WorldWideScience

Sample records for charged particle trajectories

  1. Charged Particle Trajectories in Sweeper Magnet for LISA Commissioning Run

    Science.gov (United States)

    Barker, Alyson; Garrett, Sierra; Taylor, Nathaniel; Rogers, Warren F.; MoNA Collaboration

    2013-10-01

    The Large multi-Institutional Scintillator Array (LISA) located at NSCL, MSU, is used in conjunction with the Modular Neutron Array (MoNA) and the Sweeper Magnet for experiments investigating the properties of exotic neutron-rich nuclei near the neutron dripline. In the LISA commissioning experiment, designed to study neutron unstable 24O excited states, decay energy calculations require careful determination of charged fragment and neutron trajectories following breakup. Tracking of charged particles through the Sweeper Chamber is accomplished using two Cathode Readout Drift Chamber (CRDC) detectors separated by 1.8 m. During analysis of individual charged fragment passages through both CRDCs we recognized a majority of events had incomplete charge collection in the center pads. Without correction, standard peak location algorithms incorrectly determined the individual event centroids thereby reducing trajectory resolution. We developed a method and algorithm for correctly determining the centroids to restore trajectory resolution, critical for neutron breakup event reconstruction and decay energy determination. Work supported by NSF grant PHY-1101745.

  2. Influence of initial velocity on trajectories of a charged particle in uniform crossed electric and magnetic fields

    Science.gov (United States)

    Nurul Khotimah, Siti; Viridi, Sparisoma; Widayani

    2017-03-01

    Magnetic and electric fields can cause a charged particle to form interesting trajectories. In general, each trajectory is discussed separately in university physics textbooks for undergraduate students. In this work, a solution of a charged particle moving in a uniform electric field at right angles to a uniform magnetic field (uniform crossed electric and magnetic fields) is reported; it is limited to particle motion in a plane. Specific solutions and their trajectories are obtained only by varying the initial particle velocity. The result shows five basic trajectory patterns, i.e., straight line, sinusoid-like, cycloid, cycloid-like with oscillation, and circle-like. The region of each trajectory is also mapped in the initial velocity space of the particle. This paper is intended for undergraduate students and describes further the trajectories of a charged particle through the regions of electric and magnetic fields influenced by initial condition of the particle, where electromagnetic radiation of an accelerated particle is not considered.

  3. Measuring Colloidal Charges in Low Polar Media from Statistics of Particle Trajectories

    Science.gov (United States)

    Evans, Daniel Jo

    This thesis presents insights into the mechanism by which colloidal particles can acquire electrostatic charges in apolar media. It introduces advances in experimental techniques for measuring electrostatic interactions between colloidal particles suspended in such media and applies those techniques to a model system. We present precision measurements of the pair interactions between micron-scale poly (methylmethacrylate) (PMMA) spheres dispersed in a fluid medium with a low dielectric constant. Our measurement technique is based on blinking optical tweezer manipulation of dielectric spheres using digital high-speed video microscopy. We extract interaction measurements from particle trajectories using artifact-free particle tracking, making use of optimal statistical methods to reduce measurement errors to the femtonewton frontier while covering an extremely wide range of interaction energies. Despite the absence of charge control agents or added organic salts, these measurements reveal strong and long-ranged electrostatic repulsions consistent with substantial charges on the particles whose interactions are screened by trace concentrations of mobile ions in solution. Electrostatic interactions are revealed to be consistent with the screened-Coulomb potential predicted by DLVO theory. The hydrodynamic interaction is described by low-Reynolds number hydrodynamic coupling for two-spheres in a quiescent fluid. Linear dependence of the estimated charge on particle radius is consistent with charge renormalization theory, and offers insights into the charging mechanism in this interesting class of systems.

  4. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  5. Study of particle swarm optimization particle trajectories

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2006-01-01

    Full Text Available for parameter initiali- zation. For example, Eberhart and Shi found empirically that an inertia weight of 0.7298 and acceleration coefficients of 1.49618 are good parameter choices, leading to convergent trajectories [10]. While such empirically obtained... by Shi and Eberhart to eliminate the need for velocity clamping, but to still restrict divergent behaviour [21,8]. The inertia weight, w, controls the momentum of the particle by weighing the contribution F. van den Bergh, A.P. Engelbrecht...

  6. Quantum Particle-Trajectories and Geometric Phase

    OpenAIRE

    Dima, M.

    1999-01-01

    "Particle"-trajectories are defined as integrable $dx_\\mu dp^\\mu = 0$ paths in projective space. Quantum states evolving on such trajectories, open or closed, do not delocalise in $(x, p)$ projection, the phase associated with the trajectories being related to the geometric (Berry) phase and the Classical Mechanics action. High Energy Physics properties of states evolving on "particle"-trajectories are discussed.

  7. Particles trajectories in magnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  8. Test particle trajectories near cosmic strings

    Indian Academy of Sciences (India)

    We present a detailed analysis of the motion of test particle in the gravitational field of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.

  9. Controlling particle trajectories using oscillating microbubbles

    Science.gov (United States)

    Jalikop, Shreyas; Wang, Cheng; Hilgenfeldt, Sascha

    2010-11-01

    In many applications of microfluidics and biotechnology, such as cytometry and drug delivery, it is vital to manipulate the trajectories of microparticles such as vesicles or cells. On this small scale, inertial or gravitational effects are often too weak to exploit. We propose a mechanism to selectively trap and direct particles based on their size in creeping transport flows (Re1). We employ Rayleigh-Nyborg-Westervelt (RNW) streaming generated by an oscillating microbubble, which in turn generates a streaming flow component around the mobile particles. The result is an attractive interaction that draws the particle closer to the bubble. The impenetrability of the bubble interface destroys time-reversal symmetry and forces the particles onto either narrow trajectory bundles or well-defined closed trajectories, where they are trapped. The effect is dependent on particle size and thus allows for the passive focusing and sorting of selected sizes, on scales much smaller than the geometry of the microfluidic device. The device could eliminate the need for complicated microchannel designs with external magnetic or electric fields in applications such as particle focusing and size-based sorting.

  10. Accelerators for charged particle therapy

    Science.gov (United States)

    Flanz, Jacob

    2015-06-01

    History has shown that energetic particles can be useful for medical applications. From the time, in 1895 when Roentgen discovered X-rays, and in 1913 when Coolidge developed the vacuum X-ray tube, energetic particles have been an important tool for medicine. Development of the appropriate tool for effective and safe radiotherapy requires an in-depth understanding of the application and constraints. Various solutions are possible and choices must be analyzed on the basis of the suitability for meeting the requirements. Some of the requirements of charged particle therapy are summarized and various accelerator options are described and discussed.

  11. Magnetic guidance of charged particles

    Directory of Open Access Journals (Sweden)

    Dirk Dubbers

    2015-09-01

    Full Text Available Many experiments and devices in physics use static magnetic fields to guide charged particles from a source onto a detector, and we ask the innocent question: What is the distribution of particle intensity over the detector surface? One should think that the solution to this seemingly simple problem is well known. We show that, even for uniform guide fields, this is not the case, and we present analytical point spread functions (PSF for magnetic transport that deviate strongly from previous results. The “magnetic” PSF shows unexpected singularities, which were recently also observed experimentally, and which make detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the field of low-energy particle physics, these singularities may become a source of error in modern high precision experiments, or may be used for instrument tests.

  12. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald

    2012-01-01

    This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...

  13. Charge of dust particles in a particle chain

    CERN Document Server

    Yousefi, Razieh; Matthews, Lorin Swint; Hyde, Truell W

    2016-01-01

    Charged dust particles form structures which are extended in the vertical direction in the electrode sheath of a rf discharge when confined within a glass box. The charge on each particle as a function of height varies due to the changing plasma conditions and the wakefield of upstream particles. Here an analysis of the equilibrium state of chains of varying number of particles is analyzed to determine the charge on each particle within a vertically extended chain as well as the magnitude of the positive wakefield charge.

  14. Sedimentation of a charged porous particle in a charged cavity.

    Science.gov (United States)

    Chang, Ya J; Keh, Huan J

    2013-10-10

    The sedimentation of a charged porous sphere at the center of a charged spherical cavity filled with an electrolyte solution is analyzed. The thickness of the electric double layers around the particle and cavity wall is arbitrary, and their relaxation effect is considered. Through the use of a set of linearized electrokinetic equations and a perturbation method, the ionic electrochemical potential energy, electric potential, and velocity fields in the fluid are solved with the fixed space charge density of the particle and surface charge density of the cavity as the small perturbation parameters, and an explicit formula for the sedimentation velocity is obtained. Due to the electroosmotic enhancement on the fluid recirculation in the cavity caused by the sedimentation-induced electric field, the presence of the surface charges on the cavity wall increases the sedimentation velocity of the porous particle. For the sedimentation of a porous particle in a cavity with their fixed charges of the same sign, the effect of electric interaction between the particle and cavity wall in general increases the sedimentation velocity. For the case of their fixed charges with opposite signs, the sedimentation velocity is increased/reduced if the magnitude of the fixed charge density of the cavity wall is relatively large/small. The effect of the surface charges at the cavity wall on the sedimentation of the porous particle increases with an increase in the permeability for fluid flow within the particle and with a decrease in the particle-to-cavity radius ratio (i.e., an increase in the surface area of the cavity wall relative to a given size of the particle, which enhances the fluid recirculation effect).

  15. Charged Particle Monitor on the Astrosat Mission

    Indian Academy of Sciences (India)

    A. R. Rao

    2017-06-19

    Jun 19, 2017 ... Abstract. Charged Particle Monitor (CPM) on-board the Astrosat satellite is an instrument designed to detect the flux of charged particles at the satellite location. A Cesium Iodide Thallium (CsI(Tl)) crystal is used with a Kapton window to detect protons with energies greater than 1 MeV. The ground ...

  16. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  17. Electrically Charged Droplets in Microgravity. Impact and Trajectories

    Science.gov (United States)

    Brandenbourger, Martin; Caps, Hervé; Vitry, Youen; Dorbolo, Stéphane

    2017-06-01

    In this work, the interaction between electrically charged droplets in microgravity is considered. During the 22 s of microgravity brought by a parabolic flight, water droplets with a radius r ∈ [0.41 - 0.97] mm were released one in front of the other. A high-speed camera allowed studying their interaction in the focal plane. The trajectories of the droplets are well adjusted by a punctual charge model. In some experiments, a physical contact between the charged droplets was observed. These collisions are studied via a phase diagram comparing the droplet Weber number, We, and the collision parameter, χ. By comparing these collisions to experiments involving neutral droplets, we deduce how the collision diagram is affected by electric charges. In particular, we show that the criterion for an impact between two droplets is no more χ < 1.

  18. Method of particle trajectory recognition in particle flows of high particle concentration using a candidate trajectory tree process with variable search areas

    Science.gov (United States)

    Shaffer, Franklin D.

    2013-03-12

    The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.

  19. Quantum and classical dissipation of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra-Sierra, V.G. [Departamento de Física, Universidad Autónoma Metropolitana at Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D.F. (Mexico); Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Kunold, A., E-mail: akb@correo.azc.uam.mx [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Roa-Neri, J.A.E. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico)

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge.

  20. Impact of Airspace Charges on Transatlantic Aircraft Trajectories

    Science.gov (United States)

    Sridhar, Banavar; Ng, Hok K.; Linke, Florian; Chen, Neil Y.

    2015-01-01

    Aircraft flying over the airspace of different countries are subject to over-flight charges. These charges vary from country to country. Airspace charges, while necessary to support the communication, navigation and surveillance services, may lead to aircraft flying routes longer than wind-optimal routes and produce additional carbon dioxide and other gaseous emissions. This paper develops an optimal route between city pairs by modifying the cost function to include an airspace cost whenever an aircraft flies through a controlled airspace without landing or departing from that airspace. It is assumed that the aircraft will fly the trajectory at a constant cruise altitude and constant speed. The computationally efficient optimal trajectory is derived by solving a non-linear optimal control problem. The operational strategies investigated in this study for minimizing aircraft fuel burn and emissions include flying fuel-optimal routes and flying cost-optimal routes that may completely or partially reduce airspace charges en route. The results in this paper use traffic data for transatlantic flights during July 2012. The mean daily savings in over-flight charges, fuel cost and total operation cost during the period are 17.6 percent, 1.6 percent, and 2.4 percent respectively, along the cost- optimal trajectories. The transatlantic flights can potentially save $600,000 in fuel cost plus $360,000 in over-flight charges daily by flying the cost-optimal trajectories. In addition, the aircraft emissions can be potentially reduced by 2,070 metric tons each day. The airport pairs and airspace regions that have the highest potential impacts due to airspace charges are identified for possible reduction of fuel burn and aircraft emissions for the transatlantic flights. The results in the paper show that the impact of the variation in fuel price on the optimal routes is to reduce the difference between wind-optimal and cost-optimal routes as the fuel price increases. The

  1. Quantum mechanics of charged particle beam optics

    CERN Document Server

    Khan, Sameen Ahmed

    2018-01-01

    Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.

  2. Charged particles constrained to a curved surface

    CERN Document Server

    Müller, Thomas

    2012-01-01

    We study the motion of charged particles constrained to arbitrary two-dimensional curved surfaces but interacting in three-dimensional space via the Coulomb potential. To speed-up the interaction calculations, we use the parallel compute capability of the Compute Unified Device Architecture (CUDA) of todays graphics boards. The particles and the curved surfaces are shown using the Open Graphics Library (OpenGL). The paper is intended to give graduate students, who have basic experiences with electrostatics and differential geometry, a deeper understanding in charged particle interactions and a short introduction how to handle a many particle system using parallel computing on a single home computer

  3. Charged particle therapy: the physics of interaction.

    Science.gov (United States)

    Lomax, Antony J

    2009-01-01

    Particle therapy has a long and distinguished history with more than 50,000 patients having been treated, mainly with high-energy proton therapy. Particularly, for proton therapy, there is an increasing interest in exploiting the physical characteristics of charged particles for further improving the potential of radiation therapy. In this article, we review the most important interactions of charged particles with matter and describe the basic physical principles that underlie why particle beams behave the way they do and why such a behavior could bring many benefits in radiation therapy.

  4. Further Problems with Integral Spin Charged Particles

    Directory of Open Access Journals (Sweden)

    Comay E.

    2013-07-01

    Full Text Available The structure of the Lagrangian density of quantum theories of electrically charged particles is analyzed. It is pointed out that a well known and self-consistent expression exists for the electromagnetic interactions of a spin-1/2 Dirac particle. On the other hand, using the Noether theorem, it is shown that no such expression exists for the spin-0 Klein-Gordon charged particle as well as for the W spin-1 particle. It is also explained why effective expressions used in practical analysis of collider data cannot be a part of a self-consistent theory. The results cast doubt on the validity of the electroweak theory.

  5. a Search for Fractionally Charged Particles.

    Science.gov (United States)

    Milner, Richard Gerard

    An ion-source and a charge spectrometer have been built which make it possible to search in solid stable matter for particles with non-integral charge. The ion -source uses a beam of magnetically analyzed 30 keV Ar('+) ions to sputter the sample in an ultra high vacuum environment. The charge spectrometer comprises a 3 MV Pelletron tandem accelerator followed by a 0.2% resolution electrostatic analysis system and a (DELTA)E-E detector system. The entire apparatus has been constructed to be independent of mass over a mass range of 0.2 GeV/c('2) to 250 GeV/c('2). It is assumed that the fractionally charged particle is able to bind an electron. A search has been carried out in samples of niobium and tungsten for fractionally charged particles (FCP) with fractional charge modulo 1/3. In particular, we have looked for Z = N + 1/3 ; N = 0,1... and Z = N + 2/3; N = 0,1. Upper limits have been obtained for the FCP concentration per target atom. These upper limits vary between 1 x 10(' -16) and 3 x 10('--9) depending on the material searched and the charge state examined. Some interesting events have been seen. These are FCP candidates, but they can also be explained as improbable integrally charged events.

  6. Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Hilke, H J

    2011-01-01

    Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...

  7. First- and second-order charged particle optics

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.L.; Servranckx, R.V.

    1984-07-01

    Since the invention of the alternating gradient principle there has been a rapid evolution of the mathematics and physics techniques applicable to charged particle optics. In this publication we derive a differential equation and a matrix algebra formalism valid to second-order to present the basic principles governing the design of charged particle beam transport systems. A notation first introduced by John Streib is used to convey the essential principles dictating the design of such beam transport systems. For example the momentum dispersion, the momentum resolution, and all second-order aberrations are expressed as simple integrals of the first-order trajectories (matrix elements) and of the magnetic field parameters (multipole components) characterizing the system. 16 references, 30 figures.

  8. Search milli-charged particles at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Langeveld, W.G.J. [Stanford Univ., CA (United States)

    1997-01-01

    Particles with electric charge q {triple_bond} Qe {le} 10{sup -3} e and masses in the range 1-1000 MeV/c{sup 2} are not excluded by present experiments or by astrophysical or cosmological arguments. A beam dump experiment uniquely suited to the detection of such {open_quotes}milli-charged{close_quotes} particles has been carried out at SLAC, utilizing the short-duration pulses of the SLC electron beam to establish a tight coincidence window for the signal. The detector, a large scintillation counter sensitive to very small energy depositions, provided much greater sensitivity than previous searches. Analysis of the data leads to the exclusion of a substantial portion of the charge-mass plane. In this report, a preliminary mass-dependent upper limit is presented for the charge of milli-charged particles, ranging from Q = 1.7 x 10{sup -5} at milli-charged particle mass 0.1 MeV/c{sup 2} to Q = 9.5 x 10{sup -4} at 100 MeV/c{sup 2}.

  9. Physics of new methods of charged particle acceleration collective effects in dense charged particle ensembles

    CERN Document Server

    Bonch-Osmolovsky, A G

    1994-01-01

    This volume discusses the theory of new methods of charged particle acceleration and its physical and mathematical descriptions. It examines some collective effects in dense charged particle ensembles, and traces the history of the development of the field of accelerator physics.

  10. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    Science.gov (United States)

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  11. Hybrid Quantum Systems with Trapped Charged Particles

    Science.gov (United States)

    Kotler, Shlomi; Leibfried, Dietrich; Simmonds, Raymond; Wineland, Dave

    We will review a joint effort by the Ion Storage Group and the Advanced Microwave Photonics Group at NIST (Boulder, CO) to design a hybrid system that interfaces charged particles with macroscopic high-Q resonators. We specifically consider coupling trapped charges to superconducting LC resonators, the mechanical modes of Silicon-Nitride membranes, and piezo-electric materials. We aim to achieve the strong coupling regime, where a single quantum of motion of the trapped charge can be coherently exchanged with harmonic motion of the macroscopic entity (electrical and/or mechanical). These kind of devices could potentially take advantage of both macroscopic control techniques and the long quantum coherence of its trapped charged particles.

  12. Particle Trajectory Visualization and Identification with Timepix Detectors

    CERN Document Server

    Flores, Jessica; Shaa, Ameir; CERN. Geneva. EP Department

    2016-01-01

    The TimePix detector is a largely passive detector deployed at point 8 on the Large Hadron Collider (LHC) ring. It is able to detect different kinds of radiation in real time. Energy deposits in the detector is registered as signal describing the spacial trajectories of passing particles. The signal data is analysed and classified in order to understand the types of particle interactions occurring and identify anomalous occurrences. Using topological features if trajectories described by the data and one or more related features of said topology, the data was categorized using an algorithm to an efficiency of 85%.

  13. Charged particle dynamics in axisymmetric nonconservative beams

    Science.gov (United States)

    Radchenko, Valery I.; Nikonov, Oleg I.

    1998-04-01

    Many of ion-beam technologies lead to the requirement of cross-section minimization of a particle beam in the object region acted upon, or to the problem of minimization of charged particle beam emittance (the growth rate of emittance) for a specified segment of the beam formation. In this paper we study the above problem for axisymmetric beams representing a nonconservative system of charged particles. It is shown that under certain assumptions the beam in question can be described by appropriate equations that possess an explicit solution. The latter allows one to study the influence of particle density distribution at the starting point on the future beam evolution. The results are based on approaches developed in J.D. Lawson, The Physics of Charged-Particle Beams, Clarendon Press, Oxford, 1977; V.I. Radchenko, G.D. Ved'manov, JETP 80 (1) (1995) 1-9 (Zh.Eksp. i Teor. Fiz. 107 (1995) 3-19); O.I. Nikonov, Proceedings of International Workshop "Beam Dynamics and Optimization", St. Petersburg, Russian Federation, 1994, pp. 121-129.

  14. Universal intermittent properties of particle trajectories in highly turbulent flows

    DEFF Research Database (Denmark)

    Arnèodo, A.; Benzi, R.; Berg, Jacob

    2008-01-01

    We present a collection of eight data sets from state-of-the-art experiments and numerical simulations on turbulent velocity statistics along particle trajectories obtained in different flows with Reynolds numbers in the range R-lambda is an element of [120740]. Lagrangian structure functions fro...

  15. Learning the nonlinear interactions from particle trajectories

    CERN Document Server

    Lushnikov, Pavel M; Turitsyn, Konstantin S

    2012-01-01

    Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a novel statistical analysis technique for learning the characteristics of the nonlinear potential from the cumulants of the displacement distribution. The efficiency of the approach is demonstrated on the analysis of kurtosis of the displacement distribution of the particle traveling on a membrane in a cage-type potential. Results of numerical simulations are supported by analytical predictions. We show that the approach allows robust identification of the potential for the much lower temporal resolution compare with the mean square displacement analysis.

  16. Variational Algorithms for Test Particle Trajectories

    Science.gov (United States)

    Ellison, C. Leland; Finn, John M.; Qin, Hong; Tang, William M.

    2015-11-01

    The theory of variational integration provides a novel framework for constructing conservative numerical methods for magnetized test particle dynamics. The retention of conservation laws in the numerical time advance captures the correct qualitative behavior of the long time dynamics. For modeling the Lorentz force system, new variational integrators have been developed that are both symplectic and electromagnetically gauge invariant. For guiding center test particle dynamics, discretization of the phase-space action principle yields multistep variational algorithms, in general. Obtaining the desired long-term numerical fidelity requires mitigation of the multistep method's parasitic modes or applying a discretization scheme that possesses a discrete degeneracy to yield a one-step method. Dissipative effects may be modeled using Lagrange-D'Alembert variational principles. Numerical results will be presented using a new numerical platform that interfaces with popular equilibrium codes and utilizes parallel hardware to achieve reduced times to solution. This work was supported by DOE Contract DE-AC02-09CH11466.

  17. Numerical simulation of flow fields and particle trajectories

    DEFF Research Database (Denmark)

    Mayer, Stefan

    2000-01-01

    in the simulated unsteady ciliary driven flow. A fraction of particles appear to follow trajectories, that resemble experimentally observed particle capture events in the downstream feeding system of the polycheate Sabella penicillus, indicating that particles can be captured by ciliary systems without mechanical...... contact between particle and cilia. A local capture efficiency is defined and its value computed for various values of beat frequencies and other parameters. The results indicate that the simulated particle capture process is most effective when the flow field oscillates within timescales comparable......A model describing the ciliary driven flow and motion of suspended particles in downstream suspension feeders is developed. The quasi-steady Stokes equations for creeping flow are solved numerically in an unbounded fluid domain around cylindrical bodies using a boundary integral formulation...

  18. Engineering particle trajectories in microfluidic flows using particle shape.

    Science.gov (United States)

    Uspal, William E; Burak Eral, H; Doyle, Patrick S

    2013-01-01

    Recent advances in microfluidic technologies have created a demand for techniques to control the motion of flowing microparticles. Here we consider how the shape and geometric confinement of a rigid microparticle can be tailored for 'self-steering' under external flow. We find that an asymmetric particle, weakly confined in one direction and strongly confined in another, will align with the flow and focus to the channel centreline. Experimentally and theoretically, we isolate three viscous hydrodynamic mechanisms that contribute to particle dynamics. Through their combined effects, a particle is stably attracted to the channel centreline, effectively behaving as a damped oscillator. We demonstrate the use of self-steering particles for microfluidic device applications, eliminating the need for external forces or sheath flows.

  19. Method and apparatus for charged particle propagation

    Science.gov (United States)

    Hershcovitch, A.

    1996-11-26

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.

  20. High-LET charged particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R. (Lawrence Berkeley Lab., CA (United States). Research Medicine and Radiation Biophysics Div. California Univ., San Francisco, CA (United States). Dept. of Radiation Oncology)

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  1. Charged particle traps physics and techniques of charged particle field confinement

    CERN Document Server

    Major, Fouad G; Werth, Günther

    2005-01-01

    This book provides an introduction and guide to modern advances in charged particle (and antiparticle) confinement by electromagnetic fields. Confinement in different trap geometries, the influence of trap imperfections, classical and quantum mechanical description of the trapped particle motion, different methods of ion cooling to low temperatures, and non-neutral plasma properties (including Coulomb crystals) are the main subjects. They form the basis of such applications of charged particle traps as high-resolution optical and microwave spectroscopy, mass spectrometry, atomic clocks, and, potentially, quantum computing

  2. The Influence of Particle Charge on Heterogeneous Reaction Rate Coefficients

    Science.gov (United States)

    Aikin, A. C.; Pesnell, W. D.

    2000-01-01

    The effects of particle charge on heterogeneous reaction rates are presented. Many atmospheric particles, whether liquid or solid are charged. This surface charge causes a redistribution of charge within a liquid particle and as a consequence a perturbation in the gaseous uptake coefficient. The amount of perturbation is proportional to the external potential and the square of the ratio of debye length in the liquid to the particle radius. Previous modeling has shown how surface charge affects the uptake coefficient of charged aerosols. This effect is now included in the heterogeneous reaction rate of an aerosol ensemble. Extension of this analysis to ice particles will be discussed and examples presented.

  3. Hybrid quantum systems with trapped charged particles

    Science.gov (United States)

    Kotler, Shlomi; Simmonds, Raymond W.; Leibfried, Dietrich; Wineland, David J.

    2017-02-01

    Trapped charged particles have been at the forefront of quantum information processing (QIP) for a few decades now, with deterministic two-qubit logic gates reaching record fidelities of 99.9 % and single-qubit operations of much higher fidelity. In a hybrid system involving trapped charges, quantum degrees of freedom of macroscopic objects such as bulk acoustic resonators, superconducting circuits, or nanomechanical membranes, couple to the trapped charges and ideally inherit the coherent properties of the charges. The hybrid system therefore implements a "quantum transducer," where the quantum reality (i.e., superpositions and entanglement) of small objects is extended to include the larger object. Although a hybrid quantum system with trapped charges could be valuable both for fundamental research and for QIP applications, no such system exists today. Here we study theoretically the possibilities of coupling the quantum-mechanical motion of a trapped charged particle (e.g., an ion or electron) to the quantum degrees of freedom of superconducting devices, nanomechanical resonators, and quartz bulk acoustic wave resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoherence rate, i.e., the rate at which quantum superposition decays. A hybrid system can only be considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is to examine specific examples by using parameters that are experimentally attainable in the foreseeable future. We conclude that hybrid quantum systems involving a single atomic ion are unfavorable compared with the use of a single electron because the coupling rates between the ion and its counterpart are slower than the expected decoherence rates. A system based on trapped electrons, on the other hand, might have coupling rates that significantly exceed decoherence rates. Moreover, it might have appealing properties such

  4. Synthesis of electrostatic fields for transportation of charged particle beams

    Directory of Open Access Journals (Sweden)

    Vladimir V. Pavlov

    2016-06-01

    Full Text Available In this paper, an approach to creating corpuscular-optical devices for transportation and transformation of charged particle beams has been elucidated. These devices are able to optimize and create the most convenient configuration of ionic or electron paths. The approach relies upon the inverse dynamics problem formulated on the basis of the Hamilton-Jacobi equation. The motion in the symmetry plane of a three-dimensional (3D field was considered. The problem was solved by analytical methods. An algorithm for constructing electric fields providing the particle motion on the desired trajectories was described. А key to this algorithm lies with a concept of conformal transformation from the theory of complex-valued function. This procedure was illustrated by examples. Quadratic potential was chosen as a basis. Three functions of conformal transformation were considered, providing the rotation of the focused charged particle beam at a fixed angle, the transformation of divergent flow to parallel one. The calculated two-dimensional potentials were extended into 3D-space by power series expansion on transverse coordinate. Device embodiments were suggested on the basis of the calculated field structures.

  5. Alpha particles diffusion due to charge changes

    Energy Technology Data Exchange (ETDEWEB)

    Clauser, C. F., E-mail: cesar.clauser@ib.edu.ar; Farengo, R. [Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica and Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2015-12-15

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processor unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.

  6. Successive approximations for charged particle motion

    Science.gov (United States)

    Hoffstaetter

    2000-04-01

    Single-particle dynamics in electron microscopes, ion or electron lithographic instruments, particle accelerators, and particle spectrographs is described by weakly nonlinear ordinary differential equations. Therefore, the linear part of the equation of motion is usually solved and the nonlinear effects are then found in successive order by iteration methods. When synchrotron radiation is not important, the equation can be derived from a Hamiltonian or a Lagrangian. The Hamiltonian nature can lead to simplified computations of particle transport through an optical device when a suitable computational method is used. H. Rose and his school have contributed to these techniques by developing and intensively using the eikonal method [1-3]. Many ingenious microscopic and lithographic devices were found by Rose and his group due to the simple structure of this method [4-6]. The particle optical eikonal method is either derived by propagating the electron wave or by the principle of Maupertuis for time-independent fields. Maybe because of the time-dependent fields which are often required, in the area of accelerator physics the eikonal method has never become popular, although Lagrange methods had been used sometimes already in early days [7]. In this area classical Hamilitonian dynamics is usually used to compute nonlinear particle motion. Here the author will therefore derive the eikonal method from a Hamiltonian quite familiar to the accelerator physics community and reformulate it in a simplifying way. With the event of high-energy polarized electron beams [8] and plans for high-energy proton beams [9], nonlinear effects in spin motion have become important in high-energy accelerators. The author introduces a successive approximation for the nonlinear effects in the coupled spin and orbit motion of charged particles which resembles some of the simplifications resulting from the eikonal method for the pure orbit motion.

  7. Charged particle beam current monitoring tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed.

  8. Behaviour of Charged Spinning Massless Particles

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2017-12-01

    Full Text Available We revisit the classical theory of a relativistic massless charged point particle with spin and interacting with an external electromagnetic field. In particular, we give a proper definition of its kinetic energy and its total energy, the latter being conserved when the external field is stationary. We also write the conservation laws for the linear and angular momenta. Finally, we find that the particle’s velocity may differ from c as a result of the spin—electromagnetic field interaction, without jeopardizing Lorentz invariance.

  9. Energization of charged particles in planetary magnetospheres

    Science.gov (United States)

    Martínez-Gómez, E.; Durand-Manterola, H. J.; Pérez de Tejada, H.

    2007-08-01

    A model is presented to describe the energization of charged particles in planetary magnetospheres. The model is based on the stochastic acceleration produced by a random electric field that is induced by the magnetic field fluctuations measured within the magnetospheres. The stochastic behavior of the electric field is simulated through a Monte Carlo method. We solve the equation of motion for a single charged particle—which comprises the stochastic acceleration due to the stochastic electric field, the Lorentz acceleration (containing the local magnetic field and the corotational electric field) and the gravitational planetary acceleration of the particle—under several initial conditions. The initial conditions include the ion species and the velocity distribution of the particles which depends on the sources they come from (solar wind, ionospheres, rings and satellites). We applied this model to Saturn’s inner magnetosphere using a sample of particles (H+, H2O+, N+, O+ and OH+) initially located on Saturn’s north pole, above the C-Ring, on the south pole of Enceladus, in the north pole of Dione and above the E-Ring. The results show that the particles tend to increase the value of their energy with time reaching several eV in a few seconds and the large energization is observed far from the planet. We can distinguish three main energization regions within Saturn’s inner magnetosphere: minimum (Saturn’s ionosphere), intermediate (Dione) and high-energy (Enceladus and the E-ring). The resulting energy spectrum follows a power-law distribution (>1 keV), a logistic, an exponential decay or an asymmetric sigmoidal (<1 keV).

  10. Charged Particle Tracking with the Timepix ASIC

    CERN Document Server

    Akiba, Kazuyoshi; Collins, P; Crossley, M; Dumps, R; Gersabeck, M; Gligorov, Vladimir V; Llopart, X; Nicol, M; Poikela, T; Cabruja, Enric; Fleta, C; Lozano, M; Pellegrini, G; Bates, R; Eklund, L; Hynds, D; Ferre Llin, L; Maneuski, D; Parkes, C; Plackett, R; Rodrigues, E; Stewart, G; Akiba, K; van Beuzekom, M; Heijne, V; Heijne, E H M; Gordon, H; John, M; Gandelman, M; Esperante, D; Gallas, A; Vazquez Regueiro, P; Bayer, F; Michel, T; Needham, M; Artuso, M; Badman, R; Borgia, A; Garofoli, J; Wang, J; Xing, Z; Buytaert, Jan; Leflat, Alexander

    2012-01-01

    A prototype particle tracking telescope has been constructed using Timepix and Medipix ASIC hybrid pixel assemblies as the six sensing planes. Each telescope plane consisted of one 1.4 cm2 assembly, providing a 256x256 array of 55 micron square pixels. The telescope achieved a pointing resolution of 2.3 micron at the position of the device under test. During a beam test in 2009 the telescope was used to evaluate in detail the performance of two Timepix hybrid pixel assemblies; a standard planar 300 micron thick sensor, and 285 micron thick double sided 3D sensor. This paper describes a detailed charge calibration study of the pixel devices, which allows the true charge to be extracted, and reports on measurements of the charge collection characteristics and Landau distributions. The planar sensor achieved a best resolution of 4.0 micron for angled tracks, and resolutions of between 4.4 and 11 micron for perpendicular tracks, depending on the applied bias voltage. The double sided 3D sensor, which has signific...

  11. A Search for Free Fractional Electric Charge Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, Valerie

    2000-12-04

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.

  12. A Search for Free Fractional Electric Charge Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    Halyo, Valerie

    2000-12-04

    A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied| about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.

  13. Effect of a filamentary discharge on the particle trajectory in a plane-to-plane DBD precipitator

    Energy Technology Data Exchange (ETDEWEB)

    Zouzou, N; Moreau, E, E-mail: noureddine.zouzou@univ-poitiers.fr [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, SP2MI - Teleport 2 Boulevard Marie et Pierre Curie, BP 30179, F86962 Futuroscope Chasseneuil Cedex (France)

    2011-07-20

    In this paper, particle velocity fields inside a plane-to-plane dielectric barrier discharge (DBD) precipitator are investigated using time-resolved particle image velocimetry. The main objective is to analyse the effect of a filamentary discharge on the particle trajectory. A sine wave high voltage (24 kV, 30 Hz) is applied to create a DBD inside a planar gap (6.4 mm) filled with particles with a mean size of about 0.28 {mu}m. The time-averaged velocity of the flow in the centre of the channel is about 1 m s{sup -1}. After the establishment of the discharge several filaments cross the gap, and induce a strong effect on the particle trajectory. During a complete period of the voltage, successive phenomena are observed. Before the first filament propagation, the shape of the velocity profiles is typical of a laminar flow. At the early stage following the filament propagation across the gap, the grey-level images show a sudden disappearance of the particles at the same location where the filament takes place. This is due to the fast precipitation of particles. During the positive half-cycle, the particles migrate mainly towards the grounded electrode due to their positive net charge. At the end of a half-cycle, the polarity of the electric field is reversed then the particles initially charged return towards the channel centre. Consequently, the particles oscillate delaying their collection.

  14. Electrophysical Systems Based On Charged Particle Accelerators

    CERN Document Server

    Vorogushin, M F

    2004-01-01

    The advancement of the charged particle accelerator engineering affects appreciably the modern tendencies of the scientific and technological progress in the world. In a number of advanced countries, this trend is one of the most dynamically progressing in the field of applied science and high-technology production. Such internationally known firms as VARIAN, SIEMENS, PHILIPS, ELECTA, IBA, HITACHI, etc., with an annual budget of milliards of dollars and growth rate of tens of percent may serve as an example. Although nowadays the projects of new large-scale accelerators for physical research are not implemented so quickly and frequently as desired, accelerating facilities are finding ever-widening application in various fields of human activities. The contribution made by Russian scientists into high-energy beams physics is generally known. High scientific and technical potential in this field, qualified personnel with a high creative potential, modern production and test facilities and state-of-the-art techn...

  15. Space charge physics for particle accelerators

    CERN Document Server

    Hofmann, Ingo

    2017-01-01

    Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed....

  16. Searches for Fractionally Charged Particles: What Should Be Done Next?

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Martin L.; /SLAC

    2009-01-15

    Since the initial measurements of the electron charge a century ago, experimenters have faced the persistent question as to whether elementary particles exist that have charges that are fractional multiples of the electron charge. I concisely review the results of the last 50 years of searching for fractional charge particles with no confirmed positive results. I discuss the question of whether more searching is worthwhile?

  17. Motion of particles near a magnetized tidal charged black hole

    Science.gov (United States)

    Sharif, M.; Kousar, Lubna

    2017-07-01

    This paper is devoted to study the effects of tidal charge on the motion of both neutral as well as charged particles around a magnetized tidal charged black hole. We analyze the innermost stable circular orbits and conditions for escape velocity. In order to discuss stability of orbits, we explore Lyapunov exponent and effective force on the particle. The center of mass energy of the interacting particles is studied in the presence/absence of external magnetic field. We conclude that the external magnetic field as well as tidal charge has a great influence on the particle's motion.

  18. Effects of charged particles on human tumor cells

    Directory of Open Access Journals (Sweden)

    Kathryn D Held

    2016-02-01

    Full Text Available The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of Relative Biological Effectiveness (RBE for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions and importance of fractionation, including use of hypofractionation, with charged particles.

  19. Basic features of a charged particle dynamics in a laser beam with static axial magnetic field

    Science.gov (United States)

    Dubik, A.; Małachowski, M. J.

    2009-12-01

    In this paper, the trajectory and kinetic energy of a charged particle, subjected to interaction from a laser beam containing an additionally applied external static axial magnetic field, have been analyzed. We give the rigorous analytical solutions of the dynamic equations. The obtained analytical solutions have been verified by performing calculations using the derived solutions and the well known Runge-Kutta procedure for solving original dynamic equations. Both methods gave the same results. The simulation results have been obtained and presented in graphical form using the derived solutions. Apart from the laser beam, we show the results for a maser beam. The obtained analytical solutions enabled us to perform a quantitative illustration, in a graphical form of the impact of many parameters on the shape, dimensions and the motion direction along a trajectory. The kinetic energy of electrons has also been studied and the energy oscillations in time with a period equal to the one of a particle rotation have been found. We show the appearance of, so-called, stationary trajectories (hypocycloid or epicycloid) which are the projections of the real trajectory onto the (x, y) plane. Increase in laser or maser beam intensity results in the increase in particle's trajectory dimension which was found to be proportional to the amplitude of the electric field of the electromagnetic wave. However, external magnetic field increases the results in shrinking of the trajectories. Performed studies show that not only amplitude of the electric field but also the static axial magnetic field plays a crucial role in the acceleration process of a charged particle. At the authors of this paper best knowledge, the precise analytical solutions and theoretical analysis of the trajectories and energy gains by the charged particles accelerated in the laser beam and magnetic field are lacking in up to date publications. The authors have an intention to clarify partly some important aspects

  20. Discrete element method modeling of the triboelectric charging of polyethylene particles: Can particle size distribution and segregation reduce the charging?

    Science.gov (United States)

    Konopka, Ladislav; Kosek, Juraj

    2015-10-01

    Polyethylene particles of various sizes are present in industrial gas-dispersion reactors and downstream processing units. The contact of the particles with a device wall as well as the mutual particle collisions cause electrons on the particle surface to redistribute in the system. The undesirable triboelectric charging results in several operational problems and safety risks in industrial systems, for example in the fluidized-bed polymerization reactor. We studied the charging of polyethylene particles caused by the particle-particle interactions in gas. Our model employs the Discrete Element Method (DEM) describing the particle dynamics and incorporates the ‘Trapped Electron Approach’ as the physical basis for the considered charging mechanism. The model predicts the particle charge distribution for systems with various particle size distributions and various level of segregation. Simulation results are in a qualitative agreement with experimental observations of similar particulate systems specifically in two aspects: 1) Big particles tend to gain positive charge and small particles the negative one. 2) The wider the particle size distribution is, the more pronounced is the charging process. Our results suggest that not only the size distribution, but also the effect of the spatial segregation of the polyethylene particles significantly influence the resulting charge distribution ‘generated’ in the system. The level of particle segregation as well as the particle size distribution of polyethylene particles can be in practice adjusted by the choice of supported catalysts, by the conditions in the fluidized-bed polymerization reactor and by the fluid dynamics. We also attempt to predict how the reactor temperature affects the triboelectric charging of particles.

  1. Fog camera to visualize ionizing charged particles; Camara de niebla para visualizar particulas cargadas ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo A, L.; Rodriguez R, N. I.; Vega C, H. R., E-mail: ingtrujilloa@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The human being can not perceive the different types of ionizing radiation, natural or artificial, present in the nature, for what appropriate detection systems have been developed according to the sensibility to certain radiation type and certain energy type. The objective of this work was to build a fog camera to visualize the traces, and to identify the trajectories, produced by charged particles with high energy, coming mainly of the cosmic rays. The origin of the cosmic rays comes from the solar radiation generated by solar eruptions where the protons compose most of this radiation. It also comes, of the galactic radiation which is composed mainly of charged particles and gamma rays that comes from outside of the solar system. These radiation types have energy time millions higher that those detected in the earth surface, being more important as the height on the sea level increases. These particles in their interaction produce secondary particles that are detectable by means of this cameras type. The camera operates by means of a saturated atmosphere of alcohol vapor. In the moment in that a charged particle crosses the cold area of the atmosphere, the medium is ionized and the particle acts like a condensation nucleus of the alcohol vapor, leaving a visible trace of its trajectory. The built camera was very stable, allowing the detection in continuous form and the observation of diverse events. (Author)

  2. Abnormal Kinetic Energy of Charged Dust Particles in Plasmas

    NARCIS (Netherlands)

    Norman, G.; Stegailov, V.; Timofeev, A.

    A mechanism of the increase of the average kinetic energy of charged dust particles in gas discharge plasmas is suggested. Particle charge fluctuation is the reason for the appearance of forced resonance, which heals vertical oscillations. The energy transfer from vertical oscillations to the

  3. Charge of a macroscopic particle in a plasma sheath.

    Science.gov (United States)

    Samarian, A A; Vladimirov, S V

    2003-06-01

    Charging of a macroscopic body levitating in a rf plasma sheath is studied experimentally and theoretically. The nonlinear charge vs size dependence is obtained. The observed nonlinearity is explained on the basis of an approach taking into account different plasma conditions for the levitation positions of different particles. The importance of suprathermal electrons' contribution to the charging process is demonstrated.

  4. Dust particle charge distribution in a stratified glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sukhinin, Gennady I [Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Lavrentyev Ave., 1, Novosibirsk 630090 (Russian Federation); Fedoseev, Alexander V [Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Lavrentyev Ave., 1, Novosibirsk 630090 (Russian Federation); Ramazanov, Tlekkabul S [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty 050012 (Kazakhstan); Dzhumagulova, Karlygash N [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty 050012 (Kazakhstan); Amangaliyeva, Rauan Zh [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty 050012 (Kazakhstan)

    2007-12-21

    The influence of a highly pronounced non-equilibrium characteristic of the electron energy distribution function in a stratified dc glow discharge on the process of dust particle charging in a complex plasma is taken into account for the first time. The calculated particle charge spatial distribution is essentially non-homogeneous and it can explain the vortex motion of particles at the periphery of a dusty cloud obtained in experiments.

  5. Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity

    Energy Technology Data Exchange (ETDEWEB)

    Totsuji, Hiroo, E-mail: totsuji-09@t.okadai.jp

    2017-03-11

    The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity. - Highlights: • In fine particle (dusty) plasmas, the charge neutrality is much enhanced by the existence of fine particles. • The enhancement of charge neutrality generally occurs under microgravity and gravity. • Structure of fine particle clouds under gravity is determined by applying the enhanced charge neutrality.

  6. Quantum-trajectory analysis for charge transfer in solid materials induced by strong laser fields

    Science.gov (United States)

    Jiang, Shicheng; Yu, Chao; Yuan, Guanglu; Wu, Tong; Wang, Ziwen; Lu, Ruifeng

    2017-07-01

    We investigate the dependence of charge transfer on the intensity of driving laser field when SiO2 crystal is irradiated by an 800 nm laser. It is surprising that the direction of charge transfer undergoes a sudden reversal when the driving laser intensity exceeds critical values with different carrier-envelope phases. By applying quantum-trajectory analysis, we find that the Bloch oscillation plays an important role in charge transfer in solids. Also, we study the interaction of a strong laser with gallium nitride (GaN), which is widely used in optoelectronics. A pump-probe scheme is applied to control the quantum trajectories of the electrons in the conduction band. The signal of charge transfer is controlled successfully by means of a theoretically proposed approach.

  7. Theory of using magnetic deflections to combine charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Steckbeck, Mackenzie K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.

  8. A simultaneous charge and size measurement method for individual airborne particles using digital holographic particle imaging

    Science.gov (United States)

    Hammond, Adam; Dou, Zhongwang; Liang, Zach; Meng, Hui

    2016-11-01

    Recently, significant inquiry to understand the effects of particle charge on particle laden flow have been made, particularly in the study of Lagrangian particle-pair statistics. Quantification of individual particle charge allows relation of inter-particle electric forces and turbulence-induced forces. Here we offer a simultaneous, individual particle charge and size measurement technique utilizing in-line digital holographic Particle Tracking Velocimetry (hPTV). The method measures particle electric mobility through its velocity response within a uniform electric field using a sequence of holograms, next the particle diameter is measured with the same holograms using a matched-filter developed by Lu et al. (2012) as an input for calculation of charge. Consequently, a benefit of this method is that particle charge is calculated on the individual level, versus a mean charge calculated from a group of particles, offering improved estimations of charge distributions for studies of particle laden flow. This work was supported by NSF CBET-0967407 and CBET-0967349.

  9. Large Bulk Matter Search for Fractional Charge Particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Irwin T

    2002-06-11

    We have carried out the largest search for stable particles with fractional electric charge, based on an oil drop method that incorporates a horizontal electric field and upward air flow. No evidence for such particles was found, giving a 95% confidence level upper limit of 1.17 x 10{sup -22} particles per nucleon on the abundance of fractional charge particles in silicone oil for 0.18e {le} |Q{sub residual}| {le} 0.82e. Since this is the first use of this new method we describe the advantages and limitations of the method.

  10. Large Bulk Matter Search for Fractional Charge Particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Irwin T

    2002-12-04

    We have carried out the largest search for stable particles with fractional electric charge, based on an oil drop method that incorporates a horizontal electric field and upward air flow. No evidence for such particles was found, giving a 95% confidence level upper limit of 1.17 x 10{sup -22} particles per nucleon on the abundance of fractional charge particles in silicone oil for 0.18e {le} |Q{sub residual}| {le} 0.82e. Since this is the first use of this new method we describe the advantages and limitations of the method.

  11. VOYAGER 1 JUP LOW ENERGY CHARGED PARTICLE CALIB. 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 1 WHILE THE SPACECRAFT WAS IN THE VICINITY OF JUPITER....

  12. VOYAGER 1 SAT LOW ENERGY CHARGED PARTICLE CALIB. 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 1 WHILE THE SPACECRAFT WAS IN THE VICINITY OF SATURN. THIS...

  13. VOYAGER 2 SAT LOW ENERGY CHARGED PARTICLE CALIB. 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 2 WHILE THE SPACECRAFT WAS IN THE VICINITY OF SATURN. THIS...

  14. VOYAGER 2 JUP LOW ENERGY CHARGED PARTICLE CALIB. 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS DATA SET CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 2 WHILE THE SPACECRAFT WAS IN THE VICINITY OF JUPITER....

  15. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  16. Radiobiology with heavy charged particles: a historical review

    Energy Technology Data Exchange (ETDEWEB)

    Skarsgard, L.D. [Dept. of Medical Biophysics, B.C. Cancer Research Centre and TRIUMF, Vancouver (Canada)

    1997-09-01

    The presentation will attempt to briefly review some of radiobiological data on the effects of heavy charged particles and to discuss the influence of those studies on the clinical application which followed. (orig./MG)

  17. Search for fractionally charged particles in pp collisions using 2011 CMS data

    CERN Document Server

    CMS Collaboration

    2012-01-01

    fractionally charged particles. % This is the most stringent collider limit on the production of % a particle with charge $\\pm 2e/3$ and the first collider limit on the % production of a particle with charge $\\pm e/3$.

  18. Proposal to Search for Magnetically Charged Particles with Magnetic Charge 1e

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Michael K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fryberger, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-11-02

    A model for composite elementary Standard Model (SM) particles based upon magnetically bound vorton pairs, we briefly introduce here, predicts the existence of a complete family of magnetically charged particles, as well as their neutral isotopic partners (all counterparts to the SM elementary particles), in which the lowest mass (charged) particle would be an electrically neutral stable lepton, but which carries a magnetic charge equivalent to 1e. This new particle, which we call a magneticon (a counterpart to the electron) would be pair produced at all e+e- colliders at an Ecm above twice its mass. In addition, PP and PPbar colliders should also be able to produce these new particles through the Drell-Yan process. To our knowledge, no monopole search experiment has been sensitive to such a low-charged magnetic monopole above a particle mass of about 5 GeV/c2. Hence, we propose that a search for such a stable particle of magnetic charge 1e should be undertaken. We have taken the ATLAS detector at the LHC as an example in which this search might be done. To this end, we modeled the magnetic fields and muon trigger chambers of this detector. We show results from a simple Monte Carlo simulation program to indicate how these particles might look in the detector and describe how one might search for these new particles in the ATLAS data stream.

  19. A fast numerical integrator for relativistic charged particle tracking

    Science.gov (United States)

    Qiang, Ji

    2017-09-01

    In this paper, we report on a fast second-order numerical integrator to solve the Lorentz force equations of a relativistic charged particle in electromagnetic fields. This numerical integrator shows less numerical error than the popular Boris algorithm in tracking the relativistic particle subject to electric and magnetic space-charge fields and requires less number of operations than another recently proposed relativistic integrator.

  20. Comprehensive decay law for emission of charged particles and ...

    Indian Academy of Sciences (India)

    2014-04-07

    Apr 7, 2014 ... ... half-lives of radioactive decays with the values of the outgoing elements with masses and charges of the nuclei involved in the decay. The relation is found to be a generalization of the Geiger–Nuttall law in radioactivity and explains well all the known emissions of charged particles including clusters, ...

  1. An improved search for elementary particles with fractional electric charge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.R.

    1996-08-01

    The SLAC Quark Search Group has demonstrated successful operation of a low cost, high mass throughput Millikan apparatus designed to search for fractionally charged particles. About six million silicone oil drops were measured with no evidence of fractional charges. A second experiment is under construction with 100 times greater throughput which will utilize optimized search fluids.

  2. High Energy Charged Particles in Space at One Astronomical Unit

    Science.gov (United States)

    Feynman, J.; Gabriel, S. B.

    1995-01-01

    Single event effects and many other spacecraft anomalies are caused by positively charged high energy particles impinging on the vehicle and its component parts. Reviewed here are the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects. State-of-the-art engineering models are briefly described along with comments on the future work required.

  3. Sources for charged particles; Les sources de particules chargees

    Energy Technology Data Exchange (ETDEWEB)

    Arianer, J.

    1997-09-01

    This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.).

  4. Late time CMB anisotropies constrain mini-charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, C.; Redondo, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jaeckel, J. [Univ. of Durham, Inst. for Particle Physics Phenomenology (United Kingdom)

    2009-09-15

    Observations of the temperature anisotropies induced as light from the CMB passes through large scale structures in the late universe are a sensitive probe of the interactions of photons in such environments. In extensions of the Standard Model which give rise to mini-charged particles, photons propagating through transverse magnetic fields can be lost to pair production of such particles. Such a decrement in the photon flux would occur as photons from the CMB traverse the magnetic fields of galaxy clusters. Therefore late time CMB anisotropies can be used to constrain the properties of mini- charged particles. We outline how this test is constructed, and present new constraints on mini-charged particles from observations of the Sunyaev-Zel'dovich effect in the Coma cluster. (orig.)

  5. In–out asymmetry in the interaction of a charged projectile traversing a vacuum–metal interface in an oblique trajectory

    Energy Technology Data Exchange (ETDEWEB)

    Gervasoni, J.L. [Centro Atómico Bariloche (Comisión Nacional de Energía Atómica), R8402AGP S. C. de Bariloche, Río Negro (Argentina); Instituto Balseiro (Universidad Nacional de Cuyo and Comisión Nacional de Energía Atómica), R8402AGP S. C. de Bariloche, Río Negro (Argentina); Segui, S. [Centro Atómico Bariloche (Comisión Nacional de Energía Atómica), R8402AGP S. C. de Bariloche, Río Negro (Argentina); Barrachina, R.O. [Centro Atómico Bariloche (Comisión Nacional de Energía Atómica), R8402AGP S. C. de Bariloche, Río Negro (Argentina); Instituto Balseiro (Universidad Nacional de Cuyo and Comisión Nacional de Energía Atómica), R8402AGP S. C. de Bariloche, Río Negro (Argentina)

    2015-07-01

    In this work, we analyze the interaction of moving charged particles with plasmons in a semi-infinite material. For planar surfaces, and in the frame of a semiclassical dielectric formulation, we analyze the differences and similarities that arise when we compare incoming and outgoing trajectories in oblique incidence. We describe an oscillatory structure that only appears in the bulk contribution to the energy lost by an incoming projectile, and analyze how this in–out asymmetry depends of the angle of incidence.

  6. Detection of charged particles in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, Simon R. [Brown Univ., Providence, RI (United States)

    1994-12-01

    This thesis is concerned with the use of a large superfluid helium detector for the detection of solar neutrinos. A small-scale prototype of this type of detector has been constructed and tested. In this thesis the author discussed in detail the design of the apparatus, the experiments which have been carried out, and what has been learned about the important physical processes involved in this type of detector. These processes include the anisotropic generation of phonons and rotons by the recoiling particle, the propagation of the phonons and rotons in the liquid, the evaporation process at the liquid surface, and the adsorption of the helium atoms onto the wafers. In addition he discusses the generation and detection of fluorescent photons from recoiling particles. The implications of these results to the design of a full-scale detector of neutrinos are discussed.

  7. Bibliography of integral charged particle nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, T.W.; Burt, J.S.

    1977-03-01

    This bibliography is divided into three main sections covering experimental, theoretical, and review references. The review section also includes compilation and evaluation references. Each section contains two subsections. The main subsection contains all references satisfying the criteria noted above and the second subsection is devoted to isotope production. The main subsections are ordered by increasing Z and A of the incident particle, then by increasing Z and A of the target nucleus. Within this order, the entries are ordered by residual nucleus and quantity (e.g., sigma(E)). Finally, the entries are ordered by outgoing particles or processes. All entries which have the same target, reaction, and quantity are grouped under a common heading with the most recent reference first. As noted above the second subsection is devoted to isotope production and is limited in the information it carries. Only those references which contain data on a definite residual nucleus or group of nuclei (e.g., fission fragments) are included in these subsections. Entries within these second subsections are ordered by increasing Z and A of the isotope produced and then by quantity. All references containing data on the same isotope production and quantity are grouped together. All lines within a group are ordered by increasing Z and A of the target and then of the incident particle. The final ordering is by increasing minimum energy.

  8. Charged-particle spectroscopy in organic semiconducting single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ciavatti, A.; Basiricò, L.; Fraboni, B. [Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Sellin, P. J. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Fraleoni-Morgera, A. [ELETTRA-Sincrotrone Trieste, Strada Statale 14, Km 163.5, Basovizza, Trieste (Italy); Department of Engineering and Architecture, University of Trieste, V. Valerio 10, 34100 Trieste (Italy); CNR-Nano S3 Institute, Via Campi 213/A, 41125 Modena (Italy)

    2016-04-11

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτ{sub coplanar} = (5 .5 ± 0.6 ) × 10{sup −6} cm{sup 2}/V and μτ{sub sandwich} = (1 .9 ± 0.2 ) × 10{sup −6} cm{sup 2}/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  9. Modulation of graphene field effect by heavy charged particle irradiation

    Science.gov (United States)

    Cazalas, Edward; Sarker, Biddut K.; Childres, Isaac; Chen, Yong P.; Jovanovic, Igor

    2016-12-01

    Device architectures based on the two-dimensional material graphene can be used for sensing of electromagnetic and particle radiation. The sensing mechanism may be direct, by absorbance of radiation by the graphene or the immediately adjacent material, and indirect, via the field effect principle, whereby the change in conductivity within a semiconducting absorber substrate induces electric field change at graphene. Here, we report on a graphene field effect transistor (GFET) sensitive to heavy charged particle radiation (α particles) at MeV energies by use of the indirect sensing mechanism. Both the continuous and discrete changes of graphene are observed, and the latter are attributed to single α particle interactions with the GFET. While this study provides the basis for understanding of the irradiation effects, it also opens prospects for the use of GFETs as heavy charged particle detectors.

  10. An Orthogonal Multi-Swarm Cooperative PSO Algorithm with a Particle Trajectory Knowledge Base

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2017-01-01

    Full Text Available A novel orthogonal multi-swarm cooperative particle swarm optimization (PSO algorithm with a particle trajectory knowledge base is presented in this paper. Different from the traditional PSO algorithms and other variants of PSO, the proposed orthogonal multi-swarm cooperative PSO algorithm not only introduces an orthogonal initialization mechanism and a particle trajectory knowledge base for multi-dimensional optimization problems, but also conceives a new adaptive cooperation mechanism to accomplish the information interaction among swarms and particles. Experiments are conducted on a set of benchmark functions, and the results show its better performance compared with traditional PSO algorithm in aspects of convergence, computational efficiency and avoiding premature convergence.

  11. Numerical modelling of electrochemical polarization around charged metallic particles

    Science.gov (United States)

    Bücker, Matthias; Undorf, Sabine; Flores Orozco, Adrián; Kemna, Andreas

    2017-04-01

    We extend an existing analytical model and carry out numerical simulations to study the polarization process around charged metallic particles immersed in an electrolyte solution. Electro-migration and diffusion processes in the electrolyte are described by the Poisson-Nernst-Planck system of partial differential equations. To model the surface charge density, we consider a time- and frequency-invariant electric potential at the particle surface, which leads to the build-up of a static electrical double layer (EDL). Upon excitation by an external electric field at low frequencies, we observe the superposition of two polarization processes. On the one hand, the induced dipole moment on the metallic particle leads to the accumulation of opposite charges in the electrolyte. This charge polarization corresponds to the long-known response of uncharged metallic particles. On the other hand, the unequal cation and anion concentrations in the EDL give rise to a salinity gradient between the two opposite sides of the metallic particle. The resulting concentration polarization enhances the magnitude of the overall polarization response. Furthermore, we use our numerical model to study the effect of relevant model parameters such as surface charge density and ionic strength of the electrolyte on the resulting spectra of the effective conductivity of the composite model system. Our results do not only give interesting new insight into the time-harmonic variation of electric potential and ion concentrations around charged metallic particle. They are also able to reduce incongruities between earlier model predictions and geophysical field and laboratory measurements. Our model thereby improves the general understanding of IP signatures of metallic particles and represents the next step towards a quantitative interpretation of IP imaging results. Part of this research is funded by the Austrian Federal Ministry of Science, Research and Economy under the Raw Materials Initiative.

  12. Influence of surface charge distributions and particle size distributions on particle attachment in granular media filtration.

    Science.gov (United States)

    Kim, Jinkeun; Nason, Jeffrey A; Lawler, Desmond F

    2008-04-01

    Filtration experiments were performed with a laboratory-scale filter using spherical glass beads with 0.55 mm diameter as collectors. Suspensions were made with Min-U-Sil 5 particles, and two different methods (pH control and polymer dosing) were used for destabilization. In the pH control experiments, all particles had negative surface charge, and those with lower (absolute value) charge were selectively attached to the collectors, especially during the early stage of filtration. This selective attachment of the lower charged particles caused the zeta potential distribution (ZPD) of the effluent to move to a more negative range. However, the ZPD of the effluent did not continue moving to more negative values during the later stages of filtration, and this result was attributed to two reasons: ripening effects and detachment of flocs. In the polymer experiments, substantial differences were found between experiments performed with negatively charged particles (underdosing) and those with positively charged particles (overdosing). With under-dosing, the results were similar to the pH control experiments (which also had negatively charged particles), but with overdosing, the effluent's ZPDs in the early stages did not overlap with those of the influent and more highly charged particles were removed more efficiently than lesser-charged particles. It is hypothesized that, despite a substantial period of pre-equilibration of media and coagulant, this equilibrium shifted when particles were also added. It was assumed that coagulant molecules previously adsorbed to the particles desorbed and subsequently attached to the filter media because of surface area differences in the particle and filter media.

  13. Turbulent Equilibria for Charged Particles in Space

    Science.gov (United States)

    Yoon, Peter H.

    2017-09-01

    It is well known that the solar wind electron distribution function is apparently composed of several components, but the energetic tail population is well fitted with kappa distribution function. It is also well established that the solar wind protons possess quasi power-law tail distribution function that is well fitted with an inverse power law model. In the recent past, the present author developed a theory that describes a system of electrons and Langmuir turbulence that are in dynamical steady-state. In such a model, the kappa distribution function for the electrons emerges as a unique solution of the steady-state weak turbulence plasma kinetic equation. For the proton inverse power-law tail problem, Fisk and Gloeckler’s theory of compressional turbulence received much attention in the literature. In the present paper, their model is revisited in the light of plasma kinetic theory that involves low-frequency kinetic Alfvén wave fluctuations. It is shown that the proton kappa distribution function satisfies the steady-state proton particle kinetic equation. The steady-state wave kinetic equation for the kinetic Alfvén wave is also solved. This shows that the proton suprathermal distribution with an inverse power law velocity dependence may indeed result from a steady-state wave-particle interaction of the compressional kinetic Alfvénic fluctuations in the solar wind, thus providing support for, and also providing an alternative view of Fisk and Gloeckler’s model. However, in the absence of additional constraint that may arise from the balance of nonlinear wave-particle interaction terms within the wave kinetic equations for kinetic Alfvénic waves, the index of inverse power-law velocity tail distribution is undetermined. This calls for further investigation of nonlinear kinetic Alfvénic turbulence.

  14. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Kolpakov, V. A., E-mail: kolpakov683@gmail.com; Krichevskii, S. V.; Markushin, M. A. [Korolev Samara National Research University (Russian Federation)

    2017-01-15

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1–4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5–8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion–electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3–1 kV can be implemented in practice [3, 9, 10].

  15. Calibration of the Sweeper Chamber Charged-Particle Detectors for the LISA Commissioning Experiment

    Science.gov (United States)

    Kwiatkowski, J.; Grovom, A.; Rogers, W.; MoNA Collaboration

    2011-10-01

    The new LISA (Large-area multi-Institutional Scintillator Array) neutron detector array, designed to be used in conjunction with MoNA (Modular Neutron Array) was recently commissioned at the NSCL in an experiment designed to investigate excited states of neutron-rich Oxygen isotopes near the neutron drip-line. Charged fragments resulting from the neutron decays were swept out of the beam direction by the Sweeper Magnet after which they passed through a series of charged-particle detectors for fragment trajectory and energy determination. In order to achieve isotope separation and identification at the focal plane, which is then used to reconstruct the invariant mass of the unbound states, precise determinations of the fragment and neutron energies and trajectories are required. To correct for time-drifts in the charge-particle detectors that develop over the entire length of the experiment, Root C++ macros were developed to analyze and precisely correct for these detector drifts to within few tenths of a nanosecond. Root macros were also developed to position calibrate the ion chamber and CRDC's. Results for the LISA commissioning run will be presented. Work supported by NSF grant PHY-1101745.

  16. Relativistic mixtures of charged and uncharged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Gilberto M. [Departamento de Física, Universidade Federal do Paraná, Curitiba (Brazil)

    2014-01-14

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  17. Three-dimensional Reconstruction of Dust Particle Trajectories in the NSTX

    Energy Technology Data Exchange (ETDEWEB)

    W.U. Boeglin, A.L. Roquemore, and R. Maqueda

    2009-03-06

    Highly mobile incandescent dust particles are routinely observed on NSTX using two fast cameras operating in the visible region. An analysis method to reconstruct dust particle trajectories in space using two fast cameras is presented in this paper. Position accuracies of a few millimeters depending on the particle's location have been achieved and particle velocities between 10 and 200 m/s have been observed. 2008 American Institute of Physics. __________________________________________________

  18. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  19. Hybrid finite element and Brownian dynamics method for charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Gary A., E-mail: ghuber@ucsd.edu; Miao, Yinglong [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365 (United States); Zhou, Shenggao [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou, 215006 Jiangsu (China); Li, Bo [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0365 (United States); Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States)

    2016-04-28

    Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.

  20. The numerical multidimensional approximation for the fast solving of equations describing charged particle motion in inhomogeneous magnetic fields

    CERN Document Server

    Akishin, P G

    2002-01-01

    Some mathematical problems connected with the numerical solving of equations of motion for charged particles in inhomogeneous magnetic fields are considered. The three-dimensional spline approximation of the magnetic field is proposed. This allows one to use high-accuracy numerical methods to evaluate the trajectory of the moving charged particle in inhomogeneous magnetic field. On the base of multidimensional approximation the fast algorithms for the description of equations of motion solution and its derivatives with respect to initial data are proposed. The application of the considered methods for ALICE experiment are demonstrated.

  1. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    Energy Technology Data Exchange (ETDEWEB)

    Deibele, C. E. [Univ. of Wisconsin, Madison, WI (United States)

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction.

  2. Aerosol Sampling Bias from Differential Electrostatic Charge and Particle Size

    Science.gov (United States)

    Jayjock, Michael Anthony

    Lack of reliable epidemiological data on long term health effects of aerosols is due in part to inadequacy of sampling procedures and the attendant doubt regarding the validity of the concentrations measured. Differential particle size has been widely accepted and studied as a major potential biasing effect in the sampling of such aerosols. However, relatively little has been done to study the effect of electrostatic particle charge on aerosol sampling. The objective of this research was to investigate the possible biasing effects of differential electrostatic charge, particle size and their interaction on the sampling accuracy of standard aerosol measuring methodologies. Field studies were first conducted to determine the levels and variability of aerosol particle size and charge at two manufacturing facilities making acrylic powder. The field work showed that the particle mass median aerodynamic diameter (MMAD) varied by almost an order of magnitude (4-34 microns) while the aerosol surface charge was relatively stable (0.6-0.9 micro coulombs/m('2)). The second part of this work was a series of laboratory experiments in which aerosol charge and MMAD were manipulated in a 2('n) factorial design with the percentage of sampling bias for various standard methodologies as the dependent variable. The experiments used the same friable acrylic powder studied in the field work plus two size populations of ground quartz as a nonfriable control. Despite some ill conditioning of the independent variables due to experimental difficulties, statistical analysis has shown aerosol charge (at levels comparable to those measured in workroom air) is capable of having a significant biasing effect. Physical models consistent with the sampling data indicate that the level and bipolarity of the aerosol charge are determining factors in the extent and direction of the bias.

  3. A New Search for Elementary Particles with Fractional Electric Charge Using an Improved Millikan Technique

    Energy Technology Data Exchange (ETDEWEB)

    Mar, Nancy

    2003-08-18

    The authors have devised and demonstrated the successful operation of a low cost, high mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a CCD video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, they have looked at 5,974,941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95% confidence, the concentration of isolated quarks with {+-} 1/3e or {+-} 2/3e in silicone oil is less than one per 2.14 x 10{sup 20} nucleons.

  4. A New Search for Elementary Particles with Fractional Electric Charge Using an Improved Millikan Technique

    CERN Document Server

    Mar, N

    2003-01-01

    The have devised and demonstrated the successful operation of a low cost, high mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a CCD video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, they have looked at 5,974,941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95% confidence, the concentration of isolated quarks with +- 1/3e or +- 2/3e in silicone oil is less than one per 2.14 x 10 sup 2 sup 0 nucleons.

  5. Charged Particle Identification for Prefragmentation Studies

    Science.gov (United States)

    Hu, Jonathan; MoNA Collaboration

    2017-09-01

    Projectile fragmentation refers to high energy (>50 MeV/u) heavy ion beams on production targets to generate intermediate mass and target fragments at facilities like the NSCL, FRIB, GSI, GANIL and RIKEN. The resulting secondary beams can then be isolated by fragment separators like the NCSL's A1900 and that secondary beam then used on reaction targets for a variety of experiments. Predictions of beam intensities for experiment planning depend on models and data. The MoNA Collaboration performed an experiment at the NSCL in which a 48Ca primary beam was used with a 9Be target to produce a 32Mg secondary beam with energy 86 MeV/u that was incident on a second target of 9Be. By characterizing the energy distributions of final fragments of neon, sodium, and fluorine in coincidence with neutrons created both by prefragmentation processes and reaction mechanisms, we are able to extract information about prefragmentation dynamics. The identification of charged fragments is a multi-step process crucial to this analysis. This work is supported by the National Science Foundation under Grant No. PHY-1613429.

  6. Internal bremsstrahlung of strongly interacting charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kurgalin, S. D. [Voronezh State University (Russian Federation); Tchuvil’sky, Yu. M., E-mail: tchuvl@nucl-th.sinp.msu.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Churakova, T. A. [Voronezh State University (Russian Federation)

    2016-11-15

    A universal theoretical model intended for calculating internal-bremsstrahlung spectra is proposed. In this model, which can be applied to describing nuclear decays of various type (such as alpha decay, cluster decay, and proton emission), use is made of realistic nucleus–nucleus potentials. Theoretical internal-bremsstrahlung spectra were obtained for the alpha decay of the {sup 214}Po nucleus, as well as for the decay of the {sup 222}Ra nucleus via the emission of a {sup 14}C cluster and for the decay of the {sup 113}Cs nucleus via proton emission, and the properties of these spectra were studied. The contributions of various regions (internal, subbarrier, and external) to the internal-bremsstrahlung amplitude were analyzed in detail. It is shown that the contribution of the internal region to the amplitude for internal bremsstrahlung generated in nuclear decay via proton emission is quite large, but that this is not so for alpha decay and decay via cluster emission. Thus, a process in which strong interaction of nuclear particles affects the internal-bremsstrahlung spectrum if found.

  7. Instantaneous Flow Reconstruction from Particle Trajectories with Vortex-in-Cell

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Scarano, F.

    2016-01-01

    The manuscripts presents the working principle of a novel technique to interpolate sparse and scattered particle tracking velocimetry (PTV) measurements onto a dense grid, by using the velocity measurements along a full particle trajectory. The method performs iteratively a vortex-in-cell simulation

  8. Comprehensive decay law for emission of charged particles and ...

    Indian Academy of Sciences (India)

    and exotic cluster radioactivity. BASUDEB SAHU. Department of Physics, North Orissa University, Baripada 757 003, India. E-mail: bd_sahu@yahoo.com. DOI: 10.1007/s12043-014-0723-8; ePublication: 7 April 2014. Abstract. A general decay formula for the emission of charged particles from metastable nuclei.

  9. The Mathematics of Charged Particles interacting with Electromagnetic Fields

    DEFF Research Database (Denmark)

    Petersen, Kim

    In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...

  10. Light charged particle multiplicities in fusion and quasifission reactions

    Science.gov (United States)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.; Wieleczko, J. P.

    2018-01-01

    The light charged particle evaporation from the compound nucleus and from the complex fragments in the reactions 32S+100Mo, 121Sb+27Al, 40Ar+164Dy, and 40Ar+ nat Ag is studied within the dinuclear system model. The possibility to distinguish the reaction products from different reaction mechanisms is discussed.

  11. Application of channeling in bent crystals to charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Jr., Richard A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    1986-03-01

    The process of channeling of charged particle beams in bent crystals is described, including the effects of angular acceptance, spatial acceptance, normal dechanneling, bending dechanneling, and surface acceptance. Some bending applications that have been tried and future possibilities are reviewed. 29 refs., 30 figs. (LEW)

  12. Quantum aspects of charged-particle beam optics

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sameen Ahmed, E-mail: rohelakhan@yahoo.com [Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Sultanate of Oman (Oman)

    2016-06-10

    The classical treatments have been successful in designing numerous charged-particle devices. It is natural to develop a quantum prescription, since all systems are fundamentally quantum mechanical in nature. The quantum theory leads to new insights accompanied with wavelength-dependent contributions. The action of a magnetic quadrupole is derived from the Dirac equation.

  13. Motion of Charged Particles in Electromagnetic Fields and Special ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 7. Motion of Charged Particles in Electromagnetic Fields and Special Theory of Relativity. P Chaitanya Das G Srinivasa Murthy P C Deshmukh K Satish Kumar T A Venkatesh. Classroom Volume 9 Issue 7 July 2004 pp 77-85 ...

  14. Single-sheet identification method of heavy charged particles using ...

    Indian Academy of Sciences (India)

    Abstract. The theoretical and experimental investigations of the penetration of charged particles in matter played a very important role in the development of modern physics. Solid state nuclear track detectors have become one of the most important tools for many branches of science and technology. An attempt has been ...

  15. Charged particle-induced nuclear fission reactions–Progress and ...

    Indian Academy of Sciences (India)

    The theoretical developments to describe the fission phenomenon have kept pace with the progress in the corresponding experimental measurements. As the fission process initiated by the neutrons has been well documented, the present article will be restricted to charged particle-induced fission reactions. The progress ...

  16. Measurements of charged-particle distributions with the ATLAS detector

    CERN Document Server

    Cairo, Valentina Maria Martina

    2016-01-01

    Inclusive charged-particle measurements probe the low-energy region of the non-perturbative quantum chromodynamics. The ATLAS collaboration has recently measured the charged-particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at centre-of-mass energies of 8 TeV and 13 TeV. The measurements at 8 TeV cover a wide spectrum using charged-particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged-particle multiplicities, some of which are studied for the first time by ATLAS. The measurements at 13 TeV also present detailed studies with a minimum transverse momentum of both 100 MeV and 500 MeV. The measurements are compared with predictions of various tuned Monte Carlo generators and are found to provide strong constraints on these. None of the Monte Carlo generators with their respective tunes are able to reproduce all the features of the data.

  17. Flexible particle flow-focusing in microchannel driven by droplet-directed induced-charge electroosmosis.

    Science.gov (United States)

    Ren, Yukun; Liu, Xianyu; Liu, Weiyu; Tao, Ye; Jia, Yankai; Hou, Likai; Li, Wenying; Jiang, Hongyuan

    2018-02-01

    We report herein a novel microfluidic particle concentrator that utilizes constriction microchannels to enhance the flow-focusing performance of induced-charge electroosmosis (ICEO), where viscous hemi-spherical oil droplets are embedded within the mainchannel to form deformable converging-diverging constriction structures. The constriction region between symmetric oil droplets partially coated on the electrode strips can improve the focusing performance by inducing a granular wake flow area at the diverging channel, which makes almost all of the scattered sample particles trapped within a narrow stream on the floating electrode. Another asymmetric droplet pair arranged near the outlets can further direct the trajectory of focused particle stream to one specified outlet port depending on the symmetry breaking in the shape of opposing phase interfaces. By fully exploiting rectification properties of induced-charge electrokinetic phenomena at immiscible water/oil interfaces of tunable geometry, the expected function of continuous and switchable flow-focusing is demonstrated by preconcentrating both inorganic silica particles and biological yeast cells. Physical mechanisms responsible for particle focusing and locus deflection in the droplet-assisted concentrentor are analyzed in detail, and simulation results are in good accordance with experimental observations. Our work provides new routes to construct flexible electrokinetic framework for preprocessing on-chip biological samples before performing subsequent analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Search for new charged massive stable particles at CDF

    Science.gov (United States)

    CDF Collaboration

    1996-05-01

    We report on a general search at CDF for new particles which are electrically charged and sufficiently long-lived to allow detection (γ c τ >= 1m). Examples of such particles include free quarks, 4th generation leptons which are lighter than their neutrino, and sextet quarks. Their signature would be particles with high momentum but relatively low velocity, β Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation. Supported by U.S. DOE under Contract No. DE-AC02-76CH03000.

  19. Charging of heated colloidal particles using the electrolyte Seebeck effect.

    Science.gov (United States)

    Majee, Arghya; Würger, Alois

    2012-03-16

    We propose a novel actuation mechanism for colloids, which is based on the Seebeck effect of the electrolyte solution: Laser heating of a nonionic particle accumulates in its vicinity a net charge Q, which is proportional to the excess temperature at the particle surface. The corresponding long-range thermoelectric field E is proportional to 1/r(2) provides a tool for controlled interactions with nearby beads or with additional molecular solutes. An external field E(ext) drags the thermocharged particle at a velocity that depends on its size and absorption properties; the latter point could be particularly relevant for separating carbon nanotubes according to their electronic band structure.

  20. Guiding of charged particles through capillaries in insulating materials

    Science.gov (United States)

    Stolterfoht, Nikolaus; Yamazaki, Yasunori

    2016-04-01

    Studies of charged particle guiding through capillaries in insulating materials, performed during the last decade, are reviewed in a comprehensive manner. First, the principles of capillary guiding of slow highly charged ions are introduced describing the self-organized formation of charge patches. Basic quantities are defined, such as the guiding power characterizing a capillary. Challenges of the guiding experiments are pointed out. Then, experiments are described with emphasis on the guiding of highly charged ions in the keV energy range. Samples with an array of nanocapillaries as well as single macrocapillaries are treated. Emission profiles of transmitted ions are analyzed to establish scaling laws for the guiding angle, which quantifies the guiding power. Oscillations of the mean ion emission angle reveal the temporal dynamics of the charge patch formation. Next, experiments with ions of high (MeV) energies are focused on single tapered capillaries allowing for the production of a microbeam for various applications. Experiments concerning electrons are presented showing that apart from being elastically scattered these negative particles may enter into the capillary surface where they suffer energy losses. Finally, theoretical concepts of the capillary guiding are discussed. Simulations based on different charge transport methods clearly support the understanding of the guiding mechanisms. Altogether, capillary guiding involves several novel phenomena for which understanding have progressed far beyond their infancy.

  1. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection.

    Science.gov (United States)

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages.

  2. Monitoring of hadrontherapy treatments by means of charged particle detection

    Directory of Open Access Journals (Sweden)

    Giuseppe Battistoni

    2016-08-01

    Full Text Available The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. Charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in hadrontherapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA. An important outcome of these studies is that the experimental single track resolution needed for charged particle based monitoring applications can be safely of the order of few millimeters, without spoiling the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages.

  3. Anisotropy-Driven Instability in Intense Charged Particle Beams

    CERN Document Server

    Startsev, Edward; Qin, Hong

    2005-01-01

    In electrically neutral plasmas with strongly anisotropic distribution functions, free energy is available to drive different collective instabilities such as the electrostatic Harris instability and the transverse electromagnetic Weibel instability. Such anisotropies develop naturally in particle accelerators and may lead to a detoriation of beam quality. We have generalized the analysis of the classical Harris and Weibel instabilities to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space-charge. For a long costing beam, the delta-f particle-in-cell code BEST and the eighenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A theoretical model is developed which describes the essential features of the linear stage of these instabilities. Both, the simulations and analytical theory, clearly show that moderately...

  4. Space charge distribution measurement methods and particle loaded insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Hole, S [Laboratoire des Instruments et Systemes d' Ile de France, Universite Pierre et Marie Curie-Paris6, 10 rue Vauquelin, 75005 Paris (France); Sylvestre, A [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Lavallee, O Gallot [Laboratoire d' Etude Aerodynamiques, CNRS UMR6609, boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil (France); Guillermin, C [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France); Rain, P [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Rowe, S [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France)

    2006-03-07

    In this paper the authors discuss the effects of particles (fillers) mixed in a composite polymer on the space charge measurement techniques. The origin of particle-induced spurious signals is determined and silica filled epoxy resin is analysed using the laser-induced-pressure-pulse (LIPP) method, the pulsed-electro-acoustic (PEA) method and the laser-induced-thermal-pulse (LITP) method. A spurious signal identified as the consequence of a piezoelectric effect of some silica particles is visible for all the method. Moreover, space charges are clearly detected at the epoxy/silica interface after a 10 kV mm{sup -1} poling at room temperature for 2 h.

  5. Development of a Charged Particle Microbeam for Targeted and Single Particle Subcellular Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C.

    2004-03-12

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube.

  6. Nonadiabatic interaction between a charged particle and an MHD pulse

    Directory of Open Access Journals (Sweden)

    Y. Kuramitsu

    2008-03-01

    Full Text Available Interaction between a magnetohydrodynamic~(MHD pulse and a charged particle is discussed both numerically and theoretically. Charged particles can be accelerated efficiently in the presence of spatially correlated MHD waves, such as short large amplitude magnetic structures, by successive mirror reflection (Fermi process. In order to understand this process, we study the reflection probability of particles by the MHD pulses, focusing on the adiabaticity on the particle motion. When the particle velocity is small (adiabatic regime, the probability that the particle is reflected by the MHD pulse is essentially determined only by the pitch angle, independent from the velocity. On the other hand, in the non-adiabatic regime, the reflection probability is inversely proportional to the square root of the normalized velocity. We discuss our numerical as well as analytical results of the interaction process with various pulse amplitude, pulse shape, and the pulse winding number. The reflection probability is universally represented as a power law function independent from above pulse properties.

  7. Acceleration of particles by black hole with gravitomagnetic charge immersed in magnetic field

    OpenAIRE

    Abdujabbarov, Ahmadjon; Tursunov, Arman; Ahmedov, Bobomurat; Kuvatov, Abdulla

    2012-01-01

    The collision of test charged particles in the vicinity of an event horizon of a weakly magnetized non-rotating black hole with gravitomagnetic charge has been studied. The presence of the external magnetic field decreases the innermost stable circular orbits (ISCO) radii of charged particles. The opposite mechanism occurs when there is nonvanishing gravitomagnetic charge. For a collision of charged particle moving at ISCO and the neutral particle falling from infinity the maximal collision e...

  8. Cosmological Evolution of Statistical System of Scalar Charged Particles

    CERN Document Server

    Ignat'ev, Yurii; Mikhailov, Mikhail; Ignatyev, Dmitry

    2014-01-01

    In the paper we consider the macroscopic model of plasma of scalar charged particles, obtained by means of the statistical averaging of the microscopic equations of particle dynamics in a scalar field. On the basis of kinetic equations, obtained from averaging, and their strict integral consequences, a self-consistent set of equations is formulated which describes the self-gravitating plasma of scalar charged particles. It was obtained the corresponding closed cosmological model which also was numerically simulated for the case of one-component degenerated Fermi gas and two-component Boltzmann system. It was shown that results depend weakly on the choice of a statistical model. Two specific features of cosmological evolution of a statistical system of scalar charged particles were obtained with respect to cosmological evolution of the minimal interaction models: appearance of giant bursts of invariant cosmological acceleration $\\Omega$ at the time interval $8\\cdot10^3\\div2\\cdot10^4 t_{Pl}$ and strong heating ...

  9. The charged particle trigger of the CELLO-detector

    CERN Document Server

    Schröder, V

    1981-01-01

    The fast charged particle trigger of the CELLO-detector at the PETRA e /sup +/e/sup -/-storage ring (DESY) is a fast software programmable hardware processor. It is using multiwire chamber signals as inputs and takes a decision on charged tracks coming from the interaction region in less than 1 mu sec. The input signals are addressing RAMs, in which the mask schemes of all meaningful physical tracks are stored. The RAM output signals give information about the numbers and shapes of the valid masks found. This information is used for fast event acquisition and online data analysis done by a PDP 11 computer. (3 refs).

  10. Computer simulations of triboelectrification of particles and their trajectories in DC electric fields

    Science.gov (United States)

    Puliyala, Srivathsa Kumar Reddy

    This study aims to gain a fundamental understanding of the physics of triboelectri- cal charging of solid particles and the separation of the charged particles under an exter- nal DC electric field by computer simulations. A condenser model is used to implement charging mechanism and a soft sphere model is used to account for the Hertzian contact mechanics. The governing nondimensional parameters of the problem are identified and a parametric study is performed to investigate their effects on the charging efficiency and separation. The study finds relevance in a host of technologically important processes, such as recycling of plastic wastes, seed cleaning in agricultural industry and separation of coal from impurities in mining.

  11. Surface charge features of kaolinite particles and their interactions

    Science.gov (United States)

    Gupta, Vishal

    Kaolinite is both a blessing and a curse. As an important industrial mineral commodity, kaolinite clays are extensively used in the paper, ceramic, paint, plastic and rubber industries. In all these applications the wettability, aggregation, dispersion, flotation and thickening of kaolinite particles are affected by its crystal structure and surface properties. It is therefore the objective of this research to investigate selected physical and surface chemical properties of kaolinite, specifically the surface charge of kaolinite particles. A pool of advanced analytical techniques such as XRD, XRF, SEM, AFM, FTIR and ISS were utilized to investigate the morphological and surface chemistry features of kaolinite. Surface force measurements revealed that the silica tetrahedral face of kaolinite is negatively charged at pH>4, whereas the alumina octahedral face of kaolinite is positively charged at pH8. Based on electrophoresis measurements, the apparent iso-electric point for kaolinite particles was determined to be less than pH 3. In contrast, the point of zero charge was determined to be pH 4.5 by titration techniques, which corresponds to the iso-electric point of between pH 4 and 5 as determined by surface force measurements. Results from kaolinite particle interactions indicate that the silica face--alumina face interaction is dominant for kaolinite particle aggregation at low and intermediate pH values, which explains the maximum shear yield stress at pH 5-5.5. Lattice resolution images reveal the hexagonal lattice structure of these two face surfaces of kaolinite. Analysis of the silica face of kaolinite showed that the center of the hexagonal ring of oxygen atoms is vacant, whereas the alumina face showed that the hexagonal surface lattice ring of hydroxyls surround another hydroxyl in the center of the ring. High resolution transmission electron microscopy investigation of kaolinite has indicated that kaolinite is indeed composed of silica/alumina bilayers

  12. In situ measurement of electrostatic charge and charge distribution on flyash particles in power station exhaust stream

    Energy Technology Data Exchange (ETDEWEB)

    Guang, D.

    1992-01-01

    The electrostatic charges and charge distributions on individual flyash particles were experimentally measured in situ at four power stations in New South Wales and in the laboratory with an Electrostatic Charge Classifier. The global charge of these flyashes was also measured. The electrostatic charge on flyash particles of four power stations was found to be globally native. The median charge on the flyash particles varies linearly with particle diameter for all four flyashes. The electrostatic charge on the Tallawarra flyash particles was found to increase after passage through the air heater having huge metal surface areas, suggesting that triboelectrification was the primary charging mechanism for flyash particles. Distinctly different characteristics of the electrostatic charge, particle size and particle shape were found between the Eraring and the Tallawarra flyashes. The spherical Eraring ash has the highest proportion of lines and positively charged particles, but the lowest global charge level among the four flyashes. In contrast, the Tallawarra flyash has just the opposite. It is the distinct characteristics of the flyashes from Eraring and Tallawarra power stations that are responsible for the significant differences in their baghouse performance. The napping feature on the surface of the filter bags used in the Eraring and Tallawarra power stations provides an upstream surface of low fibre density above the fabric bulk. This feature presents and advantage to highly charged particles, like the Tallawarra flyash particles. Highly charged particles tend to deposit on such an upstream surface resulting in a porous dust cake with much less contact areas with the fabric medium than would otherwise be formed. This cake is easy to remove and provides less resistance to the gas flow. After singeing the naps on the filter bag surface at the Eraring power station, the problems of high pressure drop and retention of dust cake on the bas surface have been resolved.

  13. A New Approach to Charged Particle Slowing Down and Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, David E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-24

    The process by which super-thermal ions slow down against background Coulomb potentials arises in many fields of study. In particular, this is one of the main mechanisms by which the mass and energy from the reaction products of fusion reactions is deposited back into the background. Many of these fields are characterized by length and time scales that are the same magnitude as the range and duration of the trajectory of these particles, before they thermalize into the background. This requires numerical simulation of this slowing down process through numerically integrating the velocities and energies of these particles. This paper first presents a simple introduction to the required plasma physics, followed by the description of the numerical integration used to integrate a beam of particles. This algorithm is unique in that it combines in an integrated manner both a second-order integration of the slowing down with the particle beam dispersion. These two processes are typically computed in isolation from each other. A simple test problem of a beam of alpha particles slowing down against an inert background of deuterium and tritium with varying properties of both the beam and the background illustrate the utility of the algorithm. This is followed by conclusions and appendices. The appendices define the notation, units, and several useful identities.

  14. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2003-01-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. For the engine considered, the upper limit for the ion emission index EIi is of the order of (2-5 x1016 ions/kg-fuel if ion-soot interactions are ignored and the introduction of ion-soot interactions lead about to a 50% reduction. The results also show that most of the soot particles are either positively or negatively charged, the remaining neutral particles representing approximately 20% of the total particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  15. Charged Particle Dynamics in a Magnetodisc-Field Structure

    Science.gov (United States)

    Guio, P.; O'Brien, W.; Achilleos, N. A.; Arridge, C. S.

    2016-12-01

    The Earth's internal magnetic field is to a good approximation dipolar, and charged particles from the magnetosphere, depending on their kinetic energy, pitch angle and distance can remain trapped in this field. The motion of such trapped particles is characterised by their bounce, drift and cyclotron (gyration) periods. High-energy electron and proton populations in the two radiation (van Allen) belts are such examples.At the gas giants, Jupiter and Saturn, the total magnetic field deviates from a dipolar configuration due to internal sources of plasma provided by the moons Io and Enceladus respectively. In addition, the rapid rotation of these planets (period of order 10h) plays a role in the development of a disk-like field structure near the equator where centrifugal force is dominant - a configuration referred to as a magnetodisc.We present results of numerical simulations of charged particle motion in such a magnetodisc field structure using particle tracing and the UCL Magnetodisc Model, and we use these simulations to characterise and quantify the differences between particle motion in magnetodisc and dipole fields.

  16. Cataract production in mice by heavy charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, E.H.; Jose, J.; Yang, V.V.; Barker, M.E.

    1981-03-01

    The cataractogenic effects of heavy charged particles have been evaluated in mice in relation to dose and ionization density (LET/sub infinity/). The study was undertaken due to the high potential for eye exposures to HZE particles among SPS personnel working in outer space. This has made it imperative that the relative biological effectiveness (RBE) in relation to LET/sub infinity/ for various particles be defined so that appropriate quality factors (Q) could be assigned for estimation of risk. Although mice and men differ in susceptibility to radiation-induced cataracts, the results from this project should assist in defining appropriate quality factors in relation to LET/sub infinity/, particle mass, charge, or velocity. Evaluation of results indicated that : (1) low single doses (5 to 20 rad) of iron (/sup 56/Fe) or argon (/sup 40/Ar) particles are cataractogenic at 11 to 18 months after irradiation; (2) onset and density of the opacification are dose related; (3) cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial LET/sub infinity/-dependence; and (4) the severity of cataracts is reduced significantly when 417 rad of /sup 60/Co gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of /sup 12/C doses over 24 weeks.

  17. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  18. Effect of collisions on dust particle charging via particle-in-cell Monte-Carlo collision

    Science.gov (United States)

    Rovagnati, B.; Davoudabadi, M.; Lapenta, G.; Mashayek, F.

    2007-10-01

    In this paper, the effect of collisions on the charging and shielding of a single dust particle immersed in an infinite plasma is studied. A Monte-Carlo collision (MCC) algorithm is implemented in the particle-in-cell DEMOCRITUS code to account for the collisional phenomena which are typical of dusty plasmas in plasma processing, namely, electron-neutral elastic scattering, ion-neutral elastic scattering, and ion-neutral charge exchange. Both small and large dust particle radii, as compared to the characteristic Debye lengths, are considered. The trends of the steady-state dust particle potential at increasing collisionality are presented and discussed. The ions and electron energy distributions at various locations and at increasing collisionality in the case of large particle radius are shown and compared to their local Maxwellians. The ion-neutral charge-exchange collision is found to be by far the most important collisional phenomenon. For small particle radius, collisional effects are found to be important also at low level of collisionality, as more ions are collected by the dust particle due to the destruction of trapped ion orbits. For large particle radius, the major collisional effect is observed to take place in proximity of the presheath. Finally, the species energy distribution functions are found to approach their local Maxwellians at increasing collisionality.

  19. Interdefect charge exchange in silicon particle detectors at cryogenic temperatures

    CERN Document Server

    MacEvoy, B; Hall, G; Moscatelli, F; Passeri, D; Santocchia, A

    2002-01-01

    Silicon particle detectors in the next generation of experiments at the CERN Large Hadron Collider will be exposed to a very challenging radiation environment. The principal obstacle to long-term operation arises from changes in detector doping concentration (N/sub eff/), which lead to an increase in the bias required to deplete the detector and hence achieve efficient charge collection. We have previously presented a model of interdefect charge exchange between closely spaced centers in the dense terminal clusters formed by hadron irradiation. This manifestly non-Shockley-Read-Hall (SRH) mechanism leads to a marked increase in carrier generation rate and negative space charge over the SRH prediction. There is currently much interest in the subject of cryogenic detector operation as a means of improving radiation hardness. Our motivation, however, is primarily to investigate our model further by testing its predictions over a range of temperatures. We present measurements of spectra from /sup 241/Am alpha par...

  20. Charged particle detectors made from thin layers of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Morel, J.R.

    1986-05-01

    A series of experiments was conducted to determine the feasibility of using hydrogenated amorphous silicon (..cap alpha..-Si:H) as solid state thin film charged particle detectors. /sup 241/Am alphas were successfully detected with ..cap alpha..-Si:H devices. The measurements and results of these experiments are presented. The problems encountered and changes in the fabrication of the detectors that may improve the performance are discussed.

  1. Spatial Structure and Diffusive Dynamics from Single-Particle Trajectories Using Spline Analysis

    Science.gov (United States)

    Long, Brian R.; Vu, Tania Q.

    2010-01-01

    Abstract Single-particle tracking of biomolecular probes has provided a wealth of information about intracellular trafficking and the dynamics of proteins and lipids in the cell membrane. Conventional mean-square displacement (MSD) analysis of single-particle trajectories often assumes that probes are moving in a uniform environment. However, the observed two-dimensional motion of probe particles is influenced by the local three-dimensional geometry of the cell membrane and intracellular structures, which are rarely flat at the submicron scale. This complex geometry can lead to spatially confined trajectories that are difficult to analyze and interpret using conventional two-dimensional MSD analysis. Here we present two methods to analyze spatially confined trajectories: spline-curve dynamics analysis, which extends conventional MSD analysis to measure diffusive motion in confined trajectories; and spline-curve spatial analysis, which measures spatial structures smaller than the limits of optical resolution. We show, using simulated random walks and experimental trajectories of quantum dot probes, that differences in measured two-dimensional diffusion coefficients do not always reflect differences in underlying diffusive dynamics, but can instead be due to differences in confinement geometries of cellular structures. PMID:20409493

  2. Hidden Markov models for the analysis of single particle trajectories containing multiple mobile states

    Science.gov (United States)

    Young, Dylan; Scrimgeour, Jan

    2015-03-01

    Single particle tracking offers significant insight into the molecular mechanics that govern the behavior of living cells. The analysis of trajectories that transition between different motive states, such as diffusive, driven and tethered modes, is of considerable importance, with even single trajectories containing significant amounts of information about a molecule's environment and its interactions with structures such as the cell cytoskeleton, membrane or extracellular matrix. Traditional analysis of particle trajectories has relied heavily on evaluation of the mean squared displacement, but often struggles to extract information reliably from small quantities of data or when multiple mobile states are present. Here, we present hidden Markov models for the analysis of complex multi-mobility tracks, focusing on transitions between states exhibiting free diffusion and either driven or tethered motion. The models were tested using simulated trajectories and practical limitations on the track length and state switching probabilities needed for accurate extraction of the physical parameters in the model are identified. These results provide critical information for the design of particle tracking experiments where trajectories containing multiple mobile states are expected.

  3. Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles

    Directory of Open Access Journals (Sweden)

    Janet E. Baulch

    2015-08-01

    Full Text Available Exposure to the space radiation environment poses risks for a range of deleterious health effects due to the unique types of radiation encountered. Galactic cosmic rays are comprised of a spectrum of highly energetic nuclei that deposit densely ionizing tracks of damage along the particle trajectory. These tracks are distinct from those generated by the more sparsely ionizing terrestrial radiations, and define the geometric distribution of the complex cellular damage that results when charged particles traverse the tissues of the body. The exquisite radiosensitivity of multipotent neural stem and progenitor cells found within the neurogenic regions of the brain predispose the central nervous system to elevated risks for radiation induced sequelae. Here we show that human neural stem cells (hNSC exposed to different charged particles at space relevant fluences exhibit significant and persistent oxidative stress. Radiation induced oxidative stress was found to be most dependent on total dose rather than on the linear energy transfer of the incident particle. The use of redox sensitive fluorogenic dyes possessing relative specificity for hydroxyl radicals, peroxynitrite, nitric oxide (NO and mitochondrial superoxide confirmed that most irradiation paradigms elevated reactive oxygen and nitrogen species (ROS and RNS, respectively in hNSC over a 1 week interval following exposure. Nitric oxide synthase (NOS was not the major source of elevated nitric oxides, as the use of NOS inhibitors had little effect on NO dependent fluorescence. Our data provide extensive evidence for the capability of low doses of charged particles to elicit marked changes in the metabolic profile of irradiated hNSC. Radiation induced changes in redox state may render the brain more susceptible to the development of neurocognitive deficits that could affect an astronaut’s ability to perform complex tasks during extended missions in deep space.

  4. Quantitative analysis of single particle trajectories: mean maximal excursion method.

    Science.gov (United States)

    Tejedor, Vincent; Bénichou, Olivier; Voituriez, Raphael; Jungmann, Ralf; Simmel, Friedrich; Selhuber-Unkel, Christine; Oddershede, Lene B; Metzler, Ralf

    2010-04-07

    An increasing number of experimental studies employ single particle tracking to probe the physical environment in complex systems. We here propose and discuss what we believe are new methods to analyze the time series of the particle traces, in particular, for subdiffusion phenomena. We discuss the statistical properties of mean maximal excursions (MMEs), i.e., the maximal distance covered by a test particle up to time t. Compared to traditional methods focusing on the mean-squared displacement we show that the MME analysis performs better in the determination of the anomalous diffusion exponent. We also demonstrate that combination of regular moments with moments of the MME method provides additional criteria to determine the exact physical nature of the underlying stochastic subdiffusion processes. We put the methods to test using experimental data as well as simulated time series from different models for normal and anomalous dynamics such as diffusion on fractals, continuous time random walks, and fractional Brownian motion. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Electromagnetic radiation of charged particles in stochastic motion

    Science.gov (United States)

    Harko, Tiberiu; Mocanu, Gabriela

    2016-03-01

    The study of the Brownian motion of a charged particle in electric and magnetic fields has many important applications in plasma and heavy ions physics, as well as in astrophysics. In the present paper we consider the electromagnetic radiation properties of a charged non-relativistic particle in the presence of electric and magnetic fields, of an exterior non-electromagnetic potential, and of a friction and stochastic force, respectively. We describe the motion of the charged particle by a Langevin and generalized Langevin type stochastic differential equation. We investigate in detail the cases of the Brownian motion with or without memory in a constant electric field, in the presence of an external harmonic potential, and of a constant magnetic field. In all cases the corresponding Langevin equations are solved numerically, and a full description of the spectrum of the emitted radiation and of the physical properties of the motion is obtained. The power spectral density of the emitted power is also obtained for each case, and, for all considered oscillating systems, it shows the presence of peaks, corresponding to certain intervals of the frequency.

  6. Analysis of Video-Based Microscopic Particle Trajectories Using Kalman Filtering

    Science.gov (United States)

    Wu, Pei-Hsun; Agarwal, Ashutosh; Hess, Henry; Khargonekar, Pramod P.; Tseng, Yiider

    2010-01-01

    Abstract The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be determined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes. PMID:20550894

  7. Sensitivity in the trajectory of long-range α-particle

    Indian Academy of Sciences (India)

    ... on the initial position and initial energy of the -particle. The sensitivity to initial conditions signifies the presence of deterministic chaos which is characterized by Lyapunov exponent (LE). The LE is calculated using Wolf's algorithm and found positive which implies that the objectives of trajectory calculations are restricted.

  8. Particle trajectories beneath wave-current interaction in a two-dimensional field

    Directory of Open Access Journals (Sweden)

    Y.-Y. Chen

    2012-03-01

    Full Text Available Within the Lagrangian reference framework we present a third-order trajectory solution for water particles in a two-dimensional wave-current interaction flow. The explicit parametric solution highlights the trajectory of a water particle and the wave kinematics above the mean water level and within a vertical water column, which were calculated previously by an approximation method using an Eulerian approach. Mass transport associated with a particle displacement can now be obtained directly in Lagrangian form without using the transformation from Eulerian to Lagrangian coordinates. In particular, the Lagrangian wave frequency and the Lagrangian mean level of particle motion can also be obtained, which are different from those in an Eulerian description. A series of laboratory experiments are performed to measure the trajectories of particles. By comparing the present asymptotic solution with laboratory experiments data, it is found that theoretical results show excellent agreement with experimental data. Moreover, the influence of a following current is found to increase the relative horizontal distance traveled by a water particle, while the converse is true in the case of an opposing current.

  9. Interactions of moving charged particles with triple-walled carbon nanotubes

    Science.gov (United States)

    Zhang, Ying-Ying; Song, Yuan-Hong; Radović, Ivan; Mišković, Zoran L.; Wang, You-Nian

    2017-08-01

    We study plasmon excitations and channeling trajectories of charged particles in triple-walled carbon nanotubes (TWNTs) based on a semi-classical kinetic model combined with the Molecular Dynamics method. Numerical results show that the outer and inner tubes of a TWNT exert strong influence on the peak structures of the self-energy (or the image potential) and the stopping power curves for the channeling ion, resulting in one or two narrow peaks in the low speed region. In addition, the radial dependencies of the total potential, which includes the image potential due to dynamic polarization of the electron gas in nanotubes and a reactive empirical bond order potential for atomic interactions, are compared for single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs) and TWNTs. By comparing the ion channeling trajectories in those types of nanotubes, we conclude that the variation of the total energy of ions with their channeling distance along the nanotube axis is related to the types of channeling trajectories, exhibiting smooth helical shapes in TWNTs and a succession of sharp reflections off the wall in SWNTs and DWNTs.

  10. Human fibrinogen adsorption on positively charged latex particles.

    Science.gov (United States)

    Zeliszewska, Paulina; Bratek-Skicki, Anna; Adamczyk, Zbigniew; Cieśla, Michał

    2014-09-23

    Fibrinogen (Fb) adsorption on positively charged latex particles (average diameter of 800 nm) was studied using the microelectrophoretic and the concentration depletion methods based on AFM imaging. Monolayers on latex were adsorbed from diluted bulk solutions at pH 7.4 and an ionic strength in the range of 10(-3) to 0.15 M where fibrinogen molecules exhibited an average negative charge. The electrophoretic mobility of the latex after controlled fibrinogen adsorption was systematically measured. A monotonic decrease in the electrophoretic mobility of fibrinogen-covered latex was observed for all ionic strengths. The results of these experiments were interpreted according to the three-dimensional electrokinetic model. It was also determined using the concentration depletion method that fibrinogen adsorption was irreversible and the maximum coverage was equal to 0.6 mg m(-2) for ionic strength 10(-3) M and 1.3 mg m(-2) for ionic strength 0.15 M. The increase of the maximum coverage was confirmed by theoretical modeling based on the random sequential adsorption approach. Paradoxically, the maximum coverage of fibrinogen on positively charged latex particles was more than two times lower than the maximum coverage obtained for negative latex particles (3.2 mg m(-2)) at pH 7.4 and ionic strength of 0.15 M. This was interpreted as a result of the side-on adsorption of fibrinogen molecules with their negatively charged core attached to the positively charged latex surface. The stability and acid base properties of fibrinogen monolayers on latex were also determined in pH cycling experiments where it was observed that there were no irreversible conformational changes in the fibrinogen monolayers. Additionally, the zeta potential of monolayers was more positive than the zeta potential of fibrinogen in the bulk, which proves a heterogeneous charge distribution. These experimental data reveal a new, side-on adsorption mechanism of fibrinogen on positively charged surfaces and

  11. First experimental comparison between the Cartesian and the Lissajous trajectory for magnetic particle imaging

    Science.gov (United States)

    Werner, F.; Gdaniec, N.; Knopp, T.

    2017-05-01

    Magnetic particle imaging (MPI) is a quantitative imaging modality that allows us to determine the distribution of superparamagnetic nanoparticles. Sampling is achieved by moving a field-free point (FFP) along a specific trajectory through the volume of interest. The magnetic material that lies along the path or in the close vicinity of the FFP changes its magnetization and induces a voltage in the surrounding receiver coils. Various trajectories for the FFP are conceivable, but most experimental MPI scanners either use a Cartesian or a Lissajous sampling trajectory. For the first time, this study compares both sampling methods experimentally using an MPI scanner that allows us to implement both sampling patterns. By default, the scanner is capable of scanning 2D and 3D field of views using a Lissajous trajectory. But since it also has a 1D mode, it is possible to perform Cartesian measurements by shifting the 1D scan line in a perpendicular direction to the FFP movement using the focus field. These line scans are jointly reconstructed to obtain a 2D image. In a further step, the unidirectional Cartesian trajectory is improved by interchanging the excitation and the focus-field direction leading to a bidirectional Cartesian trajectory. Our findings reveal similar results for the bidirectional Cartesian and Lissajous trajectory concerning the overall image quality and sensitivity. In a more detailed view, the bidirectional Cartesian trajectory achieves a slightly higher spatial center resolution, whereas the Lissajous trajectory is more efficient regarding the temporal resolution since less acquisition time is needed to reach an adequate image quality.

  12. Measuring charged particle multiplicity with early ATLAS public data

    Science.gov (United States)

    Üstün, G.; Barut, E.; Bektaş, E.; Özcan, V. E.

    2017-07-01

    We study 100 images of early LHC collisions that were recorded by the ATLAS experiment and made public for outreach purposes, and extract the charged particle multiplicity as a function of momentum for proton-proton collisions at a centre-of-mass energy of 7 TeV. As these collisions have already been pre-processed by the ATLAS Collaboration, the particle tracks are visible, but are available to the public only in the form of low-resolution bitmaps. We describe two separate image processing methods, one based on the industry-standard OpenCV library and C++, another based on self-developed algorithms in Python. We present our analysis of the transverse momentum and azimuthal angle distributions of the particles, in agreement with the literature.

  13. Search for Heavy Stable Charged Particles at the LHC

    CERN Document Server

    Quertenmont, Loic

    2008-01-01

    Many models of physics beyond the Standard Model predict the existence of heavy stable electrically and coloured charged particles (HSCP). The 14 TeV proton proton collisions produced by the Large Hadron Collider (LHC) would open the way to the production of these particles with masses up to several hundreds of $\\rm{GeV}/c^2$. The CMS and ATLAS detectors are capable of performing a direct observation of these particles by exploiting their unique signature: low velocity associated with a high momentum of the order a few hundred $\\rm{GeV}/c$. The perspectives for HSCP searches with integrated luminosities of $100$~pb$^{-1}$ and $1$~fb$^{-1}$ are presented.

  14. Electrostatic Charging of Polymers by Particle Impact at Low Pressures

    Science.gov (United States)

    Calle, Carlos I.; Mantovani, J. G.; Buhler, C. R.; Hogue, M. D.; Nowicki, A. W.; Groop, E. E.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Studies of the electrostatic interaction between micrometer-sized particles and polymer surfaces are of great interest to NASA's planetary exploration program. The unmanned landing missions to Mars planned for this decade as well as the possible manned missions that might take place during the second decade of this century require a better understanding of the electrostatic response of the materials used in landing crafts and equipment when exposed to wind-blown dust or to surface dust and sand particles. We report on preliminary experiments designed to measure the electrostatic charge developed on five polymer surfaces as they are impacted simultaneously by Mars simulant particles less than 5 micrometers in diameter moving at 20 m/s. Experiments were performed in a CO2 atmosphere at 10 mbars of pressure using a particle delivery method that propels the particles with contact. Experiments were also performed in dry air at atmospheric pressures using a pressurized particle delivery system. The five polymer surfaces, commonly used in space applications, were chosen so that they span the triboelectric series.

  15. Transcription Factors in the Cellular Response to Charged Particle Exposure

    Science.gov (United States)

    Hellweg, Christine E.; Spitta, Luis F.; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor’s p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles’ LET, with a maximal activation in the LET range of 90–300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  16. Transcription Factors in the Cellular Response to Charged Particle Exposure

    Directory of Open Access Journals (Sweden)

    Christine Elisabeth Hellweg

    2016-03-01

    Full Text Available Charged particles such as carbon ions bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g. on linear energy transfer (LET. For diverse outcomes (cell death, mutation, transformation, cell cycle arrest, an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair, cell cycle arrest or cell-destructive (cell death reactions. Triggering of these pathways converges amongst others in the activation of transcription factors such as p53, Nuclear Factor kappaB (NF-kappaB, activated protein 1 (AP-1, nuclear erythroid-derived 2-related factor 2 (Nrf2 and Cyclic-Nucleotide Response Element-Binding Protein (CREB. Depending on dose, radiation quality and tissue, p53 induces apoptosis or cell cycle arrest. In low-LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor’s p53 status. NF-kappaB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-kappaB are activated after ionizing radiation exposure in an ATM dependent manner. The NF-kappaB activation was shown to strongly depend on charged particles’ LET, with a maximal activation in the LET range of 90-300 keV/µm. AP-1 controls proliferation, senescence, differentiation and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  17. Moving charged particles in lattice Boltzmann-based electrokinetics

    Science.gov (United States)

    Kuron, Michael; Rempfer, Georg; Schornbaum, Florian; Bauer, Martin; Godenschwager, Christian; Holm, Christian; de Graaf, Joost

    2016-12-01

    The motion of ionic solutes and charged particles under the influence of an electric field and the ensuing hydrodynamic flow of the underlying solvent is ubiquitous in aqueous colloidal suspensions. The physics of such systems is described by a coupled set of differential equations, along with boundary conditions, collectively referred to as the electrokinetic equations. Capuani et al. [J. Chem. Phys. 121, 973 (2004)] introduced a lattice-based method for solving this system of equations, which builds upon the lattice Boltzmann algorithm for the simulation of hydrodynamic flow and exploits computational locality. However, thus far, a description of how to incorporate moving boundary conditions into the Capuani scheme has been lacking. Moving boundary conditions are needed to simulate multiple arbitrarily moving colloids. In this paper, we detail how to introduce such a particle coupling scheme, based on an analogue to the moving boundary method for the pure lattice Boltzmann solver. The key ingredients in our method are mass and charge conservation for the solute species and a partial-volume smoothing of the solute fluxes to minimize discretization artifacts. We demonstrate our algorithm's effectiveness by simulating the electrophoresis of charged spheres in an external field; for a single sphere we compare to the equivalent electro-osmotic (co-moving) problem. Our method's efficiency and ease of implementation should prove beneficial to future simulations of the dynamics in a wide range of complex nanoscopic and colloidal systems that were previously inaccessible to lattice-based continuum algorithms.

  18. Experimental Exploration of Electrostatic Charge on Particle Pair Relative Velocity in Homogeneous and Isotropic Turbulence

    Science.gov (United States)

    Hammond, Adam; Dou, Zhongwang; Tripathi, Anjan; Liang, Zach; Meng, Hui

    2015-11-01

    Study of droplet collision and cloud formation should consider the effects of both turbulence and electrostatic charge on particle dynamics. We present the first experimental observation of radial relative velocity (RV) of charged particles in homogeneous and isotropic turbulence (HIT). Charges on particles were generated through triboelectric effect between the inner wall of the chamber and the particles. To measure charge distribution, a particle-laden head-on impinging flow mimicking our HIT chamber conditions was built and holographic particle tracking was applied to quantify particle charges by measuring their displacements in an electric field. Particles were observed to have opposite charges. Next, in our HIT chamber, we measured particle RV by a novel 4-frame particle tracking velocimetry technique with and without charges on particles, wherein charges were neutralized by coating the interior of the HIT chamber with conductive carbon paint. We compared RV under the same turbulence conditions between charged particles and neutral particles and observed that when particles were oppositely charged, their mean inward RV increased at small separation distances. This result is consistent with recent theory and simulations (Lu and Shaw, Physics of Fluids, 2015). This work was supported by the National Science Foundation through a Collaborative Research Grant CBET-0967407.

  19. Laser-driven deflection arrangements and methods involving charged particle beams

    Science.gov (United States)

    Plettner, Tomas [San Ramon, CA; Byer, Robert L [Stanford, CA

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  20. Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2017-11-01

    The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.

  1. Explicit K-symplectic algorithms for charged particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang [School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhou, Zhaoqi [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China); Sun, Yajuan, E-mail: sunyj@lsec.cc.ac.cn [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Jian [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026 (China); Qin, Hong [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2017-02-12

    We study the Lorentz force equation of charged particle dynamics by considering its K-symplectic structure. As the Hamiltonian of the system can be decomposed as four parts, we are able to construct the numerical methods that preserve the K-symplectic structure based on Hamiltonian splitting technique. The newly derived numerical methods are explicit, and are shown in numerical experiments to be stable over long-term simulation. The error convergency as well as the long term energy conservation of the numerical solutions is also analyzed by means of the Darboux transformation.

  2. Charged Particle Multiplicities in Deep Inelastic Scattering at HERA

    CERN Document Server

    Aïd, S; Andreev, V; Andrieu, B; Appuhn, R D; Babaev, A; Ban, Y; Baranov, P S; Barrelet, E; Barschke, R; Bartel, Wulfrin; Barth, Monique; Bassler, U; Beck, H P; Behrend, H J; Belousov, A; Berger, C; Bernardi, G; Bertrand-Coremans, G H; Besançon, M; Beyer, R; Biddulph, P; Bispham, P; Bizot, J C; Blobel, Volker; Borras, K; Botterweck, F; Boudry, V; Braemer, A; Braunschweig, W; Brisson, V; Bruel, P; Bruncko, Dusan; Brune, C R; Buchholz, R; Buniatian, A Yu; Burke, S; Burton, M; Bähr, J; Büngener, L; Bürger, J; Büsser, F W; Calvet, D; Campbell, A J; Carli, T; Charlet, M; Chechelnitskii, S; Chernyshov, V; Clarke, D; Clegg, A B; Clerbaux, B; Cocks, S P; Contreras, J G; Cormack, C; Coughlan, J A; Courau, A; Cousinou, M C; Cozzika, G; Criegee, L; Cussans, D G; Cvach, J; Dagoret, S; Dainton, J B; Dau, W D; Daum, K; David, M; Davis, C L; De Wolf, E A; Delcourt, B; Di Nezza, P; Dirkmann, M; Dixon, P; Dlugosz, W; Dollfus, C; Dowell, John D; Dreis, H B; Droutskoi, A; Duhm, H; Dünger, O; Ebert, J; Ebert, T R; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellison, R J; Elsen, E E; Erdmann, M; Erdmann, W; Evrard, E; Fahr, A B; Favart, L; Fedotov, A; Feeken, D; Felst, R; Feltesse, Joel; Ferencei, J; Ferrarotto, F; Flamm, K; Fleischer, M; Flieser, M; Flügge, G; Fomenko, A; Fominykh, B A; Formánek, J; Foster, J M; Franke, G; Fretwurst, E; Gabathuler, Erwin; Gabathuler, K; Gaede, F; Garvey, J; Gayler, J; Gebauer, M; Genzel, H; Gerhards, R; Glazov, A; Goerlach, U; Gogitidze, N; Goldberg, M; Goldner, D; Golec-Biernat, Krzysztof J; González-Pineiro, B; Gorelov, I V; Grab, C; Greenshaw, T J; Griffiths, R K; Grindhammer, G; Gruber, A; Gruber, C; Grässler, Herbert; Grässler, R; Görlich, L; Haack, J; Hadig, T; Haidt, Dieter; Hajduk, L; Hampel, M; Haynes, W J; Heinzelmann, G; Henderson, R C W; Henschel, H; Herynek, I; Hess, M F; Hewitt, K; Hildesheim, W; Hiller, K H; Hilton, C D; Hladky, J; Hoeger, K C; Hoffmann, D; Holtom, T; Hoppner, M; Horisberger, R P; Hudgson, V L; Hufnagel, H; Hütte, M; Ibbotson, M; Itterbeck, H; Jacholkowska, A; Jacobsson, C; Jaffré, M; Janoth, J; Jansen, T; Johnson, D P; Jung, H; Jönsson, L B; Kalmus, Peter I P; Kander, M; Kant, D; Kaschowitz, R; Kathage, U; Katzy, J M; Kaufmann, H H; Kaufmann, O; Kazarian, S; Kenyon, Ian Richard; Kermiche, S; Keuker, C; Kiesling, C; Klein, M; Kleinwort, C; Knies, G; Kolanski, H; Kole, F; Kolya, S D; Korbel, V; Korn, M; Kostka, P; Kotelnikov, S K; Krasny, M W; Krehbiel, H; Krämerkämper, T; Krücker, D; Kuhlen, M; Kurca, T; Kurzhofer, J; Köhler, T; Köhne, J H; Küster, H; Lacour, D; Laforge, B; Lander, R; Landon, M P J; Lange, W; Langenegger, U; Laporte, J F; Lebedev, A; Lehner, F; Levonian, S; Lindström, G; Lindstrøm, M; Link, J; Linsel, F; Lipinski, J; List, B; Lobo, G; Loch, P; Lomas, J W; Lubimov, V; Lüke, D; López, G C; Magnussen, N; Malinovskii, E I; Mani, S; Maracek, R; Marage, P; Marks, J; Marshall, R; Martens, J; Martin, G; Martin, R D; Martyn, H U; Martyniak, J; Mavroidis, A; Maxfield, S J; McMahon, S J; Mehta, A; Meier, K; Meyer, A; Meyer, H; Meyer, J; Meyer, P O; Migliori, A; Mikocki, S; Milstead, D; Moeck, J; Moreau, F; Morris, J V; Mroczko, E; Murín, P; Müller, G; Müller, K; Nagovitsin, V; Nahnhauer, R; Naroska, Beate; Naumann, T; Negri, I; Newman, P R; Newton, D; Neyret, D; Nguyen, H K; Nicholls, T C; Niebergall, F; Niebuhr, C B; Niedzballa, C; Niggli, H; Nisius, R; Nowak, G; Noyes, G W; Nyberg-Werther, M; Oakden, M N; Oberlack, H; Olsson, J E; Ozerov, D; Palmen, P; Panaro, E; Panitch, A; Pascaud, C; Patel, G D; Pawletta, H; Peppel, E; Phillips, J P; Pieuchot, A; Pitzl, D; Pope, G; Prell, S; Pérez, E; Rabbertz, K; Reimer, P; Reinshagen, S; Rick, Hartmut; Riech, V; Riedlberger, J; Riepenhausen, F; Riess, S; Rizvi, E; Robertson, S M; Robmann, P; Roloff, H E; Roosen, R; Rosenbauer, K; Rostovtsev, A A; Rouse, F; Royon, C; Rusakov, S V; Rybicki, K; Rädel, G; Rüter, K; Sankey, D P C; Schacht, P; Schiek, S; Schleif, S; Schleper, P; Schmidt, D; Schmidt, G; Schröder, V; Schuhmann, E; Schwab, B; Schöning, A; Sefkow, F; Seidel, M; Sell, R; Semenov, A A; Shekelian, V I; Shevyakov, I; Shtarkov, L N; Siegmon, G; Siewert, U; Sirois, Y; Skillicorn, Ian O; Smirnov, P; Smith, J R; Solochenko, V; Soloviev, Yu V; Specka, A E; Spiekermann, J; Spielman, S; Spitzer, H; Squinabol, F; Starosta, R; Steenbock, M; Steffen, P; Steinberg, R; Steiner, H; Steinhart, J; Stella, B; Stellberger, A; Stier, J; Stiewe, J; Stolze, K; Straumann, U; Struczinski, W; Stösslein, U; Sutton, J P; Tapprogge, Stefan; Tasevsky, M; Theissen, J; Thiebaux, C; Thompson, G; Truöl, P; Tsipolitis, G; Turnau, J; Tutas, J; Uelkes, P; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Esch, P; Van Mechelen, P; Van den Plas, D; Vazdik, Ya A; Verrecchia, P; Villet, G; Wacker, K; Wagener, A; Wagener, M; Walther, A; Waugh, B; Weber, G; Weber, M; Wegener, D; Wegner, A; Wengler, T; Werner, M; West, L R; Wiesand, S; Wilksen, T; Willard, S; Winde, M; Winter, G G; Wittek, C; Wobisch, M; Wünsch, E; Zarbock, D; Zhang, Z; Zhokin, A S; Zini, P; Zomer, F; Zsembery, J; Zuber, K; Zur Nedden, M; Zácek, J; de Roeck, A; von Schlippe, W

    1996-01-01

    Using the H1 detector at HERA, charged particle multiplicity distributions in deep inelastic ep scattering have been measured over a large kinematical region. The evolution with $W$ and $Q^2$ of the multiplicity distribution and of the multiplicity moments in pseudorapidity domains of varying size is studied in the current fragmentation region of the hadronic centre-of-mass frame. The results are compared with data from fixed target lepton-nucleon interactions, $e^+e^-$ annihilations and hadron-hadron collisions as well as with expectations from QCD based parton models. Fits to the Negative Binomial and Lognormal distributions are presented.

  3. KAERI charged particle cross section library for radioisotope production

    CERN Document Server

    Chang, J H; Kim, D H; Lee, Y O; Zhuang, Y X

    2001-01-01

    This report summarized information and figures describing the 'KAERI Charged Particle Cross Section Library for Radioisotope production' The library contains proton-, deutron-, He-3-, and alpha-induced monitor cross sections, and gamma- and positron-emitter production cross sections. Experimental data and evaluation methods are described, and the evaluated cross sections are compared with those of the IAEA, MENDL, and LA150. The library has cross sections and emission spectra suitable for the transport analysis in the design of radioisotope production system, and are available at http://atom.kaeri.re.kr/ in ENDF-6 format.

  4. Physical sputtering of metallic systems by charged-particle impact

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs.

  5. Resistive cooling circuits for charged particle traps using crystal resonators

    CERN Document Server

    Kaltenbacher, T; Doser, M; Kellerbauer, A; Pribyl, W

    2011-01-01

    The paper addresses a novel method to couple a signal from charged particles in a Penning trap to a high Q resonant circuit using a crystal resonator. Traditionally the trap capacity is converted into a resonator by means of an inductance. When normal conducting wires (e.g. copper) are applied to build up a coil, the unloaded Q value is limited to a value in the order of 1000. The tuned circuit’s Q factor is directly linked to the input impedance “seen” by the trapped particles at resonance frequency. This parallel resonance impedance is a measure of the efficiency of resistive cooling and thus it should be optimized. We propose here a commercially available crystal resonator since it exhibits a very high Q value and a parallel resonance impedance of several MOhm. The possibility to tune the parallel resonance frequency of the quartz results in filter behavior that allows covering a broad range of frequencies.

  6. Development of Si (Li) detectors for charged particles spectrometer

    CERN Document Server

    Onabe, H; Obinata, M; Kashiwagi, T

    2002-01-01

    Lithium drifted silicon (Si (Li)) detectors with high-quality large area for charged particles spectrometer abroad artificial satellite have been developed. Surface stability can be obtained by thin p-n junction fabricated with the applied photo engraving process (PEP) instead of surface barrier. The region compensated with Lithium can be improved by the adequate heat treatment, and this improvement can be monitored by means of a combination of copper plating and subsequent micro-XRF analysis. The detectors fabricated from the thermal treated wafers were found to have better energy resolution both for alpha-particles from sup 2 sup 4 sup 1 Am and conversion electrons from sup 2 sup 0 sup 7 Bi. (author)

  7. Rainbows in channeling of charged particles in crystals and nanotubes

    CERN Document Server

    Nešković, Nebojša; Ćosić, Marko

    2017-01-01

    This book discusses the effects, modeling, latest results, and nanotechnology applications of rainbows that appear during channeling of charged particles in crystals and nanotubes. The authors begin with a brief review of the optical and particle rainbow effects followed by a detailed description of crystal rainbows, which appear in ion channeling in crystals, and their modeling using catastrophe theory. The effects of spatial and angular focusing of channeled ions are described, with special attention given to the applications of the former effect to subatomic microscopy. The results of a thorough study of the recent high-resolution channeling experiments performed with protons of energies between 2.0 and 0.7 MeV and a 55 nm thick silicon crystal are also provided. This study opens up the potential for accurate analysis of very thin crystals. Also presented are recent results related to rainbows occurring in proton transmission through carbon nanotubes, and a detailed quantum consideration of the transmissio...

  8. A Search for Charged Massive Stable Particles at D0

    Energy Technology Data Exchange (ETDEWEB)

    Eads, Michael Terry [Northern Illinois Univ., DeKalb, IL (United States)

    2005-08-01

    A search for charged massive stable particles has been performed with the D0 detector at the Fermilab Tevatron. The signature is two particles reconstructed as muons, but with speed and invariant mass inconsistent with beam-produced muons. No excess of events is observed and limits are set on the production cross-section for pair-produced stable stau sleptons based on 390 pb-1 of data. Limits vary from 0.06 pb to 0.62 pb, depending on the stau mass, and are the strictest Tevatron limits to date. Mass limits are also set for stable charginos. The limits are 140 GeV/c2 for a higgsino-like chargino and 174 GeV/c2 for a gaugino-like chargino. These are currently the best limits to date for stable charginos.

  9. Automated 3D trajectory measuring of large numbers of moving particles.

    Science.gov (United States)

    Wu, Hai Shan; Zhao, Qi; Zou, Danping; Chen, Yan Qiu

    2011-04-11

    Complex dynamics of natural particle systems, such as insect swarms, bird flocks, fish schools, has attracted great attention of scientists for years. Measuring 3D trajectory of each individual in a group is vital for quantitative study of their dynamic properties, yet such empirical data is rare mainly due to the challenges of maintaining the identities of large numbers of individuals with similar visual features and frequent occlusions. We here present an automatic and efficient algorithm to track 3D motion trajectories of large numbers of moving particles using two video cameras. Our method solves this problem by formulating it as three linear assignment problems (LAP). For each video sequence, the first LAP obtains 2D tracks of moving targets and is able to maintain target identities in the presence of occlusions; the second one matches the visually similar targets across two views via a novel technique named maximum epipolar co-motion length (MECL), which is not only able to effectively reduce matching ambiguity but also further diminish the influence of frequent occlusions; the last one links 3D track segments into complete trajectories via computing a globally optimal assignment based on temporal and kinematic cues. Experiment results on simulated particle swarms with various particle densities validated the accuracy and robustness of the proposed method. As real-world case, our method successfully acquired 3D flight paths of fruit fly (Drosophila melanogaster) group comprising hundreds of freely flying individuals. © 2011 Optical Society of America

  10. Near-horizon Structure of Escape Zones of Electrically Charged Particles around Weakly Magnetized Rotating Black Hole

    Science.gov (United States)

    Kopáček, Ondřej; Karas, Vladimír

    2018-01-01

    An interplay of magnetic fields and gravitation drives accretion and outflows near black holes. However, a specific mechanism is still a matter of debate; it is very likely that different processes dominate under various conditions. In particular, for the acceleration of particles and their collimation in jets, an ordered component of the magnetic field seems to be essential. Here we discuss the role of large-scale magnetic fields in transporting the charged particles and dust grains from the bound orbits in the equatorial plane of a rotating (Kerr) black hole and the resulting acceleration along trajectories escaping the system in a direction parallel to the symmetry axis (perpendicular to the accretion disk). We consider a specific scenario of destabilization of circular geodesics of initially neutral matter by charging (e.g., due to photoionization). Some particles may be set on escaping trajectories and attain relativistic velocity. The case of charged particles differs from charged dust grains by their charge-to-mass ratio, but the acceleration mechanism operates in a similar manner. It appears that the chaotic dynamics controls the outflow and supports the formation of near-horizon escape zones. We employ the technique of recurrence plots to characterize the onset of chaos in the outflowing medium. We investigate the system numerically and construct the basin-boundary plots, which show the location and the extent of the escape zones. The effects of black hole spin and magnetic field strength on the formation and location of escape zones are discussed, and the maximal escape velocity is computed.

  11. Stochastic Trajectory Generation Using Particle Swarm Optimization for Quadrotor Unmanned Aerial Vehicles (UAVs

    Directory of Open Access Journals (Sweden)

    Babak Salamat

    2017-05-01

    Full Text Available The aim of this paper is to provide a realistic stochastic trajectory generation method for unmanned aerial vehicles that offers a tool for the emulation of trajectories in typical flight scenarios. Three scenarios are defined in this paper. The trajectories for these scenarios are implemented with quintic B-splines that grant smoothness in the second-order derivatives of Euler angles and accelerations. In order to tune the parameters of the quintic B-spline in the search space, a multi-objective optimization method called particle swarm optimization (PSO is used. The proposed technique satisfies the constraints imposed by the configuration of the unmanned aerial vehicle (UAV. Further particular constraints can be introduced such as: obstacle avoidance, speed limitation, and actuator torque limitations due to the practical feasibility of the trajectories. Finally, the standard rapidly-exploring random tree (RRT* algorithm, the standard (A* algorithm and the genetic algorithm (GA are simulated to make a comparison with the proposed algorithm in terms of execution time and effectiveness in finding the minimum length trajectory.

  12. Trajectory Approach to Two-State Kinetics of Single Particles on Sculpted Energy Landscapes

    Science.gov (United States)

    Wu, David; Ghosh, Kingshuk; Inamdar, Mandar; Lee, Heun Jin; Fraser, Scott; Dill, Ken; Phillips, Rob

    2009-07-01

    We study the trajectories of a single colloidal particle as it hops between two energy wells which are sculpted using optical traps. Whereas the dynamical behaviors of such systems are often treated by master-equation methods that focus on particles as actors, we analyze them instead using a trajectory-based variational method called maximum caliber (MaxCal). We show that the MaxCal strategy accurately predicts the full dynamics that we observe in the experiments: From the observed averages, it predicts second and third moments and covariances, with no free parameters. The covariances are the dynamical equivalents of Maxwell-like equilibrium reciprocal relations and Onsager-like dynamical relations.

  13. Recovering a stochastic process from super-resolution noisy ensembles of single-particle trajectories.

    Science.gov (United States)

    Hoze, N; Holcman, D

    2015-11-01

    Recovering a stochastic process from noisy ensembles of single-particle trajectories is resolved here using the coarse-grained Langevin equation as a model. The massive redundancy contained in single-particle tracking data allows recovering local parameters of the underlying physical model. We use several parametric and nonparametric estimators to compute the first and second moments of the process, to recover the local drift, its derivative, and the diffusion tensor, and to deconvolve the instrumental from the physical noise. We use numerical simulations to also explore the range of validity for these estimators. The present analysis allows defining what can exactly be recovered from statistics of super-resolution microscopy trajectories used for characterizing molecular trafficking underlying cellular functions.

  14. Fractional dynamics of charged particles in magnetic fields

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  15. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    Science.gov (United States)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  16. CPM : A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles

    NARCIS (Netherlands)

    Jalba, Andrei C.; Wilkinson, Michael H.F.; Roerdink, Jos B.T.M.

    2004-01-01

    A novel, physically motivated deformable model for shape recovery and segmentation is presented. The model, referred to as the charged-particle model (CPM), is inspired by classical electrodynamics and is based on a simulation of charged particles moving in an electrostatic field. The charges are

  17. Geomagnetically trapped, albedo and solar energetic particles: Trajectory analysis and flux reconstruction with PAMELA

    Science.gov (United States)

    Bruno, A.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; Christian, E. C.; De Donato, C.; de Nolfo, G. A.; De Santis, C.; De Simone, N.; Di Felice, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Ryan, J. M.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stochaj, S.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.

    2017-08-01

    The PAMELA satellite experiment is providing comprehensive observations of the interplanetary and magnetospheric radiation in the near-Earth environment. Thanks to its identification capabilities and the semi-polar orbit, PAMELA is able to precisely measure the energetic spectra and the angular distributions of the different cosmic-ray populations over a wide latitude region, including geomagnetically trapped and albedo particles. Its observations comprise the solar energetic particle events between solar cycles 23 and 24, and the geomagnetic cutoff variations during magnetospheric storms. PAMELA's measurements are supported by an accurate analysis of particle trajectories in the Earth's magnetosphere based on a realistic geomagnetic field modeling, which allows the classification of particle populations of different origin and the investigation of the asymptotic directions of arrival.

  18. Charge collection efficiency of GaAs detectors studied with low-energy heavy charged particles

    CERN Document Server

    Bates, R; Linhart, V; O'Shea, V; Pospísil, S; Raine, C; Smith, K; Sinor, M; Wilhelm, I

    1999-01-01

    Epitaxially grown GaAs layers have recently been produced with sufficient thickness and low enough free carrier concentration to permit their use as radiation detectors. Initial tests have shown that the epi-material behaves as a classical semiconductor as the depletion behaviour follows the square root dependency on the applied bias. This article presents the results of measurements of the growth of the active depletion depth with increasing bias using low-energy protons and alpha particles as probes for various depths and their comparison to values extrapolated from capacitance measurements. From the proton and alpha particle spectroscopic measurements, an active depth of detector material that collects 100% of the charge generated inside it was determined. The consistency of these results with independent capacitance measurements supports the idea that the GaAs epi-material behaves as a classical semiconductor. (author)

  19. Search for multiply charged Heavy Stable Charged Particles in data collected with the CMS detector

    Energy Technology Data Exchange (ETDEWEB)

    Veeraraghavan, Venkatesh [Florida State Univ., Tallahassee, FL (United States)

    2013-10-30

    Several models of new physics yield particles that are massive, long-lived, and have an electric charge, Q, greater than that of the electron, e. A search for evidence of such particles was performed using 5.0 fb-1 and 18.8 fb-1 of proton-proton collision data collected at √s = 7 TeV and √s = 8 TeV, respectively, with the Compact Muon Solenoid detector at the Large Hadron Collider. The distinctive detector signatures of these particles are that they are slow-moving and highly ionizing. Ionization energy loss and time-of- flight measurements were made using the inner tracker and the muon system, respectively. The search is sensitive to 1e ≤ |Q| ≤ 8e. Data were found to be consistent with standard model expectations and upper limits on the production cross section of these particles were computed using a Drell-Yan-like production model. Masses below 517, 687, 752, 791, 798, 778, 753, and 724 GeV are excluded for |Q| = 1e, 2e, 3e, 4e, 5e, 6e, 7e, and 8e, respectively.

  20. Search for multiply charged Heavy Stable Charged Particles in data collected with the CMS detector.

    CERN Document Server

    Veeraraghavan, Venkatesh

    Several models of new physics yield particles that are massive, long-lived, and have an electric charge, $Q$, greater than that of the electron, $e$. A search for evidence of such particles was performed using 5.0~fb$^{-1}$ and 18.8~fb$^{-1}$ of proton-proton collision data collected at $\\sqrt{s}=7~$TeV and $\\sqrt{s}=8~$TeV, respectively, with the Compact Muon Solenoid detector at the Large Hadron Collider. The distinctive detector signatures of these particles are that they are slow-moving and highly ionizing. Ionization energy loss and time-of-flight measurements were made using the inner tracker and the muon system, respectively. The search is sensitive to $1e \\leq |Q| \\leq 8e$. Data were found to be consistent with standard model expectations and upper limits on the production cross section of these particles were computed using a Drell-Yan-like production model. Masses below 517, 687, 752, 791, 798, 778, 753, and 724~GeV are excluded for $|Q|=1e$, $2e$, $3e$, $4e$, $5e$, $6e$, $7e$, and $8e$, respectivel...

  1. Weakly nonlinear electrophoresis of a highly charged colloidal particle

    Science.gov (United States)

    Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud

    2013-05-01

    At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.

  2. Channeling and electromagnetic radiation of relativistic charged particles in metal-organic frameworks

    Science.gov (United States)

    Zhevago, N. K.; Glebov, V. I.

    2017-06-01

    We have developed the theory of electromagnetic interaction of relativistic charged particles with metal-organic frameworks (MOFs). The electrostatic potential and electron number density distribution in MOFs were calculated using the most accurate data for the atomic form factors. Peculiarities of axial channeling of fast charged particles and various types of electromagnetic radiation from relativistic particles has been discussed.

  3. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and display...

  4. Coordinate-sensitive charged particle detector for spectroscopy

    Directory of Open Access Journals (Sweden)

    Sidorenko V. P.

    2016-10-01

    Full Text Available The authors have designed, manufactured and tested a coordinate-sensitive detector for charged particle spectroscopy. The detector can be used in the devices for the elemental analysis of materials, providing simultaneous analysis of all the elemental composition with high sensitivity and precision. The designed device is based on an integrated circuit (IC and a microchannel plate (MCP electron multiplier. The IC is mounted on a ceramic substrate. Ions fall on the MCP mounted above the IC. Giving rise to a pulse which typically exceeds 106 electrons, each ion falls on the detector electrodes and these pulses are counted. In this research, a two stage stack of MCPs (Hamamatsu was used. The MCPs have a channel diameter of 12 μm on a 15 μm pitch. The results of tests carried out in a mass spectrometer are presented. The designed detector is small, light, and low-power.

  5. Fundamentals of charged particle transport in gases and condensed matter

    CERN Document Server

    Robson, Robert E; Hildebrandt, Malte

    2018-01-01

    This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.

  6. Dynamic polarization of carbon nano-structures by charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, Zoran L. [Department of Applied Mathematics and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-03-31

    A brief review is presented of several models used to describe dynamic polarization of carbon nanostructures by charged particles moving in a broad range of incident velocities. For low-energy excitations of graphene we use the polarization function for its π electron bands in the Dirac cone approximations within a dielectric response approach that includes the transverse optical phonons in a polar substrate. For high-energy excitations by fast electrons we use a two-dimensional hydrodynamic model for the π and σ electron systems in the sp{sup 2} bonded carbon with various geometrical shapes. In particular, we use second quantization of the hydrodynamic model to show that large numbers of plasmons may be excited by moderately fast electrons in a C{sub 60} molecule. Results of the theoretical modeling are compared with several experiments.

  7. Using Charged Particle Imaging to Study Ultracold Plasma Expansion

    Science.gov (United States)

    Zhang, X. L.; Fletcher, R. S.; Rolston, S. L.

    2009-03-01

    We develop a projection imaging technique to study ultracold plasma dynamics. We image the charged particle spatial distributions by extraction with a high-voltage pulse onto a position-sensitive detector. Measuring the 2D width of the ion image at later times (the ion image size in the first 20 μs is dominated by the Coulomb explosion of the dense ion cloud), we extract the plasma expansion velocity. These velocities at different initial electron temperatures match earlier results obtained by measuring the plasma oscillation frequency. The electron image size slowly decreases during the plasma lifetime because of the strong Coulomb force of the ion cloud on the electrons, electron loss and Coulomb explosion effects.

  8. Group classification of charged particle motion in stationary electromagnetic fields

    Science.gov (United States)

    Kallinikos, N.

    2017-11-01

    In this paper, we classify in terms of Lie point symmetries the three-dimensional nonrelativistic motion of charged particles in arbitrary time-independent electromagnetic fields. The classification is made on the ground of equivalence transformations, and when the system is nonlinear and particularly for inhomogeneous and curved magnetic fields, it is also complete. Using the homogeneous Maxwell's equations as auxiliary conditions for consistency, in which case the system amounts to a Lagrangian of three degrees of freedom with velocity-dependent potentials, the equivalence group stays the same. Therefore, instead of the actual fields, the potentials are equally employed and their gauge invariance results in an infinite-dimensional equivalence algebra, which nevertheless projects to finite-dimensional symmetry algebras. Subsequently, optimal systems of equivalence subalgebras are obtained that lead to one-, two-, and three-parameter extended symmetry groups, besides the obvious time translations. Finally, based on symmetries of Noether type, aspects of complete integrability are discussed, as well.

  9. Charged particle spectra in p+Pb collisions

    CERN Document Server

    Shulga, Evgeny; The ATLAS collaboration

    2016-01-01

    Per-event charged particle spectra and nuclear modification factors are measured with the ATLAS detector at the LHC in p+Pbinteractions at sqrt(s_NN)=5.02 TeV. Results are presented as a function of transverse momentum, rapidity, and in different intervals of collision centrality, which is characterised in p+Pb collisions by the total transverse energy measured over the pseudorapidity interval -3.2

  10. Synthesis and Characterization of Polyelectrolyte Grafted Charged Colloidal Particles

    Science.gov (United States)

    Mohanty, Priti Sundar; Harada, Tamotsu; Matsumoto, Kozo; Matsuoka, Hideki

    2006-05-01

    Novel polyelectrolyte grafted charged colloidal particles have been synthesized via emulsion polymerization method using block copolymer as an emulsifier and have been characterized by determining the surface charge number (Z), chain density (σ) using conductometric titration, the size distribution, hydrodynamic (Rh) radius by dynamic light scattering and the core radius (Rc) by atomic force microscopy. The structural ordering and dynamics have been investigated in a very dilute concentration and the effect of salt concentration (Cs) on hydrodynamic radius have also been studied using dynamic light scattering. The conductivity titration curve was found to show two equivalence points and the potentiometric titration curves are found to sensitive only after a critical salt concentrations. The corresponding measured hydrodynamic radius is also found to decrease after a critical salt concentration. At high salt concentration, the hydrodynamic radius shows a close agreement with that of the core radius measured by the atomic force microscope. These experimental results are in agreement with the recent theoretical prediction and experimental observation that most of the counterions are confined inside the brush region which led to stretching of the chains at low salt concentration.

  11. Biological dose estimation for charged-particle therapy using an improved PHITS code coupled with a microdosimetric kinetic model.

    Science.gov (United States)

    Sato, Tatsuhiko; Kase, Yuki; Watanabe, Ritsuko; Niita, Koji; Sihver, Lembit

    2009-01-01

    Microdosimetric quantities such as lineal energy, y, are better indexes for expressing the RBE of HZE particles in comparison to LET. However, the use of microdosimetric quantities in computational dosimetry is severely limited because of the difficulty in calculating their probability densities in macroscopic matter. We therefore improved the particle transport simulation code PHITS, providing it with the capability of estimating the microdosimetric probability densities in a macroscopic framework by incorporating a mathematical function that can instantaneously calculate the probability densities around the trajectory of HZE particles with a precision equivalent to that of a microscopic track-structure simulation. A new method for estimating biological dose, the product of physical dose and RBE, from charged-particle therapy was established using the improved PHITS coupled with a microdosimetric kinetic model. The accuracy of the biological dose estimated by this method was tested by comparing the calculated physical doses and RBE values with the corresponding data measured in a slab phantom irradiated with several kinds of HZE particles. The simulation technique established in this study will help to optimize the treatment planning of charged-particle therapy, thereby maximizing the therapeutic effect on tumors while minimizing unintended harmful effects on surrounding normal tissues.

  12. Particle trajectory computer program for icing analysis of axisymmetric bodies - A progress report

    Science.gov (United States)

    Maltezos, Dimitrios G.; Osonitsch, Charles; Shaw, Robert J.; Kaercher, Arthur

    1987-01-01

    Aircraft exposed to an atmospheric icing environment can accumulate ice, resulting in a sharp increase in drag, a reduction in lift, control surface fouling, and engine damage all of which result in a hazardous flight situation. NASA Lewis Research Center (LeRC) has conducted a program to examine, with the aid of high-speed computer codes, how the trajectories of particles contribute to the ice accumulation on airfoils and engine inlets. For this effort, a computer code was developed to calculate icing particle trajectories and impingement limits for axisymmetric inlets. The original research-oriented NASA code was upgraded and modified to meet the requirements of the design engineer. The improved code is capable of performing trajectory calculations for any atmospheric conditions and droplet sizes. It can handle single droplets or a distribution of various droplet sizes. The four programs that comprise the code are described and the results of a test case using flight conditions for a Fokker F100 icing tunnel test are presented.

  13. Heavy charged-particle induced lesions in rabbit cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, K.H.; Lyman, J.T.; Fabrikant, J.I.

    1988-02-01

    Fourteen male rabbits received single doses of 20, 40, and 80 Gy of neon irradiation with an extended Bragg peak. They were sacrificed at 1 day, 1 week, and 6 months post-irradiation. The tissue changes which showed a significant time-dose relationship were leakage of carbon particles from blood vessels, focal arachnoiditis, hemorrhage, cystic necrosis, and a total histopathologic score using a point system of grading. The focal nature of the lesions was clearly demonstrated with 2 mm thick macrotome sections. The transition zone between damaged brain and microscopically normal appearing brain was less than 1 mm and the tissue damage induced was morphologically similar to that of other radiation modalities. These findings may have important therapeutic implications for patients. The sharply demarcated boundaries of heavy charged-particle induced lesions suggest these beams will be useful for obliterating tissue in areas where it is critical that a transition from undamaged to severely damaged tissue must occur over a short distance, such as in the central nervous system.

  14. Jupiter's distant magnetic equator region in energetic charged particle data

    Science.gov (United States)

    Paranicas, C.; Mauk, B.; Haggerty, D. K.; Clark, G. B.; Kollmann, P.; Rymer, A. M.; Connerney, J. E. P.; Bagenal, F.; Bolton, S. J.; Levin, S.

    2016-12-01

    The Juno spacecraft entered Jupiter orbit in July 2016. The first two orbits are unique, lasting 53.5 days each. Subsequent planned orbits are 14 days long. The large orbits have their apoapses close to the Jovian spin equator whereas in the later, shorter orbits, the apoapses move south away from it. The Jupiter Energetic Particle Detector Instrument (JEDI) Investigation on Juno measures ions and electrons in the tens of keV to tens of MeV energy range. JEDI is three separate instruments each with a fan of detectors. Two of the JEDI's are mounted with all their fields-of-view nearly perpendicular to the spacecraft spin axis. The third JEDI is mounted so that the FOVs usually capture directions between those toward and those away from the sun. Together with the spin rate of 2 rpm, the instruments regularly obtain a nearly complete view of the sky. In this talk, we will present the first results of a several-day campaign that will collect data near the distant magnetic equator. Juno magnetometer data is used primarily to determine charged particle pitch angles. We will also discuss the relationship between the magnetic equator and the high latitude magnetosphere in that region. JEDI data contain good diagnostic indicators that characterize magnetospheric regions; for example, times inside and outside the magnetopause are frequently apparent in energetic electron data. The data presented here will be the first of many to characterize Jupiter's complex magnetodisk.

  15. Motion of Charged Particles in Two-Step Nilpotent Lie Groups

    OpenAIRE

    Ikawa, Osamu

    2010-01-01

    We formulate the equation of motion of a charged particle in a Riemannian manifold with a closed two form. Since a two-step nilpotent Lie group has natural left-invariant closed two forms, it is natural to consider the motion of a charged particle in a simply connected two-step nilpotent Lie groups with a left invariant metric. We study the behavior of the motion of a charged particle in the above spaces.

  16. Measurement of the electrostatic charge in airborne particles: I - development of the equipment and preliminary results

    Directory of Open Access Journals (Sweden)

    Marra Jr. W.D.

    2000-01-01

    Full Text Available The design and construction of a equipment capable of measuring the electrostatic charges in aerosols, named the electrostatic charge classifier, were carried out. They were based on the concept of particle electromobility and the charge classifier was intended to classify the nature and the distribution of electrostatic charges as a function of particle size. The resulting piece of equipment is easy to dismount, which facilitates its cleaning and transport, and easy to operate. Early results indicate that the values of electrostatic charge measured on test particles are inside the range reported in the literature, indicating the adequacy of the technique utilized.

  17. The "Puck" Energetic Charged Particle Detector: Design, Heritage, and Advancements

    Science.gov (United States)

    Clark, G.; Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; hide

    2016-01-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of approximately 10 kiloelectronvolts to several megaelectronvolts. This sensor makes simultaneous angular measurements of electron fluxes from the tens of kiloelectronvolts to about 1 megaelectronvolt. The same measurements can be extended down to approximately 1 kiloelectronvolt per nucleon,with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  18. Calibration of Charged-Particle Detectors for the LISA Commissioning Experiment

    Science.gov (United States)

    Garrett, S.; Taylor, N.; Barker, A.; Rogers, W. F.

    2012-10-01

    The Modular Neutron Array (MoNA) and the Large area multi-Institutional Scintillator Array (LISA), housed at the National Superconducting Cyclotron Laboratory at Michigan State University, were constructed by students at primarily undergraduate institutions. Each array consists of 144 2-m long scintillator detectors with PMTs attached to each end and are used for the detection of neutrons resulting from the breakup of exotic neutron-unbound nuclear states. The commissioning run for LISA was conducted during summer 2011 (in conjunction with MoNA and the Sweeper Magnet) to investigate unbound excited states of the neutron-rich nucleus 24O that breakup via sequential 2-neutron decay. In order to do this the energies and trajectories of both the charged fragments and neutrons need to be determined precisely, which require careful energy, position, and time calibration of the Sweeper Chamber charged particle detectors. Then careful separation of the individual Oxygen isotopes is necessary so that gates can be produced to be used in the calculation of individual decay energies. Results to be presented.

  19. Review of charged particle shielding technology for spatial optical sensor & detector

    Directory of Open Access Journals (Sweden)

    WANG Chunyu

    2016-02-01

    Full Text Available Spatial optical sensor & detector is an important component or type of a spacecraft, but the abundant existing spatial charged particle would cause background noise and performance degradation to the sensor & detector, affecting space exploration task. Currently, there lacks quantitative evaluation method for the impact of spatial charged particle. Besides, there is limitation for the widely used mass shielding, permanent magnet deflection and anticoincidence technology in shielding spatial charged particle. So, this paper reviews the researches about the problem, and provides a novel design thought about spatial charged particle shielding system for spatial optical sensor & detector based on electric & magnetic complex field.

  20. An improved model for computing the trajectories of conductive particles in roll-type electrostatic separator for recycling metals from WEEE

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jiang; Li Jia [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai (China); Xu Zhenming, E-mail: zmxu@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai (China)

    2009-08-15

    Electrostatic separation presents an effective and environmentally friendly way for recycling metals and nonmetals from ground waste electrical and electronic equipment (WEEE). For this process, the trajectory of conductive particle is significant and some models have been established. However, the results of previous researches are limited by some simplifying assumptions and lead to a notable discrepancy between the model prediction and the experimental results. In the present research, a roll-type corona-electrostatic separator and ground printed circuit board (PCB) wastes were used to investigate the trajectory of the conductive particle. Two factors, the air drag force and the different charging situation, were introduced into the improved model. Their effects were analyzed and an improved model for the theoretical trajectory of conductive particle was established. Compared with the previous one, the improved model shows a good agreement with the experimental results. It provides a positive guidance for designing of separator and makes a progress for recycling the metals and nonmetals from WEEE.

  1. An improved model for computing the trajectories of conductive particles in roll-type electrostatic separator for recycling metals from WEEE.

    Science.gov (United States)

    Wu, Jiang; Li, Jia; Xu, Zhenming

    2009-08-15

    Electrostatic separation presents an effective and environmentally friendly way for recycling metals and nonmetals from ground waste electrical and electronic equipment (WEEE). For this process, the trajectory of conductive particle is significant and some models have been established. However, the results of previous researches are limited by some simplifying assumptions and lead to a notable discrepancy between the model prediction and the experimental results. In the present research, a roll-type corona-electrostatic separator and ground printed circuit board (PCB) wastes were used to investigate the trajectory of the conductive particle. Two factors, the air drag force and the different charging situation, were introduced into the improved model. Their effects were analyzed and an improved model for the theoretical trajectory of conductive particle was established. Compared with the previous one, the improved model shows a good agreement with the experimental results. It provides a positive guidance for designing of separator and makes a progress for recycling the metals and nonmetals from WEEE.

  2. Simultaneous acquisition of trajectory and fluorescence lifetime of moving single particles

    Science.gov (United States)

    Wu, Qianqian; Qi, Jing; Lin, Danying; Yan, Wei; Hu, Rui; Peng, Xiao; Qu, Junle

    2017-02-01

    Fluorescence lifetime imaging (FLIM) has been a powerful tool in life science because it can reveal the interactions of an excited fluorescent molecule and its environment. The combination with two-photon excitation (TPE) and timecorrelated single photon counting (TCSPC) provides it the ability of optical sectioning, high time resolution and detection efficiency. In previous work, we have introduced a two-dimensional acousto-optic deflector (AOD) into TCSPC-based FLIM to achieve fast and flexible FLIM. In this work, we combined the AOD-FLIM system with a single particle tracking (SPT) setup and algorithm and developed an SPT-FLIM system. Using the system, we acquired the trajectory and fluorescence lifetime of a moving particle simultaneously and reconstructed a life-time-marked pseudocolored trajectory, which might reflect dynamic interaction between the moving particle and its local environment along its motion trail. The results indicated the potential of the technique for studying the interaction between specific moving biological macromolecules and the ambient micro-environment in live cells.

  3. Trochoidal trajectories of self-propelled Janus particles in a diverging laser beam

    CERN Document Server

    Moyses, Henrique; Sacanna, Stefano; Grier, David G

    2016-01-01

    We describe colloidal Janus particles with metallic and dielectric faces that swim vigorously when illuminated by defocused optical tweezers without consuming any chemical fuel. Rather than wandering randomly, these optically-activated colloidal swimmers circulate back and forth through the beam of light, tracing out sinuous rosette patterns. We propose a model for this mode of light-activated transport that accounts for the observed behavior through a combination of self-thermophoresis and optically-induced torque. In the deterministic limit, this model yields trajectories that resemble rosette curves known as hypotrochoids.

  4. Local phase transformations in alloys during charged-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.; Okamoto, P.R.

    1985-08-01

    Among the various mechanisms and processes by which energetic irradiation can alter the phase stability of alloys, radiation-induced segregation is one of the most important phenomena. Radiation-induced segregation in alloys occurrs as a consequence of preferential coupling between persistent fluxes of excess defects and solute atoms, leading to local enrichment or depletion of alloying elements. Thus, this phenomenon tends to drive alloy systems away from thermodynamic equilibrum, on a local scale. During charged-particle irradiations, the spatial nonuniformity in the defect production gives rise to a combination of persistent defect fluxes, near the irradiated surface and in the peak-damage region. This defect-flux combination can modify the alloy composition in a complex fashion, i.e. it can destabilize pre-existing phases, causing spatially- and temporally-dependent precipitation of new metastable phases. The effects of radiation-induced segregation on local phase transformations in Ni-based alloys during proton bombardment and high-voltage electron-microscope irradiation at elevated temperatures are discussed. (orig.).

  5. Charged particle therapy with mini-segmented beams

    Directory of Open Access Journals (Sweden)

    F. Avraham eDilmanian

    2015-12-01

    Full Text Available One of the fundamental attributes of proton therapy and carbon ion therapy is the ability of these charged particles to spare tissue distal to the targeted tumor. This significantly reduces normal tissue toxicity and has the potential to translate to a wider therapeutic index. Although, in general, particle therapy also reduces dose to the proximal tissues, particularly in the vicinity of the target, dose to the skin and to other very superficial tissues tends to be higher than that of megavoltage x-rays. The methods presented here, namely Interleaved carbon minibeams and Radiosurgery with arrays of proton and light ion minibeams, both utilize beams segmented into arrays of parallel minibeams of about 0.3 mm incident beam size. These minibeam arrays spare tissues, as demonstrated by synchrotron x-ray experiments. An additional feature of particle minibeams is their gradual broadening due to multiple Coulomb scattering as they penetrate tissues. In the case of interleaved carbon minibeams, which do not broaden much, two arrays of planar carbon minibeams that remain parallel at target depth, are aimed at the target from 90º angles and made to interleave at the target to produce a solid radiation field within the target. As a result the surrounding tissues are exposed only to individual carbon minibeam arrays and are therefore spared. The method was used in four-directional geometry at the NASA Space Radiation Laboratory to ablate a 6.5-mm target in a rabbit brain at a single exposure with 40 Gy physical absorbed dose. Contrast-enhanced magnetic resonance imaging and histology six month later showed very focal target necrosis with nearly no damage to the surrounding brain. As for minibeams of protons and light ions, for which the minibeam broadening is substantial, measurements at MD Anderson Cancer Center in Houston, Texas, and Monte Carlo simulations showed that the broadening minibeams will merge with their neighbors at a certain tissue depth

  6. Optimal Estimation of Diffusion Coefficients from Noisy Time-Lapse-Recorded Single-Particle Trajectories

    DEFF Research Database (Denmark)

    Vestergaard, Christian Lyngby

    2012-01-01

    Optimal Estimation of Diusion Coecients from Noisy Time-Lapse- Measurements of Single-Particle Trajectories Single-particle tracking techniques allow quantitative measurements of diusion at the single-molecule level. Recorded time-series are mostly short and contain considerable measurement noise...... estimator for the diusion coecient, valid for short time-series, along with an exact benchmark for the maximum precision attainable with any unbiased estimator, the Cramer-Rao bound. We propose a simple analytical and unbiased covariance-based estimator based on the autocovariance function and derive...... of diusion coecients of hOgg1 repair proteins diusing on stretched uctuating DNA from data previously analyzed using a suboptimal method. Our analysis shows that the proteins have dierent eective diusion coecients and that their diusion coecients are correlated with their residence time on DNA. These results...

  7. Light charged particle emission in heavy-ion reactions – What have ...

    Indian Academy of Sciences (India)

    Light charged particle emission in heavy-ion reactions –. What have we learnt? S KAILAS. Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. Abstract. Light charged particles emitted in heavy-ion induced reactions, their spectra and angu- lar distributions measured over a range of energies, ...

  8. Light charged particle emission in heavy-ion reactions–What have ...

    Indian Academy of Sciences (India)

    Light charged particles emitted in heavy-ion induced reactions, their spectra and angular distributions measured over a range of energies, carry the signature of the underlying reaction mechanisms. Analysis of data of light charged particles, both inclusive and exclusive measured in coincidence with gamma rays, fission ...

  9. Search for fractionally charged particles in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Ansari, Muhammad Hamid; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Seixas, Joao; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Lourenco, Carlos; Magini, Nicolo; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Asavapibhop, Burin; Srimanobhas, Norraphat; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Park, Myeonghun; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Apyan, Aram; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Krajczar, Krisztian; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Safdi, Ben; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-05-21

    A search is presented for free heavy long-lived fractionally charged particles produced in pp collisions at $\\sqrt{s}$ = 7 TeV. The data sample was recorded by the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 inverse femtobarns. Candidate fractionally charged particles are identified by selecting tracks with associated low charge measurements in the silicon tracking detector. Observations are found to be consistent with expectations for background processes. The results of the search are used to set upper limits on the cross section for pair production of fractionally charged, massive spin-1/2 particles that are neutral under SU(3)$_C$ and SU(2)$_L$. We exclude at 95% confidence level such particles with electric charge ±2e/3 with masses below 310 GeV, and those with charge ±e/3 with masses below 140 GeV.

  10. Rotating charged hairy black hole in (2+1) dimensions and particle acceleration

    OpenAIRE

    Sadeghi, J.; Pourhassan, B.; H Farahani

    2013-01-01

    In this paper we construct rotating charged hairy black hole in (2+1) dimensions for infinitesimal black hole charge and rotation parameters. Then we consider this black hole as particle accelerator and calculate the center-of-mass energy of two colliding test particles near the rotating charged hairy black hole in (2+1) dimensions. As we expected, the center-of-mass energy has infinite value.

  11. Preliminary investigation of the effect of electric charge on particle-pair relative velocity in isotropic turbulence

    Science.gov (United States)

    Hammond, Adam; Dou, Zhongwang; Kailu, Tushar; Liang, Zach; Meng, Hui

    2017-11-01

    In many particle-laden turbulent flows including thunderstorm clouds and aerosol sprays, the particles may be electrically charged. How the Coulomb force between charged particles competes with the turbulence forces on particle motion is not yet fully understood. Mean inward particle pair relative velocity (particle RV), a quantity relevant for particle collision in isotropic turbulence, is expected to be affected by charge. We extend our recent particle tracking velocimetry (PTV) study on particle pair relative velocity in fan-driven isotropic turbulence to particles with charge. To accomplish this, we established a method to independently vary particle charge distributions by balancing particle density and size while keeping constant Reλ and St, developed a unique instrument to measure particle charge using in-line holography, and measured particle RV using PTV at three levels of charge under a single flow condition. We present charged particle RV measurements from the experiments at Reλ = 343, St 1.19, and charge of order 10-15 Coulombs, which show that particle RV increases with magnitude of bipolar charge. This study paves the way for a comprehensive exploration of relative motion of charged particle in isotropic turbulence. This work was supported by NSF CBET-0967407.

  12. Finding heavy long-lived charged particles with the ATLAS detector

    CERN Document Server

    Vallecorsa, S

    2009-01-01

    Long lived charged particles are predicted by many models of physics beyond the standard model (SM). At the LHC, the common signature is a heavy long-lived charged particle with velocity smaller than the speed of light. This paper presents methods we developed for identifying slow particles and measuring their mass using the ATLAS muon spectrometer. The efficacy of these methods is demonstrated using two different models.

  13. Phase Separation of Binary Charged Particle Systems with Small Size Disparities using a Dusty Plasma.

    Science.gov (United States)

    Killer, Carsten; Bockwoldt, Tim; Schütt, Stefan; Himpel, Michael; Melzer, André; Piel, Alexander

    2016-03-18

    The phase separation in binary mixtures of charged particles has been investigated in a dusty plasma under microgravity on parabolic flights. A method based on the use of fluorescent dust particles was developed that allows us to distinguish between particles of slightly different size. A clear trend towards phase separation even for smallest size (charge) disparities is observed. The diffusion flux is directly measured from the experiment and uphill diffusion coefficients have been determined.

  14. Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Maria F. Romero-Creel

    2017-08-01

    Full Text Available The analysis, separation, and enrichment of submicron particles are critical steps in many applications, ranging from bio-sensing to disease diagnostics. Microfluidic electrokinetic techniques, such as dielectrophoresis (DEP have proved to be excellent platforms for assessment of submicron particles. DEP is the motion of polarizable particles under the presence of a non-uniform electric field. In this work, the polarization and dielectrophoretic behavior of polystyrene particles with diameters ranging for 100 nm to 1 μm were studied employing microchannels for insulator based DEP (iDEP and low frequency (<1000 Hz AC and DC electric potentials. In particular, the effects of particle surface charge, in terms of magnitude and type of functionalization, were examined. It was found that the magnitude of particle surface charge has a significant impact on the polarization and dielectrophoretic response of the particles, allowing for successful particle assessment. Traditionally, charge differences are exploited employing electrophoretic techniques and particle separation is achieved by differential migration. The present study demonstrates that differences in the particle’s surface charge can also be exploited by means of iDEP; and that distinct types of nanoparticles can be identified by their polarization and dielectrophoretic behavior. These findings open the possibility for iDEP to be employed as a technique for the analysis of submicron biological particles, where subtle differences in surface charge could allow for rapid particle identification and separation.

  15. Prediction of sand particle trajectories and sand erosion damage on helicopter rotor blades

    Science.gov (United States)

    Shin, Bong Gun

    Therefore, in this dissertation, accurate and time-efficient methodologies were developed for performing sand particle tracking and predicting sand erosion damage on actual helicopter rotor blades under realistic hover and vertical lift conditions. In this dissertation, first, injection (release) conditions of solid particles with new injection parameter, sand particle mass flow rate (SPmFR), were specified to deal with the effect of non-uniform and unsteady flow conditions surrounding at each injection point from which solid particles are released. The SPmFR defines the number of solid particles released from the same injection position per unit time. Secondly, a general definition of erosion rate, "mass or volume loss from the metal surface due to the impact of a unit "mass" of solid particles" was also modified by multiplying with SPmFR in order to solve the limitation for predicting erosion damage on actual helicopter rotor blade. Next, a suitable empirical particle rebound model and an erosion damage model for spherical sand particles with diameters ranging from 10 microm to 500 microm impacting on the material Ti-6A1-4V, the material of helicopter rotor blade, were developed. Finally, C++ language based codes in the form of User Defined Functions (UDFs) were developed and implemented into the commercially available multi-dimensional viscous flow solver ANSYS-FLUENT in order to develop and integrate with the general purpose flow solver, ANSYS-FLUENT, for a specific Lagrangian particle trajectory computing algorithm and rebound and erosion quantification purposes. In the erosion simulation, a reasonably accurate fluid flow solution is necessary. In order to validate the numerical results obtained in this dissertation, computations for flow-only around 2D RAE2822 airfoil and 3D rotating rotor blade (NACA0012) without any sand particle were performed. In the comparison of these results with experimental results, it is found that the flow solutions are in good

  16. A search for relativistic particles with fractional electric charge at the Cern collider

    DEFF Research Database (Denmark)

    Banner, M.; Kofoed-Hansen, O.

    1983-01-01

    A search for relativistic particles with fractional electric charge has been performed at the CERN collider using a telescope of scintillation counters to detect particles with abnormally low ionisation. The thickness of the detector (40 gr cm−2) limits this search to particles without strong...... absorption in matter. No evidence for such particles has been found. This negative result is used to set an upper limit for the ratio of quark yield to that of particles with unit electric charge. For quark masses below 2 GeV/c2 the 90% confidence level upper limits range from 2 × 10−4 to 2.5 × 10...

  17. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    2003-02-01

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered. Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  18. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered.

    Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  19. Ultracold Fermi and Bose gases and Spinless Bose Charged Sound Particles

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2011-10-01

    Full Text Available We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or gas which consists of decoupled electrons and ions in the uppermost hyperfine state. Hence, we use such a concept as the fluctuation motion of “charged fluid particles” or “charged fluid points” representing a charged longitudinal elastic wave. In turn, this elastic wave is quantized by spinless longitudinal Bose charged sound particles with the rest mass m and charge e 0 . The existence of spinless Bose charged sound particles allows us to present a new model for description of Bose or Fermi liquid via a non-ideal Bose gas of charged sound particles . In this respect, we introduce a new postulation for the superfluid component of Bose or Fermi liquid determined by means of charged sound particles in the condensate, which may explain the results of experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6 Li and 40 K, and such a Bose gas as 87 Rb in the uppermost hyperfine state, where the Bose- Einstein condensation of charged sound particles is realized by tuning the magnetic field.

  20. Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization.

    Science.gov (United States)

    Niu, Liyong; Zhang, Di

    2015-01-01

    Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly.

  1. Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization

    Science.gov (United States)

    Niu, Liyong; Zhang, Di

    2015-01-01

    Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly. PMID:26236770

  2. Anomalous diffusion of field lines and charged particles in Arnold-Beltrami-Childress force-free magnetic fields

    Science.gov (United States)

    Ram, Abhay K.; Dasgupta, Brahmananda; Krishnamurthy, V.; Mitra, Dhrubaditya

    2014-07-01

    The cosmic magnetic fields in regions of low plasma pressure and large currents, such as in interstellar space and gaseous nebulae, are force-free in the sense that the Lorentz force vanishes. The three-dimensional Arnold-Beltrami-Childress (ABC) field is an example of a force-free, helical magnetic field. In fluid dynamics, ABC flows are steady state solutions of the Euler equation. The ABC magnetic field lines exhibit a complex and varied structure that is a mix of regular and chaotic trajectories in phase space. The characteristic features of field line trajectories are illustrated through the phase space distribution of finite-distance and asymptotic-distance Lyapunov exponents. In regions of chaotic trajectories, an ensemble-averaged variance of the distance between field lines reveals anomalous diffusion—in fact, superdiffusion—of the field lines. The motion of charged particles in the force-free ABC magnetic fields is different from the flow of passive scalars in ABC flows. The particles do not necessarily follow the field lines and display a variety of dynamical behavior depending on their energy, and their initial pitch-angle. There is an overlap, in space, of the regions in which the field lines and the particle orbits are chaotic. The time evolution of an ensemble of particles, in such regions, can be divided into three categories. For short times, the motion of the particles is essentially ballistic; the ensemble-averaged, mean square displacement is approximately proportional to t2, where t is the time of evolution. The intermediate time region is defined by a decay of the velocity autocorrelation function—this being a measure of the time after which the collective dynamics is independent of the initial conditions. For longer times, the particles undergo superdiffusion—the mean square displacement is proportional to tα, where α > 1, and is weakly dependent on the energy of the particles. These super-diffusive characteristics, both of magnetic

  3. Dipole Moment of a Charged Particle Trapped at the Air-Water Interface.

    Science.gov (United States)

    Bossa, Guilherme Volpe; Bohinc, Klemen; Brown, Matthew A; May, Sylvio

    2016-07-07

    The interaction between two charged particles (such as nanoparticles or colloids) trapped at the air-water interface becomes dipolar at large separations. The corresponding dipole moment can be modeled by considering a single point charge located exactly at the interface, but this model fails to correctly predict the dipole moment's dependence on the salt concentration in the aqueous medium. We extend the single point charge model to two point charges that are separated by a fixed distance and are located at the air-water interface, with one charge being immersed in air and the other in the solvent. The two point charges represent the surface charges at the air-exposed and water-exposed regions of an interface-trapped particle. The two point charges also account for the spatial extension of the particle. On the basis of the Debye-Hückel model, we derive mathematical expressions for the interaction between two pairs of charges and discuss the salt concentration dependence of the dipolar moment at large separations. Our results reveal a residual dipole moment in the limit of large salt content that originates from the charge attached to the air-exposed region of the particle. We discuss nonlinear screening effects and compare the predicted dipolar moments with recent experimental results.

  4. Fractionally charged particles and one Dirac charge magnetic monopoles: Are they compatible?

    Directory of Open Access Journals (Sweden)

    V.A. Rubakov

    1983-01-01

    Full Text Available The simultaneous existence of fractional electric charges and one Dirac charge magnetic monopoles implies the existence of a long-ranged force different from electromagnetism. This may be either unconfined colour or/and some new gauge interaction. In the latter case, ordinary matter could (and, if colour is unbroken, should carry new charge. This charge, however small the coupling constant be, could be experimentally observed in interactions of monopoles with matter. An experiment for checking this possibility is suggested.

  5. Aeolian processes aboard a Space Station: Saltation and particle trajectory analysis

    Science.gov (United States)

    White, Bruce R.; Greeley, Ronald; Iversen, James D.; Leach, R. N.

    1987-01-01

    The Carousel Wind Tunnel (CWT) proposed to study aeolian processes aboard a Space Station consists of two concentric rotating drums. The space between the two drums comprises the wind tunnel section. Differential rates of rotation of the two drums would provide a wind velocity with respect to either drum surface. Preliminary results of measured velocity profiles made in a CWT prototype indicate that the wall bounded boundary layer profiles are suitable to simuate flat plate turbulent boundary layer flow. The two dimensional flate plate Cartesian coordinate equations of motion of a particle moving through the air are explained. In order to assess the suitability of CWT in the analysis of the trajectories of windblown particles, a series of calculations were conducted comparing cases for gravity with those of zero gravity. Results from the calculations demonstrate that a wind tunnel of the carousel design could be fabricated to operate in a space station environment and that experiments could be conducted which would yield significant results contributing to the understanding of the physics of particle dynamics.

  6. Parallel particle swarm optimization on a graphics processing unit with application to trajectory optimization

    Science.gov (United States)

    Wu, Q.; Xiong, F.; Wang, F.; Xiong, Y.

    2016-10-01

    In order to reduce the computational time, a fully parallel implementation of the particle swarm optimization (PSO) algorithm on a graphics processing unit (GPU) is presented. Instead of being executed on the central processing unit (CPU) sequentially, PSO is executed in parallel via the GPU on the compute unified device architecture (CUDA) platform. The processes of fitness evaluation, updating of velocity and position of all particles are all parallelized and introduced in detail. Comparative studies on the optimization of four benchmark functions and a trajectory optimization problem are conducted by running PSO on the GPU (GPU-PSO) and CPU (CPU-PSO). The impact of design dimension, number of particles and size of the thread-block in the GPU and their interactions on the computational time is investigated. The results show that the computational time of the developed GPU-PSO is much shorter than that of CPU-PSO, with comparable accuracy, which demonstrates the remarkable speed-up capability of GPU-PSO.

  7. Heavy Charged Particle Radiobiology: Using Enhanced Biological Effectiveness and Improved Beam Focusing to Advance Cancer Therapy

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B.; Tsujii, Hirohiko; Nickoloff, Jac A.

    2011-01-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. PMID:21376738

  8. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. 2011 Elsevier B.V. All rights reserved.

  9. Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics.

    Science.gov (United States)

    Orloff, Nathan D; Dennis, Jaclyn R; Cecchini, Marco; Schonbrun, Ethan; Rocas, Eduard; Wang, Yu; Novotny, David; Simmonds, Raymond W; Moreland, John; Takeuchi, Ichiro; Booth, James C

    2011-12-01

    We present a 91 MHz surface acoustic wave resonator with integrated microfluidics that includes a flow focus, an expansion region, and a binning region in order to manipulate particle trajectories. We demonstrate the ability to change the position of the acoustic nodes by varying the electronic phase of one of the transducers relative to the other in a pseudo-static manner. The measurements were performed at room temperature with 3 μm diameter latex beads dispersed in a water-based solution. We demonstrate the dependence of nodal position on pseudo-static phase and show simultaneous control of 9 bead streams with spatial control of -0.058 μm/deg ± 0.001 μm/deg. As a consequence of changing the position of bead streams perpendicular to their flow direction, we also show that the integrated acoustic-microfluidic device can be used to change the trajectory of a bead stream towards a selected bin with an angular control of 0.008 deg/deg ± 0.000(2) deg/deg.

  10. Studies of charged particle correlations and underlying events with the ATLAS detector

    CERN Document Server

    Buszello, C; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment has recorded significant amounts of minimum bias events at center of mass energies of 900 GeV and 7 TeV at the LHC. We report on the first ATLAS underlying event studies. The charged particle density and the sum and average charged transverse momentum are measured as a function of the leading track transverse momentum. The angular distribution of the charged tracks and their transverse momentum with respect to the leading track is also presented. We also report on studies of angular correlations of charged particle tracks in the transverse plane and in pseudorapidity.

  11. Mass analysis of charged aerosol particles in NLC and PMSE during the ECOMA/MASS campaign

    Directory of Open Access Journals (Sweden)

    S. Robertson

    2009-03-01

    Full Text Available MASS (Mesospheric Aerosol Sampling Spectrometer is a multichannel mass spectrometer for charged aerosol particles, which was flown from the Andøya Rocket Range, Norway, through NLC and PMSE on 3 August 2007 and through PMSE on 6 August 2007. The eight-channel analyzers provided for the first time simultaneous measurements of the charge density residing on aerosol particles in four mass ranges, corresponding to ice particles with radii <0.5 nm (including ions, 0.5–1 nm, 1–2 nm, and >3 nm (approximately. Positive and negative particles were recorded on separate channels. Faraday rotation measurements provided electron density and a means of checking charge density measurements made by the spectrometer. Additional complementary measurements were made by rocket-borne dust impact detectors, electric field booms, a photometer and ground-based radar and lidar. The MASS data from the first flight showed negative charge number densities of 1500–3000 cm−3 for particles with radii >3 nm from 83–88 km approximately coincident with PMSE observed by the ALWIN radar and NLC observed by the ALOMAR lidar. For particles in the 1–2 nm range, number densities of positive and negative charge were similar in magnitude (~2000 cm−3 and for smaller particles, 0.5–1 nm in radius, positive charge was dominant. The occurrence of positive charge on the aerosol particles of the smallest size and predominately negative charge on the particles of largest size suggests that nucleation occurs on positive condensation nuclei and is followed by collection of negative charge during subsequent growth to larger size. Faraday rotation measurements show a bite-out in electron density that increases the time for positive aerosol particles to be neutralized and charged negatively. The larger particles (>3 nm are observed throughout the NLC region, 83–88 km, and the smaller particles are observed primarily at the high end of the range, 86–88 km

  12. Mass analysis of charged aerosol particles in NLC and PMSE during the ECOMA/MASS campaign

    Directory of Open Access Journals (Sweden)

    S. Robertson

    2009-03-01

    Full Text Available MASS (Mesospheric Aerosol Sampling Spectrometer is a multichannel mass spectrometer for charged aerosol particles, which was flown from the Andøya Rocket Range, Norway, through NLC and PMSE on 3 August 2007 and through PMSE on 6 August 2007. The eight-channel analyzers provided for the first time simultaneous measurements of the charge density residing on aerosol particles in four mass ranges, corresponding to ice particles with radii <0.5 nm (including ions, 0.5–1 nm, 1–2 nm, and >3 nm (approximately. Positive and negative particles were recorded on separate channels. Faraday rotation measurements provided electron density and a means of checking charge density measurements made by the spectrometer. Additional complementary measurements were made by rocket-borne dust impact detectors, electric field booms, a photometer and ground-based radar and lidar. The MASS data from the first flight showed negative charge number densities of 1500–3000 cm−3 for particles with radii >3 nm from 83–88 km approximately coincident with PMSE observed by the ALWIN radar and NLC observed by the ALOMAR lidar. For particles in the 1–2 nm range, number densities of positive and negative charge were similar in magnitude (~2000 cm−3 and for smaller particles, 0.5–1 nm in radius, positive charge was dominant. The occurrence of positive charge on the aerosol particles of the smallest size and predominately negative charge on the particles of largest size suggests that nucleation occurs on positive condensation nuclei and is followed by collection of negative charge during subsequent growth to larger size. Faraday rotation measurements show a bite-out in electron density that increases the time for positive aerosol particles to be neutralized and charged negatively. The larger particles (>3 nm are observed throughout the NLC region, 83–88 km, and the smaller particles are observed primarily at the high end of the range, 86–88 km. The second flight into

  13. Exposure to heavy charged particles affects thermoregulation in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, S.B.; Hunt, W.A.; Dalton, T.K.; Joseph, J.A.; Harris, A.H. [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States); Rabin, B.M. [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States)]|[Univ. of Maryland, Baltimore, MD (United States)

    1994-09-01

    Rats exposed to 0.1-5 Gy of heavy particles ({sup 56}Fe, {sup 40}Ar, {sup 20}Ne or {sup 4}He) showed dose-dependent changes in body temperature. Lower doses of all particles produced hyperthermia, and higher doses of {sup 20}Ne and {sup 56}Fe produced hypothermia. Of the four HZE particles, {sup 56}Fe particles were the most potent and {sup 4}He particles were the least potent in producing changes in thermoregulation. The {sup 20}Ne and {sup 40}Ar particles produced an intermediate level of change in body temperature. Significantly greater hyperthermia was produced by exposure to 1 Gy of {sup 20}Ne, {sup 40}Ar and {sup 56}Fe particles than by exposure to 1 Gy of {sup 60}Co {gamma} rays. Pretreating rats with the cyclo-oxygenase inhibitor indomethacin attenuated the hyperthermia produced by exposure to 1 Gy of {sup 56}Fe particles, indicating that prostaglandins mediate {sup 56}Fe-particle-induced hyperthermia. The hypothermia produced by exposure to 5 Gy of {sup 56}Fe particles is mediated by histamine and can be attenuated by treatment with the antihistamines mepyramine and cimetidine. 15 refs., 4 figs.

  14. Constraints on dark matter particles charged under a hidden gauge group from primordial black holes

    Science.gov (United States)

    Dai, De-Chang; Freese, Katherine; Stojkovic, Dejan

    2009-06-01

    In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values of the dark matter particle mass and hidden gauge charge from the evolution of primordial black holes. We find that the existence of the primordial black holes with reasonable mass is incompatible with dark matter particles whose charge to mass ratio is of the order of one. For dark matter particles whose charge to mass ratio is much less than one, we are able to exclude only heavy dark matter in the mass range of 1011 GeV-1016 GeV. Finally, for dark matter particles whose charge to mass ratio is much greater than one, there are no useful limits coming from primordial black holes.

  15. Constraints on dark matter particles charged under a hidden gauge group from primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dai, De-Chang; Stojkovic, Dejan [HEPCOS, Department of Physics, SUNY at Buffalo, 239 Fronczak Hall, Buffalo, NY 14260-1500 (United States); Freese, Katherine, E-mail: ddai@buffalo.edu, E-mail: ktfreese@umich.edu, E-mail: dss7@buffalo.edu [MCTP, Department of Physics, University of Michigan, 3444 Randall Lab, 450 Church Street, Ann Arbor, MI 48109 (United States)

    2009-06-01

    In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values of the dark matter particle mass and hidden gauge charge from the evolution of primordial black holes. We find that the existence of the primordial black holes with reasonable mass is incompatible with dark matter particles whose charge to mass ratio is of the order of one. For dark matter particles whose charge to mass ratio is much less than one, we are able to exclude only heavy dark matter in the mass range of 10{sup 11} GeV–10{sup 16} GeV. Finally, for dark matter particles whose charge to mass ratio is much greater than one, there are no useful limits coming from primordial black holes.

  16. The effects of particle charge on the performance of a filtering facepiece.

    Science.gov (United States)

    Chen, C C; Huang, S H

    1998-04-01

    This study quantitatively determined the effect of electrostatic charge on the performance of an electret filtering facepiece. Monodisperse challenge corn oil aerosols with uniform charges were generated using a modified vibrating orifice monodisperse aerosol generator. The aerosol size distributions and concentrations upstream and downstream of an electret filter were measured using an aerodynamic particle sizer, an Aerosizer, and a scanning mobility particle sizer. The aerosol charge was measured by using an aerosol electrometer. The tested electret filter had a packing density of about 0.08, fiber size of 3 microns, and thickness of 0.75 mm. As expected, the primary filtration mechanisms for the micrometer-sized particles are interception and impaction, especially at high face velocities, while electrostatic attraction and diffusion are the filtration mechanisms for submicrometer-sized aerosol particles. The fiber charge density was estimated to be 1.35 x 10(-5) coulomb per square meter. After treatment with isopropanol, most of fiber charges were removed, causing the 0.3-micron aerosol penetration to increase from 36 to 68%. The air resistance of the filter increased slightly after immersion in the isopropanol, probably due to the coating of impurities in isopropanol. The aerosol penetration decreased with increasing aerosol charge. The most penetrating aerosol size became larger as the aerosol charge increased, e.g., from 0.32 to 1.3 microns when the aerosol charge increased from 0 to 500 elementary charges.

  17. Study of charged particle production using Omega RICH in WA94 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abatzis, S. [Athens Univ. (Greece). Nuclear Physics Lab.; Andersen, E.; Andrighetto, A.; Antinori, F.; Barnes, R.P.; Bayes, A.C.; Benayoun, M.; Beusch, W.; Bohm, J.; Carney, J.N.; Carrer, N.; De la Cruz, B.; Davies, J.P.; Di Bari, D.; Elia, D.; Evans, D.; Fanebust, K.; Fini, R.; French, B.R.; Ghidini, B.; Helstrup, H.; Holme, A.K.; Jacholkowski, A.; Kahane, J.; Katchanov, V.A.; Kinson, J.B.; Kirk, A.; Knudson, K.; Kralik, I.; Ladron de Guevara, P.; Lassalle, J.C.; Lenti, V.; Leruste, P.; Lietava, R.; Loconsole, R.A.; Loevhoeiden, G.; Manzari, V.; Morando, M.; Navach, F.; Narjoux, J.L.; Pellegrini, F.; Quercigh, E.; Ricci, R.; Sandor, L.; Safarik, K.; Segato, G.; Singovsky, A.V.; Sene, M.; Sene, R.; Thorsteinsen, T.F.; Urban, J.; Vassiliadis, G.; Villalobos Baillie, O.; Venables, M.; Volte, A.; Votruba, M.F.; Zavada, P. [Athens University, Nuclear Physics Department, GR-15771 Athens (Greece)]|[Dipartimento di Fisica dell`Universita and Sezione INFN, Bari (Italy)]|[Universitetet i Bergen, N-5007 Bergen (Norway)]|[University of, Birmingham B15 2TT (United Kingdom)]|[CERN, CH-1211, Geneva 23 (Switzerland)]|[College de France, IN2P3, F-75231 Paris (France)]|[Institute of Experimental Physics, Kosice (Slovakia)]|[Laboratorio Nazionale di Legnaro, Legnaro (Italy)]|[CIEMAT, E-28040 Madrid (Spain)]|[Dipartimento di Fisica dell`Universita and Sezione INFN, Padua (Italy)]|[IHEP, Protvino (Russian Federation); The WA94 Collaboration

    1996-03-01

    We present preliminary results about charged particle production in S-S collisions at 200GeV/c per nucleon, obtained by WA94 experiment at CERN-SPS. The particle identification has been provided by the Omega RICH; a silicon telescope and an array of multiwire proportional chambers (MWPC) have been used to track particles to the RICH detector. Details about particle tracking and identification procedure are also reported. (orig.).

  18. Attenuation of an electromagnetic wave by charged dust particles in a sandstorm.

    Science.gov (United States)

    Xie, Li; Li, Xingcai; Zheng, Xiaojing

    2010-12-10

    We calculate the light scattering properties of the partially charged dust particles with the Mie theory for electromagnetic waves with different frequencies, and the attenuation coefficients of an electromagnetic wave propagating in a sandstorm are also calculated. The results show that the electric charges distributed on the sand surface have a significant effect on the attenuation of the electromagnetic wave, especially for a frequency lower than 40 GHz, and attenuation coefficients increase with the magnitude of charges carried by the dust particles (expressed by the charge-to-mass ratio in this paper). For the higher frequency electromagnetic wave, such as visible light, the effect of charges carried by sand particles on its attenuation is very little, which can be ignored.

  19. Electromagnetic wave attenuation due to the charged particles in dust&sand (DUSA) storms

    Science.gov (United States)

    Dou, X. Q.; Xie, L.

    2017-07-01

    In this paper, we calculated the attenuation of the electromagnetic waves (EMWs) propagating through the dust&sand (DUSA) storms using the predicting model based on Mie theory, in which the charges carried on the DUSA particles, the ambient relative humidity (RH) and the particle size distribution are considered simultaneously. It can be found that the charges carried on the DUSA particles and the RH can change the value of the absorption and scattering efficiency, but they can't change the domain attenuation mechanism caused by the DUSA storms in the EMWs frequency regions (3 GHz, 4 GHz), (8 GHz, 40 GHz) and (75 GHz, 100 GHz). Whatever the DUSA storms are formed by equal-size particles or the mixed-size particles, the charge carried on the particle surface and the RH have a significant impact on the attenuation caused by the DUSA storms, and the change ratio of the attenuation caused by the charge or RH depends on the particle size. By the comparison of the calculated attenuation with the measured one, we found that the charges carried on the particles and the RH will be important factors to affect the attenuation of the EMWs.

  20. Spectral and angular radiation characteristics of a charged particle in the plane monochromatic electromagnetic wave

    Directory of Open Access Journals (Sweden)

    Nikolay S. Akintsov

    2015-12-01

    Full Text Available Relying upon the solution of the relativistic equation of charged-particle motion that was obtained by Rukhadze et al., the spectral and angular characteristics of ultra-relativistic intensive radiation of a relativistic charged particle have been studied, the particle being linearly accelerated by a superpower laser pulse. The case where the particle propagates in vacuum without brake light was examined. The interaction of the charged particle with the large-amplitude ultra-short laser pulse was analyzed in details using the relativistic consideration. Formulae for the average radiated power of the relativistic charged particle, depending on the initial conditions, the electromagnetic-wave amplitude, intensity and polarization were obtained. For the case where the laser pulse can be represented by a monochromatic plane wave, analytical expressions for the radiation characteristics were put forward and the phase-angular distributions of relativistic radiated power and intensity were found. The Fourier transform of the electric-intensity radiation field of the charged particle and the particle's spectral density radiation in the field of a plane monochromatic wave for different types of polarization (linear and circular ones were determined.

  1. Correlations between large transverse momentum pi /sup 0/ mesons and charged particles at the CERN ISR

    CERN Document Server

    Büsser, F W; Camilleri, L L; Cool, R L; Di Lella, L; Lederman, Leon Max; Litt, L; Pope, B G; Segler, S L; Smith, A M; Yoh, J K

    1974-01-01

    A study of the charged particles emitted together with a large transverse momentum pi /sup 0/ was made at the CERN ISR at a centre- of-mass energy square root s=52.7 GeV. The pi /sup 0/ mesons and the charged particles were observed in two detectors, each centred at theta /sub cm/=90/sup 0/ and each covering a laboratory solid angle of 0.59 sr for pi /sup 0/'s and 1.1 sr for charged particles. The multiplicity of charged particles, observed in the same and in the opposite hemisphere as the pi /sup 0/, was found to be larger than the average multiplicity for inelastic interactions. Some rapidity and azimuthal correlations were observed. (14 refs).

  2. VOYAGER 1 SAT LOW ENERGY CHARGED PARTICLE CALIB. BR 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS BROWSE DATA CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 1 WHILE THE SPACECRAFT WAS IN THE VICINITY OF SATURN....

  3. VOYAGER 2 JUP LOW ENERGY CHARGED PARTICLE CALIB. BR 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS BROWSE DATA CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 2 WHILE THE SPACECRAFT WAS IN THE VICINITY OF JUPITER....

  4. VOYAGER 2 SAT LOW ENERGY CHARGED PARTICLE CALIB. BR 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS BROWSE DATA CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 2 WHILE THE SPACECRAFT WAS IN THE VICINITY OF SATURN....

  5. VOYAGER 1 JUP LOW ENERGY CHARGED PARTICLE CALIB. BR 15MIN

    Data.gov (United States)

    National Aeronautics and Space Administration — THIS BROWSE DATA CONSISTS OF RESAMPLED DATA FROM THE LOW ENERGY CHARGED PARTICLE (LECP) EXPERIMENT ON VOYAGER 1 WHILE THE SPACECRAFT WAS IN THE VICINITY OF JUPITER....

  6. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A.D. [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1993-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  7. 6th International Conference on Trapped Charged Particles and Fundamental Physics

    CERN Document Server

    Schury, Peter; Ichikawa, Yuichi

    2017-01-01

    This volume presents the proceedings of the International Conference on Trapped Charged Particles and Fundamental Physics (TCP 14). It presents recent developments in the theoretical and experimental research on trapped charged particles and related fundamental physics and applications. The content has been divided topic-wise covering basic questions of Fundamental Physics, Quantum and QED Effects, Plasmas and Collective Behavior and Anti-Hydrogen. More technical issues include Storage Ring Physics, Precision Spectroscopy and Frequency Standards, Highly Charged Ions in Traps, Traps for Radioactive Isotopes and New Techniques and Facilities. An applied aspect of ion trapping is discussed in section devoted to Applications of Particle Trapping including Quantum Information and Processing. Each topic has a more general introduction, but also more detailed contributions are included. A selection of contributions exemplifies the interdisciplinary nature of the research on trapped charged particles worldwide. Repri...

  8. Array of micro-machined mass energy micro-filters for charged particles

    Science.gov (United States)

    Stalder, Roland E. (Inventor); Van Zandt, Thomas R. (Inventor); Hecht, Michael H. (Inventor); Grunthaner, Frank J. (Inventor)

    1996-01-01

    An energy filter for charged particles includes a stack of micro-machined wafers including plural apertures passing through the stack of wafers, focusing electrodes bounding charged particle paths through the apertures, an entrance orifice to each of the plural apertures and an exit orifice from each of the plural apertures and apparatus for biasing the focusing electrodes with an electrostatic potential corresponding to an energy pass band of the filter.

  9. An upper limit on the branching ratio for $\\tau$ decays into seven charged particles

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Berlich, P; Bethke, Siegfried; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Bouwens, B T; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; De Jong, S; del Pozo, L A; Desch, Klaus; Dixit, M S; do Couto e Silva, E; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Edwards, J E G; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hilse, T; Hobson, P R; Homer, R James; Honma, A K; Horváth, D; Howard, R; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ingram, M R; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markus, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Morii, M; Müller, U; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oldershaw, N J; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pearce, M J; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Przysiezniak, H; Rees, D L; Rigby, D; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rooke, A M; Ros, E; Rossi, A M; Rosvick, M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schenk, P; Schieck, J; Schleper, P; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schultz-Coulon, H C; Schulz, M; Schumacher, M; Schwick, C; Scott, W G; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Springer, R W; Sproston, M; Stephens, K; Steuerer, J; Stockhausen, B; Stoll, K; Strom, D; Szymanski, P; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Towers, S; Trigger, I; Tsur, E; Turcot, A S; Turner-Watson, M F; Utzat, P; Van Kooten, R; Verzocchi, M; Vikas, P; Vokurka, E H; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilkens, B; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1997-01-01

    We have searched for decays of the tau lepton into seven or more charged particles, using data collected with the OPAL detector from 1990 to 1995 in e^+e^- collisions at sqrt(s) ~ M_Z. No candidate events were found and an upper limit on the branching ratio for tau decays into seven charged particles of 1.8 x 10^-5 at the 95% confidence level was determined.

  10. Development of a utility system for charged particle nuclear reaction data by using intelligentPad

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Shigeyoshi; Ohbayashi, Yoshihide [Information Processing Center, Kitami Institute of Technology, Kitami, Hokkaido (Japan); Masui, Hiroshi [Meme Media Laboratory, Hokkaido University, Sapporo, Hokkaido (Japan); Kato, Kiyoshi [Hokkaido University, Graduate School of Science, Sapporo, Hokkaido (Japan); Chiba, Masaki [Faculty of Social Information, Sapporo Gakuin Univ., Ebetsu, Hokkaido (Japan)

    2000-03-01

    We have developed a utility system, WinNRDF2, for a nuclear charged particle reaction data of NRDF (Nuclear Reaction Data File) on the IntelligentPad architecture. By using the system, we can search the experimental data of a charged particle reaction of NRDF. Furthermore, we also see the experimental data by using graphic pads which was made through the CONTIP project. (author)

  11. CHANTI: a Fast and Efficient Charged Particle Veto Detector for the NA62 Experiment at CERN

    CERN Document Server

    INSPIRE-00293636; Capussela, T.; Di Filippo, D.; Massarotti, P.; Mirra, M.; Napolitano, M.; Palladino, V.; Saracino, G.; Roscilli, L.; Vanzanella, A.; Corradi, G.; Tagnani, D.; Paglia, U.

    2016-03-29

    The design, construction and test of a charged particle detector made of scintillation counters read by Silicon Photomultipliers (SiPM) is described. The detector, which operates in vacuum and is used as a veto counter in the NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a spatial resolution of ~2.5 mm and an efficiency very close to 1 for penetrating charged particles.

  12. General classification of charged test particle circular orbits in Reissner-Nordstroem spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D. [Silesian University in Opava, Institute of Physics, Faculty of Philosophy and Science, Opava (Czech Republic); Quevedo, H. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, ICRA, Rome (Italy); Icranet-Pescara, Pescara (Italy); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico, DF (Mexico); Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); Ruffini, R. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, ICRA, Rome (Italy); Icranet-Pescara, Pescara (Italy)

    2017-04-15

    We investigate charged particles' circular motion in the gravitational field of a charged mass distribution described by the Reissner-Nordstroem spacetime. We introduce a set of independent parameters completely characterizing the different spatial regions in which circular motion is allowed. We provide a most complete classification of circular orbits for different sets of particle and source charge-to-mass ratios. We study both black holes and naked singularities and show that the behavior of charged particles depend drastically on the type of source. Our analysis shows in an alternative manner that the behavior of circular orbits can in principle be used to distinguish between black holes and naked singularities. From this analysis, special limiting values for the dimensionless charge of black hole and naked singularity emerge, namely, Q/M = 1/2, Q/M = √(13)/5 and Q/M = √(2/3) for the black hole case and Q/M = 1, Q/M = 5/(2√(6)), Q/M = 3√(6)/7, and finally Q/M = √(9/8) for the naked singularity case. Similarly and surprisingly, analogous limits emerge for the orbiting particles charge-to-mass ratio ε, for positive charges ε = 1, ε = 2 and ε = M/Q. These limits play an important role in the study of the coupled electromagnetic and gravitational interactions, and the investigation of the role of the charge in the gravitational collapse of compact objects. (orig.)

  13. Observation of charge ordering in particle production in hadronic $Z^0$ decay

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bonesini, M; Bonivento, W; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahm, J; D'Almagne, B; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Geryukov, L; Gokieli, R; Golob, B; Gonçalves, P; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Konoplyannikov, A K; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Roos, L; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Sheridan, A; Siegrist, P; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chernyaev, E; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Yi, J; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1997-01-01

    Analysis of the rapidity structure of charge correlations in hadronic events from $Z^0$ decays gives evidence for chain-like charge-ordering of particle production along the thrust axis, as predicted by `QCD-motivated' string-like fragmentation models.

  14. Charged particle density distributions in Au·Au collisions at ...

    Indian Academy of Sciences (India)

    Charged particle pseudorapidity distributions have been measured in Au·Au collisions using the BRAHMS ... Relativistic heavy-ion collisions; charged hadron production; pseudorapidity distribu- tions; centrality .... the predictions of two different theoretical models: (i) the high density gluon saturation model of Kharzeev and ...

  15. Novel Hamiltonian method for collective dynamics analysis of an intense charged particle beam propagating through a periodic focusing quadrupole lattice

    Science.gov (United States)

    Startsev, Edward

    2010-11-01

    Identifying regimes for quiescent propagation of intense beams over long distances has been a major challenge in accelerator research. In particular, the development of systematic theoretical approaches that are able to treat self-consistently the applied oscillating force and the nonlinear self-field force of the beam simultaneously has been a major challenge of modern beam physics. Recently, a powerful new Hamiltonian averaging technique has been developed, which incorporated both the applied periodic focusing force and the self-field force of the beam. Typically, it is advantageous to eliminate fast oscillations from formalism and describe complex beam particle motion in a new non-oscillating coordinates. Standard Hamiltonian techniques are cumbersome due to use of mixed oscillating and non-oscillating independent variables. Newly developed technique is specially designed to avoid use of oscillating variables. The method is analogous to the Lie transform methods in using only non-oscillating variables. At the same time the new approach retains the advantages of simplicity of Hamiltonian methods. Making use of this new method equations determining the average self-field potential for general boundary conditions has been obtained for the first time by taking into account the average contribution of the charges induced on the boundary. For intense beams the boundary effects can be very important because they strongly affect the average self-fields experienced by the beam particles. For example, it has been shown that in the case of cylindrical conducting boundary the average self-field potential acquires an octupole component, which results in the average motion of some beam particles being non-integrable and their trajectories chaotic. This chaotic behavior of the beam particles may significantly change the nature of Landau damping (growth) of collective excitations supported by an intense charged particle beam.

  16. On the acceleration of charged particles at relativistic shock fronts

    Science.gov (United States)

    Kirk, J. G.; Schneider, P.

    1987-01-01

    The diffusive acceleration of highly relativistic particles at a shock is reconsidered. Using the same physical assumptions as Blandford and Ostriker (1978), but dropping the restriction to nonrelativistic shock velocities, the authors find approximate solutions of the particle kinetic equation by generalizing the diffusion approximation to higher order terms in the anisotropy of the particle distribution. The general solution of the transport equation on either side of the shock is constructed, which involves the solution of an eigenvalue problem. By matching the two solutions at the shock, the spectral index of the resulting power law is found by taking into account a sufficiently large number of eigenfunctions. Low-order truncation corresponds to the standard diffusion approximation and to a somewhat more general method described by Peacock (1981). In addition to the energy spectrum, the method yields the angular distribution of the particles and its spatial dependence.

  17. Production of leading charged particles and leading charged-particle jets at small transverse momenta in pp collisions at $\\sqrt{s}$ = 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrens, Ulf; Bell, Alan James; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Tziaferi, Eirini; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Dall'Osso, Martino; Dorigo, Tommaso; Fantinel, Sergio; Gonella, Franco; Gozzelino, Andrea; Gulmini, Michele; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Sgaravatto, Massimo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zotto, Pierluigi; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Covarelli, Roberto; Dattola, Domenico; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Ryu, Min Sang; Kim, Jae Yool; Moon, Dong Ho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Wan Abdullah, Wan Ahmad Tajuddin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Khein, Lev; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Lukina, Olga; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Scarborough, Tara; Wu, Zhenbin; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Sagir, Sinan; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova PANEVA, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bierwagen, Katharina; Busza, Wit; Cali, Ivan Amos; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Nourbakhsh, Shervin; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Ratnikov, Fedor; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Malik, Sudhir; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Primavera, Federica; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Verzetti, Mauro; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Vuosalo, Carl; Woods, Nathaniel

    2015-12-01

    The per-event yield of the highest transverse momentum charged particle and charged-particle jet, integrated above a given $p_{\\mathrm{T}}^{\\mathrm{min}}$ threshold starting at $p_{\\mathrm{T}}^{\\mathrm{min}} = $ 0.8 and 1 GeV, respectively, is studied in PbPb collisions at $\\sqrt{s} =$ 8 TeV. The particles and the jets are measured for absolute pseudorapidities lower than 2.4 and 1.9, respectively. The data are sensitive to the momentum scale at which parton densities saturate in the proton, to multiple partonic interactions, and other key aspects of the transition between the soft and hard QCD regimes in hadronic collisions.

  18. Constraints on rapidity-dependent initial conditions from charged-particle pseudorapidity densities and two-particle correlations

    Science.gov (United States)

    Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.

    2017-10-01

    We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.

  19. Charged particle production at the CERN ISR as a function of transverse momentum

    CERN Document Server

    Bertin, A; Capiluppi, P; D'Agostino-Bruno, M; Ellis, R J; Giacomelli, G; Poe, R T; Rossi, A M; Vannini, G

    1972-01-01

    Experimental results are presented on the production of charged particles in inclusive reactions at ISR energies. The data have been taken as function of transverse momentum p/sub t/ at the fixed x- values of 0.08, 0.16 and 0.32. The behaviour of the p/sub t/- distributions for the different particles is discussed. (9 refs).

  20. Charged-particle multiplicity at mid-rapidity in Au–Au collisions at ...

    Indian Academy of Sciences (India)

    983–986. Charged-particle multiplicity at mid-rapidity in Au–Au collisions at relativistic heavy-ion collider. D SILVERMYR, for the PHENIX Collaboration. Department of Physics, Lund University, Box 118, 22100 Lund, Sweden. Abstract. The particle density at mid-rapidity is an essential global variable for the characterization.

  1. Charged-particle multiplicity at mid-rapidity in Au–Au collisions at ...

    Indian Academy of Sciences (India)

    The particle density at mid-rapidity is an essential global variable for the characterization of nuclear collisions at ultra-relativistic energies. It provides information about the initial conditions and energy density reached in these collisions. The pseudorapidity densities of charged particles at mid-rapidity in Au + Au collisions at ...

  2. On the signature of positively charged dust particles on plasma irregularities in the mesosphere

    Science.gov (United States)

    Mahmoudian, A.; Scales, W. A.

    2013-11-01

    Recent rocket payloads have studied the properties of aerosol particles within the ambient plasma environment in the polar mesopause region and measured the signature of the positively charged particles with number densities of (2000 cm-3) for particles of 0.5-1 nm in radius. The measurement of significant numbers of positively charged aerosol particles is unexpected from the standard theory of aerosol charging in plasma. Nucleation on the cluster ions is one of the most probable hypotheses for the positive charge on the smallest particles. This work attempts to study the correlation and anti-correlation of fluctuations in the electron and ion densities in the background plasma by adopting the proposed hypothesis of positive dust particle formation. The utility being that it may provide a test for determining the presence of positive dust particles. The results of the model described show good agreement with observed rocket data. As an application, the model is also applied to investigate the electron irregularity behavior during radiowave heating assuming the presence of positive dust particles. It is shown that the positive dust produces important changes in the behavior during Polar Mesospheric Summer Echo PMSE heating experiments that can be described by the fluctuation correlation and anti-correlation properties.

  3. Suprathermal Charged Particle Acceleration by Small-scale Flux Ropes.

    Science.gov (United States)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.

    2015-12-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of super-Alvenic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that particle drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes. Preliminary results will be discussed to illustrate how particle acceleration might be affected when both diffusive shock and small-scale flux acceleration occur simultaneously at interplanetary shocks.

  4. A Letter of Intent to Install a milli-charged Particle Detector at LHC P5

    CERN Document Server

    Ball, Austin; Campagnari, Claudio; De Roeck, Albert; Francis, Brian; Gastal, Martin; Golf, Frank; Goldstein, Joel; Haas, Andy; Hill, Christopher S.; Izaguirre, Eder; Kaplan, Benjamin; Magill, Gabriel; Marsh, Bennett; Miller, David; Prins, Theo; Shakeshaft, Harry; Stuart, David; Swiatlowski, Max; Yavin, Itay

    2016-01-01

    In this LOI we propose a dedicated experiment that would detect "milli-charged" particles produced by pp collisions at LHC Point 5. The experiment would be installed during LS2 in the vestigial drainage gallery above UXC and would not interfere with CMS operations. With 300 fb$^{-1}$ of integrated luminosity, sensitivity to a particle with charge $\\mathcal{O}(10^{-3})~e$ can be achieved for masses of $\\mathcal{O}(1)$ GeV, and charge $\\mathcal{O}(10^{-2})~e$ for masses of $\\mathcal{O}(10)$ GeV, greatly extending the parameter space explored for particles with small charge and masses above 100 MeV.

  5. Massless charged particles: Cosmic censorship, and the third law of black hole mechanics

    Science.gov (United States)

    Fairoos, C.; Ghosh, Avirup; Sarkar, Sudipta

    2017-10-01

    The formulation of the laws of Black hole mechanics assumes the stability of black holes under perturbations in accordance with the "cosmic censorship hypothesis" (CCH). CCH prohibits the formation of a naked singularity by a physical process from a regular black hole solution with an event horizon. Earlier studies show that naked singularities can indeed be formed leading to the violation of CCH if a near-extremal black hole is injected with massive charged particles and the backreaction effects are neglected. We investigate the validity of CCH by considering the infall of charged massless particles as well as a charged null shell. We also discuss the issue of the third law of Black hole mechanics in the presence of null charged particles by considering various possibilities.

  6. Charged-particle multiplicities measured with the ATLAS detector at the LHC

    CERN Document Server

    Morley, Anthony Keith; The ATLAS collaboration

    2015-01-01

    Measurements are presented from proton-proton collisions at different centre-of-mass energies in the range of 0.9 to 13 TeV recorded with the ATLAS detector at the LHC. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. The results are corrected for detector effects and are presented at the particle-level. The results are compared to various Monte Carlo event generator models.

  7. A Search for Long-Lived, Charged, Supersymmetric Particles using Ionization with the ATLAS Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00379148

    Several extensions of the Standard Model predict the existence of charged, very massive, and long-lived particles. Because of their high masses these particles would propagate non-relativistically through the ATLAS pixel detector and would therefore be identifiable through a measurement of large specific energy loss. Measuring heavy, long-lived particles through their track parameters in the pixel detector allows sensitivity to particles with lifetimes in the nanosecond range and above. This dissertation presents an inner detector driven method for identifying such particles in proton-proton collisions at 13 TeV with the 2015 LHC dataset corresponding to an integrated luminosity of 3.5 pb−1.

  8. Detection of charged particles with a methylammonium lead tribromide perovskite single crystal

    Science.gov (United States)

    Xu, Qiang; Wei, Haotong; Wei, Wei; Chuirazzi, William; DeSantis, Dylan; Huang, Jinsong; Cao, Lei

    2017-03-01

    Methylammonium lead tribromide (MAPbBr3) perovskite crystals have attracted significant attention due to their attractive performance in various optoelectronic applications such as solar cells, light-emitting devices, photodetectors, and recently in X-ray detectors. In this study, we demonstrate a possible use of perovskite-based devices for detection of charged particles (which can be applied in basic scientific research, health physics, and environmental analysis) and investigate the mechanism of fundamental charge transport inside perovskite crystals. It was found that inexpensive MAPbBr3 single crystals could be used for measuring the energy spectrum of charged particles through direct collection of the produced charge. After fitting the plot of the centroid peak position versus voltage with the Hecht equation for single-polarity charge transport, the obtained hole mobility-lifetime product was in the range of (0.4-1.6)×10-3 cm2/V.

  9. Detection of charged particles with a methylammonium lead tribromide perovskite single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiang [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Wei, Haotong; Wei, Wei [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Chuirazzi, William; DeSantis, Dylan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Huang, Jinsong, E-mail: jhuang2@unl.edu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Cao, Lei, E-mail: cao.152@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2017-03-11

    Methylammonium lead tribromide (MAPbBr{sub 3}) perovskite crystals have attracted significant attention due to their attractive performance in various optoelectronic applications such as solar cells, light-emitting devices, photodetectors, and recently in X-ray detectors. In this study, we demonstrate a possible use of perovskite-based devices for detection of charged particles (which can be applied in basic scientific research, health physics, and environmental analysis) and investigate the mechanism of fundamental charge transport inside perovskite crystals. It was found that inexpensive MAPbBr{sub 3} single crystals could be used for measuring the energy spectrum of charged particles through direct collection of the produced charge. After fitting the plot of the centroid peak position versus voltage with the Hecht equation for single-polarity charge transport, the obtained hole mobility-lifetime product was in the range of (0.4–1.6)×10{sup −3} cm{sup 2}/V.

  10. Identified Charged Particles in Quark and Gluon Jets

    CERN Document Server

    Abreu, P.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Beilliere, P.; Belokopytov, Yu.; Belous, K.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Bigi, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borgland, A.W.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Buschbeck, B.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chabaud, V.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Shlyapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Crawley, H.B.; Crennell, D.; Crepe-Renaudin, Sabine; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.A.; Demaria, N.; De Angelis, A.; de Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Duperrin, A.; Durand, J.D.; Eigen, G.; Ekelof, T.; Ekspong, G.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Fayot, J.; Feindt, M.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Fichet, S.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Guz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Gris, P.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hessing, T.L.; Heuser, J.M.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huber, M.; Huet, K.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovanskii, N.N.; Kiiskinen, A.; King, B.J.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Klein, Hansjorg; Kluit, P.; Kokkinias, P.; Kostyukhin, V.; Kourkoumelis, C.; Kuznetsov, O.; Krammer, M.; Kriznic, E.; Krumshtein, Z.; Kubinec, P.; Kurowska, J.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Lapin, V.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Lefebure, V.; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loerstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Malmgren, T.G.M.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Martinez-Vidal, F.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjornmark, U.; Moa, T.; Moch, M.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moraes, D.; Moreau, X.; Morettini, P.; Morton, G.; Muller, U.; Muenich, K.; Mulders, M.; Mulet-Marquis, C.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Nassiakou, M.; Navarria, F.L.; Navas, Sergio; Nawrocki, K.; Negri, P.; Neufeld, N.; Nicolaidou, R.; Nielsen, B.S.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.F.; Olshevskii, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdnyakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Rohne, O.; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Royon, C.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovskii, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Yu.; Seemann, F.; Segar, A.M.; Seibert, N.; Sekulin, R.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnova, O.; Smith, G.R.; Solovianov, A.; Sopczak, A.; Sosnowski, R.; Spassoff, Tz.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanic, S.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli de Fatis, T.; Taffard, A.; Chikilev, O.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Timmermans, Jan; Tinti, N.; Tkatchev, L.G.; Tobin, M.; Todorova, S.; Tomaradze, A.G.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Transtromer, G.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Van Dam, Piet; Vanden Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Walck, C.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zintchenko, A.; Zoller, P.; Zucchelli, G.C.; Zumerle, G.

    2000-01-01

    A sample of 2.2 million hadronic \\z decays, selected fythe {\\sc Delphi} detector at {\\sc Lep} during 1994-199nimprovedmeasurement of inclusive distributions of \\pie, \\kp anrantiparticles in gluon and quark jets. The production l identified particles were found to be softer in gluon kjets, with a higher multiplicity in gluon jets as obseecharged particles. A significant proton enhancement indindicating that baryon production proceeds directly fr.The maxima, $\\xi^*$, of the $\\xi$-distributions for kakjets are observed to be different. The study of isoscanshows no indication of an excess of $\\phi(1020)$ produ.

  11. Band-Like Diffusion of Charged Particles in Metals : Condensed Matter and Statistical Physics

    OpenAIRE

    Kosaku, YAMADA; Research Institute for Fundamental Physics, Kyoto University

    1986-01-01

    Diffusion coefficient for charged heavy particles in metals is obtained by taking into account the particle-electron interaction based on the Kubo formula. It is pointed out that vertex correction in the two-particle Green's function is indespensable not to violate the internal consistency. By including the vertex correction in addition to the selfenergy correction, we obtain for band-like diffusion the same temperature dependence as that for hopping-like one.

  12. Charged-particle acceleration in a reconnecting current sheet including multiple magnetic islands and a nonuniform background magnetic field

    Science.gov (United States)

    Li, Y.; Wu, N.; Lin, J.

    2017-09-01

    Context. Charged particles are accelerated to high energies in solar flares. Although we know that magnetic reconnection is an efficient mechanism in generating energetic particles, the detailed role it plays in accelerating particles is still unknown. Aims: We investigate particle acceleration by magnetic reconnection in the current sheet, including multiple islands and a guide field. Methods: The long current sheet produced by the disruption in the corona magnetic field is usually not stable to various plasma instabilities, among which the tearing mode is the most important, and magnetic islands start to form in the current sheet when these instabilities develop. Two reverse processes are typically observed in the sheet: cascading of large islands to smaller ones, and merging of small islands into larger ones. Coalescent reconnection consequently takes place between two adjacent islands when merging occurs. The electric field induced by the coalescent reconnection is opposite to the electric field of the primary large-scale reconnection. We studied particle acceleration in such a current sheet and examined in detail the dynamic properties of electrons and protons in the current sheet through test particle approach. Results: We found that some particles can be accelerated to high energies in a very short time, and some particles (near the coalescence reconnection site) are accelerated and decelerated back and forth by the primary and secondary electric fields. Particle motions show two distinct types along different trajectories: some particles are trapped around magnetic islands, and some escape from the current sheet mainly along open field lines. With the presence of a guide field, protons and electrons are found to eventually move in different directions. The energy spectra for both species follow a double power-law shape. The softer components of the power-law spectrum are due to the particles that are trapped and circulate around magnetic islands, while the

  13. Abrasive Particle Trajectories and Material Removal Non-Uniformity during CMP and Filtration Characteristics of CMP Slurries - A Simulation and Experimental Study

    Science.gov (United States)

    Rastegar, Vahid

    Nanoscale finishing and planarization are integral process steps in multilevel metallization designs for integrated circuit (IC) manufacturing since it is necessary to ensure local and global surface planarization at each metal layer before depositing the next layer. Chemical mechanical planarization (CMP) has been widely recognized as the most promising technology to eliminate topographic variation and has allowed the construction of multilevel interconnection structures with a more regularly stacked sequence, resulting in better device performance [1]. Understanding fundamental of the CMP mechanisms can offer guidance to the control and optimization of the polishing processes. CMP kinematics based on slurry distribution and particle trajectories have a significant impact on MRR profiles. In this work a mathematical model to describe particle trajectories during chemical mechanical polishing was developed and extended to account for the effect of larger particles, particle location changes due to slurry dispensing and in-situ conditioning. Material removal rate (MRR) and within wafer non-uniformity (WIWNU) were determined based on the calculated particle trajectory densities. Rotary dynamics and reciprocating motion were optimized to obtain best MRR uniformity. Edge-fast MRR profile was discussed based on mechanical aspect of CMP. Using the model, we also investigated the effect of variable rotational speeds of wafer and pad, and of large particles on WIWNU and scratch growth. It was shown that the presence of even a small portion of large particles can deteriorate the WIWNU significantly and also lead to more scratches. Furthermore, it was shown that the in-situ conditioning improves the uniformity of the polished wafers. Furthermore, a combined experimental and computational study of fibrous filters for removal of larger abrasive particles from aqueous dispersions, essential to minimize defects during chemical mechanical polishing, was performed. Dilute aqueous

  14. How smooth are particle trajectories in a ΛCDM Universe?

    Science.gov (United States)

    Rampf, Cornelius; Villone, Barbara; Frisch, Uriel

    2015-09-01

    It is shown here that in a flat, cold dark matter (CDM)-dominated Universe with positive cosmological constant (Λ), modelled in terms of a Newtonian and collisionless fluid, particle trajectories are analytical in time (representable by a convergent Taylor series) until at least a finite time after decoupling. The time variable used for this statement is the cosmic scale factor, i.e. the `a-time', and not the cosmic time. For this, a Lagrangian-coordinate formulation of the Euler-Poisson equations is employed, originally used by Cauchy for 3D incompressible flow. Temporal analyticity for ΛCDM is found to be a consequence of novel explicit all-order recursion relations for the a-time Taylor coefficients of the Lagrangian displacement field, from which we derive the convergence of the a-time Taylor series. A lower bound for the a-time where analyticity is guaranteed and shell-crossing is ruled out is obtained, whose value depends only on Λ and on the initial spatial smoothness of the density field. The largest time interval is achieved when Λ vanishes, i.e. for an Einstein-de Sitter universe. Analyticity holds also if, instead of the a-time, one uses the linear structure growth D-time, but no simple recursion relations are then obtained. The analyticity result also holds when a curvature term is included in the Friedmann equation for the background, but inclusion of a radiation term arising from the primordial era spoils analyticity.

  15. Single-sheet identification method of heavy charged particles using ...

    Indian Academy of Sciences (India)

    An attempt has been made to examine the suitability of the single-sheet particle identification technique in CR-39 and CN-85 polycarbonate by plotting track cone length vs. residual range for different heavy ions in these detectors. So, the maximum etchable ranges of heavy ions such as 93Nb, 86Kr and 4He in CR-39 and ...

  16. Detection of charged particles in amorphous silicon layers

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, S.N.; Morel, J.R.; Mulera, T.A.; Perez-Mendez, V.; Schnurmacher, G.; Street, R.A.

    1985-10-01

    The successful development of radiation detectors made from amorphous silicon could offer the possibility for relatively easy construction of large area position-sensitive detectors. We have conducted a series of measurements with prototype detectors, on signals derived from alpha particles. The measurement results are compared with simple model calculations, and projections are made of potential applications in high-energy and nuclear physics. 4 refs., 7 figs.

  17. Charging of small grains in a space plasma: Application to Jovian stream particles

    Science.gov (United States)

    Dzhanoev, A. R.; Schmidt, J.; Liu, X.; Spahn, F.

    2016-07-01

    Context. Most theoretical investigations of dust charging processes in space have treated the current balance condition as independent of grain size. However, for small grains, since they are often observed in space environments, a dependence on grain size is expected owing to secondary electron emission (SEE). Here, by the term "small" we mean a particle size comparable to the typical penetration depth for given primary electron energy. The results are relevant for the dynamics of small, charged dust particles emitted by the volcanic moon Io, which forms the Jovian dust streams. Aims: We revise the theory of charging of small (submicron sized) micrometeoroids to take into account a high production of secondary electrons for small grains immersed in an isotropic flux of electrons. We apply our model to obtain an improved estimate for the charge of the dust streams leaving the Jovian system, detected by several spacecraft. Methods: We apply a continuum model to describe the penetration of primary electrons in a grain and the emission of secondary electrons along the path. Averaging over an isotropic flux of primaries, we derive a new expression for the secondary electron yield, which can be used to express the secondary electron current on a grain. Results: For the Jupiter plasma environment we derive the surface potential of grains composed of NaCl (believed to be the major constituent of Jovian dust stream particles) or silicates. For small particles, the potential depends on grain size and the secondary electron current induces a sensitivity to material properties. As a result of the small particle effect, the estimates for the charging times and for the fractional charge fluctuations of NaCl grains obtained using our general approach to SEE give results qualitatively different from the analogous estimates derived from the traditional approach to SEE. We find that for the charging environment considered in this paper field emission does not limit the charging of

  18. A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Allen L. [Los Alamos National Laboratory; Knoll, Dana A. [Los Alamos National Laboratory; Cieren, Emmanuel B. [Los Alamos National Laboratory; Feltman, Nicolas [Los Alamos National Laboratory; Leibs, Christopher A. [Los Alamos National Laboratory; McCarthy, Colleen [Los Alamos National Laboratory; Murthy, Karthik S. [Los Alamos National Laboratory; Wang, Yijie [Los Alamos National Laboratory

    2012-09-10

    Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.

  19. Search for relativistic particles with fractional electric charge at the CERN anti pp collider

    Energy Technology Data Exchange (ETDEWEB)

    Banner, M.; Bloch, P.; Loucatos, S.; Mansoulie, B.; Roussarie, A.; Teiger, J.; Zaccone, H. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Bonaudi, F.; Borghini, M.; Clark, A.G.

    1983-01-27

    A search for relativistic particles with fractional electric charge has been performed at the CERN anti pp collider using a telescope of scintillation counters to detect particles with abnormally low ionisation. The thickness of the detector (approx.= 40 gr cm/sup -2/) limits this search to particles without strong absorption in matter. No evidence for such particles has been found. This negative result is used to set an upper limit for the ratio of quark yield to that of particles with unit electric charge. For quark masses below 2 GeV/c/sup 2/ the 90% confidence level upper limits range from 2 x 10/sup -4/ to 2.5 x 10/sup -3/ depending on the quark mass and electric change.

  20. Neutron yield when fast deuterium ions collide with strongly charged tritium-saturated dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Akishev, Yu. S., E-mail: akishev@triniti.ru; Karal’nik, V. B.; Petryakov, A. V.; Starostin, A. N.; Trushkin, N. I.; Filippov, A. V. [State Research Center of Russian Federation, Troitsk Institute for Innovation and Thermonuclear Research (Russian Federation)

    2017-02-15

    The ultrahigh charging of dust particles in a plasma under exposure to an electron beam with an energy up to 25 keV and the formation of a flux of fast ions coming from the plasma and accelerating in the strong field of negatively charged particles are considered. Particles containing tritium or deuterium atoms are considered as targets. The calculated rates of thermonuclear fusion reactions in strongly charged particles under exposure to accelerated plasma ions are presented. The neutron generation rate in reactions with accelerated deuterium and tritium ions has been calculated for these targets. The neutron yield has been calculated when varying the plasma-forming gas pressure, the plasma density, the target diameter, and the beam electron current density. Deuterium and tritium-containing particles are shown to be the most promising plasmaforming gas–target material pair for the creation of a compact gas-discharge neutron source based on the ultrahigh charging of dust particles by beam electrons with an energy up to 25 keV.

  1. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  2. The role of acid-base effects on particle charging in apolar media.

    Science.gov (United States)

    Gacek, Matthew Michael; Berg, John C

    2015-06-01

    The creation and stabilization of electric charge in apolar environments (dielectric constant≈2) have been an area of interest dating back to when an explanation was sought for the occurrence of what are now known as electrokinetic explosions during the pumping of fuels. More recently attention has focused on the charging of suspended particles in such media, underlying such applications as electrophoretic displays (e.g., the Amazon Kindle® reader) and new printing devices (e.g., the HP Indigo® Digital Press). The endeavor has been challenging owing to the complexity of the systems involved and the large number of factors that appear to be important. A number of different, and sometimes conflicting, theories for particle surface charging have been advanced, but most observations obtained in the authors' laboratory, as well as others, appear to be explainable in terms of an acid-base mechanism. Adducts formed between chemical functional groups on the particle surface and monomers of reverse micelle-forming surfactants dissociate, leaving charged groups on the surface, while the counter-charges formed are sequestered in the reverse micelles. For a series of mineral oxides in a given medium with a given surfactant, surface charging (as quantified by the maximum electrophoretic mobility or zeta potential obtained as surfactant concentration is varied) was found to scale linearly with the aqueous PZC (or IEP) values of the oxides. Different surfactants, with the same oxide series, yielded similar behavior, but with different PZC crossover points between negative and positive particle charging, and different slopes of charge vs. PZC. Thus the oxide series could be used as a yardstick to characterize the acid-base properties of the surfactants. This has led directly to the study of other materials, including surface-modified oxides, carbon blacks, pigments (charge transfer complexes), and polymer latices. This review focuses on the acid-base mechanism of particle

  3. Development of radiation hardened pixel sensors for charged particle detection

    CERN Document Server

    Koziel, Michal

    2014-01-01

    CMOS Pixel Sensors are being developed since a few years to equip vertex detectors for future high-energy physics experiments with the crucial advantages of a low material budget and low production costs. The features simultaneously required are a short readout time, high granularity and high tolerance to radiation. This thesis mainly focuses on the radiation tolerance studies. To achieve the targeted readout time (tens of microseconds), the sensor pixel readout was organized in parallel columns restricting in addition the readout to pixels that had collected the signal charge. The pixels became then more complex, and consequently more sensitive to radiation. Different in-pixel architectures were studied and it was concluded that the tolerance to ionizing radiation was limited to 300 krad with the 0.35- m fabrication process currently used, while the targeted value was several Mrad. Improving this situation calls for implementation of the sensors in processes with a smaller feature size which naturally imp...

  4. Optical diffraction radiation for position monitoring of charged particle beams

    Science.gov (United States)

    Kieffer, R.; Bravin, E.; Lefevre, T.; Mazzoni, S.; Bergamaschi, M.; Karataev, P.; Kruchinin, K.; Billing, M.; Conway, J.; Shanks, J.; Terunuma, N.; Bobb, L.

    2017-07-01

    In the framework of the future linear collider collaboration (CLIC, ILC), non-intercepting beam monitoring instruments are under development for very low emittance and high charge density beams. Optical diffraction radiation (ODR) was studied and developed during the last years focussing on beam size measurements. We propose in the paper to consider the use of diffraction radiation for ultra relativistic beams as position monitors with applications for the centering of scrapers, collimators and targets with high resolution. We present the experimental results obtained using small aperture slits on the ATF2 extraction beam line at KEK and on the Cornell Electron Storage Ring with 1.2 GeV and 2.1 GeV electrons respectively.

  5. A Laboratory Study of the Charging/Discharging Mechanisms of a Dust Particle Exposed to an Electron Beam

    Science.gov (United States)

    Venturini, C. C.; Spann, J. F.; Comfort, R. H.

    1999-01-01

    The interaction of micron sized particles or "dust particles" with different space and planetary environments has become an important area of research. One particular area of interest is how dust particles interact with plasmas. Studies have shown that charged dust particles immersed in plasmas can alter plasma characteristics, while ions and electrons in plasmas can affect a particle's potential and thereby, its interaction with other particles. The basis for understanding these phenomena is the charging mechanisms of the dust particle, specifically, how the particle's charge and characteristics are affected when exposed to ions and electrons. At NASA Marshall Space Flight Center, a laboratory experiment has been developed to study the interaction of dust particles with electrons. Using a unique laboratory technique known as electrodynamic suspension, a single charged particle is suspended in a modified quadrupole trap. Once suspended, the particle is then exposed to an electron beam to study the charging/discharging mechanisms due to collisions of energetic electrons. The change in the particle's charge, approximations of the charging/discharging currents, and the charging/discharging yield are calculated.

  6. Sensitivity in the trajectory of long-range α-particle

    Indian Academy of Sciences (India)

    The LE is calculated using Wolf's algorithm and found positive which implies that the objectives of trajectory calculations are restricted. Keywords. Cold ternary fission; Lyapunov exponent. PACS Nos 24.60.Lz; 25.85.Ca; 27.90.+b. 1. Introduction. The trajectory calculations in fission are used mainly (1) to predict the future of ...

  7. New search for relativistic particles with fractional electric charge at the CERN p anti p collider

    Energy Technology Data Exchange (ETDEWEB)

    Banner, M.; Bloch, P.; Loucatos, S.; Mansoulie, B.; Roussarie, A.; Teiger, J.; Zaccone, H. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Borer, K.; Hahn, B.; Haenni, H.

    1985-06-13

    We report on a search for relativistic particles with fractional electric charge at the CERN p anti p collider, using a telescope of scintillation counters to detect particles with anomalously low ionization. Since no event survives the selection criteria, upper limits on quark production are deduced from this experiment. At 90% confidence level and in the limit of very light quarks with charge +-1/3 and +-2/3 they are 2.8 . 10/sup -6/ and 5.6 . 10/sup -5/, respectively, per single charged particle. These limits increase rapidly with increasing quark mass and are nearly two and one order of magnitude better than previously measured by UA2.

  8. On gel electrophoresis of dielectric charged particles with hydrophobic surface: A combined theoretical and numerical study.

    Science.gov (United States)

    Majee, Partha Sarathi; Bhattacharyya, Somnath; Gopmandal, Partha Pratim; Ohshima, Hiroyuki

    2017-09-21

    A theoretical study on the gel electrophoresis of a charged particle incorporating the effects of dielectric polarization and surface hydrophobicity at the particle-liquid interface is made. A simplified model based on the weak applied field and low charge density assumption is also presented and compared with the full numerical model for a nonpolarizable particle to elucidate the nonlinear effects such as double layer polarization and relaxation as well as surface conduction. The main motivation of this study is to analyze the electrophoresis of the surface functionalized nanoparticle with tunable hydrophobicity or charged fluid drop in gel medium by considering the electrokinetic effects and hydrodynamic interactions between the particle and the gel medium. An effective medium approach, in which the transport in the electrolyte-saturated hydrogel medium is governed by the Brinkman equation, is adopted in the present analysis. The governing electrokinetic equations based on the conservation principles are solved numerically. The Navier-slip boundary condition along with the continuity condition of dielectric displacement are imposed on the surface of the hydrophobic polarizable particle. The impact of the slip length on the electrophoresis is profound for a thinner Debye layer, however, surface conduction effect also becomes significant for a hydrophobic particle. Impact of hydrophobicity and relaxation effects are higher for a larger particle. Dielectric polarization creates a reduction in its electrophoretic propulsion and has negligible impact at the thinner Debye length as well as lower gel screening length. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multiplicities of $\\pi^{0}$, $\\eta$, $K^{0}$ and of charged particles in quark and gluon jets

    CERN Document Server

    Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Boeriu, O.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schmitt, S.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2000-01-01

    We compared the multiplicities of pizero, eta, Kzero and of charged particles in quark and gluon jets in 3-jet events, as measured by the OPAL experiment at LEP. The comparisons were performed for distributions unfolded to 100% pure quark and gluon jets, at an effective scale Qjet which took into account topological dependences of the 3-jet environment. The ratio of particle multiplicity in gluon jets to that in quark jets as a function of Qjet for pizero, eta and Kzero was found to be independent of the particle species. This is consistent with the QCD prediction that the observed enhancement in the mean particle rate in gluon jets with respect to quark jets should be independent of particle species. In contrast to some theoretical predictions and previous observations, we observed no evidence for an enhancement of eta meson production in gluon jets with respect to quark jets, beyond that observed for charged particles. We measured the ratio of the slope of the average charged particle multiplicity in gluon ...

  10. Molecular processes in plasmas collisions of charged particles with molecules

    CERN Document Server

    Itikawa, Yukikazu

    2007-01-01

    Molecular Processes in Plasmas describes elementary collision processes in plasmas, particularly those involving molecules or molecular ions. Those collision processes (called molecular processes) maintain plasmas, produce reactive species and emissions, and play a key role in energy balance in plasmas or more specifically in determining the energy distribution of plasma particles. Many books on plasma physics mention the elementary processes, but normally rather briefly. They only touch upon the general feature or fundamental concept of the collision processes. On the other hand, there are many books on atomic and molecular physics, but most of them are too general or too detailed to be useful to people in the application fields. The present book enumerates all the possible processes in the collisions of electrons, as well as ions, with molecules. For each process, a compact but informative description of its characteristics is given together with illustrative examples. Since the author has much experience a...

  11. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2009-11-01

    Full Text Available Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel—both in terms of low-order rms (envelope properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including the following: the Kapchinskij-Vladimirskij (KV equilibrium, continuous-focusing equilibria with specific detailed examples, and various nonequilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of standard accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear focusing, single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for noncontinuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulations that more precisely probe intrinsic stability properties and machine performance.

  12. Relativistic dust accretion of charged particles in Kerr-Newman spacetime

    Science.gov (United States)

    Schroven, Kris; Hackmann, Eva; Lämmerzahl, Claus

    2017-09-01

    We describe a new analytical model for the accretion of particles from a rotating and charged spherical shell of dilute collisionless plasma onto a rotating and charged black hole. By assuming a continuous injection of particles at the spherical shell and by treating the black hole and a featureless accretion disk located in the equatorial plane as passive sinks of particles, we build a stationary accretion model. This may then serve as a toy model for plasma feeding an accretion disk around a charged and rotating black hole. Therefore, our new model is a direct generalization of the analytical accretion model introduced by E. Tejeda, P. A. Taylor, and J. C. Miller [Mon. Not. R. Astron. Soc. 429, 925 (2013), 10.1093/mnras/sts316]. We use our generalized model to analyze the influence of a net charge of the black hole, which will in general be very small, on the accretion of plasma. Within the assumptions of our model we demonstrate that already a vanishingly small charge of the black hole may in general still have a non-negligible effect on the motion of the plasma, as long as the electromagnetic field of the plasma is still negligible. Furthermore, we argue that the inner and outer edges of the forming accretion disk strongly depend on the charge of the accreted plasma. The resulting possible configurations of accretion disks are analyzed in detail.

  13. Charged Particle Detection using a CMOS Active Pixel Sensor

    CERN Document Server

    Matis, H S; Kleinfelder, S A; Rai, G; Retière, F; Ritter, H G; Singh, K; Wurzel, S E; Wieman, H H; Yamamoto, E

    2003-01-01

    Active Pixel Sensor (APS) technology has shown promise for next-generation vertex detectors. This paper discusses the design and testing of two generations of APS chips. Both are arrays of 128 by 128 pixels, each 20 by 20 micro-m. Each array is divided into sub-arrays in which different sensor structures (4 in the first version and 16 in the second) and/or readout circuits are employed. Measurements of several of these structures under Fe55 exposure are reported. The sensors have also been irradiated by 55 MeV protons to test for radiation damage. The radiation increased the noise and reduced the signal. The noise can be explained by shot noise from the increased leakage current and the reduction in signal is due to charge being trapped in the epi layer. Nevertheless, the radiation effect is small for the expected exposures at RHIC and RHIC II. Finally, we describe our concept for mechanically supporting a thin silicon wafer in an actual detector.

  14. A CMOS Active Pixel Sensor for Charged Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Matis, Howard S.; Bieser, Fred; Kleinfelder, Stuart; Rai, Gulshan; Retiere, Fabrice; Ritter, Hans George; Singh, Kunal; Wurzel, Samuel E.; Wieman, Howard; Yamamoto, Eugene

    2002-12-02

    Active Pixel Sensor (APS) technology has shown promise for next-generation vertex detectors. This paper discusses the design and testing of two generations of APS chips. Both are arrays of 128 by 128 pixels, each 20 by 20 {micro}m. Each array is divided into sub-arrays in which different sensor structures (4 in the first version and 16 in the second) and/or readout circuits are employed. Measurements of several of these structures under Fe{sup 55} exposure are reported. The sensors have also been irradiated by 55 MeV protons to test for radiation damage. The radiation increased the noise and reduced the signal. The noise can be explained by shot noise from the increased leakage current and the reduction in signal is due to charge being trapped in the epi layer. Nevertheless, the radiation effect is small for the expected exposures at RHIC and RHIC II. Finally, we describe our concept for mechanically supporting a thin silicon wafer in an actual detector.

  15. A perspective on Black Hole Horizons from the Quantum Charged Particle

    CERN Document Server

    Jaramillo, José Luis

    2016-01-01

    Black hole apparent horizons possess a natural notion of stability, whose spectral characterization can be related to the problem of the stationary quantum charged particle. Such mathematical relation leads to an "analyticity conjecture" on the dependence of the spectral properties on a complex "fine-structure-constant" parameter, that can reduce the study of the spectrum of the (non-selfadjoint) MOTS-stability operator to that of the (selfadjoint) Hamiltonian of the quantum charged particle. Moreover, this perspective might open an avenue to the spinorial treatment of apparent horizon (MOTS-)stability and to the introduction of semiclassical tools to explore some of the qualitative aspects of this black hole spectral problem.

  16. Charged Particle Identification using the Liquid Xenon Calorimeter of the CMD-3 Detector

    CERN Document Server

    Akhmetshin, R R; Anisenkov, A V; Aulchenko, V M; Banzarov, V Sh; Bashtovoy, N S; Bondar, A E; Bragin, A V; Eidelman, S I; Epifanov, D A; Epshteyn, L B; Erofeev, A L; Fedotovich, G V; Gayazov, S E; Grebenuk, A A; Gribanov, S S; Grigoriev, D N; Ignatov, F V; Ivanov, V L; Karpov, S V; Kazanin, V F; Korobov, A A; Kovalenko, O A; Kozyrev, A N; Kozyrev, E A; Krokovny, P P; Kuzmenko, A E; Kuzmin, A S; Logashenko, I B; Lukin, P A; Mikhailov, K Yu; Okhapkin, V S; Pestov, Yu N; Popov, A S; Razuvaev, G P; Ruban, A A; Ryskulov, N M; Ryzhenenkov, A E; Shebalin, V E; Shemyakin, D N; Shwartz, B A; Sibidanov, A L; Solodov, E P; Talyshev, A A; Titov, V M; Vorobiov, A I; Yudin, Yu V

    2017-01-01

    This paper describes a currently being developed procedure of the charged particle identification for CMD-3 detector, installed at the VEPP-2000 collider. The procedure is based on the application of the boosted decision trees classification method, and uses as input variables, among others, the specific energy losses of charged particle in the layers of the liquid Xenon calorimeter. The efficiency of the procedure is demonstrated by an example of the extraction of events of e+e- to K+K- process in the center of mass energy range from 1.8 to 2.0 GeV.

  17. Rapid measurement of charged particle beam profiles using a current flux grating

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Samit; Chowdhury, Abhishek; Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016, UP (India)

    2015-02-15

    The principle and physics issues of charged particle beam diagnostics using a current flux grating are presented. Unidirectional array of conducting channels with interstitial insulating layers of spacing d is placed in the beam path to capture flux of charge and electronically reproduce an exact beam current profile with density variation. The role of secondary electrons due to the impinging particle beam (both electron and ion) on the probe is addressed and a correction factor is introduced. A 2-dimensional profile of the electron beam is obtained by rotating the probe about the beam axis. Finally, a comparison of measured beam profile with a Gaussian is presented.

  18. Development of utility system of charged particle Nuclear Reaction Data on Unified Interface

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Shigeyoshi; Ohbayashi, Yosihide; Kato, Kiyoshi [Information Processing Center, Kitami Institute of Technology, Kitami, Hokkaido (Japan); Masui, Hiroshi; Ohnishi, Akira; Chiba, Masaki

    1999-03-01

    We have developed a utility system, WinNRDF, for a nuclear charged particle reaction data of NRDF (Nuclear Reaction Data File) on a unified interface of Windows95, 98/NT. By using the system, we can easily search the experimental data of a charged particle reaction in NRDF and also see the graphic data on GUI (Graphical User Interface). Furthermore, we develop a mechanism of making a new index of keywords in order to include the time developing character of the NRDF database. (author)

  19. Space charge calculations for sub-three-dimensional particle-in-cell code

    Directory of Open Access Journals (Sweden)

    Leonid G. Vorobiev

    2000-11-01

    Full Text Available A novel approach for modeling high-current, charged particle beams in a three-dimensional manner is introduced. While the integration of beam motion equations is done as in completely 3D particle-in-cell codes, the space charge forces are found by an approximately self-consistent inclusion of the transverse and longitudinal fields. The algorithm is dramatically faster than fully 3D algorithms with computational times comparable to 2D field solvers. In addition, a sparser spatial grid and fewer required macroparticles provide significantly reduced memory demands. The proposed sub-3D technique has been verified with good agreement with other independent algorithms.

  20. arXiv NA62 Charged Particle Hodoscope. Design and performance in 2016 run

    CERN Document Server

    INSPIRE-00577742

    2017-06-27

    The NA62 experiment at CERN SPS aims to measure the branching ratio of the ultra-rare decay K(+) → π(+)νbar nu with 10% accuracy. The experiment operates with a 75 GeV/c high intensity (750 MHz) secondary beam. A new detector, named Charged Particle Hodoscope (CHOD), designed to produce an input signal to the L0 trigger processor for events with charged particles produced in kaon decays, has been assembled, installed, integrated into NA62 Data Acquisition System (DAQ) and commissioned in 2016. During the whole 2016 run the detector has been in continuous operation. Design and performance features of the detector are presented.

  1. NA62 Charged Particle Hodoscope. Design and performance in 2016 run

    Science.gov (United States)

    Kholodenko, S.

    2017-06-01

    The NA62 experiment at CERN SPS aims to measure the branching ratio of the ultra-rare decay K+ → π+νbar nu with 10% accuracy. The experiment operates with a 75 GeV/c high intensity (750 MHz) secondary beam. A new detector, named Charged Particle Hodoscope (CHOD), designed to produce an input signal to the L0 trigger processor for events with charged particles produced in kaon decays, has been assembled, installed, integrated into NA62 Data Acquisition System (DAQ) and commissioned in 2016. During the whole 2016 run the detector has been in continuous operation. Design and performance features of the detector are presented.

  2. Relative Nonlinear Electrodynamics Interaction of Charged Particles with Strong and Super Strong Laser Fields

    CERN Document Server

    Avetissian, Hamlet

    2006-01-01

    This book covers a large class of fundamental investigations into Relativistic Nonlinear Electrodynamics. It explores the interaction between charged particles and strong laser fields, mainly concentrating on contemporary problems of x-ray lasers, new type small set-up high-energy accelerators of charged particles, as well as electron-positron pair production from super powerful laser fields of relativistic intensities. It will also discuss nonlinear phenomena of threshold nature that eliminate the concurrent inverse processes in the problems of Laser Accelerator and Free Electron Laser, thus creating new opportunities for solving these problems.

  3. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    Energy Technology Data Exchange (ETDEWEB)

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-18

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  4. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Aggelen, Helen van [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Inorganic and Physical Chemistry, Ghent University, 9000 Ghent (Belgium); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2013-12-14

    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  5. Charged particle behavior in localized ultralow frequency waves: Theory and observations

    Science.gov (United States)

    Li, Li; Zhou, Xu-Zhi; Zong, Qiu-Gang; Rankin, Robert; Zou, Hong; Liu, Ying; Chen, Xing-Ran; Hao, Yi-Xin

    2017-06-01

    The formation and variability of the Van Allen radiation belts are highly influenced by charged particles accelerated via drift-resonant interactions with ultralow frequency (ULF) waves. In the prevailing theory of drift resonance, the ULF wave amplitude is assumed independent of magnetic longitude. This assumption is not generally valid in Earth's magnetosphere, as supported by numerous observations that point to the localized nature of ULF waves. Here we introduce a longitude dependence of the ULF wave amplitude, achieved via a von Mises function, into the theoretical framework of ULF wave-particle drift resonance. To validate the revised theory, the predicted particle signatures are compared with observational data through a best fit procedure. It is demonstrated that incorporation of nonlocal effects in drift-resonance theory provides an improved understanding of charged particle behavior in the inner magnetosphere through the intermediary of ULF waves.

  6. Stopping power and polarization induced in a plasma by a fast charged particle in circular motion

    Energy Technology Data Exchange (ETDEWEB)

    Villo-Perez, Isidro [Departamento de Electronica, Tecnologia de las Computadoras y Proyectos, Universidad Politecnica de Cartagena, Cartagena (Spain); Arista, Nestor R. [Division Colisiones Atomicas, Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, Bariloche (Argentina); Garcia-Molina, Rafael [Departamento de Fisica, Universidad de Murcia, Murcia (Spain)

    2002-03-28

    We describe the perturbation induced in a plasma by a charged particle in circular motion, analysing in detail the evolution of the induced charge, the electrostatic potential and the energy loss of the particle. We describe the initial transitory behaviour and the different ways in which convergence to final stationary solutions may be obtained depending on the basic parameters of the problem. The results for the stopping power show a resonant behaviour which may give place to large stopping enhancement values as compared with the case of particles in straight-line motion with the same linear velocity. The results also explain a resonant effect recently obtained for particles in circular motion in magnetized plasmas. (author)

  7. Low-energy charged particles in Saturn's magnetosphere - Results from Voyager 1

    Science.gov (United States)

    Krimigis, S. M.; Bostrom, C. O.; Keath, E. P.; Carbary, J. F.; Roelof, E. C.; Armstrong, T. P.; Axford, W. I.; Gloeckler, G.; Hamilton, D. C.; Lanzerotti, L. J.

    1981-01-01

    The Voyager 1 low-energy charged particle instrument measured electrons and ions with energies below 26 and 40 kiloelectron volts, respectively, in the Saturn magnetosphere. Spectra of all ion species were found to have an energy cutoff at levels greater than 2 million electron volts. In contrast to the magnetospheres of Jupiter and earth, there are no lobe regions essentially devoid of particles in Saturn's nighttime magnetosphere. One novel feature of the Saturn magnetosphere is a pervasive population of energetic molecular hydrogen.

  8. Influence of thermal fluctuations on dynamics of charged particles in electromagnetic fields

    Science.gov (United States)

    Sametov, E. A.; Timirkhanov, R. A.; Vaulina, O. S.

    2017-12-01

    The numerical study of dynamics of the charged particles in the confined cloud located in a constant electromagnetic field is presented. Calculations are performed for ions with various masses in a wide range of system parameters. For the first time, an influence of thermal fluctuations of particles on their motion in an electromagnetic field is considered. Analytical estimations for the analysis of this effect are proposed.

  9. Evaluation of charged-particle reactions for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    White, R.M.; Resler, D.A.; Warshaw, S.I.

    1991-01-01

    New evaluations of the total reaction cross sections for {sup 2}H(d,n){sup 3}He, {sup 2}H(d,p){sup 3}H, {sup 3}H(t,2n){sup 4}He,{sup 3}H(d,n){sup 4}He, and {sup 3}He(d,p){sup 4}He have been completed. These evaluations are based on all known published data from 1946 to 1990 and include over 1150 measured data points from 67 references. The purpose of this work is to provide a consistent and well-documented set of cross sections for use in calculations relating to fusion energy research. A new thermonuclear data file, TDF, and a library of FORTRAN subprograms to read the file have been developed. Calculated from the new evaluations, the TDF file contains information on the Maxwellian-averaged reaction rates as a function of reaction and plasma temperature and the Maxwellian-averaged average energy of the interacting particles and reaction products. Routines are included that provide thermally-broadened spectral information for the secondary reaction products. 67 refs., 18 figs.

  10. A new detector array for charged particle spectroscopy

    CERN Document Server

    Cowin, R L; Chappell, S P G; Clarke, N M; Freer, M; Fulton, B R; Cunningham, R A; Curtis, N; Dillon, G; Lilley, J; Jones, C D; Lee, P; Rae, W D M

    1999-01-01

    A compact and highly segmented detector array consisting of 44 gas-silicon-caesium iodide, position sensitive, particle identification detector telescopes and up to 10 position-sensitive, silicon strip detectors has been constructed for the study of light-ion-heavy-ion reactions including cluster break-up in the energy range 5-15 MeV/nucleon. The detectors are housed in a purpose built vacuum chamber. The telescopes are placed in fixed positions, covering the forward hemisphere from 3 to 30 deg. in the laboratory with the target placed at 535 mm from the front of the telescopes or 6-52 deg. with the target placed at 215 mm. The strip detectors are placed in any of 30 fixed positions in the forward hemisphere. For 85 MeV sup 1 sup 2 C ions the telescope energy resolution (gas plus silicon) is 345 keV with an angular resolution of 0.03 deg. . Using the gas-silicon section ions with Z up to 21 can be identified. For ions that pass through the silicon isotopic identification is achieved using the silicon-CsI comb...

  11. On the secondary charging effects and structure of mesospheric dust particles impacting on rocket probes

    Energy Technology Data Exchange (ETDEWEB)

    Havnes, O.; Naesheim, L.I. [Inst. of Physics, Univ. of Tromso (Norway)

    2007-07-01

    The dust probe DUSTY, first launched during the summer of 1994 (flights ECT-02 and ECT-07) from Andoeya Rocket Range, northern Norway, was the first probe to unambiguously detect heavy charged mesospheric aerosols, from hereon referred to as dust. In ECT-02 the probe detected negatively charged dust particles in the height interval of 83 to 88.5 km. In this flight, the lower grid in the detector (Grid 2) measures both positive and negative currents in various regions, and we find that the relationship between the current measurements of Grid 2 and the bottom plate can only be explained by influence from secondary charge production on Grid 2. In ECT-07, which had a large coning, positive currents reaching the top grid of the probe were interpreted as due to the impact of positively charged dust particles. We have now reanalyzed the data from ECT-07 and arrived at the conclusion that the measured positive currents to this grid must have been mainly due to secondary charging effects from the impacting dust particles. The grid consists of a set of parallel wires crossed with an identical set of wires on top of it, and we find that if the observed currents were created from the direct impact of charged dust particles, then they should be very weakly modulated at four times the rocket spin rate {omega}{sub R}. Observations show, however, that the observed currents are strongly modulated at 2{omega}{sub R}. We cannot reproduce the observed large modulations of the impact currents in the dust layer if the currents are due only to the transfer of the charges on the impacted dust particles. Based on the results of recent ice cluster impact secondary charging experiments by Tomsic (2003), which found that a small fraction of the ice clusters, when impacting with nearly grazing incidence, carried away one negative charge - 1e, we have arrived at the conclusion that similar, but significantly more effective, charging effects must be predominantly responsible for the positive

  12. Strange Resonance and Charmed Particle Production in Muon-Associated Neutrino Neon Charged-Current Interactions

    Science.gov (United States)

    Hyatt, Eric Roy

    The production of strange resonances and charmed particles in nu_{mu} Ne charged-current interactions was measured in the 15 ft Bubble Chamber. The chamber, filled with a heavy Ne-H_2 mixture, was exposed at Fermilab to a wide-band horn-focussed neutrino beam with peak energy ~20 GeV. In a 390,000 expansion exposure of the chamber, ~125,000 charge-current events occurred within the fiducial volume. Among these events were 4381 (3676) well-reconstructed K _sp{s}{0} ( Lambda^0) decays. The events containing these neutral strange particle decays are examined to measure strange resonance and charmed particle production. Inclusive production rates or rate limits per charged-current event are measured for the K*(890) and Sigma^ {*}(1380) resonances. The production of any particular resonance is measured to be typically {cal O}(1%), and resonance decays are shown to account for 10-25% of K^0 /|{rm K}^0 's and Lambda^0's. Production rates or rate limits are measured for charmed particles via hadronic decays which include a neutral strange particle --these rates are typically {cal O} (1%) and are consistent with the rate at which charmed particle semileptonic decays were observed during the same experiment. ftn*Research supported by the National Science Foundation. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the graduate School of Arts and Sciences, Columbia University.

  13. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Niu, H., E-mail: hniu@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Chang, H.C. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Cho, I.C. [Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, C.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, C.S. [Cancer Center of Taipei Veterans General Hospital, Taipei, Taiwan (China); Chou, W.T. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-08-15

    Highlights: • Charged particles can induce more complex DNA damages, and these complex damages have higher ability to cause the cell death or cell carcinogenesis. • In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in particle irradiated HeLa cells. • The HeLa cells were irradiated by 400 keV alpha-particles in four different dosages. • The result shows that a good linear relationship can be observed between foci number and radiation dose. • The data shows that the dissolution rate of γ-H2AX foci agree with the two components DNA repairing model, and it was decreasing as the radiation dose increased. • These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair. - Abstract: In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA

  14. Ascent phase trajectory optimization for vehicle with multi-combined cycle engine based on improved particle swarm optimization

    Science.gov (United States)

    Zhou, Hongyu; Wang, Xiaogang; Bai, Yuliang; Cui, Naigang

    2017-11-01

    An improved particle swarm optimization (IPSO) algorithm is proposed to optimize the ascent phase trajectory for vehicle with multi-combined cycle engine. Aerodynamic and thrust models are formulated in couple with flying states and environment. Conventional PSO has advantages in solving complicated optimization problems but has troubles in constraints handling and premature convergence preventing. To handle constraints, a modification in the fitness function of infeasible particles is executed based on the constraints violation and a comparation is executed to choose the better particle according to the fitness. To prevent premature, a diminishing number of particles are chosen to be mutated on the velocity by random times and directions. The ascent trajectory is divided into sub-phases according to engine modes. Different constraints, control parameters and engine models are considered in each sub-phase. Though the proposed algorithm is straightforward in comprehension and implementation, the numerical examples demonstrate that the algorithm has better performance than other PSO variants. In comparation with the commercial software GPOPS, the performance index of IPSO is almost the same as GPOPS but the results are less oscillating and dependent on initial values.

  15. Capacitive electronic metal-support interactions: Outer surface charging of supported catalyst particles

    Science.gov (United States)

    Binninger, Tobias; Schmidt, Thomas J.; Kramer, Denis

    2017-10-01

    Electronic metal-support interactions (EMSI) in catalysis are commonly rationalized in terms of an electron transfer between support material and supported metal catalyst particles. This general perspective, however, cannot fully explain experimentally observed EMSI for metallic nanoparticulate catalysts, because the strong charge screening of metals should locally confine effects of direct electronic interaction with the support to the catalyst-support interface (CSI), which, apart from the perimeter, is largely inaccessible for catalysis reactants. The concept of capacitive EMSI is proposed here for catalyst particles at the nanometer scale, where electronic equilibration results in a long-range charging of the catalytically active outer surface (CAOS) bypassing the expected strong metallic charge screening, which is confirmed and quantified by electrostatic and density functional theory simulations revealing a strong dependence on the coverage of the support surface with catalyst particles. This long-range charge transfer leads to a shift of the local work function at the CAOS. In order to describe the catalytic consequences, an amendment of d -band theory in terms of `d -band + work function' is proposed. Furthermore, the charging of remote catalytic sites at the CAOS scales with the relative dielectric constant of the surrounding medium, and it is concluded that EMSI can have surprisingly strong influence especially in the presence of a strongly polarizable dielectric.

  16. Momentum distribution of charged particles in jets in dijet events and ...

    Indian Academy of Sciences (India)

    2016-07-19

    Jul 19, 2016 ... Momentum distribution of charged particles in jets in dijet events and comparison to perturbative QCD predictions. M E ZOMORRODIAN1,∗, M HASHEMINIA1,4, S M ZABIHINPOUR2 and A MIRJALILI3. 1Department of Physics, Ferdowsi University of Mashhad, 91775-1436, Mashhad, Iran. 2Department of ...

  17. A Charged Particle Veto Wall for the Large Area Neutron Array (LANA)

    Science.gov (United States)

    Zhu, K.; Chajecki, Z.; Anderson, C.; Bromell, J.; Brown, K.; Crosby, J.; Kodali, S.; Lynch, W. G.; Morfouace, P.; Sweany, S.; Tsang, M. B.; Tsang, C.; Brett, J. J.; Swaim, J. L.

    2017-09-01

    Comparison of neutrons and protons emitted in heavy ion collisions is one of the observables to probe symmetry energy, which is related to the properties of neutron star. In general, neutrons are difficult to measure and neutron detectors are not as easy to use or as widely available as charged particle detectors. Two neutron walls (NW) called LANA exist at the National Superconducting Cyclotron Laboratory. Although the NSCL NW attains excellent discrimination of γ rays and neutron, it fails to discriminate charged particles from neutrons. To ensure near 100% rejection of charged particles, a Charged Particle Veto Wall (VW) is being jointly built by Michigan State University and Western Michigan University. It will be placed in front of one NW. To increase efficiency in detecting neutrons, the second neutron wall is stacked behind it. In this presentation, I will discuss the design, construction and testing of the VW together with the LANA in preparation of two approved NSCL experiments to probe the density and momentum dependence of the symmetry energy potentials in the equation state of the asymmetric nuclear matter. This material is based upon work supported by the National Science Foundation under Grant No. PHY 1565546.

  18. Motion of a Charged Particle in a Constant and Uniform Electromagnetic Field

    Science.gov (United States)

    Ladino, L. A.; Rondón, S. H.; Orduz, P.

    2015-01-01

    This paper focuses on the use of software developed by the authors that allows the visualization of the motion of a charged particle under the influence of magnetic and electric fields in 3D, at a level suitable for introductory physics courses. The software offers the possibility of studying a great number of physical situations that can…

  19. Effects of Particle Surface Charge, Species, Concentration, and Dispersion Method on the Thermal Conductivity of Nanofluids

    Directory of Open Access Journals (Sweden)

    Raghu Gowda

    2010-01-01

    Full Text Available The purpose of this experimental study is to evaluate the effects of particle species, surface charge, concentration, preparation technique, and base fluid on thermal transport capability of nanoparticle suspensions (nanofluids. The surface charge was varied by changing the pH value of the fluids. The alumina (Al2O3 and copper oxide (CuO nanoparticles were dispersed in deionized (DI water and ethylene glycol (EG, respectively. The nanofluids were prepared using both bath-type and probe sonicator under different power inputs. The experimental results were compared with the available experimental data as well as the predicted values obtained from Maxwell effective medium theory. It was found that ethylene glycol is more suitable for nanofluids applications than DI water in terms of thermal conductivity improvement and stability of nanofluids. Surface charge can effectively improve the dispersion of nanoparticles by reducing the (aggregated particle size in base fluids. A nanofluid with high surface charge (low pH has a higher thermal conductivity for a similar particle concentration. The sonication also has a significant impact on thermal conductivity enhancement. All these results suggest that the key to the improvement of thermal conductivity of nanofluids is a uniform and stable dispersion of nanoscale particles in a fluid.

  20. Measurement of the charged particle multiplicity of weakly decaying B hadrons

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krstic, J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rakoczy, D; Rames, J; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Souza-Santos, D; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wlodek, T; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1998-01-01

    From the $Z$ decays recorded in 1994 and 1995 by the DELPHI detector at LEP, the charged particle multiplicity of weakly decaying $B$ hadrons was measured to be: \\begin{center} $4.97 \\pm 0.03 \\pm 0.06 \\, ,$ \\end{center} \

  1. Momentum distribution of charged particles in jets in dijet events and ...

    Indian Academy of Sciences (India)

    Inclusive momentum distributions of charged particles are measured in dijet events. Events were produced at the AMY detector with a centre of mass energy of 60 G e V . Our results were compared, on the one hand to those obtained from other e + e − , e p as well as CDF data, and on the other hand to the perturbative QCD ...

  2. Distribution functions for systems of charged particles in spatially inhomogeneous medium

    Energy Technology Data Exchange (ETDEWEB)

    Petrina, D.Ya. (AN Ukrainskoj SSR, Kiev. Inst. Teoreticheskoj Fiziki)

    1984-04-01

    Equations for distribution functions of systems of charged particles in a medium with heterogeneities are investigated. In the self-consistent field approximation they are reduced to nonlinear Poisson-Boltzmann equations with boundary conditions on surfaces of the heterogeneities. An analogue of the subtraction procedure in quantun field theory is used in the proof of the existence of the solution.

  3. The double-torus ionization chamber ``diogenes'' for multiparameter experiments on light charged particle accompanied fission

    Science.gov (United States)

    Heeg, P.; Hoffmann, K. F.; Mutterer, M.; Theobald, J. P.; Weingärtner, K.; Pannicke, J.; Gönnenwein, F.; Barreau, G.; Leroux, B.

    1983-11-01

    A new detector system for the comprehensive investigation of light charged particle accompanied fission is described. First experimental results obtained on neutron induced fission of 235U at the high-flux reactor of the ILL are used to discuss the properties of the system.

  4. The connection between solar wind charged particles and tornadoes: Case analysis

    Directory of Open Access Journals (Sweden)

    Radovanović Milan M.

    2013-01-01

    Full Text Available The temperature of charged particles coming from the Sun ranges from several hundred thousands to several millions °C, in extreme cases. Theoretical possibilities of the hydrodynamic air mass seizing by charged particles, i. e. solar wind, are discussed in this paper. On one hand, they are characterized by extremely high temperatures, on the other, by the compression of cold air at an approximate altitude of 90 km towards the top of the cloud of the cyclone, they influence the phenomenon of extremely low temperatures. By using the Mann-Whitney U test we have tried to determine the potential link between certain indicators of solar activity and resulting disturbances in the atmosphere. Analyzed data refer to global daily values for the 2004-2010 period. Our results confirm the possibility of coupling between the charged particles and the vortex air mass movements, based on which a more detailed study of the appearance of a tornado near Sombor on May 12th, 2010, was carried out. It has also been proven that there are grounds for a causality between the sudden arrival of the solar wind charged particles, i. e. protons, and the appearance of a tornado. Based on the presented approach, elements for an entirely novel prediction model are given. [Projekat Ministarstva nauke Republike Srbije, br. III47007 i br. 176008

  5. Neutron-Induced Charged Particle Measurements at LANSCE in the Interest of P-Process Nucleosynthesis

    Science.gov (United States)

    Lee, Hye Young; Mosby, Shea; Kawano, Toshihiko; Haight, Robert; Manning, Brett

    A capability of measuring neutron-induced charged particle reactions has been developed at Los Alamos Neutron Science Center for the interest of nuclear applications and nuclear astrophysics. In this paper, we will present the status of this devel opment and plans for measuring reactions relevant to the p-process nucleosynthesis.

  6. Scaled momentum distributions of charged particles in dijet photoproduction at HERA

    NARCIS (Netherlands)

    Chekanov, S.; Kooijman, P.|info:eu-repo/dai/nl/068449542

    2009-01-01

    The scaled momentum distributions of charged particles in jets have been measured for dijet photoproduction with the ZEUS detector at HERA using an integrated luminosity of 359 pb−1. The distributions are compared to predictions based on perturbative QCD carried out in the framework of the modified

  7. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Raghunath Sahoo

    2015-01-01

    Full Text Available We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement.

  8. Measurements of the Charged-Particle distributions with the ATLAS detector

    CERN Document Server

    Cairo, Valentina; The ATLAS collaboration

    2016-01-01

    Inclusive charged-particle measurements probe the low-energy region of non-perturbative quantum chromodynamics. The ATLAS collaboration has recently measured the charged-particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at centre-of-mass energies of 8 TeV and 13 TeV. The measurements at 8 TeV cover a wide spectrum using charged-particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged-particle multiplicities, some of which are studied for the first time by ATLAS. The measurements at 13 TeV also present detailed studies with a minimum transverse momentum of both 100 MeV and 500 MeV. The measurements are compared with predictions of various tuned Monte Carlo generators and are found to provide strong constraints on these. None of the Monte Carlo generators with their respective tunes are able to reproduce all the features of the data.

  9. Charged particle production in the Pb + Pb system at 158 GeV/c per nucleon

    CERN Document Server

    Deines-Jones, P.; Dabrowska, A.; Holynski, R.; Kudzia, D.; Nilsen, B.S.; Olszewski, A.; Szarska, M.; Trzupek, A.; Waddington, C.Jake; Wefel, J.P.; Wilczynska, B.; Wilczynski, H.; Wolter, W.; Wosiek, B.; Wozniak, K.

    2000-01-01

    Charged particle multiplicities from high multiplicity central interactions of 158 GeV/nucleon Pb ions with Pb target nuclei have been measured in the central and far forward projectile spectator regions using emulsion chambers. Multiplicities are significantly lower than predicted by Monte Carlo simulations. We examine the shape of the pseudorapidity distribution and its dependence on centrality in detail.

  10. Numerical simulations of the charged-particle flow dynamics for sources with a curved emission surface

    Science.gov (United States)

    Altsybeyev, V. V.

    2016-12-01

    The implementation of numerical methods for studying the dynamics of particle flows produced by pulsed sources is discussed. A particle tracking method with so-called gun iteration for simulations of beam dynamics is used. For the space charge limited emission problem, we suggest a Gauss law emission model for precise current-density calculation in the case of a curvilinear emitter. The results of numerical simulations of particle-flow formation for cylindrical bipolar diode and for diode with elliptical emitter are presented.

  11. Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes

    Science.gov (United States)

    Stetsko, M. M.

    2016-02-01

    The thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain the temperature of the black holes we use the tunnelling method. In the case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that the radial parts of the action for scalar particles and fermions in the quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to identical expressions for the temperature in the two cases.

  12. On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2016-03-01

    Full Text Available Transportation electrification has undergone major changes since the last decade. Success of smart grid with renewable energy integration solely depends upon the large-scale penetration of plug-in hybrid electric vehicles (PHEVs for a sustainable and carbon-free transportation sector. One of the key performance indicators in hybrid electric vehicle is the State-of-Charge (SoC which needs to be optimized for the betterment of charging infrastructure using stochastic computational methods. In this paper, a newly emerged Accelerated particle swarm optimization (APSO technique was applied and compared with standard particle swarm optimization (PSO considering charging time and battery capacity. Simulation results obtained for maximizing the highly nonlinear objective function indicate that APSO achieves some improvements in terms of best fitness and computation time.

  13. The Partial Truncated Icosahedron Phoswich Detector Array: A Light Charged Particle Array for Pionic Fusion Measurements

    Science.gov (United States)

    Zarrella, A.; Galvan, L.; Heilborn, L.; Jedele, A.; McIntosh, A. B.; Manso, A. Rodriguez; Youngs, M.; Yennello, S. J.

    The Partial Truncated Icosahedron (ParTI) phoswich detector array has been designed to detect charged pions and other light charged particles in pionic fusion reactions. The array has been constructed and characterized in a series of beam experiments. It is composed of 15 plastic/thalium-doped cesium iodide (CsI(Tl)) phoswich detector units arranged on the faces of a truncated icosahedron geometry which covers approximately 20% of the solid angle. The phoswich detectors have been shown to be capable of isotopic identification of Z = 1 and Z = 2 particles and elemental identification of at least up to Z = 3 using fast vs. slow pulse shape discrimination (PSD). Some advantages of employing digital electronics are discussed including identification of charged pions independent of PSD using their characteristic waveform response and selective event triggering using a muon decay trigger. A calibration method for the array is also described.

  14. Particle tracking in kaon electroproduction with cathode-charge sampling in multi-wire proportional chambers

    CERN Document Server

    Achenbach, P; Bernauer, J C; Böhm, R; Bosnar, D; Bösz, M; Debenjak, L; Distler, M O; Esser, A; Friščić, I; de la Paz, M Gómez Rodríguez; Makek, M; Merkel, H; Müller, U; Nungesser, L; Pochodzalla, J; Potokar, M; Majos, S Sánchez; Schlimme, B S; Širca, S; Weinriefer, M; 10.1016/j.nima.2011.03.039

    2011-01-01

    Wire chambers are routinely operated as tracking detectors in magnetic spectrometers at high-intensity continuous electron beams. Especially in experiments studying reactions with small cross-sections the reaction yield is limited by the background rate in the chambers. One way to determine the track of a charged particle through a multi-wire proportional chamber (MWPC) is the measurement of the charge distribution induced on its cathodes. In practical applications of this read-out method, the algorithm to relate the measured charge distribution to the avalanche position is an important factor for the achievable position resolution and for the track reconstruction efficiency. An algorithm was developed for operating two large-sized MWPCs in a strong background environment with multiple-particle tracks. Resulting efficiencies were determined as a function of the electron beam current and on the signal amplitudes. Because of the different energy-losses of pions, kaons, and protons in the momentum range of the s...

  15. Spatial configurations of charged rod-like particles in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Lisina, I.; Lisin, E.; Vaulina, O. [Joint Institute for High Temperatures RAS, Izhorskayast.13, bld. 2, 125412 Moscow (Russian Federation)

    2016-03-15

    Formation of different spatial configurations for system of charged rod-like particles is considered theoretically and numerically, including formation of layered structures in the external electric field. Analytical model for a determination of the angle between the axis of a rod and the symmetry axis of electric trap is presented. New algorithm is proposed here for a dynamical simulation of many interacting non-spherical particles. Conditions for a correct replacement of the interaction between uniformly charged rods by the interaction of “bipoles” (i.e., by two similar point charges) are obtained. Study was performed in a wide range of parameters that are similar to conditions of laboratory experiments in a dusty plasma.

  16. Simulation for Sludge Flocculation I: Brownian Dynamic Simulation for Perikinetic Flocculation of Charged Particle

    Directory of Open Access Journals (Sweden)

    Linshuang Liu

    2012-01-01

    Full Text Available To investigate sludge drying process, a numerical simulation based on Brownian dynamic for the floc with uncharged and charged particles was conducted. The Langevin equation is used as dynamical equation for tracking each particle in a floc. An initial condition and periodic boundary condition which well conformed to reality is used for calculating the floc growth process. Each cell consists of 1000 primary particles with diameter 0.1 ∼ 4 μm. Floc growth is related to the thermal force and the electrostatic force. The electrostatic force on a particle in the simulation cell is considered as the sum of electrostatic forces from other particles in the original cell and its replicate cells. It is assumed that flocs are charged with precharged primary particles in dispersion system by ionization. By the analysis of the simulation figures, on one hand, the effects of initial particle size and sludge density on floc smashing time, floc radius of gyration, and fractal dimension were discussed. On the other hand, the effects of ionization on floc smashing time and floc structure were presented. This study has important practical value in the high-turbidity water treatment, especially for sludge drying.

  17. Secondary charging effects due to icy dust particle impacts on rocket payloads

    Science.gov (United States)

    Kassa, M.; Rapp, M.; Hartquist, T. W.; Havnes, O.

    2012-03-01

    We report measurements of dust currents obtained with a small probe and a larger probe during the flight of the ECOMA-4 rocket through the summer polar mesosphere. The payload included two small dust probes behind a larger dust probe located centrally at the front. For certain phases of the payload rotation, the current registered by one of the small dust probes was up to 2 times the current measured with the larger probe, even though the effective collection area of the larger probe was 4 times that of the small one. We analyze the phase dependence of the currents and their difference with a model based on the assumption that the small probe was hit by charged dust fragments produced in collisions of mesospheric dust with the payload body. Our results confirm earlier findings that secondary charge production in the collision of a noctilucent cloud/Polar Summer Mesospheric Echo (NLC/PMSE) dust particle with the payload body must be several orders of magnitude larger than might be expected from laboratory studies of collisions of pure ice particles with a variety of clean surfaces. An important consequence is that for some payload configurations, one should not assume that the current measured with a detector used to study mesospheric dust is simply proportional to the number density of ambient dust particles. The higher secondary charge production may be due to the NLC/PMSE particles containing multiple meteoric smoke particles.

  18. Secondary charging effects due to icy dust particle impacts on rocket payloads

    Directory of Open Access Journals (Sweden)

    M. Kassa

    2012-03-01

    Full Text Available We report measurements of dust currents obtained with a small probe and a larger probe during the flight of the ECOMA-4 rocket through the summer polar mesosphere. The payload included two small dust probes behind a larger dust probe located centrally at the front. For certain phases of the payload rotation, the current registered by one of the small dust probes was up to 2 times the current measured with the larger probe, even though the effective collection area of the larger probe was 4 times that of the small one. We analyze the phase dependence of the currents and their difference with a model based on the assumption that the small probe was hit by charged dust fragments produced in collisions of mesospheric dust with the payload body. Our results confirm earlier findings that secondary charge production in the collision of a noctilucent cloud/Polar Summer Mesospheric Echo (NLC/PMSE dust particle with the payload body must be several orders of magnitude larger than might be expected from laboratory studies of collisions of pure ice particles with a variety of clean surfaces. An important consequence is that for some payload configurations, one should not assume that the current measured with a detector used to study mesospheric dust is simply proportional to the number density of ambient dust particles. The higher secondary charge production may be due to the NLC/PMSE particles containing multiple meteoric smoke particles.

  19. Modeling of intense charged particle bunch dynamics in external magnetic fields

    Science.gov (United States)

    Barminova, H. Y.; Saratovskyh, M. S.

    2015-09-01

    Program module CAMFT is developed to simulate the intense charged particle bunch dynamics in external magnetic fields. The program is based on the accurate solution of the motion equation for each particle of the intense bunch. The program is written on C++ language and uses standart OpenMP (version 2.0) for parallelization, so one can simulate the behavior of the bunch with intensity about 109-1010 particles. Visual C++ and library Qt 4.8.3 of qtcreator are used for the result visualization. Dynamics of the bunch with arbitrary phase distributions in magnetic fields of arbitrary geometry may be studied by means of the program. The actual CAMFT version is checked while simulating the accelerating structure with racetrack geometry. Modified CAMFT version is checked for ITEP Heavy-Ion Prototype charge-state separator.

  20. Description of charged particle pseudorapidity distributions in Pb+Pb collisions with Tsallis thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y. [Hangzhou Dianzi University, School of Information Engineering, Hangzhou (China); Zheng, H. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Zhu, L.L. [Sichuan University, College of Physical Science and Technology, Chengdu (China); Bonasera, A. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Texas A and M University, Cyclotron Institute, College Station, TX (United States)

    2017-10-15

    The centrality dependence of pseudorapidity distributions for charged particles produced in Au+Au collisions at √(s{sub NN}) = 130 GeV and 200 GeV at RHIC, and in Pb+Pb collisions at √(s{sub NN}) = 2.76 TeV at LHC are investigated in the fireball model, assuming that the rapidity axis is populated with fireballs following one distribution function. We assume that the particles in the fireball fulfill the Tsallis distribution. The theoretical results are compared with the experimental measurements and a good agreement is found. Using these results, the pseudorapidity distributions of charged particles produced in Pb+Pb central collisions at √(s{sub NN}) = 5.02 TeV and 10 TeV are predicted. (orig.)

  1. Pseudo-steady rates of crystal nucleation in suspensions of charged colloidal particles

    CERN Document Server

    Dixit, N M

    2003-01-01

    We develop an analytical model to describe crystal nucleation in suspensions of charged colloidal particles. The particles are assumed to interact with a repulsive hard-core Yukawa potential. The thermodynamic properties of the suspensions are determined by mapping onto an effective hard-sphere system using perturbation theory. Hydrodynamic effects are calculated by approximating particle interactions with the excluded shell potential. The rates of particle aggregation and dissociation from cluster surfaces in supersaturated suspensions are determined by solving the diffusion and Smoluchowski equations, respectively, which allow the calculation of pseudo-steady rates of crystal nucleation. By decoupling thermodynamic and hydrodynamic effects, we find intriguing non-monotonic dependencies of the nucleation rate on the strength and the range of particle repulsions. In particular, we find that the rate at any effective hard-sphere volume fraction can be lower than that of the hard-sphere system at that volume fr...

  2. Three-dimensional effects in resonant charge transfer between atomic particles and nanosystems

    Science.gov (United States)

    Gainullin, I. K.; Sonkin, M. A.

    2015-08-01

    Resonant charge transfer (RCT) between negative ions and a metallic nanosystem was investigated by means of a high-performance ab initio three-dimensional (3D) numerical solver. During RCT, an electron was shown to occupy succesively nanosystem eigenstates along the z , ρ , and φ coordinates. Electron tunneling into a nanosystem is a reversible process, because after some time the electron propagates back to the ion. RCT efficiency in a nanosystem was found to exhibit quantum-size effects as well as lateral ion position dependence. This means that during ion-surface interaction, the nanosystem's size and the ion trajectory strongly influence the final charge state of the ion. In the case of real 3D systems (without cylindrical symmetry), the electron density currents form quantum vortices; this result is rather nontrivial for static systems. In addition, the limits of the adiabatic approximation (rate equation) for the RCT calculation with nanosystems are defined.

  3. Depletion and double layer forces acting between charged particles in solutions of like-charged polyelectrolytes and monovalent salts.

    Science.gov (United States)

    Moazzami-Gudarzi, Mohsen; Maroni, Plinio; Borkovec, Michal; Trefalt, Gregor

    2017-05-14

    Interaction forces between silica particles were measured in aqueous solutions of the sodium salt of poly(styrene sulphonate) (PSS) and NaCl using the colloidal probe technique based on an atomic force microscope (AFM). The observed forces can be rationalized through a superposition of damped oscillatory forces and double layer forces quantitatively. The double layer forces are modeled using Poisson-Boltzmann (PB) theory for a mixture of a monovalent symmetric electrolyte and a highly asymmetric electrolyte, whereby the multivalent coions represent the polyelectrolyte chains. The effective charge of the polyelectrolyte is found to be smaller than the bare number of charged groups residing on one polyelectrolyte molecule. This effect can be explained by counterion condensation. The interplay between depletion and double layer forces can be further used to predict the phase of the depletion force oscillations. However, this picture holds only at not too elevated concentrations of the polyelectrolyte and salt. At higher salt concentrations, attractive van der Waals forces become important, while at higher polyelectrolyte concentrations, the macromolecules adsorb onto the like-charged silica interface.

  4. Properties of an ultrarelativistic charged particle radiation in a constant homogeneous crossed electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, O.V., E-mail: bov@tpu.ru [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation); Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kazinski, P.O., E-mail: kpo@phys.tsu.ru [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation); Department of Higher Mathematics and Mathematical Physics, Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Lazarenko, G.Yu., E-mail: lazarenko.georgijj@icloud.com [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation)

    2017-05-15

    The properties of radiation created by a classical ultrarelativistic scalar charged particle in a constant homogeneous crossed electromagnetic field are described both analytically and numerically with radiation reaction taken into account in the form of the Landau–Lifshitz equation. The total radiation naturally falls into two parts: the radiation formed at the entrance point of a particle into the crossed field (the synchrotron entrance radiation), and the radiation coming from the late-time asymptotics of a particle motion (the de-excited radiation). The synchrotron entrance radiation resembles, although does not coincide with, the ultrarelativistic limit of the synchrotron radiation: its distribution over energies and angles possesses almost the same properties. The de-excited radiation is soft, not concentrated in the plane of motion of a charged particle, and almost completely circularly polarized. The photon energy delivering the maximum to its spectral angular distribution decreases with increasing the initial energy of a charged particle, while the maximum value of this distribution remains the same at the fixed photon observation angle and entrance angle of a charged particle. The ultraviolet and infrared asymptotics of the total radiation are also described. - Highlights: • Properties of an electron radiation in a crossed electromagnetic field are studied. • Spectral angular distribution of the synchrotron entrance radiation is described. • Spectral angular distribution of the de-excited radiation is described. • De-excited radiation is almost completely circularly polarized. • Photon energy at the maximum of the de-excited radiation decreases with increasing the initial energy of an electron.

  5. Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels.

    Science.gov (United States)

    Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M

    2014-07-16

    Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.

  6. Pico-charged intermediate particles rescue dark matter interpretation of 511 keV signal

    Science.gov (United States)

    Farzan, Y.; Rajaee, M.

    2017-12-01

    Various alleged indirect dark matter search signals, such as the 511 keV line from galaxy center or the PAMELA/AMS02 signal, are often challenged by the absence of corresponding signal from dwarf galaxies and/or by the absence of an impact on CMB through delayed recombination. We propose a novel scenario that can avoid these bounds based on the decay of dark matter, X, to a pair of intermediate particles C and \\overline{C} with a lifetime much greater than the age of universe. The annihilation of these intermediate particles eventually leads to a dark matter signal. The bounds from CMB can be easily avoided by the fact that at the time of recombination, not enough C particles had been accumulated. In order to keep C particles from leaving the galaxy, we assume the particles have a small electric charge so in the galactic disk, the magnetic field keeps the C particles in the vicinity of their production. However, they can escape the dwarf galaxies and the dark matter halo where the magnetic field is weak, leading to null signal from these regions. The small charge can have interesting consequences including a signal in direct dark matter search experiments.

  7. Force fields of charged particles in micro-nanofluidic preconcentration systems

    Science.gov (United States)

    Gong, Lingyan; Ouyang, Wei; Li, Zirui; Han, Jongyoon

    2017-12-01

    Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems.

  8. Modulation of Asymmetric Flux in Heterotypic Gap Junctions by Pore Shape, Particle Size and Charge.

    Science.gov (United States)

    Mondal, Abhijit; Sachse, Frank B; Moreno, Alonso P

    2017-01-01

    Gap junction channels play a vital role in intercellular communication by connecting cytoplasm of adjoined cells through arrays of channel-pores formed at the common membrane junction. Their structure and properties vary depending on the connexin isoform(s) involved in forming the full gap junction channel. Lack of information on the molecular structure of gap junction channels has limited the development of computational tools for single channel studies. Currently, we rely on cumbersome experimental techniques that have limited capabilities. We have earlier reported a simplified Brownian dynamics gap junction pore model and demonstrated that variations in pore shape at the single channel level can explain some of the differences in permeability of heterotypic channels observed in in vitro experiments. Based on this computational model, we designed simulations to study the influence of pore shape, particle size and charge in homotypic and heterotypic pores. We simulated dye diffusion under whole cell voltage clamping. Our simulation studies with pore shape variations revealed a pore shape with maximal flux asymmetry in a heterotypic pore. We identified pore shape profiles that match the in silico flux asymmetry results to the in vitro results of homotypic and heterotypic gap junction formed out of Cx43 and Cx45. Our simulation results indicate that the channel's pore-shape established flux asymmetry and that flux asymmetry is primarily regulated by the sizes of the conical and/or cylindrical mouths at each end of the pore. Within the set range of particle size and charge, flux asymmetry was found to be independent of particle size and directly proportional to charge magnitude. While particle charge was vital to creating flux asymmetry, charge magnitude only scaled the observed flux asymmetry. Our studies identified the key factors that help predict asymmetry. Finally, we suggest the role of such flux asymmetry in creating concentration imbalances of messenger

  9. Computer Modeling Reveals that Modifications of the Histone Tail Charges Define Salt-Dependent Interaction of the Nucleosome Core Particles

    OpenAIRE

    Yang, Ye; Lyubartsev, Alexander P.; Korolev, Nikolay; Nordenskiöld, Lars

    2009-01-01

    Coarse-grained Langevin molecular dynamics computer simulations were conducted for systems that mimic solutions of nucleosome core particles (NCPs). The NCP was modeled as a negatively charged spherical particle representing the complex of DNA and the globular part of the histones combined with attached strings of connected charged beads modeling the histone tails. The size, charge, and distribution of the tails relative to the core were built to match real NCPs. Three models of NCPs were con...

  10. Search for charged-particle d-d fusion products in an encapsulated Pd thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, E.; Neuhauser, B. (San Francisco State University, San Francisco, California 94132 (United States)); Ziemba, F. (Quantrad Corporation, Santa Clara, California 95051 (United States)); Jackson, J. (IICO Corporation, Santa Clara, California 95051 (United States)); Mapoles, E. (Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)); McVittie, J. (Center for Integrated Systems, Stanford University, Stanford, Cal. (United States)); Powell, R. (Varian Associates, Palo Alto, California 94303 (United States))

    1991-05-10

    Motivated by reports by Fleischmann and Pons and also Jones {ital et} {ital al}. of nuclear fusion occurring at room temperature, we attempted to look for charged particle reaction products from d-d fusion in a deuterated palladium thin film. A silicon nitride encapsulated palladium thin film (340 nanometers thick and one square centimeter in area) was fabricated on top of a semiconductor particle detector and implanted with an 80 keV D{sub 2}{sup +} beam. The purpose of the nitride cap was to prevent deuterium from diffusing out or from being sputtered away during implantation. The detector temperature was maintained below 200 K in order to reduce pressure on the cap. During the first run of this experiment, after the ion implanter had been turned off, apparent charged particle pulses as well as bursts of activity in two nearby Geiger counters were observed with the film loaded to a nominal 150% deuterium-to-palladium ratio and a 1.3% does of {sup 6}Li. No spectrum was obtained because of equipment malfunction. In a second run no apparent charged particles pulses were observed, but a record of the neutron flux due to induced fusion during implantation suggested that the nitride cap had failed. More experimental runs are expected in the near future.

  11. Measurement of the charged-particle multiplicity in proton-proton collisions with the ALICE detector

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Oetringhaus, Jan Fiete

    2009-04-17

    This thesis has introduced the theoretical framework to describe multiple-particle production. The functioning of two event generators, Pythia and Phojet, as well as theoretical descriptions of the charged-particle multiplicity have been discussed. A summary of pseudorapidity-density (dN{sub ch}/d{eta}) and multiplicity-distribution measurements of charged particles has been presented. Existing results have been shown in an energy range of {radical}(s) = 6GeV to 1.8TeV from bubble chamber experiments and detectors at the ISR, Sp anti pS, and Tevatron. The validity of the introduced models was reviewed and the behavior as function of {radical}(s) was discussed. Analysis procedures for two basic measurements with ALICE, the pseudorapidity density and the multiplicity distribution of charged particles, have been developed. The former allows corrections on a bin-by-bin basis, while the latter requires unfolding of the measured distribution. The procedures have been developed for two independent subdetectors of ALICE, the Silicon Pixel Detector (SPD) and the Time-Projection Chamber (TPC). This allows the comparison of the analysis result in the overlapping regions as an independent cross-check of the measured distribution. Their implementation successfully reproduces different assumed spectra. The procedures have been extensively tested on simulated data using two different event generators, Pythia and Phojet. A comprehensive list of systematic uncertainties was evaluated. Some of these uncertainties still require measured data to verify or extract their magnitude. (orig.)

  12. A Generalized Boltzmann Fokker-Planck Method for Coupled Charged Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, Anil K

    2012-01-09

    The goal of this project was to develop and investigate the performance of reduced-physics formulations of high energy charged particle (electrons, protons and heavier ions) transport that are computationally more efficient than not only analog Monte Carlo methods but also the established condensed history Monte Carlo technique. Charged particles interact with matter by Coulomb collisions with target nuclei and electrons, by bremsstrahlung radiation loss and by nuclear reactions such as spallation and fission. Of these, inelastic electronic collisions and elastic nuclear collisions are the dominant cause of energy-loss straggling and angular deflection or range straggling of a primary particle. These collisions are characterized by extremely short mean free paths (sub-microns) and highly peaked, near-singular differential cross sections about forward directions and zero energy loss, with the situation for protons and heavier ions more extreme than for electrons. For this reason, analog or truephysics single-event Monte Carlo simulation, while possible in principle, is computationally prohibitive for routine calculation of charged particle interaction phenomena.

  13. Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B.S.; Ackers, M.; Adams, D.L.; Addy, T.N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M.G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Andrieux, M-L.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Arik, E.; Arik, M.; Armbruster, A.J.; Arms, K.E.; Armstrong, S.R.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Silva, J.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H.S.; Barak, L.; Baranov, S.P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A.E.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H.S.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M.I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J.B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bobrovnikov, V.B.; Bocci, A.; Bock, R.; Boddy, C.R.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boonekamp, M.; Boorman, G.; Booth, C.N.; Booth, P.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozhko, N.I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Bright-Thomas, P.G.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N.J.; Buchholz, P.; Buckingham, R.M.; Buckley, A.G.; Buda, S.I.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E.J.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Buttinger, W.; Byatt, T.; Cabrera Urban, S.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Calvet, S.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerna, C.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, L.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clifft, R.W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J.G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Comune, G.; Conde Muino, P.; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Correard, S.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Silva, P.V.M.; Da Via, C.; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Dam, M.; Dameri, M.; Damiani, D.S.; Danielsson, H.O.; Dankers, R.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Daum, C.; Dauvergne, J.P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawe, E.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Cruz-Burelo, E.; De La Taille, C.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; Dean, S.; Dedes, G.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S.P.; Dennis, C.; Derendarz, D.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietl, H.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M.T.; Dowell, J.D.; Doxiadis, A.D.; Doyle, A.T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J.G.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duerdoth, I.P.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Duren, M.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Efthymiopoulos, I.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fasching, D.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M.J.; Fisher, S.M.; Flammer, J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fohlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gapienko, V.A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gieraltowski, G.F.; Gilbert, L.M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Golovnia, S.N.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonidec, A.; Gonzalez, S.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gorokhov, S.A.; Gorski, B.T.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gouanere, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafstrom, P.; Grah, C.; Grahn, K-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Grebenyuk, O.G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Gris, P.L.Y.; Grishkevich, Y.V.; Grivaz, J.F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Gruwe, M.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V.N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, C.J.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harper, D.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hart, J.C.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B.M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayden, D; Hayward, H.S.; Haywood, S.J.; Hazen, E.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Herrberg, R.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higon-Rodriguez, E.; Hill, D.; Hill, J.C.; Hill, N.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homer, R.J.; Homma, Y.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J-Y.; Hott, T.; Hou, S.; Houlden, M.A.; Hoummada, A.; Howarth, J.; Howell, D.F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jezequel, S.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M.D.; Joffe, D.; Johansen, L.G.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joo, K.K.; Joram, C.; Jorge, P.M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenney, C.J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoo, T.J.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kimura, N.; Kind, O.; King, B.T.; King, M.; King, R.S.B.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiver, A.M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knue, A.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Konig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G.M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S.V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kortner, S.; Kostyukhin, V.V.; Kotamaki, M.J.; Kotov, S.; Kotov, V.M.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasel, O.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Landsman, H.; Lane, J.L.; Lange, C.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lapin, V.V.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lee JR, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Lei, X.; Leite, M.A.L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J-R.; Lesser, J.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Lewandowska, M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linde, F.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S.S.A.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V.P.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maass en, M.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magnoni, L.; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Mann, A.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchesotti, M.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C.P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti-Garcia, S.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, Ph.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A.C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Mass, M.; Massa, I.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J.M.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCarthy, T.G.; McCubbin, N.A.; McFarlane, K.W.; Mcfayden, J.A.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; Mclaughlan, T.; McMahon, S.J.; McMahon, T.R.; McMahon, T.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.; Metcalfe, J.; Mete, A.S.; Meuser, S.; Meyer, C.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Miele, P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikulec, B.; Mikuz, M.; Miller, D.W.; Miller, R.J.; Mills, W.J.; Mills, C.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitra, A.; Mitrevski, J.; Mitrofanov, G.Y.; Mitsou, V.A.; Mitsui, S.; Miyagawa, P.S.; Miyazaki, K.; Mjornmark, J.U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Mock, S.; Moisseev, A.M.; Moles-Valls, R.; Molina-Perez, J.; Moneta, L.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R.W.; Moorhead, G.F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A.K.; Mornacchi, G.; Morone, M-C.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nasteva, I.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Nesterov, S.Y.; Neubauer, M.S.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newman, P.R.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norniella Francisco, O.; Norton, P.R.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B.J.; O'Neale, S.W.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohska, T.K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J.P; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Oye, O.K.; Ozcan, V.E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadelis, A.; Papadopoulou, Th.D.; Paramonov, A.; Park, S.J.; Park, W.; Parker, M.A.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Patel, N.; Pater, J.R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Peters, O.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Phillips, P.W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M.A.; Pleskach, A.V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommes, K.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G.E.; Pospisil, S.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Price, M.J.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rajek, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renaud, A.; Renkel, P.; Rensch, B.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.E.M.; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rose, M.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosendahl, P.L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L.P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rottlander, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N.A.; Rust, D.R.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N.C.; Rzaeva, S.; Saavedra, A.F.; Sadeh, I.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J.B.; Savard, P.; Savinov, V.; Savva, P.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmidt, E.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schoning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.C.; Schulz, H.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Short, D.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjolin, J.; Sjursen, T.B.; Skinnari, L.A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T.J.; Sloper, J.; Smakhtin, V.; Smirnov, S.Yu.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockmanns, T.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D.A.; Su, D.; Subramania, S.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, Y.; Sviridov, Yu.M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.; Taylor, G.N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K.K.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, A.S.; Thomson, E.; Thomson, M.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J.M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Ventura, S.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vest, A.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vovenko, A.S.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, J.; Wang, J.; Wang, J.C.; Wang, R.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, J.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Will, J.Z.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wooden, G.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S.L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V.G.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zalite, Yo.K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, A.V.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2011-01-01

    Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is...

  14. Charged particle production in Pb--Pb collisions at the LHC with the ALICE detector

    CERN Document Server

    Floris, M.

    2013-01-01

    The ALICE collaboration measured charged particle production in $\\sqrt{s_{NN}}=2.76$ TeV Pb--Pb collisions at the LHC. We report on results on charged particle multiplicity and transverse momentum spectra. All the results are presented as a function of the centrality of the collision, estimated with a Glauber Monte Carlo fit to multiplicity distributions reconstructed in various detectors. The applicability of the Glauber model at LHC energies, the precision of the centrality determination and the related systematic uncertainties are discussed in detail. Particles are tracked in the pseudorapidity window $|\\eta| \\lesssim 0.9$\\ with the silicon Inner Tracking System (ITS) and the Time Projection Chamber (TPC), over the range $0.15 < \\pt \\lesssim 50$ GeV/$c$. The low-$p_t$ cut-off is further reduced in the multiplicity measurement using "tracklets", reconstructed in the 2 innermost layers of the ITS. The charged particle multiplicity is measured in $|\\eta| < 0.5$ to be $\\mathrm{d}N_{ch}/\\mathrm{d}\\eta = 1...

  15. Study of neutral-charged particle correlations in high energy collisions

    CERN Document Server

    Dao, F T

    1973-01-01

    Recent experiments at Serpukhov, NAL, and CERN indicate a strong correlation between neutral and charged pions produced in high energy collisions, in contrast to the trend shown by data at lower energies. This study of the energy and charge dependence of these correlations indicates that they do not depend upon the initial state particles and that they are in reasonable agreement with the critical fluid gas model. These high energy correlation data are also studied in terms of a semi-inclusive Koba- Nielsen-Olesen scaling relation. (9 refs).

  16. An electro- magneto-static field for confinement of charged particle beams and plasmas

    Science.gov (United States)

    Pacheco, Jose L.

    A system is presented that is capable of confining an ion beam or plasma within a region that is essentially free of applied fields. An Artificially Structured Boundary (ASB) produces a spatially periodic set of magnetic field cusps that provides charged particle confinement. Electrostatic plugging of the magnetic field cusps enhances confinement. An ASB that has a small spatial period, compared to the dimensions of a confined plasma, generates electro- magneto-static fields with a short range. An ASB-lined volume thus constructed creates an effectively field free region near its center. It is assumed that a non-neutral plasma confined within such a volume relaxes to a Maxwell- Boltzmann distribution. Space charge based confinement of a second species of charged particles is envisioned, where the second species is confined by the space charge of the first non-neutral plasma species. An electron plasma confined within an ASB-lined volume can potentially provide confinement of a positive ion beam or positive ion plasma. Experimental as well as computational results are presented in which a plasma or charged particle beam interact with the electro- magneto-static fields generated by an ASB. A theoretical model is analyzed and solved via self-consistent computational methods to determine the behavior and equilibrium conditions of a relaxed plasma. The equilibrium conditions of a relaxed two species plasma are also computed. In such a scenario, space charge based electrostatic confinement is predicted to occur where a second plasma species is confined by the space charge of the first plasma species. An experimental apparatus with cylindrical symmetry that has its interior surface lined with an ASB is presented. This system was developed by using a simulation of the electro- magneto-static fields present within the trap to guide mechanical design. The construction of the full experimental apparatus is discussed. Experimental results that show the characteristics of

  17. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements.

    Science.gov (United States)

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O(3+) ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  18. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang

    2015-01-01

    A search is performed for heavy long-lived charged particles using 3.0 fb$^{-1}$ of pp collisions collected at $\\sqrt{s}$= 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkovdetectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, $1.8 < \\eta < 4.9$. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95\\% CL) for masses between 124 and 309 GeV/c$^2$.

  19. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.L. [College of Science, China Agricultural University, Beijing 100083 (China); Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); Chen, Z.Y., E-mail: chenzy@mail.buct.edu.cn [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Laser Propulsion & Application, Beijing 101416 (China); Liu, Y.H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Yu, M.Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2016-02-22

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  20. Nonlinear interaction of charged particles with strong laser pulses in a gaseous media

    Directory of Open Access Journals (Sweden)

    H. K. Avetissian

    2007-07-01

    Full Text Available The charged particles nonlinear dynamics in the field of a strong electromagnetic wave pulse of finite duration and certain form of the envelope, in the refractive medium with a constant and variable refraction indexes, is investigated by means of numerical integration of the classical relativistic equations of motion. The particle energy dependence on the pulse intensity manifests the nonlinear threshold phenomenon of a particle reflection and capture by actual laser pulses in dielectric-gaseous media that takes place for a plane electromagnetic wave in the induced Cherenkov process. Laser acceleration of the particles in the result of the reflection from the pulse envelope and in the capture regime with the variable refraction index along the pulse propagation direction is investigated.

  1. New density estimation methods for charged particle beams with applications to microbunching instability

    Directory of Open Access Journals (Sweden)

    Balša Terzić

    2011-07-01

    Full Text Available In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. [G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock, Phys. Rev. ST Accel. Beams 12, 080704 (2009; PRABFM1098-440210.1103/PhysRevSTAB.12.080704G. Bassi and B. Terzić, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009, TH5PFP043], designed to simulate coherent synchrotron radiation (CSR in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i truncated fast cosine transform; and (ii thresholded wavelet transform (TWT. We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code [G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock, Phys. Rev. ST Accel. Beams 12, 080704 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.080704], and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.

  2. Search for Charged Massive Long-Lived Particles Using the D0 Detector

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yunhe [Brown Univ., Providence, RI (United States)

    2009-05-01

    A search for charged massive stable particles has been performed with the D0 detector using 1.1 fb-1 of data. The speed of the particle has been calculated based on the time-of-flight and position information in the muon system. The present research is limited to direct pair-production of the charged massive long-lived particles. We do not consider CMSPs that result from the cascade decays of heavier particles. In this analysis, the exact values of the model parameters of the entire supersymmetric particle mass spectrum, relevant for cascade decays, are not important. We found no evidence of the signal. 95% CL cross-section upper limits have been set on the pair-productions of the stable scaler tau lepton, the gaugino-like charginos, and the higgsino-like charginos. The upper cross section limits vary from 0.31 pb to 0.04 pb, for stau masses in the range between 60 GeV and 300 GeV. We use the nominal value of the theoretical cross section to set limits on the mass of the pair produced charginos. We exclude the pair-produced stable gaugino-like charginos with mass below 206 GeV, and higgsino-like charginos below 171 GeV, respectively. Although the present sensitivity is insufficient to test the model of the pair produced stable staus, we do set cross section limits which can be applied to the pair production of any charged massive stable particle candidates with similar kinematics. These are the most restrictive limits to the present on the cross sections for CMSPs and the first published from the Tevatron Collider Run II. The manuscript has been published by Physical Review Letters in April 2009 and is available at arXiv as.

  3. Transport of colloidal silica in unsaturated sand: Effect of charging properties of sand and silica particles.

    Science.gov (United States)

    Fujita, Yosuke; Kobayashi, Motoyoshi

    2016-07-01

    We have studied the transport of colloidal silica in various degrees of a water-saturated Toyoura sand column, because silica particles are widely used as catalyst carriers and abrasive agents, and their toxicity is reported recently. Since water-silica, water-sand, and air-water interfaces have pH-dependent negative charges, the magnitude of surface charge was controlled by changing the solution pH. The results show that, at high pH conditions (pH 7.4), the deposition of colloidal silica to the sand surface is interrupted and the silica concentration at the column outlet immediately reaches the input concentration in saturated conditions. In addition, the relative concentration of silica at the column outlet only slightly decreases to 0.9 with decreasing degrees of water saturation to 38%, because silica particles are trapped in straining regions in the soil pore and air-water interface. On the other hand, at pH 5 conditions (low pH), where sand and colloid have less charge, reduced repulsive forces result in colloidal silica attaching onto the sand in saturated conditions. The deposition amount of silica particles remarkably increases with decreasing degrees of water saturation to 37%, which is explained by more particles being retained in the sand column associated with the air-water interface. In conclusion, at higher pH, the mobility of silica particles is high, and the air-water interface is inactive for the deposition of silica. On the other hand, at low pH, the deposition amount increases with decreasing water saturation, and the particle transport is inhibited. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A study of CR-39 plastic charged-particle detector replacement by consumer imaging sensors

    Energy Technology Data Exchange (ETDEWEB)

    Plaud-Ramos, K. O.; Freeman, M. S.; Wei, W.; Guardincerri, E.; Bacon, J. D.; Cowan, J.; Durham, J. M.; Huang, D.; Gao, J.; Hoffbauer, M. A.; Morley, D. J.; Morris, C. L.; Poulson, D. C.; Wang, Zhehui, E-mail: zwang@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    Consumer imaging sensors (CIS) are examined for real-time charged-particle detection and CR-39 plastic detector replacement. Removing cover glass from CIS is hard if not impossible, in particular for the latest inexpensive webcam models. We show that $10-class CIS are sensitive to MeV and higher energy protons and α-particles by using a {sup 90}Sr β-source with its cover glass in place. Indirect, real-time, high-resolution detection is also feasible when combining CIS with a ZnS:Ag phosphor screen and optics. Noise reduction in CIS is nevertheless important for the indirect approach.

  5. Charged particle identification with the liquid Xenon calorimeter of the CMD-3 detector

    Science.gov (United States)

    Ivanov, V. L.; Fedotovich, G. V.; Anisenkov, A. V.; Grebenuk, A. A.; Mikhailov, K. Yu.; Kozyrev, A. A.; Shebalin, V. E.; Ruban, A. A.; Bashtovoy, N. S.

    2017-09-01

    This paper describes a procedure of particle identification with the liquid Xenon calorimeter of the CMD-3 detector currently being developed. The procedure uses the boosted decision tree classification method with specific energy losses of charged particles in the liquid Xenon calorimeter as input variables. The efficiency of the procedure is illustrated by an example of the measurement of the cross section of the process e+e-→K+K- in the center-of-mass energy range from 1.8 to 2.0 GeV.

  6. Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    CERN Document Server

    Baszczyk, M.K.

    2017-01-16

    The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identification. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.

  7. Review of linear optics measurement and correction for charged particle accelerators

    Science.gov (United States)

    Tomás, Rogelio; Aiba, Masamitsu; Franchi, Andrea; Iriso, Ubaldo

    2017-05-01

    Measurement and correction of charged particle beam optics have been a major concern since the advent of strong focusing synchrotron accelerators. Traditionally, particle colliders have led the development of optics control based on turn-by-turn beam centroid measurements, while lepton storage rings have focused on closed-orbit-response matrix techniques. Recently, considerable efforts are being invested in comparing these techniques at different synchrotron radiation sources and colliders. An emerging class of less invasive techniques based on the optimization of performance-related observables is demonstrating a great potential. In this paper, a review of existing techniques is presented highlighting comparisons, relative merits and limitations.

  8. Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics.

    Science.gov (United States)

    Naranjo, B; Valloni, A; Putterman, S; Rosenzweig, J B

    2012-10-19

    Regarding the laser-driven acceleration of charged particles in photonic systems, a central unmet challenge is the achievement of simultaneous transverse and longitudinal stability at nonultrarelativistic energies. At such energies, Earnshaw's theorem [S. Earnshaw, Trans. Cambridge Philos. Soc. 7, 97 (1842)] indicates that a synchronous accelerating wave gives a defocusing effect. We present a scheme in which particles are accelerated by interaction with a resonant spatial harmonic and are focused by strong ponderomotive interaction with nonresonant spatial harmonics. We show that this scheme exhibits net transverse focusing and longitudinal stability, and we discuss its use in a compact laser accelerator.

  9. Measurement of charged particle spectra in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Alexa, C.; Dobre, M.; Rotaru, M.; Stoicea, G. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Bartel, W.; Belov, P.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Habib, S.; Haidt, D.; Kleinwort, C.; Kraemer, M.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Radescu, V.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Boudry, V.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Pandurovic, M. [University of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (Serbia); Brandt, G. [Oxford University, Department of Physics, Oxford (United Kingdom); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [Universite Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Buniatyan, A.; Huber, F.; Pirumov, H.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Rostovtsev, A.; Tseepeldorj, B. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Ceccopieri, F.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Roosen, R.; Staykova, Z.; Mechelen, P.Van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerpen (Belgium); Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Cvach, J.; Hladky and grave, J.; Reimer, P.; Zalesak, J. [Academy of Sciences of the Czech Republic, Institute of Physics, Praha (Czech Republic); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Daum, K.; Meyer, H. [Universitaet Wuppertal, Fachbereich C, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C. [Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille (France); Dodonov, V. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Dossanov, A. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Egli, S.; Hildebrandt, M.; Horisberger, R. [Paul Scherrer Institut, Villigen (Switzerland); Feltesse, J.; Perez, E.; Schoeffel, L. [CE-Saclay, CEA, DSM/Irfu, Gif-sur-Yvette (France); Ferencei, J. [Slovak Academy of Sciences, Institute of Experimental Physics, Kosice (Slovakia); Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J. [Institute for Nuclear Physics, Cracow (Poland); Grab, C. [ETH, Institut fuer Teilchenphysik, Zuerich (Switzerland); Henderson, R.C.W. [University of Lancaster, Department of Physics, Lancaster (United Kingdom); Hennekemper, E.; Herbst, M.; Schultz-Coulon, H.C. [Universitaet Heidelberg, Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Herrera, G.; Lopez-Fernandez, R. [CINVESTAV IPN, Departamento de Fisica, Mexico City (Mexico); Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Joensson, L. [University of Lund, Physics Department, Lund (Sweden); Jung, H. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerpen (Belgium); DESY, Hamburg (Germany); Kapichine, M.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R.; Nowak, K. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [Queen Mary, University of London, School of Physics and Astronomy, London (United Kingdom); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Morris, J.V.; Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (United Kingdom); Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zuerich (Switzerland); Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Soloviev, Y. [DESY, Hamburg (Germany); Lebedev Physical Institute, Moscow (Russian Federation); Stella, B. [Dipartimento di Fisica Universita di Roma Tre (Italy); INFN Roma 3, Roma (Italy); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerpen (Belgium); Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Wegener, D. [TU Dortmund, Institut fuer Physik, Dortmund (Germany); Collaboration: The H1 Collaboration

    2013-04-15

    Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5 < Q{sup 2} < 100 GeV{sup 2}, and small values of Bjorken-x, 10{sup -4} < x < 10{sup -2}. The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity ({eta}{sup *}) and transverse momentum (p{sub T}{sup *}) in the range 0<{eta}{sup *} < 5 and 0

  10. 4th International Conference on Trapped Charged Particles and Fundamental Physics

    CERN Document Server

    Comyn, M; Thomson, J; Gwinner, G; TCP'06; TCP 2006

    2007-01-01

    The TCP06 conference in Parksville on Vancouver Island showcased the impressive progress in the study of fundamental physics using trapped charged particles. Atom and ion trapping has revolutionized atomic physics and related fields. It has proven to be particularly useful for fundamental physics experiments, as the tight control over the particles' degrees of freedom leads to increased precision and efficient use of exotic species such as radioactive atoms or anti-matter. The topics of the meeting included fundamental interactions and symmetries, quantum electrodynamics, quantum state manipulation and quantum information, precision spectroscopy and frequency standards, storage ring physics, highly charged ions in traps, traps for radioactive isotopes, plasmas and collective behaviour, and anti-hydrogen. Highlights from related fields such as fundamental physics studies with neutral, trapped atoms were also presented. The combination of overview articles by leaders in the field and detailed reports on recent ...

  11. Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA

    CERN Document Server

    Alexa, C.; Baghdasaryan, A.; Baghdasaryan, S.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Boudry, V.; Bozovic-Jelisavcic, I.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Contreras, J.G.; Cvach, J.; Dainton, J.B.; Daum, K.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Habib, S.; Haidt, D.; Henderson, R.C.W.; Hennekemper, E.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hladky, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kramer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lopez-Fernandez, R.; Lubimov, V.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Morozov, A.; Morris, J.V.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.

    2013-04-20

    Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5 < Q^2 < 100 GeV^2, and small values of Bjorken-x, 10^{-4} < x < 10^{-2}. The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity (eta^*) and transverse momentum (p_T^*) in the range 0< \\eta^* < 5 and 0< p_T^* < 10$ GeV differentially in x and Q^2. The data are compared to predictions from different Monte Carlo generators implementing various options for hadronisation and parton evolutions.

  12. Erosion of carbon/carbon by solar wind charged particle radiation during a solar probe mission

    Science.gov (United States)

    Sokolowski, Witold; O'Donnell, Tim; Millard, Jerry

    1991-01-01

    The possible erosion of a carbon/carbon thermal shield by solar wind-charged particle radiation is reviewed. The present knowledge of erosion data for carbon and/or graphite is surveyed, and an explanation of erosion mechanisms under different charged particle environments is discussed. The highest erosion is expected at four solar radii. Erosion rates are analytically estimated under several conservative assumptions for a normal quiet and worst case solar wind storm conditions. Mass loss analyses and comparison studies surprisingly indicate that the predicted erosion rate by solar wind could be greater than by nominal free sublimation during solar wind storm conditions at four solar radii. The predicted overall mass loss of a carbon/carbon shield material during the critical four solar radii flyby can still meet the mass loss mission requirement of less than 0.0025 g/sec.

  13. Thermodynamic Bounds on Nonlinear Electrostatic Perturbations in Intense Charged Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Nikolas C. Logan and Ronald C. Davidson

    2012-07-18

    This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (TllT⊥ < 1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions.

  14. Safety of information in electronic equipment influenced by the charged space particles

    Directory of Open Access Journals (Sweden)

    Ksenia Gennad’evna Sizova

    2016-10-01

    Full Text Available A version of the existing evaluation method of electronic equipment to the influence of charged space particles causing single event effects for the purpose of improving the accuracy of calculation in the field of information safety is suggested. On the basis of the existing and modified methods radiation tolerance of real payload spacecraft responsible for the security of transmitted information are defined. The results of comparison are introduced. Significant differences not only in quantitative but also in qualitative character of tolerance indicators are revealed. It is demonstrated that the modified method allows to take into account the functional complexity of the hardware and the application efficiency of the sophisticated single event effects protection tools. To confirm the applicability of the modified method of equipment tolerance evaluation method to the influence of charged space particles causing single event effects proposals to the procedure of ground tests of the payload and the space experiment are developed.

  15. Measurement of charged particle spectra in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A. [Yerevan Physics Institute (Armenia)] [and others; Collaboration: H1 Collaboration

    2013-01-15

    Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5charged particle densities are measured as a function of pseudorapidity ({eta}{sup *}) and transverse momentum (p{sub T}{sup *}) in the range 0<{eta}{sup *}<5 and 0

  16. Centrality dependence of charged particle production in proton–lead collisions measured by ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Shulga, Evgeny

    2014-06-15

    The ATLAS experiment at the LHC has measured the centrality dependence of charged particle pseudorapidity distributions, dN{sub ch}/dη, in p+Pb collisions at a nucleon–nucleon center-of-mass energy of √(s{sub NN})=5.02 TeV. Charged particles were reconstructed over |η|<2.7 using the ATLAS pixel detector. The proton–lead collision centrality was characterized by the total transverse energy measured over the pseudorapidity interval 3.1<η<4.9 in the direction of the lead beam. Three different calculations of the number of participants, N{sub part}, have been carried out using a standard Glauber model as well as two Glauber–Gribov extensions, providing results pointing to the importance of the fluctuating nature of nucleon–nucleon collisions in the modeling of the initial state of p+Pb collisions.

  17. Unraveling intermittent features in single-particle trajectories by a local convex hull method

    Science.gov (United States)

    Lanoiselée, Yann; Grebenkov, Denis S.

    2017-08-01

    We propose a model-free method to detect change points between distinct phases in a single random trajectory of an intermittent stochastic process. The local convex hull (LCH) is constructed for each trajectory point, while its geometric properties (e.g., the diameter or the volume) are used as discriminators between phases. The efficiency of the LCH method is validated for six models of intermittent motion, including Brownian motion with different diffusivities or drifts, fractional Brownian motion with different Hurst exponents, and surface-mediated diffusion. We discuss potential applications of the method for detection of active and passive phases in the intracellular transport, temporal trapping or binding of diffusing molecules, alternating bulk and surface diffusion, run and tumble (or search) phases in the motion of bacteria and foraging animals, and instantaneous firing rates in neurons.

  18. The metastable states of foam films containing electrically charged micelles or particles: experiment and quantitative interpretation.

    Science.gov (United States)

    Danov, Krassimir D; Basheva, Elka S; Kralchevsky, Peter A; Ananthapadmanabhan, Kavssery P; Lips, Alex

    2011-10-14

    The stepwise thinning (stratification) of liquid films containing electrically charged colloidal particles (in our case - surfactant micelles) is investigated. Most of the results are applicable also to films from nanoparticle suspensions. The aim is to achieve agreement between theory and experiment, and to better understand the physical reasons for this phenomenon. To test different theoretical approaches, we obtained experimental data for free foam films from micellar solutions of three ionic surfactants. The theoretical problem is reduced to the interpretation of the experimental concentration dependencies of the step height and of the final film thickness. The surface charges of films and micelles are calculated by means of the charge-regulation model, with a counterion-binding (Stern) constant determined from the fit of surface tension isotherms. The applicability of three models was tested: the Poisson-Boltzmann (PB) model; the jellium-approximation (JA), and the cell model (CM). The best agreement theory/experiment was obtained with the JA model without using any adjustable parameters. Two theoretical approaches are considered. First, in the energy approach the step height is identified with the effective diameter of the charged micelles, which represents an integral of the electrostatic-repulsion energy calculated by the JA model. Second, in the osmotic approach the step height is equal to the inverse cubic root of micelle number density in the bulk of solution. Both approaches are in good agreement with the experiment if the suspension of charged particles (micelles) represents a jellium, i.e. if the particle concentration is uniform despite the field of the electric double layers. The results lead to a convenient method for determining the aggregation number of ionic surfactant micelles from the experimental heights of the steps. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Leveraging Time Series Analysis and Machine Learning to Quantify Intra and Inter Trajectory Heterogeneity in Particle Tracking Experiments

    Science.gov (United States)

    Calderon, Christopher

    Microscopy hardware is now capable of producing high accuracy position vs. time data characterizing fluorescently tagged molecules in live cells. However, analytical methods for efficiently quantifying molecular motion parameters from the raw 3D (or 2D) single particle tracking (SPT) data are underdeveloped. ''Downstream'' trajectory analysis methods have only begun to efficiently and reliably harness the wealth of statistical kinetic information buried in SPT time series. The lack of analytical methods is due in part to the numerous challenges facing the translation the noisy position measurement information encoded in image stacks into unambiguous and readily interpretable biophysical information quantities (e.g., instantaneous effective diffusivity, forces, molecular friction, etc.). Some of these challenges are caused by: the inherently stochastic (and often nonlinear) nature of the dynamics of molecules in live cells, the highly crowded and heterogeneous time changing micro-environment of live cells influencing the dynamics of tagged molecules, and artifacts induced by the measurement device (e.g.localization error and motion blur). This talk will demonstrate how the merging of ideas from high frequency financial time series analysis, machine learning, and nonparametric Bayesian statistics can address these challenges, overcome limitations inherent in classic SPT methods, and provide insight into various single particle tracking experiments. We will describe and illustrate the new SPT trajectory analysis methods and discuss how the methods can be used to more reliably estimate data-driven and physically interpretable models. Internal R&D funds provided by Ursa Analytics, Inc.

  20. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON.

    Energy Technology Data Exchange (ETDEWEB)

    BEEBE - WANG,J.; LUCCIO,A.U.; D IMPERIO,N.; MACHIDA,S.

    2002-06-03

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed.

  1. Motion of a charged particle in the field of a magnetic monopole

    CERN Document Server

    Sivardiere, J

    2003-01-01

    The author treats 2 cases: the motion of a charge in the field of an electrically neutral magnetic monopole and the motion of a charge in the field of a charged magnetic monopole (dyon). In the first case the author studies the movement of the particle on the Poincare's cone and describes the projection of the movement on the cone axis. The problem is simplified if we consider the rotating frame of Sommerfeld. In the second case, the author shows that if we add an 1/r sup 2 term to the dyon's Coulomb potential, a dynamical symmetry appears and it becomes easy to get the invariant Poincare vector and a second invariant vector that is similar to the Laplace vector in the Kepler problem. (A.C.)

  2. Longitudinal holes in debunched particle beams in storage rings, perpetuated by space-charge forces

    CERN Document Server

    Koscielniak, Shane Rupert; Lindroos, M

    2001-01-01

    Stationary, self-consistent, and localized longitudinal density perturbations on an unbunched charged-particle beam, which are solutions of the nonlinearized Vlasov-Poisson equation, have recently received some attention. In particular, we address the case that space charge is the dominant longitudinal impedance and the storage ring operates below transition energy so that the negative mass instability is not an explanation for persistent beam structure. Under the customary assumption of a bell-shaped steady-state distribution, about which the expansion is made, the usual wave theory of Keil and Schnell (1969) for perturbations on unbunched beams predicts that self-sustaining perturbations are possible only (below transition) if the impedance is inductive (or resistive) or if the bell shape is inverted. Space charge gives a capacitive impedance. Nevertheless, we report numerous experimental measurements made at the CERN Proton Synchrotron Booster that plainly show the longevity of holelike structures in coast...

  3. Explicit high-order symplectic integrators for charged particles in general electromagnetic fields

    OpenAIRE

    Tao, Molei

    2016-01-01

    This article considers non-relativistic charged particle dynamics in both static and non-static electromagnetic fields, which are governed by nonseparable, possibly time-dependent Hamiltonians. For the first time, explicit symplectic integrators of arbitrary high-orders are constructed for accurate and efficient simulations of such mechanical systems. Performances superior to the standard non-symplectic method of Runge-Kutta are demonstrated on two examples: the first is on the confined motio...

  4. Scaled momentum distributions of charged particles in dijet photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2009-04-15

    The scaled momentum distributions of charged particles in jets have been measured for dijet photoproduction with the ZEUS detector at HERA using an integrated luminosity of 359 pb{sup -1}. The distributions are compared to predictions based on perturbative QCD carried out in the framework of the modified leading-logarithmic approximation (MLLA) and assuming local parton-hadron duality (LPHD). The universal MLLA scale, {lambda}{sub eff}, and the LPHD parameter, {kappa}{sup ch}, are extracted. (orig.)

  5. Analytical Solutions for the Nonlinear Longitudinal Drift Compression (Expansion) of Intense Charged Particle Beams

    OpenAIRE

    Startsev, Edward A.; Ronald C. Davidson

    2004-01-01

    To achieve high focal spot intensities in heavy ion fusion, the ion beam must be compressed longitudinally by factors of ten to one hundred before it is focused onto the target. The longitudinal compression is achieved by imposing an initial velocity profile tilt on the drifting beam. In this paper, the problem of longitudinal drift compression of intense charged particle beams is solved analytically for the two important cases corresponding to a cold beam, and a pressure-dominated beam, usin...

  6. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  7. Exploratory study of nuclear reaction data utility framework of Japan charged particle reaction data group (JCPRG)

    Energy Technology Data Exchange (ETDEWEB)

    Masui, Hiroshi; Ohnishi, Akira; Kato, Kiyoshi [Hokkaido Univ., Graduate School of Science, Sapporo, Hokkaido (Japan); Ohbayasi, Yosihide [Hokkaido Univ., Meme Media Lab., Sapporo, Hokkaido (Japan); Aoyama, Shigeyoshi [Kitami Institute of Technology, Information Processing Center, Kitami, Hokkaido (Japan); Chiba, Masaki [Sapporo Gakuin Univ., Faculty of Social Information, Ebetsu, Hokkaido (Japan)

    2002-08-01

    Compilation, evaluation and dissemination are essential pieces of work for the nuclear data activities. We, Japan charged particle data group, have researched the utility framework for the nuclear reaction data on the basis of recent progress of computer and network technologies. These technologies will be not only for the data dissemination but for the compilation and evaluation assistance among the many corresponding researchers of all over the world. In this paper, current progress of our research and development is shown. (author)

  8. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Mario Ivan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Drumm, Clifton R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

  9. Slow-neutron-induced charged-particle emission-channeling-measurements with Medipix detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koester, Ulli, E-mail: koester@ill.eu [Institut Laue Langevin, 6 rue Jules Horowitz, F-38042 Grenoble Cedex 9 (France); Granja, Carlos; Jakubek, Jan; Uher, Josef [Institute of Experimental and Applied Physics, Czech Technical University, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic); Vacik, Jiri [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, CZ-25800 Rez near Prague (Czech Republic)

    2011-05-15

    The lattice location of helium, lithium, beryllium, boron or sodium host or impurity atoms in single crystals can be studied by slow-neutron-induced charged particle emission channeling measurements. Modern silicon pixel detectors can cover an entire emission channeling pattern in a single measurement and allow reviving this technique for practical applications. We report on the use of the TimePix detector for such emission channeling experiments with samples containing {sup 6}Li, {sup 7}Be or {sup 10}B.

  10. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    Science.gov (United States)

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  11. Characterisation of Medipix3 Silicon Detectors in a Charged-Particle Beam

    CERN Document Server

    Akiba, K.; Aoude, R.Tourinho; van Beuzekom, M.; Buytaert, J.; Collins, P.; Dosil Suárez, A.; Dumps, R.; Gallas, A.; Hombach, C.; Hynds, D.; John, M.; Leflat, A.; Li, Y.; Pérez-Trigo, E.; Plackett, R.; Reid, M.M.; Rodríguez Pérez, P.; Schindler, H.; Tsopelas, P.; Vázquez Sierra, C.; Velthuis, J.J.; Wysokiński, M.

    2016-01-21

    While designed primarily for X-ray imaging applications, the Medipix3 ASIC can also be used for charged-particle tracking. In this work, results from a beam test at the CERN SPS with irradiated and non-irradiated sensors are presented and shown to be in agreement with simulation, demonstrating the suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.

  12. Coupling colloidal forces with yield stress of charged inorganic particle suspension: A review.

    Science.gov (United States)

    Otsuki, Akira

    2018-01-12

    This paper aims to summarize the series of investigations on coupling suspension yield stress and DLVO (Derjaguin-Landau-Verwey-Overbeek) forces, i.e. van der Waals and electrical double layer forces. This summary provides a better understanding of the basic phenomena associated, historical development and current status of this useful coupling, and also discusses the applicability and limitations/variations of such coupling applied to different types of concentrated aqueous particle suspensions. Aqueous suspensions discussed are composed of charged inorganic fine particles, including metal oxide colloidal particles, mineral fine particles, and clays. The research gaps are identified and specific future perspectives are discussed to further enhance the use of this unique and useful coupling, and to aim for the transition from the modelling of similar particle suspension systems to its dissimilar/mix particle suspension systems that fit more with the current and future industry needs in particle processing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Stochastic-hydrodynamic model of halo formation in charged particle beams

    Directory of Open Access Journals (Sweden)

    Nicola Cufaro Petroni

    2003-03-01

    Full Text Available The formation of the beam halo in charged particle accelerators is studied in the framework of a stochastic-hydrodynamic model for the collective motion of the particle beam. In such a stochastic-hydrodynamic theory the density and the phase of the charged beam obey a set of coupled nonlinear hydrodynamic equations with explicit time-reversal invariance. This leads to a linearized theory that describes the collective dynamics of the beam in terms of a classical Schrödinger equation. Taking into account space-charge effects, we derive a set of coupled nonlinear hydrodynamic equations. These equations define a collective dynamics of self-interacting systems much in the same spirit as in the Gross-Pitaevskii and Landau-Ginzburg theories of the collective dynamics for interacting quantum many-body systems. Self-consistent solutions of the dynamical equations lead to quasistationary beam configurations with enhanced transverse dispersion and transverse emittance growth. In the limit of a frozen space-charge core it is then possible to determine and study the properties of stationary, stable core-plus-halo beam distributions. In this scheme the possible reproduction of the halo after its elimination is a consequence of the stationarity of the transverse distribution which plays the role of an attractor for every other distribution.

  14. Particle tracking in kaon electroproduction with cathode-charge sampling in multi-wire proportional chambers

    Science.gov (United States)

    Achenbach, P.; Ayerbe Gayoso, C.; Bernauer, J. C.; Böhm, R.; Bosnar, D.; Bösz, M.; Debenjak, L.; Distler, M. O.; Esser, A.; Friščić, I.; Gómez Rodríguez de la Paz, M.; Makek, M.; Merkel, H.; Müller, U.; Nungesser, L.; Pochodzalla, J.; Potokar, M.; Sánchez Majos, S.; Schlimme, B. S.; Širca, S.; Weinriefer, M.

    2011-06-01

    Wire chambers are routinely operated as tracking detectors in magnetic spectrometers at high-intensity continuous electron beams. Especially in experiments studying reactions with small cross-sections the reaction yield is limited by the background rate in the chambers. One way to determine the track of a charged particle through a multi-wire proportional chamber (MWPC) is the measurement of the charge distribution induced on its cathodes. In practical applications of this read-out method, the algorithm to relate the measured charge distribution to the avalanche position is an important factor for the achievable position resolution and for the track reconstruction efficiency. An algorithm was developed for operating two large-sized MWPCs in a strong background environment with multiple-particle tracks. Resulting efficiencies were determined as a function of the electron beam current and on the signal amplitudes. Because of the different energy-losses of pions, kaons, and protons in the momentum range of the spectrometer the efficiencies depend also on the particle species.

  15. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  16. A Light Universal Detector for the Study of Correlations between Photons and Charged Particles

    CERN Document Server

    2002-01-01

    The WA93 experiment combines two essential means of quark matter diagnosis: \\item a)~~~~the measurement of photon production rates relative to charged particles or $ \\pi ^0 ^{a}pos $s \\item b)~~~~the measurement of transverse momenta of charged and neutral particles and their correlations. \\end{enumerate} \\\\ \\\\ The experimental setup consists of highly segmented lead glass arrays (3780~modules) at a distance of 9~m from the target covering the range 2~$<$~y~$<$~3. The detector allows to reconstruct the transverse momentum of $ \\pi ^0 ^{a}pos $s and $ \\eta ^{a}pos $s. A preshower detector which can be operated in a hadron-blind mode complements the photon measurement in the range 3~$<$~y~$<$~5.5. The detector yields the number of photons and,~-~to a limited extend~-, information on the total electromagnetic transverse energy. Charged particle tracking is achieved by a set of newly developed multistep avalanche chambers read out by CCD cameras downstream of the GOLIATH vertex magnet. Bose-Einstein c...

  17. Large Acceptance Measurement of Photons and Charged Particles in Heavy Ion Reactions

    CERN Multimedia

    2002-01-01

    % WA98 \\\\ \\\\ The aim of the experiment is the high statistics study of photons and neutral hadrons, as well as of charged particles, and their correlations in Pb~-~Pb collisions. The photons are measured by: \\begin{enumerate}[-] \\item a 10~000 module LEADGLASS SPECTROMETER yielding high precision data on $ \\pi ^0 $ and $ \\eta $ at midrapidity (with transverse momenta 0.3 GeV/c $>$ p$ _{T} $ $>$ 4.5 GeV/c for $\\pi ^0 $ and 1.5~GeV/c~$>$~p$ _{T}~$ $>$~4.0~GeV/c for $ \\eta $ covering the $^{\\prime\\prime}$thermal$^{\\prime\\prime}$ as well as the $^{\\prime\\prime}$hard scattering$^{\\prime\\prime}$ regime beyond 3~GeV/c) and determination of the thermal and direct photon to $ \\pi ^0 $ ratio. \\item a pad preshower PHOTON MULTIPLICITY DETECTOR which, by comparing with the charged particle multiplicity measurement allows to determine the photon enrichment in an event or event class. \\end{enumerate}\\\\ \\\\The charged particle setup contains:\\\\ \\\\\\begin{enumerate}[-] \\item a 4000 element SILICON PAD DETECTOR and a 4-inch SIL...

  18. Charged Particle Environment on Mars - One Mars Year of MSL/RAD Measurements

    Science.gov (United States)

    Ehresmann, B.; Hassler, D.; Zeitlin, C. J.; Kohler, J.; Wimmer-Schweingruber, R. F.; Brinza, D. E.; Rafkin, S. C.; Reitz, G.; Appel, J. K.; Guo, J.; Lohf, H.; Burmeister, S.; Matthiae, D.; Boettcher, S. I.; Boehm, E.; Martin-Garcia, C.

    2015-12-01

    The Mars Science Laboratory's Radiation Assessment Detector (MSL/RAD) has been conducting measurements of the ionizing radiation field on the Martian surface since August 2012. This field is mainly dominated by Galactic Cosmic Rays (GCRs) and their interactions with the atoms in the atmosphere and soil. This yields a radiation environment consisting of a wide variety of particles and energies which, at high energies, is dominated by charged particles, e.g., ions, and their isotopes, electrons, and others. Over the course of the first Martian year (~2 Earth years) of the MSL mission, the radiation field was mainly modulated by two influences: the seasonal pressure cycle at Gale crater; and the variation of the impeding GCR flux due to changes in the solar activity. Here, we present charged particle fluxes measured over a 1000 days and analyze how the more-abundant ion species vary over that time frame. A second major influence to the radiation field can be the contribution from Solar Energetic Particle (SEP) events. In particular, the Martian surface proton flux can be enhanced by orders of magnitude on short time scales during strong events. Here, we present measurements of the proton fluxes during the SEP events MSL/RAD has so far directly measured in Gale crater.

  19. Tracking down the links between charged particles and biological response: A UK perspective

    Science.gov (United States)

    Hill, Mark A.

    2013-07-01

    The UK has a long history of radiobiology research into charged particles, with interest likely to expand in the coming years following the recent government announcement of £250 million to build two proton beam therapy facilities in the UK. A brief overview of research and facilities past and present with respect to radiation protection and oncology along with biological consequences and underlying mechanisms will be presented and discussed. Increased knowledge of the mechanisms underpinning the radiation action on biological systems is important in understanding, not only the risks associated with exposure, but also in optimising radiotherapy treatment of cancer. Ionizing radiation is always in the form of structure tracks which are a unique characteristic of ionizing radiation alone producing damage grossly different and far more biologically effective than endogenous damage. The track structure is the prime determinant of biological response to DNA, with charged particles of increasing LET leading to an increase in the frequency and complexity of clustered DNA damage. High-LET particles will also produce non-homogeneous dose distribution through a cell nucleus resulting in correlated DNA breaks along the path of the particle and an increase in the probability of complex chromosomal rearrangements. However it is now well established that there is variety of phenomena that do not conform to the conventional paradigm of targeted radiobiology, but there is insufficient evidence to assess the implications of these non-targeted effects for radiotherapy or relevance to risk for human health.

  20. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Peter A.; Back, B.B.; Baker, M.D.; Barton, D.S.; Betts, R.R.; Ballintijn, M.; Bickley, A.A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M.P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G.A.; Henderson, C.; Hofman, D.J.; Hollis, R.S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C.M.; Lin, W.T.; Manly, S.; McLeod, D.; Michalowski, J.; Mignerey, A.C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I.C.; Pernegger, H.; Reed, C.; Remsberg, L.P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S.G.; Steinberg, P.; Stephans, G.S.F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G.J. van; Verdier, R.; Wadsworth, B.; Wolfs, F.L.H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A.H.; Wyslouch, B

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}S{sub NN} = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/p-barp and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  1. An approximate analytical solution of the Bethe equation for charged particles in the radiotherapeutic energy range.

    Science.gov (United States)

    Grimes, David Robert; Warren, Daniel R; Partridge, Mike

    2017-08-29

    Charged particles such as protons and carbon ions are an increasingly important tool in radiotherapy. There are however unresolved physics issues impeding optimal implementation, including estimation of dose deposition in non-homogeneous tissue, an essential aspect of treatment optimization. Monte Carlo (MC) methods can be employed to estimate radiation profile, and whilst powerful, these are computationally expensive, limiting practicality. In this work, we start from fundamental physics in the form of the Bethe equation to yield a novel approximate analytical solution for particle range, energy and linear energy transfer (LET). The solution is given in terms of the exponential integral function with relativistic co-ordinate transform, allowing application at radiotherapeutic energy levels (50-350 MeV protons, 100-600 Mev/a.m.u carbon ions). Model results agreed closely for protons and carbon-ions (mean error within ≈1%) of literature values. Agreement was high along particle track, with some discrepancy manifesting at track-end. The model presented has applications within a charged particle radiotherapy optimization framework as a rapid method for dose and LET estimation, capable of accounting for heterogeneity in electron density and ionization potential.

  2. Drift velocity of charged particles in magnetic fields and its relation to the direction of the source current

    Science.gov (United States)

    Essén, Hanno; Nordmark, Arne B.

    2016-10-01

    Integrable motion of charged particles in magnetic fields produced by stationary current distributions is investigated. We treat motion in the magnetic field from an infinite flat current sheet, a Harris current sheath, an infinite rectilinear current, and a dipole in its equatorial plane. We find that positively charged particles as a rule will drift in the same direction as the current that is the source of the magnetic field in question. The conclusion is that charged particles moving under the influence of current distributions tend to enhance the current and that this indicates current self-amplification.

  3. Comparison of the light charged particles on scatter radiation dose in thyroid hadron therapy.

    Science.gov (United States)

    Azizi, M; Mowlavi, Aa

    2014-09-01

    Hadron therapy is a novel technique of cancer radiation therapy which employs charged particles beams, (1)H and light ions in particular. Due to their physical and radiobiological properties, they allow one to obtain a more conformal treatment, sparing better the healthy tissues located in proximity of the tumor and allowing a higher control of the disease. Objective : As it is well known, these light particles can interact with nuclei in the tissue, and produce the different secondary particles such as neutron and photon. These particles can damage specially the critical organs behind of thyroid gland. In this research, we simulated neck geometry by MCNPX code and calculated the light particles dose at distance of 2.14 cm in thyroid gland, for different particles beam: (1)H, (2)H, (3)He, and (4)He. Thyroid treatment is important because the spine and vertebrae is situated right behind to the thyroid gland on the posterior side. The results show that (2)H has the most total flux for photon and neutron, 1.944E-3 and 1.7666E-2, respectively. Whereas (1)H and (3)He have best conditions, 8.88609E-4 and 1.35431E-3 for photon, 4.90506E-4 and 4.34057E-3 for neutron, respectively. The same calculation has obtained for energy depositions for these particles. In this research, we investigated that which of these light particles can deliver the maximum dose to the normal tissues and the minimum dose to the tumor. By comparing these results for the mentioned light particles, we find out (1)H and (3)He is the best therapy choices for thyroid glands whereas (2)H is the worst.

  4. Charged particle dynamics in the presence of non-Gaussian L\\'evy electrostatic fluctuations

    CERN Document Server

    Moradi, Sara; Anderson, Johan

    2016-01-01

    Full orbit dynamics of charged particles in a $3$-dimensional helical magnetic field in the presence of $\\alpha$-stable L\\'evy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The L\\'evy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of L\\'evy fluctuations. The absolute value of the power law decay exponents are linearly proportional to the L\\'evy index $\\alpha$. The observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian L\\'evy statistics, gyr...

  5. Adiabatic description of capture into resonance and surfatron acceleration of charged particles by electromagnetic waves.

    Science.gov (United States)

    Artemyev, A V; Neishtadt, A I; Zelenyi, L M; Vainchtein, D L

    2010-12-01

    We present an analytical and numerical study of the surfatron acceleration of nonrelativistic charged particles by electromagnetic waves. The acceleration is caused by capture of particles into resonance with one of the waves. We investigate capture for systems with one or two waves and provide conditions under which the obtained results can be applied to systems with more than two waves. In the case of a single wave, the once captured particles never leave the resonance and their velocity grows linearly with time. However, if there are two waves in the system, the upper bound of the energy gain may exist and we find the analytical value of that bound. We discuss several generalizations including the relativistic limit, different wave amplitudes, and a wide range of the waves' wavenumbers. The obtained results are used for qualitative description of some phenomena observed in the Earth's magnetosphere. © 2010 American Institute of Physics.

  6. Two-stream instability analysis for propagating charged particle beams with a velocity tilt

    Directory of Open Access Journals (Sweden)

    D. V. Rose

    2007-03-01

    Full Text Available The linear growth of the two-stream instability for a charged-particle beam that is longitudinally compressing as it propagates through a background plasma (due to an applied velocity tilt is examined. Detailed, 1D particle-in-cell (PIC simulations are carried out to examine the growth of the wave packet produced by a small amplitude density perturbation in the background plasma. Recent analytic and numerical work by Startsev and Davidson [Phys. Plasmas 13, 062108 (2006PHPAEN1070-664X10.1063/1.2212807] predicted reduced linear growth rates, which are indeed observed in the PIC simulations. Here, small-signal asymptotic gain factors are determined in a semianalytic analysis and compared with the simulation results in the appropriate limits. Nonlinear effects in the PIC simulations, including wave breaking and particle trapping, are found to limit the linear growth phase of the instability for both compressing and noncompressing beams.

  7. Electrokinetics of charged spherical colloidal particles taking into account the effect of ion size constraints.

    Science.gov (United States)

    López-García, J J; Aranda-Rascón, M J; Grosse, C; Horno, J

    2011-04-01

    The electrokinetic properties of suspended spherical particles are examined using a modified standard electrokinetic model, which takes into account the finite ion size and considers that the minimum approach distance of ions to the particle surface need not be equal to their effective radius in the bulk solution. We calculate the conductivity increment and the electrophoretic mobility and present a detailed interpretation of the obtained results, based on the analysis of the equilibrium and field-induced ion concentrations, as well as the convective fluid flow in the neighborhood of the particle surface. We show that when charge reversal takes place, the sign of the concentration polarization remains unchanged while the sign of the electrophoretic mobility only changes under favorable circumstances. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Quantum radiation produced by a uniformly accelerating charged particle in thermal random motion

    Science.gov (United States)

    Oshita, Naritaka; Yamamoto, Kazuhiro; Zhang, Sen

    2016-04-01

    We investigate the properties of quantum radiation produced by a uniformly accelerating charged particle undergoing thermal random motion, which originates from the coupling to the vacuum fluctuations of the electromagnetic field. Because the thermal random motion is regarded to result from the Unruh effect, the quantum radiation might give us hints of the Unruh effect. The energy flux of the quantum radiation is negative and smaller than that of Larmor radiation by one order in a /m , where a is the constant acceleration and m is the mass of the particle. Thus, the quantum radiation appears to be a suppression of the classical Larmor radiation. The quantum interference effect plays an important role in this unique signature. The results are consistent with the predictions of a model consisting of a particle coupled to a massless scalar field as well as those of the previous studies on the quantum effect on the Larmor radiation.

  9. Low-energy charged particle environment at Jupiter - A first look

    Science.gov (United States)

    Krimigis, S. M.; Bostrom, C. O.; Keath, E. P.; Zwickl, R. D.; Carbary, J. F.; Armstrong, T. P.; Axford, W. I.; Fan, C. Y.; Gloeckler, G.; Lanzerotti, L. J.

    1979-01-01

    Preliminary results of measurements obtained by the low energy charged particle instrument on board the Voyager 1 spacecraft during its traversal of the Jovian magnetosphere are reported. The instrument consists of the low energy particle telescope and the low energy magnetospheric particle analyzer, designed to perform measurements in the inner and outer magnetosphere respectively. Ions and electrons comprising the Jovian magnetosphere were first detected at a distance of about 600 Jupiter radii from the planet, with the first bow shock crossing at 85.6 Jupiter radii. Upon crossing the magnetopause at about 67 Jupiter radii, the flows of electrons and ions were observed to change direction from away from the planet to the corotational direction. The hot plasma near the magnetosphere boundary is comprised predominantly of protons, sulfur and oxygen. Selective particle absorption near the Io flux tube indicates some form of particle deflection by Io. Fluxes in the outbound region were found to be enhanced from 90 to 160 deg longitude, and 5- and 10-hour low energy particle flux periodicities were observed.

  10. CARVE: L4 Gridded Particle Trajectories for WRF-STILT model, 2012-2016

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides Weather Research and Forecasting (WRF) Stochastic Time-Inverted Lagrangian Transport (STILT) model inputs for particle receptors located at...

  11. Trajectories of coarse granular sediment particles in a simplified centrifugal dredge pump model

    National Research Council Canada - National Science Library

    Hong, Guojun; Zhang, Qingbo; Yu, Guoliang

    2016-01-01

    .... In addition, the deviation would also decrease the pump efficiency. In order to understand the motion of the sediment particles and their deviation characteristics inside a dredge pump, authors built a Lagrangian numerical model based...

  12. Metal-Particle-Decorated ZnO Nanocrystals: Photocatalysis and Charge Dynamics.

    Science.gov (United States)

    Lin, Wei-Hao; Chiu, Yi-Hsuan; Shao, Pao-Wen; Hsu, Yung-Jung

    2016-12-07

    Understanding of charge transfer processes is determinant to the performance optimization for semiconductor photocatalysts. As a representative model of composite photocatalysts, metal-particle-decorated ZnO has been widely employed for a great deal of photocatalytic applications; however, the dependence of charge carrier dynamics on the metal content and metal composition and their correlation with the photocatalytic properties have seldom been reported. Here, the interfacial charge dynamics for metal-decorated ZnO nanocrystals were investigated and their correspondence with the photocatalytic properties was evaluated. The samples were prepared with a delicate antisolvent approach, in which ZnO nanocrystals were grown along with metal particle decoration in a deep eutectic solvent. By modulating the experimental conditions, the metal content (from 0.6 to 2.3 at%) and metal composition (including Ag, Au, and Pd) in the resulting metal-decorated ZnO could be readily controlled. Time-resolved photoluminescence spectra showed that an optimal Au content of 1.3 at% could effectuate the largest electron transfer rate constant for Au-decorated ZnO nanocrystals, in conformity with the highest photocatalytic efficiency observed. The relevance of charge carrier dynamics to the metal composition was also inspected and realized in terms of the energy level difference between ZnO and metal. Among the three metal-decorated ZnO samples tested, ZnO-Pd displayed the highest photocatalytic activity, fundamentally according with the largest electron transfer rate constant deduced in carrier dynamics measurements. The current work was the first study to present the correlations among charge carrier dynamics, metal content, metal composition, and the resultant photocatalytic properties for semiconductor/metal heterostructures. The findings not only helped to resolve the standing issues regarding the mechanistic foundation of photocatalysis but also shed light on the intelligent design

  13. Classical statistical thermodynamics of a gas of charged particles in magnetic field

    Directory of Open Access Journals (Sweden)

    I.M.Dubrovskii

    2006-01-01

    Full Text Available We will demonstrate that the paradox of classical statistical thermodynamics for a gas of charged particles in a magnetic field (GMF has not yet been explained. The paradox lies in the statement that the average magnetic moment of a gas is zero, whereas the time-average magnetic moment of each particle is always negative. We consider a gas of charged particles moving in a plane perpendicular to a uniform magnetic field. The density of distribution of the ensemble describing statistical properties of the GMF is derived starting from the basics, with due regard for the specific character of dynamics of the charged particles in the magnetic field. It is emphasized that neither the imposition of a potential barrier restricting the existence region of the GMF, nor the introduction of a background neutralizing charge occupying a finite area, is a necessary condition for the stationary equilibrium state of the GMF to exist. We show that the reason for this fact is that the density of distribution of the ensemble is dependent, besides the Hamiltonian, on another positive definite integral of motion that is a linear combination of the Hamiltonian and the angular momentum of the GMF. Basic thermodynamic relations are deduced in terms of the new density of distribution, and it is demonstrated that the GMF has a magnetic moment whose magnitude and sign are determined by the external potential field. Particularly, the GMF is diamagnetic in the absence of the neutralizing background charge. Thus, the statement of the Bohr-van Leeuwen theorem, deduced using the ordinary Gibbs density of distribution depending on the Hamiltonian only, is wrong. It is noted that a great deal of works on the theory of electronic phenomena in magnetic field are based either on the same wrong density of distribution or on the formula for average occupation numbers depending on the energy of states, which follows from this density of distribution within quantum theory. These

  14. Forward distributions of identified charged particles and net charge and strangeness distributions in $K^{+}p$ interactions at 70 GeV/c

    CERN Document Server

    Spyropoulou-Stassinaki, M

    1982-01-01

    Presents preliminary results from 70 GeV/c K^{+}p interactions in BEBC filled with hydrogen, using the External Particle Identifier (EPI) to yield a separation of\\pi^{+} and K^{+} mesons in the forward region. The single charged particle (\\pi^{+},\\pi^{-}, K^{+}) longitudinal distributions are studied and compared to the quark counting rules. The (\\pi^{+}/\\pi^{-}) ratio is given for the K^{+} fragmentation region. From linear combinations of the x /sub F/ distributions, the charged pion fragmentation functions are extracted. A comparison of the net charge and net strangeness distributions of the beam fragments as function of the c.m. rapidity y, gives an estimate of the charge and strangeness correlation lengths.

  15. Measurements of charged-particle distributions at $\\sqrt{s}=8$ and $13$ TeV with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00332935; The ATLAS collaboration

    2016-01-01

    Inclusive charged-particle measurements at hadron colliders probe the low-energy non-perturbative region of QCD. The ATLAS collaboration has measured the primary-charged-particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC proton--proton beam currents, recorded at centre-of-mass energies of 8~TeV and 13~TeV. The new precise measurements at 8~TeV cover a wide spectrum of distributions using charged-particle selections with minimum transverse momentum of both 100~MeV and 500~MeV and in various phase-space regions of low and high charged-particle multiplicities. Two measurements at 13~TeV present the first detailed studies with a minimum transverse momentum of 500~MeV and 100~MeV. The measurements are compared with predictions of various MC generators and are found to provide strong constraints on these.

  16. Forward-backward correlations and charged-particle azimuthal distributions in $pp$ interactions using the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    Using inelastic proton-proton interactions at $\\sqrt{s}$ = 900 GeV and 7 TeV, recorded by the ATLAS detector at the LHC, measurements have been made of the correlations between forward and backward charged-particle multiplicities and, for the first time, between forward and backward charged-particle summed transverse momentum. In addition, jet-like structure in the events is studied by means of azimuthal distributions of charged particles relative to the charged particle with highest transverse momentum in a selected kinematic region of the event. The results are compared with predictions from tunes of the PYTHIA and HERWIG++ Monte Carlo generators, which in most cases are found to provide a reasonable description of the data.

  17. Measurement of charged particle multiplicities in $pp$ collisions at $\\sqrt{s}$ = 7 TeV in the forward region

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Alkhazov, G.; Alvarez Cartelle, P.; Alves Jr, A.A.; Amato, S.; Amhis, Y.; Anderson, J.; Appleby, R.B.; Aquines Gutierrez, O.; Archilli, F.; Arrabito, L.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J.J.; Bailey, D.S.; Balagura, V.; Baldini, W.; Barlow, R.J.; Barschel, C.; Barsuk, S.; Barter, W.; Bates, A.; Bauer, C.; Bauer, Th.; Bay, A.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Bernet, R.; Bettler, M.O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjornstad, P.M.; Blake, T.; Blanc, F.; Blanks, C.; Blouw, J.; Blusk, S.; Bobrov, A.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T.J.V.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N.H.; Brown, H.; Buchler-Germann, A.; Burducea, I.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cattaneo, M.; Cauet, Ch.; Charles, M.; Charpentier, Ph.; Chiapolini, N.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P.E.L.; Clemencic, M.; Cliff, H.V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Collins, P.; Comerma-Montells, A.; Constantin, F.; Conti, G.; Contu, A.; Cook, A.; Coombes, M.; Corti, G.; Cowan, G.A.; Currie, R.; D'Almagne, B.; D'Ambrosio, C.; David, P.; David, P.N.Y.; De Bonis, I.; De Capua, S.; De Cian, M.; De Lorenzi, F.; de Miranda, J.M.; De Paula, L.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Degaudenzi, H.; Deissenroth, M.; Del Buono, L.; Deplano, C.; Derkach, D.; Deschamps, O.; Dettori, F.; Dickens, J.; Dijkstra, H.; Diniz Batista, P.; Bonal, F.Domingo; Donleavy, S.; Dordei, F.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Dziurda, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisele, F.; Eisenhardt, S.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Elsby, D.; Esperante Pereira, D.; Esteve, L.; Falabella, A.; Fanchini, E.; Farber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Fernandez Albor, V.; Ferro-Luzzi, M.; Filippov, S.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Furcas, S.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garnier, J-C.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauvin, N.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Gligorov, V.V.; Gobel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gandara, M.; Graciani Diaz, R.; Granado Cardoso, L.A.; Grauges, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Haefeli, G.; Haen, C.; Haines, S.C.; Hampson, T.; Hansmann-Menzemer, S.; Harji, R.; Harnew, N.; Harrison, J.; Harrison, P.F.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J.A.; van Herwijnen, E.; Hicks, E.; Holubyev, K.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Huston, R.S.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Ilten, P.; Imong, J.; Jacobsson, R.; Jaeger, A.; Jahjah Hussein, M.; Jans, E.; Jansen, F.; Jaton, P.; Jean-Marie, B.; Jing, F.; John, M.; Johnson, D.; Jones, C.R.; Jost, B.; Kaballo, M.; Kandybei, S.; Karacson, M.; Karbach, T.M.; Keaveney, J.; Kenyon, I.R.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Kim, Y.M.; Knecht, M.; Koppenburg, P.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kruzelecki, K.; Kucharczyk, M.; Kvaratskheliya, T.; La Thi, V.N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R.W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leroy, O.; Lesiak, T.; Li, L.; Li Gioi, L.; Lieng, M.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; Lopes, J.H.; Lopez Asamar, E.; Lopez-March, N.; Lu, H.; Luisier, J.; Raighne, A.Mac; Machefert, F.; Machikhiliyan, I.V.; Maciuc, F.; Maev, O.; Magnin, J.; Malde, S.; Mamunur, R.M.D.; Manca, G.; Mancinelli, G.; Mangiafave, N.; Marconi, U.; Marki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin, L.; Martin Sanchez, A.; Martinez Santos, D.; Massafferri, A.; Mathe, Z.; Matteuzzi, C.; Matveev, M.; Maurice, E.; Maynard, B.; Mazurov, A.; McGregor, G.; McNulty, R.; Mclean, C.; Meissner, M.; Merk, M.; Merkel, J.; Messi, R.; Miglioranzi, S.; Milanes, D.A.; Minard, M.N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mountain, R.; Mous, I.; Muheim, F.; Muller, K.; Muresan, R.; Muryn, B.; Muster, B.; Musy, M.; Mylroie-Smith, J.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Nedos, M.; Needham, M.; Neufeld, N.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Nikitin, N.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; O