – have become the subject of interest as possible cause for such...

  6. Long-Ranged Oppositely Charged Interactions for Designing New Types of Colloidal Clusters

    OpenAIRE

    Demirors, Ahmet Faik; Stiefelhagen, Johan C. P.; Vissers, Teun; Smallenburg, Frank; Dijkstra, Marjolein; Imhof, Arnout; van Blaaderen, Alfons

    2015-01-01

    Getting control over the valency of colloids is not trivial and has been a long-desired goal for the colloidal domain. Typically, tuning the preferred number of neighbors for colloidal particles requires directional bonding, as in the case of patchy particles, which is difficult to realize experimentally. Here, we demonstrate a general method for creating the colloidal analogs of molecules and other new regular colloidal clusters without using patchiness or complex bonding schemes (e.g., DNA ...

  7. Interaction of nanosecond laser pulse with tetramethyl silane (Si(CH34 clusters: Generation of multiply charged silicon and carbon ions

    Directory of Open Access Journals (Sweden)

    Purav M. Badani

    2011-12-01

    Full Text Available Present work reports significantly high levels of ionization, eventually leading to Coulomb explosion of Tetramethyl silane (TMS clusters, on interaction with laser pulses of intensity ∼109 W/cm2. Tetramethyl silane clusters, prepared by supersonic expansion were photoionized at 266, 355 or 532 nm and the resultant ions were detected using time-of-flight mass spectrometer. It is observed that wavelength of irradiation and the size of the cluster are crucial parameters which drastically affect the nature of charge species generated upon photoionization of cluster. The results show that clusters absorb significantly higher energy from the laser field at longer wavelengths (532 nm and generate multiply charged silicon and carbon ions which have large kinetic energies. Further, laser-cluster interaction at different wavelengths has been quantified and charge densities at 266, 355 and 532 nm are found to be 4x 1010, 5x 1010 and 5x 1011 charges/cm3 respectively. These unusual results have been rationalized based on dominance of secondary ionization processes at 532 nm ultimately leading to Coulomb explosion of clusters. In another set of experiments, multiply charged ions of Ar (up to +5 state and Kr (up to +6 state were observed when TMS doped inert gas clusters were photoionized at 532 and 355 nm. The extent of energy absorption at these two wavelengths is clearly manifested from the charge state of the atomic ions generated upon Coulomb disintegration of the doped cluster. These experiments thus demonstrate a novel method for generation of multiply charged atomic ions of inert gases at laser intensity of ∼ 109 W/cm2. The average size of the cluster exhibiting Coulomb explosion phenomena under giga watt intensity conditions has been estimated to be ∼ 6 nm. Experimental results obtained in the present work agree qualitatively with the model proposed earlier [D. Niu, H. Li, F. Liang, L. Wen, X. Luo, B. Wang, and H. Qu, J. Chem. Phys. 122, 151103

  8. Folded structure and insertion depth of the frog-skin antimicrobial Peptide esculentin-1b(1-18) in the presence of differently charged membrane-mimicking micelles.

    Science.gov (United States)

    Manzo, Giorgia; Casu, Mariano; Rinaldi, Andrea C; Montaldo, Nicola P; Luganini, Anna; Gribaudo, Giorgio; Scorciapino, Mariano A

    2014-11-26

    Antimicrobial peptides (AMPs) are effectors of the innate immunity of most organisms. Their role in the defense against pathogen attack and their high selectivity for bacterial cells make them attractive for the development of a new class of antimicrobial drugs. The N-terminal fragment of the frog-skin peptide esculentin-1b (Esc(1-18)) has shown broad-spectrum antimicrobial activity. Similarly to most cationic AMPs, it is supposed to act by binding to and damaging the negatively charged plasma membrane of bacteria. Differently from many other AMPs, Esc(1-18) activity is preserved in biological fluids such as serum. In this work, a structural investigation was performed through NMR spectroscopy. The 3D structure was obtained in the presence of either zwitterionic or negatively charged micelles as membrane models for eukaryotic and prokaryotic membranes, respectively. Esc(1-18) showed a higher affinity for and deeper insertion into the latter and adopted an amphipathic helical structure characterized by a kink at the residue G8. These findings were confirmed by measuring penetration into lipid monolayers. The presence of negatively charged lipids in the bilayer appears to be necessary for Esc(1-18) to bind, to fold in the right three-dimensional structure, and, ultimately, to exert its biological role as an AMP.

  9. Diet-Induced Neuropeptide Expression : Feasibility of Quantifying Extended and Highly Charged Endogenous Peptide Sequences by Selected Reaction Monitoring

    NARCIS (Netherlands)

    Schmidlin, Thierry; Boender, Arjen J.; Frese, Christian K.; Heck, Albert J R; Adan, Roger A H; Altelaar, A. F Maarten

    2015-01-01

    Understanding regulation and action of endogenous peptides, especially neuropeptides, which serve as inter- and intracellular signal transmitters, is key in understanding a variety of functional processes, such as energy balance, memory, circadian rhythm, drug addiction, etc. Therefore, accurate and

  10. Influence of the Charge State on the Structures and Interactions of Vancomycin Antibiotics with Cell-Wall Analogue Peptides: Experimental and Theoretical Studies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhibo; Vorpagel, Erich R.; Laskin, Julia

    2009-02-16

    In this study we examined the effect of the charge state on the energetics and dynamics of dissociation of the non-covalent complex between the vancomycin and the cell wall peptide analogue Nα,Nε-diacetyl-L-Lys-D-Ala-D-Ala (V-Ac2KDADA). The binding energies between the vancomycin and the peptide were obtained from the RRKM modeling of the time- and energy resolved surface-induced dissociation (SID) experiments. Our results demonstrate that the stability of the complex toward fragmentation increases in the order: [V+Ac2KDADA+H]+2 < [V+Ac2KDADA+H]+ < [V+Ac2KDADA-H]-. Dissociation of the singly protonated and singly deprotonated complex is characterized by very large entropy effects indicating substantial increase in the conformational flexibility of the resulting products. The experimental threshold energies of 1.75 eV and 1.34 eV obtained for the [V+Ac2KDADA-H]- and [V+Ac2KDADA+H]+ , respectively, are in excellent agreement with the results of density functional theory (DFT) calculations. The increased stability of the deprotonated complex observed experimentally is attributed to the presence of three charged sites in the deprotonated complex as compared to only one charged site in the singly protonated complex. The low binding energy of 0.93 eV obtained for the doubly protonated complex suggests that this ion is destabilized by Coulomb repulsion between the singly protonated vancomycin and the singly protonated peptide comprising the complex.

  11. Cluster-assisted generation of multi-charged ions in nanosecond laser ionization of pulsed hydrogen sulfide beam at 1064 and 532 nm

    Institute of Scientific and Technical Information of China (English)

    Niu Dong-Mei; Li Hai-Yang; Luo Xiao-Lin; Liang Feng; Cheng Shuang; Li An-Lin

    2006-01-01

    The multi-charged sulfur ions of Sq+ (q ≤ 6) have been generated when hydrogen sulfide cluster beams are irradiated by a nanosecond laser of 1064 and 532 nm with an intensity of 1010 ~ 1012W·cm-2. S6+ is the dominant multicharged species at 1064 nm, while S4+, S3+ and S2+ ions are the main multi-charged species at 532 nm. A three-step model (i.e., multiphoton ionization triggering, inverse bremsstrahlung heating, electron collision ionizing) is proposed to explain the generation of these multi-charged ions at the laser intensity stated above. The high ionization level of the clusters and the increasing charge state of the ion products with increasing laser wavelength are supposed mainly due to the rate-limiting step, i.e., electron heating by absorption energy from the laser field via inverse bremsstrahlung, which is proportional to λ2, λ being the laser wavelength.

  12. Charged vanadium-benzene multidecker clusters: DFT and quantum Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Tokár, K.; Derian, R. [Institute of Physics, CCMS, Slovak Academy of Sciences, 84511 Bratislava (Slovakia); Mitas, L. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States); Štich, I., E-mail: ivan.stich@savba.sk [Institute of Physics, CCMS, Slovak Academy of Sciences, 84511 Bratislava (Slovakia); Ruprecht A. Institute of Technology, Bratislava (Slovakia)

    2016-02-14

    Using explicitly correlated fixed-node quantum Monte Carlo and density functional theory (DFT) methods, we study electronic properties, ground-state multiplets, ionization potentials, electron affinities, and low-energy fragmentation channels of charged half-sandwich and multidecker vanadium-benzene systems with up to 3 vanadium atoms, including both anions and cations. It is shown that, particularly in anions, electronic correlations play a crucial role; these effects are not systematically captured with any commonly used DFT functionals such as gradient corrected, hybrids, and range-separated hybrids. On the other hand, tightly bound cations can be described qualitatively by DFT. A comparison of DFT and quantum Monte Carlo provides an in-depth understanding of the electronic structure and properties of these correlated systems. The calculations also serve as a benchmark study of 3d molecular anions that require a balanced many-body description of correlations at both short- and long-range distances.

  13. MeV ion cluster interaction with solids: explosion, charge states and secondary emissions; Interaction d`ions agregats de quelques MeV avec des cibles solides: dissociation, etats de charge et emissions secondaires

    Energy Technology Data Exchange (ETDEWEB)

    Brunelle, A.; Della Negra, S.; Depauw, J.; Jacquet, D.; Le Beyec, Y.; Pautrat, M. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    The interaction of fast carbon cluster projectiles with solid target has been studied. It has been shown that the average ionization state of the constituents of carbon clusters coming out from thin amorphous carbon targets, is significantly lower than the exciting charge state of the single carbon atom at the same velocity. This effect increases with the size of the cluster and decreases with the target thickness. We have followed the evolution of secondary H{sup +} emission, from the exit side of the foil in the the forward direction, as a function of the target thickness and size and velocity of cluster projectile. At 2 MeV/atom, C{sub 10} and C{sub 5} cluster constituents are still close enough after 30 nm of amorphous carbon to induce H{sup +} emission as if all the constituents were concentrated in a `point-charge`. When decreasing the velocity by a factor of 1.4, because of increased multiple scattering and Coulomb explosion effects, this point-charge behaviour is not observed any more. (authors) 1 fig.

  14. Cluster-assisted generation of multi-charged ions in nanosecond laser ionization of pulsed hydrogen sulfide beam at 1064 and 532 nm

    Science.gov (United States)

    Niu, Dong-Mei; Li, Hai-Yang; Luo, Xiao-Lin; Liang, Feng; Cheng, Shuang; Li, An-Lin

    2006-07-01

    The multi-charged sulfur ions of Sq+ (qlaser of 1064 and 532 nm with an intensity of 1010~ 1012W.cm-2. S6+ is the dominant multi-charged species at 1064 nm, while S4+, S3+ and S2+ ions are the main multi-charged species at 532 nm. A three-step model (i.e., multiphoton ionization triggering, inverse bremsstrahlung heating, electron collision ionizing) is proposed to explain the generation of these multi-charged ions at the laser intensity stated above. The high ionization level of the clusters and the increasing charge state of the ion products with increasing laser wavelength are supposed mainly due to the rate-limiting step, i.e., electron heating by absorption energy from the laser field via inverse bremsstrahlung, which is proportional to λ2, λ being the laser wavelength.

  15. Use of charge sensitivity analysis in diagnosing chemisorption clusters: Minimum-energy coordinate and Fukui function study of model toluene-[V2O5] systems

    International Nuclear Information System (INIS)

    Charge sensitivity analysis (CSA) is carried out for model toluene-vanadium pentoxide chemisorption complexes involving the two-pyramidal model of the active site on the (010)-V2O5 surface. Maps of the electrostatic potential around the adsorbate and the substrate cluster are used to rationalize energetical preferences of alternative perpendicular and parallel arrangements of the toluene ring relative to the pyramid bases, known from previous SCF MO studies. The minimum-energy coordinates (MEC) in the electron population space are determined from the CSA semiempirical, finite difference atomic hardness matrix for the actual SCF MO charges in the chemisorption clusters. They represent collective charge displacements which minimize the system energy per unit change in the oxidation state of a specified atom, thus providing a convenient diagnostic tool for testing the alternative charge rearrangements and range of perturbations due to the chemisorption bond or changes in the cluster environment. The MEC relaxed hardnesses diagnose mode stabilities and together with the MEC relaxed hardnesses diagnose mode stabilities and together with the MEC topologies identify the most probable locations of the adsorbate activation. Finally, the atomic Fukui function indices are used to explore trends in the distribution of the external charge transfer due to the system environment. 14 refs., 4 figs

  16. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  17. Human Leukocyte Antigen (HLA) B27 Allotype-Specific Binding and Candidate Arthritogenic Peptides Revealed through Heuristic Clustering of Data-independent Acquisition Mass Spectrometry (DIA-MS) Data.

    Science.gov (United States)

    Schittenhelm, Ralf B; Sivaneswaran, Saranjah; Lim Kam Sian, Terry C C; Croft, Nathan P; Purcell, Anthony W

    2016-06-01

    Expression of HLA-B27 is strongly associated with ankylosing spondylitis (AS) and other spondyloarthropathies. While this is true for the majority of HLA-B27 allotypes, HLA-B*27:06 and HLA-B*27:09 are not associated with AS. These two subtypes contain polymorphisms that are ideally positioned to influence the bound peptide repertoire. The existence of disease-inducing peptides (so-called arthritogenic peptides) has therefore been proposed that are exclusively presented by disease-associated HLA-B27 allotypes. However, we have recently demonstrated that this segregation of allotype-bound peptides is not the case and that many peptides that display sequence features predicted to favor binding to disease-associated subtypes are also capable of being presented naturally by protective alleles. To further probe more subtle quantitative changes in peptide presentation, we have used a combination of data-independent acquisition (DIA) and multiple reaction monitoring (MRM) mass spectrometry to quantify the abundance of 1646 HLA-B27 restricted peptides across the eight most frequent HLA-B27 allotypes (HLA-B*27:02-HLA-B*27:09). We utilized K means cluster analysis to group peptides with similar allelic binding preferences across the eight HLA-B27 allotypes, which enabled us to identify the most-stringent binding characteristics for each HLA-B27 allotype and further refined their existing consensus-binding motifs. Moreover, a thorough analysis of this quantitative dataset led to the identification of 26 peptides, which are presented in lower abundance by HLA-B*27:06 and HLA-B*27:09 compared with disease-associated HLA-B27 subtypes. Although these differences were observed to be very subtle, these 26 peptides might encompass the sought-after arthritogenic peptide(s). PMID:26929215

  18. Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces.

    Science.gov (United States)

    Li, Jing; Inutan, Ellen D; Wang, Beixi; Lietz, Christopher B; Green, Daniel R; Manly, Cory D; Richards, Alicia L; Marshall, Darrell D; Lingenfelter, Steven; Ren, Yue; Trimpin, Sarah

    2012-10-01

    Matrix assisted inlet ionization (MAII) is a method in which a matrix:analyte mixture produces mass spectra nearly identical to electrospray ionization without the application of a voltage or the use of a laser as is required in laserspray ionization (LSI), a subset of MAII. In MAII, the sample is introduced by, for example, tapping particles of dried matrix:analyte into the inlet of the mass spectrometer and, therefore, permits the study of conditions pertinent to the formation of multiply charged ions without the need of absorption at a laser wavelength. Crucial for the production of highly charged ions are desolvation conditions to remove matrix molecules from charged matrix:analyte clusters. Important factors affecting desolvation include heat, vacuum, collisions with gases and surfaces, and even radio frequency fields. Other parameters affecting multiply charged ion production is sample preparation, including pH and solvent composition. Here, findings from over 100 compounds found to produce multiply charged analyte ions using MAII with the inlet tube set at 450 °C are presented. Of the compounds tested, many have -OH or -NH(2) functionality, but several have neither (e.g., anthracene), nor aromaticity or conjugation. Binary matrices are shown to be applicable for LSI and solvent-free sample preparation can be applied to solubility restricted compounds, and matrix compounds too volatile to allow drying from common solvents. Our findings suggest that the physical properties of the matrix such as its morphology after evaporation of the solvent, its propensity to evaporate/sublime, and its acidity are more important than its structure and functional groups.

  19. Conservation of a helix-stabilizing dipole moment in the PP-fold family of regulatory peptides

    DEFF Research Database (Denmark)

    Bjørnholm, B; Jørgensen, Flemming Steen; Schwartz, T W

    1993-01-01

    of the electrostatic properties of five representative members of the PP-fold family of peptides (human neuropeptide Y, human peptide YY, human pancreatic polypeptide, avian PP, and lamprey peptide methionine tyrosine) shows that this characteristic charge clustering gives rise to a common dipole moment of 325-450 D...... forces alone when the screening effect is considered. This energy is of the same order of magnitude as the enthalpy change for the unfolding of avian PP (approximately 30 kcal/mol), strongly indicating that the charge-dipole interactions are of significant importance for the stability of the three...

  20. Exposure to positively- and negatively-charged plasma cluster ions impairs IgE-binding capacity of indoor cat and fungal allergens

    OpenAIRE

    NISHIKAWA, Kazuo; Fujimura, Takashi; Ota, Yasuhiro; Abe, Takuya; ElRamlawy, Kareem Gamal; Nakano, Miyako; Takado, Tomoaki; Uenishi, Akira; Kawazoe, Hidechika; Sekoguchi, Yoshinori; Tanaka, Akihiko; Ono, Kazuhisa; Kawamoto, Seiji

    2016-01-01

    Background Environmental control to reduce the amount of allergens in a living place is thought to be important to avoid sensitization to airborne allergens. However, efficacy of environmental control on inactivation of airborne allergens is not fully investigated. We have previously reported that positively- and negatively-charged plasma cluster ions (PC-ions) reduce the IgE-binding capacity of crude allergens from Japanese cedar pollen as important seasonal airborne allergens. Cat (Felis do...

  1. Efficiency of cellular delivery of antisense peptide nucleic acid by electroporation depends on charge and electroporation geometry

    DEFF Research Database (Denmark)

    Joergensen, Mette; Agerholm-Larsen, Birgit; Nielsen, Peter E;

    2011-01-01

    Electroporation is potentially a very powerful technique for both in vitro cellular and in vivo drug delivery, particularly relating to oligonucleotides and their analogs for genetic therapy. Using a sensitive and quantitative HeLa cell luciferase RNA interference mRNA splice correction assay wit......, polymerase chain reaction, and confocal microscopy. In conclusion, we have found that the charge of PNA and electroporation system combination greatly influences the transfer efficiency, thereby illustrating the complexity of the electroporation mechanism....

  2. Atomic and electronic structures of neutral and charged Pbn clusters (n=2-15): Theoretical investigation based on density functional theory

    Science.gov (United States)

    Rajesh, Chinagandham; Majumder, Chiranjib

    2007-06-01

    The geometric and electronic structures of the Pbn+ clusters (n=2-15) have been investigated and compared with neutral clusters. The search for several low-lying isomers was carried out under the framework of the density functional theory formalism using the generalized gradient approximation for the exchange correlation energy. The wave functions were expanded using a plane wave basis set and the electron-ion interactions have been described by the projector augmented wave method. The ground state geometries of the singly positively charged Pbn+ clusters showed compact growth pattern as those observed for neutrals with small local distortions. Based on the total energy of the lowest energy isomers, a systematic analysis was carried out to obtain the physicochemical properties, viz., binding energy, second order difference in energy, and fragmentation behavior. It is found that n =4, 7, 10, and 13 clusters are more stable than their neighbors, reflecting good agreement with experimental observation. The chemical stability of these clusters was analyzed by evaluating their energy gap between the highest occupied and lowest unoccupied molecular orbitals and adiabatic ionization potentials. The results revealed that, although Pb13 showed higher stability from the total energy analysis, its energy gap and ionization potential do not follow the trend. Albeit of higher stability in terms of binding energy, the lower ionization potential of Pb13 is interesting which has been explained based on its electronic structure through the density of states and electron shell filling model of spherical clusters.

  3. Effect of charged microenvironment on the electrochemistry of [Fe2S2(OC6H5)4]2− cluster

    Indian Academy of Sciences (India)

    Dhanada Sarmah; Diganta Kumar Das

    2013-11-01

    Although cysteine is the preferred ligand for [Fe-S] core in case of iron-sulphur proteins, presence of other ligands together with cysteine is not uncommon. Being basically electron transfer proteins, redox potential of [Fe-S] core in these proteins in crucial to their functioning. Among other factors, charged nature of the microenvironment is believed to tune the redox potential. The iron-sulphur cluster, [Fe2S2(OC6H5)4]2−, has been investigated electrochemically in positive and negative microenvironments, both in solution and in film. Charge nature around the active centre has been found to affect its redox potential and diffusion coefficient significantly. In a film, where charges are more localized compared to solution, the effect on redox potential was more prominent.

  4. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity.

    Science.gov (United States)

    Finger, Sebastian; Kerth, Andreas; Dathe, Margitta; Blume, Alfred

    2015-11-01

    Various models have been proposed for the sequence of events occurring after binding of specific antimicrobial peptides to lipid membranes. The lipid clustering model arose by the finding that antimicrobial peptides can induce a segregation of certain negatively charged lipids in lipid model membranes. Anionic lipid segregation by cationic peptides is initially an effect of charge interaction where the ratio of peptide and lipid charges is thought to be the decisive parameter in the peptide induced lipid demixing. However, the sequence of events following this initial lipid clustering is more complex and can lead to deactivation of membrane proteins involved in cell division or perturbation of lipid reorganization essential for cell division. In this study we used DSC and ITC techniques to investigate the effect of binding different cyclic hexapeptides with varying antimicrobial efficacy, to phosphatidylglycerol (PG)/phosphatidylethanolamine (PE) lipid membranes and their ability to induce lipid segregation in these mixtures. We found that these cyclic hexapeptides consisting of three charged and three aromatic amino acids showed indeed different abilities to induce lipid demixing depending on their amino acid composition and their sequence. The results clearly showed that the cationic amino acids are essential for electrostatic binding but that the three hydrophobic amino acids in the peptides and their position in the sequence also contribute to binding affinity and to the extent of induction of lipid clustering. The efficacy of these different hexapeptides to induce PG clusters in PG/PE membranes was found to be correlated with their antimicrobial activity.

  5. Binding of the Cationic Peptide (KL)4K to Lipid Monolayers at the Air-Water Interface: Effect of Lipid Headgroup Charge, Acyl Chain Length, and Acyl Chain Saturation.

    Science.gov (United States)

    Hädicke, André; Blume, Alfred

    2016-04-28

    The binding of the cationic peptide (KL)4K to monolayers of different anionic lipids was determined by adsorption experiments. The chemical structure of the anionic phospholipids was changed in different ways. First, the hydrophobic region of phosphatidylglycerols was altered by elongation of the acyl chain length. Second, an unsaturated chain was introduced. Third, lipids with negatively charged headgroups of different chemical structure were compared. (KL)4K itself shows no surface activity and does not bind to monolayers of zwitterionic lipids. Analysis of (KL)4K binding to anionic lipid monolayers reveals a competition between two binding processes: (i) incorporation of the peptide into the acyl chain region (surface pressure increase) and (ii) electrostatic interaction screening the negative charges with reduction of charge repulsion (surface pressure decrease due to monolayer condensation). The lipid acyl chain length and the chemical structure of the headgroup have minor effects on the binding properties. However, a strong dependence on the phase state of the monolayer was observed. In the liquid-expanded (LE) phase, the fluid monolayer provides enough space, so that peptide insertion due to hydrophobic interactions dominates. For monolayers in the liquid-condensed (LC) phase, peptide binding followed by monolayer condensation is the main effect. PMID:27049846

  6. Biocatalytic self-assembly of supramolecular charge-transfer nanostructures based on n-type semiconductor-appended peptides.

    Science.gov (United States)

    Nalluri, Siva Krishna Mohan; Berdugo, Cristina; Javid, Nadeem; Frederix, Pim W J M; Ulijn, Rein V

    2014-06-01

    The reversible in situ formation of a self-assembly building block (naphthalenediimide (NDI)-dipeptide conjugate) by enzymatic condensation of NDI-functionalized tyrosine (NDI-Y) and phenylalanine-amide (F-NH2) to form NDI-YF-NH2 is described. This coupled biocatalytic condensation/assembly approach is thermodynamically driven and gives rise to nanostructures with optimized supramolecular interactions as evidenced by substantial aggregation induced emission upon assembly. Furthermore, in the presence of di-hydroxy/alkoxy naphthalene donors, efficient charge-transfer complexes are produced. The dynamic formation of NDI-YF-NH2 and electronic and H-bonding interactions are analyzed and characterized by different methods. Microscopy (TEM and AFM) and rheology are used to characterize the formed nanostructures. Dynamic nanostructures, whose formation and function are driven by free-energy minimization, are inherently self-healing and provide opportunities for the development of aqueous adaptive nanotechnology. PMID:24788665

  7. The Positively Charged COOH-terminal Glycosaminoglycan-binding CXCL9(74-103) Peptide Inhibits CXCL8-induced Neutrophil Extravasation and Monosodium Urate Crystal-induced Gout in Mice.

    Science.gov (United States)

    Vanheule, Vincent; Janssens, Rik; Boff, Daiane; Kitic, Nikola; Berghmans, Nele; Ronsse, Isabelle; Kungl, Andreas J; Amaral, Flavio Almeida; Teixeira, Mauro Martins; Van Damme, Jo; Proost, Paul; Mortier, Anneleen

    2015-08-28

    The ELR(-)CXC chemokine CXCL9 is characterized by a long, highly positively charged COOH-terminal region, absent in most other chemokines. Several natural leukocyte- and fibroblast-derived COOH-terminally truncated CXCL9 forms missing up to 30 amino acids were identified. To investigate the role of the COOH-terminal region of CXCL9, several COOH-terminal peptides were chemically synthesized. These peptides display high affinity for glycosaminoglycans (GAGs) and compete with functional intact chemokines for GAG binding, the longest peptide (CXCL9(74-103)) being the most potent. The COOH-terminal peptide CXCL9(74-103) does not signal through or act as an antagonist for CXCR3, the G protein-coupled CXCL9 receptor, and does not influence neutrophil chemotactic activity of CXCL8 in vitro. Based on the GAG binding data, an anti-inflammatory role for CXCL9(74-103) was further evidenced in vivo. Simultaneous intravenous injection of CXCL9(74-103) with CXCL8 injection in the joint diminished CXCL8-induced neutrophil extravasation. Analogously, monosodium urate crystal-induced neutrophil migration to the tibiofemural articulation, a murine model of gout, is highly reduced by intravenous injection of CXCL9(74-103). These data show that chemokine-derived peptides with high affinity for GAGs may be used as anti-inflammatory peptides; by competing with active chemokines for binding and immobilization on GAGs, these peptides may lower chemokine presentation on the endothelium and disrupt the generation of a chemokine gradient, thereby preventing a chemokine from properly performing its chemotactic function. The CXCL9 peptide may serve as a lead molecule for further development of inhibitors of inflammation based on interference with chemokine-GAG interactions.

  8. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors

    International Nuclear Information System (INIS)

    Peptide receptor radionuclide therapy (PRRT) is an effective method for treating neuroendocrine tumors (NETs). It is limited, however, in the prediction of individual tumor response and the precise and early identification of changes in tumor size. Currently, response prediction is based on somatostatin receptor expression and efficacy by morphological imaging and/or chromogranin A (CgA) measurement. The aim of this study was to assess the accuracy of circulating NET transcripts as a measure of PRRT efficacy, and moreover to identify prognostic gene clusters in pretreatment blood that could be interpolated with relevant clinical features in order to define a biological index for the tumor and a predictive quotient for PRRT efficacy. NET patients (n = 54), M: F 37:17, median age 66, bronchial: n = 13, GEP-NET: n = 35, CUP: n = 6 were treated with 177Lu-based-PRRT (cumulative activity: 6.5-27.8 GBq, median 18.5). At baseline: 47/54 low-grade (G1/G2; bronchial typical/atypical), 31/49 18FDG positive and 39/54 progressive. Disease status was assessed by RECIST1.1. Transcripts were measured by real-time quantitative reverse transcription PCR (qRT-PCR) and multianalyte algorithmic analysis (NETest); CgA by enzyme-linked immunosorbent assay (ELISA). Gene cluster (GC) derivations: regulatory network, protein:protein interactome analyses. Statistical analyses: chi-square, non-parametric measurements, multiple regression, receiver operating characteristic and Kaplan-Meier survival. The disease control rate was 72 %. Median PFS was not achieved (follow-up: 1-33 months, median: 16). Only grading was associated with response (p < 0.01). At baseline, 94 % of patients were NETest-positive, while CgA was elevated in 59 %. NETest accurately (89 %, χ2 = 27.4; p = 1.2 x 10-7) correlated with treatment response, while CgA was 24 % accurate. Gene cluster expression (growth-factor signalome and metabolome) had an AUC of 0.74 ± 0.08 (z-statistic = 2.92, p < 0.004) for predicting

  9. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Bodei, L. [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); LuGenIum Consortium, Milan, Rotterdam, Bad Berka, London, Italy, Netherlands, Germany (Country Unknown); Kidd, M. [Wren Laboratories, Branford, CT (United States); Modlin, I.M. [LuGenIum Consortium, Milan, Rotterdam, Bad Berka, London, Italy, Netherlands, Germany (Country Unknown); Yale School of Medicine, New Haven, CT (United States); Severi, S.; Nicolini, S.; Paganelli, G. [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Nuclear Medicine and Radiometabolic Units, Meldola (Italy); Drozdov, I. [Bering Limited, London (United Kingdom); Kwekkeboom, D.J.; Krenning, E.P. [LuGenIum Consortium, Milan, Rotterdam, Bad Berka, London, Italy, Netherlands, Germany (Country Unknown); Erasmus Medical Center, Nuclear Medicine Department, Rotterdam (Netherlands); Baum, R.P. [LuGenIum Consortium, Milan, Rotterdam, Bad Berka, London, Italy, Netherlands, Germany (Country Unknown); Zentralklinik Bad Berka, Theranostics Center for Molecular Radiotherapy and Imaging, Bad Berka (Germany)

    2016-05-15

    Peptide receptor radionuclide therapy (PRRT) is an effective method for treating neuroendocrine tumors (NETs). It is limited, however, in the prediction of individual tumor response and the precise and early identification of changes in tumor size. Currently, response prediction is based on somatostatin receptor expression and efficacy by morphological imaging and/or chromogranin A (CgA) measurement. The aim of this study was to assess the accuracy of circulating NET transcripts as a measure of PRRT efficacy, and moreover to identify prognostic gene clusters in pretreatment blood that could be interpolated with relevant clinical features in order to define a biological index for the tumor and a predictive quotient for PRRT efficacy. NET patients (n = 54), M: F 37:17, median age 66, bronchial: n = 13, GEP-NET: n = 35, CUP: n = 6 were treated with {sup 177}Lu-based-PRRT (cumulative activity: 6.5-27.8 GBq, median 18.5). At baseline: 47/54 low-grade (G1/G2; bronchial typical/atypical), 31/49 {sup 18}FDG positive and 39/54 progressive. Disease status was assessed by RECIST1.1. Transcripts were measured by real-time quantitative reverse transcription PCR (qRT-PCR) and multianalyte algorithmic analysis (NETest); CgA by enzyme-linked immunosorbent assay (ELISA). Gene cluster (GC) derivations: regulatory network, protein:protein interactome analyses. Statistical analyses: chi-square, non-parametric measurements, multiple regression, receiver operating characteristic and Kaplan-Meier survival. The disease control rate was 72 %. Median PFS was not achieved (follow-up: 1-33 months, median: 16). Only grading was associated with response (p < 0.01). At baseline, 94 % of patients were NETest-positive, while CgA was elevated in 59 %. NETest accurately (89 %, χ{sup 2} = 27.4; p = 1.2 x 10{sup -7}) correlated with treatment response, while CgA was 24 % accurate. Gene cluster expression (growth-factor signalome and metabolome) had an AUC of 0.74 ± 0.08 (z-statistic = 2.92, p < 0

  10. Water clusters in an argon matrix: infrared spectra from molecular dynamics simulations with a self-consistent charge density functional-based tight binding/force-field potential.

    Science.gov (United States)

    Simon, Aude; Iftner, Christophe; Mascetti, Joëlle; Spiegelman, Fernand

    2015-03-19

    The present theoretical study aims at investigating the effects of an argon matrix on the structures, energetics, dynamics, and infrared (IR) spectra of small water clusters (H2O)n (n = 1-6). The potential energy surface is obtained from a hybrid self-consistent charge density functional-based tight binding/force-field approach (SCC-DFTB/FF) in which the water clusters are treated at the SCC-DFTB level and the matrix is modeled at the FF level by a cluster consisting of ∼340 Ar atoms with a face centered cubic (fcc) structure, namely (H2O)n/Ar. With respect to a pure FF scheme, this allows a quantum description of the molecular system embedded in the matrix, along with all-atom geometry optimization and molecular dynamics (MD) simulations of the (H2O)n/Ar system. Finite-temperature IR spectra are derived from the MD simulations. The SCC-DFTB/FF scheme is first benchmarked on (H2O)Arn clusters against correlated wave function results and DFT calculations performed in the present work, and against FF data available in the literature. Regarding (H2O)n/Ar systems, the geometries of the water clusters are found to adapt to the fcc environment, possibly leading to intermolecular distortion and matrix perturbation. Several energetical quantities are estimated to characterize the water clusters in the matrix. In the particular case of the water hexamer, substitution and insertion energies for the prism, bag, and cage are found to be lower than that for the 6-member ring isomer. Finite-temperature MD simulations show that the water monomer has a quasifree rotation motion at 13 K, in agreement with experimental data. In the case of the water dimer, the only large-amplitude motion is a distortion-rotation intermolecular motion, whereas only vibration motions around the nuclei equilibrium positions are observed for clusters with larger sizes. Regarding the IR spectra, we find that the matrix environment leads to redshifts of the stretching modes and almost no shift of the

  11. The "approach unifying spin and charges" predicts the fourth family and a stable family forming the dark matter clusters

    CERN Document Server

    Borstnik, N S Mankoc

    2010-01-01

    The Approach unifying spin and charges, assuming that all the internal degrees of freedom---the spin, all the charges and the families---originate in $d > (1+3)$ in only two kinds of spins (the Dirac one and the only one existing beside the Dirac one and anticommuting with the Dirac one), is offering a new way in understanding the appearance of the families and the charges (in the case of charges the similarity with the Kaluza-Klein-like theories must be emphasized). A simple starting action in $d >(1+3)$ for gauge fields (the vielbeins and the two kinds of the spin connections) and a spinor (which carries only two kinds of spins and interacts with the corresponding gauge fields) manifests after particular breaks of the starting symmetry the massless four (rather than three) families with the properties as assumed by the Standard model for the three known families, and the additional four massive families. The lowest of these additional four families is stable. A part of the starting action contributes, toget...

  12. Charge configurations in viral proteins.

    OpenAIRE

    Karlin, S; Brendel, V

    1988-01-01

    The spatial distribution of the charged residues of a protein is of interest with respect to potential electrostatic interactions. We have examined the proteins of a large number of representative eukaryotic and prokaryotic viruses for the occurrence of significant clusters, runs, and periodic patterns of charge. Clusters and runs of positive charge are prominent in many capsid and core proteins, whereas surface (glyco)proteins frequently contain a negative charge cluster. Significant charge ...

  13. Validation of Methods for Computational Catalyst Design: Geometries, Structures, and Energies of Neutral and Charged Silver Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Duanmu, Kaining; Truhlar, Donald G.

    2015-04-30

    We report a systematic study of small silver clusters, Agn, Agn+, and Agn–, n = 1–7. We studied all possible isomers of clusters with n = 5–7. We tested 42 exchange–correlation functionals, and we assess these functionals for their accuracy in three respects: geometries (quantitative prediction of internuclear distances), structures (the nature of the lowest-energy structure, for example, whether it is planar or nonplanar), and energies. We find that the ingredients of exchange–correlation functionals are indicators of their success in predicting geometries and structures: local exchange–correlation functionals are generally better than hybrid functionals for geometries; functionals depending on kinetic energy density are the best for predicting the lowest-energy isomer correctly, especially for predicting two-dimensional to three-dimenstional transitions correctly. The accuracy for energies is less sensitive to the ingredient list. Our findings could be useful for guiding the selection of methods for computational catalyst design.

  14. DNA Repair Glycosylases with a [4Fe-4S] Cluster: A Redox Cofactor for DNA-mediated Charge Transport?

    OpenAIRE

    Boal, Amie K.; Yavin, Eylon; Barton, Jacqueline K.

    2007-01-01

    The [4Fe-4S] cluster is ubiquitous to a class of base excision repair enzymes, in organisms ranging from bacteria to man, and was first considered as a structural element, owing to its redox stability under physiological conditions. When studied bound to DNA, two of these repair proteins (MutY and Endonuclease III from Escherichia coli) display DNA-dependent reversible electron transfer with characteristics typical of high potential iron proteins. These results have inspired a reexamination o...

  15. Tuning the charge states of CrW2O9 clusters deposited on perfect and defective MgO(001) surfaces with different color centers: A comprehensive DFT study

    Science.gov (United States)

    Zhu, Jia; Zhang, Hui; Tong, Yawen; Wang, Chengxing; Wang, Bin; Huang, Xin; Zhang, Yongfan

    2016-05-01

    The structures and electronic properties of bimetallic oxide CrW2O9 clusters supported on the perfect and defective MgO(001) surfaces with three different color centers, FS0, FS+, and FS2+ centers, respectively, have been investigated by density functional theory calculations. Our results show that the configurations, adsorption energies, charge transfers, and bonding modes of dispersed CrW2O9 clusters are sensitive to the charge states of the FS centers. Compared with the gas-phase configuration, the CrW2O9 clusters supported on the defective surfaces are distorted dramatically, which exhibit different chain structures. On the perfect MgO surface, the depositions of clusters do not involve obvious charge transfer, while the situation is quite different on the defective MgO(001) surfaces in which significant electron transfer occurs from the surface to the cluster. Interestingly, this effect becomes more remarkable for electron-rich oxygen vacancies (FS0 center) than that for electron-poor oxygen vacancies (FS+ and FS2+ centers). Furthermore, our work reveals a progressive Brønsted acid sites where spin density preferentially localized around the Cr atoms not the W atoms for all kinds of FS-centers, indicating the better catalytic activities can be expected for CrW2O9 cluster on defective MgO(001) surfaces with respect to the W3O9 cluster.

  16. A surface-plasmon-resonance analysis of polylysine interactions with a peptide substrate of protein kinase CK2 and with the enzyme

    OpenAIRE

    Benítez, María J.; Mier, Gerardo; Briones Fernández-Pola, Fernando; Moreno, Francisco J.; Juan S Jiménez

    1997-01-01

    The mechanism of protein kinase CK2 (CK2) activity stimulation by polylysine has been studied by surface plasmon resonance (SPR). The kinetics of the polylysine interaction with a peptide substrate of the enzyme, and with the enzyme itself, have been investigated. A peptide containing a threonine (T) residue surrounded by a cluster of negatively charged acidic [arginine (R) and glutamic acid (E)] residues, RRREEETEEE, and specifically phosphorylated by CK2, was selected. Polylysine interacts ...

  17. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    International Nuclear Information System (INIS)

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ions having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D2-tagged GlyGlyH+ ⋅ (H2O)1−4 are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide

  18. Gold–superheavy-element interaction in diatomics and cluster adducts: A combined four-component Dirac-Kohn-Sham/charge-displacement study

    Energy Technology Data Exchange (ETDEWEB)

    Rampino, Sergio, E-mail: srampino@thch.unipg.it; Belpassi, Leonardo, E-mail: leonardo.belpassi@cnr.it [Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia (Italy); Storchi, Loriano [Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio,” Via dei Vestini 31, 66100 Chieti (Italy)

    2015-07-14

    The chemistry of superheavy elements (Z ≥ 104) is actively investigated in atom-at-a-time experiments of volatility through adsorption on gold surfaces. In this context, common guidelines for interpretation based on group trends in the periodic table should be used cautiously, because relativistic effects play a central role and may cause predictions to fall short. In this paper, we present an all-electron four-component Dirac-Kohn-Sham comparative study of the interaction of gold with Cn (Z = 112), Fl (Z = 114), and Uuo (Z = 118) versus their lighter homologues of the 6th period, Hg, Pb, and Rn plus the noble gas Xe. Calculations were carried out for Au–E (E = Hg, Cn, Pb, Fl, Xe, Rn, Uuo), Au{sub 7}– and Au{sub 20}–E (E = Hg, Cn, Pb, Fl, Rn) complexes, where Au{sub 7} (planar) and Au{sub 20} (pyramidal) are experimentally determined clusters having structures of increasing complexity. Results are analysed both in terms of the energetics of the complexes and of the electron charge rearrangement accompanying their formation. In line with the available experimental data, Cn and more markedly Fl are found to be less reactive than their lighter homologues. On the contrary, Uuo is found to be more reactive than Rn and Xe. Cn forms the weakest bond with the gold atom, compared to Fl and Uuo. The reactivity of Fl decreases with increasing gold-fragment size more rapidly than that of Cn and, as a consequence, the order of the reactivity of these two elements is inverted upon reaching the Au{sub 20}-cluster adduct. Density difference maps between adducts and fragments reveal similarities in the behaviour of Cn and Xe, and in that of Uuo and the more reactive species Hg and Pb. These findings are given a quantitative ground via charge-displacement analysis.

  19. Collagen peptide-based biomaterials for protein delivery and peptide-promoted self-assembly of gold nanoparticles

    Science.gov (United States)

    Ernenwein, Dawn M.

    2011-12-01

    Bottom-up self-assembly of peptides has driven the research progress for the following two projects: protein delivery vehicles of collagen microflorettes and the assembly of gold nanoparticles with coiled-coil peptides. Collagen is the most abundant protein in the mammals yet due to immunogenic responses, batch-to-batch variability and lack of sequence modifications, synthetic collagen has been designed to self-assemble into native collagen-like structures. In particular with this research, metal binding ligands were incorporated on the termini of collagen-like peptides to generate micron-sized particles, microflorettes. The over-arching goal of the first research project is to engineer MRI-active microflorettes, loaded with His-tagged growth factors with differential release rates while bound to stem cells that can be implemented toward regenerative cell-based therapies. His-tagged proteins, such as green fluorescent protein, have successfully been incorporated on the surface and throughout the microflorettes. Protein release was monitored under physiological conditions and was related to particle degradation. In human plasma full release was obtained within six days. Stability of the microflorettes under physiological conditions was also examined for the development of a therapeutically relevant delivery agent. Additionally, MRI active microflorettes have been generated through the incorporation of a gadolinium binding ligand, DOTA within the collagen-based peptide sequence. To probe peptide-promoted self-assemblies of gold nanoparticles (GNPs) by non-covalent, charge complementary interactions, a highly anionic coiled-coil peptide was designed and synthesized. Upon formation of peptide-GNP interactions, the hydrophobic domain of the coiled-coil were shown to promote the self-assembly of peptide-GNPs clustering. Hydrophobic forces were found to play an important role in the assembly process, as a peptide with an equally overall negative charge, but lacking an

  20. Identification of a (H2O)8 cluster in a supramolecular host of a charge transfer platinum(II) complex

    Indian Academy of Sciences (India)

    Sutanuva Mandal; Ipsita Chatterjee; Alfonso Castiñeirs; Sreebrata Goswami

    2014-09-01

    The chemical reaction of PtII(L1)Cl2 [L1 = 2-(phenylazo)pyridine] with a bidentate N,S-donor atom ligand, 2-phenylthioaniline, (HL2) in alkaline acetonitrile yielded a mixed ligand donor acceptor complex, [PtII(L1)(L2)−]Cl, [1]Cl. The complex has been characterized by using a host of physical methods: X-ray crystallography, nuclear magnetic resonance, cyclic voltammetry, absorption spectroscopy, electron paramagnetic resonance. The complex showed intense interligand charge transfer (ILCT) transition in the long wavelength region of UV-vis spectrum at 785 nm. The single-crystal X-ray structure of complex, [1]Cl·2.6H2O is reported. The cationic complex upon crystallization from aqueous methanol solvent produces an assembly of three dimensional (H2O)8 guest moiety within the host lattice of reference Pt-complex. The water assembly showed a unique type of aggregation of two trigonal pyramids hydrogen bonded with three chloride anions. The complex displayed two reversible responses at −0.34 and −1.05 V along with one irreversible anodic response at 0.91 V versus Ag/AgCl reference electrode. The redox processes are characterized by examination of EPR spectra of the electrogenerated complexes.

  1. B-type natriuretic peptide and C-reactive protein in the prediction of atrial fibrillation risk: the CHARGE-AF Consortium of community-based cohort studies

    NARCIS (Netherlands)

    M.F. Sinner (Moritz); K.A. Stepas (Katherine A.); C.B. Moser (Carlee B.); B.P. Krijthe (Bouwe); T. Aspelund (Thor); N. Sotoodehnia (Nona); M. Fontes (Michel); A.C.J.W. Janssens (Cécile); R.A. Kronmal (Richard); J.W. Magnani (Jared); J.C.M. Witteman (Jacqueline); A.M. Chamberlain (Alanna); S.A. Lubitz (Steven); R. Schnabel (Renate); R.S. Vasan (Ramachandran S.); T.J. Wang (Thomas); S.K. Agarwal (Sunil); D.D. McManus (David); O.H. Franco (Oscar); X. Yin (Xiaoyan); M.G. Larson (Martin); G.L. Burke (Greg); L.J. Launer (Lenore); A. Hofman (Albert); D. Levy (Daniel); J.S. Gottdiener (John); S. Kääb (Stefan); D.J. Couper (David); T.B. Harris (Tamara); B.C. Astor (Brad); C. Ballantyne (Christie); R.C. Hoogeveen (Ron); T. Arai (Takashi); E.Z. Soliman (Elsayed Z.); P.T. Ellinor (Patrick); B.H.Ch. Stricker (Bruno); V. Gudnason (Vilmundur); S.R. Heckbert (Susan); M. Pencina (Michael); E.J. Benjamin (Emelia); A. Alonso (Alvaro)

    2014-01-01

    textabstractAIMS: B-type natriuretic peptide (BNP) and C-reactive protein (CRP) predict atrial fibrillation (AF) risk. However, their risk stratification abilities in the broad community remain uncertain. We sought to improve risk stratification for AF using biomarker information.METHODS AND RESULTS

  2. Effective cytoplasmic release of siRNA from liposomal carriers by controlling the electrostatic interaction of siRNA with a charge-invertible peptide, in response to cytoplasmic pH

    Science.gov (United States)

    Itakura, Shoko; Hama, Susumu; Matsui, Ryo; Kogure, Kentaro

    2016-05-01

    Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is effectively released via electrostatic repulsion of siRNA with negatively charged SAPSP at cytoplasmic pH (7.4). The condensed complex of siRNA and positively-charged SAPSP at acidic pH (siRNA/SAPSP) was found to result in almost complete release of siRNA upon charge inversion of SAPSP at pH 7.4, with the resultant negatively-charged SAPSP having no undesirable interactions with endogenous mRNA. Moreover, liposomes encapsulating siRNA/SAPSP demonstrated knockdown efficiencies comparable to those of commercially available siRNA carriers. Taken together, SAPSP may be very useful as a siRNA condenser, as it facilitates effective cytoplasmic release of siRNA, and subsequent induction of specific RNAi effects.Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is

  3. On the Attosecond charge migration in Cl.....N, Cl.....O, Br.....N and Br.....O Halogen-bonded clusters: Effect of donor, acceptor, vibration, rotation, and electron correlation

    Indian Academy of Sciences (India)

    SANKHABRATA CHANDRA; MOHAMMED MUSTHAFA IQBAL; ATANU BHATTACHARYA

    2016-08-01

    The electron-electron relaxation and correlation-driven charge migration process, which features pure electronic aspect of ultrafast charge migration phenomenon, occurs on a very short timescale in ionized molecules and molecular clusters, prior to the onset of nuclear motion. In this article, we have presented natureof ultrafast pure electronic charge migration dynamics through Cl.....N, Cl.....O, Br.....N, and Br.....O halogen bonds, explored using density functional theory. We have explored the role of donor, acceptor, electron correlation, vibration and rotation in charge migration dynamics through these halogen bonds. For this work, we have selected ClF, Cl₂, ClOH, ClCN, BrF, BrCl, BrOH, and BrCN molecules paired with either NH₃ or H₂O. We have found that the timescale for pure electron-electron relaxation and correlation-driven charge migration through the Cl.....N, Br.....N, Cl.....O, and Br.....O halogen bonds falls in the range of 300–600 attosecond. The primary driving force behind the attosecond charge migration through the Cl.....N, Br.....N, Cl.....O, and Br.....O halogen bonds is the energy difference (∆E) between two stationary cationic orbitals (LUMO-β and HOMO-β), which together represents the initial hole density immediately following vertical ionization. We have also predicted that the strength of electron correlation has significant effect on the charge migration timescale in Cl.....N, Br.....N, Cl.....O, and Br.....O halogen bonded clusters. Vibration and rotation are also found to exhibit profound effect on attosecond charge migration dynamics through halogen bonds.

  4. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    Science.gov (United States)

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  5. Positively charged templates for labeling internalizing antibodies: comparison of N-succinimidyl 5-iodo-3-pyridinecarboxylate and the D-amino acid peptide KRYRR

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, Catherine F.; Welsh, Philip C.; Bigner, Darell D.; Zalutsky, Michael R. E-mail: zalut001@mc.duke.edu

    2001-10-01

    Receptor-mediated internalization of monoclonal antibodies (mAbs), such as those specific for the epidermal growth factor receptor variant III (EGFRvIII), can lead to rapid loss of radioactivity from the target cell. In the current study, the anti-EGFRvIII mAb L8A4 was radioiodinated using two methods -N-succinimidyl 5-iodo-3-pyridinecarboxylate (SIPC) and via a D-amino acid peptide LysArgTyrArgArg (D-KRYRR). Paired-label internalization assays performed on EGFRvIII-expressing U87{delta}EGFR cells in vitro demonstrated that labeling L8A4 using D-KRYRR resulted in significantly higher retention of radioiodine in the intracellular compartment. In athymic mice with D256 human glioma xenografts, tumor uptake was similar for both labeling methods through 24 hr. However, an up to fourfold higher tumor retention was observed for mAb labeled with the D-amino acid peptide at later time points. Radiation absorbed dose calculations based on these biodistribution data indicated that L8A4 labeled using D-KRYRR exhibited better tumor-to-normal-organ radiation dose ratios, suggesting that this labeling method may be of particular value for labeling internalizing mAbs.

  6. Exploration of the Medicinal Peptide Space.

    Science.gov (United States)

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs. PMID:26876881

  7. Neurotoxicity of prion peptides mimicking the central domain of the cellular prion protein.

    Directory of Open Access Journals (Sweden)

    Silvia Vilches

    Full Text Available The physiological functions of PrP(C remain enigmatic, but the central domain, comprising highly conserved regions of the protein may play an important role. Indeed, a large number of studies indicate that synthetic peptides containing residues 106-126 (CR located in the central domain (CD, 95-133 of PrP(C are neurotoxic. The central domain comprises two chemically distinct subdomains, the charge cluster (CC, 95-110 and a hydrophobic region (HR, 112-133. The aim of the present study was to establish the individual cytotoxicity of CC, HR and CD. Our results show that only the CD peptide is neurotoxic. Biochemical, Transmission Electron Microscopy and Atomic Force Microscopy experiments demonstrated that the CD peptide is able to activate caspase-3 and disrupt the cell membrane, leading to cell death.

  8. The gene encoding human intestinal trefoil factor (TFF3) is located on chromosome 21q22.3 clustered with other members of the trefoil peptide family

    Energy Technology Data Exchange (ETDEWEB)

    Chinery, R. [Royal College of Surgeons of England, London (United Kingdom); Williamson, J.; Poulsom, R. [Imperial Cancer Research Fund, London (United Kingdom)

    1996-03-01

    The gene coding for human intestinal trefoil factor (hITF), a recently described cellular motogen produced by gastrointestinal goblet cells and epithelia elsewhere, is a member of the rapidly growing trefoil peptide family. In a rodent-human somatic cell hybrid panel, the hITF (HGMW-approved symbol TFF3) genomic locus segregated with human chromosome 21q. Fluorescence in situ hybridization with a 2.1-kb genomic probe of the hITF gene mapped this locus more precisely to the q22.3 region. Triple fluorescence in situ hybridization, together with physical mapping of human genomic DNA using pulsed-field gel electrophoresis, revealed that the hITF gene is tightly linked to those encoding the other known human trefoil peptides, namely the breast cancer estrogen-inducable gene pS2 (BCEI) and human spasmolytic polypeptide (hSP/SML1). This gene family could become a useful marker for the genetic and physical mapping of chromosome 21 and for a better definition of the region involved in the clinical phenotype of several genetic diseases. 17 refs., 2 figs.

  9. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions

    DEFF Research Database (Denmark)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco;

    2016-01-01

    . In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited...... for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions...... determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide...

  10. The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B.

    Science.gov (United States)

    Morgenthau, Ari; Partha, Sarathy K; Adamiak, Paul; Schryvers, Anthony B

    2014-10-01

    A variety of Gram-negative pathogens possess host-specific lactoferrin (Lf) receptors that mediate the acquisition of iron from host Lf. The integral membrane protein component of the receptor, lactoferrin binding protein A specifically binds host Lf and is required for acquisition of iron from Lf. In contrast, the role of the bi-lobed surface lipoprotein, lactoferrin binding protein B (LbpB), in Lf binding and iron acquisition is uncertain. A common feature of LbpBs from most species is the presence of clusters of negatively charged amino acids in the protein's C-terminal lobe. Recently it has been shown that the negatively charged regions from the Neisseria meningitidis LbpB are responsible for protecting against an 11 amino acid cationic antimicrobial peptide (CAP), lactoferricin (Lfcin), derived from human Lf. In this study we investigated whether the LbpB confers resistance to other CAPs since N. meningitidis is likely to encounter other CAPs from the host. LbpB provided protection against the cathelicidin derived peptide, cathelicidin related antimicrobial peptide (mCRAMP), but did not confer protection against Tritrp 1 or LL37 under our experimental conditions. When tested against a range of rationally designed synthetic peptides, LbpB was shown to protect against IDR-1002 and IDR-0018 but not against HH-2 or HHC10. PMID:25038734

  11. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    Science.gov (United States)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations.

  12. An Interplay between Electrostatic and Polar Interactions in Peptide Hydrogels

    OpenAIRE

    Joyner, Katherine; Taraban, Marc B; Feng, Yue; Yu, Y. Bruce

    2013-01-01

    Inherent chemical programmability available in peptide-based hydrogels has allowed diversity in the development of these materials for use in biomedical applications. Within the 20 natural amino acids, a range of chemical moieties are present. Here we used a mixing-induced self-assembly of two oppositely charged peptide modules to form a peptide-based hydrogel. To investigate electrostatic and polar interactions on the hydrogel, we replace amino acids from the negatively charged acidic glutam...

  13. Isolation, Characterization, and Synthesis of the Barrettides: Disulfide-Containing Peptides from the Marine Sponge Geodia barretti.

    Science.gov (United States)

    Carstens, Bodil B; Rosengren, K Johan; Gunasekera, Sunithi; Schempp, Stefanie; Bohlin, Lars; Dahlström, Mia; Clark, Richard J; Göransson, Ulf

    2015-08-28

    Two disulfide-containing peptides, barrettides A (1) and B (2), from the cold-water marine sponge Geodia barretti are described. Those 31 amino acid residue long peptides were sequenced using mass spectrometry methods and structurally characterized using NMR spectroscopy. The structure of 1 was confirmed by total synthesis using the solid-phase peptide synthesis approach that was developed. The two peptides were found to differ only at a single position in their sequence. The three-dimensional structure of 1 revealed that these peptides possess a unique fold consisting of a long β-hairpin structure that is cross-braced by two disulfide bonds in a ladder-like arrangement. The peptides are amphipathic in nature with the hydrophobic and charged residues clustered on separate faces of the molecule. The barrettides were found not to inhibit the growth of either Escherichia coli or Staphylococcus aureus but displayed antifouling activity against barnacle larvae (Balanus improvisus) without lethal effects in the concentrations tested. PMID:26222779

  14. Towards the MHC-peptide combinatorics.

    Science.gov (United States)

    Kangueane, P; Sakharkar, M K; Kolatkar, P R; Ren, E C

    2001-05-01

    The exponentially increased sequence information on major histocompatibility complex (MHC) alleles points to the existence of a high degree of polymorphism within them. To understand the functional consequences of MHC alleles, 36 nonredundant MHC-peptide complexes in the protein data bank (PDB) were examined. Induced fit molecular recognition patterns such as those in MHC-peptide complexes are governed by numerous rules. The 36 complexes were clustered into 19 subgroups based on allele specificity and peptide length. The subgroups were further analyzed for identifying common features in MHC-peptide binding pattern. The four major observations made during the investigation were: (1) the positional preference of peptide residues defined by percentage burial upon complex formation is shown for all the 19 subgroups and the burial profiles within entries in a given subgroup are found to be similar; (2) in class I specific 8- and 9-mer peptides, the fourth residue is consistently solvent exposed, however this observation is not consistent in class I specific 10-mer peptides; (3) an anchor-shift in positional preference is observed towards the C terminal as the peptide length increases in class II specific peptides; and (4) peptide backbone atoms are proportionately dominant at the MHC-peptide interface.

  15. Long-range charge transfer in biopolymers

    Science.gov (United States)

    Astakhova, T. Yu; Likhachev, V. N.; Vinogradov, G. A.

    2012-11-01

    The results of theoretical and experimental studies on the charge transfer in biopolymers, namely, DNA and peptides, are presented. Conditions that ensure the efficient long-range charge transport (by several tens of nanometres) are considered. The known theoretical models of charge transfer mechanisms are discussed and the scopes of their application are analyzed. Attention is focused on the charge transport by the polaron mechanism. The bibliography includes 262 references.

  16. Collagen-like antimicrobial peptides.

    Science.gov (United States)

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  17. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne, E-mail: egarand@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)

    2015-11-28

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ions having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.

  18. Peptide Synthesis on a Next-Generation DNA Sequencing Platform.

    Science.gov (United States)

    Svensen, Nina; Peersen, Olve B; Jaffrey, Samie R

    2016-09-01

    Methods for displaying large numbers of peptides on solid surfaces are essential for high-throughput characterization of peptide function and binding properties. Here we describe a method for converting the >10(7) flow cell-bound clusters of identical DNA strands generated by the Illumina DNA sequencing technology into clusters of complementary RNA, and subsequently peptide clusters. We modified the flow-cell-bound primers with ribonucleotides thus enabling them to be used by poliovirus polymerase 3D(pol) . The primers hybridize to the clustered DNA thus leading to RNA clusters. The RNAs fold into functional protein- or small molecule-binding aptamers. We used the mRNA-display approach to synthesize flow-cell-tethered peptides from these RNA clusters. The peptides showed selective binding to cognate antibodies. The methods described here provide an approach for using DNA clusters to template peptide synthesis on an Illumina flow cell, thus providing new opportunities for massively parallel peptide-based assays.

  19. Structural location determines functional roles of the basic amino acids of KR-12, the smallest antimicrobial peptide from human cathelicidin LL-37.

    Science.gov (United States)

    Mishra, Biswajit; Epand, Raquel F; Epand, Richard M; Wang, Guangshun

    2013-11-14

    Cationic antimicrobial peptides are recognized templates for developing a new generation of antimicrobials to combat superbugs. Human cathelicidin LL-37 is an essential host defense molecule in human innate immunity. Previously, we identified KR-12 as the smallest antibacterial peptide of LL-37. KR-12 has a narrow activity spectrum since it is active against Gram-negative Escherichia coli but not Gram-positive Staphylococcus aureus. The functional roles of the basic amino acids of KR-12, however, have not yet been elucidated. An alanine scan of cationic amino acids of KR-12 provided evidence for their distinct roles in the activities of the peptides. Bacterial killing and membrane permeation experiments indicate that the R23A and K25A mutants, as well as the lysine-to-arginine mutant, were more potent than KR-12. Another three cationic residues (K18, R19, and R29) of KR-12, which are located in the hydrophilic face of the amphiphathic helix, appeared to be more important in clustering anionic lipids or hemolysis than R23 and K25 in the interfacial region. While the loss of interfacial R23 or K25 reduced peptide helicity, underscoring its important role in membrane binding, the overall increase in peptide activity of KR-12 could be ascribed to the increased peptide hydrophobicity that outweighed the role of basic charge in this case. In contrast, the mutations of interfacial R23 or K25 reduced peptide bactericidal activity of GF-17, an overlapping, more hydrophobic and potent peptide also derived from LL-37. Thus, the hydrophobic context of the peptide determines whether an alanine substitution of an interfacial basic residue increases or decreases membrane permeation and peptide activity.

  20. Different roles of cell surface and exogenous glycosaminoglycans in controlling gene delivery by arginine-rich peptides with varied distribution of arginines.

    Science.gov (United States)

    Naik, Rangeetha J; Chatterjee, Anindo; Ganguli, Munia

    2013-06-01

    The role of cell surface and exogenous glycosaminoglycans (GAGs) in DNA delivery by cationic peptides is controlled to a large extent by the peptide chemistry and the nature of its complex with DNA. We have previously shown that complexes formed by arginine homopeptides with DNA adopt a GAG-independent cellular internalization mechanism and show enhanced gene delivery in presence of exogenous GAGs. In contrast, lysine complexes gain cellular entry primarily by a GAG-dependent pathway and are destabilized by exogenous GAGs. The aim of the current study was to elucidate the factors governing the role of cell surface and soluble glycosaminoglycans in DNA delivery by sequences of arginine-rich peptides with altered arginine distributions (compared to homopeptide). Using peptides with clustered arginines which constitute known heparin-binding motifs and a control peptide with arginines alternating with alanines, we show that complexes formed by these peptides do not require cell surface GAGs for cellular uptake and DNA delivery. However, the charge distribution and the spacing of arginine residues affects DNA delivery efficiency of these peptides in presence of soluble GAGs, since these peptides show only a marginal increase in transfection in presence of exogenous GAGs unlike that observed with arginine homopeptides. Our results indicate that presence of arginine by itself drives these peptides to a cell surface GAG-independent route of entry to efficiently deliver functional DNA into cells in vitro. However, the inherent stability of the complexes differ when the distribution of arginines in the peptides is altered, thereby modulating its interaction with exogenous GAGs.

  1. Semiconductor nanocrystals in photoconductive polymers: Charge generation and charge transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Herron, Norman; Suna, A. [Du Pont Co., Wilmington, DE (United States)

    1996-10-01

    A new class of photoconductive polymer composites, based on semiconductor nanocrystals (clusters) and carder-transporting polymers, have been developed. These materials are interesting for their potentials in laser printing, imaging, and photorefractives. We will describe material synthesis, charge transport and charge generation mechanisms. In particular, a model of field-dependent charge generation and separation in nonpolar media (e.g. polymers) will be discussed.

  2. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Vegt, Erik; Eek, Annemarie; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine (444), PO Box 9101, Nijmegen (Netherlands); Jong, Marion de [Erasmus Medical Centre, Department of Nuclear Medicine, Rotterdam (Netherlands)

    2010-02-15

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of {sup 111}In-albumin, {sup 111}In-minigastrin, {sup 111}In-exendin and {sup 111}In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of {sup 111}In-minigastrin, {sup 111}In-exendin and {sup 111}In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of {sup 111}In-albumin, {sup 111}In-exendin and {sup 111}In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of {sup 111}In-minigastrin, by 88%. Uptake of {sup 111}In-exendin and {sup 111}In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of {sup 111}In-minigastrin, {sup 111}In-exendin and {sup 111}In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  3. Antimicrobial peptides.

    Science.gov (United States)

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  4. Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ali Adem Bahar

    2013-11-01

    Full Text Available The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs, a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics.

  5. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans

    KAUST Repository

    Åmand, Helene L.

    2012-11-01

    Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetratin and two arginine/lysine substituted variants (PenArg and PenLys) in wildtype CHO-K1 and PG-deficient A745 cells. All peptides were more efficiently internalized into CHO-K1 than into A745, but their cell surface binding was independent of cell type. Thus, PGs promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Uptake of each peptide was linearly dependent on its cell surface binding, and affinity is thus important for efficiency. However, the gradients of these linear dependencies varied significantly. Thus each peptide\\'s ability to stimulate uptake once bound to the cell surface is reliant on formation of specific uptake-promoting interactions. Heparin affinity chromatography and clustering experiments showed that penetratin and PenArg binding to sulfated sugars is stabilized by hydrophobic interactions and result in clustering, whereas PenLys only interacts through electrostatic attraction. This may have implications for the molecular mechanisms behind arginine-specific uptake stimulation as penetratin and PenArg are more efficiently internalized than PenLys upon interaction with PGs. However, PenArg is also least affected by removal of PGs. This indicates that an increased arginine content not only improve PG-dependent uptake but also that PenArg is more adaptable as it can use several portals of entry into the cell. © 2012 Elsevier B.V.

  6. Continuous scanning of the mobility and size distribution of charged clusters and nanometer particles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA

    Science.gov (United States)

    Tammet, H.

    2006-12-01

    Measuring of charged nanometer particles in atmospheric air is a routine task in research on atmospheric electricity, where these particles are called the atmospheric ions. An aspiration condenser is the most popular instrument for measuring atmospheric ions. Continuous scanning of a mobility distribution is possible when the aspiration condenser is connected as an arm of a balanced bridge. Transfer function of an aspiration condenser is calculated according to the measurements of geometric dimensions, air flow rate, driving voltage, and electric current. The most complicated phase of the calibration is the estimation of the inlet loss of ions due to the Brownian deposition. The available models of ion deposition on the protective inlet screen and the inlet control electrofilter have the uncertainty of about 20%. To keep the uncertainty of measurements low the adsorption should not exceed a few tens of percent. The online conversion of the mobility distribution to the size distribution and a correct reduction of inlet losses are possible when air temperature and pressure are measured simultaneously with the mobility distribution. Two instruments called the Balanced Scanning Mobility Analyzers (BSMA) were manufactured and tested in routine atmospheric measurements. The concentration of atmospheric ions of the size of about a few nanometers is very low and a high air flow rate is required to collect enough of ion current. The air flow of 52 l/s exceeds the air flow in usual aerosol instruments by 2-3 orders of magnitude. The high flow rate reduces the time of ion passage to 60 ms and the heating of air in an analyzer to 0.2 K, which suppresses a possible transformation of ions inside the instrument. The mobility range of the BSMA of 0.032-3.2 cm 2 V - 1 s - 1 is logarithmically uniformly divided into 16 fractions. The size distribution is presented by 12 fractions in the diameter range of 0.4-7.5 nm. The measurement noise of a fraction concentration is typically

  7. Self-Assembly and Hydrogelation of Peptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Wahyudi Priyono Suwarso

    2012-04-01

    Full Text Available Seven peptide amphiphiles were successfully synthesized using solid phase peptide synthesis method. Peptide amphiphiles were characterized using matrix assisted laser desorption/ionization (MALDI. Atomic force microscopy (AFM study showed that peptide amphiphiles having glycine, valine, or proline as linker, self-assembled into 100-200 nm nanofibers structure. According to our research, both peptide amphiphile with positive and negative charges bear similar self-assembly properties. Peptide amphiphile also showed its capability as low molecular weight gelator (LMWG. Peptide amphiphiles bearing C-16 and C-12 as alkyl showed better hydrogelation properties than C-8 alkyl. Five out of seven peptide amphiphiles have minimum gelation concentration (MGC lower than 1% (w/v.

  8. Design of Asymmetric Peptide Bilayer Membranes.

    Science.gov (United States)

    Li, Sha; Mehta, Anil K; Sidorov, Anton N; Orlando, Thomas M; Jiang, Zhigang; Anthony, Neil R; Lynn, David G

    2016-03-16

    Energetic insights emerging from the structural characterization of peptide cross-β assemblies have enabled the design and construction of robust asymmetric bilayer peptide membranes. Two peptides differing only in their N-terminal residue, phosphotyrosine vs lysine, coassemble as stacks of antiparallel β-sheets with precisely patterned charged lattices stabilizing the bilayer leaflet interface. Either homogeneous or mixed leaflet composition is possible, and both create nanotubes with dense negative external and positive internal solvent exposed surfaces. Cross-seeding peptide solutions with a preassembled peptide nanotube seed leads to domains of different leaflet architecture within single nanotubes. Architectural control over these cross-β assemblies, both across the bilayer membrane and along the nanotube length, provides access to highly ordered asymmetric membranes for the further construction of functional mesoscale assemblies.

  9. Clusters in strong laser fields: Comparison between carbon, platinum, and lead clusters

    Science.gov (United States)

    Schumacher, M.; Teuber, S.; Köller, L.; Köhn, J.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    Carbon and metal clusters are excited by strong femtosecond laser pulses with up to 1016 W/cm2, yielding ionized clusters and highly charged atomic ions. For small carbon clusters and fullerenes the abundance of charged species correlates with the laser power, while for metal clusters the ionization efficiency is additionally strongly affected by the chosen laser pulse width which may result in an enhanced up-charging of the metal particle. In the case of platinum atomic charge states up to z=20 are detected at a pulse duration of about 600 fs. This observation is in accordance with a model based on a multi-plasmon excitation process.

  10. Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry

    Directory of Open Access Journals (Sweden)

    Plasencia Manolo

    2010-04-01

    Full Text Available Abstract Background There is an increasing usage of ion mobility-mass spectrometry (IMMS in proteomics. IMMS combines the features of ion mobility spectrometry (IMS and mass spectrometry (MS. It separates and detects peptide ions on a millisecond time-scale. IMS separates peptide ions based on drift time that is determined by the collision cross-section of each peptide ion in a given experiment condition. A peptide ion's collision cross-section is related to the ion size and shape resulted from the peptide amino acid sequence and their modifications. This inherent relation between the drift time of peptide ion and peptide sequence indicates that the drift time of peptide ions can be used to infer peptide sequence and therefore, for peptide identification. Results This paper describes an artificial neural networks (ANNs regression model for the prediction of peptide ion drift time in IMMS. Each peptide in this work was represented using three descriptors (i.e., molecular weight, sequence length and a two-dimensional sequence index. An ANN predictor consisting of four input nodes, three hidden nodes and one output node was constructed for peptide ion drift time prediction. For the model training and testing, a 10-fold cross-validation strategy was employed for three datasets each containing different charge states. Dataset one contains 212 singly-charged peptide ions, dataset two has 306 doubly-charged peptide ions, and dataset three has 77 triply-charged peptide ions. Our proposed method achieved 94.4%, 93.6% and 74.2% prediction accuracy for singly-, doubly- and triply-charged peptide ions, respectively. Conclusions An ANN-based method has been developed for predicting the drift time of peptide ions in IMMS. The results achieved here demonstrate the effectiveness and efficiency of the prediction model. This work can enhance the confidence of protein identification by combining with current database search approaches for protein identification.

  11. Sound oscillation of dropwise cluster

    Science.gov (United States)

    Shavlov, A. V.; Dzhumandzhi, V. A.; Romanyuk, S. N.

    2012-06-01

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60-100 °C. The charge of drops reaches 102-103 units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method.

  12. Studies on Titin PEVK Peptides and Their Interaction

    OpenAIRE

    Duan, Yingli; DeKeyser, Joshua G.; Damodaran, Srinivasan; Greaser, Marion L.

    2006-01-01

    Experiments were conducted on several synthetic and expressed peptides from the PEVK region of titin, the giant muscle protein. Different secondary structure prediction methods based on amino acid sequence gave estimates ranging from over 70% alpha helical to no helix (totally disordered) for the polyE peptide corresponding to human exon 115. Circular dichroism (CD) experiments demonstrated that both the positively charged PPAK modules and the negatively charged PolyE repeats had similar spec...

  13. On metallic clusters squeezed in atomic cages

    CERN Document Server

    Apostol, M

    1996-01-01

    The stability of metallic clusters of sodium (Na) in the octahedral cages of Na-doped fullerites Na6C60 and Na11C60 is discussed within a Thomas-Fermi model. It is shown that the tetrahedral Na4-cluster in Na6C60 has an electric charge of cca. +2.7 (in electron charge units), while the body-centered cubic Na9-cluster in Na11C60 is almost electrically neutral.

  14. From a pro-apoptotic peptide to a lytic peptide: One single residue mutation.

    Science.gov (United States)

    Zhou, Xi-Rui; Zhang, Qiang; Tian, Xi-Bo; Cao, Yi-Meng; Liu, Zhu-Qing; Fan, Ruru; Ding, Xiu-Fang; Zhu, Zhentai; Chen, Long; Luo, Shi-Zhong

    2016-08-01

    Further discovery and design of new anticancer peptides are important for the development of anticancer therapeutics, and study on the detailed acting mechanism and structure-function relationship of peptides is critical for anticancer peptide design and application. In this study, a novel anticancer peptide ZXR-1 (FKIGGFIKKLWRSKLA) derived from a known anticancer peptide mauriporin was developed, and a mutant ZXR-2 (FKIGGFIKKLWRSLLA) with only one residue difference at the 14th position (Lys→Leu) was also engineered. Replacement of the lysine with leucine made ZXR-2 more potent than ZXR-1 in general. Even with only one residue mutation, the two peptides displayed distinct anticancer modes of action. ZXR-1 could translocate into cells, target on the mitochondria and induce cell apoptosis, while ZXR-2 directly targeted on the cell membranes and caused membrane lysis. The variance in their acting mechanisms might be due to the different amphipathicity and positive charge distribution. In addition, the two Ile-Leu pairs (3-10 and 7-14) in ZXR-2 might also play a role in improving its cytotoxicity. Further study on the structure-function relationship of the two peptides may be beneficial for the design of novel anticancer peptides and peptide based therapeutics. PMID:27207743

  15. Ionization of Sodium Cluster by Heavy Ion Impact

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Energetic ions have recently been used as an efficient means to produce highly charged cold clusters~[1]. There are two ways to obtain highly-charged clusters: low-fluence nano-second lasers irradiation and energetic highly charged ions impact. Compared to the low-density laser, heavy ions, e.g. delivered by ECR sources, have the

  16. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina;

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both the...... partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  17. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree–Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves

    International Nuclear Information System (INIS)

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree–Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree–Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard–Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga–Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids

  18. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2...

  19. A host–guest system to study structure–function relationships of membrane fusion peptides

    OpenAIRE

    Han, Xing; Tamm, Lukas K.

    2000-01-01

    We designed a host–guest fusion peptide system, which is completely soluble in water and has a high affinity for biological and lipid model membranes. The guest sequences are those of the fusion peptides of influenza hemagglutinin, which are solubilized by a highly charged unstructured C-terminal host sequence. These peptides partition to the surface of negatively charged liposomes or erythrocytes and elicit membrane fusion or hemolysis. They undergo a conformational ...

  20. Novel pH-Sensitive Cyclic Peptides.

    Science.gov (United States)

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K; Andreev, Oleg A; Parang, Keykavous; Reshetnyak, Yana K

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  1. Isotopic clusters

    International Nuclear Information System (INIS)

    Spectra of isotopically mixed clusters (dimers of SF6) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  2. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  3. Peptide Formation Mechanism on Montmorillonite Under Thermal Conditions

    Science.gov (United States)

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.

  4. Charge independence and charge symmetry

    CERN Document Server

    Miller, G A; Miller, Gerald A; van Oers, Willem T H

    1994-01-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed.

  5. Nucleic Acid Charge Transfer: Black, White and Gray

    OpenAIRE

    Venkatramani, Ravindra; Keinan, Shahar; Balaeff, Alexander; Beratan, David N.

    2011-01-01

    Theoretical studies of charge transport in deoxyribonucleic acid (DNA) and peptide nucleic acid (PNA) indicate that structure and dynamics modulate the charge transfer rates, and that different members of a structural ensemble support different charge transport mechanisms. Here, we review the influences of nucleobase geometry, electronic structure, solvent environment, and thermal conformational fluctuations on the charge transfer mechanism. We describe an emerging framework for understanding...

  6. Charged Leptons

    CERN Document Server

    Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P

    2013-01-01

    This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.

  7. Re-shaping colloidal clusters

    Science.gov (United States)

    Kraft, Daniela

    2015-03-01

    Controlling the geometry and yield of anisotropic colloidal particles remains a challenge for hierarchical self-assembly. I will discuss a synthetic strategy for fabricating colloidal clusters by creating order in randomly aggregated polymer spheres using surface tension and geometrical constraints. The technique can be extended to a variety of charge-stabilized polymer spheres and offers control over the cluster size distribution. VENI grant from The Netherlands Organization for Scientific Research (NWO).

  8. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  9. Hidden Charged Dark Matter

    CERN Document Server

    Feng, Jonathan L; Tu, Huitzu; Yu, Hai-Bo

    2009-01-01

    We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact U(1) gauge symmetry of the hidden sector. Such candidates are predicted in simple WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many potentially disastrous implications for astrophysics: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may destroy its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ~ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially violating constraints from the Bullet Cluster and the observed morphology of galactic halos. We show that all of these constraints are satisfied and are ...

  10. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  11. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  12. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  13. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  14. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  15. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  16. Environment Dependent Charge Potential for Water

    OpenAIRE

    Muralidharan, Krishna; Valone, Steven M.; Atlas, Susan R.

    2007-01-01

    We present a new interatomic potential for water captured in a charge-transfer embedded atom method (EAM) framework. The potential accounts for explicit, dynamical charge transfer in atoms as a function of the local chemical environment. As an initial test of the charge-transfer EAM approach for a molecular system, we have constructed a relatively simple version of the potential and examined its ability to model the energetics of small water clusters. The excellent agreement between our resul...

  17. Origin and functional diversification of an amphibian defense peptide arsenal.

    Directory of Open Access Journals (Sweden)

    Kim Roelants

    Full Text Available The skin secretion of many amphibians contains an arsenal of bioactive molecules, including hormone-like peptides (HLPs acting as defense toxins against predators, and antimicrobial peptides (AMPs providing protection against infectious microorganisms. Several amphibian taxa seem to have independently acquired the genes to produce skin-secreted peptide arsenals, but it remains unknown how these originated from a non-defensive ancestral gene and evolved diverse defense functions against predators and pathogens. We conducted transcriptome, genome, peptidome and phylogenetic analyses to chart the full gene repertoire underlying the defense peptide arsenal of the frog Silurana tropicalis and reconstruct its evolutionary history. Our study uncovers a cluster of 13 transcriptionally active genes, together encoding up to 19 peptides, including diverse HLP homologues and AMPs. This gene cluster arose from a duplicated gastrointestinal hormone gene that attained a HLP-like defense function after major remodeling of its promoter region. Instead, new defense functions, including antimicrobial activity, arose by mutation of the precursor proteins, resulting in the proteolytic processing of secondary peptides alongside the original ones. Although gene duplication did not trigger functional innovation, it may have subsequently facilitated the convergent loss of the original function in multiple gene lineages (subfunctionalization, completing their transformation from HLP gene to AMP gene. The processing of multiple peptides from a single precursor entails a mechanism through which peptide-encoding genes may establish new functions without the need for gene duplication to avoid adaptive conflicts with older ones.

  18. Automatic recognition of hydrophobic clusters and their correlation with protein folding units.

    OpenAIRE

    Zehfus, M. H.

    1995-01-01

    A method is described to objectively identify hydrophobic clusters in proteins of known structure. Clusters are found by examining a protein for compact groupings of side chains. Compact clusters contain seven or more residues, have an average of 65% hydrophobic residues, and usually occur in protein interiors. Although smaller clusters contain only side-chain moieties, larger clusters enclose significant portions of the peptide backbone in regular secondary structure. These clusters agree we...

  19. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  20. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  1. Review: Formation of Peptide Radical Ions Through Dissociative Electron Transfer in Ternary Metal-Ligand-Peptide Complexes

    International Nuclear Information System (INIS)

    The formation and fragmentation of odd-electron ions of peptides and proteins is of interest to applications in biological mass spectrometry. Gas-phase redox chemistry occurring during collision-induced dissociation of ternary metal-ligand-peptide complexes enables the formation of a variety of peptide radicals including the canonical radical cations, M+#smbullet#, radical dications, (M+H)2+#smbullet#, radical anions, (M-2H)-#smbullet#. In addition, odd-electron peptide ions with well-defined initial location of the radical site are produced through side chain losses from the radical ions. Subsequent fragmentation of these species provides information on the role of charge and the location of the radical site on the competition between radical-induced and proton-driven fragmentation of odd-electron peptide ions. This account summarizes current understanding of the factors that control the efficiency of the intramolecular electron transfer (ET) in ternary metal-ligand-peptide complexes resulting in formation of odd-electron peptide ions. Specifically, we discuss the effect of the metal center, the ligand and the peptide structure on the competition between the ET, proton transfer (PT), and loss of neutral peptide and neutral peptide fragments from the complex. Fundamental studies of the structures, stabilities, and the energetics and dynamics of fragmentation of such complexes are also important for detailed molecular-level understanding of photosynthesis and respiration in biological systems.

  2. Sound oscillation of dropwise cluster

    International Nuclear Information System (INIS)

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 102–103 units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  3. Sound oscillation of dropwise cluster

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A.V., E-mail: shavlov@ikz.ru [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation); Dzhumandzhi, V.A.; Romanyuk, S.N. [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation)

    2012-06-04

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10{sup 2}–10{sup 3} units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  4. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan;

    2000-01-01

    -mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  5. Antimicrobial peptides: a new class of antimalarial drugs?

    Directory of Open Access Journals (Sweden)

    Nuno eVale

    2014-12-01

    Full Text Available A range of antimicrobial peptides (AMP exhibit activity on malaria parasites, Plasmodium spp, in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs.

  6. Geometric frustration in small colloidal clusters

    OpenAIRE

    Malins, Alex; Stephen R Williams; Eggers, Jens; Tanaka, Hajime; Royall, C. Patrick

    2009-01-01

    We study the structure of clusters in a model colloidal system with competing interactions using Brownian dynamics simulations. A short-ranged attraction drives clustering, while a weak, long-ranged repulsion is used to model electrostatic charging in experimental systems. The former is treated with a short-ranged Morse attractive interaction, the latter with a repulsive Yukawa interaction. We consider the yield of clusters of specific structure as a function of the strength of the interactio...

  7. Charged FeC{sub n} clusters: A comparison with TMC{sub n}{sup +}/TMC{sub n}{sup -} (TM = Sc, Ti, V, Co and Zn, n = 1-8) systems

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar, E-mail: predondo@qf.uva.es [Computacional Chemistry Group, Departamento de Quimica Fisica y Quimica Inorganica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain); Largo, Laura; Barrientos, Carmen [Computacional Chemistry Group, Departamento de Quimica Fisica y Quimica Inorganica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain)

    2009-10-16

    The electronic and geometrical structures of the ground and excited states for the linear, fan and cyclic isomers of FeC{sub n}{sup +}andFeC{sub n}{sup -} (n = 1-8) compounds are calculated using the B3LYP method. A comparison of these results with the previously obtained for TMC{sub n}{sup +}/TMC{sub n}{sup -} (TM = Sc, Ti, V, Co and Zn) systems, is carried out. Quartet and sextet states are found the most stables for FeC{sub n}{sup +} clusters. Linear FeC{sub n}{sup -} clusters prefer doublet and quartet ground states, whereas for cyclic and fan isomers the most stables are quartet and sextet ones. n-odd linear, fan, and cyclic FeC{sub n}{sup +} isomers are more stable than adjacent n-even ones. For FeC{sub n}{sup -} clusters the opposite trend is found for linear and fan structures, whereas for cyclic isomers the relative stability decreases along the series. In general linear isomers are the most stable conformations for FeC{sub n}{sup +}/FeC{sub n}{sup -} clusters. Systematic trends of different properties are analyzed for TMC{sub n}{sup +}/TMC{sub n}{sup -} clusters.

  8. Equilibrium configurations of tripolar charges

    CERN Document Server

    Yershov, V N

    2005-01-01

    It is shown that an ensemble of particles with tripolar (colour) charges will necessarily cohere in a hierarchy of structures, from simple clusters and strings to complex aggregates and cyclic molecule-like structures. The basic combinatoric rule remains essentially the same on different levels of the hierarchy, thus leading to a pattern of resemblance between different levels. The number of primitive charges in each structure is determined by the symmetry of the combined effective potential of this structure. The outlined scheme can serve as a framework for building a model of composite fundamental fermions.

  9. Assembly Properties of an Alanine-Rich, Lysine-Containing Peptide and the Formation of Peptide/Polymer Hybrid Hydrogels

    OpenAIRE

    Grieshaber, Sarah E.; Nie, Ting; Yan, Congqi; Zhong, Sheng; Teller, Sean S.; Clifton, Rodney J.; Pochan, Darrin J.; Kiick, Kristi L.; Jia, Xinqiao

    2011-01-01

    We are interested in developing peptide/polymer hybrid hydrogels that are chemically diverse and structurally complex. Towards this end, an alanine-based peptide doped with charged lysines with a sequence of (AKA3KA)2 (AK2) was selected from the crosslinking regions of the natural elastin. Pluronic® F127, known to self-assemble into defined micellar structures, was employed as the synthetic building blocks. Fundamental investigations on the environmental effects on the secondary structure and...

  10. Plant signalling peptides

    OpenAIRE

    Wiśniewska, Justyna; Trejgell, Alina; Tretyn, Andrzej

    2003-01-01

    Biochemical and genetic studies have identified peptides that play crucial roles in plant growth and development, including defence mechanisms in response to wounding by pests, the control of cell division and expansion, and pollen self-incompatibility. The first two signalling peptides to be described in plants were tomato systemin and phytosulfokine (PSK). There is also biochemical evidence that natriuretic peptide-like molecules, immunologically-relatedt o those found ...

  11. Weighted Clustering

    CERN Document Server

    Ackerman, Margareta; Branzei, Simina; Loker, David

    2011-01-01

    In this paper we investigate clustering in the weighted setting, in which every data point is assigned a real valued weight. We conduct a theoretical analysis on the influence of weighted data on standard clustering algorithms in each of the partitional and hierarchical settings, characterising the precise conditions under which such algorithms react to weights, and classifying clustering methods into three broad categories: weight-responsive, weight-considering, and weight-robust. Our analysis raises several interesting questions and can be directly mapped to the classical unweighted setting.

  12. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  13. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side. The...... algorithms for biological problems. © 2013 Springer-Verlag....... problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications of these...

  14. Pulling peptides across nanochannels: resolving peptide binding and translocation through the hetero-oligomeric channel from Nocardia farcinica.

    Science.gov (United States)

    Singh, Pratik Raj; Bárcena-Uribarri, Iván; Modi, Niraj; Kleinekathöfer, Ulrich; Benz, Roland; Winterhalter, Mathias; Mahendran, Kozhinjampara R

    2012-12-21

    We investigated translocation of cationic peptides through nanochannels derived from the Gram-positive bacterium Nocardia farcinica at the single-molecule level. The two subunits NfpA and NfpB form a hetero-oligomeric cation selective channel. On the basis of amino acid comparison we performed homology modeling and obtained a channel structurally related to MspA of Mycobacterium smegmatis. The quantitative single-molecule measurements provide an insight into transport processes of solutes through nanochannels. High-resolution ion conductance measurements in the presence of peptides of different charge and length revealed the kinetics of peptide binding. The observed asymmetry in peptide binding kinetics indicated a unidirectional channel insertion in the lipid bilayer. In the case of cationic peptides, the external voltage acts as a driving force that promotes the interaction of the peptide with the channel surface. At low voltage, the peptide just binds to the channel, whereas at higher voltage, the force is strong enough to pull the peptide across the channel. This allows distinguishing quantitatively between peptide binding and translocation through the channel. PMID:23121560

  15. Polycyclic peptide therapeutics.

    Science.gov (United States)

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  16. Strontium clusters: electronic and geometry shell effects

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2008-01-01

    charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, and spectra of the density of electronic states (DOS). It is demonstrated that the size-evolution of structural and electronic properties of strontium clusters...... is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It is shown that the excessive charge essentially affects the optimized geometry...

  17. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  18. CD and UV Resonance Raman Indicate Little arg-glu Side Chain α-helix Peptide Stabilization

    OpenAIRE

    Hong, Zhenmin; Ahmed, Zeeshan; Asher, Sanford A.

    2011-01-01

    Electrostatic interactions between side chains can control the conformation and folding of peptides and proteins. We used CD and UV resonance Raman spectroscopy (UVRR) to examine the impact of side chain charge on the conformations of two 21 residue mainly polyala peptides with a few arg and glu residues. We expected that attractions between arg-10 and glu-14 side chains would stabilize the α-helix conformation compared to a peptide with an arg-14. Surprisingly, CD suggests that the peptide w...

  19. A Mechanistic Investigation of the Enhanced Cleavage at Histidine in the Gas-Phase Dissociation of Protonated Peptides

    OpenAIRE

    Tsaprailis, George; Nair, Hari; Zhong, Wenqing; Kuppannan, Krishnamoorthy; Futrell, Jean H.; Wysocki, Vicki H

    2004-01-01

    Enhanced gas-phase cleavage of peptides adjacent to histidine was investigated. The peptides examined were angiotensins III (RVYIHPF) and IV (VYIHPF) as well as synthetic peptide analogs with altered key residues ((R)VYI-X-Z-F; X=F or H and Z=A, P or Sar) or a fixed charge Φ3P+CH2C(O)-VYIHPF. While all singly protonated peptide ions containing both histidine and arginine fragment non-selectively, the doubly protonated peptide ions with arginine and histidine, and the singly protonated peptide...

  20. Enhancing Nonribosomal Peptide Biosynthesis in Filamentous Fungi

    Science.gov (United States)

    Soukup, Alexandra A.; Keller, Nancy P.; Wiemann, Philipp

    2016-01-01

    Filamentous fungi are historically known as rich sources for production of biologically active natural products, so-called secondary metabolites. One particularly pharmaceutically relevant chemical group of secondary metabolites is the nonribosomal peptides synthesized by nonribosomal peptide synthetases (NRPSs). As most of the fungal NRPS gene clusters leading to production of the desired molecules are not expressed under laboratory conditions, efforts to overcome this impediment are crucial to unlock the full chemical potential of each fungal species. One way to activate these silent clusters is by overexpressing and deleting global regulators of secondary metabolism. The conserved fungal-specific regulator of secondary metabolism, LaeA, was shown to be a valuable target for sleuthing of novel gene clusters and metabolites. Additionally, modulation of chromatin structures by either chemical or genetic manipulation has been shown to activate cryptic metabolites. Furthermore, NRPS-derived molecules seem to be affected by cross talk between the specific gene clusters and some of these metabolites have a tissue- or developmental-specific regulation. This chapter summarizes how this knowledge of different tiers of regulation can be combined to increase production of NRPS-derived metabolites in fungal species. PMID:26831707

  1. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  2. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  3. Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells.

    Directory of Open Access Journals (Sweden)

    Ryan Haryadi

    Full Text Available Translocation of a nascent protein from the cytosol into the ER mediated by its signal peptide is a critical step in protein secretion. The aim of this work was to develop a platform technology to optimize the signal peptides for high level production of therapeutic antibodies in CHO cells. A database of signal peptides from a large number of human immunoglobulin (Ig heavy chain (HC and kappa light chain (LC was generated. Most of the HC signal peptides contain 19 amino acids which can be divided into three domains and the LC signal peptides contain 22 amino acids. The signal peptides were then clustered according to sequence similarity. Based on the clustering, 8 HC and 2 LC signal peptides were analyzed for their impacts on the production of 5-top selling antibody therapeutics, namely, Herceptin, Avastin, Remicade, Rituxan, and Humira. The best HC and LC signal peptides for producing these 5 antibodies were identified. The optimized signal peptides for Rituxan is 2-fold better compared to its native signal peptides which are available in the public database. Substitution of a single amino acid in the optimized HC signal peptide for Avastin reduced its production significantly. Mass spectrometry analyses revealed that all optimized signal peptides are accurately removed in the mature antibodies. The results presented in this report are particularly important for the production of these 5 antibodies as biosimilar drugs. They also have the potential to be the best signal peptides for the production of new antibodies in CHO cells.

  4. Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells.

    Science.gov (United States)

    Haryadi, Ryan; Ho, Steven; Kok, Yee Jiun; Pu, Helen X; Zheng, Lu; Pereira, Natasha A; Li, Bin; Bi, Xuezhi; Goh, Lin-Tang; Yang, Yuansheng; Song, Zhiwei

    2015-01-01

    Translocation of a nascent protein from the cytosol into the ER mediated by its signal peptide is a critical step in protein secretion. The aim of this work was to develop a platform technology to optimize the signal peptides for high level production of therapeutic antibodies in CHO cells. A database of signal peptides from a large number of human immunoglobulin (Ig) heavy chain (HC) and kappa light chain (LC) was generated. Most of the HC signal peptides contain 19 amino acids which can be divided into three domains and the LC signal peptides contain 22 amino acids. The signal peptides were then clustered according to sequence similarity. Based on the clustering, 8 HC and 2 LC signal peptides were analyzed for their impacts on the production of 5-top selling antibody therapeutics, namely, Herceptin, Avastin, Remicade, Rituxan, and Humira. The best HC and LC signal peptides for producing these 5 antibodies were identified. The optimized signal peptides for Rituxan is 2-fold better compared to its native signal peptides which are available in the public database. Substitution of a single amino acid in the optimized HC signal peptide for Avastin reduced its production significantly. Mass spectrometry analyses revealed that all optimized signal peptides are accurately removed in the mature antibodies. The results presented in this report are particularly important for the production of these 5 antibodies as biosimilar drugs. They also have the potential to be the best signal peptides for the production of new antibodies in CHO cells. PMID:25706993

  5. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry

    OpenAIRE

    Syka, John E. P.; Coon, Joshua J.; Schroeder, Melanie J.; Shabanowitz, Jeffrey; Hunt, Donald F.

    2004-01-01

    Peptide sequence analysis using a combination of gas-phase ion/ion chemistry and tandem mass spectrometry (MS/MS) is demonstrated. Singly charged anthracene anions transfer an electron to multiply protonated peptides in a radio frequency quadrupole linear ion trap (QLT) and induce fragmentation of the peptide backbone along pathways that are analogous to those observed in electron capture dissociation. Modifications to the QLT that enable this ion/ion chemistry are presented, and automated ac...

  6. What size of cluster is most appropriate for SIMS?

    Science.gov (United States)

    Matsuo, Jiro; Ninomiya, Satoshi; Nakata, Yoshihiko; Honda, Yoshiro; Ichiki, Kazuya; Seki, Toshio; Aoki, Takaaki

    2008-12-01

    Secondary ion emission with large gas cluster ion is reviewed from the point of view of secondary ion mass spectroscopy (SIMS). We have proposed to use large cluster ions to realize fragment-free ionization for SIMS analysis for various organic materials, such as amino acids and peptides. When large cluster ions with optimized size and energy were incident on biomolecular samples, the relative yields of the fragment ions decreased drastically with the velocity of incident cluster ions. Molecular depth profiling capability is also demonstrated by using large gas cluster ions as the primary ion for SIMS.

  7. Improved Methods for the Enrichment and Analysis of Glycated Peptides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Schepmoes, Athena A; Brock, Jonathan W; Wu, Si; Moore, Ronald J; Purvine, Samuel O; Baynes, John; Smith, Richard D; Metz, Thomas O

    2008-12-15

    Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. Herein we report improved methods for the enrichment and analysis of glycated peptides using boronate affinity chromatography and electron transfer dissociation mass spectrometry, respectively. The enrichment of glycated peptides was improved by replacing an off-line desalting step with an on-line wash of column-bound glycated peptides using 50 mM ammonium acetate. The analysis of glycated peptides by MS/MS was improved by considering only higher charged (≥3) precursor-ions during data-dependent acquisition, which increased the number of glycated peptide identifications. Similarly, the use of supplemental collisional activation after electron transfer (ETcaD) resulted in more glycated peptide identifications when the MS survey scan was acquired with enhanced resolution. In general, acquiring ETD-MS/MS data at a normal MS survey scan rate, in conjunction with the rejection of both 1+ and 2+ precursor-ions, increased the number of identified glycated peptides relative to ETcaD or the enhanced MS survey scan rate. Finally, an evaluation of trypsin, Arg-C, and Lys-C showed that tryptic digestion of glycated proteins was comparable to digestion with Lys-C and that both were better than Arg-C in terms of the number glycated peptides identified by LC-MS/MS.

  8. A rock-salt-type Li-based oxide, Li3Ni2RuO6, exhibiting a chaotic ferrimagnetism with cluster spin-glass dynamics and thermally frozen charge carriers.

    Science.gov (United States)

    Upadhyay, Sanjay Kumar; Iyer, Kartik K; Rayaprol, S; Paulose, P L; Sampathkumaran, E V

    2016-01-01

    The area of research to discover new Li containing materials and to understand their physical properties has been of constant interest due to applications potential for rechargeable batteries. Here, we present the results of magnetic investigations on a Li compound, Li3Ni2RuO6, which was believed to be a ferrimagnet below 80 K. While our neutron diffraction (ND) and isothermal magnetization (M) data support ferrimagnetism, more detailed magnetic studies establish that this ferrimagnetic phase exhibits some features similar to spin-glasses. In addition, we find another broad magnetic anomaly around 40-55 K in magnetic susceptibility (χ), attributable to cluster spin-glass phenomenon. Gradual dominance of cluster spin-glass dynamics with a decrease of temperature (T) and the apparent spread in freezing temperature suggest that the ferrimagnetism of this compound is a chaotic one. The absence of a unique freezing temperature for a crystalline material is interesting. In addition, pyroelectric current (Ipyro) data reveals a feature in the range 40-50 K, attributable to thermally stimulated depolarization current. We hope this finding motivates future work to explore whether there is any intriguing correlation of such a feature with cluster spin-glass dynamics. We attribute these magnetic and electric dipole anomalies to the crystallographic disorder, intrinsic to this compound. PMID:27545439

  9. A rock-salt-type Li-based oxide, Li3Ni2RuO6, exhibiting a chaotic ferrimagnetism with cluster spin-glass dynamics and thermally frozen charge carriers

    Science.gov (United States)

    Upadhyay, Sanjay Kumar; Iyer, Kartik K.; Rayaprol, S.; Paulose, P. L.; Sampathkumaran, E. V.

    2016-08-01

    The area of research to discover new Li containing materials and to understand their physical properties has been of constant interest due to applications potential for rechargeable batteries. Here, we present the results of magnetic investigations on a Li compound, Li3Ni2RuO6, which was believed to be a ferrimagnet below 80 K. While our neutron diffraction (ND) and isothermal magnetization (M) data support ferrimagnetism, more detailed magnetic studies establish that this ferrimagnetic phase exhibits some features similar to spin-glasses. In addition, we find another broad magnetic anomaly around 40–55 K in magnetic susceptibility (χ), attributable to cluster spin-glass phenomenon. Gradual dominance of cluster spin-glass dynamics with a decrease of temperature (T) and the apparent spread in freezing temperature suggest that the ferrimagnetism of this compound is a chaotic one. The absence of a unique freezing temperature for a crystalline material is interesting. In addition, pyroelectric current (Ipyro) data reveals a feature in the range 40–50 K, attributable to thermally stimulated depolarization current. We hope this finding motivates future work to explore whether there is any intriguing correlation of such a feature with cluster spin-glass dynamics. We attribute these magnetic and electric dipole anomalies to the crystallographic disorder, intrinsic to this compound.

  10. HER2 Targeting Peptides Screening and Applications in Tumor Imaging and Drug Delivery

    Science.gov (United States)

    Geng, Lingling; Wang, Zihua; Jia, Xiangqian; Han, Qiuju; Xiang, Zhichu; Li, Dan; Yang, Xiaoliang; Zhang, Di; Bu, Xiangli; Wang, Weizhi; Hu, Zhiyuan; Fang, Qiaojun

    2016-01-01

    Herein, computational-aided one-bead-one-compound (OBOC) peptide library design combined with in situ single-bead sequencing microarray methods were successfully applied in screening peptides targeting at human epidermal growth factor receptor-2 (HER2), a biomarker of human breast cancer. As a result, 72 novel peptides clustered into three sequence motifs which are PYL***NP, YYL***NP and PPL***NP were acquired. Particularly one of the peptides, P51, has nanomolar affinity and high specificity for HER2 in ex vivo and in vivo tests. Moreover, doxorubicin (DOX)-loaded liposome nanoparticles were modified with peptide P51 or P25 and demonstrated to improve the targeted delivery against HER2 positive cells. Our study provides an efficient peptide screening method with a combination of techniques and the novel screened peptides with a clear binding site on HER2 can be used as probes for tumor imaging and targeted drug delivery. PMID:27279916

  11. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2015-05-28

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  12. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    International Nuclear Information System (INIS)

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar

  13. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    Science.gov (United States)

    Zhao, Mingtian; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai; Li, Baohui

    2015-05-01

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar

  14. Novel heparan sulfate-binding peptides for blocking herpesvirus entry.

    Directory of Open Access Journals (Sweden)

    Pranay Dogra

    Full Text Available Human cytomegalovirus (HCMV infection can lead to congenital hearing loss and mental retardation. Upon immune suppression, reactivation of latent HCMV or primary infection increases morbidity in cancer, transplantation, and late stage AIDS patients. Current treatments include nucleoside analogues, which have significant toxicities limiting their usefulness. In this study we screened a panel of synthetic heparin-binding peptides for their ability to prevent CMV infection in vitro. A peptide designated, p5+14 exhibited ~ 90% reduction in murine CMV (MCMV infection. Because negatively charged, cell-surface heparan sulfate proteoglycans (HSPGs, serve as the attachment receptor during the adsorption phase of the CMV infection cycle, we hypothesized that p5+14 effectively competes for CMV adsorption to the cell surface resulting in the reduction in infection. Positively charged Lys residues were required for peptide binding to cell-surface HSPGs and reducing viral infection. We show that this inhibition was not due to a direct neutralizing effect on the virus itself and that the peptide blocked adsorption of the virus. The peptide also inhibited infection of other herpesviruses: HCMV and herpes simplex virus 1 and 2 in vitro, demonstrating it has broad-spectrum antiviral activity. Therefore, this peptide may offer an adjunct therapy for the treatment of herpes viral infections and other viruses that use HSPGs for entry.

  15. Cluster headache

    Science.gov (United States)

    Doctors do not know exactly what causes cluster headaches. They seem to be related to the body's sudden release of histamine (chemical in the body released during an allergic response) or serotonin (chemical made by nerve cells). A problem in a small area at ...

  16. Neural network based cluster creation in the ATLAS Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing be- tween pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. How- ever, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambigui- ties in the assignment of pixel detector measurement to tracks and improves the position accuracy with respect to standard techniques by taking into account the 2-dimensional charge distribution.

  17. The Role Of Milk Peptide As Antimicrobial Agent In Supporting Health Status

    Directory of Open Access Journals (Sweden)

    Eni Kusumaningtyas

    2013-06-01

    Full Text Available Antimicrobial peptide is commonly present in all species as a component of their innate immune defense against infection. Antimicrobial peptides derived from milk such as isracidin, casocidin, casecidin and other fragments with variety of amino acid sequence are released upon enzymatic hydrolysis from milk protein К-casein, α-casein, β-casein, α-lactalbumin and β- lactoglobulin. These peptides were produced by the activity of digestive or microbial protease such as trypsin, pepsin, chymosin or alcalase. The mode of action of these peptides is by interaction of their positive with negative charge of target cell membrane leading to disruption of membrane associated with physiological event such as cell division or translocation of peptide across the membrane to interact with cytoplasmic target. Modification of charged or nonpolar aliphatic residues within peptides can enhance or reduce the activities of the peptides against a number of microbial strains and it seems to be strain dependent. Several peptides act not only as an antimicrobial but also as an angiotensin-converting enzyme inhibitor, antioxidant, immunomodulator, antiinflamation, food and feed preservative. Although the commercial production of these peptides is still limited due to lack of suitable large-scale technologies, fast development of some methods for peptide production will hopefully increase the possibility for mass production.

  18. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides.

  19. Biological activity of Tat (47-58) peptide on human pathogenic fungi

    International Nuclear Information System (INIS)

    Tat (47-58) peptide, a positively charged Arginine-rich peptide derived from HIV-1 regulatory protein Tat, is known for a peptidic delivery factor as a cell-penetrating peptide on mammalian cells. In this study, antifungal effect and its mode of action of Tat peptide were investigated on fungal cells. The results indicate that Tat peptide exhibits antifungal activity against pathogenic fungal cells without hemolytic effect on human erythrocytes. To understand the mechanism(s) of Tat peptide, the cellular distribution of the peptide was investigated. Tat peptide internalized in the fungal cells without any damage to cell membrane when examined using an artificial liposome (PC/cholesterol; 10:1, w/w). Moreover, flow cytometry analysis exhibited the uptake of Tat peptide by energy- and salt-independent pathway, and confocal scanning microscopy displayed that this peptide accumulated in the nucleus of fungal cells rapidly without any impediment by time or temperature, which generally influence on the viral infections. After penetration into the nuclear, the peptide affected the process of cell cycle of Candida albicans through the arrest at G1 phase

  20. Reaction of tungsten anion clusters with molecular and atomic nitrogen

    OpenAIRE

    Kim, Young Dok; Stolcic, Davor; Fischer, Matthias; Ganteför, Gerd

    2003-01-01

    Ultraviolet photoelectron spectra for WnN-2 (n=1 8) clusters produced by addition of atomic and molecular nitrogen on W anion clusters are presented. Evidence is provided that molecular chemisorption of N2 is more stable than the dissociative one on tungsten anion clusters consisting of eight atoms or less, which is completely different from the results on tungsten bulk surfaces. A general tendency toward molecular chemisorption for small clusters can be explained by reduced charge transfer f...

  1. Defensins promote fusion and lysis of negatively charged membranes.

    OpenAIRE

    Fujii, G; Selsted, M E; Eisenberg, D.

    1993-01-01

    Defensins, a family of cationic peptides isolated from mammalian granulocytes and believed to permeabilize membranes, were tested for their ability to cause fusion and lysis of liposomes. Unlike alpha-helical peptides whose lytic effects have been extensively studied, the defensins consist primarily of beta-sheet. Defensins fuse and lyse negatively charged liposomes but display reduced activity with neutral liposomes. These and other experiments suggest that fusion and lysis is mediated prima...

  2. Crystal structure of YrrB: a TPR protein with an unusual peptide-binding site.

    Science.gov (United States)

    Han, Dohyun; Oh, Jongkil; Kim, Kyunggon; Lim, Hyosun; Kim, Youngsoo

    2007-09-01

    YrrB is a hypothetical protein containing a tetratricopeptide repeat (TPR) domain from a Gram-positive bacterium, Bacillus subtilis. We determined YrrB structure in the C2 space group to 2.5A resolution, which is the first TPR structure of the Gram-positive bacterium B. subtilis. In contrast to other known TPR structures, the concave surface of the YrrB TPR domain is composed of the putative peptide-binding pocket lined with positively-charged residues. This unique charge distribution reveals that YrrB can interact with partner proteins via an unusual TPR-mediated interaction mode, compared to that of other TPR-containing structures. Functional annotation using genomics analysis suggested that YrrB may be an interacting mediator in the complex formation among RNA sulfuration components. No proteins containing a TPR domain have been identified in the biosynthesis of sulfur-containing biomolecules. Thus, YrrB could play a new role as a connecting module among those proteins in the conserved gene cluster for RNA sulfuration.

  3. CHARGE Association

    Directory of Open Access Journals (Sweden)

    Semanti Chakraborty

    2012-01-01

    Full Text Available We present here a case of 17-year-old boy from Kolkata presenting with obesity, bilateral gynecomastia, mental retardation, and hypogonadotrophic hypogonadism. The patient weighed 70 kg and was of 153 cm height. Facial asymmetry (unilateral facial palsy, gynecomastia, decreased pubic and axillary hair, small penis, decreased right testicular volume, non-palpable left testis, and right-sided congenital inguinal hernia was present. The patient also had disc coloboma, convergent squint, microcornea, microphthalmia, pseudohypertelorism, low set ears, short neck, and choanalatresia. He had h/o VSD repaired with patch. Laboratory examination revealed haemoglobin 9.9 mg/dl, urea 24 mg/dl, creatinine 0.68 mg/dl. IGF1 77.80 ng/ml (decreased for age, GH <0.05 ng/ml, testosterone 0.25 ng/ml, FSH-0.95 ΅IU/ml, LH 0.60 ΅IU/ml. ACTH, 8:00 A.M cortisol, FT3, FT4, TSH, estradiol, DHEA-S, lipid profile, and LFT was within normal limits. Prolactin was elevated at 38.50 ng/ml. The patient′s karyotype was 46XY. Echocardiography revealed ventricularseptal defect closed with patch, grade 1 aortic regurgitation, and ejection fraction 67%. Ultrasound testis showed small right testis within scrotal sac and undescended left testis within left inguinal canal. CT scan paranasal sinuses revealed choanalatresia and deviation of nasal septum to the right. Sonomammography revealed bilateral proliferation of fibroglandular elements predominantly in subareoalar region of breasts. MRI of brain and pituitary region revealed markedly atrophic pituitary gland parenchyma with preserved infundibulum and hypothalamus and widened suprasellar cistern. The CHARGE association is an increasingly recognized non-random pattern of congenital anomalies comprising of coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities, and/or deafness. [1] These anomalies have a higher probability of occurring together. In this report, we have

  4. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  5. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  6. Introduction to Peptide Synthesis

    OpenAIRE

    Stawikowski, Maciej; Fields, Gregg B.

    2002-01-01

    A number of synthetic peptides are significant commercial or pharmaceutical products, ranging from the dipeptide sugar-substitute aspartame to clinically used hormones, such as oxytocin, adrenocorticotropic hormone, and calcitonin. This unit provides an overview of the field of synthetic peptides and proteins. It discusses selecting the solid support and common coupling reagents. Additional information is provided regarding common side reactions and synthesizing modified residues.

  7. Regional Innovation Clusters

    Data.gov (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  8. Exhaustive extraction of peptides by electromembrane extraction

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2015-01-01

    trifluoroacetate, and leu-enkephalin were extracted from 600 μL of 25 mM phosphate buffer (pH 3.5), through a supported liquid membrane (SLM) containing di-(2-ethylhexyl)-phosphate (DEHP) dissolved in an organic solvent, and into 600 μL of an acidified aqueous acceptor solution using a thin flat membrane-based EME......This fundamental work illustrates for the first time the possibility of exhaustive extraction of peptides using electromembrane extraction (EME) under low system-current conditions (... device. Mass transfer of peptides across the SLM was enhanced by complex formation with the negatively charged DEHP. The composition of the SLM and the extraction voltage were important factors influencing recoveries and current with the EME system. 1-nonanol diluted with 2-decanone (1:1 v/v) containing...

  9. Cluster forcing

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    The cluster theory attributed to Michael Porter has significantly influenced industrial policies in countries across Europe and North America since the beginning of the 1990s. Institutions such as the EU, OECD and the World Bank and governments in countries such as the UK, France, The Netherlands......, Portugal and New Zealand have adopted the concept. Public sector interventions that aim to support cluster development in industries most often focus upon economic policy goals such as enhanced employment and improved productivity, but rarely emphasise broader societal policy goals relating to e...... a difference in terms of enhancing regional development but the paper also concludes that the interventions tend to follow the development path of the established industry and thus tend to neglect long term sustainable development issues while failing to escape the traditional confines of regional industrial...

  10. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    Science.gov (United States)

    Rexeisen, Emilie Lynn

    umbilical vein endothelial cells and alpha5beta1 integrins immobilized on an AFM tip preferred binding to a fibronectin mimetic peptide that contained both hydrophilic and hydrophobic residues in the linker and a medium length spacer. Most cells require a three-dimensional scaffold in order to thrive. To incorporate the fibronectin mimetic peptide into a three-dimensional structure, a single hydrocarbon tail was attached to form a peptideamphiphile. Single-tailed peptide-amphiphiles have been shown to form nanofibers in solution and gel after screening of the electrostatic charges in the headgroup. These gels show promise as scaffolds for tissue engineering. A fibronectin mimetic peptide-amphiphile containing a linker with alternating hydrophobic and hydrophilic residues was designed to form nanofibers in solution. The critical micelle concentration of the peptide-amphiphile was determined to be 38 muM, and all subsequent experiments were performed above this concentration. Circular dichroism (CD) spectroscopy indicated that the peptide headgroup of the peptide-amphiphile forms an alpha+beta secondary structure; whereas, the free peptide forms a random secondary structure. Cryogenic-transmission electron microscopy (cryo-TEM) and small angle neutron scattering showed that the peptide-amphiphile self-assembled into nanofibers. The cryo-TEM images showed single nanofibers with a diameter of 10 nm and lengths on the order of microns. Images of higher peptideamphiphile concentrations showed evidence of bundling between individual nanofibers, which could give rise to gelation behavior at higher concentrations. The peptide-amphiphile formed a gel at concentrations above 6 mM. A 10 mM sample was analyzed with oscillating plate rheometry and was found to have an elastic modulus within the range of living tissue, showing potential as a possible scaffold for tissue engineering.

  11. Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Owen, R.K.

    1990-12-01

    Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.

  12. Novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis.

    Directory of Open Access Journals (Sweden)

    Joseph A Merriman

    Full Text Available Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges.

  13. Clustering experiments

    CERN Document Server

    Wang, Zhengwei; Tan, Ken; Di, Zengru; Roehner, Bertrand M

    2011-01-01

    It is well known that bees cluster together in cold weather, in the process of swarming (when the ``old'' queen leaves with part of the colony) or absconding (when the queen leaves with all the colony) and in defense against intruders such as wasps or hornets. In this paper we describe a fairly different clustering process which occurs at any temperature and independently of any special stimulus or circumstance. As a matter of fact, this process is about four times faster at 28 degree Celsius than at 15 degrees. Because of its simplicity and low level of ``noise'' we think that this phenomenon can provide a means for exploring the strength of inter-individual attraction between bees or other living organisms. For instance, and at first sight fairly surprisingly, our observations showed that this attraction does also exist between bees belonging to different colonies. As this study is aimed at providing a comparative perspective, we also describe a similar clustering experiment for red fire ants.

  14. Solution Versus Gas-Phase Modification of Peptide Cations with NHS-Ester Reagents

    Science.gov (United States)

    Mentinova, Marija; Barefoot, Nathan Z.; McLuckey, Scott A.

    2012-02-01

    A comparison between solution and gas phase modification of primary amine sites in model peptide cations with N-hydroxysuccinimide (NHS) ester reagents is presented. In all peptides, the site of modification in solution was directed to the N-terminus by conducting reactions at pH = 5, whereas for the same peptides, a lysine residue was preferentially modified in the gas phase. The difference in pKa values of the N-terminus and ɛ-amino group of the lysine allows for a degree of control over sites of protonation of the peptides in aqueous solution. With removal of the dielectric and multiple charging of the peptide ions in the gas phase, the accommodation of excess charge can affect the preferred sites of reaction. Interaction of the lone pair of the primary nitrogen with a proton reduces its nucleophilicity and, as a result, its reactivity towards NHS-esters. While no evidence for reaction of the N-terminus with sulfo-NHS-acetate was noted in the model peptide cations, a charge inversion experiment using bis[sulfosuccinimidyl] suberate, a cross-linking reagent with two sulfo-NHS-ester functionalities, showed modification of the N-terminus. Hence, an unprotonated N-terminus can serve as a nucleophile to displace NHS, which suggests that its lack of reactivity with the peptide cations is likely due to the participation of the N-terminus in solvating excess charge.

  15. Effect of hydrophobic mismatch on domain formation and peptide sorting in the multicomponent lipid bilayers in the presence of immobilized peptides

    Science.gov (United States)

    Liang, Qing; Wu, Qing-Yan; Wang, Zhi-Yong

    2014-08-01

    In the plasma membranes, many transmembrane (TM) proteins/peptides are anchored to the underlying cytoskeleton and/or the extracellular matrix. The lateral diffusion and the tilt of these proteins/peptides may be greatly restricted by the anchoring. Here, using the coarse-grained molecular dynamics simulation, we investigated the domain formation and peptide sorting in the ternary lipid bilayers in the presence of the immobilized peptide-grid and peptide-cluster. We mainly focused on examining the combining effect of the peptide immobilization and hydrophobic mismatch on the domain formation and peptide sorting in the lipid bilayers. Compared to the lipid bilayers inserted with free TM peptides, our results showed that, because of the tilt restriction imposed on the peptides, the hydrophobic mismatch effect more significantly influences the domain size, the dynamics of domain formation, and the peptide sorting in our systems. Our results provide some theoretical insights into understanding the formation of nanosized lipid rafts, the protein sorting in the lipid rafts and the interaction between the cytoskeleton, the extracellular matrix, and the plasma membranes.

  16. Design of amphiphilic oligopeptides as models for fine tuning peptide assembly with plasmid DNA.

    Science.gov (United States)

    Goparaju, Geetha N; Gupta, Pardeep K

    2014-08-01

    We discuss the design of novel amphiphilic oligopeptides with hydrophobic and cationic amino acids to serve as models to understand peptide-DNA assembly. Biophysical and thermodynamic characterization of interaction of these amphiphilic peptides with plasmid DNA is presented. Peptides with at least +4 charges favor stable complex formation. Surface potential is dependent on the type of hydrophobic amino acid for a certain charge. Thermodynamically it is a spontaneous interaction between most of the peptides and plasmid DNA. Lys(7) and Tyr peptides with +4/+5 charges indicate cooperative binding with pDNA without saturation of interaction while Val(2)-Gly-Lys(4), Val-Gly-Lys(5), and Phe-Gly-Lys(5) lead to saturation of interaction indicating condensed pDNA within the range of N/Ps studied. We show that the biophysical properties of DNA-peptide complexes could be modulated by design and the peptides presented here could be used as building blocks for creating DNA-peptide complexes for various biomedical applications, mainly nucleic acid delivery.

  17. Interaction of 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes

    Indian Academy of Sciences (India)

    Chandrasekaran Sivakamasundari; Ramakrishnan Nagaraj

    2009-06-01

    We investigated the interaction of six 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. The net charge of the peptides at neutral pH varies from –1 to +6. Circular dichroism spectra indicate that peptides with a high net positive charge tend to fold into a helical conformation in the presence of negatively charged lipid vesicles. In helical conformation, their average hydrophobic moment and hydrophobicity would render them surface-active. The composition of amino acids on the polar face of the helix in the peptides is considerably different. The peptides show variations in their ability to permeabilise zwitterionic and anionic lipid vesicles. Whereas increased net positive charge favours greater permeabilisation, the distribution of charged residues in the polar face also plays a role in determining membrane activity. The distribution of amino acids in the polar face of the helix in the peptides that were investigated do not fall into the canonical classes described. Amphipathic helices, which are part of proteins, with a pattern of amino acid distribution different from those observed in class L, A and others, could help in providing newer insights into peptide–membrane interactions.

  18. Charged histidine affects alpha-helix stability at all positions in the helix by interacting with the backbone charges.

    OpenAIRE

    Armstrong, K M; Baldwin, R L

    1993-01-01

    To determine whether a charged histidine side chain affects alpha-helix stability only when histidine is close to one end of the helix or also when it is in the central region, we substitute a single histidine residue at many positions in two reference peptides and measure helix stability and histidine pKa. The position of a charged histidine residue has a major effect on helix stability in 0.01 M NaCl: the helix content of a 17-residue peptide is 24% when histidine is at position 3 compared ...

  19. Surface charging by large multivalent molecules. Extending the standard Gouy-Chapman treatment.

    OpenAIRE

    Stankowski, S

    1991-01-01

    Traditionally, Gouy-Chapman theory has been used to calculate the distribution of ions in the diffuse layer next to a charged surface. In recent years, the same theory has found application to adsorption (incorporation, partitioning) of charged peptides, hormones, or drugs at the membrane-water interface. Empirically it has been found that an effective charge, smaller than the physical charge, must often be used in the Gouy-Chapman formula. In addition, the large size of these molecules can b...

  20. Workplace Charging. Charging Up University Campuses

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Carrie [ICF International, Fairfax, VA (United States); Ryder, Carrie [ICF International, Fairfax, VA (United States); Lommele, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  1. Antimicrobial Peptides from Plants

    Science.gov (United States)

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  2. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  3. Electron transfer in peptides.

    Science.gov (United States)

    Shah, Afzal; Adhikari, Bimalendu; Martic, Sanela; Munir, Azeema; Shahzad, Suniya; Ahmad, Khurshid; Kraatz, Heinz-Bernhard

    2015-02-21

    In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.

  4. Electromembrane extraction of peptides.

    Science.gov (United States)

    Balchen, Marte; Reubsaet, Léon; Pedersen-Bjergaard, Stig

    2008-06-20

    Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides. PMID:18479691

  5. Electrostatic cluster formation in lipid monolayers

    OpenAIRE

    Ellenbroek, Wouter G.; Wang, Yu-Hsiu; Christian, David A.; Discher, Dennis E.; Janmey, Paul A.; Liu, Andrea J.

    2010-01-01

    We study phase separation in mixed monolayers of neutral and highly negatively charged lipids, induced by the addition of divalent positively charged counterions. We find good agreement between experiments on mixtures of pip2 and sopc and simulations of a simplified model in which only the essential electrostatic interactions are retained. Thus, our results support an interpretation of pip2 clustering as governed primarily by electrostatic interactions, in which divalent ions such as calcium ...

  6. Singular electrostatic energy of nanoparticle clusters

    OpenAIRE

    Qin, Jian; Krapf, Nathan W.; Witten, Thomas A.

    2016-01-01

    The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal potentials on the particles. We show that the energy at small separation $h$ has a singular logarithmic dependence on $h$. We derive a general form for this energy in terms of the singular capacitance of two spheres in near contact $c(h)$, together with nonsingular geome...

  7. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity......Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... and hence adjuvants are included to enhance and direct the immune response. Although the vaccine has been tested in ART naïve individuals, we recommend future testing of the vaccine during (early started) ART that improves immune function and to select individuals likely to benefit. Peptides representing...

  8. Synthetic antibiofilm peptides.

    Science.gov (United States)

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  9. Biomimetic peptide nanosensors.

    Science.gov (United States)

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  10. Globular Cluster Formation in the Virgo Cluster

    CERN Document Server

    Moran, C Corbett; Lake, G

    2014-01-01

    Metal poor globular clusters (MPGCs) are a unique probe of the early universe, in particular the reionization era. Systems of globular clusters in galaxy clusters are particularly interesting as it is in the progenitors of galaxy clusters that the earliest reionizing sources first formed. Although the exact physical origin of globular clusters is still debated, it is generally admitted that globular clusters form in early, rare dark matter peaks (Moore et al. 2006; Boley et al. 2009). We provide a fully numerical analysis of the Virgo cluster globular cluster system by identifying the present day globular cluster system with exactly such early, rare dark matter peaks. A popular hypothesis is that that the observed truncation of blue metal poor globular cluster formation is due to reionization (Spitler et al. 2012; Boley et al. 2009; Brodie & Strader 2006); adopting this view, constraining the formation epoch of MPGCs provides a complementary constraint on the epoch of reionization. By analyzing both the l...

  11. Dicyclopropylmethyl peptide backbone protectant.

    Science.gov (United States)

    Carpino, Louis A; Nasr, Khaled; Abdel-Maksoud, Adel Ali; El-Faham, Ayman; Ionescu, Dumitru; Henklein, Peter; Wenschuh, Holger; Beyermann, Michael; Krause, Eberhard; Bienert, Michael

    2009-08-20

    The N-dicyclopropylmethyl (Dcpm) residue, introduced into amino acids via reaction of dicyclopropylmethanimine hydrochloride with an amino acid ester followed by sodium cyanoborohydride or triacetoxyborohydride reduction, can be used as an amide bond protectant for peptide synthesis. Examples which demonstrate the amelioration of aggregation effects include syntheses of the alanine decapeptide and the prion peptide (106-126). Avoidance of cyclization to the aminosuccinimide followed substitution of Fmoc-(Dcpm)Gly-OH for Fmoc-Gly-OH in the assembly of sequences containing the sensitive Asp-Gly unit.

  12. Invertebrate FMRFamide related peptides.

    Science.gov (United States)

    Krajniak, Kevin G

    2013-06-01

    In 1977 the neuropeptide FMRFamide was isolated from the clam, Macrocallista nimbosa. Since then several hundred FMRFamide-related peptides (FaRPs) have been isolated from invertebrate animals. Precursors to the FaRPs likely arose in the cnidarians. With the transition to a bilateral body plan FaRPs became a fixture in the invertebrate phyla. They have come to play a critical role as neurotransmitters, neuromodulators, and neurohormones. FaRPs regulate a variety of body functions including, feeding, digestion, circulation, reproduction, movement. The evolution of the molecular form and function of these omnipresent peptides will be considered.

  13. Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms.

    Science.gov (United States)

    Ruder, Tim; Ali, Syed Abid; Ormerod, Kiel; Brust, Andreas; Roymanchadi, Mary-Louise; Ventura, Sabatino; Undheim, Eivind A B; Jackson, Timothy N W; Mercier, A Joffre; King, Glenn F; Alewood, Paul F; Fry, Bryan G

    2013-09-01

    It has been previously shown that octopus venoms contain novel tachykinin peptides that despite being isolated from an invertebrate, contain the motifs characteristic of vertebrate tachykinin peptides rather than being more like conventional invertebrate tachykinin peptides. Therefore, in this study we examined the effect of three variants of octopus venom tachykinin peptides on invertebrate and vertebrate tissues. While there were differential potencies between the three peptides, their relative effects were uniquely consistent between invertebrate and vertebrae tissue assays. The most potent form (OCT-TK-III) was not only the most anionically charged but also was the most structurally stable. These results not only reveal that the interaction of tachykinin peptides is more complex than previous structure-function theories envisioned, but also reinforce the fundamental premise that animal venoms are rich resources of novel bioactive molecules, which are useful investigational ligands and some of which may be useful as lead compounds for drug design and development.

  14. Oligomer Formation of Toxic and Functional Amyloid Peptides Studied with Atomistic Simulations.

    Science.gov (United States)

    Carballo-Pacheco, Martín; Ismail, Ahmed E; Strodel, Birgit

    2015-07-30

    Amyloids are associated with diseases, including Alzheimer's, as well as functional roles such as storage of peptide hormones. It is still unclear what differences exist between aberrant and functional amyloids. However, it is known that soluble oligomers formed during amyloid aggregation are more toxic than the final fibrils. Here, we perform molecular dynamics simulations to study the aggregation of the amyloid-β peptide Aβ25-35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Although the three peptides have similar primary sequences, tachykinin peptides, in contrast to Aβ25-35, form nontoxic amyloids. Our simulations reveal that the charge of the C-terminus is essential to controlling the aggregation process. In particular, when the kassinin C-terminus is not amidated, the aggregation kinetics decreases considerably. In addition, we observe that the monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations. PMID:26130191

  15. Impact of human milk pasteurization on the kinetics of peptide release during in vitro dynamic term newborn digestion.

    Science.gov (United States)

    Deglaire, Amélie; De Oliveira, Samira C; Jardin, Julien; Briard-Bion, Valérie; Emily, Mathieu; Ménard, Olivia; Bourlieu, Claire; Dupont, Didier

    2016-07-01

    Holder pasteurization (62.5°C, 30 min) ensures sanitary quality of donor's human milk but also denatures beneficial proteins. Understanding whether this further impacts the kinetics of peptide release during gastrointestinal digestion of human milk was the aim of the present paper. Mature raw (RHM) or pasteurized (PHM) human milk were digested (RHM, n = 2; PHM, n = 3) by an in vitro dynamic system (term stage). Label-free quantitative peptidomics was performed on milk and digesta (ten time points). Ascending hierarchical clustering was conducted on "Pasteurization × Digestion time" interaction coefficients. Preproteolysis occurred in human milk (159 unique peptides; RHM: 91, PHM: 151), mostly on β-casein (88% of the endogenous peptides). The predicted cleavage number increased with pasteurization, potentially through plasmin activation (plasmin cleavages: RHM, 53; PHM, 76). During digestion, eight clusters resumed 1054 peptides from RHM and PHM, originating for 49% of them from β-casein. For seven clusters (57% of peptides), the kinetics of peptide release differed between RHM and PHM. The parent protein was significantly linked to the clustering (p-value = 1.4 E-09), with β-casein and lactoferrin associated to clusters in an opposite manner. Pasteurization impacted selectively gastric and intestinal kinetics of peptide release in term newborns, which may have further nutritional consequences.

  16. Cell-penetrating compounds preferentially bind glycosaminoglycans over plasma membrane lipids in a charge density- and stereochemistry-dependent manner.

    Science.gov (United States)

    Prevette, Lisa E; Benish, Nicolas C; Schoenecker, Amber R; Braden, Kristin J

    2015-12-01

    Cell-penetrating compounds (CPCs) are often conjugated to drugs and genes to facilitate cellular uptake. We hypothesize that the electrostatic interaction between the positively charged amines of the cell-penetrating compounds and the negatively charged glycosaminoglycans (GAGs) extending from cell surfaces is the initiating step in the internalization process. The interactions of generation 5 PAMAM dendrimer, Tat peptide and 25 kDa linear PEI with four different GAGs have been studied using isothermal titration calorimetry to elucidate structure-function relationships that could lead to improved drug and gene delivery methods to a wide variety of cell types. Detailed thermodynamic analysis has determined that CPC-GAG binding constants range from 8.7×10(3) to 2.4×10(6)M(-1) and that affinity is dependent upon GAG charge density and stereochemistry and CPC molecular weight. The effect of GAG composition on affinity is likely due to hydrogen bonding between CPC amines and amides and GAG hydroxyl and amine groups. These results were compared to the association of CPCs with lipid vesicles of varying composition as model plasma membranes to finally clarify the relative importance of each cell surface component in initial cell recognition. CPC-lipid affinity increases with anionic lipid content, but GAG affinity is higher for all cell-penetrating compounds, confirming the role these heterogeneous polysaccharides play in cellular association and clustering.

  17. Peptide π-Electron Conjugates: Organic Electronics for Biology?

    Science.gov (United States)

    Ardoña, Herdeline Ann M; Tovar, John D

    2015-12-16

    Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.

  18. Collisional versus laser driven ionization in metal clusters

    OpenAIRE

    Suraud, E.; P.-G. Reinhard

    2000-01-01

    We compare the capabilities of rapid highly charged projectiles and intense femtosecond lasers to ionize simple metal clusters while leaving as little intrinsic excitation as possible in the residue. We show that both excitation mechanisms are able to produce highly charged clusters. The deposited excitation energies increase with ionization but with different trends. Cold ionization, corresponding to moderate deposited excitation energy, is better attained with ionic projectiles for low char...

  19. The Generalized Fixed-Charge Network Design Problem

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Stidsen, Thomas K.

    2007-01-01

    In this paper we present the generalized fixed-charge network design (GFCND) problem. The GFCND problem is an instance of the so-called generalized network design problems. In such problems, clusters instead of nodes have to be interconnected by a network. The network interconnecting the clusters...... is a fixed-charge network, and thus the GFCND problem generalizes the fixed-charge network design problem. The GFCND problem is related to the more general problem of designing hierarchical telecommunication networks. A mixed integer programming model is described and a branch-cut-and-price algorithm...

  20. BPDA - A Bayesian peptide detection algorithm for mass spectrometry

    Directory of Open Access Journals (Sweden)

    Braga-Neto Ulisses

    2010-09-01

    Full Text Available Abstract Background Mass spectrometry (MS is an essential analytical tool in proteomics. Many existing algorithms for peptide detection are based on isotope template matching and usually work at different charge states separately, making them ineffective to detect overlapping peptides and low abundance peptides. Results We present BPDA, a Bayesian approach for peptide detection in data produced by MS instruments with high enough resolution to baseline-resolve isotopic peaks, such as MALDI-TOF and LC-MS. We model the spectra as a mixture of candidate peptide signals, and the model is parameterized by MS physical properties. BPDA is based on a rigorous statistical framework and avoids problems, such as voting and ad-hoc thresholding, generally encountered in algorithms based on template matching. It systematically evaluates all possible combinations of possible peptide candidates to interpret a given spectrum, and iteratively finds the best fitting peptide signal in order to minimize the mean squared error of the inferred spectrum to the observed spectrum. In contrast to previous detection methods, BPDA performs deisotoping and deconvolution of mass spectra simultaneously, which enables better identification of weak peptide signals and produces higher sensitivities and more robust results. Unlike template-matching algorithms, BPDA can handle complex data where features overlap. Our experimental results indicate that BPDA performs well on simulated data and real MS data sets, for various resolutions and signal to noise ratios, and compares very favorably with commonly used commercial and open-source software, such as flexAnalysis, OpenMS, and Decon2LS, according to sensitivity and detection accuracy. Conclusion Unlike previous detection methods, which only employ isotopic distributions and work at each single charge state alone, BPDA takes into account the charge state distribution as well, thus lending information to better identify weak peptide

  1. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth;

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...

  2. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class of ...

  3. Revealing the multi-bonding state between hydrogen and graphene-supported Ti clusters

    CERN Document Server

    Takahashi, Keisuke; Omori, Kengo; Mashoff, Torge; Convertino, Domenica; Miseikis, Vaidotas; Coletti, Camilla; Tozzini, Valentina; Heun, Stefan

    2016-01-01

    Hydrogen adsorption on graphene-supported metal clusters has brought much controversy due to the complex nature of the bonding between hydrogen and metal clusters. The bond types of hydrogen and graphene-supported Ti clusters are experimentally and theoretically investigated. Transmission electron microscopy shows that Ti clusters of nanometer-size are formed on graphene. Thermal desorption spectroscopy captures three hydrogen desorption peaks from hydrogenated graphene-supported Ti clusters. First principle calculations also found three types of interaction: Two types of bonds with different partial ionic character and physisorption. The physical origin for this rests on the charge state of the Ti clusters: when Ti clusters are neutral, H2 is dissociated, and H forms bonds with the Ti cluster. On the other hand, H2 is adsorbed in molecular form on positively charged Ti clusters, resulting in physisorption. Thus, this work clarifies the bonding mechanisms of hydrogen on graphene-supported Ti clusters.

  4. Differential age-dependent import regulation by signal peptides.

    Directory of Open Access Journals (Sweden)

    Yi-Shan Teng

    Full Text Available Gene-specific, age-dependent regulations are common at the transcriptional and translational levels, while protein transport into organelles is generally thought to be constitutive. Here we report a new level of differential age-dependent regulation and show that chloroplast proteins are divided into three age-selective groups: group I proteins have a higher import efficiency into younger chloroplasts, import of group II proteins is nearly independent of chloroplast age, and group III proteins are preferentially imported into older chloroplasts. The age-selective signal is located within the transit peptide of each protein. A group III protein with its transit peptide replaced by a group I transit peptide failed to complement its own mutation. Two consecutive positive charges define the necessary motif in group III signals for older chloroplast preference. We further show that different members of a gene family often belong to different age-selective groups because of sequence differences in their transit peptides. These results indicate that organelle-targeting signal peptides are part of cells' differential age-dependent regulation networks. The sequence diversity of some organelle-targeting peptides is not a result of the lack of selection pressure but has evolved to mediate regulation.

  5. Prediction of Biofilm Inhibiting Peptides: An In silico Approach.

    Science.gov (United States)

    Gupta, Sudheer; Sharma, Ashok K; Jaiswal, Shubham K; Sharma, Vineet K

    2016-01-01

    Approximately 75% of microbial infections found in humans are caused by microbial biofilms. These biofilms are resistant to host immune system and most of the currently available antibiotics. Small peptides are extensively studied for their role as anti-microbial peptides, however, only a limited studies have shown their potential as inhibitors of biofilm. Therefore, to develop a unique computational method aimed at the prediction of biofilm inhibiting peptides, the experimentally validated biofilm inhibiting peptides sequences were used to extract sequence based features and to identify unique sequence motifs. Biofilm inhibiting peptides were observed to be abundant in positively charged and aromatic amino acids, and also showed selective abundance of some dipeptides and sequence motifs. These individual sequence based features were utilized to construct Support Vector Machine-based prediction models and additionally by including sequence motifs information, the hybrid models were constructed. Using 10-fold cross validation, the hybrid model displayed the accuracy and Matthews Correlation Coefficient (MCC) of 97.83% and 0.87, respectively. On the validation dataset, the hybrid model showed the accuracy and MCC value of 97.19% and 0.84, respectively. The validated model and other tools developed for the prediction of biofilm inhibiting peptides are available freely as web server at http://metagenomics.iiserb.ac.in/biofin/ and http://metabiosys.iiserb.ac.in/biofin/. PMID:27379078

  6. Design and Engineering Strategies for Synthetic Antimicrobial Peptides

    Science.gov (United States)

    Tossi, Alessandro

    Thousands of antimicrobial peptides (AMPs) of prokaryotic, fungal, plant, or animal origin have been identified, and their potential as lead compounds for the design of novel therapeutic agents in the treatment of infection, for stimulating the immune system, or in countering septic shock has been widely recognized. Added to this is their possible use in prophylaxis of infectious diseases for animal or plant protection, for disinfection of surgical instruments or industrial surfaces, and for food preservation among other commercially important applications. Since the early eighties, AMPs have been subject to a vast number of studies aimed at understanding what determines their potency and spectrum of activities against bacterial or fungal pathogens, and at maximizing these while limiting cytotoxic activities toward host cells. Much research has also been directed toward understanding specific mechanisms of action underlying the antimicrobial activity and selectivity, to be able to redesign the peptides for optimal performance. A central theme in the mode of action of many AMPs is their dynamic interaction with biological membranes, which involves various properties of these peptides such as, among others, surface hydrophobicity and polarity, charge, structure, and induced conformational variations. These features are often intimately interconnected so that engineering peptides to independently adjust any one property in particular is not an easy task. However, solid-phase peptide synthesis allows the use of a large repertoire of nonproteinogenic amino acids that can be used in the rational design of peptides to finely tune structural and physicochemical properties and precisely probe structure-function relationships.

  7. Prediction of Biofilm Inhibiting Peptides: An In silico Approach

    Science.gov (United States)

    Gupta, Sudheer; Sharma, Ashok K.; Jaiswal, Shubham K.; Sharma, Vineet K.

    2016-01-01

    Approximately 75% of microbial infections found in humans are caused by microbial biofilms. These biofilms are resistant to host immune system and most of the currently available antibiotics. Small peptides are extensively studied for their role as anti-microbial peptides, however, only a limited studies have shown their potential as inhibitors of biofilm. Therefore, to develop a unique computational method aimed at the prediction of biofilm inhibiting peptides, the experimentally validated biofilm inhibiting peptides sequences were used to extract sequence based features and to identify unique sequence motifs. Biofilm inhibiting peptides were observed to be abundant in positively charged and aromatic amino acids, and also showed selective abundance of some dipeptides and sequence motifs. These individual sequence based features were utilized to construct Support Vector Machine-based prediction models and additionally by including sequence motifs information, the hybrid models were constructed. Using 10-fold cross validation, the hybrid model displayed the accuracy and Matthews Correlation Coefficient (MCC) of 97.83% and 0.87, respectively. On the validation dataset, the hybrid model showed the accuracy and MCC value of 97.19% and 0.84, respectively. The validated model and other tools developed for the prediction of biofilm inhibiting peptides are available freely as web server at http://metagenomics.iiserb.ac.in/biofin/ and http://metabiosys.iiserb.ac.in/biofin/. PMID:27379078

  8. Sequential oxygen atom chemisorption on surfaces of small iron Clusters

    International Nuclear Information System (INIS)

    We report photoelectron spectra of iron oxide clusters, FexOy- (x=1 endash 4, y=1 endash 6). For a given x, we find that the electron affinity increases with the number of O atoms, consistent with an increasing degree of oxidation. The results are interpreted based on charge transfer interactions between the Fex clusters and the O atoms, and provide key information about the oxide cluster structures, in which each O atom is suggested to locate on the surface of the clusters for the x=3 and 4 series. These clusters provide novel model systems to understand the electronic structure of bulk iron oxides. copyright 1996 The American Physical Society

  9. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  10. Biochemical functionalization of peptide nanotubes with phage displayed peptides.

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering. PMID:27479451

  11. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    Science.gov (United States)

    Rodina, N. P.; Yudenko, A. N.; Terterov, I. N.; Eliseev, I. E.

    2013-08-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested.

  12. Reopening the window on charged dark matter

    CERN Document Server

    Chuzhoy, Leonid

    2008-01-01

    We reexamine the limits on charged dark matter particles. We show that if their mass and charge fall in the range 100(q_X/e)^2< m_X < 10^8(q_X/e) TeV, then magnetic fields prevent particles in the halo from entering the galactic disk, while those initially trapped inside are accelerated through the Fermi mechanism and ejected within about 0.1-1 Gyrs. Consequently, previous constraints on charged dark matter based on terrestrial non-observation are invalid within that range. Further, we find that charged massive particles may simultaneously solve several long-standing astrophysical problems, including the underabundance of dwarf galaxies, the shallow density profiles in the cores of the LSB galaxies, the absence of cooling flows in the cores of galaxy clusters, and several others.

  13. Structure and properties of small sodium clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2002-01-01

    and the results of other theoretical work. We have systematically calculated the optimized geometries of neutral and singly charged sodium clusters having up to 20 atoms, their multipole moments (dipole and quadrupole), static polarizabilities, binding energies per atom, ionization potentials, and...

  14. Cluster Decline and Resilience

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark, 1963...... in new resources to the cluster but being quick to withdraw in times of crisis....

  15. Cluster-cluster aggregation of Ising dipolar particles under thermal noise

    KAUST Repository

    Suzuki, Masaru

    2009-08-14

    The cluster-cluster aggregation processes of Ising dipolar particles under thermal noise are investigated in the dilute condition. As the temperature increases, changes in the typical structures of clusters are observed from chainlike (D1) to crystalline (D2) through fractal structures (D1.45), where D is the fractal dimension. By calculating the bending energy of the chainlike structure, it is found that the transition temperature is associated with the energy gap between the chainlike and crystalline configurations. The aggregation dynamics changes from being dominated by attraction to diffusion involving changes in the dynamic exponent z=0.2 to 0.5. In the region of temperature where the fractal clusters grow, different growth rates are observed between charged and neutral clusters. Using the Smoluchowski equation with a twofold kernel, this hetero-aggregation process is found to result from two types of dynamics: the diffusive motion of neutral clusters and the weak attractive motion between charged clusters. The fact that changes in structures and dynamics take place at the same time suggests that transitions in the structure of clusters involve marked changes in the dynamics of the aggregation processes. © 2009 The American Physical Society.

  16. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  17. Evolution of the electronic and ionic structure of Mg clusters with increase in cluster size

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2003-01-01

    The optimized structure and electronic properties of neutral and singly charged magnesium clusters have been investigated using ab initio theoretical methods based on density-functional theory and systematic post–Hartree-Fock many-body perturbation theory accounting for all electrons in the system....... We have systematically calculated the optimized geometries of neutral and singly charged magnesium clusters consisting of up to 21 atoms, electronic shell closures, binding energies per atom, ionization potentials, and the gap between the highest occupied and the lowest unoccupied molecular orbitals...

  18. Applicability of condensation particle counters to measure atmospheric clusters

    OpenAIRE

    Sipilä, M.; Lehtipalo, K.; M. Kulmala; T. Petäjä; Junninen, H.; Aalto, P.P.; Manninen, H. E.; E.-M. Kyrö; Asmi, E.; Riipinen, I; J. Curtius; A. Kürten; S. Borrmann; C. D. O'Dowd

    2008-01-01

    The ambient and laboratory molecular and ion clusters were investigated. Here we present data on the ambient concentrations of both charged and uncharged molecular clusters as well as the performance of a pulse height condensation particle counter (PH-CPC) and an expansion condensation particle counter (E-CPC). The ambient molecular cluster concentrations were measured using both instruments, and they were deployed in conjunction with ion spectrometers and other aerosol instruments in Hyytiäl...

  19. Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics.

    Science.gov (United States)

    Jarnuczak, Andrew F; Lee, Dave C H; Lawless, Craig; Holman, Stephen W; Eyers, Claire E; Hubbard, Simon J

    2016-09-01

    Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472. PMID:27454336

  20. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function

    KAUST Repository

    Rydberg, Hanna A.

    2012-10-01

    Cell-penetrating peptides and antimicrobial peptides are two classes of positively charged membrane active peptides with several properties in common. The challenge is to combine knowledge about the membrane interaction mechanisms and structural properties of the two classes to design peptides with membrane-specific actions, useful either as transporters of cargo or as antibacterial substances. Membrane active peptides are commonly rich in arginine and tryptophan. We have previously designed a series of arg/trp peptides and investigated how the position and number of tryptophans affect cellular uptake. Here we explore the antimicrobial properties and the interaction with lipid model membranes of these peptides, using minimal inhibitory concentrations assay (MIC), circular dichroism (CD) and linear dichroism (LD). The results show that the arg/trp peptides inhibit the growth of the two gram positive strains Staphylococcus aureus and Staphylococcus pyogenes, with some individual variations depending on the position of the tryptophans. No inhibition of the gram negative strains Proteus mirabilis or Pseudomonas aeruginosa was noticed. CD indicated that when bound to lipid vesicles one of the peptides forms an α-helical like structure, whereas the other five exhibited rather random coiled structures. LD indicated that all six peptides were somehow aligned parallel with the membrane surface. Our results do not reveal any obvious connection between membrane interaction and antimicrobial effect for the studied peptides. By contrast cell-penetrating properties can be coupled to both the secondary structure and the degree of order of the peptides. © 2012 Elsevier Inc.

  1. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  2. Modernization typologies industrial clusters

    Directory of Open Access Journals (Sweden)

    Karapetian, Eduard

    2011-11-01

    Full Text Available Generalized theoretical approach to the criteria of industrial clusters. On this basis, a detailed typology of industrial cluster structures, which takes into account the peculiarities of the functioning of clusters in the domestic economy.

  3. Magnetic charge quantisation and fractionally charged quarks

    NARCIS (Netherlands)

    Hooft, G. 't

    1976-01-01

    If magnetic monopoles with Schwinger's value of the magnetic charge would exist then that would pose serious restrictions on theories with fractionally charged quarks, even if they are confined. Weak and electromagnetic interactions must be unified with color, leading to a Weinberg angle w close to

  4. Multistep Charge Method by Charge Arrays

    Science.gov (United States)

    Segami, Go; Kusawake, Hiroaki; Shimizu, Yasuhiro; Iwasa, Minoru; Kibe, Koichi

    2008-09-01

    We studied reduction of the size and weight of the Power Control Unit (PCU). In this study, we specifically examined the weight of the Battery Charge Regulator (BCR), which accounts for half of the PCU weight for a low earth orbit (LEO) satellite. We found a multistep charge method by charge arrays and adopted a similar method for GEO satellites, thereby enabling the BCR reduction. We found the possibility of reducing the size and weight of PCU through more detailed design than that for a conventional PCU.BCRC1R1batterySAPower Control UnitBCRC1R1batterySAPower UnitHowever, this method decreases the state of charge (SOC) of the battery. Battery tests, a battery simulator test, and numerical analysis were used to evaluate the SOC decrease. We also studied effects of this method on the battery lifetime. The multistep charge method by charge arrays enabled charging to the same level of SOC as the conventional constant current/ constant voltage (CC/CV) charge method for a LEO satellite.

  5. Efficient Covalent Bond Formation in Gas-Phase Peptide-Peptide Ion Complexes with the Photoleucine Stapler

    Science.gov (United States)

    Shaffer, Christopher J.; Andrikopoulos, Prokopis C.; Řezáč, Jan; Rulíšek, Lubomír; Tureček, František

    2016-04-01

    Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific 13C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)+ ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H]+ ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase.

  6. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  7. Antimicrobial peptides in Echinoderms

    Directory of Open Access Journals (Sweden)

    C Li

    2010-05-01

    Full Text Available Antimicrobial peptides (AMPs are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, dissimilar to other known AMPs. A family of heterodimeric AMPs, named centrocins, are also present in S. droebachiensis. Lysozymes and fragments of larger proteins, such as beta-thymocins, actin, histone 2A and filamin A have also been shown to display antimicrobial activities in echinoderms. Future studies on AMPs should be aimed in revealing how echinoderms use these AMPs in the immune response against microbial pathogens.

  8. Controlled clustering of carboxylated SPIONs through polyethylenimine

    Energy Technology Data Exchange (ETDEWEB)

    Nesztor, Dániel; Bali, Krisztina; Tóth, Ildikó Y.; Szekeres, Márta; Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu

    2015-04-15

    Clusters of magnetite nanoparticles (MNPs) were synthesized using poly(acrylic acid-co-maleic acid) coated MNPs (PAM@MNP) and branched polyethylenimine (PEI). Materials were characterized by potentiometric titration, zeta potential and dynamic light scattering (DLS) measurements. PEI and PAM@MNP are oppositely charged as characterized by zeta potential measurements (+8, −34 mV respectively) and titration (10.30 mmol −NH{sub 3}{sup +}/g PEI; 0.175 mmol −COO{sup −}/g PAM@MNP) at pH 6.5±0.2; therefore magnetic clusters are formed by electrostatic adhesion. Two different preparation methods and the effect of PEI and electrolyte (NaCl) concentration on the cluster formation was studied. Choosing an optimal concentration of PEI (charge ratio of PEI to PAM@MNP: 0.17) and electrolyte (10 mM), a concentrated (10 g MNP/L) product containing PEI–PAM@MNP nanoclusters with size of 165±10 nm was prepared. Its specific absorption rate (SAR) measured in AC magnetic field (110 kHz, 25 mT) is 12 W/g Fe. The clustered product is expected to have enhanced contrast efficiency in MRI. - Highlights: • SPION clusters of controlled size were prepared by means of electrostatic adhesion. • Nanocluster formation optimum was at 0.17 charge ratio of PEI to PAM@MNP. • Huge aggregates form at higher PEI to PAM@MNP charge ratio. • Higher ionic strength promotes the formation of clusters at lower PEI concentrations.

  9. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    Science.gov (United States)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  10. Ionic recoil energies in the Coulomb explosion of metal clusters

    Science.gov (United States)

    Teuber, S.; Döppner, T.; Fennel, T.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    The photoionization of metal clusters in intense femtosecond laser fields has been studied. In contrast to an experiment on atoms, the interaction in this case leads to a very efficient and high charging of the particle where tens of electrons per atom are ejected from the cluster. The recoil energy distribution of the atomic fragment ions was measured which in the case of lead clusters exceeds 180 keV. Enhanced charging efficiency which we observed earlier for specific pulse conditions is not reflected in the recoil energy spectra. Both the average and the maximum energies decrease with increasing laser pulse width. This is in good agreement with molecular dynamics calculations.

  11. Argon clusters embedded in helium nanodroplets.

    Science.gov (United States)

    da Silva, Filipe Ferreira; Bartl, Peter; Denifl, Stephan; Echt, Olof; Märk, Tilmann D; Scheier, Paul

    2009-11-14

    Electron impact ionization of argon clusters embedded in helium droplets is investigated. Superior mass resolution makes it possible to distinguish between nominally isobaric cluster ions. An abundance maximum for ArHe(12)(+) is unambiguously confirmed; the spectra also prove the formation of Ar(2)He(n)(+) complexes that had been claimed to fragment into pure Ar(2)(+). Distributions of larger argon cluster ions containing up to 60 atoms closely resemble distributions observed upon electron impact or photoionization of bare argon clusters; caging and evaporative cooling provided by the helium matrix do not suffice to quench fragmentation of the nascent argon cluster ions. Intriguing abundance anomalies are observed in distributions of argon cluster ions that contain water, nitrogen or oxygen impurities. The strong abundance of Ar(55)H(2)O(+), Ar(54)O(2)(+) and Ar(54)N(2)(+) contrasts with the virtual absence of slightly larger cluster ions containing the corresponding impurities. The features are probably related to enhanced cluster ion stability upon closure of the second icosahedral shell but the difference in magic numbers (54 versus 55) and the well-known reactivity of charged argon-nitrogen complexes suggest structural differences. PMID:19851558

  12. Rubella virion polypeptides. Characterization by polyacrylamide gel electrophoresis, isoelectric focusing and peptide mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ho-Terry, L.; Cohen, A. (University Coll. Hospital Medical School, London (UK))

    1982-01-01

    Four polypeptides with molecular weights of 55K, 47K, 45K, and 33K have been resolved by polyacrylamide gel electrophoresis of immune precipitated rubella virus. The 47K and 45K components have similar peptide maps but different isoelectric points so that the same polypeptide may exist in more than one charged form. The 55K and 45K components have similar isoelectric points but different peptide maps showing that similarity of isoelectric point is not evidence of identity.

  13. Stylicins, a new family of antimicrobial peptides from the Pacific blue shrimp Litopenaeus stylirostris

    OpenAIRE

    Rolland, Jean-Luc; Abdelouahab, Mahdia; Dupont, J.; Lefevre, F.; Bachere, Evelyne; Romestand, Bernard

    2010-01-01

    The present study reports the characterization of Ls-Stylicin1, a novel antimicrobial peptide from the penaeid shrimp, Litopenoeus stylirostris. The predicted mature peptide of 82 residues is negatively charged (theoretical pl=5.0) and characterized by a proline-rich N-terminal region and a C-terminal region containing 13 cysteine residues. The recombinant Ls-Stylicin1 has been isolated in both monomeric and dimeric forms. Both display strong antifungal activity against Fusarium oxysporum (1....

  14. Factorial PD-Clustering

    CERN Document Server

    Tortora, Cristina; Summa, Mireille Gettler

    2011-01-01

    Factorial clustering methods have been developed in recent years thanks to the improving of computational power. These methods perform a linear transformation of data and a clustering on transformed data optimizing a common criterion. Factorial PD-clustering is based on Probabilistic Distance clustering (PD-clustering). PD-clustering is an iterative, distribution free, probabilistic, clustering method. Factorial PD-clustering make a linear transformation of original variables into a reduced number of orthogonal ones using a common criterion with PD-Clustering. It is demonstrated that Tucker 3 decomposition allows to obtain this transformation. Factorial PD-clustering makes alternatively a Tucker 3 decomposition and a PD-clustering on transformed data until convergence. This method could significantly improve the algorithm performance and allows to work with large dataset, to improve the stability and the robustness of the method.

  15. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.

    Science.gov (United States)

    Leikoski, Niina; Liu, Liwei; Jokela, Jouni; Wahlsten, Matti; Gugger, Muriel; Calteau, Alexandra; Permi, Perttu; Kerfeld, Cheryl A; Sivonen, Kaarina; Fewer, David P

    2013-08-22

    Ribosomal peptides are produced through the posttranslational modification of short precursor peptides. Cyanobactins are a growing family of cyclic ribosomal peptides produced by cyanobacteria. However, a broad systematic survey of the genetic capacity to produce cyanobactins is lacking. Here we report the identification of 31 cyanobactin gene clusters from 126 genomes of cyanobacteria. Genome mining suggested a complex evolutionary history defined by horizontal gene transfer and rapid diversification of precursor genes. Extensive chemical analyses demonstrated that some cyanobacteria produce short linear cyanobactins with a chain length ranging from three to five amino acids. The linear peptides were N-prenylated and O-methylated on the N and C termini, respectively, and named aeruginosamide and viridisamide. These findings broaden the structural diversity of the cyanobactin family to include highly modified linear peptides with rare posttranslational modifications. PMID:23911585

  16. Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity.

    Science.gov (United States)

    Zhang, Shi-Kun; Song, Jin-Wen; Gong, Feng; Li, Su-Bo; Chang, Hong-Yu; Xie, Hui-Min; Gao, Hong-Wei; Tan, Ying-Xia; Ji, Shou-Ping

    2016-01-01

    AR-23 is a melittin-related peptide with 23 residues. Like melittin, its high α-helical amphipathic structure results in strong bactericidal activity and cytotoxicity. In this study, a series of AR-23 analogues with low amphipathicity were designed by substitution of Ala1, Ala8 and Ile17 with positively charged residues (Arg or Lys) to study the effect of positively charged residue distribution on the biological viability of the antimicrobial peptide. Substitution of Ile17 on the nonpolar face with positively charged Lys dramatically altered the hydrophobicity, amphipathicity, helicity and the membrane-penetrating activity against human cells as well as the haemolytic activity of the peptide. However, substitution on the polar face only slightly affected the peptide biophysical properties and biological activity. The results indicate that the position rather than the number of positively charged residue affects the biophysical properties and selectivity of the peptide. Of all the analogues, A(A1R, A8R, I17K), a peptide with Ala1-Arg, Ala8-Arg and Ile17-Lys substitutions, exhibited similar bactericidal activity and anti-biofilm activity to AR-23 but had much lower haemolytic activity and cytotoxicity against mammalian cells compared with AR-23. Therefore, the findings reported here provide a rationalization for peptide design and optimization, which will be useful for the future development of antimicrobial agents. PMID:27271216

  17. Electron Capture Dissociation of Sodium-Adducted Peptides on a Modified Quadrupole/Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Voinov, Valery G.; Hoffman, Peter D.; Bennett, Samuel E.; Beckman, Joseph S.; Barofsky, Douglas F.

    2015-12-01

    Electron capture dissociation (ECD), which generally preserves the position of labile post-translational modifications, can be a powerful method for de novo sequencing of proteins and peptides. In this report, ECD product-ion mass spectra of singly and doubly sodiated, nonphosphorylated, and phosphorylated peptides are presented and compared with the ECD mass spectra of their protonated counterparts. ECD of doubly charged, singly sodiated peptides yielded essentially the same sequence information as was produced by the corresponding doubly protonated peptides. The presence of several sodium binding sites on the polypeptide backbone, however, resulted in more complicated spectra. This situation is aggravated by the zwitterionic equilibrium of the free acid peptide precursors. The product-ion spectra of doubly and triply charged peptides possessing two sodium ions were further complicated by the existence of isomers created by the differential distribution of sodium binding sites. Triply charged, phosphorylated precursors containing one sodium, wherein the sodium is attached exclusively to the PO4 group, were found to be as useful for sequence analysis as the fully protonated species. Although sodium adducts are generally minimized during sample preparation, it appears that they can nonetheless provide useful sequence information. Additionally, they enable straightforward identification of a peptide's charge state, even on low-resolution instruments. The experiments were carried out using a radio frequency-free electromagnetostatic cell retrofitted into the collision-induced dissociation (CID) section of a hybrid quadrupole/time-of-flight tandem mass spectrometer.

  18. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  19. Possibilistic Exponential Fuzzy Clustering

    Institute of Scientific and Technical Information of China (English)

    Kiatichai Treerattanapitak; Chuleerat Jaruskulchai

    2013-01-01

    Generally,abnormal points (noise and outliers) cause cluster analysis to produce low accuracy especially in fuzzy clustering.These data not only stay in clusters but also deviate the centroids from their true positions.Traditional fuzzy clustering like Fuzzy C-Means (FCM) always assigns data to all clusters which is not reasonable in some circumstances.By reformulating objective function in exponential equation,the algorithm aggressively selects data into the clusters.However noisy data and outliers cannot be properly handled by clustering process therefore they are forced to be included in a cluster because of a general probabilistic constraint that the sum of the membership degrees across all clusters is one.In order to improve this weakness,possibilistic approach relaxes this condition to improve membership assignment.Nevertheless,possibilistic clustering algorithms generally suffer from coincident clusters because their membership equations ignore the distance to other clusters.Although there are some possibilistic clustering approaches that do not generate coincident clusters,most of them require the right combination of multiple parameters for the algorithms to work.In this paper,we theoretically study Possibilistic Exponential Fuzzy Clustering (PXFCM) that integrates possibilistic approach with exponential fuzzy clustering.PXFCM has only one parameter and not only partitions the data but also filters noisy data or detects them as outliers.The comprehensive experiments show that PXFCM produces high accuracy in both clustering results and outlier detection without generating coincident problems.

  20. Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features

    KAUST Repository

    Wang, Bing

    2013-05-09

    Background: Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. IMMS becomes a powerful tool to analyzing complex mixtures, especially for the analysis of peptides in proteomics. The high-throughput nature of this technique provides a challenge for the identification of peptides in complex biological samples. As an important parameter, peptide drift time can be used for enhancing downstream data analysis in IMMS-based proteomics.Results: In this paper, a model is presented based on least square support vectors regression (LS-SVR) method to predict peptide ion drift time in IMMS from the sequence-based features of peptide. Four descriptors were extracted from peptide sequence to represent peptide ions by a 34-component vector. The parameters of LS-SVR were selected by a grid searching strategy, and a 10-fold cross-validation approach was employed for the model training and testing. Our proposed method was tested on three datasets with different charge states. The high prediction performance achieve demonstrate the effectiveness and efficiency of the prediction model.Conclusions: Our proposed LS-SVR model can predict peptide drift time from sequence information in relative high prediction accuracy by a test on a dataset of 595 peptides. This work can enhance the confidence of protein identification by combining with current protein searching techniques. 2013 Wang et al.; licensee BioMed Central Ltd.

  1. An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides.

    Directory of Open Access Journals (Sweden)

    Matthew C T Hartman

    Full Text Available BACKGROUND: The application of in vitro translation to the synthesis of unnatural peptides may allow the production of extremely large libraries of highly modified peptides, which are a potential source of lead compounds in the search for new pharmaceutical agents. The specificity of the translation apparatus, however, limits the diversity of unnatural amino acids that can be incorporated into peptides by ribosomal translation. We have previously shown that over 90 unnatural amino acids can be enzymatically loaded onto tRNA. METHODOLOGY/PRINCIPAL FINDINGS: We have now used a competition assay to assess the efficiency of tRNA-aminoacylation of these analogs. We have also used a series of peptide translation assays to measure the efficiency with which these analogs are incorporated into peptides. The translation apparatus tolerates most side chain derivatives, a few alpha,alpha disubstituted, N-methyl and alpha-hydroxy derivatives, but no beta-amino acids. We show that over 50 unnatural amino acids can be incorporated into peptides by ribosomal translation. Using a set of analogs that are efficiently charged and translated we were able to prepare individual peptides containing up to 13 different unnatural amino acids. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that a diverse array of unnatural building blocks can be translationally incorporated into peptides. These building blocks provide new opportunities for in vitro selections with highly modified drug-like peptides.

  2. Discovery and design of cyclic peptides as dengue virus inhibitors through structure-based molecular docking

    Institute of Scientific and Technical Information of China (English)

    Sobia Idrees; Usman Ali Ashfaq

    2014-01-01

    Objective:To find potential peptide inhibitors against theNS2B/NS3 protease ofDENV which in turn, can inhibit the viral replication inside host cell.Methods:Cyclic peptides were designed having combination of positively charged amino acids usingChemSketch software and were converted to3D structures.DENVNS3 protein structure was retrieved fromProteinDataBank (PDB) usingPDBId:2FOM.DENVNS3 and cylic peptides were docked usingMOE software after structural optimization.Results:Through molecular docking it was revealed that most of the peptides bound deeply in the binding pocket ofDENVNS2B/NS3 protease an had interactions with catalytic triad.Peptide2 successfully blocked the catalytic triad ofNS2B/NS3 protease. Peptide1, ,4 and6 also had potential interactions with active residues of theNS2B/NS3 protease while all other peptides were in close contact with the active sites ofNS2B/NS3 protease thus, these peptides can serve as a potential drug candidate to stop viral replication.Conclusions:Thus, it can be concluded from the study that these peptides could serve as important inhibitors to inhibit the viral replication and need further in-vitro investigations to confirm their efficacy.

  3. Induced Charge Capacitive Deionization

    OpenAIRE

    Rubin, S.; Suss, M. E.; Biesheuvel, P. M.; Bercovici, M.

    2016-01-01

    We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electrostatic field. The external electric field induces an electric dipole in the porous particle, leading to capacitive charging of its volume by both cations and anions at opposite poles. This regime is characterized both by a large RC charging time and a small electrochemical charge relaxation time, ...

  4. Enhanced immunostimulatory effects of DNA-encapsulated peptide hydrogels.

    Science.gov (United States)

    Medina, Scott H; Li, Sandra; Howard, O M Zack; Dunlap, Micah; Trivett, Anna; Schneider, Joel P; Oppenheim, Joost J

    2015-01-01

    DNA that encodes tumor-specific antigens represents potential immunostimulatory agents. However, rapid enzymatic degradation and fragmentation of DNA during administration can result in limited vector expression and, consequently, poor efficacy. These challenges have necessitated the use of novel strategies for DNA delivery. Herein, we study the ability of cationic self-assembling peptide hydrogels to encapsulate plasmid DNA, and enhance its immunostimulatory potential in vivo. The effect of network charge on the gel's ability to retain the DNA was assessed employing three gel-forming peptides that vary systematically in formal charge. The peptide HLT2, having a formal charge of +5 at neutral pH, was optimal in encapsulating microgram quantities of DNA with little effect on its rheological properties, allowing its effective syringe delivery in vivo. The plasmid, DNA(TA), encapsulated within these gels encodes for a melanoma-specific gp100 antigen fused to the alarmin protein adjuvant HMGN1. Implantation of DNA(TA)-loaded HLT2 gels into mice resulted in an acute inflammatory response with the presence of polymorphonuclear cells, which was followed by infiltrating macrophages. These cellular infiltrates aid in the processing of encapsulated DNA, promoting increased lymphoproliferation and producing an enhanced immune response mediated by CD4+/IFNγ+ expressing Th1 cells, and complemented by the formation of gp100-specific antibodies.

  5. Charge exchange system

    Science.gov (United States)

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  6. Observations on nocturnal growth of atmospheric clusters

    Science.gov (United States)

    Junninen, Heikki; Hulkkonen, Mira; Riipinen, Ilona; Nieminen, Tuomo; Hirsikko, Anne; Suni, Tanja; Boy, Michael; Lee, Shan-Hu; Vana, Marko; Tammet, Hannes; Kerminen, Veli-Matti; Kulmala, Markku

    2008-07-01

    In this paper, we summarize recent observations of nighttime nucleation events observed during 4 yr, from 2003 to 2006, at the SMEAR II station in Hyytiälä, southern Finland. Formation of new atmospheric aerosol particles has been frequently observed all around the world in daytime, but similar observations in nighttime are rare. The recently developed ion spectrometers enabled us to measure charged aerosol particles and ion clusters to diameters <1 nm and are efficient tools for evaluating cluster dynamics during nighttime. We observed clear growth of cluster ions during approximately 60 nights per yr. The newly formed intermediate ions usually persisted for several hours with typical concentrations of 100-200 cm-3. The evolution of nighttime growth events is different compared with daytime events. The mechanism behind nighttime events is still unclear, but the behaviour can be described by the hypothesis of activation of clusters.

  7. Characterization of Sviceucin from Streptomyces Provides Insight into Enzyme Exchangeability and Disulfide Bond Formation in Lasso Peptides.

    Science.gov (United States)

    Li, Yanyan; Ducasse, Rémi; Zirah, Séverine; Blond, Alain; Goulard, Christophe; Lescop, Ewen; Giraud, Caroline; Hartke, Axel; Guittet, Eric; Pernodet, Jean-Luc; Rebuffat, Sylvie

    2015-11-20

    Lasso peptides are bacterial ribosomally synthesized and post-translationally modified peptides. They have sparked increasing interest in peptide-based drug development because of their compact, interlocked structure, which offers superior stability and protein-binding capacity. Disulfide bond-containing lasso peptides are rare and exhibit highly sought-after activities. In an effort to expand the repertoire of such molecules, we heterologously expressed, in Streptomyces coelicolor, the gene cluster encoding sviceucin, a type I lasso peptide with two disulfide bridges originating from Streptomyces sviceus, which allowed it to be fully characterized. Sviceucin and its reduced forms were characterized by mass spectrometry and peptidase digestion. The three-dimensional structure of sviceucin was determined using NMR. Sviceucin displayed antimicrobial activity selectively against Gram-positive bacteria and inhibition of fsr quorum sensing in Enterococcus faecalis. This study adds sviceucin to the type I lasso peptide family as a new representative. Moreover, new clusters encoding disulfide-bond containing lasso peptides from Actinobacteria were identified by genome mining. Genetic and functional analyses revealed that the formation of disulfide bonds in sviceucin does not require a pathway-encoded thiol-disulfide oxidoreductase. Most importantly, we demonstrated the functional exchangeability of the sviceucin and microcin J25 (a non-disulfide-bridged lasso peptide) macrolactam synthetases in vitro, highlighting the potential of hybrid lasso synthetases in lasso peptide engineering. PMID:26343290

  8. The PeptideAtlas Project

    OpenAIRE

    Deutsch, Eric W.

    2010-01-01

    PeptideAtlas is a multi-species compendium of peptides observed with tandem mass spectrometry methods. Raw mass spectrometer output files are collected from the community and reprocessed through a uniform analysis and validation pipeline that continues to advance. The results are loaded into a database and the information derived from the raw data is returned to the community via several web-based data exploration tools. The PeptideAtlas resource is useful for experiment planning, improving g...

  9. Human Antimicrobial Peptides and Proteins

    OpenAIRE

    Guangshun Wang

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified ...

  10. Rational design of mirror-like peptides with alanine regulation.

    Science.gov (United States)

    Li, Weizhong; Tan, Tingting; Xu, Wei; Xu, Lin; Dong, Na; Ma, Deying; Shan, Anshan

    2016-02-01

    To generate effective antimicrobial peptides (AMPs) with good antimicrobial activities and cell selectivity, many synthetic strategies have been implemented to facilitate the development of AMPs. However, these synthetic strategies represent only a small proportion of the methods used for the development of AMPs and are not optimal with the requirements needed for the design of AMPs. In this investigation, we designed a mirror-like structure with a lower charge and a higher number of hydrophobic amino acids. The amino acid sequence of the designed mirror-like peptides was XXYXXXYXXXYXX [X represents L (Leu) and/or A (Ala); Y represents K (Lys)]. These mirror-like peptides displayed antimicrobial activity against both Gram-positive and Gram-negative bacteria. Hemolysis activity and cytotoxicity, detected by using human red blood cells (hRBCs) and human embryonic kidney cells (HEK293), respectively, demonstrated that the frequency of Ala residues in this structure had a regulatory effect on the high hydrophobic region. In particular, KL4A6 showed a greater antimicrobial potency than the other three mirror-like peptides, folded into an α-helical structure, and displayed the highest therapeutic index, suggesting its good cell selectivity. Observations from fluorescence spectroscopy, flow cytometry, and electron microscopy experiments indicated that KL4A6 exhibited good membrane penetration potential by inducing membrane blebbing, disruption and lysis. Therefore, generating mirror-like peptides is a promising strategy for designing effective AMPs with regions of high hydrophobicity.

  11. Management of cluster headache

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-01-01

    and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment...

  12. Structures of Mn clusters

    Indian Academy of Sciences (India)

    Tina M Briere; Marcel H F Sluiter; Vijay Kumar; Yoshiyuki Kawazoe

    2003-01-01

    The geometries of several Mn clusters in the size range Mn13–Mn23 are studied via the generalized gradient approximation to density functional theory. For the 13- and 19-atom clusters, the icosahedral structures are found to be most stable, while for the 15-atom cluster, the bcc structure is more favoured. The clusters show ferrimagnetic spin configurations.

  13. Peptides that influence membrane topology

    Science.gov (United States)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  14. NCAM Mimetic Peptides: An Update

    DEFF Research Database (Denmark)

    Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    sequences contain one or several NCAM homophilic binding sites involved in NCAM binding to itself, have been identified. By means of NMR titration analysis and molecular modeling a number of peptides derived from NCAM and targeting NCAM heterophilic ligands such as the fibroblast growth factor receptor...... and heparan sulfate proteoglycans (HSPG) have been identified. The FGL, dekaCAM, FRM/EncaminA, BCL, EncaminC and EncaminE peptides all target the FGF receptor whereas the heparin binding peptide HBP targets HSPG. Moreover, a number of NCAM binding peptides have been identified employing screening...

  15. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology. PMID:26279082

  16. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  17. Biodiscovery of aluminum binding peptides

    Science.gov (United States)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  18. Composition and method for self-assembly and mineralization of peptide-amphiphiles

    Science.gov (United States)

    Stupp, Samuel I.; Beniash, Elia; Hartgerink, Jeffrey D.

    2012-02-28

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  19. Composition and method for self-assembly and mineralization of peptide amphiphiles

    Science.gov (United States)

    Stupp, Samuel I.; Beniash, Elia; Hartgerink, Jeffrey D.

    2009-06-30

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  20. Space Charge Effects

    CERN Document Server

    Ferrario, M; Palumbo, L

    2014-01-01

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  1. Amine substitution into sulfuric acid – ammonia clusters

    Directory of Open Access Journals (Sweden)

    O. Kupiainen

    2011-11-01

    Full Text Available The substitution of ammonia by dimethylamine in sulfuric acid – ammonia – dimethylamine clusters was studied using a collision and evaporation dynamics model. Quantum chemical formation free energies were computed using B3LYP/CBSB7 for geometries and frequencies and RI-CC2/aug-cc-pV(T+dZ for electronic energies. We first demonstrate the good performance of our method by a comparison with an experimental study investigating base substitution in positively charged clusters, and then continue by simulating base exchange in neutral clusters, which cannot be measured directly. Collisions of a dimethylamine molecule with an ammonia containing positively charged cluster result in the instantaneous evaporation of an ammonia molecule, while the dimethylamine molecule remains in the cluster. According to our simulations, a similar base exchange can take place in neutral clusters, although the overall process is more complicated. Neutral sulfuric acid – ammonia clusters are significantly less stable than their positively charged counterparts, resulting in a competition between cluster evaporation and base exchange.

  2. Polyclonal Peptide Antisera.

    Science.gov (United States)

    Pihl, Tina H; Illigen, Kristin E; Houen, Gunnar

    2015-01-01

    Polyclonal antibodies are relatively easy to produce and may supplement monoclonal antibodies for some applications or even have some advantages. The choice of species for production of (peptide) antisera is based on practical considerations, including availability of immunogen (vaccine) and animals. Two major factors govern the production of antisera: the nature of adaptive immune responses, which take place over days/weeks and ethical guidelines for animal welfare. Here, simple procedures for immunization of mice, rabbits, sheep, goats, pigs, horses, and chickens are presented. PMID:26424267

  3. Molecular Recognition of Cobalt(III)-ligated Peptides by Serine Proteases: The Role of Electrostatic Effects

    DEFF Research Database (Denmark)

    Bagger, Sven; Wagner, Kim

    1998-01-01

    A series of peptides with a positively charged cobalt(III)-complex group attached to the carboxylate terminal was synthesized. The behaviour of these metallopeptides as acceptor nucleophiles in acyl transfer reactions catalyzed by the three serine proteases bovine pancreatic à-chymotrypsin, porcine...... pancreatic trypsin, and proteinase K from Tritirachium album was examined. The efficiency of the substrates was assessed by kinetic measurement of the partition between aminolysis and hydrolysis. The results are discussed with special reference to coulombic interactions between the metal-ligated substrates...... and charged residues on the enzyme surfaces. The idea of using the metallopeptides in practical enzymatic peptide synthesis is put forward....

  4. On the photostability of peptides after selective photoexcitation of the backbone: Prompt versus slow dissociation

    DEFF Research Database (Denmark)

    Byskov, Camilla Skinnerup; Jensen, Frank; Jørgensen, Thomas J D;

    2014-01-01

    , which is remote from the initial site of excitation. Hence loss of CE serves as direct proof that energy has reached the charge-site end, leaving the backbone intact. Our work demonstrates that excitation of tertiary amide moieties (proline linkages) results in both prompt dissociation and statistical...... present a protocol to disentangle slow and non-hazardous statistical dissociation from prompt cleavage of peptide bonds by 210 nm light based on experiments on protonated peptides isolated in vacuo and tagged by 18-crown-6 ether (CE). The weakest link in the system is between the charged site and CE...

  5. Charge density distributions derived from smoothed electrostatic potential functions: design of protein reduced point charge models.

    Science.gov (United States)

    Leherte, Laurence; Vercauteren, Daniel P

    2011-10-01

    To generate reduced point charge models of proteins, we developed an original approach to hierarchically locate extrema in charge density distribution functions built from the Poisson equation applied to smoothed molecular electrostatic potential (MEP) functions. A charge fitting program was used to assign charge values to the so-obtained reduced representations. In continuation to a previous work, the Amber99 force field was selected. To easily generate reduced point charge models for protein structures, a library of amino acid templates was designed. Applications to four small peptides, a set of 53 protein structures, and four KcsA ion channel models, are presented. Electrostatic potential and solvation free energy values generated by the reduced models are compared with the corresponding values obtained using the original set of atomic charges. Results are in closer agreement with the original all-atom electrostatic properties than those obtained with a previous reduced model that was directly built from the smoothed MEP functions [Leherte and Vercauteren in J Chem Theory Comput 5:3279-3298, 2009]. PMID:21915750

  6. Graded cluster algebras

    OpenAIRE

    Grabowski, Jan

    2015-01-01

    In the cluster algebra literature, the notion of a graded cluster algebra has been implicit since the origin of the subject. In this work, we wish to bring this aspect of cluster algebra theory to the foreground and promote its study. We transfer a definition of Gekhtman, Shapiro and Vainshtein to the algebraic setting, yielding the notion of a multi-graded cluster algebra. We then study gradings for finite type cluster algebras without coefficients, giving a full classification. Translating ...

  7. Charge Trapping in Photovoltaically Active Perovskites and Related Halogenoplumbate Compounds.

    Science.gov (United States)

    Shkrob, Ilya A; Marin, Timothy W

    2014-04-01

    Halogenoplumbate perovskites (MeNH3PbX3, where X is I and/or Br) have emerged as promising solar panel materials. Their limiting photovoltaic efficiency depends on charge localization and trapping processes that are presently insufficiently understood. We demonstrate that in halogenoplumbate materials the holes are trapped by organic cations (that deprotonate from their oxidized state) and Pb(2+) cations (as Pb(3+) centers), whereas the electrons are trapped by several Pb(2+) cations, forming diamagnetic lead clusters that also serve as color centers. In some cases, paramagnetic variants of these clusters can be observed. We suggest that charge separation in the halogenoplumbates resembles latent image formation in silver halide photography. Electron and hole trapping by lead clusters in extended dislocations in the bulk may be responsible for accumulation of trapped charge observed in this photovoltaic material.

  8. Measurements of Charge Transfer Efficiency in a Proton-irradiated Swept Charge Device

    CERN Document Server

    YuSa, Wang; XiaoYan, Liu; WeiWei, Cui; YuPeng, Xu; ChengKui, Li; MaoShun, Li; DaWei, Han; TianXiang, Chen; Jia, Huo; Juan, Wang; Wei, Li; Wei, Hu; Yi, Zhang; Bo, Lu; GuoHe, Yin; Yue, Zhu; ZiLiang, Zhang

    2013-01-01

    Charge Coupled Devices (CCDs) have been successfully used in several low energy X-ray astronomical satellite over the past two decades. Their high energy resolution and high spatial resolution make them an perfect tool for low energy astronomy, such as formation of galaxy clusters and environment of black holes. The Low Energy X-ray Telescope (LE) group is developing Swept Charge Device (SCD) for the Hard X-ray Modulation Telescope (HXMT) satellite. SCD is a special low energy X-ray CCD, which could be read out a thousand times faster than traditional CCDs, simultaneously keeping excellent energy resolution. A test method for measuring the charge transfer efficiency (CTE) of a prototype SCD has been set up. Studies of the charge transfer inefficiency (CTI) have been performed at a temperature range of operation, with a proton-irradiated SCD.

  9. Small rare gas clusters in XUV laser pulses

    CERN Document Server

    Bauer, D

    2003-01-01

    Semi-classical molecular dynamics simulations of small rare gas clusters in short laser pulses of 100 nm wavelength were performed. For comparison, the cluster response to 800 nm laser pulses was investigated as well. The inner ionization dynamics of the multi-electron atoms inside the cluster was treated explicitly. The simulation results underpin that at XUV wavelengths collisions play an important role in the energy absorption and the generation of the surprisingly high charge states of Xe atoms inside clusters, as they were observed in the free-electron laser experiment at DESY, Hamburg, Germany [Wabnitz et al., Nature 420, 482 (2002)].

  10. Cluster dynamics transcending chemical dynamics toward nuclear fusion

    OpenAIRE

    Heidenreich, Andreas; Jortner, Joshua; Last, Isidore

    2006-01-01

    Ultrafast cluster dynamics encompasses femtosecond nuclear dynamics, attosecond electron dynamics, and electron-nuclear dynamics in ultraintense laser fields (peak intensities 1015–1020 W·cm−2). Extreme cluster multielectron ionization produces highly charged cluster ions, e.g., (C4+(D+)4)n and (D+I22+)n at IM = 1018 W·cm−2, that undergo Coulomb explosion (CE) with the production of high-energy (5 keV to 1 MeV) ions, which can trigger nuclear reactions in an assembly of exploding clusters. Th...

  11. Blackbody-induced radiative dissociation of cationic SF 6 clusters

    DEFF Research Database (Denmark)

    Toker, Jonathan; Rahinov, I.; Schwalm, D.;

    2012-01-01

    The stability of cationic SF5+(SF6)n−1 clusters was investigated by measuring their blackbody-induced radiative dissociation (BIRD) rates. The clusters were produced in a supersonic expansion ion source and stored in an electrostatic ion-beam trap at room temperature, where their abundances...... and lifetimes were measured. Using the “master equation” approach, relative binding energies of an SF6 unit in the clusters could be extracted from the storage-time dependence of the survival probabilities. The results allow for a deeper insight into the effect of a localized charge on the structure...... and stability of SF6-based clusters....

  12. Geometrical and statistical factors in fission of small metal clusters

    OpenAIRE

    Obolensky, O. I.; Lyalin, A. G.; Solov'yov, A. V.; Greiner, W.

    2005-01-01

    Fission of metastable charged univalent metal clusters has been studied on example of Na_{10}^{2+} and Na_{18}^{2+} clusters by means of density functional theory methods. Energetics of the process, i.e. dissociation energies and fission barriers, as well as its dynamics, i.e. fission pathways, have been analyzed. The dissociation energies and fission barriers have been calculated for the full range of fission channels for the Na_{10}^{2+} cluster. The impact of cluster structure on the fissi...

  13. Aluminum Zintl anion moieties within sodium aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  14. Charge-Based Inhibitors of Amylin Fibrillization and Toxicity

    Directory of Open Access Journals (Sweden)

    Sharadrao M. Patil

    2015-01-01

    Full Text Available To test the hypothesis that electrostatic repulsion is an important force opposing amyloid fibril assembly, we designed peptides that substitute strings of positively or negatively charged residues into the sequence of the amyloidogenic hormone amylin, which contributes to type 2 diabetes pathology. Arg-1 and Arg-2 substitute four positively charged arginines for segments that in structural models of amylin fibrils form the end of strand β1 and the beginning of strand β2, respectively. Mem-T substitutes negatively charged aspartates for the peptide segment with the largest avidity for membranes. All three charge-loaded peptides fibrillize poorly on their own and inhibit fibril elongation of WT-amylin at physiological ionic strength. The inhibition of WT-amylin fibril elongation rates is salt-dependent indicating that the analogs act through electrostatic interactions. Arg-1 protects against WT-amylin cytotoxicity towards a MIN6 mouse model of pancreatic β-cells, and Arg-2 protects at higher concentrations, whereas Mem-T has no effect. The most effective variant, Arg-1, inhibits WT-amylin fibril elongation rates with an IC50 of ~1 µM and cytotoxicity with an IC50 of ~50 µM, comparable to other types of fibrillization inhibitors reported in the literature. Taken together, these results suggest that electrostatic interactions can be exploited to develop new types of inhibitors of amyloid fibrillization and toxicity.

  15. Spatial separation of molecular conformers and clusters.

    Science.gov (United States)

    Horke, Daniel; Trippel, Sebastian; Chang, Yuan-Pin; Stern, Stephan; Mullins, Terry; Kierspel, Thomas; Küpper, Jochen

    2014-01-09

    Gas-phase molecular physics and physical chemistry experiments commonly use supersonic expansions through pulsed valves for the production of cold molecular beams. However, these beams often contain multiple conformers and clusters, even at low rotational temperatures. We present an experimental methodology that allows the spatial separation of these constituent parts of a molecular beam expansion. Using an electric deflector the beam is separated by its mass-to-dipole moment ratio, analogous to a bender or an electric sector mass spectrometer spatially dispersing charged molecules on the basis of their mass-to-charge ratio. This deflector exploits the Stark effect in an inhomogeneous electric field and allows the separation of individual species of polar neutral molecules and clusters. It furthermore allows the selection of the coldest part of a molecular beam, as low-energy rotational quantum states generally experience the largest deflection. Different structural isomers (conformers) of a species can be separated due to the different arrangement of functional groups, which leads to distinct dipole moments. These are exploited by the electrostatic deflector for the production of a conformationally pure sample from a molecular beam. Similarly, specific cluster stoichiometries can be selected, as the mass and dipole moment of a given cluster depends on the degree of solvation around the parent molecule. This allows experiments on specific cluster sizes and structures, enabling the systematic study of solvation of neutral molecules.

  16. Heterologous expression in Escherichia coli of the first module of the nonribosomal peptide synthetase for chloroeremomycin, a vancomycin-type glycopeptide antibiotic

    OpenAIRE

    Trauger, John W.; Walsh, Christopher T.

    2000-01-01

    The gene cluster from Amycolotopsis orientalis responsible for biosynthesis of the vancomycin-type glycopeptide antibiotic chloroeremomycin was recently sequenced, indicating that this antibiotic derives from a seven-residue peptide synthesized by a three-subunit (CepA, CepB, and CepC) modular nonribosomal peptide synthetase. Expression of all or parts of the peptide synthetase in Escherichia coli would facilitate biochemical characterization of its substrate specificity, an important step to...

  17. Nostophycin Biosynthesis Is Directed by a Hybrid Polyketide Synthase-Nonribosomal Peptide Synthetase in the Toxic Cyanobacterium Nostoc sp. Strain 152▿†

    OpenAIRE

    Fewer, David P.; Österholm, Julia; Rouhiainen, Leo; Jokela, Jouni; Wahlsten, Matti; Sivonen, Kaarina

    2011-01-01

    Cyanobacteria are a rich source of natural products with interesting pharmaceutical properties. Here, we report the identification, sequencing, annotation, and biochemical analysis of the nostophycin (npn) biosynthetic gene cluster. The npn gene cluster spans 45.1 kb and consists of three open reading frames encoding a polyketide synthase, a mixed polyketide nonribosomal peptide synthetase, and a nonribosomal peptide synthetase. The genetic architecture and catalytic domain organization of th...

  18. Radiolabelled peptides for oncological diagnosis.

    NARCIS (Netherlands)

    Laverman, P.; Sosabowski, J.K.; Boerman, O.C.; Oyen, W.J.G.

    2012-01-01

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of resea

  19. Urinary Peptides in Rett Syndrome.

    Science.gov (United States)

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  20. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptide...

  1. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  2. Resistance to Antimicrobial Peptides in Vibrios

    Directory of Open Access Journals (Sweden)

    Delphine Destoumieux-Garzón

    2014-10-01

    Full Text Available Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.

  3. Charge site assignment in native proteins by ultraviolet photodissociation (UVPD) mass spectrometry.

    Science.gov (United States)

    Morrison, Lindsay J; Brodbelt, Jennifer S

    2016-01-01

    Characterization of all gas-phase charge sites of natively sprayed proteins and peptides is demonstrated using 193 nm UVPD. The high sequence coverage offered by UVPD is exploited for the accurate determination of charge sites in protein systems up to 18 kDa, allowing charge site to be studied as a function of protein conformation and the presence of disulfide bonds. Charging protons are found on both basic sidechains and on the amide backbone of less basic amino acids such as serine, glutamine, and proline. UVPD analysis was performed on the 3+ charge state of melittin, the 5+ to 8+ charge states of ubiquitin, and the 8+ charge state of reduced and oxidized β-lactoglobulin. The location of charges in gas-phase proteins is known to impact structure; molecular modeling of different charge site motifs of 3+ melittin demonstrates how placement of protons in simulations can dramatically impact the predicted structure of the molecule. The location of positive charge sites in ubiquitin and β-lactoglobulin are additionally found to depend on the presence or absence of salt-bridges, columbic repulsion across the length of the peptide, and protein conformation. Charge site isomers are demonstrated for ubiquitin and β-lactoglobulin but found to be much less numerous than previously predicted. PMID:26596460

  4. Interactions of calmodulin with death-associated protein kinase peptides: experimental and modeling studies.

    Science.gov (United States)

    Kuczera, Krzysztof; Kursula, Petri

    2012-01-01

    We have studied the interactions between calmodulin (CaM) and three target peptides from the death-associated protein kinase (DAPK) protein family using both experimental and modeling methods, aimed at determining the details of the underlying biological regulation mechanisms. Experimentally, calorimetric binding free energies were determined for the complexes of CaM with peptides representing the DAPK2 wild-type and S308D mutant, as well as DAPK1. The observed affinity of CaM was very similar for all three studied peptides. The DAPK2 and DAPK1 peptides differ significantly in sequence and total charge, while the DAPK2 S308D mutant is designed to model the effects of DAPK2 Ser308 phosphorylation. The crystal structure of the CaM-DAPK2 S308D mutant peptide is also reported. The structures of CaM-DAPK peptide complexes present a mode of CaM-kinase interaction, in which bulky hydrophobic residues at positions 10 and 14 are both bound to the same hydrophobic cleft. To explain the microscopic effects underlying these interactions, we performed free energy calculations based on the approximate MM-PBSA approach. For these highly charged systems, standard MM-PBSA calculations did not yield satisfactory results. We proposed a rational modification of the approach which led to reasonable predictions of binding free energies. All three complexes are strongly stabilized by two effects: electrostatic interactions and buried surface area. The strong favorable interactions are to a large part compensated by unfavorable entropic terms, in which vibrational entropy is the largest contributor. The electrostatic component of the binding free energy followed the trend of the overall peptide charge, with strongest interactions for DAPK1 and weakest for the DAPK2 mutant. The electrostatics was dominated by interactions of the positively charged residues of the peptide with the negatively charged residues of CaM. The nonpolar binding free energy was comparable for all three peptides, the

  5. Towards weakening of the Coulomb blockade in artificially prepared clusters of superconducting grains

    Directory of Open Access Journals (Sweden)

    Sergei Sergeenkov

    2011-06-01

    Full Text Available The relative role of dipole-dipole interactions between induced polarization moments in the total charge balance of a model system of two clusters (each cluster contains N superconducting grains is analyzed. It is found that, due to its orientational nature, the dipole energy between clusters may overcome the direct Coulomb coupling between grains (within a single cluster. To verify the model predictions experimentally, specially prepared clusters with markedly distinctive grain-grain (εc and cluster-cluster (εd dielectric properties are needed. More specifically, clusters of Al-based superconducting grains embedded into SrTiO3 dielectric matrix (with εc ≃ 104 and separated by a dielectric layer of Al2O3 (with εd ≃ 10 would result in a noticeable decrease of the total charging energy of the system.

  6. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    International Nuclear Information System (INIS)

    Deuterium nuclear magnetic resonance (2H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the β-position of the serine moiety ([2-2H]DOPS) or at the 11-position of the acyl chains ([11,11-2H2]DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both [2-2H]DOPS and [11,11-2H2]DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine)100, which were included for reasons of comparison, reveal increased Δvq values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component 2H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. 2H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides

  7. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    Energy Technology Data Exchange (ETDEWEB)

    de Kroon, A.I.P.M.; Killian, J.A.; de Gier, J.; de Kruijff, B. (Univ. of Utrecht (Netherlands))

    1991-01-29

    Deuterium nuclear magnetic resonance ({sup 2}H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the {beta}-position of the serine moiety ((2-{sup 2}H)DOPS) or at the 11-position of the acyl chains ((11,11-{sup 2}H{sub 2})DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both (2-{sup 2}H)DOPS and (11,11-{sup 2}H{sub 2})DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine){sub 100}, which were included for reasons of comparison, reveal increased {Delta}v{sub q} values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component {sup 2}H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. {sup 2}H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides.

  8. Scanning-force-microscopical studies on the specificity of the peptide adhesion on semiconductor surfaces; Rasterkraftmikroskopische Untersuchungen zur Spezifitaet der Peptidadhaesion auf Halbleiteroberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Goede, Karsten

    2009-07-01

    This thesis in the boundary region of semiconductor physics and biologically inspired physics is dedicated to novel hybrid samples, which consist of peptide clusters on anorganic semiconductor surfaces. On standardizedly prepared samples by scanning-force microscopy the surface coverage by the peptide was measured in dependence on each sequence and the type of the surface. Quantitatively reproducable it is shown that the extension of the adhesion is dependent on the cooperation of the polar side chains in the amino acids of the peptides with the more or less polar semiconductors. Peptides with mostly basic-polar side chains adhere preferently on surface of intermediate polarity like gallium arsenide (GaAs)(100), especially badly on the other hand on surfaces of element-semiconductors like silicon (Si). If the procentual contribution of the surface is considered, which is peptide-covered, so covers this effect of the adhesion specificity substrate-dependently more than two orders of magnitude. Also the arrangement of the amino acids in the peptide influences the adhesion. The peptides appear on the surfaces as compact clusters (with sizes in the nano- to micrometer region), the geometric and structuralproperties of which are determined by peptide sequence and type of the surface. By cluster analyses of the surfaces as well as supporting scanning-tunnel-microscopical and circular-dichroism measurements knowledges on the folding of the peptides in the solution as well their behaviour on the surfaces could be obtained. The adhesion degree of a peptide can be tuned by choice of concentration, temperature, and pH value of the peptide solution as well as the dwelling time of the substrate in the solution. Comparisons with simulation calculations of the bonding behaviour of the relevant peptide sequences prove the influence of the folding of the peptide and possible phase transitions on the adhesion. Empirically observed effects can by this be foundedly explained.

  9. The internal sequence of the peptide-substrate determines its N-terminus trimming by ERAP1.

    Directory of Open Access Journals (Sweden)

    Irini Evnouchidou

    Full Text Available BACKGROUND: Endoplasmic reticulum aminopeptidase 1 (ERAP1 trims N-terminally extended antigenic peptide precursors down to mature antigenic peptides for presentation by major histocompatibility complex (MHC class I molecules. ERAP1 has unique properties for an aminopeptidase being able to trim peptides in vitro based on their length and the nature of their C-termini. METHODOLOGY/PRINCIPAL FINDINGS: In an effort to better understand the molecular mechanism that ERAP1 uses to trim peptides, we systematically analyzed the enzyme's substrate preferences using collections of peptide substrates. We discovered strong internal sequence preferences of peptide N-terminus trimming by ERAP1. Preferences were only found for positively charged or hydrophobic residues resulting to trimming rate changes by up to 100 fold for single residue substitutions and more than 40,000 fold for multiple residue substitutions for peptides with identical N-termini. Molecular modelling of ERAP1 revealed a large internal cavity that carries a strong negative electrostatic potential and is large enough to accommodate peptides adjacent to the enzyme's active site. This model can readily account for the strong preference for positively charged side chains. CONCLUSIONS/SIGNIFICANCE: To our knowledge no other aminopeptidase has been described to have such strong preferences for internal residues so distal to the N-terminus. Overall, our findings indicate that the internal sequence of the peptide can affect its trimming by ERAP1 as much as the peptide's length and C-terminus. We therefore propose that ERAP1 recognizes the full length of its peptide-substrate and not just the N- and C- termini. It is possible that ERAP1 trimming preferences influence the rate of generation and the composition of antigenic peptides in vivo.

  10. What Makes Clusters Decline?

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    2015-01-01

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark....... The longitudinal study on the high-tech cluster reveals that technological lock-in and exit of key firms have contributed to decline. Entrepreneurship has a positive effect on the cluster’s adaptive capabilities, while multinational companies have contradicting effects by bringing in new resources to the cluster...

  11. Synthesis and In Vitro Evaluation of Amphiphilic Peptides and Their Nanostructured Conjugates

    Directory of Open Access Journals (Sweden)

    Samaneh Mohammadi

    2015-03-01

    Full Text Available Purpose: Breast cancer is the second leading cancer type among people of advanced countries. Various methods have been used for cancer treatment such as chemotherapy and radiotherapy. In the present study we have designed and synthesized a new group of drug delivery systems (DDS containing a new class of Cell Penetrating Peptides (CPPs named Peptide Amphiphiles (PAs. Methods: Two PAs and anionic peptides were synthesized using solid phase peptide synthesis (SPPS, namely [KW]4, [KW]5, E4 and E8. Then nano-peptides were synthesized by non-covalent binding between PAs and poly anions as [KW]4-E4, [KW]4-E8, [KW]5-E4 and [KW]5-E8. Results: Flow cytometry studies showed that increased chain length of PAs with a higher ratio between hydrophobicity and net charge results in increased intracellular uptake by MCF7 cells after 2h incubation. Moreover, nano-peptides showed greater intracellular uptake compared to PAs. Anti-proliferative assay revealed that by increasing chain length of PAs, the toxicity effect on MCF7 cells is reduced, however nano-peptides did not show significant toxicity on MCF7 cells even at high concentration levels. Conclusion: These data suggest that due to the lack of toxicity effect at high concentration levels and also high cellular uptake, nano-peptides are more suitable carrier compared to PAs for drug delivery.

  12. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    Science.gov (United States)

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins. PMID:25141106

  13. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    Directory of Open Access Journals (Sweden)

    Bartłomiej Dziuba

    2014-08-01

    Full Text Available New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM, random forest (RF, artificial neural networks (ANN and discriminant analysis (DA available in the Collection of Anti-Microbial Peptides (CAMP database. Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins.

  14. Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Cyanobacteria are a rich source of natural products with interesting biological activities. Many of these are peptides and the end products of a non-ribosomal pathway. However, several cyanobacterial peptide classes were recently shown to be produced through the proteolytic cleavage and post-translational modification of short precursor peptides. A new class of bacteriocins produced through the proteolytic cleavage and heterocyclization of precursor proteins was recently identified from marine cyanobacteria. Here we show the widespread occurrence of bacteriocin gene clusters in cyanobacteria through comparative analysis of 58 cyanobacterial genomes. A total of 145 bacteriocin gene clusters were discovered through genome mining. These clusters encoded 290 putative bacteriocin precursors. They ranged in length from 28 to 164 amino acids with very little sequence conservation of the core peptide. The gene clusters could be classified into seven groups according to their gene organization and domain composition. This classification is supported by phylogenetic analysis, which further indicated independent evolutionary trajectories of gene clusters in different groups. Our data suggests that cyanobacteria are a prolific source of low-molecular weight post-translationally modified peptides.

  15. Design of a shear-thinning recoverable peptide hydrogel from native sequences and application for influenza H1N1 vaccine adjuvant

    Science.gov (United States)

    Peptide hydrogels are considered injectable materials for drug delivery and tissue engineering applications. Most published hydrogel-forming sequences contain either alternating-charged and noncharged residues or amphiphilic blocks. Here, we report a self-assembling peptide, h9e (FLIVIGSIIGPGGDGPGGD...

  16. Indication of a size-dependent transition from molecular to dissociative chemisorption on clusters

    OpenAIRE

    Burkart, Stefan; Blessing, Nico; Ganteför, Gerd

    1999-01-01

    We report experimental indications for a size-dependent change of the chemical nature of chemisorption on small atomic clusters. We studied chemisorption of atomic hydrogen on negatively charged Tin- clusters using mass and photoelectron spectroscopy. Our experimental data support the assumption that for clusters with up to four Ti atoms, adsorption of intact H2 molecules is the energetically preferred configuration. For larger Tin clusters with n>4, dissociative hydrogen chemisorption is the...

  17. Design and characterization of short antimicrobial peptides using leucine zipper templates with selectivity towards microorganisms.

    Science.gov (United States)

    Ahmad, Aqeel; Azmi, Sarfuddin; Srivastava, Saurabh; Kumar, Amit; Tripathi, Jitendra Kumar; Mishra, Nripendra N; Shukla, Praveen K; Ghosh, Jimut Kanti

    2014-11-01

    Design of antimicrobial peptides with selective activity towards microorganisms is an important step towards the development of new antimicrobial agents. Leucine zipper sequence has been implicated in cytotoxic activity of naturally occurring antimicrobial peptides; moreover, this motif has been utilized for the design of novel antimicrobial peptides with modulated cytotoxicity. To understand further the impact of substitution of amino acids at 'a' and/or 'd' position of a leucine zipper sequence of an antimicrobial peptides on its antimicrobial and cytotoxic properties four short peptides (14-residue) were designed on the basis of a leucine zipper sequence without or with replacement of leucine residues in its 'a' and 'd' positions with D-leucine or alanine or proline residue. The original short leucine zipper peptide (SLZP) and its D-leucine substituted analog, DLSA showed comparable activity against the tested Gram-positive and negative bacteria and the fungal strains. The alanine substituted analog (ASA) though showed appreciable activity against the tested bacteria, it showed to some extent lower activity against the tested fungi. However, the proline substituted analog (PSA) showed lower activity against the tested bacterial or fungal strains. Interestingly, DLSA, ASA and PSA showed significantly lower cytotoxicity than SLZP against both human red blood cells (hRBCs) and murine 3T3 cells. Cytotoxic and bactericidal properties of these peptides matched with peptide-induced damage/permeabilization of mammalian cells and bacteria or their mimetic lipid vesicles suggesting cell membrane could be the target of these peptides. As evidenced by tryptophan fluorescence and acrylamide quenching studies the peptides showed similarities either in interaction or in their localization within the bacterial membrane mimetic negatively charged lipid vesicles. Only SLZP showed localization inside the mammalian membrane mimetic zwitterionic lipid vesicles. The results show

  18. Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors.

    Science.gov (United States)

    Funhoff, Arjen M; van Nostrum, Cornelus F; Lok, Martin C; Kruijtzer, John A W; Crommelin, Daan J A; Hennink, Wim E

    2005-01-01

    A membrane-disrupting peptide derived from the influenza virus was covalently linked to different polymethacrylates (pDMAEMA, pDAMA and the degradable pHPMA-DMAE, monomers depicted in Fig. 1) using N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) as coupling agent to increase the transfection efficiency of polyplexes based on these polymers. It was shown by circular dichroism (CD) measurements that the polymer-conjugated peptide was, as the free peptide, able to undergo a conformational change of a random coil to an alpha helix upon lowering the pH to 5.0. This indicates that the property of the peptide to destabilize the endosomal membrane was preserved after its conjugation to the cationic polymers. In line herewith, a liposome leakage assay revealed that the polymer-bound peptide has comparable activity as the free peptide. The DNA condensing properties of the synthesized polymer-peptide conjugates were studied with dynamic light scattering and zeta-potential measurements, and it was shown that small (100 to 250 nm), positively charged (+15 to +20 mV) particles were formed. In vitro transfection and toxicity was tested in COS-7 cells, and these experiments showed that the polyplexes with grafted peptide had a substantially higher transfection activity than the control polyplexes, while the toxicity remained unchanged. Cellular uptake of the polyplexes was visualized with confocal laser scanning microscopy, and no differences in cellular uptake could be determined between the peptide containing systems and the control formulation. This shows that the increased transfection activity is indeed due to a better endosomal escape of the peptide grafted polyplexes. This study demonstrates that it is possible to covalently conjugate an endosome disruptive peptide to cationic gene delivery polymers with preservation of its membrane destabilization activity, making these conjugates suitable for in vivo DNA delivery. PMID:15588908

  19. Conus venom peptide pharmacology.

    Science.gov (United States)

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  20. Self-assembly of cyclo-diphenylalanine peptides in vacuum.

    Science.gov (United States)

    Jeon, Joohyun; Shell, M Scott

    2014-06-19

    The diphenylalanine (FF) peptide self-assembles into a variety of nanostructures, including hollow nanotubes that form in aqueous solution with an unusually high degree of hydrophilic surface area. In contrast, diphenylalanine can also be vapor-deposited in vacuum to produce rodlike assemblies that are extremely hydrophobic; in this process FF has been found to dehydrate and cyclize to cyclo-diphenylalanine (cyclo-FF). An earlier study used all-atom molecular dynamics (MD) simulations to understand the early stages of the self-assembly of linear-FF peptides in solution. Here, we examine the self-assembly of cyclo-FF peptides in vacuum and compare it to these previous results to understand the differences underlying the two cases. Using all-atom replica exchange MD simulations, we consider systems of 50 cyclo-FF peptides and examine free energies along various structural association coordinates. We find that cyclo-FF peptides form ladder-like structures connected by double hydrogen bonds, and that multiple such ladders linearly align in a cooperative manner to form larger-scale, elongated assemblies. Unlike linear-FFs which mainly assemble through the interplay between hydrophobic and hydrophilic interactions, the assembly of cyclo-FFs in vacuum is primarily driven by electrostatic interactions along the backbone that induce alignment at long-range, followed by van der Waals interactions between side chains that become important for close-range packing. While both solution and vacuum phase driving forces result in ladder-like structures, the clustering of ladders is opposite: linear-FF peptide ladders form assemblies with side-chains buried inward, while cyclo-FF ladders point outward. PMID:24877752

  1. Computer simulation study of water using a fluctuating charge model

    Indian Academy of Sciences (India)

    M Krishnan; A Verma; S Balasubramanian

    2001-10-01

    Hydrogen bonding in small water clusters is studied through computer simulation methods using a sophisticated, empirical model of interaction developed by Rick et al (S W Rick, S J Stuart and B J Berne 1994 J. Chem. Phys. 101 6141) and others. The model allows for the charges on the interacting sites to fluctuate as a function of time, depending on their local environment. The charge flow is driven by the difference in the electronegativity of the atoms within the water molecule, thus effectively mimicking the effects of polarization of the charge density. The potential model is thus transferable across all phases of water. Using this model, we have obtained the minimum energy structures of water clusters up to a size of ten. The cluster structures agree well with experimental data. In addition, we are able to distinctly identify the hydrogens that form hydrogen bonds based on their charges alone, a feature that is not possible in simulations using fixed charge models. We have also studied the structure of liquid water at ambient conditions using this fluctuating charge model.

  2. Identification and Characterization of a Novel Family of Cysteine-Rich Peptides (MgCRP-I) from Mytilus galloprovincialis.

    Science.gov (United States)

    Gerdol, Marco; Puillandre, Nicolas; De Moro, Gianluca; Guarnaccia, Corrado; Lucafò, Marianna; Benincasa, Monica; Zlatev, Ventislav; Manfrin, Chiara; Torboli, Valentina; Giulianini, Piero Giulio; Sava, Gianni; Venier, Paola; Pallavicini, Alberto

    2015-08-01

    We report the identification of a novel gene family (named MgCRP-I) encoding short secreted cysteine-rich peptides in the Mediterranean mussel Mytilus galloprovincialis. These peptides display a highly conserved pre-pro region and a hypervariable mature peptide comprising six invariant cysteine residues arranged in three intramolecular disulfide bridges. Although their cysteine pattern is similar to cysteines-rich neurotoxic peptides of distantly related protostomes such as cone snails and arachnids, the different organization of the disulfide bridges observed in synthetic peptides and phylogenetic analyses revealed MgCRP-I as a novel protein family. Genome- and transcriptome-wide searches for orthologous sequences in other bivalve species indicated the unique presence of this gene family in Mytilus spp. Like many antimicrobial peptides and neurotoxins, MgCRP-I peptides are produced as pre-propeptides, usually have a net positive charge and likely derive from similar evolutionary mechanisms, that is, gene duplication and positive selection within the mature peptide region; however, synthetic MgCRP-I peptides did not display significant toxicity in cultured mammalian cells, insecticidal, antimicrobial, or antifungal activities. The functional role of MgCRP-I peptides in mussel physiology still remains puzzling.

  3. How Membrane-Active Peptides Get into Lipid Membranes.

    Science.gov (United States)

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    mechanism by which these membrane-active peptides lyse membranes. The last class of membrane-active peptides discussed are the CPPs, which translocate across the lipid bilayer without inducing severe disruption and have potential as drug vehicles. CPPs are typically highly charged and can show antimicrobial activity by targeting an intracellular target rather than via a direct membrane lytic mechanism. A critical aspect in the structure-function relationship of membrane-active peptides is their specific activity relative to the lipid membrane composition of the cell target. Cell membranes have a wide diversity of lipids, and those of eukaryotic and prokaryotic species differ greatly in composition and structure. The activity of AMPs from Australian tree frogs, toxins, and CPPs has been investigated within various lipid systems to assess whether a relationship between peptide and membrane composition could be identified. NMR spectroscopy techniques are being used to gain atomistic details of how these membrane-active peptides interact with model membranes and cells, and in particular, competitive assays demonstrate the difference between affinity and activity for a specific lipid environment. Overall, the interactions between these relatively small sized peptides and various lipid bilayers give insight into how these peptides function at the membrane interface. PMID:27187572

  4. Potential of phage-displayed peptide library technology to identify functional targeting peptides

    Science.gov (United States)

    Krumpe, Lauren RH; Mori, Toshiyuki

    2010-01-01

    Combinatorial peptide library technology is a valuable resource for drug discovery and development. Several peptide drugs developed through phage-displayed peptide library technology are presently in clinical trials and the authors envision that phage-displayed peptide library technology will assist in the discovery and development of many more. This review attempts to compile and summarize recent literature on targeting peptides developed through peptide library technology, with special emphasis on novel peptides with targeting capacity evaluated in vivo. PMID:20150977

  5. Star clusters and associations

    International Nuclear Information System (INIS)

    All 33 papers presented at the symposium were inputted to INIS. They dealt with open clusters, globular clusters, stellar associations and moving groups, and local kinematics and galactic structures. (E.S.)

  6. Novel migraine therapy with calcitonin gene-regulated peptide receptor antagonists

    DEFF Research Database (Denmark)

    Edvinsson, Lars

    2007-01-01

    Primary headaches, for example, migraine and cluster headaches represent the most prevalent neurological disorders, affecting up to 15-20% of the adult population. There is a clear association between head pain and the release of calcitonin gene-related peptide (CGRP). In this review the role...... and that they are not vasoconstrictive, providing a new dimension in therapy....

  7. Observations on nocturnal growth of atmospheric clusters

    OpenAIRE

    Junninen, Heikki; Hulkkonen, Mira; Riipinen, Ilona; Nieminen, Tuomo; Hirsikko, Anne; Suni, Tanja; Boy, Michael; Lee, Shan-Hu; Vana, Marko; Tammet, Hannes; Kerminen, Veli-Matti; Kulmala, Markku

    2011-01-01

    In this paper, we summarize recent observations of nighttime nucleation events observed during 4 yr, from 2003 to 2006, at the SMEAR II station in Hyytiälä, southern Finland. Formation of new atmospheric aerosol particles has been frequently observed all around the world in daytime, but similar observations in nighttime are rare. The recently developed ion spectrometers enabled us to measure charged aerosol particles and ion clusters to diameters <1 nm and are efficient tools for evaluatin...

  8. Simulation of Resource Usage in Parallel Evolutionary Peptide Optimization using JavaSpaces Technology

    CERN Document Server

    Wira-Alam, Andias

    2009-01-01

    Peptide Optimization is a highly complex problem and it takes very long time of computation. This optimization process uses many software applications in a cluster running GNU/Linux Operating System that perform special tasks. The application to organize the whole optimization process had been already developed, namely SEPP (System for Evolutionary Pareto Optimization of Peptides/Polymers). A single peptide optimization takes a lot of computation time to produce a certain number of individuals. However, it can be accelerated by increasing the degree of parallelism as well as the number of nodes (processors) in the cluster. In this master thesis, I build a model simulating the interplay of the programs so that the usage of each resource (processor) can be determined and also the approximated time needed for the overall optimization process. There are two Evolutionary Algorithms that could be used in the optimization, namely Generation-based and Steady-state Evolutionary Algorithm. The results of each Evolution...

  9. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  10. Hydrogen Attachment/Abstraction Dissociation (HAD) of Gas-Phase Peptide Ions for Tandem Mass Spectrometry.

    Science.gov (United States)

    Takahashi, Hidenori; Sekiya, Sadanori; Nishikaze, Takashi; Kodera, Kei; Iwamoto, Shinichi; Wada, Motoi; Tanaka, Koichi

    2016-04-01

    Dissociation of gas-phase peptide ions through interaction with low-energy hydrogen (H) radical (∼0.15 eV) was observed with a quadrupole ion trap mass spectrometry. The H radical generated by thermal dissociation of H2 molecules passing through a heated tungsten capillary (∼2000 °C) was injected into the ion trap containing target peptide ions. The fragmentation spectrum showed abundant c-/z- and a-/x-type ions, attributable to H attachment/abstraction to/from peptide ion. Because the low-energy neutral H radical initiated the fragmentation, the charge state of the precursor ion was maintained during the dissociation. As a result, precursor ions of any charge state, including singly charged positive and negative ions, could be analyzed for amino acid sequence. The sequence coverage exceeding 90% was obtained for both singly protonated and singly deprotonated substance P peptide. This mass spectrometry also preserved labile post-translational modification bonds. The modification sites of triply phosphorylated peptide (kinase domain of insulin receptor) were identified with the sequence coverage exceeding 80%. PMID:27002918

  11. Continuum approaches to understanding ion and peptide interactions with the membrane.

    Science.gov (United States)

    Latorraca, Naomi R; Callenberg, Keith M; Boyle, Jon P; Grabe, Michael

    2014-05-01

    Experimental and computational studies have shown that cellular membranes deform to stabilize the inclusion of transmembrane (TM) proteins harboring charge. Recent analysis suggests that membrane bending helps to expose charged and polar residues to the aqueous environment and polar head groups. We previously used elasticity theory to identify membrane distortions that minimize the insertion of charged TM peptides into the membrane. Here, we extend our work by showing that it also provides a novel, computationally efficient method for exploring the energetics of ion and small peptide penetration into membranes. First, we show that the continuum method accurately reproduces energy profiles and membrane shapes generated from molecular simulations of bare ion permeation at a fraction of the computational cost. Next, we demonstrate that the dependence of the ion insertion energy on the membrane thickness arises primarily from the elastic properties of the membrane. Moreover, the continuum model readily provides a free energy decomposition into components not easily determined from molecular dynamics. Finally, we show that the energetics of membrane deformation strongly depend on membrane patch size both for ions and peptides. This dependence is particularly strong for peptides based on simulations of a known amphipathic, membrane binding peptide from the human pathogen Toxoplasma gondii. In total, we address shortcomings and advantages that arise from using a variety of computational methods in distinct biological contexts. PMID:24652510

  12. Fusion and fission of atomic clusters: recent advances

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2005-01-01

    We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have...... developed an effective scheme of adding new atoms to stable cluster geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level...... of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na^2+_10 clusters....

  13. Peptide primary messengers in plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The peptide primary messengers regulate embryonic development,cell growth and many other activities in animal cells. But recent evidence verified that peptide primary messengers are also involved in plant defense responses, the recognition between pollen and stigma and keep the balance between cell proliferation and differentiations in shoot apical meristems. Those results suggest that plants may actually make wide use of peptide primary messengers, both in embryonic development and late life when they rally their cells to defend against pathogens and insect pests. The recent advance in those aspects is reviewed.

  14. Quantum Annealing for Clustering

    OpenAIRE

    Kurihara, Kenichi; Tanaka, Shu; Miyashita, Seiji

    2014-01-01

    This paper studies quantum annealing (QA) for clustering, which can be seen as an extension of simulated annealing (SA). We derive a QA algorithm for clustering and propose an annealing schedule, which is crucial in practice. Experiments show the proposed QA algorithm finds better clustering assignments than SA. Furthermore, QA is as easy as SA to implement.

  15. Emergence of regional clusters

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Østergaard, Christian Richter; Dalum, Bent

    2010-01-01

    approach to analyse how successful early firms can lead to formation of clusters. Three key determinants are identified: (1) the geographical dimension of entrepreneurial activity, (2) spinoffs from successful firms and (3) new market opportunities. The chapter studies in great detail the evolution...... of the wireless communications cluster in Northern Denmark and compare it with the evolution of other clusters....

  16. The Durban Auto Cluster

    DEFF Research Database (Denmark)

    Lorentzen, Jochen; Robbins, Glen; Barnes, Justin

    2004-01-01

    The paper describes the formation of the Durban Auto Cluster in the context of trade liberalization. It argues that the improvement of operational competitiveness of firms in the cluster is prominently due to joint action. It tests this proposition by comparing the gains from cluster activities i...

  17. Cluster Physics with Merging Galaxy Clusters

    Directory of Open Access Journals (Sweden)

    Sandor M. Molnar

    2016-02-01

    Full Text Available Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard LCDM model, where the total density is dominated by the cosmological constant ($Lambda$ and the matter density by cold dark matter (CDM, structure formation is hierarchical, and clusters grow mostly by merging.Mergers of two massive clusters are the most energetic events in the universe after the Big Bang,hence they provide a unique laboratory to study cluster physics.The two main mass components in clusters behave differently during collisions:the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulenceare developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thusour review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clustersis to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses.New high spatial and spectral resolution ground and space based telescopeswill come online in the near future. Motivated by these new opportunities,we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  18. Binding of phosphoinositide-specific phospholipase C-zeta (PLC-zeta) to phospholipid membranes: potential role of an unstructured cluster of basic residues.

    Science.gov (United States)

    Nomikos, Michail; Mulgrew-Nesbitt, Anna; Pallavi, Payal; Mihalyne, Gyongyi; Zaitseva, Irina; Swann, Karl; Lai, F Anthony; Murray, Diana; McLaughlin, Stuart

    2007-06-01

    Phospholipase C-zeta (PLC-zeta) is a sperm-specific enzyme that initiates the Ca2+ oscillations in mammalian eggs that activate embryo development. It shares considerable sequence homology with PLC-delta1, but lacks the PH domain that anchors PLC-delta1 to phosphatidylinositol 4,5-bisphosphate, PIP2. Thus it is unclear how PLC-zeta interacts with membranes. The linker region between the X and Y catalytic domains of PLC-zeta, however, contains a cluster of basic residues not present in PLC-delta1. Application of electrostatic theory to a homology model of PLC-zeta suggests this basic cluster could interact with acidic lipids. We measured the binding of catalytically competent mouse PLC-zeta to phospholipid vesicles: for 2:1 phosphatidylcholine/phosphatidylserine (PC/PS) vesicles, the molar partition coefficient, K, is too weak to be of physiological significance. Incorporating 1% PIP2 into the 2:1 PC/PS vesicles increases K about 10-fold, to 5x10(3) M-1, a biologically relevant value. Expressed fragments corresponding to the PLC-zeta X-Y linker region also bind with higher affinity to polyvalent than monovalent phosphoinositides on nitrocellulose filters. A peptide corresponding to the basic cluster (charge=+7) within the linker region, PLC-zeta-(374-385), binds to PC/PS vesicles with higher affinity than PLC-zeta, but its binding is less sensitive to incorporating PIP2. The acidic residues flanking this basic cluster in PLC-zeta may account for both these phenomena. FRET experiments suggest the basic cluster could not only anchor the protein to the membrane, but also enhance the local concentration of PIP2 adjacent to the catalytic domain.

  19. On the zwitterionic nature of gas-phase peptides and protein ions.

    Directory of Open Access Journals (Sweden)

    Roberto Marchese

    2010-05-01

    Full Text Available Determining the total number of charged residues corresponding to a given value of net charge for peptides and proteins in gas phase is crucial for the interpretation of mass-spectrometry data, yet it is far from being understood. Here we show that a novel computational protocol based on force field and massive density functional calculations is able to reproduce the experimental facets of well investigated systems, such as angiotensin II, bradykinin, and tryptophan-cage. The protocol takes into account all of the possible protomers compatible with a given charge state. Our calculations predict that the low charge states are zwitterions, because the stabilization due to intramolecular hydrogen bonding and salt-bridges can compensate for the thermodynamic penalty deriving from deprotonation of acid residues. In contrast, high charge states may or may not be zwitterions because internal solvation might not compensate for the energy cost of charge separation.

  20. Cluster beam sources. Part 1. Methods of cluster beams generation

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-10-01

    Full Text Available The short review on cluster beams generation is proposed. The basic types of cluster sources are considered and the processes leading to cluster formation are analyzed. The parameters, that affects the work of cluster sources are presented.

  1. Induced Charge Capacitive Deionization

    CERN Document Server

    Rubin, S; Biesheuvel, P M; Bercovici, M

    2016-01-01

    We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electrostatic field. The external electric field induces an electric dipole in the porous particle, leading to capacitive charging of its volume by both cations and anions at opposite poles. This regime is characterized both by a large RC charging time and a small electrochemical charge relaxation time, which leads to rapid and significant deionization of ionic species from a volume which is on the scale of the particle. We show by theory and experiment that the transient response around a cylindrical particle results in spatially non-uniform charging and non-steady growth of depletion regions which emerge around the particle's poles. Potentially, ICCDI can be useful in applications where fast concentration changes of ionic species are required over large volumes.

  2. Screening of TACE Peptide Inhibitors from Phage Display Peptide Library

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To obtain the recombinant tumor necrosis factor-α converting enzyme (TACE) ectodomain and use it as a selective molecule for the screening of TACE peptide inhibitors, the cDNA coding catalytic domain (T800) and full-length ectodomain (T1300) of TACE were amplified by RTPCR, and the expression plasmids were constructed by inserting T800 and T1300 into plasmid pET28a and pET-28c respectively. The recombinant T800 and T1300 were induced by IPTG, and SDSPAGE and Western blotting analysis results revealed that T800 and T1300 were highly expressed in the form of inclusion body. After Ni2+-NTA resin affinity chromatography, the recombinant proteins were used in the screening of TACE-binding peptides from phage display peptide library respectively. After 4 rounds of biopanning, the positive phage clones were analyzed by ELISA, competitive inhibition assay and DNA sequencing. A common amino acid sequence (TRWLVYFSRPYLVAT) was found and synthesized. The synthetic peptide could inhibit the TNF-α release from LPS-stimulated human peripheral blood mononuclear cells (PBMC) up to 60.3 %. FACS analysis revealed that the peptide mediated the accumulation of TNF-α on the cell surface. These results demonstrate that the TACE-binding peptide is an effective antagonist of TACE.

  3. Design and characterization of an acid-activated antimicrobial peptide.

    Science.gov (United States)

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2010-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals, creation of an acidic environment favors growth of acid-enduring and acid-generating species, which causes further reduction in the plaque pH. In this study, we developed a prototype antimicrobial peptide capable of achieving high activity exclusively at low environmental pH to target bacterial species like Streptococcus mutans that produce acid and thrive under the low pH conditions detrimental for tooth integrity. The features of clavanin A, a naturally occurring peptide rich in histidine and phenylalanine residues with pH-dependent antimicrobial activity, served as a design basis for these prototype 'acid-activated peptides' (AAPs). Employing the major cariogenic species S. mutans as a model system, the two AAPs characterized in this study exhibited a striking pH-dependent antimicrobial activity, which correlated well with the calculated charge distribution. This type of peptide represents a potential new way to combat dental caries. PMID:19878192

  4. Facilitation of peptide fibre formation by arginine-phosphate/carboxylate interactions

    Indian Academy of Sciences (India)

    K Krishna Prasad; Sandeep Verma

    2008-01-01

    This study describes peptide fibre formation in a hexapeptide, derived from the V3 loop of HIV-1, mediated by the interactions between arginine residues and phosphate/carboxylate anions. This charge neutralization approach was further confirmed when the deletion of arginine residue from the hexapeptide sequence resulted in fibre formation, which was studied by a combination of microscopic techniques.

  5. Molecular dynamics study of the solvation of an alpha-helical transmembrane peptide by DMSO

    NARCIS (Netherlands)

    Duarte, A.M.; Mierlo, van C.P.M.; Hemminga, M.A.

    2008-01-01

    10-ns molecular dynamics study of the solvation of a hydrophobic transmembrane helical peptide in dimethyl sulfoxide (DMSO) is presented. The objective is to analyze how this aprotic polar solvent is able to solvate three groups of amino acid residues (i.e., polar, apolar, and charged) that are loca

  6. Methods to Study the Role of the Glycocalyx in the Uptake of Cell-Penetrating Peptides

    NARCIS (Netherlands)

    Schmidt, S.; Wallbrecher, R.; Kuppevelt, T.H. van; Brock, R.E.

    2015-01-01

    Cells are covered by a layer of negatively charged oligo- and polysaccharides, the glycocalyx. Cell-penetrating peptides and other drug delivery vehicles first encounter these polyanions before contacting the lipid bilayer of the plasma membrane. While a large body of data supports the notion that i

  7. Coarse Point Charge Models For Proteins From Smoothed Molecular Electrostatic Potentials.

    Science.gov (United States)

    Leherte, Laurence; Vercauteren, Daniel P

    2009-12-01

    To generate coarse electrostatic models of proteins, we developed an original approach to hierarchically locate maxima and minima in smoothed molecular electrostatic potentials. A charge-fitting program was used to assign charges to the so-obtained reduced representations. Templates are defined to easily generate coarse point charge models for protein structures, in the particular cases of the Amber99 and Gromos43A1 force fields. Applications to four small peptides and to the ion channel KcsA are presented. Electrostatic potential values generated by the reduced models are compared with the corresponding values obtained using the original sets of atomic charges. PMID:26602509

  8. Mass distribution of products of cluster impacts

    International Nuclear Information System (INIS)

    Mass distributions of ionic atomic and molecular fragments sputtered from carbon surfaces by singly charged positive cluster ions containing 80 water molecules have been determined. With cluster kinetic energy of 240 keV significant yields of molecular fragments containing up to 21 carbon atoms were observed. Ion yields were used to estimate relative yields of neutral fragments with the assumption that relative yields of the respective ionic and neutral sputtering processes were determined by kinetic factors which could be evaluated independently. The derived neutral yields were then used to estimate the fraction of total projectile energy utilized in evaporative cooling, i.e., sputtering. The results indicate a major fraction of the energy available is used in the cluster sputtering process. 9 refs., 1 tab

  9. Cluster analysis for applications

    CERN Document Server

    Anderberg, Michael R

    1973-01-01

    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  10. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming;

    2014-01-01

    BACKGROUND: Patients with cirrhosis have substantial circulatory imbalance between vasoconstrictive and vasodilating forces. The study of circulatory vasoactive peptides may provide important pathophysiological information. This study aimed to assess concentrations, organ extraction and relations...

  11. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte;

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...... improve biomolecular recognition by synthetic nucleic acid analogues. Circular dichroism (CD) measurements showed no distortion of the duplex structure by the incorporated peptide chains while studies in human serum indicated superior stability of the POCs compared to LNA/DNA mixmers and unmodified DNA...

  12. Peptide nanostructures in biomedical technology.

    Science.gov (United States)

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  13. Clusters in nuclei

    CERN Document Server

    Beck, Christian

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  14. Unconventional methods for clustering

    Science.gov (United States)

    Kotyrba, Martin

    2016-06-01

    Cluster analysis or clustering is a task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is the main task of exploratory data mining and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics. The topic of this paper is one of the modern methods of clustering namely SOM (Self Organising Map). The paper describes the theory needed to understand the principle of clustering and descriptions of algorithm used with clustering in our experiments.

  15. Spatial cluster modelling

    CERN Document Server

    Lawson, Andrew B

    2002-01-01

    Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...

  16. Targeting cancer with peptide aptamers

    OpenAIRE

    Seigneuric, Renaud; Gobbo, Jessica; Colas, Pierre; Garrido, Carmen

    2011-01-01

    A major endeavour in cancer chemotherapy is to develop agents that specifically target a biomolecule of interest. There are two main classes of targeting agents: small molecules and biologics. Among biologics (e.g.: antibodies), DNA, RNA but also peptide aptamers are relatively recent agents. Peptide aptamers are seldom described but represent attractive agents that can inhibit a growing panel of oncotargets including Heat Shock Proteins. Potential pitfalls and coming challenges towards succe...

  17. Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica Container for Targeting Drug Delivery.

    Science.gov (United States)

    Chen, Ganchao; Xie, Yusheng; Peltier, Raoul; Lei, Haipeng; Wang, Ping; Chen, Jun; Hu, Yi; Wang, Feng; Yao, Xi; Sun, Hongyan

    2016-05-11

    A stimuli-responsive drug delivery system (DDS) with bioactive surface is constructed by end-capping mesoporous silica nanoparticles (MSNs) with functional peptide-coated gold nanoparticles (GNPs). MSNs are first functionalized with acid-labile α-amide-β-carboxyl groups to carry negative charges, and then capped with positively charged GNPs that are decorated with oligo-lysine-containing peptide. The resulting hybrid delivery system exhibits endo/lysosomal pH triggered drug release, and the incorporation of RGD peptide facilitates targeting delivery to αvβ3 integrin overexpressing cancer cells. The system can serve as a platform for preparing diversified multifunctional nanocomposites using various functional inorganic nanoparticles and bioactive peptides.

  18. Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica Container for Targeting Drug Delivery.

    Science.gov (United States)

    Chen, Ganchao; Xie, Yusheng; Peltier, Raoul; Lei, Haipeng; Wang, Ping; Chen, Jun; Hu, Yi; Wang, Feng; Yao, Xi; Sun, Hongyan

    2016-05-11

    A stimuli-responsive drug delivery system (DDS) with bioactive surface is constructed by end-capping mesoporous silica nanoparticles (MSNs) with functional peptide-coated gold nanoparticles (GNPs). MSNs are first functionalized with acid-labile α-amide-β-carboxyl groups to carry negative charges, and then capped with positively charged GNPs that are decorated with oligo-lysine-containing peptide. The resulting hybrid delivery system exhibits endo/lysosomal pH triggered drug release, and the incorporation of RGD peptide facilitates targeting delivery to αvβ3 integrin overexpressing cancer cells. The system can serve as a platform for preparing diversified multifunctional nanocomposites using various functional inorganic nanoparticles and bioactive peptides. PMID:27102225

  19. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  20. Kinins and peptide receptors.

    Science.gov (United States)

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  1. Antimicrobial peptides in annelids

    Directory of Open Access Journals (Sweden)

    A Tasiemski

    2008-06-01

    Full Text Available Gene encoded antimicrobial peptides (AMPs are widely distributed among living organisms including plants, invertebrates and vertebrates. They constitute important effectors of the innate immune response by exerting multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis and immune induction. In invertebrates, most of the data describe the characterization and/or the function of AMPs in the numerically and economically most representative group which are arthropods. Annelids are among the first coelomates and are therefore of special phylogenetic interest. Compared to other invertebrate groups, data on annelid’s immunity reveal heavier emphasis on the cellular than on the humoral response suggesting that immune defense of annelids seems to be principally developed as cellular immunity.This paper gives an overview of the variety of AMPs identified in the three classes of annelids, i.e. polychaetes, oligochaetes and achaetes. Their functions, when they have been studied, in the humoral or cellular response of annelids are also mentioned.

  2. Antimicrobial peptides in crustaceans

    Directory of Open Access Journals (Sweden)

    RD Rosa

    2010-11-01

    Full Text Available Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP families are currently recognized, although the great majority (14 families comes from members of the order Decapoda. Crustacean AMPs are generally cationic, gene-encoded molecules that are mainly produced by circulating immune-competent cells (hemocytes or are derived from unrelated proteins primarily involved in other biological functions. In this review, we tentatively classified the crustacean AMPs into four main groups based on their amino acid composition, structural features and multi-functionality. We also attempted to summarize the current knowledge on their implication both in an efficient response to microbial infections and in crustacean survival.

  3. Electron acceleration via high contrast laser interacting with submicron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Faenov, Anatoly; Pikuz, Tatiana [Joint Institute for High Temperature of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412 (Russian Federation); Quantum Beams Science Directorate, JAEA, Kizugawa, Kyoto (Japan); Li Dazhang [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Institute of High Energy Physics, CAS, Beijing 100049 (China); Sheng Zhengming [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Jie [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2012-01-02

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  4. Electron acceleration via high contrast laser interacting with submicron clusters

    International Nuclear Information System (INIS)

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  5. Structural factors of solar system cluster ground coupled storage rationalization

    OpenAIRE

    Viktor V. Wysochin; Аnna S. Golovatyuk

    2015-01-01

    The computational investigations of unsteady heat transfer in seasonal solar heat storage system were conducted. This storage system consists of nine ground heat exchangers. The investigations were made for periodical diurnal cycle charging during summer season. The heat exchanger is presented as vertical probe with concentric tubes arrangement. Aim: The aim of the work is the optimization of cluster ground coupled storage – the probes quantity in cluster, their lengths and interval – using h...

  6. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  7. Survey on Text Document Clustering

    OpenAIRE

    M.Thangamani; Dr.P.Thangaraj

    2010-01-01

    Document clustering is also referred as text clustering, and its concept is merely equal to data clustering. It is hardly difficult to find the selective information from an ‘N’number of series information, so that document clustering came into picture. Basically cluster means a group of similar data, document clustering means segregating the data into different groups of similar data. Clustering can be of mathematical, statistical or numerical domain. Clustering is a fundamental data analysi...

  8. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    Science.gov (United States)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  9. Purification Technology and Antimicrobial Activity Analysis of Antimicrobial Peptide from Ovotransferrin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tie-hua; ZHENG Jian; YE Hai-qing; YU Ya-li; ZHAO Ping; LIU Jing-bo

    2011-01-01

    Antibacterial peptides mixture purified from Ovotransferrin by pepsin digest was used as the raw material.Peptide sections with good antibacterial activity were determined after bacteriostasis experiments, its molecular weight and amino acid composition were analyzed. The results of experiments indicate that with Sephadex G-50 and distilled water as mobile phase, detection wavelength 220 nm, flow rate 1.5 mL/min, sample density 0.2 g/mL, and volume 0.2 mL are the optimal conditions. Bacteriostasis experiments of the fraction of purified peaks were carried out and the result was: peak 1>peak 3>peak 2; the molecular weight of peak 1 was about 3015 by high performance liquid chromatography; active peptide possessed positive charges by amino acid analysis, its cationic characteristics are in accordance with the nature of antimicrobial peptides.

  10. Systematic Comparisons of Formulations of Linear Oligolysine Peptides with siRNA and Plasmid DNA.

    Science.gov (United States)

    Kwok, Albert; McCarthy, David; Hart, Stephen L; Tagalakis, Aristides D

    2016-05-01

    The effects of lysine peptide lengths on DNA and siRNA packaging and delivery were studied using four linear oligolysine peptides with 8 (K8), 16 (K16), 24 (K24) and 32 (K32) lysines. Oligolysine peptides with 16 lysines or longer were effective for stable monodisperse particle formation and optimal transfection efficiency with plasmid DNA (pDNA), but K8 formulations were less stable under anionic heparin challenge and consequently displayed poor transfection efficiency. However, here we show that the oligolysines were not able to package siRNA to form stable complexes, and consequently, siRNA transfection was unsuccessful. These results indicate that the physical structure and length of cationic peptides and their charge ratios are critical parameters for stable particle formation with pDNA and siRNA and that without packaging, delivery and transfection cannot be achieved. PMID:26684657

  11. Antibacterial Peptides from Plants: What They Are and How They Probably Work

    Directory of Open Access Journals (Sweden)

    Patrícia Barbosa Pelegrini

    2011-01-01

    Full Text Available Plant antibacterial peptides have been isolated from a wide variety of species. They consist of several protein groups with different features, such as the overall charge of the molecule, the content of disulphide bonds, and structural stability under environmental stress. Although the three-dimensional structures of several classes of plant peptides are well determined, the mechanism of action of some of these molecules is still not well defined. However, further studies may provide new evidences for their function on bacterial cell wall. Therefore, this paper focuses on plant peptides that show activity against plant-pathogenic and human-pathogenic bacteria. Furthermore, we describe the folding of several peptides and similarities among their three-dimensional structures. Some hypotheses for their mechanisms of action and attack on the bacterial membrane surface are also proposed.

  12. Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2013-05-01

    Full Text Available Antimicrobial peptides (AMPs, small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD. The majority of these AMPs (>86% possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1 or methicillin-resistant Staphylococcus aureus (MRSA. While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells.

  13. Decay of electric charge on corona charged polyethylene

    International Nuclear Information System (INIS)

    This paper describes a study on the surface potential decay of corona charged low density polyethylene (LDPE) films. A conventional corona charging process is used to deposit charge on the surface of film and surface potential is measured by a compact JCI 140 static monitor. The results from corona charged multilayer sample reveal that the bulk process dominates charge decay. In addition, the pulsed-electro-acoustic (PEA) technique has been employed to monitor charge profiles in corona charged LDPE films. By using the PEA technique, we are able to monitor charge migration through the bulk. Charge profiles in corona charged multilayer sample are consistent with surface potential results. Of further significance, the charge profiles clearly demonstrate that double injection has taken place in corona charged LDPE films

  14. Theoretical study on the interaction of pristine, defective and strained graphene with Fen and Nin (n = 13, 38, 55) clusters

    Science.gov (United States)

    Song, Wei; Jiao, Menggai; Li, Kai; Wang, Ying; Wu, Zhijian

    2013-11-01

    The structural and electronic properties of Fen and Nin (n = 13, 38, 55) clusters interacting with pristine, defective and strained graphene are investigated by means of self-consistent charge density-functional tight binding (SCC-DFTB) method. The cluster size dependence, defect influence, and strain effect are discussed. We found that the defects play an important role in stabilizing metal clusters by forming metal-carbon σ bonds. Large charge redistribution of Fen compared to Nin lead to stronger interaction in Fen@graphene. The results suggested that tuning the morphological level of the substrate defect and cluster size could affect the catalytic activity of the metal cluster.

  15. Conformations of Cationized Peptides. Determination of Ligand Binding Geometries by Irmpd Spectroscopy

    Science.gov (United States)

    Dunbar, Robert C.; Steill, Jeffrey; Oomens, Jos; Polfer, Nick C.

    2009-06-01

    Spectroscopic study of the conformations of metalated amino acids has mapped out in some detail the preferences for canonical (charge solvated) versus zwitterionic (salt bridge) conformations. Corresponding studies of larger peptides are now possible. Here are described results for several singly and doubly charged metal ions with dipeptides and tripeptides. Factors including ion charge, size of cation, and side chain identity and sequence are found to be conformational determinants. IRMPD spectra of the ions were acquired by irradiating the cell with infrared light from the FELIX free electron laser at wavelengths in the approximate range 500 to 1900 cm^{-1}.

  16. Agricultural Clusters in the Netherlands

    NARCIS (Netherlands)

    Schouten, M.A.; Heijman, W.J.M.

    2012-01-01

    Michael Porter was the first to use the term cluster in an economic context. He introduced the term in The Competitive Advantage of Nations (1990). The term cluster is also known as business cluster, industry cluster, competitive cluster or Porterian cluster. This article aims at determining and mea

  17. The properties of small Ag clusters bound to DNA bases

    Science.gov (United States)

    Soto-Verdugo, Víctor; Metiu, Horia; Gwinn, Elisabeth

    2010-05-01

    We study the binding of neutral silver clusters, Agn (n=1-6), to the DNA bases adenine (A), cytosine (C), guanine (G), and thymine (T) and the absorption spectra of the silver cluster-base complexes. Using density functional theory (DFT), we find that the clusters prefer to bind to the doubly bonded ring nitrogens and that binding to T is generally much weaker than to C, G, and A. Ag3 and Ag4 make the stronger bonds. Bader charge analysis indicates a mild electron transfer from the base to the clusters for all bases, except T. The donor bases (C, G, and A) bind to the sites on the cluster where the lowest unoccupied molecular orbital has a pronounced protrusion. The site where cluster binds to the base is controlled by the shape of the higher occupied states of the base. Time-dependent DFT calculations show that different base-cluster isomers may have very different absorption spectra. In particular, we find new excitations in base-cluster molecules, at energies well below those of the isolated components, and with strengths that depend strongly on the orientations of planar clusters with respect to the base planes. Our results suggest that geometric constraints on binding, imposed by designed DNA structures, may be a feasible route to engineering the selection of specific cluster-base assemblies.

  18. Photogeneration and recombination of charge carrier pairs and free charge carriers in polymer/fullerene bulk heterojunction films

    Energy Technology Data Exchange (ETDEWEB)

    Sliauzys, Gytis; Gulbinas, Vidmantas [Center for Physical Sciences and Technology, Savanoriu av. 231, 02300 Vilnius (Lithuania); Arlauskas, Kestutis [Department of Solid State Electronics, Vilnius University, Sauletekio al. 9, Build. 3, 10222 Vilnius (Lithuania)

    2012-07-15

    Photo-generation and recombination of free charge carriers in poly-3 (hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) blend films has been studied at different PCBM concentrations by means of fluorescence spectroscopy and transient photocurrent methods. We show that more than 80% of excitons form charge transfer (CT) states at PCBM concentrations above 4%. Efficiency of the CT state dissociation into free charge carries strongly depends on the PCBM concentration; the dissociation efficiency increases more than 30 times when PCBM concentration increases from 1 to 32%. We attribute the strong concentration dependence to formation of PCBM clusters facilitating electron migration and/or delocalization. Reduced charge carrier recombination coefficient has also been observed at high PCBM concentrations. We suggest that this may be partly caused by the reduced stability of reformed Coulombicaly bound charge pairs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. All about RIKEN Integrated Cluster of Clusters (RICC

    Directory of Open Access Journals (Sweden)

    Maho Nakata

    2012-07-01

    Full Text Available

    This is an introduction to the RIKEN's supercomputer RIKEN Integrated Cluster of Clusters (RICC, that has been in operation since August 2009. The basic concept of the RICC is to "provide an environment with high power computational resources to facilitate research and development for RIKEN's researchers". Based on this concept, we have been operating the RICC system as a (i data analysis environment for experimental researchers, (ii development environment targeting the next-generation supercomputer; i.e., the "K" computer, and (iii GPU (graphics processing unit computers for exploring challenges in developing a future computer environment. The total performance of RICC is 97.94 TFlops, ranking it as the 125th on the Top500 list in Nov. 2011. We prepared four job class accounts, based on the researchers' proposals prior to evaluation by our Review Committee. We also provided backup services to RIKEN's researchers, such as conducting RICC training classes, software installation services, and speed up and visualization support. To encourage affirmative participation and proactive initiation, all the services were free of charge; however, access to RICC was limited to researchers and collaborators of RIKEN. As a result, RICC has been able to maintain a high activity ratio (> 90% since the beginning of its operation.

  20. Explosions of water clusters in intense laser fields

    International Nuclear Information System (INIS)

    Energetic, highly charged oxygen ions Oq+ (q≤6), are copiously produced upon laser field-induced disassembly of highly charged water clusters, (H2O)n and (D2O)n, n∼60, that are formed by seeding high-pressure helium or argon with water vapor. Arn clusters (n∼40 000) formed under similar experimental conditions are found to undergo disassembly in the Coulomb explosion regime, with the energies of Arq+ ions showing a q2 dependence. Water clusters, which are argued to be considerably smaller in size, should also disassemble in the same regime, but the energies of fragment Oq+ ions are found to depend linearly on q which, according to prevailing wisdom, ought to be a signature of hydrodynamic expansion that is expected of much larger clusters. The implication of these observations on our understanding of the two cluster explosion regimes, Coulomb explosion and hydrodynamic expansion, is discussed. Our results indicate that charge state dependences of ion energy do not constitute an unambiguous experimental signature of cluster explosion regime

  1. Cell-penetrating recombinant peptides for potential use in agricultural pest control applications.

    Science.gov (United States)

    Hughes, Stephen R; Dowd, Patrick F; Johnson, Eric T

    2012-09-28

    Several important areas of interest intersect in a class of peptides characterized by their highly cationic and partly hydrophobic structure. These molecules have been called cell-penetrating peptides (CPPs) because they possess the ability to translocate across cell membranes. This ability makes these peptides attractive candidates for delivery of therapeutic compounds, especially to the interior of cells. Compounds with characteristics similar to CPPs and that, in addition, have antimicrobial properties are being investigated as antibiotics with a reduced risk of causing resistance. These CPP-like membrane-acting antimicrobial peptides (MAMPs) are α-helical amphipathic peptides that interact with and perturb cell membranes to produce their antimicrobial effects. One source of MAMPs is spider venom. Because these compounds are toxic to insects, they also show promise for development as biological agents for control of insecticide-resistant agricultural pests. Spider venom is a potential source of novel insect-specific peptide toxins. One example is the small amphipathic α-helical peptide lycotoxin-1 (Lyt-1 or LCTX) from the wolf spider (Lycosa carolinensis). One side of the α-helix has mostly hydrophilic and the other mainly hydrophobic amino acid residues. The positive charge of the hydrophilic side interacts with negatively charged prokaryotic membranes and the hydrophobic side associates with the membrane lipid bilayer to permeabilize it. Because the surface of the exoskeleton, or cuticle, of an insect is highly hydrophobic, to repel water and dirt, it would be expected that amphipathic compounds could permeabilize it. Mutagenized lycotoxin 1 peptides were produced and expressed in yeast cultures that were fed to fall armyworm (Spodoptera frugiperda) larvae to identify the most lethal mutants. Transgenic expression of spider venom toxins such as lycotoxin-1 in plants could provide durable insect resistance.

  2. Cell-Penetrating Recombinant Peptides for Potential Use in Agricultural Pest Control Applications

    Directory of Open Access Journals (Sweden)

    Eric T. Johnson

    2012-09-01

    Full Text Available Several important areas of interest intersect in a class of peptides characterized by their highly cationic and partly hydrophobic structure. These molecules have been called cell-penetrating peptides (CPPs because they possess the ability to translocate across cell membranes. This ability makes these peptides attractive candidates for delivery of therapeutic compounds, especially to the interior of cells. Compounds with characteristics similar to CPPs and that, in addition, have antimicrobial properties are being investigated as antibiotics with a reduced risk of causing resistance. These CPP-like membrane-acting antimicrobial peptides (MAMPs are α-helical amphipathic peptides that interact with and perturb cell membranes to produce their antimicrobial effects. One source of MAMPs is spider venom. Because these compounds are toxic to insects, they also show promise for development as biological agents for control of insecticide-resistant agricultural pests. Spider venom is a potential source of novel insect-specific peptide toxins. One example is the small amphipathic α-helical peptide lycotoxin-1 (Lyt-1 or LCTX from the wolf spider (Lycosa carolinensis. One side of the α-helix has mostly hydrophilic and the other mainly hydrophobic amino acid residues. The positive charge of the hydrophilic side interacts with negatively charged prokaryotic membranes and the hydrophobic side associates with the membrane lipid bilayer to permeabilize it. Because the surface of the exoskeleton, or cuticle, of an insect is highly hydrophobic, to repel water and dirt, it would be expected that amphipathic compounds could permeabilize it. Mutagenized lycotoxin 1 peptides were produced and expressed in yeast cultures that were fed to fall armyworm (Spodoptera frugiperda larvae to identify the most lethal mutants. Transgenic expression of spider venom toxins such as lycotoxin-1 in plants could provide durable insect resistance.

  3. Protein quantification by MALDI-selected reaction monitoring mass spectrometry using sulfonate derivatized peptides.

    Science.gov (United States)

    Lesur, Antoine; Varesio, Emmanuel; Hopfgartner, Gérard

    2010-06-15

    The feasibility of protein absolute quantification with matrix-assisted laser desorption/ionization (MALDI) using the selected reaction monitoring (SRM) acquisition mode on a triple quadrupole linear ion trap mass spectrometer (QqQ(LIT)) equipped with a high-frequency laser is demonstrated. A therapeutic human monoclonal antibody (mAb) was used as a model protein, and four tryptic peptides generated by fast tryptic digestion were selected as quantification surrogates. MALDI produces mostly singly charged peptides which hardly fragment under low-energy collision-induced dissociation (CID), and therefore the benefits of using 4-sulfophenyl isothiocyanate (SPITC) as a fragmentation enhancer derivatization agent were evaluated. Despite a moderate impact on the sensitivity, the N-terminus sulfonated peptides generate nearly complete y-ion ladders when native peptides produce few fragments. This aspect provides an alternative SRM transition set for each peptide. As a consequence, SRM transitions selectivity can be tuned more easily for peptide quantitation in complex matrices when monitoring several SRM transitions. From a quantitative point of view, the signal response depending on mAb concentration was found to be linear over 2.5 orders of magnitude for the most sensitive peptide, allowing precise and accurate measurement by MALDI-SRM/MS. PMID:20481516

  4. An improved charge pump with suppressed charge sharing effect

    Directory of Open Access Journals (Sweden)

    Na Bai

    2013-09-01

    Full Text Available A differential charge pump with reduced charge sharing effect is presented. The current-steering topology is adopted for fast switching. A replica charge pump is added to provide a current path for the complementary branch of the master charge pump in the current switching. Through the replica charge pump, the voltage at the complementary node of the master charge pump keeps stable during switching, and the dynamic charge sharing effect is avoided. Apply the charge pump to a 4.8 GHz band integer-N PLL, the measured reference spur is -49.7dBc with a 4-MHz reference frequency.

  5. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products.

    Science.gov (United States)

    Medema, Marnix H; Paalvast, Yared; Nguyen, Don D; Melnik, Alexey; Dorrestein, Pieter C; Takano, Eriko; Breitling, Rainer

    2014-09-01

    Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as bleomycin. Recently, an innovative mass-spectrometry-based strategy, peptidogenomics, has been pioneered to effectively mine microbial strains for novel peptidic metabolites. Even though mass-spectrometric peptide detection can be performed quite fast, true high-throughput natural product discovery approaches have still been limited by the inability to rapidly match the identified tandem mass spectra to the gene clusters responsible for the biosynthesis of the corresponding compounds. With Pep2Path, we introduce a software package to fully automate the peptidogenomics approach through the rapid Bayesian probabilistic matching of mass spectra to their corresponding biosynthetic gene clusters. Detailed benchmarking of the method shows that the approach is powerful enough to correctly identify gene clusters even in data sets that consist of hundreds of genomes, which also makes it possible to match compounds from unsequenced organisms to closely related biosynthetic gene clusters in other genomes. Applying Pep2Path to a data set of compounds without known biosynthesis routes, we were able to identify candidate gene clusters for the biosynthesis of five important compounds. Notably, one of these clusters was detected in a genome from a different subphylum of Proteobacteria than that in which the molecule had first been identified. All in all, our approach paves the way towards high-throughput discovery of novel peptidic natural products. Pep2Path is freely available from http://pep2path.sourceforge.net/, implemented in Python, licensed under the GNU General Public License v3 and supported on MS Windows, Linux and Mac OS X. PMID:25188327

  6. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products.

    Directory of Open Access Journals (Sweden)

    Marnix H Medema

    2014-09-01

    Full Text Available Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as bleomycin. Recently, an innovative mass-spectrometry-based strategy, peptidogenomics, has been pioneered to effectively mine microbial strains for novel peptidic metabolites. Even though mass-spectrometric peptide detection can be performed quite fast, true high-throughput natural product discovery approaches have still been limited by the inability to rapidly match the identified tandem mass spectra to the gene clusters responsible for the biosynthesis of the corresponding compounds. With Pep2Path, we introduce a software package to fully automate the peptidogenomics approach through the rapid Bayesian probabilistic matching of mass spectra to their corresponding biosynthetic gene clusters. Detailed benchmarking of the method shows that the approach is powerful enough to correctly identify gene clusters even in data sets that consist of hundreds of genomes, which also makes it possible to match compounds from unsequenced organisms to closely related biosynthetic gene clusters in other genomes. Applying Pep2Path to a data set of compounds without known biosynthesis routes, we were able to identify candidate gene clusters for the biosynthesis of five important compounds. Notably, one of these clusters was detected in a genome from a different subphylum of Proteobacteria than that in which the molecule had first been identified. All in all, our approach paves the way towards high-throughput discovery of novel peptidic natural products. Pep2Path is freely available from http://pep2path.sourceforge.net/, implemented in Python, licensed under the GNU General Public License v3 and supported on MS Windows, Linux and Mac OS X.

  7. Reverse-phase HPLC separation of hemp seed (Cannabis sativa L.) protein hydrolysate produced peptide fractions with enhanced antioxidant capacity.

    Science.gov (United States)

    Girgih, Abraham T; Udenigwe, Chibuike C; Aluko, Rotimi E

    2013-03-01

    Hemp seed protein hydrolysate (HPH) was produced through simulated gastrointestinal tract (GIT) digestion of hemp seed protein isolate followed by partial purification and separation into eight peptide fractions by reverse-phase (RP)-HPLC. The peptide fractions exhibited higher oxygen radical absorbance capacity as well as scavenging of 2,2-diphenyl-1-picrylhydrazyl, superoxide and hydroxyl radicals when compared to HPH. Radical scavenging activities of the fractionated peptides increased as content of hydrophobic amino acids or elution time was increased, with the exception of hydroxyl radical scavenging that showed decreased trend. Glutathione (GSH), HPH and the RP-HPLC peptide fractions possessed low ferric ion reducing ability but all had strong (>60 %) metal chelating activities. Inhibition of linoleic acid oxidation by some of the HPH peptide fractions was higher at 1 mg/ml when compared to that observed at 0.1 mg/ml peptide concentration. Peptide separation resulted in higher concentration of some hydrophobic amino acids (especially proline, leucine and isoleucine) in the fractions (mainly F5 and F8) when compared to HPH. The elution time-dependent increased concentrations of the hydrophobic amino acids coupled with decreased levels of positively charged amino acids may have been responsible for the significantly higher (p < 0.05) antioxidant properties observed for some of the peptide fractions when compared to the unfractionated HPH. In conclusion, the antioxidant activity of HPH after simulated GIT digestion is mainly influenced by the amino acid composition of some of its peptides.

  8. Space-Charge Effect

    CERN Document Server

    Chauvin, N

    2013-01-01

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.

  9. Primitive Virtual Negative Charge

    CERN Document Server

    Kim, Kiyoung

    2008-01-01

    Physical fields, such as gravity and electromagnetic field, are interpreted as results from rearrangement of vacuum particles to get the equilibrium of net charge density and net mass density in 4-dimensional complex space. Then, both fields should interact to each other in that physical interaction is considered as a field-to-field interaction. Hence, Mass-Charge interaction is introduced with primitive-virtual negative charge defined for the mass. With the concept of Mass-Charge interaction electric equilibrium of the earth is discussed, especially about the electric field and magnetic field of the earth. For unsettled phenomena related with the earth's gravity, such as antigravity phenomenon, gravity anomalies during the solar eclipses, the connection between geomagnetic storms and earthquakes, etc., possible explanations are discussed.

  10. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  11. Peptides and Food Intake

    Directory of Open Access Journals (Sweden)

    Carmen Sobrino Crespo

    2014-04-01

    Full Text Available Nutrients created by the digestion of food are proposed to active G protein coupled receptors on the luminal side of enteroendocrine cells e.g. the L-cell. This stimulates the release of gut hormones. Hormones released from the gut and adipose tissue play an important rol in the regulation of food intake and energy expenditure (1.Many circulating signals, including gut hormones, can influence the activity of the arcuate nucleus (ARC neurons directly, after passing across the median eminence. The ARC is adjacent to the median eminence, a circumventricular organ with fenestrated capillaries and hence an incomplete blood-brain barrier (2. The ARC of the hypothalamus is believed to play a crucial role in the regulation of food intake and energy homeostasis. The ARC contains two populations of neurons with opposing effect on food intake (3. Medially located orexigenic neurons (i.e those stimulating appetite express neuropeptide Y (NPY and agouti-related protein (AgRP (4-5. Anorexigenic neurons (i.e. those inhibiting appetite in the lateral ARC express alpha-melanocyte stimulating hormone (α-MSH derived from pro-opiomelanocortin (POMC and cocaine and amphetamine-regulated transcript (CART (6. The balance between activities of these neuronal circuits is critical to body weight regulation.In contrast, other peripheral signals influence the hypothalamus indirectly via afferent neuronal pathway and brainstem circuits. In this context gastrointestinal’s vagal afferents are activated by mechanoreceptors and chemoreceptors, and converge in the nucleus of the tractus solitaries (NTS of the brainstem. Neuronal projections from the NTS, in turn, carry signals to the hypotalamus (1, 7. Gut hormones also alter the activity of the ascending vagal pathway from the gut to the brainstem. In the cases of ghrelin and Peptide tyrosine tyrosine (PYY, there are evidences for both to have a direct action on the arcuate nucleus and an action via the vagus nerve a

  12. Designing of peptides with desired half-life in intestine-like environment

    KAUST Repository

    Sharma, Arun

    2014-08-20

    Background: In past, a number of peptides have been reported to possess highly diverse properties ranging from cell penetrating, tumor homing, anticancer, anti-hypertensive, antiviral to antimicrobials. Owing to their excellent specificity, low-toxicity, rich chemical diversity and availability from natural sources, FDA has successfully approved a number of peptide-based drugs and several are in various stages of drug development. Though peptides are proven good drug candidates, their usage is still hindered mainly because of their high susceptibility towards proteases degradation. We have developed an in silico method to predict the half-life of peptides in intestine-like environment and to design better peptides having optimized physicochemical properties and half-life.Results: In this study, we have used 10mer (HL10) and 16mer (HL16) peptides dataset to develop prediction models for peptide half-life in intestine-like environment. First, SVM based models were developed on HL10 dataset which achieved maximum correlation R/R2 of 0.57/0.32, 0.68/0.46, and 0.69/0.47 using amino acid, dipeptide and tripeptide composition, respectively. Secondly, models developed on HL16 dataset showed maximum R/R2 of 0.91/0.82, 0.90/0.39, and 0.90/0.31 using amino acid, dipeptide and tripeptide composition, respectively. Furthermore, models that were developed on selected features, achieved a correlation (R) of 0.70 and 0.98 on HL10 and HL16 dataset, respectively. Preliminary analysis suggests the role of charged residue and amino acid size in peptide half-life/stability. Based on above models, we have developed a web server named HLP (Half Life Prediction), for predicting and designing peptides with desired half-life. The web server provides three facilities; i) half-life prediction, ii) physicochemical properties calculation and iii) designing mutant peptides.Conclusion: In summary, this study describes a web server \\'HLP\\' that has been developed for assisting scientific

  13. Late time CMB anisotropies constrain mini-charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, C.; Redondo, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jaeckel, J. [Univ. of Durham, Inst. for Particle Physics Phenomenology (United Kingdom)

    2009-09-15

    Observations of the temperature anisotropies induced as light from the CMB passes through large scale structures in the late universe are a sensitive probe of the interactions of photons in such environments. In extensions of the Standard Model which give rise to mini-charged particles, photons propagating through transverse magnetic fields can be lost to pair production of such particles. Such a decrement in the photon flux would occur as photons from the CMB traverse the magnetic fields of galaxy clusters. Therefore late time CMB anisotropies can be used to constrain the properties of mini- charged particles. We outline how this test is constructed, and present new constraints on mini-charged particles from observations of the Sunyaev-Zel'dovich effect in the Coma cluster. (orig.)

  14. Electrically charged targets

    Science.gov (United States)

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  15. Sequence dependent proton conduction in self-assembled peptide nanostructures

    Science.gov (United States)

    Lerner Yardeni, Jenny; Amit, Moran; Ashkenasy, Gonen; Ashkenasy, Nurit

    2016-01-01

    The advancement of diverse electrochemistry technologies depends on the development of novel proton conducting polymers. Inspired by the efficacy of proton transport through proteins, we show in this work that self-assembling peptide nanostructures may be a promising alternative for such organic proton conducting materials. We demonstrate that aromatic amino acids, which participate in charge transport in nature, unprecedentedly promote proton conduction under both high and low relative humidity conditions for d,l α-cyclic peptide nanotubes. For dehydrated networks long-range order of the assemblies, induced by the aromatic side chains, is shown to be a dominating factor for promoting conductivity. However, for hydrated networks this order of effect is less significant and conductivity can be improved by the introduction of proton donating carboxylic acid peptide side chains in addition to the aromatic side chains despite the lower order of the assemblies. Based on these observations, a novel cyclic peptide that incorporates non-natural naphthyl side chains was designed. Self-assembled nanotubes of this peptide show greatly improved dehydrated conductivity, while maintaining high conductivity under hydrated conditions. We envision that the demonstrated modularity and versatility of these bio inspired nanostructures will make them extremely attractive building blocks for the fabrication of devices for energy conversion and storage applications, as well as other applications that involve proton transport, whether dry or wet conductivity is desired.The advancement of diverse electrochemistry technologies depends on the development of novel proton conducting polymers. Inspired by the efficacy of proton transport through proteins, we show in this work that self-assembling peptide nanostructures may be a promising alternative for such organic proton conducting materials. We demonstrate that aromatic amino acids, which participate in charge transport in nature

  16. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Schroedter, Lasse

    2013-08-15

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10{sup 15} W/cm{sup 2}. For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  17. Self-assembly of 33-mer gliadin peptide oligomers.

    Science.gov (United States)

    Herrera, M G; Benedini, L A; Lonez, C; Schilardi, P L; Hellweg, T; Ruysschaert, J-M; Dodero, V I

    2015-11-28

    The 33-mer gliadin peptide, LQLQPF(PQPQLPY)3PQPQPF, is a highly immunogenic peptide involved in celiac disease and probably in other immunopathologies associated with gliadin. Herein, dynamic light scattering measurements showed that 33-mer, in the micromolar concentration range, forms polydisperse nano- and micrometer range particles in aqueous media. This behaviour is reminiscent of classical association of colloids and we hypothesized that the 33-mer peptide self-assembles into micelles that could be the precursors of 33-mer oligomers in water. Deposition of 33-mer peptide aqueous solution on bare mica generated nano- and microstructures with different morphologies as revealed by atomic force microscopy. At 6 μM, the 33-mer is organised in isolated and clusters of spherical nanostructures. In the 60 to 250 μM concentration range, the spherical oligomers associated mainly in linear and annular arrangements and structures adopting a "sheet" type morphology appeared. At higher concentrations (610 μM), mainly filaments and plaques immersed in a background of nanospherical structures were detected. The occurrence of different morphologies of oligomers and finally the filaments suggests that the unique specific geometry of the 33-mer oligomers has a crucial role in the subsequent condensation and organization of their fractal structures into the final filaments. The self-assembly process on mica is described qualitatively and quantitatively by a fractal diffusion limited aggregation (DLA) behaviour with the fractal dimension in the range of 1.62 ± 0.02 to 1.73 ± 0.03. Secondary structure evaluation of the oligomers by Attenuated Total Reflection FTIR spectroscopy (ATR-FTIR) revealed the existence of a conformational equilibrium of self-assembled structures, from an extended conformation to a more folded parallel beta elongated structures. Altogether, these findings provide structural and morphological information about supramolecular organization of the 33-mer

  18. An analytical approach to space charge distortions for time projection chambers

    CERN Document Server

    Rossegger, S; Riegler, W

    2010-01-01

    In a time projection chamber (TPC), the possible ion feedback and also the primary ionization of high multiplicity events result in accumulation of ionic charges inside the gas volume (space charge). This charge introduces electrical field distortions and modifies the cluster trajectory along the drift path, affecting the tracking performance of the detector. In order to calculate the track distortions due to an arbitrary space charge distribution in the TPC, novel representations of the Green's function for a TPC geometry were worked out. This analytical approach finally permits accurate predictions of track distortions due to an arbitrary space charge distribution by solving the Langevin equation.

  19. MOSFET Electric-Charge Sensor

    Science.gov (United States)

    Robinson, Paul A., Jr.

    1988-01-01

    Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.

  20. Attenuating HIV Tat/TAR-mediated protein expression by exploring the side chain length of positively charged residues.

    Science.gov (United States)

    Wu, Cheng-Hsun; Chen, Yi-Ping; Liu, Shing-Lung; Chien, Fan-Ching; Mou, Chung-Yuan; Cheng, Richard P

    2015-12-01

    RNA is a drug target involved in diverse cellular functions and viral processes. Molecules that inhibit the HIV TAR RNA-Tat protein interaction may attenuate Tat/TAR-dependent protein expression and potentially serve as anti-HIV therapeutics. By incorporating positively charged residues with mixed side chain lengths, we designed peptides that bind TAR RNA with enhanced intracellular activity. Tat-derived peptides that were individually substituted with positively charged residues with varying side chain lengths were evaluated for TAR RNA binding. Positively charged residues with different side chain lengths were incorporated at each Arg and Lys position in the Tat-derived peptide to enhance TAR RNA binding. The resulting peptides showed enhanced TAR RNA binding affinity, cellular uptake, nuclear localization, proteolytic resistance, and inhibition of intracellular Tat/TAR-dependent protein expression compared to the parent Tat-derived peptide with no cytotoxicity. Apparently, the enhanced inhibition of protein expression by these peptides was not determined by RNA binding affinity, but by proteolytic resistance. Despite the high TAR binding affinity, a higher binding specificity would be necessary for practical purposes. Importantly, altering the positively charged residue side chain length should be a viable strategy to generate potentially useful RNA-targeting bioactive molecules.

  1. Clustering Categorical Data:A Cluster Ensemble Approach

    Institute of Scientific and Technical Information of China (English)

    He Zengyou(何增友); Xu Xiaofei; Deng Shengchun

    2003-01-01

    Clustering categorical data, an integral part of data mining,has attracted much attention recently. In this paper, the authors formally define the categorical data clustering problem as an optimization problem from the viewpoint of cluster ensemble, and apply cluster ensemble approach for clustering categorical data. Experimental results on real datasets show that better clustering accuracy can be obtained by comparing with existing categorical data clustering algorithms.

  2. Spatial Scan Statistic: Selecting clusters and generating elliptic clusters

    DEFF Research Database (Denmark)

    Christiansen, Lasse Engbo; Andersen, Jens Strodl

    2004-01-01

    The spatial scan statistic is widely used to search for clusters. This paper shows that the usually applied elimination of overlapping clusters to find secondary clusters is sensitive to smooth changes in the shape of the clusters. We present an algorithm for generation of set of confocal elliptic...... clusters. In addition, we propose a new way to present the information in a given set of clusters based on the significance of the clusters....

  3. Cosmology with cluster surveys

    Indian Academy of Sciences (India)

    Subhabrata Majumdar

    2004-10-01

    Surveys of clusters of galaxies provide us with a powerful probe of the density and nature of the dark energy. The red-shift distribution of detected clusters is highly sensitive to the dark energy equation of state parameter . Upcoming Sunyaev–Zel'dovich (SZ) surveys would provide us large yields of clusters to very high red-shifts. Self-calibration of cluster scaling relations, possible for such a huge sample, would be able to constrain systematic biases on mass estimators. Combining cluster red-shift abundance with limited mass follow-up and cluster mass power spectrum can then give constraints on , as well as on 8 and to a few per cents.

  4. CSR in Industrial Clusters

    DEFF Research Database (Denmark)

    Lund-Thomsen, Peter; Pillay, Renginee G.

    2012-01-01

    Purpose – The paper seeks to review the literature on CSR in industrial clusters in developing countries, identifying the main strengths, weaknesses, and gaps in this literature, pointing to future research directions and policy implications in the area of CSR and industrial cluster development...... in this field and their comments incorporated in the final version submitted to Corporate Governance. Findings – The article traces the origins of the debate on industrial clusters and CSR in developing countries back to the early 1990s when clusters began to be seen as an important vehicle for local economic...... development in the South. At the turn of the millennium the industrial cluster debate expanded as clusters were perceived as a potential source of poverty reduction, while their role in promoting CSR among small and medium-sized enterprises began to take shape from 2006 onwards. At present, there is still...

  5. Melting of sodium clusters

    CERN Document Server

    Reyes-Nava, J A; Beltran, M R; Michaelian, K

    2002-01-01

    Thermal stability properties and the melting-like transition of Na_n, n=13-147, clusters are studied through microcanonical molecular dynamics simulations. The metallic bonding in the sodium clusters is mimicked by a many-body Gupta potential based on the second moment approximation of a tight-binding Hamiltonian. The characteristics of the solid-to-liquid transition in the sodium clusters are analyzed by calculating physical quantities like caloric curves, heat capacities, and root-mean-square bond length fluctuations using simulation times of several nanoseconds. Distinct melting mechanisms are obtained for the sodium clusters in the size range investigated. The calculated melting temperatures show an irregular variation with the cluster size, in qualitative agreement with recent experimental results. However, the calculated melting point for the Na_55 cluster is about 40 % lower than the experimental value.

  6. Peptides: A new class of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Ryszard Smolarczyk

    2009-07-01

    Full Text Available Peptides are a novel class of anticancer agents embracing two distinct categories: natural antibacterial peptides, which are preferentially bound by cancer cells, and chemically synthesized peptides, which bind specifically to precise molecular targets located on the surface of tumor cells. Antibacterial peptides bind to both cell and mitochondrial membranes. Some of these peptides attach to the cell membrane, resulting in its disorganization. Other antibacterial peptides penetrate cancer cells without causing cell membrane damage, but they disrupt mitochondrial membranes. Thanks to phage and aptamer libraries, it has become possible to obtain synthetic peptides blocking or activating some target proteins found in cancer cells as well as in cells forming the tumor environment. These synthetic peptides can feature anti-angiogenic properties, block enzymes indispensable for sustained tumor growth, and reduce tumor ability to metastasize. In this review the properties of peptides belonging to both categories are discussed and attempts of their application for therapeutic purposes are outlined.

  7. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  8. Interaction of metallic clusters with biologically active curcumin molecules

    Science.gov (United States)

    Gupta, Sanjeev K.; He, Haiying; Liu, Chunhui; Dutta, Ranu; Pandey, Ravindra

    2015-09-01

    We have investigated the interaction of subnano metallic Gd and Au clusters with curcumin, an important biomolecule having pharmacological activity. Gd clusters show different site preference to curcumin and much stronger interaction strength, in support of the successful synthesis of highly stable curcumin-coated Gd nanoparticles as reported recently. It can be attributed to significant charge transfer from the Gd cluster to curcumin together with a relatively strong hybridization of the Gd df-orbitals with curcumin p-orbitals. These results suggest that Gd nanoparticles can effectively be used as delivery carriers for curcumin at the cellular level for therapy and medical imaging applications.

  9. Structures in Galaxy Clusters

    CERN Document Server

    Escalera, E; Girardi, M; Giuricin, G; Mardirossian, F; Mazure, A; Mezzetti, M

    1993-01-01

    The analysis of the presence of substructures in 16 well-sampled clusters of galaxies suggests a stimulating hypothesis: Clusters could be classified as unimodal or bimodal, on the basis of to the sub-clump distribution in the {\\em 3-D} space of positions and velocities. The dynamic study of these clusters shows that their fundamental characteristics, in particular the virial masses, are not severely biased by the presence of subclustering if the system considered is bound.

  10. Cluster Symmetries and Dynamics

    Directory of Open Access Journals (Sweden)

    Freer Martin

    2016-01-01

    Full Text Available Many light nuclei display behaviour that indicates that rather than behaving as an A-body systems, the protons and neutrons condense into clusters. The α-particle is the most obvious example of such clustering. This contribution examines the role of such α-clustering on the structure, symmetries and dynamics of the nuclei 8Be, 12C and 16O, recent experimental measurements and future perspectives.

  11. Clustering Techniques in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Masood

    2015-01-01

    Full Text Available Dealing with data means to group information into a set of categories either in order to learn new artifacts or understand new domains. For this purpose researchers have always looked for the hidden patterns in data that can be defined and compared with other known notions based on the similarity or dissimilarity of their attributes according to well-defined rules. Data mining, having the tools of data classification and data clustering, is one of the most powerful techniques to deal with data in such a manner that it can help researchers identify the required information. As a step forward to address this challenge, experts have utilized clustering techniques as a mean of exploring hidden structure and patterns in underlying data. Improved stability, robustness and accuracy of unsupervised data classification in many fields including pattern recognition, machine learning, information retrieval, image analysis and bioinformatics, clustering has proven itself as a reliable tool. To identify the clusters in datasets algorithm are utilized to partition data set into several groups based on the similarity within a group. There is no specific clustering algorithm, but various algorithms are utilized based on domain of data that constitutes a cluster and the level of efficiency required. Clustering techniques are categorized based upon different approaches. This paper is a survey of few clustering techniques out of many in data mining. For the purpose five of the most common clustering techniques out of many have been discussed. The clustering techniques which have been surveyed are: K-medoids, K-means, Fuzzy C-means, Density-Based Spatial Clustering of Applications with Noise (DBSCAN and Self-Organizing Map (SOM clustering.

  12. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2013-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  13. 15th Cluster workshop

    CERN Document Server

    Laakso, Harri; Escoubet, C. Philippe; The Cluster Active Archive : Studying the Earth’s Space Plasma Environment

    2010-01-01

    Since the year 2000 the ESA Cluster mission has been investigating the small-scale structures and processes of the Earth's plasma environment, such as those involved in the interaction between the solar wind and the magnetospheric plasma, in global magnetotail dynamics, in cross-tail currents, and in the formation and dynamics of the neutral line and of plasmoids. This book contains presentations made at the 15th Cluster workshop held in March 2008. It also presents several articles about the Cluster Active Archive and its datasets, a few overview papers on the Cluster mission, and articles reporting on scientific findings on the solar wind, the magnetosheath, the magnetopause and the magnetotail.

  14. Galaxy Clusters with Chandra

    CERN Document Server

    Forman, W; Markevitch, M L; Vikhlinin, A A; Churazov, E

    2002-01-01

    We discuss Chandra results related to 1) cluster mergers and cold fronts and 2) interactions between relativistic plasma and hot cluster atmospheres. We describe the properties of cold fronts using NGC1404 in the Fornax cluster and A3667 as examples. We discuss multiple surface brightness discontinuities in the cooling flow cluster ZW3146. We review the supersonic merger underway in CL0657. Finally, we summarize the interaction between plasma bubbles produced by AGN and hot gas using M87 and NGC507 as examples.

  15. Management of cluster headache.

    Science.gov (United States)

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-07-01

    The prevalence of cluster headache is 0.1% and cluster headache is often not diagnosed or misdiagnosed as migraine or sinusitis. In cluster headache there is often a considerable diagnostic delay - an average of 7 years in a population-based survey. Cluster headache is characterized by very severe or severe orbital or periorbital pain with a duration of 15-180 minutes. The cluster headache attacks are accompanied by characteristic associated unilateral symptoms such as tearing, nasal congestion and/or rhinorrhoea, eyelid oedema, miosis and/or ptosis. In addition, there is a sense of restlessness and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment and prophylactic treatment. In ECH and CCH the attacks can be treated with oxygen (12 L/min) or subcutaneous sumatriptan 6 mg. For both oxygen and sumatriptan there are two randomized, placebo-controlled trials demonstrating efficacy. In both ECH and CCH, verapamil is the prophylactic drug of choice. Verapamil 360 mg/day was found to be superior to placebo in one clinical trial. In clinical practice, daily doses of 480-720 mg are mostly used. Thus, the dose of verapamil used in cluster headache treatment may be double the dose used in cardiology, and with the higher doses the PR interval should be checked with an ECG. At the start of a cluster, transitional preventive treatment such as corticosteroids or greater occipital nerve blockade can be given. In CCH and in long-standing clusters of ECH, lithium, methysergide, topiramate, valproic acid and ergotamine tartrate can be used as add-on prophylactic treatment. In drug-resistant CCH, neuromodulation with either occipital nerve stimulation or deep brain stimulation of the hypothalamus is an alternative treatment strategy

  16. Peptide Vaccine: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Weidang Li

    2014-07-01

    Full Text Available Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

  17. Derivation of an amino acid similarity matrix for peptide:MHC binding and its application as a Bayesian prior

    Directory of Open Access Journals (Sweden)

    Sette Alessandro

    2009-11-01

    Full Text Available Abstract Background Experts in peptide:MHC binding studies are often able to estimate the impact of a single residue substitution based on a heuristic understanding of amino acid similarity in an experimental context. Our aim is to quantify this measure of similarity to improve peptide:MHC binding prediction methods. This should help compensate for holes and bias in the sequence space coverage of existing peptide binding datasets. Results Here, a novel amino acid similarity matrix (PMBEC is directly derived from the binding affinity data of combinatorial peptide mixtures. Like BLOSUM62, this matrix captures well-known physicochemical properties of amino acid residues. However, PMBEC differs markedly from existing matrices in cases where residue substitution involves a reversal of electrostatic charge. To demonstrate its usefulness, we have developed a new peptide:MHC class I binding prediction method, using the matrix as a Bayesian prior. We show that the new method can compensate for missing information on specific residues in the training data. We also carried out a large-scale benchmark, and its results indicate that prediction performance of the new method is comparable to that of the best neural network based approaches for peptide:MHC class I binding. Conclusion A novel amino acid similarity matrix has been derived for peptide:MHC binding interactions. One prominent feature of the matrix is that it disfavors substitution of residues with opposite charges. Given that the matrix was derived from experimentally determined peptide:MHC binding affinity measurements, this feature is likely shared by all peptide:protein interactions. In addition, we have demonstrated the usefulness of the matrix as a Bayesian prior in an improved scoring-matrix based peptide:MHC class I prediction method. A software implementation of the method is available at: http://www.mhc-pathway.net/smmpmbec.

  18. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    Science.gov (United States)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  19. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy.

    Science.gov (United States)

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-01-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers. PMID:27363513

  20. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  1. Investigation of the clustering condition for various gasses ejected from a fast solenoid valve for supersonic cluster beam injection

    International Nuclear Information System (INIS)

    The supersonic cluster beam (SSCB) injection method is being developed as a new fueling method for the Large Helical Device (LHD) experiment. As a first step, cluster formation at a room temperature has been investigated for various gasses using a fast solenoid valve for SSCB. Rayleigh scattering of laser light by the cluster is measured by a fast charge coupled device camera. In the case of methane, nitrogen, and argon, clear scattering signals are observed at high valve backing pressure of more than 3-4 MPa. In the case of hydrogen, helium, and neon, on the other hand, no scattering signal is detected at 7 MPa. (author)

  2. Effective Transparency: A Test of Atomistic Laser-Cluster Models

    CERN Document Server

    Pandit, Rishi; Teague, Thomas; Hartwick, Zachary; Bigaouette, Nicolas; Ramunno, Lora; Ackad, Edward

    2016-01-01

    The effective transparency of rare-gas clusters, post-interaction with an extreme ultraviolet (XUV) pump pulse, is studied by using an atomistic hybrid quantum-classical molecular dynamics model. We find there is an intensity range in which an XUV probe pulse has no lasting effect on the average charge state of a cluster after being saturated by an XUV pump pulse: the cluster is effectively transparent to the probe pulse. The range of this phenomena increases with the size of the cluster and thus provides an excellent candidate for an experimental test of the effective transparency effect. We present predictions for the clusters at the peak of the laser pulse as well as the experimental time-of-flight signal expected along with trends which can be compared with. Significant deviations from these predictions would provide evidence for enhanced photoionization mechanism(s).

  3. An Effective Method of Producing Small Neutral Carbon Clusters

    Institute of Scientific and Technical Information of China (English)

    XIA Zhu-Hong; CHEN Cheng-Chu; HSU Yen-Chu

    2007-01-01

    An effective method of producing small neutral carbon clusters Cn (n = 1-6) is described. The small carbon clusters (positive or negative charge or neutral) are formed by plasma which are produced by a high power 532nm pulse laser ablating the surface of the metal Mn rod to react with small hydrocarbons supplied by a pulse valve, then the neutral carbon clusters are extracted and photo-ionized by another laser (266nm or 355nm) in the ionization region of a linear time-of-flight mass spectrometer. The distributions of the initial neutral carbon clusters are analysed with the ionic species appeared in mass spectra. It is observed that the yield of small carbon clusters with the present method is about 10 times than that of the traditional widely used technology of laser vaporization of graphite.

  4. Electron attachment to anionic clusters in ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Franklin, E-mail: franklin.martinez@uni-rostock.de [University of Rostock, Institute of Physics (Germany); Bandelow, Steffi; Marx, Gerrit; Schweikhard, Lutz; Vass, Albert [Ernst-Moritz-Arndt University, Institute of Physics (Germany)

    2015-11-15

    Ion traps are versatile tools for the investigation of gas-phase cluster ions, allowing, e.g., cluster-size selection and extended reaction times. Taking advantage of their particular storage capability of simultaneous trapping of electrons and clusters, Penning traps have been applied for the production of clusters with high negative charge states. Recently, linear radio-frequency quadrupole traps have been demonstrated to be another candidate to produce polyanionic clusters. Operation with rectangular, rather than harmonic, radio-frequency voltages provides field-free time slots for unhindered electron passage through the trap. Several aspects of electron-attachment techniques by means of Penning and radio-frequency traps are addressed and recent experimental results are presented.

  5. Document Clustering Based on Semi-Supervised Term Clustering

    Directory of Open Access Journals (Sweden)

    Hamid Mahmoodi

    2012-05-01

    Full Text Available The study is conducted to propose a multi-step feature (term selection process and in semi-supervised fashion, provide initial centers for term clusters. Then utilize the fuzzy c-means (FCM clustering algorithm for clustering terms. Finally assign each of documents to closest associated term clusters. While most text clustering algorithms directly use documents for clustering, we propose to first group the terms using FCM algorithm and then cluster documents based on terms clusters. We evaluate effectiveness of our technique on several standard text collections and compare our results with the some classical text clustering algorithms.

  6. Antiviral active peptide from oyster

    Science.gov (United States)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  7. Antiviral active peptide from oyster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster (Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10-5 kDa, 5-1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10?5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  8. Radioactive labelling of peptidic hormones

    International Nuclear Information System (INIS)

    The labelling of peptidic hormones requires stability, specificity and sensitivity of the label. Introduction of a radioactive atome is one way to satisfy these criteria. Several processes have been described to prepare radioactive TRF: synthesis of the peptide with labelled aminoacids or introduction of the label into the hormone. In that approach, tritium can be substituted in the imidazole ring, via precursors activating the proper carbon. Monoiodo TRF leads essentially to tritium labelling of the 5 positions whereas monoazo TRF allows the preparation of 3H TRF labelled in the 2 positions. Di-substituted TRF leads to labelling into the 2 and 5 carbons. Labelled analogs of TRF can be prepared with labelled iodine; further developments of peptide labelling, will be presented. In particular, the homolytic scission of the C-iodine, bond by photochemical activation. The nascent carbon radical can be stabilized by a tritiated scavenger. This approach eliminates the use of heavy metal catalysts

  9. Nanoparticles of cationic chimeric peptide and sodium polyacrylate exhibit striking antinociception activity at lower dose.

    Science.gov (United States)

    Gupta, Kshitij; Singh, Vijay P; Kurupati, Raj K; Mann, Anita; Ganguli, Munia; Gupta, Yogendra K; Singh, Yogendra; Saleem, Kishwar; Pasha, Santosh; Maiti, Souvik

    2009-02-20

    The current study investigates the performance of polyelectrolyte complexes based nanoparticles in improving the antinociceptive activity of cationic chimeric peptide-YFa at lower dose. Size, Zeta potential and morphology of the nanoparticles were determined. Size of the nanoparticles decreases and zeta potential increases with concomitant increase in charge ratio (Z(+/-)). The nanoparticles at Z(+/-)12 are spherical with 70+/-7 nm diameter in AFM and displayed positive surface charge and similar sizes (83+/-8 nm) by Zetasizer. The nanoparticles of Z(+/-) 12 are used in this study. Cytotoxicity by MTT assay on three different mammalian cell lines (liver, neuronal and kidney) revealed lower toxicity of nanoparticles. Hematological parameters were also not affected by nanoparticles compared to normal counts of water treated control group. Nanoparticles containing 10 mg/kg YFa produced increased antinociception, approximately 36%, in tail-flick latency test in mice, whereas the neat peptide at the same concentration did not show any antinociception activity. This enhancement in activity is attributed to the nanoparticle associated protection of peptide from proteolytic degradation. In vitro peptide release study in plasma also supported the antinociception profile of nanoparticles. Thus, our results suggest of a potential nanoparticle delivery system for cationic peptide drug candidates for improving their stability and bioavailability. PMID:19014986

  10. Conformational analysis of Infectious bursal disease virus (IBDV derived cell penetrating peptide (CPP analogs

    Directory of Open Access Journals (Sweden)

    Vinay G. Joshi

    2013-12-01

    Full Text Available Aim: This study was designed to develop peptide analogs of Infectious Bursal Disease (IBD virus VP5 protein segment having cell penetrating ability to improve their interaction with cargo molecule (Nucleic acid without affecting the backbone conformation. Materials and Methods: IBDV VP5 protein segment designated as RATH peptide were synthesized using solid phase peptide synthesis and their solution conformation was elucidated using CD spectroscopy in polar (water and apolar (TFE solvents. Cell penetrating ability of RATH-CONH2 was observed using FITC labeled peptide internalization in to HeLa cells under fluorescent microscopy. The efficacy of RATH analog interactions with nucleic acids was evaluated using FITC labeled oligonucleotides by fluorescence spectroscopy and plasmid constructs in gel retardation assay. Results: CD spectra of RATH analogs in water and apolar trifluroethanol (TFE helped to compare their secondary structures which were almost similar with dominant beta conformations suggesting successful induction of positive charge in the analogs without affecting back bone conformation of CPP designed. Cell penetrating ability of RATH CONH2 in HeLa cell was more than 90%. The fluorescence spectroscopy and plasmid constructs in gel retardation assay demonstrated successful interaction of amide analogs with nucleic acid. Conclusion: Intentional changes made in IBDV derived peptide RATH COOH to RATH CONH2 did not showed major changes in backbone conformation and such modifications may help to improve the cationic charge in most CPPs to interact with nucleic acid. [Vet World 2013; 6(6.000: 307-312

  11. Osteonectin-derived peptide increases the modulus of a bone-mimetic nanocomposite.

    Science.gov (United States)

    Sarvestani, Alireza S; He, Xuezhong; Jabbari, Esmaiel

    2008-02-01

    Many factors contribute to the toughness of bone including the presence of nano-size apatite crystals, a dense network of collagen fibers, and acidic proteins with the ability to link the mineral phase to the gelatinous collagen phase. We investigated the effect of a glutamic acid (negatively charged) peptide (Glu6), which mimics the terminal region of the osteonectin glycoprotein of bone, on the shear modulus of a synthetic hydrogel/apatite nanocomposite. One end of the synthesized peptide was functionalized with an acrylate group (Ac-Glu6) to covalently attach the peptide to the hydrogel phase of the composite matrix. When microapatite crystals (5 microm diameter) were used, addition of Ac-Glu6 peptide did not affect the modulus of the microcomposite. However, when nanoapatite crystals (100 nm diameter) were used, addition of Ac-Glu6 resulted in significant reinforcement of the shear modulus of the nanocomposite ( approximately 100% in elastic shear modulus). Furthermore, addition of Ac-Gly6 (a neutral glycine sequence) or Ac-Lys6 (a positively charged sequence) did not reinforce the nanocomposite. These results demonstrate that the reinforcement effect of the Glu6 peptide, a sequence in the terminal region of osteonectin, is modulated by the size of the apatite crystals. The findings of this work can be used to develop advanced biomimetic composites for skeletal tissue regeneration. PMID:17609937

  12. Radical attached aluminum nanoclusters: an alternative way of cluster stabilization.

    Science.gov (United States)

    Sengupta, Turbasu; Pal, Sourav

    2016-08-21

    The stability and electronic structure of radical attached aluminum nanoclusters are investigated using density functional theory (DFT). A detailed investigation shows good correlation between the thermodynamic stability of radical attached clusters and the stability of the attached radical anions. All other calculated parameters like HOMO-LUMO gap and charge transfer are also found to be consistent with the observed thermodynamic stabilities of the complexes. Investigation of the electronic structure of radical attached complexes further shows the presence of jellium structures within the core similar to the ligated clusters. Comparison with available experimental and theoretical data also proves the validity of superatomic complex theory for the radical attached clusters as well. Based on the evaluated thermodynamic parameters, selected radical attached clusters are observed to be more thermodynamically stable in comparison with experimentally synthesized ligated clusters. Stabilization of small metal clusters is one of the greatest challenges in current cluster science and the present investigation confirms the fact that radical attached clusters can provide a viable alternative to ligated clusters in the future. PMID:27435912

  13. Highly Charged Ion Sources

    International Nuclear Information System (INIS)

    In this work a study is made for the factors affecting the production and extraction of highly charged ion beams. Discussion is made for the production of highly charged ions from: the conventional vacuum are ion sources (Pinning PIG and Duoplasmatron DP) and the recent trends type which are (Electron Beam Ion Sources EBIS, Electron Cyclotron Resonance Ion Sources ECRIS and Laser Ion source LIS). The highly charged ions with charge state +7 , O+8 ,Ne+10 , Ar+18 have been extracted from the ECRIS while fully stripped Xe+54 has been extracted from EBIS. Improving the capabilities of the conventional RF ion source to produce multiply charged ions is achieved through the use of electron injection into the plasma or with the use of RF driven ion source. The later is based on coupling the RF power to the discharge through an internal antenna in vacuum are ion source. The argon ion species extracted from these upgraded RF ion sources could reach Ar+5

  14. In vitro selected peptides bind with thymidylate synthase mRNA and inhibit its translation

    Institute of Scientific and Technical Information of China (English)

    YAN; Song; NIU; RongLi; WANG; Zheng; LIN; XiuKun

    2007-01-01

    Thymidylate synthase (TS), an essential enzyme for catalyzing the biosynthesis of thymidylate, is a critical therapeutic target in cancer therapy. Recent studies have shown that TS functions as an RNA-binding protein by interacting with two different sequences on its own mRNA, thus, repressing translational efficiency. In this study, peptides binding TS RNA with high affinity were isolated using mRNA display from a large peptide library (>1013 different sequences). The randomized library was subjected up to twelve rounds of in vitro selection and amplification. Comparing the amino acid composition of the selected peptides (12th round, R12) with those from the initial random library (round zero, R0), the basic and aromatic residues in the selected peptides were enriched significantly, suggesting that these peptide regions might be important in the peptide-TS mRNA interaction. Categorizing the amino acids at each random position based on their physicochemical properties and comparing the distributions with those of the initial random pool, an obvious basic charge characteristic was found at positions 1, 12, 17 and 18, suggesting that basic side chains participate in RNA binding. Secondary structure prediction showed that the selected peptides of R12 pool represented a helical propensity compared with R0 pool, and the regions were rich in basic residues. The electrophoretic gel mobility shift and in vitro translation assays showed that the peptides selected using mRNA display could bind TS RNA specifically and inhibit the translation of TS mRNA. Our results suggested that the identified peptides could be used as new TS inhibitors and developed to a novel class of anticancer agents.

  15. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hsiu-Ying, E-mail: hychung@mail.fcu.edu.tw; Li, Cheng Che

    2013-03-01

    A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: Black-Right-Pointing-Pointer The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. Black-Right-Pointing-Pointer 3NSS peptide promoted the formation of hydroxyapatites with

  16. How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS)

    Science.gov (United States)

    Manninen, Hanna E.; Mirme, Sander; Mirme, Aadu; Petäjä, Tuukka; Kulmala, Markku

    2016-08-01

    To understand the very first steps of atmospheric particle formation and growth processes, information on the size where the atmospheric nucleation and cluster activation occurs, is crucially needed. The current understanding of the concentrations and dynamics of charged and neutral clusters and particles is based on theoretical predictions and experimental observations. This paper gives a standard operation procedure (SOP) for Neutral cluster and Air Ion Spectrometer (NAIS) measurements and data processing. With the NAIS data, we have improved the scientific understanding by (1) direct detection of freshly formed atmospheric clusters and particles, (2) linking experimental observations and theoretical framework to understand the formation and growth mechanisms of aerosol particles, and (3) parameterizing formation and growth mechanisms for atmospheric models. The SOP provides tools to harmonize the world-wide measurements of small clusters and nucleation mode particles and to verify consistent results measured by the NAIS users. The work is based on discussions and interactions between the NAIS users and the NAIS manufacturer.

  17. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus...... a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of colistin resistant A...

  18. Peptides and the new endocrinology

    Science.gov (United States)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  19. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  20. From collisions to clusters

    DEFF Research Database (Denmark)

    Loukonen, Ville; Bork, Nicolai; Vehkamaki, Hanna

    2014-01-01

    to overcome the possible initial non-optimal collision orientations. No post-collisional cluster break up is observed. The reasons for the efficient clustering are (i) the proton transfer reaction which takes place in each of the collision simulations and (ii) the subsequent competition over the proton...

  1. Cost-Effective Clustering

    CERN Document Server

    Gottlieb, S

    2001-01-01

    Small Beowulf clusters can effectively serve as personal or group supercomputers. In such an environment, a cluster can be optimally designed for a specific problem (or a small set of codes). We discuss how theoretical analysis of the code and benchmarking on similar hardware lead to optimal systems.

  2. Coma cluster of galaxies

    Science.gov (United States)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  3. Clustering Text Data Streams

    Institute of Scientific and Technical Information of China (English)

    Yu-Bao Liu; Jia-Rong Cai; Jian Yin; Ada Wai-Chee Fu

    2008-01-01

    Clustering text data streams is an important issue in data mining community and has a number of applications such as news group filtering, text crawling, document organization and topic detection and tracing etc. However, most methods are similarity-based approaches and only use the TF*IDF scheme to represent the semantics of text data and often lead to poor clustering quality. Recently, researchers argue that semantic smoothing model is more efficient than the existing TF.IDF scheme for improving text clustering quality. However, the existing semantic smoothing model is not suitable for dynamic text data context. In this paper, we extend the semantic smoothing model into text data streams context firstly. Based on the extended model, we then present two online clustering algorithms OCTS and OCTSM for the clustering of massive text data streams. In both algorithms, we also present a new cluster statistics structure named cluster profile which can capture the semantics of text data streams dynamically and at the same time speed up the clustering process. Some efficient implementations for our algorithms are also given. Finally, we present a series of experimental results illustrating the effectiveness of our technique.

  4. Brightest Cluster Galaxy Identification

    Science.gov (United States)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  5. Blue emitting undecaplatinum clusters

    Science.gov (United States)

    Chakraborty, Indranath; Bhuin, Radha Gobinda; Bhat, Shridevi; Pradeep, T.

    2014-07-01

    A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents.A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents. Electronic supplementary information (ESI) available: Details of experimental procedures, instrumentation, chromatogram of the crude cluster; SEM/EDAX, DLS, PXRD, TEM, FT-IR, and XPS of the isolated Pt11 cluster; UV/Vis, MALDI MS and SEM/EDAX of isolated 2 and 3; and 195Pt NMR of the K2PtCl6 standard. See DOI: 10.1039/c4nr02778g

  6. Investigation of Cluster and Cluster Queuing System

    OpenAIRE

    Halifu, Saerda

    2008-01-01

    Cluster became main platform as parallel and distributed computing structure for high performance computing. Following the development of high performance computer architecture more and more different branches of natural science benefit fromhuge and efficient computational power. For instance bio-informatics, climate science, computational physics, computational chemistry, marine science, etc. Efficient and reliable computing powermay not only expending demand of existing high performance com...

  7. The Cluster Substructure - Alignment Connection

    CERN Document Server

    Plionis, M

    2002-01-01

    Using the APM cluster data we investigate whether the dynamical status of clusters is related to the large-scale structure of the Universe. We find that cluster substructure is strongly correlated with the tendency of clusters to be aligned with their nearest neighbour and in general with the nearby clusters that belong to the same supercluster. Furthermore, dynamically young clusters are more clustered than the overall cluster population. These are strong indications that cluster develop in a hierarchical fashion by anisotropy merging along the large-scale filamentary superclusters within which they are embedded.

  8. An enhancer peptide for membrane-disrupting antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Zhang Hong

    2010-02-01

    Full Text Available Abstract Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4 by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn. Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus, whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane.

  9. General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides.

    Science.gov (United States)

    Dathe, Margitta; Meyer, Jana; Beyermann, Michael; Maul, Björn; Hoischen, Christian; Bienert, Michael

    2002-02-01

    Model compounds of modified hydrophobicity (Eta), hydrophobic moment (mu) and angle subtended by charged residues (Phi) were synthesized to define the general roles of structural motifs of cationic helical peptides for membrane activity and selectivity. The peptide sets were based on a highly hydrophobic, non-selective KLA model peptide with high antimicrobial and hemolytic activity. Variation of the investigated parameters was found to be a suitable method for modifying peptide selectivity towards either neutral or highly negatively charged lipid bilayers. Eta and mu influenced selectivity preferentially via modification of activity on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) bilayers, while the size of the polar/hydrophobic angle affected the activity against 1-palmitoyl-2-oleoylphosphatidyl-DL-glycerol (POPG). The influence of the parameters on the activity determining step was modest in both lipid systems and the activity profiles were the result of the parameters' influence on the second less pronounced permeabilization step. Thus, the activity towards POPC vesicles was determined by the high permeabilizing efficiency, however, changes in the structural parameters preferentially influenced the relatively moderate affinity. In contrast, intensive peptide accumulation via electrostatic interactions was sufficient for the destabilization of highly negatively charged POPG lipid membranes, but changes in the activity profile, as revealed by the modification of Phi, seem to be preferentially caused by variation of the low permeabilizing efficiency. The parameters proved very effective also in modifying antimicrobial and hemolytic activity. However, their influence on cell selectivity was limited. A threshold value of hydrophobicity seems to exist which restricted the activity modifying potential of mu and Phi on both lipid bilayers and cell membranes.

  10. Space charge dominated beams

    International Nuclear Information System (INIS)

    After an introductory section on the relationship between emittance and beam Coulomb energy we discuss the properties of space charge dominated beams in progressive steps: from uniformly charged bunched beams to non-uniformly charged beams to correlation effects between particles (simulation beams or 'crystalline' beams). A practical application can be found in the beam dynamics of a high-current injector. The concept of correlation energy is of practical interest in computer simulation of high-brilliance beams, where one deals with an artificially enhanced two-particle Coulomb energy, if many real particles are combined into one simulation super-particle. This can be a source of non-physical emittance growth. (orig./HSI)

  11. Charge gradient microscopy

    Science.gov (United States)

    Hong, Seungbum; Tong, Sheng; Park, Woon Ik; Hiranaga, Yoshiomi; Cho, Yasuo; Roelofs, Andreas

    2014-01-01

    Here we present a simple and fast method to reliably image polarization charges using charge gradient microscopy (CGM). We collected the current from the grounded CGM probe while scanning a periodically poled lithium niobate single crystal and single-crystal LiTaO3 thin film on the Cr electrode. We observed current signals at the domains and domain walls originating from the displacement current and the relocation or removal of surface charges, which enabled us to visualize the ferroelectric domains at a scan frequency above 78 Hz over 10 μm. We envision that CGM can be used in high-speed ferroelectric domain imaging and piezoelectric energy-harvesting devices. PMID:24760831

  12. Novel LanT associated lantibiotic clusters identified by genome database mining.

    Directory of Open Access Journals (Sweden)

    Mangal Singh

    Full Text Available BACKGROUND: Frequent use of antibiotics has led to the emergence of antibiotic resistance in bacteria. Lantibiotic compounds are ribosomally synthesized antimicrobial peptides against which bacteria are not able to produce resistance, hence making them a good alternative to antibiotics. Nisin is the oldest and the most widely used lantibiotic, in food preservation, without having developed any significant resistance against it. Having their antimicrobial potential and a limited number, there is a need to identify novel lantibiotics. METHODOLOGY/FINDINGS: Identification of novel lantibiotic biosynthetic clusters from an ever increasing database of bacterial genomes, can provide a major lead in this direction. In order to achieve this, a strategy was adopted to identify novel lantibiotic biosynthetic clusters by screening the sequenced genomes for LanT homolog, which is a conserved lantibiotic transporter specific to type IB clusters. This strategy resulted in identification of 54 bacterial strains containing the LanT homologs, which are not the known lantibiotic producers. Of these, 24 strains were subjected to a detailed bioinformatic analysis to identify genes encoding for precursor peptides, modification enzyme, immunity and quorum sensing proteins. Eight clusters having two LanM determinants, similar to haloduracin and lichenicidin were identified, along with 13 clusters having a single LanM determinant as in mersacidin biosynthetic cluster. Besides these, orphan LanT homologs were also identified which might be associated with novel bacteriocins, encoded somewhere else in the genome. Three identified gene clusters had a C39 domain containing LanT transporter, associated with the LanBC proteins and double glycine type precursor peptides, the only known example of such a cluster is that of salivaricin. CONCLUSION: This study led to the identification of 8 novel putative two-component lantibiotic clusters along with 13 having a single LanM and

  13. Metal cluster fission: jellium model and Molecular dynamics simulations

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia;

    2004-01-01

    Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18^2+ ...

  14. Interaction of Boron Clusters with Oxygen: a DFT Study

    Science.gov (United States)

    Salavitabar, Kamron; Boggavarapu, Kiran; Kandalam, Anil

    A controlled combustion involving aluminum nanoparticles has often been the focus of studies in the field of solid fuel propellants. However very little focus has been given to the study of boron nanoparticles in controlled combustion. In contrast to aluminum nanoclusters, boron nanoclusters (Bn) are known to exhibit a planar geometries even at the size of n = 19 - 20, and thus offer a greater surface area for interaction with oxygen. Earlier experimental studies have shown that boron nanoclusters exhibit different reactivity with oxygen depending on their size and charge. In this poster, we present our recent density functional theory based results, focusing on the reactivity patterns of neutral and negatively charged B5 cluster with On, where n = 1 - 5; and B6 cluster with On (n = 1 - 2). The effect of charge on the reactivity of boron cluster, variation in the stability of product clusters, i e., neutral and negatively charged B5On (n = 1 - 5) and B6On (n = 1 - 2) are also examined. Financial Support from West Chester University Foundation under FaStR grant is acknowledged.

  15. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Perez Cavalcanti, T; The ATLAS collaboration

    2012-01-01

    The hit signals read out from pixels on planar semi-conductor sensors are grouped into clusters, to reconstruct the location where a charged particle passed through. The resolution of the individual pixel sizes can be improved significantly using the information from the cluster of adjacent pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years giving an excellent performance. However, in dense environments, such as those inside high-energy jets, is likely that the charge deposited by two or more close-by tracks merges into one single cluster. A new pattern recognition algorithm based on neural network methods has been developed for the ATLAS Pixel Detector. This can identify the shared clusters, split them if necessary, and estimate the positions of all particles traversing the cluster. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurements to tracks within jets, and improves the positional accuracy with respect to stand...

  16. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Directory of Open Access Journals (Sweden)

    Roslyn D Noar

    Full Text Available Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that

  17. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode polyketides important in pathogenicity. PMID:27388157

  18. Job Oriented Monitoring Clusters

    Directory of Open Access Journals (Sweden)

    Vijayalaxmi Cigala,

    2011-03-01

    Full Text Available There has been a lot of development in the field of clusters and grids. Recently, the use of clusters has been on rise in every possible field. This paper proposes a system that monitors jobs onlarge computational clusters. Monitoring jobs is essential to understand how jobs are being executed. This helps us in understanding the complete life cycle of the jobs being executed on large clusters. Also, this paper describes how the information obtained by monitoring the jobs would help in increasing the overall throughput of clusters. Heuristics help in efficient job distribution among the computational nodes, thereby accomplishing fair job distribution policy. The proposed system would be capable of loadbalancing among the computational nodes, detecting failures, taking corrective actions after failure detection, job monitoring, system resource monitoring, etc.

  19. Pulsars in Globular Clusters

    CERN Document Server

    Camilo, F; Camilo, Fernando; Rasio, Frederic A.

    2005-01-01

    More than 100 radio pulsars have been detected in 24 globular clusters. The largest observed samples are in Terzan 5 and 47 Tucanae, which together contain 45 pulsars. Accurate timing solutions, including positions in the cluster, are known for many of these pulsars. Here we provide an observational overview of some properties of pulsars in globular clusters, as well as properties of the globular clusters with detected pulsars. The many recent detections also provide a new opportunity to re-examine theoretically the formation and evolution of recycled pulsars in globular clusters. Our brief review considers the most important dynamical interaction and binary evolution processes: collisions, exchange interactions, mass transfer, and common-envelope phases.

  20. Mathematical classification and clustering

    CERN Document Server

    Mirkin, Boris

    1996-01-01

    I am very happy to have this opportunity to present the work of Boris Mirkin, a distinguished Russian scholar in the areas of data analysis and decision making methodologies. The monograph is devoted entirely to clustering, a discipline dispersed through many theoretical and application areas, from mathematical statistics and combina­ torial optimization to biology, sociology and organizational structures. It compiles an immense amount of research done to date, including many original Russian de­ velopments never presented to the international community before (for instance, cluster-by-cluster versions of the K-Means method in Chapter 4 or uniform par­ titioning in Chapter 5). The author's approach, approximation clustering, allows him both to systematize a great part of the discipline and to develop many in­ novative methods in the framework of optimization problems. The optimization methods considered are proved to be meaningful in the contexts of data analysis and clustering. The material presented in ...