WorldWideScience

Sample records for charged insulating discs

  1. Photoelastic examination of borosilicate glass discs used in the insulating legs for the NSF tandem

    International Nuclear Information System (INIS)

    Acton, W.J.; Cundy, D.

    1981-04-01

    The results are presented of a photoelastic stress analysis carried out to establish the effect of re-annealing borosilicate glass discs used in the insulating legs of the 30 MV tandem van de Graaff accelerator of the NSF. The results show that re-annealing of the glass discs has no measurable effect on reducing the high stress at inclusions and re-emphasise the need to exercise great care in selecting suitable discs for use in the insulating legs. (U.K.)

  2. Progress of Space Charge Research on Oil-Paper Insulation Using Pulsed Electroacoustic Techniques

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2016-01-01

    Full Text Available This paper focuses on the space charge behavior in oil-paper insulation systems used in power transformers. It begins with the importance of understanding the space charge behavior in oil-paper insulation systems, followed by the introduction of the pulsed electrostatic technique (PEA. After that, the research progress on the space charge behavior of oil-paper insulation during the recent twenty years is critically reviewed. Some important aspects such as the environmental conditions and the acoustic wave recovery need to be addressed to acquire more accurate space charge measurement results. Some breakthroughs on the space charge behavior of oil-paper insulation materials by the research team at the University of Southampton are presented. Finally, future work on space charge measurement of oil-paper insulation materials is proposed.

  3. Multistage charged particle accelerator, with high-vacuum insulation

    International Nuclear Information System (INIS)

    Holl, P.

    1976-01-01

    A multistage charged-particle accelerator for operating with accelerating voltages higher than 150 kV is described. The device consists essentially of a high-voltage insulator, a source for producing charged particles, a Wehnelt cylinder, an anode, and a post-accelerating tube containing stack-wise positioned post-accelerating electrodes. A high vacuum is used for insulating the parts carrying the high voltages, and at least one cylindrical screen surrounding these parts is interposed between them and the vacuum vessel, which can itself also function as a cylindrical screen

  4. The electrostatics of charged insulating sheets peeled from grounded conductors

    International Nuclear Information System (INIS)

    Datta, M J; Horenstein, M N

    2008-01-01

    The physics of a charged, insulating sheet peeled from a ground-plane conductor is examined. Contact charging is ensured by charging a sheet to 10-12 kV with corona to establish intimate electrostatic contact with the underlying conductor. The surface potential is next forced to zero by sweeping the sheet with a stainless-steel brush, and the surface recharged to a new potential between 0 and 11 kV. The sheet is then peeled from the ground plane and its residual charge density is measured. Results show that the residual charge equals the breakdown-limiting value, but its polarity depends on the surface potential acquired just prior to peeling. The results have relevance to studies of industrial webs and insulating sheets.

  5. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Directory of Open Access Journals (Sweden)

    J. W. Zhang

    2017-10-01

    Full Text Available As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC. In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  6. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Science.gov (United States)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  7. Interaction of slow highly-charged ions with metals and insulators

    International Nuclear Information System (INIS)

    Yamazaki, Y.

    2007-01-01

    Interaction of slow highly charged ions with insulator as well as metallic surfaces is discussed. In addition to the usual flat surface targets, studies with thin foils having a multitude of straight holes of ∼100 nm in diameter (micro-capillary foil) are introduced, which provide various unique information on the above surface interaction. In the case of an insulator micro-capillary foil, a so-called guiding effect was observed, where slow highly charged ions can transmit through the capillary tunnel keeping their initial charge state even when the capillary axis is tilted against the incident beam. A similar guiding effect has recently been found for slow highly-charged ions transmitted through a single tapered glass capillary. In both cases, the guiding effects are expected to be governed by a self-organized charging and discharging of the inner-wall of the insulator capillary. One of the prominent features of this guiding effect with the tapered capillary is the formation of a nano-size beam, which can be applied in various fields of science including surface nano-modification/analysis, nano-surgery of living cells, etc

  8. Transport of electric charge in insulators

    International Nuclear Information System (INIS)

    Lopez C, E.

    1979-01-01

    In this work a review is made of important concepts in the study of the transport of electric charge in insulators. These concepts are: electrical contacts, transport regimes as viewed in the I-V characteristics, and photoinjection processes by internal photemission of holes or electrons from metals or semiconductors into insulators or by a virtual electrode using strongly absorbed light. Experimental results of photoinjection of holes and electrons into sulfur single crystals are analyzed using these concepts. The observation of the Mott-Gurney transition is reported for the first time. This is the transition between the region of space charge limited currents (SCLC) and the region of saturation of the current as a function of the applied voltage. A modified Mott-Gurney theoretical model is presented that is able to explain the whole I-V characteristic for uv and the internal photoemission of hopes and uv photoinjection of electrons. For the case of internal photoemission of electrons the conventional space charge limited current theory for an exponential distribution of traps is able to explain the experimental data. It is found that the crystals are of high purity since the total density of traps, as calculated from their exponential distribution, is Nsub(t) equals 1.8 X 10 14 cm -3 . (author)

  9. Charge transport through superconductor/Anderson-insulator interfaces

    International Nuclear Information System (INIS)

    Frydman, A.; Ovadyahu, Z.

    1997-01-01

    We report on a study of charge transport through superconductor-insulator-superconductor and normal metal endash insulator endash superconductor structures (SIS and NIS junctions, respectively) where the insulator is of the Anderson type. Devices which are characterized by a junction resistance larger than 10 kΩ show behavior which is typical of Giaever tunnel junctions. In structures having smaller resistance, several peculiar features are observed. In the SIS junctions, Josephson coupling is detected over distances much larger then the typical insulator localization length. In addition, a series of resistance peaks appears at voltages of 2Δ/n, where Δ is the superconducting gap. The NIS Junctions exhibit a large resistance dip at subgap bias. We discuss possible interpretations of these findings and suggest that they may result from the presence of high transmission channels through the barrier region. copyright 1997 The American Physical Society

  10. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    Science.gov (United States)

    de Filippo, E.; Lanzanó, G.; Amorini, F.; Cardella, G.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-12-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  11. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    International Nuclear Information System (INIS)

    De Filippo, E.; Lanzano, G.; Cardella, G.; Amorini, F.; Geraci, E.; Grassi, L.; Politi, G.; La Guidara, E.; Lombardo, I.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-01-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  12. Trapping-charging ability and electrical properties study of amorphous insulator by dielectric spectroscopy

    International Nuclear Information System (INIS)

    Mekni, Omar; Arifa, Hakim; Askri, Besma; Yangui, Béchir; Raouadi, Khaled; Damamme, Gilles

    2014-01-01

    Usually, the trapping phenomenon in insulating materials is studied by injecting charges using a Scanning Electron Microscope. In this work, we use the dielectric spectroscopy technique for showing a correlation between the dielectric properties and the trapping-charging ability of insulating materials. The evolution of the complex permittivity (real and imaginary parts) as a function of frequency and temperature reveals different types of relaxation according to the trapping ability of the material. We found that the space charge relaxation at low frequencies affects the real part of the complex permittivity ε ′ and the dissipation factor Tan(δ). We prove that the evolution of the imaginary part of the complex permittivity against temperature ε ″ =f(T) reflects the phenomenon of charge trapping and detrapping as well as trapped charge evolution Q p (T). We also use the electric modulus formalism to better identify the space charge relaxation. The investigation of trapping or conductive nature of insulating materials was mainly made by studying the activation energy and conductivity. The conduction and trapping parameters are determined using the Correlated Barrier Hopping (CBH) model in order to confirm the relation between electrical properties and charge trapping ability.

  13. Charging damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMC) is reported. The damage is caused by the build up of a voltage potential difference between the two plates of the capacitor. A simple logarithmic relation is discovered between the damage by this voltage

  14. Effect of applied DC voltages and temperatures on space charge behaviour of multi-layer oil-paper insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tang Chao; Liao Ruijin [The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, G [School of Electronics and Computer Science, University of Southampton (United Kingdom); Fu, M, E-mail: tangchao_1981@163.co [AVERA T and D Technology Centre, Stafford (United Kingdom)

    2009-08-01

    In this paper, space charge in a multi-layer oil-paper insulation system was investigated using the pulsed electroacoustic (PEA) technique. A series of measurements had been carried following subjection of the insulation system to different applied voltages and different temperatures. Charge behaviours in the insulation system were analyzed and the influence of temperature on charge dynamics was discussed. The test results shows that homocharge injection takes place under all the test conditions, the applied DC voltage mainly affects the amount of space charge, while the temperature has greater influence on the distribution and mobility of space charge inside oil-paper samples.

  15. Space Charge Modulated Electrical Breakdown of Oil Impregnated Paper Insulation Subjected to AC-DC Combined Voltages

    Directory of Open Access Journals (Sweden)

    Yuanwei Zhu

    2018-06-01

    Full Text Available Based on the existing acknowledgment that space charge modulates AC and DC breakdown of insulating materials, this investigation promotes the related investigation into the situations of more complex electrical stress, i.e., AC-DC combined voltages. Experimentally, the AC-DC breakdown characteristics of oil impregnated paper insulation were systematically investigated. The effects of pre-applied voltage waveform, AC component ratio, and sample thickness on AC-DC breakdown characteristics were analyzed. After that, based on an improved bipolar charge transport model, the space charge profiles and the space charge induced electric field distortion during AC-DC breakdown were numerically simulated to explain the differences in breakdown characteristics between the pre-applied AC and pre-applied DC methods under AC-DC combined voltages. It is concluded that large amounts of homo-charges are accumulated during AC-DC breakdown, which results in significantly distorted inner electric field, leading to variations of breakdown characteristics of oil impregnated paper insulation. Therefore, space charges under AC-DC combined voltages must be considered in the design of converter transformers. In addition, this investigation could provide supporting breakdown data for insulation design of converter transformers and could promote better understanding on the breakdown mechanism of insulating materials subjected to AC-DC combined voltages.

  16. Charge disproportionation in RNiO3 at the metal-insulator transition

    International Nuclear Information System (INIS)

    Alonso, J.A.; Martinez-Lope, M.J.; Casais, M.T.; Garcia-Munoz, J.L.; Fernandez-Diaz, M.T.; Aranda, M.A.G.

    1999-01-01

    Complete text of publication follows. Neutron and synchrotron diffraction data provide the first observation of changes in the crystal symmetry at the metal-insulator (MI) transition in RNiO 3 perovskites [1]. At high temperatures, YNiO 3 is orthorhombic and metallic but below T MI = 582 K it changes to a monoclinic insulator. The monoclinic symmetry is due to a partial 2 Ni 3+ → Ni 3+δ + Ni 3-δ charge disproportionation associated to the MI transition. In the insulating state the presence of two NiO 6 octahedra is reported with, respectively, expanded (Ni1) and contracted (Ni2) Ni-O bonds, that alternated along the three directions of the crystal. Corroborating the charge disproportion, unequal moments are found at Ni1 and Ni2 octahedra in the low temperature monoclinic phase. (author) J.A. Alonso et al, Phys. Rev. Lett. in press

  17. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    International Nuclear Information System (INIS)

    Hao Jian; Liao Ruijin; Chen, George

    2011-01-01

    Dielectric response and space charge behaviour of oil-paper insulation sample with different moisture contents were investigated using the frequency dielectric spectroscopy (FDS) and the pulsed electroacoustic (PEA) technique, respectively. The influence of moisture on the dielectric response and space charge behaviour of oil impregnated paper insulation was analysed. Results show that the moisture has great effect on the FDS and space charge behaviour of oil impregnated paper insulation. In the frequency range of 10 -2 ∼10 6 Hz, the conductivity and the capacitance of oil impregnated paper increases with its moisture content. The space charge distribution of oil-paper sample with lower and higher moisture contents is very different from each other. The higher the moisture concentration of the oil impregnated paper, the easier the negative charge penetration into the insulation paper. There is a significant amount of positive charge accumulated at the paper-paper interface near to the cathode for oilpaper sample with lower moisture content. However, the positive charge appears in the middle layer paper for oil-paper sample with higher moisture content. Due to the high conductivity, the charge trapped in the oil-paper sample with higher moisture content disappears much faster than that in the oil-paper sample with lower moisture content after removing the voltage.

  18. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    Energy Technology Data Exchange (ETDEWEB)

    Hao Jian; Liao Ruijin [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, George, E-mail: jh210v@ecs.soton.ac.uk [School of Electronics and Computer Science, University of Southampton (United Kingdom)

    2011-08-12

    Dielectric response and space charge behaviour of oil-paper insulation sample with different moisture contents were investigated using the frequency dielectric spectroscopy (FDS) and the pulsed electroacoustic (PEA) technique, respectively. The influence of moisture on the dielectric response and space charge behaviour of oil impregnated paper insulation was analysed. Results show that the moisture has great effect on the FDS and space charge behaviour of oil impregnated paper insulation. In the frequency range of 10{sup -2}{approx}10{sup 6}Hz, the conductivity and the capacitance of oil impregnated paper increases with its moisture content. The space charge distribution of oil-paper sample with lower and higher moisture contents is very different from each other. The higher the moisture concentration of the oil impregnated paper, the easier the negative charge penetration into the insulation paper. There is a significant amount of positive charge accumulated at the paper-paper interface near to the cathode for oilpaper sample with lower moisture content. However, the positive charge appears in the middle layer paper for oil-paper sample with higher moisture content. Due to the high conductivity, the charge trapped in the oil-paper sample with higher moisture content disappears much faster than that in the oil-paper sample with lower moisture content after removing the voltage.

  19. The net charge at interfaces between insulators

    International Nuclear Information System (INIS)

    Bristowe, N C; Littlewood, P B; Artacho, Emilio

    2011-01-01

    The issue of the net charge at insulating oxide interfaces is briefly reviewed with the ambition of dispelling myths of such charges being affected by covalency and related charge density effects. For electrostatic analysis purposes, the net charge at such interfaces is defined by the counting of discrete electrons and core ion charges, and by the definition of the reference polarization of the separate, unperturbed bulk materials. The arguments are illustrated for the case of a thin film of LaAlO 3 over SrTiO 3 in the absence of free carriers, for which the net charge is exactly 0.5e per interface formula unit, if the polarization response in both materials is referred to zero bulk values. Further consequences of the argument are extracted for structural and chemical alterations of such interfaces, in which internal rearrangements are distinguished from extrinsic alterations (changes of stoichiometry, redox processes), only the latter affecting the interfacial net charge. The arguments are reviewed alongside the proposal of Stengel and Vanderbilt (2009 Phys. Rev. B 80 241103) of using formal polarization values instead of net interfacial charges, based on the interface theorem of Vanderbilt and King-Smith (1993 Phys. Rev. B 48 4442-55). Implications for non-centrosymmetric materials are discussed, as well as for interfaces for which the charge mismatch is an integer number of polarization quanta. (viewpoint)

  20. Experimental charge fractions of hydrogen scattered from insulators at 50-340 keV

    CERN Document Server

    Ross, Graham G

    2002-01-01

    Ion bombardment of insulators induces accumulation of electric charges at and under the insulator surfaces. This paper deals with the effect of the accumulated electric charges on the charge fractions of scattered hydrogen. We have measured and compiled charge fractions of hydrogen, in the energy range (for the scattered particles) from 50 to 340 keV, scattered from polystyrene, polymethylmethacrylate, polycarbonate, polyethylene and silicon. In order to establish the effect of the charge accumulation, some samples have been cut from a thick (1 mm) sheet, while some others have been spin coated (approx 250 nm) onto silicon wafers. Experimental measurements have been fitted with the equation f(0)=Aexp(-V sup 2 /V sub i V sub 0), where f(0) is the neutral fraction, V the velocity, V sub i the 'Bohr velocity' for the electron of projectiles, A and V sub 0 the fitting parameters. Comparisons using the least-square fitting procedure have shown that the accumulation of electric charges on the thick polymer samples ...

  1. Analysis and test of insulated components for rotary engine

    Science.gov (United States)

    Badgley, Patrick R.; Doup, Douglas; Kamo, Roy

    1989-01-01

    The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.

  2. Equivalent circuit modeling of space charge dominated magnetically insulated transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Kazuki; Nakajima, Mitsuo; Horioka, Kazuhiko

    1997-12-31

    A new equivalent circuit model for space charge dominated MITLs (Magnetically Insulated Transmission Lines) was developed. MITLs under high power operation are dominated with space charge current flowing between anode and cathode. Conventional equivalent circuit model does not account for space charge effects on power flow. The model was modified to discuss the power transportation through the high power MITLs. With this model, it is possible to estimate the effects of space charge current on the power flow efficiency, without using complicated particle code simulations. (author). 3 figs., 3 refs.

  3. Charge dynamics of the antiferromagnetically ordered Mott insulator

    International Nuclear Information System (INIS)

    Han, Xing-Jie; Li, Xin; Chen, Jing; Liao, Hai-Jun; Xiang, Tao; Liu, Yu; Liu, Zhi-Yuan; Xie, Zhi-Yuan; Normand, B

    2016-01-01

    We introduce a slave-fermion formulation in which to study the charge dynamics of the half-filled Hubbard model on the square lattice. In this description, the charge degrees of freedom are represented by fermionic holons and doublons and the Mott-insulating characteristics of the ground state are the consequence of holon–doublon bound-state formation. The bosonic spin degrees of freedom are described by the antiferromagnetic Heisenberg model, yielding long-ranged (Néel) magnetic order at zero temperature. Within this framework and in the self-consistent Born approximation, we perform systematic calculations of the average double occupancy, the electronic density of states, the spectral function and the optical conductivity. Qualitatively, our method reproduces the lower and upper Hubbard bands, the spectral-weight transfer into a coherent quasiparticle band at their lower edges and the renormalisation of the Mott gap, which is associated with holon–doublon binding, due to the interactions of both quasiparticle species with the magnons. The zeros of the Green function at the chemical potential give the Luttinger volume, the poles of the self-energy reflect the underlying quasiparticle dispersion with a spin-renormalised hopping parameter and the optical gap is directly related to the Mott gap. Quantitatively, the square-lattice Hubbard model is one of the best-characterised problems in correlated condensed matter and many numerical calculations, all with different strengths and weaknesses, exist with which to benchmark our approach. From the semi-quantitative accuracy of our results for all but the weakest interaction strengths, we conclude that a self-consistent treatment of the spin-fluctuation effects on the charge degrees of freedom captures all the essential physics of the antiferromagnetic Mott–Hubbard insulator. We remark in addition that an analytical approximation with these properties serves a vital function in developing a full understanding of

  4. Charge dynamics of the antiferromagnetically ordered Mott insulator

    Science.gov (United States)

    Han, Xing-Jie; Liu, Yu; Liu, Zhi-Yuan; Li, Xin; Chen, Jing; Liao, Hai-Jun; Xie, Zhi-Yuan; Normand, B.; Xiang, Tao

    2016-10-01

    We introduce a slave-fermion formulation in which to study the charge dynamics of the half-filled Hubbard model on the square lattice. In this description, the charge degrees of freedom are represented by fermionic holons and doublons and the Mott-insulating characteristics of the ground state are the consequence of holon-doublon bound-state formation. The bosonic spin degrees of freedom are described by the antiferromagnetic Heisenberg model, yielding long-ranged (Néel) magnetic order at zero temperature. Within this framework and in the self-consistent Born approximation, we perform systematic calculations of the average double occupancy, the electronic density of states, the spectral function and the optical conductivity. Qualitatively, our method reproduces the lower and upper Hubbard bands, the spectral-weight transfer into a coherent quasiparticle band at their lower edges and the renormalisation of the Mott gap, which is associated with holon-doublon binding, due to the interactions of both quasiparticle species with the magnons. The zeros of the Green function at the chemical potential give the Luttinger volume, the poles of the self-energy reflect the underlying quasiparticle dispersion with a spin-renormalised hopping parameter and the optical gap is directly related to the Mott gap. Quantitatively, the square-lattice Hubbard model is one of the best-characterised problems in correlated condensed matter and many numerical calculations, all with different strengths and weaknesses, exist with which to benchmark our approach. From the semi-quantitative accuracy of our results for all but the weakest interaction strengths, we conclude that a self-consistent treatment of the spin-fluctuation effects on the charge degrees of freedom captures all the essential physics of the antiferromagnetic Mott-Hubbard insulator. We remark in addition that an analytical approximation with these properties serves a vital function in developing a full understanding of the

  5. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe.

    Science.gov (United States)

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  6. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe

    Science.gov (United States)

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  7. The electro-mechanical effect from charge dynamics on polymeric insulation lifetime

    Science.gov (United States)

    Alghamdi, H.; Chen, G.; Vaughan, A. S.

    2015-12-01

    For polymeric material used as electrical insulation, the presence of space charges could be the consequence of material degradations that are thermally activated but increased by the application of an electric field. The dynamics of space charge, therefore, can be potentially used to characterize the material. In this direction, a new aging model in which parameters have clear physical meanings has been developed and applied to the material to extrapolate the lifetime. The kinetic equation has been established based on charge trapping and detrapping of the injected charge from the electrodes. The local electromechanical energy stored in the region surrounding the trap is able to reduce the trap-depth with a value related to the electric field. At a level where the internal electric field exceeds the detrapping field in the material, an electron can be efficiently detrapped and the released energy from detrapping process can cause a weak bond or chain scission i.e. material degradation. The model has been applied to the electro-thermally aged low density polyethylene film samples, showing well fitted result, as well as interesting relationships between parameter estimates and insulation morphology.

  8. Squeezing out hydrated protons: low-frictional-energy triboelectric insulator charging on a microscopic scale

    Directory of Open Access Journals (Sweden)

    Nikolaus Knorr

    2011-06-01

    Full Text Available Though triboelectric charging of insulators is common, neither its mechanism nor the nature of the charge is well known. Most research has focused on the integral amount of charge transferred between two materials upon contact, establishing, e.g., a triboelectric series. Here, the charge distribution of tracks on insulating polymer films rubbed by polymer-covered pointed swabs is investigated in high resolution by Kelvin probe force microscopy. Pronounced bipolar charging was observed for all nine rubbing combinations of three different polymers, with absolute surface potentials of up to several volts distributed in streaks along the rubbing direction and varying in polarity on μm-length scales perpendicular to the rubbing direction. Charge densities increased considerably for rubbing in higher relative humidity, for higher rubbing loads, and for more hydrophilic polymers. The ends of rubbed tracks had positively charged rims. Surface potential decay with time was strongly accelerated in increased humidity, particularly for polymers with high water permeability. Based on these observations, a mechanism is proposed of triboelectrification by extrusions of prevalently hydrated protons, stemming from adsorbed and dissociated water, along pressure gradients on the surface by the mechanical action of the swab. The validity of this mechanism is supported by explanations given recently in the literature for positive streaming currents of water at polymer surfaces and by reports of negative charging of insulators tapped by accelerated water droplets and of potential built up between the front and the back of a rubbing piece, observations already made in the 19th century. For more brittle polymers, strongly negatively charged microscopic abrasive particles were frequently observed on the rubbed tracks. The negative charge of those particles is presumably due in part to triboemission of electrons by polymer chain scission, forming radicals and negatively

  9. The impact of nano-coating on surface charge accumulation of epoxy resin insulator: characteristic and mechanism

    Science.gov (United States)

    Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun

    2018-06-01

    The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most

  10. Long-wavelength behaviour of charge-charge structure factor in insulating and metallic ground state of condensed hydrogen under pressure

    International Nuclear Information System (INIS)

    Amato, M.A.; March, N.H.

    1988-09-01

    Using the quantum Monte Carlo charge-charge structure factor S qq (k) it is argued that (i) in the metallic phase the small k expasion is non-analytic at order k 5 , reflecting plasmon dispersion, while in the insulating phase the non-analyticity occurs at O(k 3 ), due to van der Waals interaction between the protons. (author) [pt

  11. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  12. Insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor devices with Al2O3 or AlTiO gate dielectrics

    Science.gov (United States)

    Le, Son Phuong; Nguyen, Duong Dai; Suzuki, Toshi-kazu

    2018-01-01

    We have investigated insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor (MIS) devices with Al2O3 or AlTiO (an alloy of Al2O3 and TiO2) gate dielectrics obtained by atomic layer deposition on AlGaN. Analyzing insulator-thickness dependences of threshold voltages for the MIS devices, we evaluated positive interface fixed charges, whose density at the AlTiO/AlGaN interface is significantly lower than that at the Al2O3/AlGaN interface. This and a higher dielectric constant of AlTiO lead to rather shallower threshold voltages for the AlTiO gate dielectric than for Al2O3. The lower interface fixed charge density also leads to the fact that the two-dimensional electron concentration is a decreasing function of the insulator thickness for AlTiO, whereas being an increasing function for Al2O3. Moreover, we discuss the relationship between the interface fixed charges and interface states. From the conductance method, it is shown that the interface state densities are very similar at the Al2O3/AlGaN and AlTiO/AlGaN interfaces. Therefore, we consider that the lower AlTiO/AlGaN interface fixed charge density is not owing to electrons trapped at deep interface states compensating the positive fixed charges and can be attributed to a lower density of oxygen-related interface donors.

  13. Electron beam charging of insulators: A self-consistent flight-drift model

    International Nuclear Information System (INIS)

    Touzin, M.; Goeuriot, D.; Guerret-Piecourt, C.; Juve, D.; Treheux, D.; Fitting, H.-J.

    2006-01-01

    Electron beam irradiation and the self-consistent charge transport in bulk insulating samples are described by means of a new flight-drift model and an iterative computer simulation. Ballistic secondary electron and hole transport is followed by electron and hole drifts, their possible recombination and/or trapping in shallow and deep traps. The trap capture cross sections are the Poole-Frenkel-type temperature and field dependent. As a main result the spatial distributions of currents j(x,t), charges ρ(x,t), the field F(x,t), and the potential slope V(x,t) are obtained in a self-consistent procedure as well as the time-dependent secondary electron emission rate σ(t) and the surface potential V 0 (t). For bulk insulating samples the time-dependent distributions approach the final stationary state with j(x,t)=const=0 and σ=1. Especially for low electron beam energies E 0 G of a vacuum grid in front of the target surface. For high beam energies E 0 =10, 20, and 30 keV high negative surface potentials V 0 =-4, -14, and -24 kV are obtained, respectively. Besides open nonconductive samples also positive ion-covered samples and targets with a conducting and grounded layer (metal or carbon) on the surface have been considered as used in environmental scanning electron microscopy and common SEM in order to prevent charging. Indeed, the potential distributions V(x) are considerably small in magnitude and do not affect the incident electron beam neither by retarding field effects in front of the surface nor within the bulk insulating sample. Thus the spatial scattering and excitation distributions are almost not affected

  14. New Method for Shallow and Deep Trap Distribution Analysis in Oil Impregnated Insulation Paper Based on the Space Charge Detrapping

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2018-01-01

    Full Text Available Space charge has close relation with the trap distribution in the insulation material. The phenomenon of charges trapping and detrapping has attracted significant attention in recent years. Space charge and trap parameters are effective parameters for assessing the ageing condition of the insulation material qualitatively. In this paper, a new method for calculating trap distribution based on the double exponential fitting analysis of charge decay process and its application on characterizing the trap distribution of oil impregnated insulation paper was investigated. When compared with the common first order exponential fitting analysis method, the improved dual-level trap method could obtain the energy level range and density of both shallow traps and deep traps, simultaneously. Space charge decay process analysis of the insulation paper immersed with new oil and aged oil shows that the improved trap distribution calculation method can distinguish the physical defects and chemical defects. The trap density shows an increasing trend with the oil ageing, especially for the deep traps mainly related to chemical defects. The greater the energy could be filled by the traps, the larger amount of charges could be trapped, especially under higher electric field strength. The deep trap energy level and trap density could be used to characterize ageing. When one evaluates the ageing condition of oil-paper insulation using trap distribution parameters, the influence of oil performance should not be ignored.

  15. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy

    Science.gov (United States)

    Fatayer, Shadi; Schuler, Bruno; Steurer, Wolfram; Scivetti, Ivan; Repp, Jascha; Gross, Leo; Persson, Mats; Meyer, Gerhard

    2018-05-01

    Intermolecular single-electron transfer on electrically insulating films is a key process in molecular electronics1-4 and an important example of a redox reaction5,6. Electron-transfer rates in molecular systems depend on a few fundamental parameters, such as interadsorbate distance, temperature and, in particular, the Marcus reorganization energy7. This crucial parameter is the energy gain that results from the distortion of the equilibrium nuclear geometry in the molecule and its environment on charging8,9. The substrate, especially ionic films10, can have an important influence on the reorganization energy11,12. Reorganization energies are measured in electrochemistry13 as well as with optical14,15 and photoemission spectroscopies16,17, but not at the single-molecule limit and nor on insulating surfaces. Atomic force microscopy (AFM), with single-charge sensitivity18-22, atomic-scale spatial resolution20 and operable on insulating films, overcomes these challenges. Here, we investigate redox reactions of single naphthalocyanine (NPc) molecules on multilayered NaCl films. Employing the atomic force microscope as an ultralow current meter allows us to measure the differential conductance related to transitions between two charge states in both directions. Thereby, the reorganization energy of NPc on NaCl is determined as (0.8 ± 0.2) eV, and density functional theory (DFT) calculations provide the atomistic picture of the nuclear relaxations on charging. Our approach presents a route to perform tunnelling spectroscopy of single adsorbates on insulating substrates and provides insight into single-electron intermolecular transport.

  16. Disorder Effects in Charge Transport and Spin Response of Topological Insulators

    Science.gov (United States)

    Zhao, Lukas Zhonghua

    Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity backscattering. First principle calculations predicted Bi2Te3, Sb2Te3 and Bi2Se3 to be three-dimensional (3D) topological insulators with a single Dirac cone on the surface. The topological surface states were subsequently observed by angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). The investigations of charge transport through topological surfaces of 3D topological insulators, however, have faced a major challenge due to large charge carrier densities in the bulk donated by randomly distributed defects such as vacancies and antisites. This bulk disorder intermixes surface and bulk conduction channels, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response and resulting in the relatively low measured carrier mobilities. Moreover, charge inhomogeneity arising from bulk disorder can result in pronounced nanoscale spatial fluctuations of energy on the surface, leading to the formation of surface `puddles' of different carrier types. Great efforts have been made to combat the undesirable effects of disorder in 3D topological insulators and to reduce bulk carriers through chemical doping, nanostructure fabrication, and electric gating. In this work we have developed a new way to reduce bulk carrier densities using high-energy electron irradiation, thereby allowing us access to the topological surface quantum channels. We also found that disorder in 3D topological insulators can be beneficial. It can play an important part in enabling detection of unusual magnetic response from Dirac fermions and in uncovering new excitations, namely surface superconductivity in Dirac `puddles'. In Chapter 3 we show how by using differential magnetometry we could probe spin rotation in the 3D topological material family (Bi2Se 3, Bi2Te3 and Sb2Te3

  17. Charge-spin Transport in Surface-disordered Three-dimensional Topological Insulators

    Science.gov (United States)

    Peng, Xingyue

    As one of the most promising candidates for the building block of the novel spintronic circuit, the topological insulator (TI) has attracted world-wide interest of study. Robust topological order protected by time-reversal symmetry (TRS) makes charge transport and spin generation in TIs significantly different from traditional three-dimensional (3D) or two-dimensional (2D) electronic systems. However, to date, charge transport and spin generation in 3D TIs are still primarily modeled as single-surface phenomena, happening independently on top and bottom surfaces. In this dissertation, I will demonstrate via both experimental findings and theoretical modeling that this "single surface'' theory neither correctly describes a realistic 3D TI-based device nor reveals the amazingly distinct physical picture of spin transport dynamics in 3D TIs. Instead, I present a new viewpoint of the spin transport dynamics where the role of the insulating yet topologically non-trivial bulk of a 3D TI becomes explicit. Within this new theory, many mysterious transport and magneto-transport anomalies can be naturally explained. The 3D TI system turns out to be more similar to its low dimensional sibling--2D TI rather than some other systems sharing the Dirac dispersion, such as graphene. This work not only provides valuable fundamental physical insights on charge-spin transport in 3D TIs, but also offers important guidance to the design of 3D TI-based spintronic devices.

  18. Application of the thermal step method to space charge measurements in inhomogeneous solid insulating structures: A theoretical approach

    International Nuclear Information System (INIS)

    Cernomorcenco, Andrei; Notingher, Petru Jr.

    2008-01-01

    The thermal step method is a nondestructive technique for determining electric charge distribution across solid insulating structures. It consists in measuring and analyzing a transient capacitive current due to the redistribution of influence charges when the sample is crossed by a thermal wave. This work concerns the application of the technique to inhomogeneous insulating structures. A general equation of the thermal step current appearing in such a sample is established. It is shown that this expression is close to the one corresponding to a homogeneous sample and allows using similar techniques for calculating electric field and charge distribution

  19. An indirect method to measure the electric charge deposited on insulators during PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dinator, M.I.; Cancino, S.A.; Miranda, P.A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago (Chile); Morales, J.R. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago (Chile)], E-mail: rmorales@uchile.cl; Seelenfreund, A. [Universidad Academia de Humanismo Cristiano, Condell 343, Providencia, Santiago (Chile)

    2007-10-15

    Total charge deposited by a proton beam in an insulator during PIXE analysis has been indirectly determined using a Mylar film coated with cobalt. Elemental concentrations in the samples, pieces of volcanic glass, were obtained and compared to concentrations determined by ICP OES on the same samples. The strong agreement between these results shows the accuracy of the charge determined by this method.

  20. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Energy Technology Data Exchange (ETDEWEB)

    Rigit, A.R.H. [University of Sarawak, Faculty of Engineering, Kota Samarahan, Sarawak (Malaysia); Shrimpton, John S. [University of Southampton, Energy Technology Research Group, School of Engineering Sciences, Southampton (United Kingdom)

    2009-06-15

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/d{proportional_to}200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested. (orig.)

  1. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Science.gov (United States)

    Rigit, A. R. H.; Shrimpton, John S.

    2009-06-01

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/ d ~ 200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested.

  2. Fabrication of Al2O3 Nano-Structure Functional Film on a Cellulose Insulation Polymer Surface and Its Space Charge Suppression Effect

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-10-01

    Full Text Available Cellulose insulation polymer (paper/pressboard has been widely used in high voltage direct current (HVDC transformers. One of the most challenging issues in the insulation material used for HVDC equipment is the space charge accumulation. Effective ways to suppress the space charge injection/accumulation in insulation material is currently a popular research topic. In this study, an aluminium oxide functional film was deposited on a cellulose insulation pressboard surface using reactive radio frequency (RF magnetron sputtering. The sputtered thin film was characterized by the scanning electron microscopy/energy dispersive spectrometer (SEM/EDS, X-ray photoelectron spectroscopy (XPS, and X-ray diffraction (XRD. The influence of the deposited functional film on the dielectric properties and the space charge injection/accumulation behaviour was investigated. A preliminary exploration of the space charge suppression effect is discussed. SEM/EDS, XPS, and XRD results show that the nano-structured Al2O3 film with amorphous phase was successfully fabricated onto the fibre surface. The cellulose insulation pressboard surface sputtered by Al2O3 film has lower permittivity, conductivity, and dissipation factor values in the lower frequency (<103 Hz region. The oil-impregnated sputtered pressboard presents an apparent space-charge suppression effect. Compared with the pressboard sputtered with Al2O3 film for 90 min, the pressboard sputtered with Al2O3 film for 60 min had a better space charge suppression effect. Ultra-small Al2O3 particles (<10 nm grew on the surface of the larger nanoparticles. The nano-structured Al2O3 film sputtered on the fibre surface could act as a functional barrier layer for suppression of the charge injection and accumulation. This study offers a new perspective in favour of the application of insulation pressboard with a nano-structured function surface against space charge injection/accumulation in HVDC equipment.

  3. Radial space-charge-limited electron flow in semi-insulating GaN:Fe

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Prušáková, Lucie; Uxa, Štěpán; Paskova, T.; Evans, K.

    2011-01-01

    Roč. 110, č. 1 (2011), 013723/1-013723/6 ISSN 0021-8979 R&D Projects: GA ČR GAP204/10/0212 Institutional research plan: CEZ:AV0Z10100521 Keywords : gallium nitride * semi-insulator * space-charge-limited current Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.168, year: 2011

  4. Simulation of transmission of slow highly charged ions through insulating tapered macro-capillaries

    International Nuclear Information System (INIS)

    Schweigler, T.; Lemell, C.; Burgdoerfer, J.

    2011-01-01

    The field of charged-particle transmission through insulating nanocapillaries has expanded its scope within the last few years. Originally motivated by research on elementary ion-insulator interactions recent work has shifted the focus on the development of tools for ion-beam shaping and guiding. The design of tapered macrocapillaries has attracted growing interest and has found first applications in directing ions to targeted regions of biological cells for microsurgery. Due to the large dimensions of these capillaries, simulation of such systems faces considerable difficulties which we address in this paper. A first proof-of-principle simulation is presented.

  5. Effect of static charge fluctuations on the conduction along the edge of two-dimensional topological insulator

    Science.gov (United States)

    Vayrynen, Jukka; Goldstein, Moshe; Glazman, Leonid

    2013-03-01

    Static charge disorder may create electron puddles in the bulk of a material which nominally is in the insulating state. A single puddle - quantum dot - coupled to the helical edge of a two-dimensional topological insulator enhances the electron backscattering within the edge. The backscattering rate increases with the electron dwelling time in the dot. While remaining inelastic, the backscattering off a dot may be far more effective than the proposed earlier inelastic processes involving a local scatterer with no internal structure. We find the temperature dependence of the dot-induced correction to the universal conductance of the edge. In addition to the single-dot effect, we calculate the classical temperature-independent conductance correction caused by a weakly conducting bulk. We use our theory to assess the effect of static charge fluctuations in a heterostructure on the edge electron transport in a two-dimensional topological insulator. The work at Yale University is supported by NSF DMR Grant No. 1206612 and the Simons Foundation.

  6. Electrostatic Charging and Particle Interactions in Microscopic Insulating Grains

    Science.gov (United States)

    Lee, Victor

    In this thesis, we experimentally investigate the electrostatic charging as well as the particle interactions in microscopic insulating grains. First, by tracking individual grains accelerated in an electric field, we quantitatively demonstrate that tribocharging of same-material grains depends on particle size. Large grains tend to charge positively, and small ones tend to charge negatively. Theories based on the transfer of trapped electrons can explain this tendency but have not been validated. Here we show that the number of trapped electrons, measured independently by a thermoluminescence technique, is orders of magnitude too small to be responsible for the amount of charge transferred. This result reveals that trapped electrons are not responsible for same-material tribocharging of dielectric particles. Second, same-material tribocharging in grains can result in important long-range electrostatic interactions. However, how these electrostatic interactions contribute to particle clustering remains elusive, primarily due to the lack of direct, detailed observations. Using a high-speed camera that falls with a stream charged grains, we observe for the first time how charged grains can undergo attractive as well as repulsive Kepler-like orbits. Charged particles can be captured in their mutual electrostatic potential and form clusters via multiple bounces. Dielectric polarization effects are directly observed, which lead to additional attractive forces and stabilize "molecule-like" arrangements of charged particles. Third, we have developed a new method to study the charge transfer of microscopic particles based on acoustic levitation techniques. This method allows us to narrow the complex problem of many-particle charging down to precise charge measurements of a single sub-millimeter particle colliding with a target plate. By simply attaching nonpolar groups onto glass surfaces, we show that the contact charging of a particle is highly dependent on

  7. Charge dynamics in the Kondo insulator Ce3Bi4Pt3

    International Nuclear Information System (INIS)

    Bucher, B.; Schlesinger, Z.; Canfield, P.C.; Fisk, Z.

    1994-01-01

    We report the reflectivity and optical conductivity of the Kondo insulator Ce 3 Bi 4 Pt 3 . For temperatures less than 100 K, depletion of the conductivity below about 300 cm -1 signifies the development of a charge gap. The temperature dependence of the disappearance of the spectral weight scales with the quenching of the Ce 4f moments. ((orig.))

  8. Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yokoyama, Masaaki [Kaneka Fundamental Technology Research Alliance Laboratories, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Seki, Shu, E-mail: seki@chem.eng.osaka-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Kaneka Fundamental Technology Research Alliance Laboratories, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan)

    2014-07-21

    The density of traps at semiconductor–insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 10{sup 12 }cm{sup −2}, and the hole mobility was up to 6.5 cm{sup 2} V{sup −1} s{sup −1} after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.

  9. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    KAUST Repository

    Ndiaye, Papa Birame

    2017-07-07

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  10. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    Science.gov (United States)

    Ndiaye, Papa B.; Akosa, C. A.; Fischer, M. H.; Vaezi, A.; Kim, E.-A.; Manchon, A.

    2017-07-01

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  11. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    KAUST Repository

    Ndiaye, Papa Birame; Akosa, Collins Ashu; Fischer, M. H.; Vaezi, A.; Kim, E.-A.; Manchon, Aurelien

    2017-01-01

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  12. Deep-down ionization of protoplanetary discs

    Science.gov (United States)

    Glassgold, A. E.; Lizano, S.; Galli, D.

    2017-12-01

    The possible occurrence of dead zones in protoplanetary discs subject to the magneto-rotational instability highlights the importance of disc ionization. We present a closed-form theory for the deep-down ionization by X-rays at depths below the disc surface dominated by far-ultraviolet radiation. Simple analytic solutions are given for the major ion classes, electrons, atomic ions, molecular ions and negatively charged grains. In addition to the formation of molecular ions by X-ray ionization of H2 and their destruction by dissociative recombination, several key processes that operate in this region are included, e.g. charge exchange of molecular ions and neutral atoms and destruction of ions by grains. Over much of the inner disc, the vertical decrease in ionization with depth into the disc is described by simple power laws, which can easily be included in more detailed modelling of magnetized discs. The new ionization theory is used to illustrate the non-ideal magnetohydrodynamic effects of Ohmic, Hall and Ambipolar diffusion for a magnetic model of a T Tauri star disc using the appropriate Elsasser numbers.

  13. A method to restrain the charging effect on an insulating substrate in high energy electron beam lithography

    Science.gov (United States)

    Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen

    2014-12-01

    Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.

  14. Secondary electron emission and self-consistent charge transport in semi-insulating samples

    Energy Technology Data Exchange (ETDEWEB)

    Fitting, H.-J. [Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18051 Rostock (Germany); Touzin, M. [Unite Materiaux et Transformations, UMR CNRS 8207, Universite de Lille 1, F-59655 Villeneuve d' Ascq (France)

    2011-08-15

    Electron beam induced self-consistent charge transport and secondary electron emission (SEE) in insulators are described by means of an electron-hole flight-drift model (FDM) now extended by a certain intrinsic conductivity (c) and are implemented by an iterative computer simulation. Ballistic secondary electrons (SE) and holes, their attenuation to drifting charge carriers, and their recombination, trapping, and field- and temperature-dependent detrapping are included. As a main result the time dependent ''true'' secondary electron emission rate {delta}(t) released from the target material and based on ballistic electrons and the spatial distributions of currents j(x,t), charges {rho}(x,t), field F(x,t), and potential V(x,t) are obtained where V{sub 0} = V(0,t) presents the surface potential. The intrinsic electronic conductivity limits the charging process and leads to a conduction sample current to the support. In that case the steady-state total SE yield will be fixed below the unit: i.e., {sigma} {eta} + {delta} < 1.

  15. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    International Nuclear Information System (INIS)

    Teyssedre, G.; Laurent, C.; Vu, T. T. N.

    2015-01-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10 −14 –10 −13  m 2  V −1  s −1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets

  16. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Science.gov (United States)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  17. On the nano-hillock formation induced by slow highly charged ions on insulator surfaces

    Science.gov (United States)

    Lemell, C.; El-Said, A. S.; Meissl, W.; Gebeshuber, I. C.; Trautmann, C.; Toulemonde, M.; Burgdörfer, J.; Aumayr, F.

    2007-10-01

    We discuss the creation of nano-sized protrusions on insulating surfaces using slow highly charged ions. This method holds the promise of forming regular structures on surfaces without inducing defects in deeper lying crystal layers. We find that only projectiles with a potential energy above a critical value are able to create hillocks. Below this threshold no surface modification is observed. This is similar to the track and hillock formation induced by swift (˜GeV) heavy ions. We present a model for the conversion of potential energy stored in the projectiles into target-lattice excitations (heat) and discuss the possibility to create ordered structures using the guiding effect observed in insulating conical structures.

  18. Theoretical model for the detection of charged proteins with a silicon-on-insulator sensor

    International Nuclear Information System (INIS)

    Birner, S; Uhl, C; Bayer, M; Vogl, P

    2008-01-01

    For a bio-sensor device based on a silicon-on-insulator structure, we calculate the sensitivity to specific charge distributions in the electrolyte solution that arise from protein binding to the semiconductor surface. This surface is bio-functionalized with a lipid layer so that proteins can specifically bind to the headgroups of the lipids on the surface. We consider charged proteins such as the green fluorescent protein (GFP) and artificial proteins that consist of a variable number of aspartic acids. Specifically, we calculate self-consistently the spatial charge and electrostatic potential distributions for different ion concentrations in the electrolyte. We fully take into account the quantum mechanical charge density in the semiconductor. We determine the potential change at the binding sites as a function of protein charge and ionic strength. Comparison with experiment is generally very good. Furthermore, we demonstrate the superiority of the full Poisson-Boltzmann equation by comparing its results to the simplified Debye-Hueckel approximation

  19. On a possibility of creation of positive space charge cloud in a system with magnetic insulation of electrons

    International Nuclear Information System (INIS)

    Goncharov, A.A.; Dobrovol'skii, A.M.; Dunets, S.P.; Evsyukov, A.N.; Protsenko, I.M.

    2009-01-01

    We describe a new approach for creation an effective, low-cost, low-maintenance axially symmetric plasma optical tools for focusing and manipulating high-current beams of negatively charged particles, electrons and negative ions. This approach is based on fundamental plasma optical concept of magnetic insulation of electrons and non-magnetized positive ions providing creation of controlled uncompensated cloud of the space charge. The axially symmetric electrostatic plasma optical lens is well-known and well developed tool where this concept is used successfully. This provides control and focusing high-current positive ion beams in wide range of parameters. Here for the first time we present optimistic experimental results describing the application of an idea of magnetic insulation of electrons for generation of the stable cloud of positive space charge by focusing onto axis the converging stream of heavy ions produced by circular accelerator with closed electron drift. The estimations of a maximal concentration of uncompensated cloud of positive ions are also made

  20. Voltage-driven magnetization control in topological insulator/magnetic insulator heterostructures

    Directory of Open Access Journals (Sweden)

    Michael E. Flatté

    2017-05-01

    Full Text Available A major barrier to the development of spin-based electronics is the transition from current-driven spin torque, or magnetic-field-driven magnetization reversal, to a more scalable voltage-driven magnetization reversal. To achieve this, multiferroic materials appear attractive, however the effects in current materials occur at very large voltages or at low temperatures. Here the potential of a new class of hybrid multiferroic materials is described, consisting of a topological insulator adjacent to a magnetic insulator, for which an applied electric field reorients the magnetization. As these materials lack conducting states at the chemical potential in their bulk, no dissipative charge currents flow in the bulk. Surface states at the interface, if present, produce effects similar to surface recombination currents in bipolar devices, but can be passivated using magnetic doping. Even without conducting states at the chemical potential, for a topological insulator there is a finite spin Hall conductivity provided by filled bands below the chemical potential. Spin accumulation at the interface with the magnetic insulator provides a torque on the magnetization. Properly timed voltage pulses can thus reorient the magnetic moment with only the flow of charge current required in the leads to establish the voltage. If the topological insulator is sufficiently thick the resulting low capacitance requires little charge current.

  1. Inducing magneto-electric response in topological insulator

    International Nuclear Information System (INIS)

    Zeng, Lunwu; Song, Runxia; Zeng, Jing

    2013-01-01

    Utilizing electric potential and magnetic scalar potential formulas, which contain zero-order Bessel functions of the first kind and the constitutive relations of topological insulators, we obtained the induced magnetic scalar potentials and induced magnetic monopole charges which are induced by a point charge in topological insulators. The results show that infinite image magnetic monopole charges are generated by a point electric charge. The magnitude of the induced magnetic monopole charges are determined not only by the point electric charge, but also by the material parameters. - Highlights: ► Electric potential and magnetic scalar potential which contain zero-order Bessel function of the first kind were derived. ► Boundary conditions of topological insulator were built. ► Induced monopole charges were worked out.

  2. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedre, G., E-mail: gilbert.teyssedre@laplace.univ-tlse.fr; Laurent, C. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France); Vu, T. T. N. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Electric Power University, 235 Hoang Quoc Viet, 10000 Hanoi (Viet Nam)

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  3. Inducing magneto-electric response in topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lunwu, E-mail: 163.sin@163.com [Jiangsu Key Laboratory for Intelligent Agricultural Equipment, College of Engineering, Nanjing Agricultural University, Nanjing 210031 (China); Song, Runxia [Jiangsu Key Laboratory for Intelligent Agricultural Equipment, College of Engineering, Nanjing Agricultural University, Nanjing 210031 (China); Zeng, Jing [Faculty of Business and Economics, Macquarie University, NSW 2122 (Australia)

    2013-02-15

    Utilizing electric potential and magnetic scalar potential formulas, which contain zero-order Bessel functions of the first kind and the constitutive relations of topological insulators, we obtained the induced magnetic scalar potentials and induced magnetic monopole charges which are induced by a point charge in topological insulators. The results show that infinite image magnetic monopole charges are generated by a point electric charge. The magnitude of the induced magnetic monopole charges are determined not only by the point electric charge, but also by the material parameters. - Highlights: Black-Right-Pointing-Pointer Electric potential and magnetic scalar potential which contain zero-order Bessel function of the first kind were derived. Black-Right-Pointing-Pointer Boundary conditions of topological insulator were built. Black-Right-Pointing-Pointer Induced monopole charges were worked out.

  4. Helium ion beam induced electron emission from insulating silicon nitride films under charging conditions

    Science.gov (United States)

    Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.

    2018-06-01

    Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.

  5. Nonvolatile Solid-State Charged-Polymer Gating of Topological Insulators into the Topological Insulating Regime

    Science.gov (United States)

    Ireland, R. M.; Wu, Liang; Salehi, M.; Oh, S.; Armitage, N. P.; Katz, H. E.

    2018-04-01

    We demonstrate the ability to reduce the carrier concentration of thin films of the topological insulator (TI) Bi2 Se3 by utilizing a nonvolatile electrostatic gating via corona charging of electret polymers. Sufficient electric field can be imparted to a polymer-TI bilayer to result in significant electron density depletion, even without the continuous connection of a gate electrode or the chemical modification of the TI. We show that the Fermi level of Bi2 Se3 is shifted toward the Dirac point with this method. Using terahertz spectroscopy, we find that the surface chemical potential is lowered into the bulk band gap (approximately 50 meV above the Dirac point and 170 meV below the conduction-band minimum), and it is stabilized in the intrinsic regime while enhancing electron mobility. The mobility of surface state electrons is enhanced to a value as high as approximately 1600 cm2/V s at 5 K.

  6. Measurement of magnetically insulated line voltage using a Thomson Parabola Charged Particle Analyser

    International Nuclear Information System (INIS)

    Stanley, T.D.; Stinnett, R.W.

    1981-01-01

    The absence of direct measurements of magnetically insulated line voltage necessitated reliance on inferred voltages based on theoretical calculation and current measurements. This paper presents some of the first direct measurements of magnetically insulated transmission line peak voltages. These measurements were made on the Sandia National Laboratories HydraMITE facility. The peak voltage is measured by observing the energy of negative ions produced at the line cathode and accelerated through the line voltage. The ion energy and the charge-to-mass ratio are measured using the Thomson Parabola mass spectrometry technique. This technique uses parallel E and B fields to deflect the ions. The deflected ions are detected using a microchannel plate coupled to a phosphor screen and photographic film. The Thomson Parabola results are compared to Faraday Cup measurements and to calculated voltages based on current measurements. In addition, the significance of observed positive ions is discussed

  7. Potential fluctuations due to the randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    International Nuclear Information System (INIS)

    Slavcheva, G.; Yanchev, I.

    1991-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening due to the image charge with respect to the metal electrode in MIS-structure is taken into account, introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential Γ 2 to which it leads in distinction with the so far known correlation functions leading to divergent dispersion. The important characteristic of the random potential distribution Γ 2 determining the amplitude of the potential fluctuations is calculated. (author). 7 refs, 1 fig

  8. Surface charge conductivity of a topological insulator in a magnetic field: The effect of hexagonal warping

    Science.gov (United States)

    Akzyanov, R. S.; Rakhmanov, A. L.

    2018-02-01

    We investigate the influence of hexagonal warping on the transport properties of topological insulators. We study the charge conductivity within Kubo formalism in the first Born approximation using low-energy expansion of the Hamiltonian near the Dirac point. The effects of disorder, magnetic field, and chemical-potential value are analyzed in detail. We find that the presence of hexagonal warping significantly affects the conductivity of the topological insulator. In particular, it gives rise to the growth of the longitudinal conductivity with the increase of the disorder and anisotropic anomalous in-plane magnetoresistance. Hexagonal warping also affects the quantum anomalous Hall effect and anomalous out-of-plane magnetoresistance. The obtained results are consistent with the experimental data.

  9. MOSFET Electric-Charge Sensor

    Science.gov (United States)

    Robinson, Paul A., Jr.

    1988-01-01

    Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.

  10. Total dose hardening of buried insulator in implanted silicon-on-insulator structures

    International Nuclear Information System (INIS)

    Mao, B.Y.; Chen, C.E.; Pollack, G.; Hughes, H.L.; Davis, G.E.

    1987-01-01

    Total dose characteristics of the buried insulator in implanted silicon-on-insulator (SOI) substrates have been studied using MOS transistors. The threshold voltage shift of the parasitic back channel transistor, which is controlled by charge trapping in the buried insulator, is reduced by lowering the oxygen dose as well as by an additional nitrogen implant, without degrading the front channel transistor characteristics. The improvements in the radiation characteristics of the buried insulator are attributed to the decrease in the buried oxide thickness or to the presence of the interfacial oxynitride layer formed by the oxygen and nitrogen implants

  11. Surface charge compensation for a highly charged ion emission microscope

    International Nuclear Information System (INIS)

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-01-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed

  12. Device intended for measurement of induced trapped charge in insulating materials under electron irradiation in a scanning electron microscope

    International Nuclear Information System (INIS)

    Belkorissat, R; Benramdane, N; Jbara, O; Rondot, S; Hadjadj, A; Belhaj, M

    2013-01-01

    A device for simultaneously measuring two currents (i.e. leakage and displacement currents) induced in insulating materials under electron irradiation has been built. The device, suitably mounted on the sample holder of a scanning electron microscope (SEM), allows a wider investigation of charging and discharging phenomena that take place in any type of insulator during its electron irradiation and to determine accurately the corresponding time constants. The measurement of displacement current is based on the principle of the image charge due to the electrostatic influence phenomena. We are reporting the basic concept and test results of the device that we have built using, among others, the finite element method for its calibration. This last method takes into account the specimen chamber geometry, the geometry of the device and the physical properties of the sample. In order to show the possibilities of the designed device, various applications under different experimental conditions are explored. (paper)

  13. Shorting time of magnetically insulated reflex-ion diodes from the neutral-atom charge-exchange mechanism

    International Nuclear Information System (INIS)

    Strobel, G.

    1981-10-01

    In a magnetically insulated diode, collision-free electrons return to the cathode and no electron current is present at the anode. Electron transport to the anode is studied in this paper. Steady-state space-charge-limited flow is assumed initially. Breakdown of ion flow occurs when static neutral atoms at the anode undergo charge exchange, which results in neutral atoms drifting across the diode. These are subsequently ionized by reflexing ions producing electrons trapped in Larmor orbits throughout the diode. These electrons drift to the anode via ionization and inelastic collisions with other neutral atoms. Model calculations compare the effects of foil and mesh cathodes. Steady-state space-charge-limited ion current densities are calculated. The neutral atom density at the cathode is determined as a function of time. The shorting time of the diode is scaled versus the electrode separation d, the diode potential V 0 , the magnetic field, and the initial concentration of static neutron atoms

  14. Harvesting the decay energy of 26Al to drive lightning discharge in protoplanetary discs

    Science.gov (United States)

    Johansen, Anders; Okuzumi, Satoshi

    2018-01-01

    Chondrules in primitive meteorites likely formed by recrystallisation of dust aggregates that were flash-heated to nearly complete melting. Chondrules may represent the building blocks of rocky planetesimals and protoplanets in the inner regions of protoplanetary discs, but the source of ubiquitous thermal processing of their dust aggregate precursors remains elusive. Here we demonstrate that escape of positrons released in the decay of the short-lived radionuclide 26Al leads to a large-scale charging of dense pebble structures, resulting in neutralisation by lightning discharge and flash-heating of dust and pebbles. This charging mechanism is similar to a nuclear battery where a radioactive source charges a capacitor. We show that the nuclear battery effect operates in circumplanetesimal pebble discs. The extremely high pebble densities in such discs are consistent with conditions during chondrule heating inferred from the high abundance of sodium within chondrules. The sedimented mid-plane layer of the protoplanetary disc may also be prone to charging by the emission of positrons, if the mass density of small dust there is at least an order of magnitude above the gas density. Our results imply that the decay energy of 26Al can be harvested to drive intense lightning activity in protoplanetary discs. The total energy stored in positron emission is comparable to the energy needed to melt all solids in the protoplanetary disc. The efficiency of transferring the positron energy to the electric field nevertheless depends on the relatively unknown distribution and scale-dependence of pebble density gradients in circumplanetesimal pebble discs and in the protoplanetary disc mid-plane layer.

  15. Probing charge transfer during metal-insulator transitions in graphene-LaAlO3/SrTiO3 systems

    Science.gov (United States)

    Aliaj, I.; Sambri, A.; Miseikis, V.; Stornaiuolo, D.; di Gennaro, E.; Coletti, C.; Pellegrini, V.; Miletto Granozio, F.; Roddaro, S.

    2018-06-01

    Two-dimensional electron systems (2DESs) at the interface between LaAlO3 (LAO) and SrTiO3 (STO) perovskite oxides display a wide class of tunable phenomena ranging from superconductivity to metal-insulator transitions. Most of these effects are strongly sensitive to surface physics and often involve charge transfer mechanisms, which are, however, hard to detect. In this work, we realize hybrid field-effect devices where graphene is used to modulate the transport properties of the LAO/STO 2DES. Different from a conventional gate, graphene is semimetallic and allows us to probe charge transfer with the oxide structure underneath the field-effect electrode. In LAO/STO samples with a low initial carrier density, graphene-covered regions turn insulating when the temperature is lowered to 3 K, but conduction can be restored in the oxide structure by increasing the temperature or by field effect. The evolution of graphene's electron density is found to be inconsistent with a depletion of LAO/STO, but it rather points to a localization of interfacial carriers in the oxide structure.

  16. Charge driven metal-insulator transitions in LaMnO3|SrTiO3 (111) superlattices

    KAUST Repository

    Cossu, Fabrizio; Tahini, Hassan Ali; Singh, Nirpendra; Schwingenschlö gl, Udo

    2017-01-01

    Interfaces of perovskite oxides, due to the strong interplay between the lattice, charge and spin degrees of freedom, can host various phase transitions, which is particularly interesting if these transitions can be tuned by external fields. Recently, ferromagnetism was found together with a seemingly insulating state in superlattices of manganites and titanates. We therefore study the (111) oriented $(\\text{LaMnO}_3)_{6-x}\\vert(\\text{SrTiO}_3)_{6+x}~(x = -0.5, 0, 0.5)$ superlattices by means of ab initio calculations, predicting a ferromagnetic ground state due to double exchange in all cases. We shed light on the ferromagnetic coupling in the LaMnO3 region and at the interfaces. The insulating states of specific superlattices can be understood on the basis of Jahn-Teller modes and electron/hole doping.

  17. Charge driven metal-insulator transitions in LaMnO3|SrTiO3 (111) superlattices

    KAUST Repository

    Cossu, Fabrizio

    2017-08-01

    Interfaces of perovskite oxides, due to the strong interplay between the lattice, charge and spin degrees of freedom, can host various phase transitions, which is particularly interesting if these transitions can be tuned by external fields. Recently, ferromagnetism was found together with a seemingly insulating state in superlattices of manganites and titanates. We therefore study the (111) oriented $(\\\\text{LaMnO}_3)_{6-x}\\\\vert(\\\\text{SrTiO}_3)_{6+x}~(x = -0.5, 0, 0.5)$ superlattices by means of ab initio calculations, predicting a ferromagnetic ground state due to double exchange in all cases. We shed light on the ferromagnetic coupling in the LaMnO3 region and at the interfaces. The insulating states of specific superlattices can be understood on the basis of Jahn-Teller modes and electron/hole doping.

  18. Conversion of spin current into charge current in a topological insulator: Role of the interface

    Science.gov (United States)

    Dey, Rik; Prasad, Nitin; Register, Leonard F.; Banerjee, Sanjay K.

    2018-05-01

    Three-dimensional spin current density injected onto the surface of a topological insulator (TI) produces a two-dimensional charge current density on the surface of the TI, which is the so-called inverse Edelstein effect (IEE). The ratio of the surface charge current density on the TI to the spin current density injected across the interface defined as the IEE length was shown to be exactly equal to the mean free path in the TI determined to be independent of the electron transmission rate across the interface [Phys. Rev. B 94, 184423 (2016), 10.1103/PhysRevB.94.184423]. However, we find that the transmission rate across the interface gives a nonzero contribution to the transport relaxation rate in the TI as well as to the effective IEE relaxation rate (over and above any surface hybridization effects), and the IEE length is always less than the original mean free path in the TI without the interface. We show that both the IEE relaxation time and the transport relaxation time in the TI are modified by the interface transmission time. The correction becomes significant when the transmission time across the interface becomes comparable to or less than the original momentum scattering time in the TI. This correction is similar to experimental results in Rashba electron systems in which the IEE relaxation time was found shorter in the case of direct interface with metal in which the interface transmission rate will be much higher, compared to interfaces incorporating insulating oxides. Our results indicate the continued importance of the interface to obtain a better spin-to-charge current conversion and a limitation to the conversion efficiency due to the quality of the interface.

  19. Electrohydrodynamic Direct-Write Orderly Micro/Nanofibrous Structure on Flexible Insulating Substrate

    Directory of Open Access Journals (Sweden)

    Jiang-Yi Zheng

    2014-01-01

    Full Text Available AC pulse-modulated electrohydrodynamic direct-writing (EDW was utilized to direct-write orderly micro/nanofibrous structure on the flexible insulating polyethylene terephthalate (PET substrate. During the EDW process, AC electrical field induced charges to reciprocate along the jet and decreased the charge repulsive force that applied on charged jet. Thanks to the smaller charge repulsive force, stable straight jet can be built up to direct-write orderly micro/nanofibrous structures on the insulating substrate. The minimum motion velocity required to direct-write straight line fibrous structure on insulating PET substrate was 700 mm/s. Moreover, the influences of AC voltage amplitude, frequency, and duty cycle ratio on the line width of fibrous structures were investigated. This work proposes a novel solution to overcome the inherent charge repulsion emerging on the insulating substrate, and promotes the application of EDW technology on the flexible electronics.

  20. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  1. Intense-proton-beam transport through an insulator beam guide

    International Nuclear Information System (INIS)

    Hanamori, Susumu; Kawata, Shigeo; Kikuchi, Takashi; Fujita, Akira; Chiba, Yasunobu; Hikita, Taisuke; Kato, Shigeru

    1998-01-01

    In this paper we study intense-proton-beam transport through an insulator guide. In our previous papers (Jpn. J. Appl. Phys. 34 (1995) L520, Jpn. J. Appl. Phys. 35 (1996) L1127) we proposed a new system for intense-electron-beam transport using an insulator guide. In contrast to the electron beam, an intense-proton beam tends to generate a virtual anode, because of the large proton mass. The virtual anode formation at the initial stage is prevented by prefilled plasma in this system. During and after this, electrons are extracted from the plasma generated at the insulator surface by the proton beam space charge and expand over the transport area. The proton beam charge is effectively neutralized by the electrons. Consequently, the proton beam propagates efficiently through the insulator beam guide. The electron extraction is self-regulated by the net space charge of the proton beam. (author)

  2. Signatures of charge inhomogeneities in the infrared spectra of topological insulators Bi2Se3, Bi2Te3 and Sb2Te3

    International Nuclear Information System (INIS)

    Dordevic, S V; Wolf, M S; Stojilovic, N; Lei Hechang; Petrovic, C

    2013-01-01

    We present the results of an infrared spectroscopy study of topological insulators Bi 2 Se 3 , Bi 2 Te 3 and Sb 2 Te 3 . Reflectance spectra of all three materials look similar, with a well defined plasma edge. However, there are some important differences. Most notably, as temperature decreases the plasma edge shifts to lower frequencies in Bi 2 Se 3 , whereas in Bi 2 Te 3 and Sb 2 Te 3 it shifts to higher frequencies. In the loss function spectra we identify asymmetric broadening of the plasmon, and assign it to the presence of charge inhomogeneities. It remains to be seen if charge inhomogeneities are characteristic of all topological insulators, and whether they are of intrinsic or extrinsic nature.

  3. Surface potential measurement of the insulator with secondary electron caused by negative ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Toyota, Yoshitaka; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1994-01-01

    Ion implantation has the merit of the good controllability of implantation profile and low temperature process, and has been utilized for the impurity introduction in LSI production. However, positive ion implantation is carried out for insulator or insulated conductor substrates, their charged potential rises, which is a serious problem. As the requirement for them advanced, charge compensation method is not the effective means for resolving it. The negative ion implantation in which charging is little was proposed. When the experiment on the negative ion implantation into insulated conductors was carried out, it was verified that negative ion implantation is effective as the implantation process without charging. The method of determining the charged potential of insulators at the time of negative ion implantation by paying attention to the energy distribution of the secondary electrons emitted from substrates at the time was devised. The energy analyzer for measuring the energy distribution of secondary electrons was made, and the measurement of the charged potential of insulators was carried out. The principle of the measurement, the measuring system and the experimental results are reported. (K.I.)

  4. To minimized power outage by the application of 'RTV' (room temperature vulcanizing) silicon on high voltage porcelain insulators in Pakistan

    International Nuclear Information System (INIS)

    Hafiz Tehzeeb ul Hassan

    2003-01-01

    In Pakistan power network comprises of 500KV, 220KV, 132KV, 66KV and 33KV transmission lines and 11KV power distribution systems. Number of insulators are used in connected units in the shape of strings with transmission line as per insulation requirements with proper design according to the various kinds of pollution stresses. The transmission lines are passing from or near polluted areas and very dusty plains of Punjab and Sindh provinces. Practices are being used in these transmission lines for removal of accumulated contamination of insulators by periodic cleaning twice a year or de-energized transmission lines. Even then discontinuation of supply takes place in the polluted areas in foggy weather. Special technique of using water repellent (Room Temperature Vulcanizing) silicone coating/paint has been introduced on high voltage disc Insulators to minimize the outage in power net work in Pakistan. Especially in high pollution areas near chemical factories and near brick kilns etc comparison study of coated and uncoated disc Insulators have been carried out by ESDD (Equal Salt Deposit Density) measurement in salt fog chamber. (author)

  5. Electrical Detection of Spin-to-Charge Conversion in a Topological Insulator Bi2Te3

    Science.gov (United States)

    Li, Connie H.; van't Erve, Olaf M. J.; Li, Yaoyi; Li, Lian; Jonker, Berry T.

    Spin-momentum locking in topological insulators (TIs) dictates that an unpolarized charge current creates a net spin polarization. We recently demonstrated the first electrical detection of this spontaneous polarization in a transport geometry, using a ferromagnetic (FM) / tunnel barrier contact, where the projection of the TI surface state spin on the magnetization of detector is measured as a voltage [1]. Alternatively, if spins are injected into the TI surface state system, it is distinctively associated with a unique carrier momentum, and hence should generated a charge accumulation, similar to that of inverse spin Hall effect. Here we experimentally demonstrate both effects in the same device fabricated in Bi2Te3: the electrical detection of the spin accumulation generated by an unpolarized current flowing through the surface states, and that of the charge accumulation generated by spins injected into the surface states system. This reverse measurement is an independent confirmation of spin-momentum locking in the TI surface states, and offers additional avenue for spin manipulation. It further demonstrates the robustness and versatility of electrical access to the TI surface state spin system, an important step towards its utilization in TI-based spintronics devices. C.H. Li et al., Nat. Nanotech. 9, 218 (2014). Supported by NRL core funds and Nanoscience Institute.

  6. Force and Motion Characteristics of Contamination Particles near the High Voltage End of UHVDC Insulator

    Directory of Open Access Journals (Sweden)

    Lei Lan

    2017-07-01

    Full Text Available It is important to reveal the relations of physical factors to deposition of contaminants on insulator. In this paper, the simulation model of high voltage end of insulator was established to study the force and motion characteristics of particles affected by electric force and airflow drag force near the ultra-high voltage direct current (UHVDC insulator. By finite element method, the electric field was set specially to be similar to the one near practical insulator, the steady fluid field was simulated. The electric force and air drag force were loaded on the uniformly charged particles. The characteristics of the two forces on particles, the relationship between quantity of electric charge on particles and probability of particles contacting the insulator were analyzed. It was found that, near the sheds, airflow drag force on particles is significantly greater than electric force with less electric charge. As the charge multiplies, electric force increases linearly, airflow drag force grows more slowly. There is a trend that the magnitude of electric force and drag force is going to similar. Meanwhile, the probability of particles contacting the insulator is increased too. However, at a certain level of charge which has different value with different airflow velocity, the contact probability has extremum here. After exceeding the value, as the charge increasing, the contact probability decreases gradually.

  7. Charge transport of graphene ferromagnetic-insulator-superconductor junction with pairing state of broken time reversal symmetry

    Directory of Open Access Journals (Sweden)

    Yaser Hajati

    2015-04-01

    Full Text Available We investigate the charge transport through a graphene-based ferromagnetic-insulator-superconductor junction with a broken time reversal symmetry (BTRS of dx2−y2 + is and dx2−y2 + idxy superconductor using the extended Blonder-Tinkham-Klapwijk formalism. Our analysis have shown several charateristics in this junction, providing a useful probe to understand the role of the order parameter symmetry in the superconductivity. We find that the presence of the BTRS (X state in the superconductor region has a strong effect on the tunneling conductance curves which leads to a decrease in the height of the zero-bias conductance peak (ZBCP. In particular, we show that the magnitude of the superconducting proximity effect depends to a great extent on X and by increasing X, the zero-bias charge conductance oscillations with respect to the rotation angle β are suppressed. In addition, we find that at the maximum rotation angle β = π/4, introducing BTRS in the FIS junction causes oscillatory behavior of the zero-bias charge conductance with the barrier strength (χG by a period of π and by approaching the X to 1, the amplitude of charge conductance oscillations increases. This behavior is drastically different from none BTRS similar graphene junctions. At last, we suggest an experimental setup for verifying our predicted effects.

  8. Surface potential measurement of insulators in negative-ion implantation by secondary electron energy-peak shift

    International Nuclear Information System (INIS)

    Nagumo, Shoji; Toyota, Yoshitaka; Tsuji, Hiroshi; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1993-01-01

    Negative-ion implantation is expected to realize charge-up free implantation. In this article, about a way to specify surface potential of negative-ion implanted insulator by secondary-electron-energy distribution, its principle and preliminary experimental results are described. By a measuring system with retarding field type energy analyzer, energy distribution of secondary electron from insulator of Fused Quartz in negative-carbon-ion implantation was measured. As a result the peak-shift of its energy distribution resulted according with the surface potential of insulator. It was found that surface potential of insulator is negatively charged by only several volts. Thus, negative-ion implanted insulator reduced its surface charge-up potential (without any electron supply). Therefore negative-ion implantation is considered to be much more effective method than conventional positive-ion implantation. (author)

  9. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  10. Mechanism of the free charge carrier generation in the dielectric breakdown

    Science.gov (United States)

    Rahim, N. A. A.; Ranom, R.; Zainuddin, H.

    2017-12-01

    Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.

  11. The model of metal-insulator phase transition in vanadium oxide

    International Nuclear Information System (INIS)

    Vikhnin, V.S.; Lysenko, S.; Rua, A.; Fernandez, F.; Liu, H.

    2005-01-01

    Thermally induced metal-insulator phase transitions (PT) in VO 2 thin films are studied theoretically and experimentally. The hysteresis phenomena in the region of the transition for different type thin films were investigated. The phenomenological model of the PT is suggested. The charge transfer-lattice instability in VO 2 metallic phase is considered as basis of the first order metal-insulator PT in VO 2 . The charge transfer is treated as an order parameter

  12. A New Ultra Fast Conduction Mechanism in Insulating Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Xu

    2011-01-01

    Full Text Available A brand new phenomenon, namely, electrical conduction via soliton-like ultra fast space charge pulses, recently identified in unfilled cross-linked polyethylene, is shown for the first time to occur in insulating polymer nanocomposites and its characteristics correlated with the electromechanical properties of nanostructured materials. These charge pulses are observed to cross the insulation under low electrical field in epoxy-based nanocomposites containing nanosilica particles with relative weights of 1%, 5%, 10%, and 20% at speeds orders of magnitude higher than those expected for carriers in insulating polymers. The characteristics of mobility, magnitude and repetition rate for both positive and negative charge pulses are studied in relation to nanofiller concentration. The results show that the ultra fast charge pulses (packets are affected significantly by the concentration of nanoparticles. An explanation is presented in terms of a new conduction mechanism where the mechanical properties of the polymer and movement of polymer chains play an important role in the injection and transport of charge in the form of pulses. Here, the charge transport is not controlled by traps. Instead, it is driven by the contribution of polarization and the resultant electromechanical compression, which is substantially affected by the introduction of nanoparticles into the base polymer.

  13. Floquet Engineering of Optical Solenoids and Quantized Charge Pumping along Tailored Paths in Two-Dimensional Chern Insulators

    Science.gov (United States)

    Wang, Botao; Ünal, F. Nur; Eckardt, André

    2018-06-01

    The insertion of a local magnetic flux, as the one created by a thin solenoid, plays an important role in gedanken experiments of quantum Hall physics. By combining Floquet engineering of artificial magnetic fields with the ability of single-site addressing in quantum gas microscopes, we propose a scheme for the realization of such local solenoid-type magnetic fields in optical lattices. We show that it can be employed to manipulate and probe elementary excitations of a topological Chern insulator. This includes quantized adiabatic charge pumping along tailored paths inside the bulk, as well as the controlled population of edge modes.

  14. The Dynamics of the Electric Field Distribution in the Surface of Insulating Film Irradiated by Air Ions

    Directory of Open Access Journals (Sweden)

    Julionas KALADE

    2016-05-01

    Full Text Available When deposited on a surface, electric charge usually accumulates near the tips of surface irregularities, from where it can be transferred to nearby objects due to ionization of ambient air. The amount of transferred charge, the rate of charge transfer, the size of the charged spot (e.g., on the surface of an insulator and its tendency to spread will depend on properties of air during electric discharge, on the magnitude of charge accumulated at the tip of an object, on possibilities for replenishing that charge, on the time spent for charge transfer from the tip onto the insulating layer, on properties of the insulating layer, etc. Those properties are discussed in this work by comparing the results of measurements and theoretical analysis.

  15. Disc defect classification for optical disc drives

    NARCIS (Netherlands)

    Helvoirt, van J.; Leenknegt, G.A.L.; Steinbuch, M.; Goossens, H.J.

    2005-01-01

    Optical disc drives are subject to various disturbances and faults. A special type of fault is the so-called disc defect. In this paper we present an approach for disc defect classification. It is based on hierarchical clustering of measured signals that are affected by disc defects. The

  16. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  17. The PANDA Endcap Disc DIRC

    Science.gov (United States)

    Föhl, K.; Ali, A.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Böhm, M.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Hayrapetyan, A.; Kreutzfeld, K.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.

    2018-02-01

    Positively identifying charged kaons in the PANDA forward endcap solid angle range can be achieved with the Endcap Disc DIRC, allowing kaon-pion separation from 1 up to 4 GeV/c with a separation power of at least 3 standard deviations. Design, performance, and components of this DIRC are given, including the recently introduced TOFPET-ASIC based read-out. Results of a prototype operated in a test beam at DESY in 2016 are shown.

  18. Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content

    Science.gov (United States)

    Showalter, Brent L.; Beckstein, Jesse C.; Martin, John T.; Beattie, Elizabeth E.; Orías, Alejandro A. Espinoza; Schaer, Thomas P.; Vresilovic, Edward J.; Elliott, Dawn M.

    2012-01-01

    Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization. PMID:22333953

  19. Spin excitations in the quasi-two-dimensional charge-ordered insulator α -(BEDT-TTF ) 2I3 probed via 13C NMR

    Science.gov (United States)

    Ishikawa, Kyohei; Hirata, Michihiro; Liu, Dong; Miyagawa, Kazuya; Tamura, Masafumi; Kanoda, Kazushi

    2016-08-01

    The spin excitations from the nonmagnetic charge-ordered insulating state of α -(BEDT-TTF ) 2I3 at ambient pressure have been investigated by probing the static and low-frequency dynamic spin susceptibilities via site-selective nuclear magnetic resonance at 13C sites. The site-dependent values of the shift and the spin-lattice relaxation rate 1 /T1 below the charge-ordering transition temperature (TCO≈135 K ) demonstrate a spin density imbalance in the unit cell, in accord with the charge-density ratio reported earlier. The shift and 1 /T1 show activated temperature dependence with a static (shift) gap ΔS≈47 -52 meV and a dynamic (1 /T1 ) gap ΔR≈40 meV . The sizes of the gaps are well described in terms of a localized spin model, where spin-1/2 antiferromagnetic dimer chains are weakly coupled with each other.

  20. Theory of the low-voltage impedance of superconductor-- p insulator--normal metal tunnel junctions

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1984-01-01

    A theory for the low-voltage impedance of a superconductor-- p insulator--normal metal tunnel junction is developed that includes the effects of charge imbalance and of quasiparticle fluctuations. A novel, inelastic, charge-imbalance relaxation process is identified that is associated with the junction itself. This new process leads to the surprising result that the charge-imbalance component of the dc resistance of a junction becomes independent of the electron-phonon scattering rate as the insulator resistance decreases

  1. Artificial Disc Replacement

    Science.gov (United States)

    ... Spondylolisthesis BLOG FIND A SPECIALIST Treatments Artificial Disc Replacement (ADR) Patient Education Committee Jamie Baisden The disc ... Disc An artificial disc (also called a disc replacement, disc prosthesis or spine arthroplasty device) is a ...

  2. Experimental investigation of limit space charge accumulation mode operation in a semi-insulating GaAs photoconductive semiconductor switch

    International Nuclear Information System (INIS)

    Ma Xiangrong; Shi Wei; Xiang Mei

    2013-01-01

    Experiments with the limited space-charge accumulation (LSA) mode of oscillation in a large gap semi-insulating (SI) GaAs photoconductive semiconductor switch (PCSS) are discussed. It has been observed that growth and drift of a photo-activated charge domain (PACD) are quenched only when the bias voltage is more than twice the threshold voltage. The original negative resistance characteristics are directly utilized in the LSA mode; during LSA operation the spatial average of the electric field varies over a large portion of the negative differential mobility region of the velocity—electric field characteristic. The work efficiency of an SI GaAs PCSS is remarkably enhanced by electric field excursions into the positive resistance region when the total electric field is only below the threshold part of the time. The LSA mode can only operate in the certain conditions that satisfy the quenching of the accumulation layer and the smaller initial domain voltage. (semiconductor devices)

  3. Model improvements to simulate charging in SEM

    Science.gov (United States)

    Arat, K. T.; Klimpel, T.; Hagen, C. W.

    2018-03-01

    Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. The improvements include both modelling of low energy electron scattering and charging of insulators. The new first-principle scattering models provide a more realistic charge distribution cloud in the material, and a better match between non-charging simulations and experimental results. Improvements on charging models mainly focus on redistribution of the charge carriers in the material with an induced conductivity (EBIC) and a breakdown model, leading to a smoother distribution of the charges. Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.

  4. Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, Alexey Yu.; Silevitch, Daniel M.; Proslier, Thomas; Postolova, Svetlana V.; Burdastyh, Maria V.; Gutakovskii, Anton K.; Rosenbaum, Thomas F.; Vinokur, Valerii V.; Baturina, Tatyana I.

    2018-03-06

    Three decades after the prediction of charge-vortex duality in the critical vicinity of the two-dimensional superconductor-insulator transition (SIT), one of the fundamental implications of this duality-the charge Berezinskii-Kosterlitz-Thouless (BKT) transition that should occur on the insulating side of the SIT-has remained unobserved. The dual picture of the process points to the existence of a superinsulating state endowed with zero conductance at finite temperature. Here, we report the observation of the charge BKT transition on the insulating side of the SIT in 10 nm thick NbTiN films, identified by the BKT critical behavior of the temperature and magnetic field dependent resistance, and map out the magnetic-field dependence of the critical temperature of the charge BKT transition. Finally, we ascertain the effects of the finite electrostatic screening length and its divergence at the magnetic field-tuned approach to the superconductor-insulator transition.

  5. Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer

    Science.gov (United States)

    Lee, Victor; James, Nicole M.; Waitukaitis, Scott R.; Jaeger, Heinrich M.

    2018-03-01

    Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to O H- ions as the charge carriers.

  6. Stability of polarization in organic ferroelectric metal-insulator-semiconductor (MIS) structures

    Energy Technology Data Exchange (ETDEWEB)

    Kalbitz, Rene; Fruebing, Peter; Gerhard, Reimund [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam (Germany); Taylor, Martin [School of Electronic Engineering, Bangor University, Dean Street, Bangor Gwynedd, LL57 1UT (United Kingdom)

    2011-07-01

    Ferroelectric field effect transistors (FeFETs) offer the prospect of an organic-based memory device. Since the charge transport in such devices is confined to the interface between the insulator and the semiconductor, the focus of the present study was on the investigation of this region. Capacitance-voltage (C-V) measurements of all-organic MIS devices with poly(vinylidenefluoride- trifluoroethylene) (P(VDF-TrFE)) as gate insulator and poly(3-hexylthiophene)(P3HT) as semiconductor were carried out. When the structure was driven into depletion, a positive flat-band voltage shift was observed arising from the change in polarization state of the ferroelectric insulator. When driven into accumulation, the polarization was reversed. It is shown that both polarization states are stable. However, negative charge trapped at the interface during the depletion cycle masks the negative shift in flat-band voltage expected during the sweep to accumulation voltages. Measurements on P(VDF-TrFE)/P3HT based FeFETs yield further evidence for fixed charges at the interface. Output characteristics suggest the injection of negative charges into the interface region when a depletion voltage is applied between source and gate contact.

  7. Insulator-semimetallic transition in quasi-1D charged impurity-infected armchair boron-nitride nanoribbons

    Science.gov (United States)

    Dinh Hoi, Bui; Yarmohammadi, Mohsen

    2018-04-01

    We address control of electronic phase transition in charged impurity-infected armchair-edged boron-nitride nanoribbons (ABNNRs) with the local variation of Fermi energy. In particular, the density of states of disordered ribbons produces the main features in the context of pretty simple tight-binding model and Green's functions approach. To this end, the Born approximation has been implemented to find the effect of π-band electron-impurity interactions. A modulation of the π-band depending on the impurity concentrations and scattering potentials leads to the phase transition from insulator to semimetallic. We present here a detailed physical meaning of this transition by studying the treatment of massive Dirac fermions. From our findings, it is found that the ribbon width plays a crucial role in determining the electronic phase of disordered ABNNRs. The obtained results in controllable gap engineering are useful for future experiments. Also, the observations in this study have also fueled interest in the electronic properties of other 2D materials.

  8. A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors

    Science.gov (United States)

    Deligkaris, Christos

    2018-01-01

    The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena.…

  9. Particle beam dynamics in a magnetically insulated coaxial diode

    International Nuclear Information System (INIS)

    Korenev, V.G.; Magda, I.I.; Sinitsin, V.G.

    2015-01-01

    The dynamics of charged particle beams emitted from a cathode into a smooth coaxial diode with magnetic insulation is studied with the aid of 3-D PIC simulation. The processes controlling space charge formation and its evolution in the diode are modeled for geometries typical of high-voltage millimeter wave magnetrons that are characterized by very high values of emission currents, hence high space charge densities.

  10. Deep Charging Evaluation of Satellite Power and Communication System Components

    Science.gov (United States)

    Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.

    2016-01-01

    Deep charging, in contrast to surface charging, focuses on electron penetration deep into insulating materials applied over conductors. A classic example of this scenario is an insulated wire. Deep charging can pose a threat to material integrity, and to sensitive electronics, when it gives rise to an electrostatic discharge or arc. With the advent of Electric Orbit Raising, which requires spiraling through Earth's radiation belts, satellites are subjected to high energy electron environments which they normally would not encounter. Beyond Earth orbit, missions to Jupiter and Saturn face deep charging concerns due to the high energy radiation environments. While predictions can be made about charging in insulating materials, it is difficult to extend those predictions to complicated geometries, such as the case of an insulating coating around a small wire, or a non-uniform silicone grouting on a bus bar. Therefore, to conclusively determine the susceptibility of a system to arcs from deep charging, experimental investigations must be carried out. This paper will describe the evaluation carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. Specifically, deep charging evaluations of solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, will be discussed. The results of each evaluation will be benchmarked against control sample tests, as well as typical power system levels, to show no significant deep charging threat existed for this set of samples under the conditions tested.

  11. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  12. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    Science.gov (United States)

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  13. The use of the foil technique for the elimination of charging, and for beam monitoring in microbeam analysis of thick insulating samples

    International Nuclear Information System (INIS)

    Chaudhri, M.A.; Melbourne Univ., Austin

    1982-01-01

    It has been demonstrated that the 'thin-foil-technique' for the elimination of charging and accurate beam current/charge measurement, first developed by us, can also be conveniently applied to microbeam analysis of thick insulating samples. We have calculated the spatial broadening of proton microbeams of 1-20 MeV energies at the target, due to thin carbon foils of different thicknesses ranging from 10-40 μg/cm 2 placed either 2 or 5 mm in front of the target by using Moliere's theory of multiple scattering. The results show that at higher proton energies there is very little broadening of the incident beam even from thicker foils. But for lower energy protons (1 and 2 MeV) this broadening or worsening of the spatial resolution is relatively larger, especially from thicker foils. However, we have further shown that, even at these energies, the beam broadening can be minimized to acceptable limits by selecting a suitable thickness of carbon foil and placing it as close to the insulating target as possible. A comprehensive table is provided, which would help in selecting the most suitable carbon-foil thickness and the distance in front of the target where this foil should be placed, for microprobe application requiring different beam spots and proton energies. The advantages of this foil technique are described. (orig.)

  14. Topological insulator materials and nanostructures for future electronics, spintronics and energy conversion

    International Nuclear Information System (INIS)

    Kantser, Valeriu

    2011-01-01

    Two fundamental electrons attributes in materials and nanostructures - charge and spin - determine their electronic properties. The processing of information in conventional electronic devices is based only on the charge of the electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors and insulators are the basic materials that constitute the components of electronic devices, and these have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals, magnetic semiconductors, dilute magnetic semiconductors and magnetic insulators are the materials that will form the basis for spintronic devices. Materials with topological band structure attributes and having a zero-energy band gap surface states are a special class of these materials that exhibit some fascinating and superior electronic properties compared to conventional materials allowing to combine both charge and spin functionalities. This article reviews a range of topological insulator materials and nanostructures with tunable surface states, focusing on nanolayered and nanowire like structures. These materials and nanostructures all have intriguing physical properties and numerous potential practical applications in spintronics, electronics, optics and sensors.

  15. Spin-polarized charge transport in HgTe/CdTe quantum well topological insulator under a ferromagnetic metal strip

    Science.gov (United States)

    Wu, Zhenhua; Luo, Kun; Yu, Jiahan; Wu, Xiaobo; Lin, Liangzhong

    2018-02-01

    Electron tunneling through a single magnetic barrier in a HgTe topological insulator has been theoretically investigated. We find that the perpendicular magnetic field would not lead to spin-flip of the edge states due to the conservation of the angular moment. By tuning the magnetic field and the Fermi energy, the edge channels can be transited from switch-on states to switch-off states and the current from unpolarized states can be filtered to fully spin polarized states. These features offer us an efficient way to control charge/spin transport in a HgTe/CdTe quantum well, and pave a way to construct the nanoelectronic devices utilizing the topological edge states.

  16. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  17. Electrical resistivity study of insulators

    International Nuclear Information System (INIS)

    Liesegang, J.; Senn, B.C.; Holcombe, S.R.; Pigram, P.J.

    1998-01-01

    Full text: Conventional methods of electrical resistivity measurement of dielectric materials involve the application of electrodes to a sample whereby a potential is applied and a current through the material is measured. Although great care and ingenuity has often been applied to this technique, the recorded values of electrical resistivity (p), especially for insulator materials, show great disparity. In earlier work by the authors, a method for determining surface charge decay [Q(t)], using a coaxial cylindrical capacitor arrangement interfaced to a personal computer, was adapted to allow the relatively straightforward measurement of electrical resistivity in the surface region of charged insulator materials. This method was used to develop an ionic charge transport theory, based on Mott-Gurney diffusion to allow a greater understanding into charge transport behaviour. This theory was extended using numerical analysis to produce a two dimensional (2-D) computational model to allow the direct comparison between experimental and theoretical charge decay data. The work also provided a means for the accurate determination of the diffusion coefficient (D) and the layer of thickness of surface charge (Δz) on the sample. The work outlined here involves an extension of the theoretical approach previously taken, using a computational model based more closely on the 3-D experimental set-up, to reinforce the level of confidence in the results achieved for the simpler 2-D treatment. Initially, a 3-D rectangular box arrangement similar to the experimental set-up was modelled and a theoretical and experimental comparison of voltage decay results made. This model was then transferred into cylindrical coordinates to allow it to be almost identical to the experiment and again a comparison made. In addition, theoretical analysis of the coupled non-linear partial differential equations governing the charge dissipation process has led to a simplification involving directly, the

  18. Growth of semi-insulating InP through nuclear doping

    International Nuclear Information System (INIS)

    Aliyev, M.I; Rashidova, Sh.Sh; Huseynli, M.A.

    2012-01-01

    Full text : Semi-insulating semiconductors are widely used in so-called dielectronics. Dielectric devices have quick response, good frequency characteristics, a low noise level, low sensitivity to temperature changes, etc. One of the most promising semiconductor materials is InP. At present annealing and doping are commonly used techniques to grow semi-insulating InP. The aim of this work was to grow semi-insulating InP through nuclear doping (by irradiation with gamma-quanta). InP single crystals were obtained by Czochralski method. Specimens were irradiated with doses of 10kGr at room temperature. Electrical conductivity and Hall effect were measured before and after irradiation in the temperature range 77 to 320K. After irradiation reduction in electrical conductivity was observed. This fact can be associated with formation of M-centers in positively threefold charged states of vacancy and antisite defects. Under irradiation first Ini interstitial atoms and phosphorus vacancies form. Further, the Ini atoms occupy the phosphorus vacancies. As a result there appear InP antiste defects, which along with indium vacancies form V I nI n p + In p + + complexes of the acceptor type. These complexes turn out to be traps for charge carriers and electrical conductivity of irradiated InP are sharply reduced to semi-insulating specimens

  19. The quantic distribution of mobile carriers in a surface charge coupled device

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    The quantic distribution of the electrons in a surface charge coupled device (CCD), for a MIS structure with a real insulator (finite difference energy between the conduction bands of the insulator and of the semiconductor) is presented. A fundamental limitation of the charge transfer in a surface CCD is obtained. (author)

  20. Wide gap Chern Mott insulating phases achieved by design

    Science.gov (United States)

    Guo, Hongli; Gangopadhyay, Shruba; Köksal, Okan; Pentcheva, Rossitza; Pickett, Warren E.

    2017-12-01

    Quantum anomalous Hall insulators, which display robust boundary charge and spin currents categorized in terms of a bulk topological invariant known as the Chern number (Thouless et al Phys. Rev. Lett. 49, 405-408 (1982)), provide the quantum Hall anomalous effect without an applied magnetic field. Chern insulators are attracting interest both as a novel electronic phase and for their novel and potentially useful boundary charge and spin currents. Honeycomb lattice systems such as we discuss here, occupied by heavy transition-metal ions, have been proposed as Chern insulators, but finding a concrete example has been challenging due to an assortment of broken symmetry phases that thwart the topological character. Building on accumulated knowledge of the behavior of the 3d series, we tune spin-orbit and interaction strength together with strain to design two Chern insulator systems with bandgaps up to 130 meV and Chern numbers C = -1 and C = 2. We find, in this class, that a trade-off between larger spin-orbit coupling and strong interactions leads to a larger gap, whereas the stronger spin-orbit coupling correlates with the larger magnitude of the Hall conductivity. Symmetry lowering in the course of structural relaxation hampers obtaining quantum anomalous Hall character, as pointed out previously; there is only mild structural symmetry breaking of the bilayer in these robust Chern phases. Recent growth of insulating, magnetic phases in closely related materials with this orientation supports the likelihood that synthesis and exploitation will follow.

  1. Chiral topological insulator on Nambu 3-algebraic geometry

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2014-09-01

    Full Text Available Chiral topological insulator (AIII-class with Landau levels is constructed based on the Nambu 3-algebraic geometry. We clarify the geometric origin of the chiral symmetry of the AIII-class topological insulator in the context of non-commutative geometry of 4D quantum Hall effect. The many-body groundstate wavefunction is explicitly derived as a (l,l,l−1 Laughlin–Halperin type wavefunction with unique K-matrix structure. Fundamental excitation is identified with anyonic string-like object with fractional charge 1/(2(l−12+1. The Hall effect of the chiral topological insulators turns out be a color version of Hall effect, which exhibits a dual property of the Hall and spin-Hall effects.

  2. Comparative Investigation of Pollution Accumulation and Natural Cleaning for Different HV Insulators

    Directory of Open Access Journals (Sweden)

    M. Dimitropoulou

    2015-04-01

    Full Text Available High Voltage insulators are scattered throughout any HV network and a single insulator fault may cause an excessive outage. Reliability is a key issue for electric power systems and fault-free performance of insulators greatly reflects on the reliability of the system. Environmental influence is rather important for the optimum selection of outdoor insulators and, therefore, field measurements provide valuable information. Utilities perform such measurements in order to decide upon the location/route of new HV installations (substations, lines etc and also to optimize the selection, maintenance and replacement of already installed insulators. A rather interesting case in Greek territory is the island of Crete, due to the coastal development of the network and the local weather conditions. The Greek utility has employed a variety of remedies to cope with the pollution problem. Following the positive feedback after the installation on certain tower in the past, a large project to replace all ceramic insulators with new polymer ones of hydrophobic surface is now in progress. Polymer coatings have also been extensively applied on substations and also on certain areas/towers of the transmission network in the past. In order to investigate the pollution accumulation and the impact of natural washing on different insulator types, a series of periodical ESDD and NSDD pollution measurements were conducted in HEDNO’s TALOS High Voltage Test Station for a 3-months period. Multiple measurements were performed on each insulator every month in order to collect additional data. Five different insulators were selected based on the types historically used in the Cretan Network. Along with the standard glass disc profile, two strings of glass fog profile (the one coated with RTV and two long-rod composite insulators of different shed profile and material were used. Results are presented and discussed in this paper.

  3. Measurements of charging-up processes in THGEM-based particle detectors

    Science.gov (United States)

    Pitt, M.; Correia, P. M. M.; Bressler, S.; Coimbra, A. E. C.; Shaked Renous, D.; Azevedo, C. D. R.; Veloso, J. F. C. A.; Breskin, A.

    2018-03-01

    The time-dependent gain variation of detectors incorporating Thick Gas Electron Multipliers (THGEM) electrodes was studied in the context of charging-up processes of the electrode's insulating surfaces. An experimental study was performed to examine model-simulation results of the aforementioned phenomena, under various experimental conditions. The results indicate that in a stable detector's environment, the gain stabilization process is mainly affected by the charging-up of the detector's insulating surfaces caused by the avalanche charges. The charging-up is a transient effect, occurring during the detector's initial operation period; it does not affect its long-term operation. The experimental results are consistent with the outcome of model-simulations.

  4. Influence of magneto-electric coefficient for magnetic and electric charge injection properties in magneto-electric MIS capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, T; Tsuboi, Y; Imura, R; Kito, S; Gomi, M, E-mail: yokota.takeshi@nitech.ac.jp [Department of Material Science and Engineering, Graduate School of Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya City, Aichi, 466-8555 (Japan)

    2011-10-29

    We investigated the electric charge injection properties of a floating-gate type metal-insulator Si capacitor having different-ME gate insulators. The samples showed charge-injection type behaviour in capacitance-voltage curves, and it was revealed that the amount of injected charges can be controlled by the application of an external magnetic field. The sample having a high-ME-coefficient gate insulator showed stepwise capacitance-voltage curves unlike the normal one. These results indicate that this capacitor, which employs a magnetic gate insulator, has the potential to be used in multilevel memory by the application of an external magnetic field.

  5. Radioconductivity of insulators: their potential for ionographic imaging

    International Nuclear Information System (INIS)

    DeWerd, L.A.; Moran, P.R.

    1975-01-01

    Measurements of the radioconductivity and thermocurrent properties of relatively pure insulating solids indicate charge collection yields which compare favorably to materials presently used for ionography. The radioconductivity varies with temperature giving rise to temperature windows of feasible use

  6. Disc operational system

    International Nuclear Information System (INIS)

    Veretenov, V.Yu.; Volkov, A.I.; Gurevich, M.I.; Kozik, V.S.; Pod'yachev, E.I.; Shapiro, M.L.

    1974-01-01

    A disc operational system is proposed, which is based on the file structure and designed for use in a BESM-6 computer with the software system comprising a dispatcher DD-73 and a monitor 'Dubna'. The main distinguishing feature of the disc operational system is the decentralization of the file system. Each disc package is an independent file unaffected by the state of the other disc packages. The use of several disc packages is allowed. The above feature of the disc operational system makes it possible to simplify the language of communication with the system, to give the user the opportunity of controlling the file quite independently, and to simplify the maintenance of the discs by the computer personnel. One and the same disc can be simultaneously addressed by all problems in the processor (both mathematical and service). A single file, however, may be used in the recording mode by only one problem. The description presented is the instruction for users. It also describes special possibilities open to the system programmers [ru

  7. Calcium carbonate electronic-insulating layers improve the charge collection efficiency of tin oxide photoelectrodes in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Shaikh, Shoyebmohamad F.; Mane, Rajaram S.; Hwang, Yun Jeong; Joo, Oh-Shim

    2015-01-01

    In dye-sensitized solar cells (DSSCs), a surface passivation layer has been employed on the tin oxide (SnO 2 ) photoanodes to enhance the charge collection efficiency, and thus the power conversion efficiency. Herein, we demonstrate that the electronic-insulating layering of calcium carbonate (CaCO 3 ) can improve the charge collection efficiency in dye-sensitized solar cells designed with photoanodes. In order to evaluate the effectiveness of CaCO 3 layering, both layered and pristine SnO 2 photoanodes are characterized with regard to their structures, morphologies, and photo-electrochemical measurements. The SnO 2 -6L CaCO 3 photoanode has demonstrated as high as 3.5% power conversion efficiency; 3.5-fold greater than that of the pristine SnO 2 photoanode. The enhancement in the power conversion efficiency is corroborated with the number of the dye molecules, the passivation of surface states, a negative shift in the conduction band position, and the reduced electron recombination rate of photoelectrons following the coating of the CaCO 3 surface layer

  8. Charge states of ions, and mechanisms of charge ordering transitions

    Science.gov (United States)

    Pickett, Warren E.; Quan, Yundi; Pardo, Victor

    2014-07-01

    To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n-1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed.

  9. Efficient charge-spin conversion and magnetization switching through the Rashba effect at topological-insulator/Ag interfaces

    Science.gov (United States)

    Shi, Shuyuan; Wang, Aizhu; Wang, Yi; Ramaswamy, Rajagopalan; Shen, Lei; Moon, Jisoo; Zhu, Dapeng; Yu, Jiawei; Oh, Seongshik; Feng, Yuanping; Yang, Hyunsoo

    2018-01-01

    We report the observation of efficient charge-to-spin conversion in the three-dimensional topological insulator (TI) B i2S e3 and Ag bilayer by the spin-torque ferromagnetic resonance technique. The spin-orbit-torque ratio in the B i2S e3/Ag /CoFeB heterostructure shows a significant enhancement as the Ag thickness increases to ˜2 nm and reaches a value of 0.5 for 5 nm Ag, which is ˜3 times higher than that of B i2S e3/CoFeB at room temperature. The observation reveals the interfacial effect of B i2S e3/Ag exceeds that of the topological surface states (TSSs) in the B i2S e3 layer and plays a dominant role in the charge-to-spin conversion in the B i2S e3/Ag /CoFeB system. Based on first-principles calculations, we attribute our observation to the large Rashba splitting bands which wrap the TSS band and have the same net spin polarization direction as the TSS of B i2S e3 . Subsequently, we demonstrate Rashba-induced magnetization switching in B i2S e3/Ag /Py with a low current density of 5.8 ×105A /c m2 .

  10. Dual initiation strip charge apparatus and methods for making and implementing the same

    Science.gov (United States)

    Jakaboski, Juan-Carlos [Albuquerque, NM; Todd,; Steven, N [Rio Rancho, NM; Polisar, Stephen [Albuquerque, NM; Hughs, Chance [Tijeras, NM

    2011-03-22

    A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of explosively induced stresses meet and create a fracture and breach a target along a generally single fracture contour and produce generally fragment-free scattering and no spallation. Methods for making and implementing a DISC apparatus provide numerous advantages over previous methods of creating explosive charges by utilizing steps for rapid prototyping; by implementing efficient steps and designs for metering consistent, repeatable, and controlled amount of high explosive; and by utilizing readily available materials.

  11. Surface electrical resistivity of insulators

    International Nuclear Information System (INIS)

    Senn, B. C.; Liesegang, J.

    1996-01-01

    A method is presented here for measuring surface charge decay, and theory has been developed so as to produce determinations of resistivity in the surface region of insulator films or wafers. This method incorporates the use of a coaxial cylindrical capacitor arrangement and an electrometer interfaced to a PC. The charge transport theory given here is based on Mott-Gurney diffusion, and allows easy interpretation of the experimental data, especially for the initial phase of surface charge decay. Resistivity measurements are presented for glass, mica, perspex and polyethylene, covering a range of 10 9 to 10 18 Ωm, as an illustration of the useful range of the instrument for static and antistatic materials, particularly in film or sheet form. Values for the surface charge diffusion constants of the materials are also presented. The charge transport theory has also been extended to allow the experimental and computational theoretical comparison of surface charge decay not only over the initial phase of charge decay, but also over longer times. The theoretical predictions show excellent agreement with experiment using the values for the diffusion constants referred to above

  12. Avalanches near a solid insulator in nitrogen gas at atmospheric pressure

    International Nuclear Information System (INIS)

    Mahajan, S.M.; Sudarshan, T.S.; Department of Electrical and Computer Engineering, University of South Carolina, Columbia, South Carolina 29208)

    1989-01-01

    The pulsed Townsend (PT) technique was used to record the growth of avalanches near a solid insulator in nitrogen gas at 0.1 MPa. Several other nonconventional techniques for releasing initiatory electrons at the cathode are discussed. In this paper, experimental results of avalanches initiated by illuminating a fast (0.6-ns) nitrogen laser onto the cathode triple junction are presented. Data were recorded with plexiglas, Teflon, high-density polyethylene, low-density polyethylene, Delrin, etc. Effect of surface condition, variation of the distance between insulator surface and the avalanche initiation region, and the effect of a large number of previous avalanches on the avalanche characteristics at a particular voltage were studied. The Townsend primary ionization coefficient, hereafter referred to as growth coefficient (α), and drift velocity (V/sub e/) were evaluated through the PT technique. Results indicate that the avalanche growth in the vicinity of a solid insulator is less than that in an identical plain gas gap. Existence of a nonuniform field as a result of surface charges on the insulator and/or field modifications due to the avalanche space charge are believed to be responsible for this behavior

  13. Tunable spin-charge conversion through topological phase transitions in zigzag nanoribbons

    KAUST Repository

    Li, Hang

    2016-06-29

    We study spin-orbit torques and charge pumping in magnetic quasi-one-dimensional zigzag nanoribbons with a hexagonal lattice, in the presence of large intrinsic spin-orbit coupling. Such a system experiences a topological phase transition from a trivial band insulator to a quantum spin Hall insulator by tuning of either the magnetization direction or the intrinsic spin-orbit coupling. We find that the spin-charge conversion efficiency (i.e., spin-orbit torque and charge pumping) is dramatically enhanced at the topological transition, displaying a substantial angular anisotropy.

  14. Tunable spin-charge conversion through topological phase transitions in zigzag nanoribbons

    KAUST Repository

    Li, Hang; Manchon, Aurelien

    2016-01-01

    We study spin-orbit torques and charge pumping in magnetic quasi-one-dimensional zigzag nanoribbons with a hexagonal lattice, in the presence of large intrinsic spin-orbit coupling. Such a system experiences a topological phase transition from a trivial band insulator to a quantum spin Hall insulator by tuning of either the magnetization direction or the intrinsic spin-orbit coupling. We find that the spin-charge conversion efficiency (i.e., spin-orbit torque and charge pumping) is dramatically enhanced at the topological transition, displaying a substantial angular anisotropy.

  15. Topological insulators and superconductors from string theory

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-01-01

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  16. A comparison of atom and ion induced SSIMS - evidence for a charge induced damage effect in insulator materials

    International Nuclear Information System (INIS)

    Brown, A.; Berg, J.A. van den; Vickerman, J.C.

    1985-01-01

    A static secondary ion mass spectrometry (SSIMS) study of two very low conductivity materials, polystyrene and niobium pentoxide, using on the one hand a primary ion beam with electron neutralisation, and on the other, atom bombardment, shows that whilst the initial spectra obtained were quite similar, subsequent damage effects were much greater under ion impact conditions. For an equivalent flux density the half-life of the polystyrene surface structure was four times longer under atom bombardment. Significant reduction of the niobium surface was observed under ion bombardment whereas an equivalent atom flux had little apparent effect on the surface oxidation state. These data suggest that the requirement to dissipate the charge delivered to the sample by the primary ion beam contributes significantly to the damage mechanisms in electrically insulating materials. (author)

  17. Surface and Bulk Nanostructuring of Insulators by Ultrashort Laser Pulses

    Science.gov (United States)

    2017-04-05

    non perturbative effects leading to HHG. 15. SUBJECT TERMS Nanostructuring of bulk insulators, sub-picosecond electronic and structural events , photo...time, the charge density oscillations follow the time periodicity of the incident radiation. These transient charge oscillations are exclusively due...As in section II photoexcitation and the dielectric response of laser-irradiated diamond are treated in independent particle approximation based on the

  18. Linear particle accelerator with seal structure between electrodes and insulators

    Science.gov (United States)

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  19. Star-disc interaction in galactic nuclei: formation of a central stellar disc

    Science.gov (United States)

    Panamarev, Taras; Shukirgaliyev, Bekdaulet; Meiron, Yohai; Berczik, Peter; Just, Andreas; Spurzem, Rainer; Omarov, Chingis; Vilkoviskij, Emmanuil

    2018-05-01

    We perform high-resolution direct N-body simulations to study the effect of an accretion disc on stellar dynamics in an active galactic nucleus (AGN). We show that the interaction of the nuclear stellar cluster (NSC) with the gaseous accretion disc (AD) leads to formation of a stellar disc in the central part of the NSC. The accretion of stars from the stellar disc on to the super-massive black hole is balanced by the capture of stars from the NSC into the stellar disc, yielding a stationary density profile. We derive the migration time through the AD to be 3 per cent of the half-mass relaxation time of the NSC. The mass and size of the stellar disc are 0.7 per cent of the mass and 5 per cent of the influence radius of the super-massive black hole. An AD lifetime shorter than the migration time would result in a less massive nuclear stellar disc. The detection of such a stellar disc could point to past activity of the hosting galactic nucleus.

  20. Ion guiding in macro-size insulating capillaries: straight, tapered, and curved shapes

    Science.gov (United States)

    Kojima, Takao M.

    2018-02-01

    When keV energy ions are injected into a tilted insulating capillary, a certain fraction of the injected ions are transported through the tilt angle of the capillary. This ion guiding phenomenon is considered to be caused by a self-organizing charge distribution, where the inner wall of the capillary becomes charged by initial incoming ions. The charge distribution, which is formed, can guide following ions toward the exit of the capillary. Since the initial discovery of this effect, studies of ion guiding by insulating capillaries have been extended to various materials, and different sizes and shapes of capillaries. In recent years, some investigations of the guiding effect of macro-size curved capillaries have also been reported. In this review, relevant studies in a history of ion guiding in curved capillaries are discussed and future directions in this field are considered.

  1. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.

    1994-01-01

    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  2. Physical processes in high field insulating liquid conduction

    Science.gov (United States)

    Mazarakis, Michael; Kiefer, Mark; Leckbee, Joshua; Anderson, Delmar; Wilkins, Frank; Obregon, Robert

    2017-10-01

    In the power grid transmission where a large amount of energy is transmitted to long distances, High Voltage DC (HVDC) transmission of up to 1MV becomes more attractive since is more efficient than the counterpart AC. However, two of the most difficult problems to solve are the cable connections to the high voltage power sources and their insulation from the ground. The insulating systems are usually composed of transformer oil and solid insulators. The oil behavior under HVDC is similar to that of a weak electrolyte. Its behavior under HVDC is dominated more by conductivity than dielectric constant. Space charge effects in the oil bulk near high voltage electrodes and impeded plastic insulators affect the voltage oil hold-off. We have constructed an experimental facility where we study the oil and plastic insulator behavior in an actual HVDC System. Experimental results will be presented and compared with the present understanding of the physics governing the oil behavior under very high electrical stresses. Sandia National Laboratories managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. D.O.E., NNSA under contract DE-NA-0003525.

  3. MR imaging findings of a sequestered disc in the lumbar spine: a comparison with an extruded disc

    International Nuclear Information System (INIS)

    Sim, Su Youn; Park, Ji Seon; Ryu, Kyung Nam; Jin, Wook

    2007-01-01

    To compare the MR findings of a sequestered disc with an extruded disc. MR images of 28 patients with a sequestered disc and 18 patients with an extruded disc were retrospectively reviewed. Patients with sequestered discs were divided into two groups whether definite separation from the parent disc was or was not seen. In the latter group (definite separation not seen) and the extruded disc group of patients, the signal intensities of the herniated discs were compared with the signal intensities of the parent discs and were evaluated on T1-and T2-weighted images. We also assessed the presence of a notch within the herniated disc. In the sequestered disc group of patients (28 discs), only 5 discs (18%) showed obvious separation from the parent disc. Among the remaining 23 discs with indefinite separation, the notch was visible in 14 discs (61%) and 9 discs (39%) had no notch. In the extruded disc group (18 discs), the notch was visible in 2 (11%) discs and the difference between the two groups was statistically significant (ρ 0.0002). The signal intensities of the herniated discs on T1-weighted images were isointense in both the sequestered and extruded discs. The difference of incidence of high signal intensities on T2-weighted images was not statistically significant (ρ = 0.125). It is necessary to consider the possibility of the presence of a sequestered disc when a herniated disc material shows a notch

  4. Instability of warped discs

    Science.gov (United States)

    Doǧan, S.; Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-05-01

    Accretion discs are generally warped. If a warp in a disc is too large, the disc can `break' apart into two or more distinct planes, with only tenuous connections between them. Further, if an initially planar disc is subject to a strong differential precession, then it can be torn apart into discrete annuli that precess effectively independently. In previous investigations, torque-balance formulae have been used to predict where and when the disc breaks into distinct parts. In this work, focusing on discs with Keplerian rotation and where the shearing motions driving the radial communication of the warp are damped locally by turbulence (the `diffusive' regime), we investigate the stability of warped discs to determine the precise criterion for an isolated warped disc to break. We find and solve the dispersion relation, which, in general, yields three roots. We provide a comprehensive analysis of this viscous-warp instability and the emergent growth rates and their dependence on disc parameters. The physics of the instability can be understood as a combination of (1) a term that would generally encapsulate the classical Lightman-Eardley instability in planar discs (given by ∂(νΣ)/∂Σ < 0) but is here modified by the warp to include ∂(ν1|ψ|)/∂|ψ| < 0, and (2) a similar condition acting on the diffusion of the warp amplitude given in simplified form by ∂(ν2|ψ|)/∂|ψ| < 0. We discuss our findings in the context of discs with an imposed precession, and comment on the implications for different astrophysical systems.

  5. Plasma damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMCs), is reported. CID does not necessarily lead to direct yield loss, but may also induce latent damage leading to reliability losses. The damage is caused by the build up of a voltage potential difference between

  6. Plasma Damage in Floating Metal-Insulator-Metal Capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; Backer, E.; Coppens, P.

    2001-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMCs), is reported. CID does not necessarily lead to direct yield loss, but may also induce latent damage leading to reliability losses. The damage is caused by the build up of a voltage potential difference between

  7. Charge orders in organic charge-transfer salts

    International Nuclear Information System (INIS)

    Kaneko, Ryui; Valentí, Roser; Tocchio, Luca F; Becca, Federico

    2017-01-01

    Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ -(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order. (paper)

  8. Evolution of viscous discs. 3. Giant discs in symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [Oxford Univ. (UK). Dept. of Astrophysics; Pringle, J E [Cambridge Univ. (UK). Inst. of Astronomy

    1982-10-01

    The structure of time-dependent accretion discs in giant binaries with separation of the order of 10/sup 13/ cm is examined. Radiative ..cap alpha..-viscosity discs with ..cap alpha.. of order unity accreting on to main-sequence stars at accretion rates which generate luminosities greater than a giant companion decay on time-scales of the same order as the binary period, unlike those in dwarf nova binaries which decay on time-scales 100 times longer than the binary period. This results from the lower gravitational potential and consequent larger disc thickness (relative to the radius) of luminous 'giant' discs accreting at high accretion rates. The eruptions of the symbiotic binary C I Cygni are modelled by an ..cap alpha.. = 1 disc with outer radius 8.5 x 10/sup 12/ cm and a sequence of five mass-transfer bursts at rates between 1.5 x 10/sup 21/ and 4 x 10/sup 22/g s/sup -1/.

  9. ESA's tools for internal charging

    International Nuclear Information System (INIS)

    Soerensen, J.; Rodgers, D.J.; Ryden, K.A.; Latham, P.M.; Wrenn, G.L.; Levy, L.; Panabiere, G.

    1999-01-01

    Electrostatic discharges, caused by bulk charging of spacecraft insulating materials, are a major cause of satellite anomalies. This is a presentation of ESA's tools to assess whether a given structure is liable to experience electrostatic discharges. (authors)

  10. Superluminous accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [Cambridge Univ. (UK). Inst. of Astronomy; Polska Akademia Nauk, Warsaw. Centrum Astronomiczne)

    1981-07-01

    Upper limits are computed for the total luminosities and collimation of radiation from thick, radiation supported accretion discs around black holes. Numerical results are obtained for the 'extreme' discs with rsub(out) = 10/sup 3/ GMsub(BH)/c/sup 2/, the angular momentum of the black hole being Jsub(BH) = 0.998 GMsub(BH)/c. The high luminosity (L approximately 8.5 Lsub(Edd)) and substantial collimation of radiation found for these discs indicate that such discs can explain both the high luminosities of quasars and similar objects and may produce some of the observed beams and jets.

  11. Formal Valence, 3 d Occupation, and Charge Ordering Transitions

    Science.gov (United States)

    Pickett, Warren

    2014-03-01

    The metal-insulator transition (MIT), discovered by Verwey in the late 1930s, has been thought to be one of the best understood of MITs, the other ones being named after Wigner, Peierls, Mott, and Anderson. Continuing work on these transitions finds in some cases less and less charge to order, raising the fundamental question of just where the entropy is coming from, and just what is ordering. To provide insight into the mechanism of charge-ordering transitions, which conventionally are pictured as a disproportionation, I will (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new theoretical results for the rare earth nickelates (viz. YNiO3), the putative charge ordering compound AgNiO2, and the dual charge state insulator AgO, and (3) analyze cationic occupations of actual (not formal) charge, and work to reconcile the conundrums that arise. Several of the clearest cases of charge ordering transitions involve no disproportion; moreover, the experimental data used to support charge ordering can be accounted for within density functional based calculations that contain no charge transfer The challenge of modeling charge ordering transitions with model Hamiltonians will be discussed. Acknowledgment: Y. Quan, V. Pardo. Supported by NSF award DMR-1207622-0.

  12. New mechanism of semiconductor polarization at the interface with an organic insulator

    International Nuclear Information System (INIS)

    Yafyasov, A. M.; Bogevolnov, V. B.; Ryumtsev, E. I.; Kovshik, A. P.; Mikhailovski, V. Yu.

    2017-01-01

    A semiconductor—organic-insulator system with spatially distributed charge is created with a uniquely low density of fast surface states (N_s_s) at the interface. A system with N_s_s ≈ 5 × 10"1"0 cm"–"2 is obtained for the example of n-Ge and the physical characteristics of the interface are measured for this system with liquid and metal field electrodes. For a system with an organic insulator, the range of variation of the surface potential from enrichment of the space-charge region of the semiconductor to the inversion state is first obtained without changing the mechanism of interaction between the adsorbed layer and the semiconductor surface. The effect of enhanced polarization of the space-charge region of the semiconductor occurs due to a change in the spatial structure of mobile charge in the organic dielectric layer. The system developed in the study opens up technological opportunities for the formation of a new generation of electronic devices based on organic film structures and for experimental modeling of the electronic properties of biological membranes.

  13. New mechanism of semiconductor polarization at the interface with an organic insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yafyasov, A. M., E-mail: yafyasov@gmail.com; Bogevolnov, V. B.; Ryumtsev, E. I.; Kovshik, A. P. [St. Petersburg State University (Russian Federation); Mikhailovski, V. Yu. [Interdisciplinary Resource Center for Nanotechnology at St. Petersburg University (Russian Federation)

    2017-02-15

    A semiconductor—organic-insulator system with spatially distributed charge is created with a uniquely low density of fast surface states (N{sub ss}) at the interface. A system with N{sub ss} ≈ 5 × 10{sup 10} cm{sup –2} is obtained for the example of n-Ge and the physical characteristics of the interface are measured for this system with liquid and metal field electrodes. For a system with an organic insulator, the range of variation of the surface potential from enrichment of the space-charge region of the semiconductor to the inversion state is first obtained without changing the mechanism of interaction between the adsorbed layer and the semiconductor surface. The effect of enhanced polarization of the space-charge region of the semiconductor occurs due to a change in the spatial structure of mobile charge in the organic dielectric layer. The system developed in the study opens up technological opportunities for the formation of a new generation of electronic devices based on organic film structures and for experimental modeling of the electronic properties of biological membranes.

  14. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.

    2013-04-26

    We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.

  15. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.; Manchon, Aurelien; Sabeeh, K.; Schwingenschlö gl, Udo

    2013-01-01

    We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.

  16. Tracing Planets in Circumstellar Discs

    Directory of Open Access Journals (Sweden)

    Uribe Ana L.

    2013-04-01

    Full Text Available Planets are assumed to form in circumstellar discs around young stellar objects. The additional gravitational potential of a planet perturbs the disc and leads to characteristic structures, i.e. spiral waves and gaps, in the disc density profile. We perform a large-scale parameter study on the observability of these planet-induced structures in circumstellar discs in the (submm wavelength range for the Atacama Large (SubMillimeter Array (ALMA. On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disc-planet models we calculate the disc temperature structure and (submm images of these systems. These are used to derive simulated ALMA maps. Because appropriate objects are frequent in the Taurus-Auriga region, we focus on a distance of 140 pc and a declination of ≈ 20°. The explored range of star-disc-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses, nine disc sizes with outer radii ranging from 9 AU to 225 AU, 15 total disc masses in the range between 2.67·10-7 M⊙ and 4.10·10-2 M⊙, six different central stars and two different grain size distributions, resulting in 10 000 disc models. At almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disc structures induced by planet-disc interaction or the influence of magnetic fields in the wavelength range between 0.4...2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplane tary discs (0.1 M⊙...0.001 M⊙ the disc mass has a minor impact on the observability. At the distance of 140 pc it is possible to resolve discs down to 2.67·10-6 M⊙ and trace gaps in discs with 2.67·10-4 M⊙ with a signal-to-noise ratio greater than three. In general, it is more likely to trace planet-induced gaps in magneto-hydrodynamical disc models, because gaps are wider in the presence of

  17. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin

    2009-12-13

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi2 Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface, protected by time-reversal symmetry. The topological surface states have been observed by angle-resolved photoemission spectroscopy experiments. However, few transport measurements in this context have been reported, presumably owing to the predominance of bulk carriers from crystal defects or thermal excitations. Here we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2 Se3 nanoribbons, which have larger surface-to-volume ratios than bulk materials and can therefore manifest surface effects. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coherent propagation of two-dimensional electrons around the perimeter of the nanoribbon surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation, where h is Plancks constant and e is the electron charge, and its temperature dependence demonstrate the robustness of these states. Our results suggest that topological insulator nanoribbons afford promising materials for future spintronic devices at room temperature.

  18. Quantum magnetotransport properties of ultrathin topological insulator films

    KAUST Repository

    Tahir, M.

    2013-01-30

    We study the quantum magnetotransport in ultrathin topological insulator films in an external magnetic field considering hybridization between the upper and lower surfaces of the film. We investigate the two possible mechanisms for splitting of Landau levels, Zeeman and hybridization effects, and show that their interplay leads to minima in the collisional and Hall conductivities with a metal-to-insulator phase transition at the charge neutrality point. Hall plateaus arise at unusual multiples of e2/h . Evidence of a quantum phase transition for the zeroth and splitting of the higher Landau levels is found from the temperature and magnetic field dependences of the transport.

  19. Quantum magnetotransport properties of ultrathin topological insulator films

    KAUST Repository

    Tahir, M.; Sabeeh, K.; Schwingenschlö gl, Udo

    2013-01-01

    We study the quantum magnetotransport in ultrathin topological insulator films in an external magnetic field considering hybridization between the upper and lower surfaces of the film. We investigate the two possible mechanisms for splitting of Landau levels, Zeeman and hybridization effects, and show that their interplay leads to minima in the collisional and Hall conductivities with a metal-to-insulator phase transition at the charge neutrality point. Hall plateaus arise at unusual multiples of e2/h . Evidence of a quantum phase transition for the zeroth and splitting of the higher Landau levels is found from the temperature and magnetic field dependences of the transport.

  20. Accretion discs around neutron stars

    International Nuclear Information System (INIS)

    Pringle, J.E.

    1982-01-01

    If the central object in the disc is a neutron star, then we do not need the disc itself to produce the X-rays. In other words, the disc structure itself is not important as long as it plays the role of depositing matter on the neutron star at a sufficient rate to produce the X-ray flux. Similarly, in the outer disc regions, the main disc luminosity comes from absorption and reradiation of X-ray photons and not from the intrinsic, viscously-produced, local energy production rate. These two points indicate why in the compact binary X-ray sources confrontation between disc theory and observations is not generally practicable. For this reason I will divide my talk into two parts: one on observational discs in which I discuss what observational evidence there is for discs in the compact X-ray sources and what the evidence can tell the theorist about disc behaviour, and the other on theoretical discs where I consider in what ways theoretical arguments can put limits or cast doubt on some of the empirical models put forward to explain the observations. (orig.)

  1. Electron beam assisted field evaporation of insulating nanowires/tubes

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, N. P., E-mail: nicholas.blanchard@univ-lyon1.fr; Niguès, A.; Choueib, M.; Perisanu, S.; Ayari, A.; Poncharal, P.; Purcell, S. T.; Siria, A.; Vincent, P. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France)

    2015-05-11

    We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.

  2. Self-magnetically insulated ion diode

    International Nuclear Information System (INIS)

    VanDevender, J.; Quintenz, J.; Leeper, R.; Johnson, D.; Crow, J.

    1981-01-01

    Light ion diodes for producing 1--100 TW ion beams are required for inertial confinement fusion. The theory, numerical simulations, and experiments on a self-magnetically insulated ion diode are presented. The treatment is from the point of view of a self-magnetically insulated transmission line with an ion loss current and differs from the usual treatment of the pinched electron beam diode. The simulations show that the ratio V/IZ 0 =0.25 in such a structure with voltage V, local total current I, and local vacuum wave impedance Z 0 . The ion current density is enhanced by a factor of approximately 2 over the simple space-charge limited value. The simulation results are verified in an experiment. An analytical theory is then presented for scaling the results to produce a focused beam of protons with a power of up to 10 13 W

  3. High Pressure Optical Studies of the Thallous Halides and of Charge-Transfer Complexes

    Science.gov (United States)

    Jurgensen, Charles Willard

    High pressure was used to study the insulator -to-metal transition in sulfur and the thallous halides and to study the intermolecular interactions in charge -transfer complexes. The approach to the band overlap insulator -to-metal transition was studied in three thallous halides and sulfur by optical absorption measurements of the band gap as a function of pressure. The band gap of sulfur continuously decreases with pressure up to the insulator -to-metal transition which occurs between 450 and 485 kbars. The results on the thallous halides indicate that the indirect gap decreases more rapidly than the direct gap; the closing of the indirect gap is responsible for the observed insulator -to-metal transitions. High pressure electronic and vibrational spectroscopic measurements on the solid-state complexes of HMB-TCNE were used to study the intermolecular interactions of charge -transfer complexes. The vibrational frequency shifts indicate that the degree of charge transfer increases with pressure which is independently confirmed by an increase in the molar absorptivity of the electronic charge-transfer peak. Induction and dispersion forces contribute towards a red shift of the charge-transfer peak; however, charge-transfer resonance contributes toward a blue shift and this effect is dominant for the HMB-TCNE complexes. High pressure electronic spectra were used to study the effect of intermolecular interactions on the electronic states of TCNQ and its complexes. The red shifts with pressure of the electronic spectra of TCNQ and (TCNQ)(' -) in polymer media and of crystalline TCNQ can be understood in terms of Van der Waals interactions. None of the calculations which considered intradimer distance obtained the proper behavior for either the charge-transfer of the locally excited states of the complexes. The qualitative behavior of both states can be interpreted as the effect of increased mixing of the locally excited and charge transfer states.

  4. The electronic structure and metal-insulator transitions in vanadium oxides

    International Nuclear Information System (INIS)

    Mossanek, Rodrigo Jose Ochekoski

    2010-01-01

    The electronic structure and metal-insulator transitions in vanadium oxides (SrVO_3, CaVO_3, LaVO_3 and YVO_3) are studied here. The purpose is to show a new interpretation to the spectra which is coherent with the changes across the metal-insulator transition. The main experimental techniques are the X-ray photoemission (PES) and X-ray absorption (XAS) spectroscopies. The spectra are interpreted with cluster model, band structure and atomic multiplet calculations. The presence of charge-transfer satellites in the core-level PES spectra showed that these vanadium oxides cannot be classified in the Mott-Hubbard regime. Further, the valence band and core-level spectra presented a similar behavior across the metal insulator transition. In fact, the structures in the spectra and their changes are determined by the different screening channels present in the metallic or insulating phases. The calculated spectral weight showed that the coherent fluctuations dominate the spectra at the Fermi level and give the metallic character to the SrVO_3 and CaVO_3 compounds. The vanishing of this charge fluctuation and the replacement by the Mott-Hubbard screening in the LaVO_3 and YVO_3 systems is ultimately responsible for the opening of a band gap and the insulating character. Further, the correlation effects are, indeed, important to the occupied electronic structure (coherent and incoherent peaks). On the other hand, the unoccupied electronic structure is dominated by exchange and crystal field effects (t2g and eg sub-bands of majority and minority spins). The optical conductivity spectrum was obtained by convoluting the removal and addition states. It showed that the oxygen states, as well as the crystal field and exchange effects are necessary to correctly compare and interpret the experimental results. Further, a correlation at the charge-transfer region of the core-level and valence band optical spectra was observed, which could be extended to other transition metal oxides

  5. Double rupture disc experience

    International Nuclear Information System (INIS)

    1979-01-01

    Result of these observations, comparisons and evaluations can be summarized in the following list of concerns regarding the use of double rupture discs coupled to the liquid space of a steam generator that is subjected to a large leak sodium water reaction event. Single rupture disc show delayed collapse characteristics in LLTR Series I and double disc assemblies are presumed to be more complex with additional delay before opening to give pressure relief. Delayed failure increases pressures in the IHTS and must be adequately covered by design requirements. With CRBR design, the first disc may fail only partially reducing the loading on the second disc with the result that relief performance may not meet requirements

  6. Topological insulators and superconductors: tenfold way and dimensional hierarchy

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Schnyder, Andreas P; Furusaki, Akira; Ludwig, Andreas W W

    2010-01-01

    It has recently been shown that in every spatial dimension there exist precisely five distinct classes of topological insulators or superconductors. Within a given class, the different topological sectors can be distinguished, depending on the case, by a Z or a Z 2 topological invariant. This is an exhaustive classification. Here we construct representatives of topological insulators and superconductors for all five classes and in arbitrary spatial dimension d, in terms of Dirac Hamiltonians. Using these representatives we demonstrate how topological insulators (superconductors) in different dimensions and different classes can be related via 'dimensional reduction' by compactifying one or more spatial dimensions (in 'Kaluza-Klein'-like fashion). For Z-topological insulators (superconductors) this proceeds by descending by one dimension at a time into a different class. The Z 2 -topological insulators (superconductors), on the other hand, are shown to be lower-dimensional descendants of parent Z-topological insulators in the same class, from which they inherit their topological properties. The eightfold periodicity in dimension d that exists for topological insulators (superconductors) with Hamiltonians satisfying at least one reality condition (arising from time-reversal or charge-conjugation/particle-hole symmetries) is a reflection of the eightfold periodicity of the spinor representations of the orthogonal groups SO(N) (a form of Bott periodicity). Furthermore, we derive for general spatial dimensions a relation between the topological invariant that characterizes topological insulators and superconductors with chiral symmetry (i.e., the winding number) and the Chern-Simons invariant. For lower-dimensional cases, this formula relates the winding number to the electric polarization (d=1 spatial dimensions) or to the magnetoelectric polarizability (d=3 spatial dimensions). Finally, we also discuss topological field theories describing the spacetime theory of

  7. Note: A high-energy-density Tesla-type pulse generator with novel insulating oil

    Science.gov (United States)

    Liu, Sheng; Su, Jiancang; Fan, Xuliang

    2017-09-01

    A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser—TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.

  8. The effect of actuator nozzle designs on the electrostatic charge generated in pressurised metered dose inhaler aerosols.

    Science.gov (United States)

    Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela

    2015-04-01

    To investigate the influence of different actuator nozzle designs on aerosol electrostatic charges and aerosol performances for pressurised metered dose inhalers (pMDIs). Four actuator nozzle designs (flat, curved flat, cone and curved cone) were manufactured using insulating thermoplastics (PET and PTFE) and conducting metal (aluminium) materials. Aerosol electrostatic profiles of solution pMDI formulations containing propellant HFA 134a with different ethanol concentration and/or model drug beclomethasone dipropionate (BDP) were studied using a modified electrical low-pressure impactor (ELPI) for all actuator designs and materials. The mass of the deposited drug was analysed using high performance liquid chromatography (HPLC). Both curved nozzle designs for insulating PET and PTFE actuators significantly influenced aerosol electrostatics and aerosol performance compared with conducting aluminium actuator, where reversed charge polarity and higher throat deposition were observed with pMDI formulation containing BDP. Results are likely due to the changes in plume geometry caused by the curved edge nozzle designs and the bipolar charging nature of insulating materials. This study demonstrated that actuator nozzle designs could significantly influence the electrostatic charges profiles and aerosol drug deposition pattern of pMDI aerosols, especially when using insulating thermoplastic materials where bipolar charging is more dominant.

  9. Unidirectional spin Hall magnetoresistance in topological insulator/ferromagnetic layer heterostructures

    Science.gov (United States)

    Kally, James; Lv, Yang; Zhang, Delin; Lee, Joon Sue; Samarth, Nitin; Wang, Jian-Ping; Department of Electrical; Computer Engineering, University of Minnesota, Minneapolis Collaboration; Department of Physics, Pennsylvania State University Collaboration

    The surface states of topological insulators offer a potentially very efficient way to generate spins and spin-orbit torques to magnetic moments in proximity. The switching by spin-orbit torque itself only requires two terminals so that a charge current can be applied. However, a third terminal with additional magnetic tunneling junction structure is needed to sense the magnetization state if such devices are used for memory and logic applications. The recent discovery of unidirectional spin Hall magnetoresistance in heavy metal/ferromagnetic and topological insulator/magnetically doped topological insulator systems offers an alternative way to sense magnetization while still keeping the number of terminals to minimal two. The unidirectional spin Hall magnetoresistance in topological insulator/strong ferromagnetic layer heterostructure system has yet not been reported. In this work, we report our experimental observations of such magnetoresistance. It is found to be present and comparable to the best result of the previous reported Ta/Co systems in terms of magnetoresistance per current density per total resistance.

  10. Radially truncated galactic discs

    NARCIS (Netherlands)

    Grijs, R. de; Kregel, M.; Wesson, K H

    2000-01-01

    Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out

  11. Charge and spin transport in edge channels of a ν=0 quantum Hall system on the surface of topological insulators.

    Science.gov (United States)

    Morimoto, Takahiro; Furusaki, Akira; Nagaosa, Naoto

    2015-04-10

    Three-dimensional topological insulators of finite thickness can show the quantum Hall effect (QHE) at the filling factor ν=0 under an external magnetic field if there is a finite potential difference between the top and bottom surfaces. We calculate energy spectra of surface Weyl fermions in the ν=0 QHE and find that gapped edge states with helical spin structure are formed from Weyl fermions on the side surfaces under certain conditions. These edge channels account for the nonlocal charge transport in the ν=0 QHE which is observed in a recent experiment on (Bi_{1-x}Sb_{x})_{2}Te_{3} films. The edge channels also support spin transport due to the spin-momentum locking. We propose an experimental setup to observe various spintronics functions such as spin transport and spin conversion.

  12. Numerical simulations of quantum many-body systems with applications to superfluid-insulator and metal-insulator transitions

    International Nuclear Information System (INIS)

    Niyaz, P.

    1993-01-01

    Quantum Monte Carlo techniques were used to study two quantum many-body systems, the one-dimensional extended boson-Hubbard Hamiltonian, a model of superfluid-insulator quantum phase transitions, and the two-dimensional Holstein Model, a model for electron-phonon interactions. For the extended boson-Hubbard model, the authors studied the ground state properties at commensurate filling (density = 1) and half-integer filling (density = 1/2). At commensurate filling, the system has two possible insulating phases for strong coupling. If the on-site repulsion dominates, the system freezes into an insulating phase where each site is singly occupied. If the intersite repulsion dominates, doubly occupied and empty sites alternate. At weak coupling, the system becomes a superfluid. The authors investigated the order of phase transitions between these different phases. At half-integer filling, the authors found one strong coupling insulating phase, where singly occupied and empty sites alternate, and a weak coupling superfluid phase. The authors also investigated the possibility of a supersolid phase and found no clear evidence of such a new phase. For the electron-phonon (Holstein) model, the authors focused on the finite temperature phase transition from a metallic state to an insulating charge density wave (CDW) state as the temperature is lowered. The authors present the first calculation of the spectral density from Monte Carlo data for this system. The authors also investigated the formation of a CDW state as a function of various parameters characterizing the electron-phonon interactions. Using these numerical results as benchmarks, the authors then investigated different levels of Migdal approximations. The authors found the solutions of a set of gapped Migdal-Eliashberg equations agreed qualitatively with the Monte Carlo results

  13. Spin-transfer torque generated by a topological insulator

    KAUST Repository

    Mellnik, A. R.

    2014-07-23

    Magnetic devices are a leading contender for the implementation of memory and logic technologies that are non-volatile, that can scale to high density and high speed, and that do not wear out. However, widespread application of magnetic memory and logic devices will require the development of efficient mechanisms for reorienting their magnetization using the least possible current and power. There has been considerable recent progress in this effort; in particular, it has been discovered that spin-orbit interactions in heavy-metal/ferromagnet bilayers can produce strong current-driven torques on the magnetic layer, via the spin Hall effect in the heavy metal or the Rashba-Edelstein effect in the ferromagnet. In the search for materials to provide even more efficient spin-orbit-induced torques, some proposals have suggested topological insulators, which possess a surface state in which the effects of spin-orbit coupling are maximal in the sense that an electron\\' s spin orientation is fixed relative to its propagation direction. Here we report experiments showing that charge current flowing in-plane in a thin film of the topological insulator bismuth selenide (Bi2Se3) at room temperature can indeed exert a strong spin-transfer torque on an adjacent ferromagnetic permalloy (Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in Bi 2Se3 is greater than for any source of spin-transfer torque measured so far, even for non-ideal topological insulator films in which the surface states coexist with bulk conduction. Our data suggest that topological insulators could enable very efficient electrical manipulation of magnetic materials at room temperature, for memory and logic applications. © 2014 Macmillan Publishers Limited. All rights reserved.

  14. Charging/discharging processes in nanocrystaline MOS structures - Theoretical study

    International Nuclear Information System (INIS)

    Tanous, D; Mazurak, A; Majkusiak, B

    2016-01-01

    We present the study of impact of some parameters of the metal-insulator-semiconductor structure with nanocrystals embedded in the insulator layer on the current-voltage and capacitance-voltage characteristics with the bias voltage ramp rate as a parameter. The developed model is used as a tool for theoretical understanding the physics behind charging and discharging processes in the considered structures. (paper)

  15. Double-disc gate valve

    International Nuclear Information System (INIS)

    Wheatley, S.J.

    1979-01-01

    The invention relates to an improvement in a conventional double-disc gate valve having a vertically movable gate assembly including a wedge, spreaders slidably engaged therewith, a valve disc carried by the spreaders. When the gate assembly is lowered to a selected point in the valve casing, the valve discs are moved transversely outward to close inlet and outlet ports in the casing. The valve includes hold-down means for guiding the disc-and-spreader assemblies as they are moved transversely outward and inward. If such valves are operated at relatively high differential pressures, they sometimes jam during opening. Such jamming has been a problem for many years in gate valves used in gaseous diffusion plants for the separation of uranium isotopes. The invention is based on the finding that the above-mentioned jamming results when the outlet disc tilts about its horizontal axis in a certain way during opening of the valve. In accordance with the invention, tilting of the outlet disc is maintained at a tolerable value by providing the disc with a rigid downwardly extending member and by providing the casing with a stop for limiting inward arcuate movement of the member to a preselected value during opening of the valve

  16. Bipolar resistive switching in metal-insulator-semiconductor nanostructures based on silicon nitride and silicon oxide

    Science.gov (United States)

    Koryazhkina, M. N.; Tikhov, S. V.; Mikhaylov, A. N.; Belov, A. I.; Korolev, D. S.; Antonov, I. N.; Karzanov, V. V.; Gorshkov, O. N.; Tetelbaum, D. I.; Karakolis, P.; Dimitrakis, P.

    2018-03-01

    Bipolar resistive switching in metal-insulator-semiconductor (MIS) capacitor-like structures with an inert Au top electrode and a Si3N4 insulator nanolayer (6 nm thick) has been observed. The effect of a highly doped n +-Si substrate and a SiO2 interlayer (2 nm) is revealed in the changes in the semiconductor space charge region and small-signal parameters of parallel and serial equivalent circuit models measured in the high- and low-resistive capacitor states, as well as under laser illumination. The increase in conductivity of the semiconductor capacitor plate significantly reduces the charging and discharging times of capacitor-like structures.

  17. Proposed Modifications to Engineering Design Guidelines Related to Resistivity Measurements and Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Swaminathan, Prasanna; Jost, Randy; Brunson, Jerilyn; Green, Nelson; Frederickson, A. Robb

    2005-01-01

    A key parameter in modeling differential spacecraft charging is the resistivity of insulating materials. This determines how charge will accumulate and redistribute across the spacecraft, as well as the time scale for charge transport and dissipation. Existing spacecraft charging guidelines recommend use of tests and imported resistivity data from handbooks that are based principally upon ASTM methods that are more applicable to classical ground conditions and designed for problems associated with power loss through the dielectric, than for how long charge can be stored on an insulator. These data have been found to underestimate charging effects by one to four orders of magnitude for spacecraft charging applications. A review is presented of methods to measure the resistive of highly insulating materials, including the electrometer-resistance method, the electrometer-constant voltage method, the voltage rate-of-change method and the charge storage method. This is based on joint experimental studies conducted at NASA Jet Propulsion Laboratory and Utah State University to investigate the charge storage method and its relation to spacecraft charging. The different methods are found to be appropriate for different resistivity ranges and for different charging circumstances. A simple physics-based model of these methods allows separation of the polarization current and dark current components from long duration measurements of resistivity over day- to month-long time scales. Model parameters are directly related to the magnitude of charge transfer and storage and the rate of charge transport. The model largely explains the observed differences in resistivity found using the different methods and provides a framework for recommendations for the appropriate test method for spacecraft materials with different resistivities and applications. The proposed changes to the existing engineering guidelines are intended to provide design engineers more appropriate methods for

  18. Optic disc oedema

    DEFF Research Database (Denmark)

    Nielsen, Marianne Kromann; Hamann, Steffen

    2014-01-01

    Optic disc oedema describes the nonspecific, localized swelling of the optic nerve head regardless of aetiology. Therefore, differentiating among the various aetiologies depends on a thorough history and knowledge of the clinical characteristics of the underlying conditions. Papilloedema strictly...... refers to optic disc oedema as a consequence of elevated intracranial pressure. It is usually a bilateral condition and visual function is preserved until late. Optic disc oedema caused by an anterior optic neuropathy is usually unilateral and accompanied by the loss of visual function....

  19. A charge inverter for III-nitride light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Hui, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Zhang, Yonghui; Bi, Wengang, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Geng, Chong; Xu, Shu [Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401 (China); Demir, Hilmi Volkan, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey); Sun, Xiao Wei, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronic Engineering, College of Engineering, South University of Science and Technology, 1088 Xue-Yuan Road, Nanshan, Shenzhen, Guangdong 518055 (China)

    2016-03-28

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO{sub 2} insulator layer on the p{sup +}-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p{sup +}-GaN and SiO{sub 2} insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO{sub 2} layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p{sup +}-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm{sup 2} LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.

  20. A charge inverter for III-nitride light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang, Zi-Hui; Zhang, Yonghui; Bi, Wengang; Geng, Chong; Xu, Shu; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO 2 insulator layer on the p + -GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p + -GaN and SiO 2 insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO 2 layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p + -GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm 2 LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.

  1. Proto-planetary disc evolution and dispersal

    Science.gov (United States)

    Rosotti, Giovanni Pietro

    2015-05-01

    Planets form from gas and dust discs in orbit around young stars. The timescale for planet formation is constrained by the lifetime of these discs. The properties of the formed planetary systems depend thus on the evolution and final dispersal of the discs, which is the main topic of this thesis. Observations reveal the existence of a class of discs called "transitional", which lack dust in their inner regions. They are thought to be the last stage before the complete disc dispersal, and hence they may provide the key to understanding the mechanisms behind disc evolution. X-ray photoevaporation and planet formation have been studied as possible physical mechanisms responsible for the final dispersal of discs. However up to now, these two phenomena have been studied separately, neglecting any possible feedback or interaction. In this thesis we have investigated what is the interplay between these two processes. We show that the presence of a giant planet in a photo-evaporating disc can significantly shorten its lifetime, by cutting the inner regions from the mass reservoir in the exterior of the disc. This mechanism produces transition discs that for a given mass accretion rate have larger holes than in models considering only X-ray photo-evaporation, constituting a possible route to the formation of accreting transition discs with large holes. These discs are found in observations and still constitute a puzzle for the theory. Inclusion of the phenomenon called "thermal sweeping", a violent instability that can destroy a whole disc in as little as 10 4 years, shows that the outer disc left can be very short-lived (depending on the X-ray luminosity of the star), possibly explaining why very few non accreting transition discs are observed. However the mechanism does not seem to be efficient enough to reconcile with observations. In this thesis we also show that X-ray photo-evaporation naturally explains the observed correlation between stellar masses and accretion

  2. A Study of Electrostatic Charge on Insulating Film by Electrostatic Force Microscopy

    International Nuclear Information System (INIS)

    Kikunaga, K; Toosaka, K; Kamohara, T; Sakai, K; Nonaka, K

    2011-01-01

    Electrostatic charge properties on polypropylene film have been characterized by atomic force microscopy and electrostatic force microscopy. The measurements have been carried out after the polypropylene film was electrified by contact and separation process in an atmosphere of controlled humidity. The negative and positive charge in concave surface has been observed. The correlation between concave surface and charge position suggests that the electrostatic charges could be caused by localized contact. On the other hand, positive charge on a flat surface has been observed. The absence of a relationship between surface profile and charge position suggests that the electrostatic charge should be caused by discharge during the separation process. The spatial migration of other positive charges through surface roughness has been observed. The results suggest that there could be some electron traps on the surface roughness and some potentials on the polypropylene film.

  3. CT discography for cervical soft disc hernia

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Kenichi; Mizutani, Shigeru; Morimoto, Hiroyuki; Yamada, Hidehito; Iwasa, Satoru

    1985-03-01

    In this study the effectiveness of computed tomographic discography (CTD) in diagnosing cervical soft disc hernia was evaluated. Twenty-five intervertebral discs of 15 cases with cervical soft disc hernia were examined with a discography and then a CT scan. Results of the CT scan were as follows: three discs were protruded, 12 discs were prolapsed, 6 discs were extruded, and 4 discs were sequestrated. The findings were helpful in determining the location of soft disc hernias between the median and posterolateral discs. They were also valuable in classifying types of hernias and surgical approaches.

  4. Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures

    Science.gov (United States)

    Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan

    Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.

  5. CT discography for cervical soft disc hernia

    International Nuclear Information System (INIS)

    Iwasa, Kenichi; Mizutani, Shigeru; Morimoto, Hiroyuki; Yamada, Hidehito; Iwasa, Satoru

    1985-01-01

    In this study the effectiveness of computed tomographic discography (CTD) in diagnosing cervical soft disc hernia was evaluated. Twenty-five interververtebral discs of 15 cases with cervical soft disc hernia were examined with a discography and then a CT scan. Results of the CT scan were as follows: three discs were protruded, 12 discs were prolapsed, 6 discs were extruded, and 4 discs were sequestrated. The findings were helpful in determining the location of soft disc hernians between the median and posterolateral discs. They were also valuable in classifying types of hernians and surgical aproaches. (author)

  6. Dynamic space charge behaviour in polymeric DC cables

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Holbøll, Joachim; Henriksen, Mogens

    2002-01-01

    The use of extruded insulation for DC cables involves a risk of local electric field enhancement, caused by a space charge build-up within the dielectric. In this work, the theory of charge generation and transport in polymers is applied in a numerical computer model in order to predict...... the formation and transport of space charges in a polymeric dielectric. The model incorporates the processes of field assisted electron-hole pair generation from impurity atoms, trapping and charge injection at the electrodes. Its aim has been to study the field- and temperature dependent dynamic behaviour...

  7. Preparation and dielectric investigation of organic metal insulator semiconductor (MIS) structures with a ferroelectric polymer

    Energy Technology Data Exchange (ETDEWEB)

    Kalbitz, Rene; Fruebing, Peter; Gerhard, Reimund [Department of Physics and Astronomy, University of Potsdam (Germany); Taylor, Martin [School of Electronic Engineering, Bangor University (United Kingdom)

    2010-07-01

    Ferroelectric field effect transistors (FeFETs) offer the prospect of an organic-based memory device. Since the charge transport in the semiconductor is confined to the interface region between the insulator and the semiconductor, the focus of the present study was on the investigation of this region in metal-insulator-semiconductor (MIS) capacitors using dielectric spectroscopy. Capacitance-Voltage (C-V) measurements at different frequencies as well as capacitance-frequency (C-f) measurements after applying different poling voltages were carried out. The C-V measurements yielded information about the frequency dependence of the depletion layer width as well as the number of charges stored at the semiconductor/ insulator interface. The results are compared to numerical calculations based on a model introduced by S. L. Miller (JAP, 72(12), 1992). The C-f measurements revealed three main relaxation processes. An equivalent circuit has been developed to model the frequency response of the MIS capacitor. With this model the origin of the three relaxations may be deduced.

  8. First principle calculations of charge ordering in manganites

    International Nuclear Information System (INIS)

    Baldomir, D.; Pardo, V.; Castro, J.; Iglesias, M.; Arias, J.E.; Rivas, J.

    2007-01-01

    Electronic structure calculations were performed on the compound La 0.5 Ca 0.5 MnO 3 to study the relationship between the magnetic ordering, the charge ordering and the geometry of the compound. Charge ordering is intimately related to the magnetic ordering. An antiferromagnetic ordering induces charge disproportionation via a Jahn-Teller distortion. A full disproportionation in Mn 3+ /Mn 4+ occurs for the experimental geometry and allows to predict the experimentally found antiferromagnetic insulating state

  9. A real-time insulation detection method for battery packs used in electric vehicles

    Science.gov (United States)

    Tian, Jiaqiang; Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai

    2018-05-01

    Due to the energy crisis and environmental pollution, electric vehicles have become more and more popular. Compared to traditional fuel vehicles, the electric vehicles are integrated with more high-voltage components, which have potential security risks of insulation. The insulation resistance between the chassis and the direct current bus of the battery pack is easily affected by factors such as temperature, humidity and vibration. In order to ensure the safe and reliable operation of the electric vehicles, it is necessary to detect the insulation resistance of the battery pack. This paper proposes an insulation detection scheme based on low-frequency signal injection method. Considering the insulation detector which can be easily affected by noises, the algorithm based on Kalman filter is proposed. Moreover, the battery pack is always in the states of charging and discharging during driving, which will lead to frequent changes in the voltage of the battery pack and affect the estimation accuracy of insulation detector. Therefore the recursive least squares algorithm is adopted to solve the problem that the detection results of insulation detector mutate with the voltage of the battery pack. The performance of the proposed method is verified by dynamic and static experiments.

  10. Can positrons be guided by insulating capillaries?

    International Nuclear Information System (INIS)

    DuBois, R.D.; Toekesi, K.

    2011-01-01

    Complete text of publication follows. Investigations of guiding of few hundred eV antiparticles by macroscopic insulating capillaries have been described. Using subfemtoamp positron and electron beams, we demonstrated that a portion of the entering beams were transmitted and emerged in the direction of the capillary. We also demonstrated that the transmitted intensities decreased as the capillary tilt angle was increased (see Fig. 1). Both of these are indications of guiding. However, a comparison with transmitted photon data implies that the positron transmission may result from geometric factors associated with our diffuse beams and tapered capillary used in these studies. For electrons, the comparison indicates differences which could imply that even very low intensity beams can be guided. Measurements of the transmitted intensity as a function of charge entering the capillary were inconclusive as no major increases in the transmitted intensity were observed. 2D static simulations imply that our beam intensities, although extremely small with respect to previous guiding experiments, were capable of supplying sufficient charge for guiding to occur. Although not definitive, our study implies that sub-femtoamp beam intensities are sufficient to form charge patches and produce guiding. This may have been observed for electrons with the question remaining open for positrons. That guiding was not clearly seen may have been due to the capillary geometry used or it may indicate that although sufficient charge is being supplied, the surface and bulk resistivities of glass permit this charge to dissipate faster than it is formed. This aspect was not taken into consideration in our simulations but a crude estimate of the discharge rate implies that beam intensities on the order of pA, rather than fA as used here, may be required for guiding to occur in the capillaries used here. Additional studies are required to definitively answer the question as to whether antiparticles

  11. The effects of γ-ray on charging behaviour using polyimide

    Science.gov (United States)

    Qin, Sichen; Tu, Youping; Tan, Tian; Wang, Shaohe; Yuan, Zhikang; Wang, Cong; Li, Laifeng; Wu, Zhixiong

    2018-06-01

    Insulation material is a key component of electrical equipment in satellites; its electrical properties determine the reliability and lifetime of the whole satellite. High-energy radioactive rays in space affect the molecular structure of the polymeric insulating materials. Under the action of plasma, high energy particles, along with the magnetic fields experienced in orbits, electric charges get injected into and trapped by the insulating material creating distortions in the electric field and even electrostatic discharges. Polyimides have been widely used for insulation in spacecraft. Choosing Co-60 gamma ray with irradiation doses of 1 MGy and 5 MGy to simulate the radiation environment of space, we investigated the effect of radiation on charging behaviour. The thermal stimulated current (TSC) from a high electric field over a wide range of temperatures was measured from which the activation energy was calculated. These results for the two sources show that the percentage increase in total charge was 133.3% and 119.4%. The γ, β 3, and α charge peaks of specimens after an irradiation dose of 1 MGy rose. In comparison, the β 2 peak of the 5 MGy-dosed specimens was enhanced. Also, there is almost no change in the γ, β 3, and α peaks. To understand the mechanism behind the TSC changes, the resulting physicochemical characteristics of an irradiated specimen were observed employing various analyses of chemical characteristics (x-ray photoelectron spectroscopy, differential scanning calorimetry and x-ray diffraction). Compared with the non-dosed specimen, the relative content of C–N and the glass transition temperature of the 1 MGy sample decreased, and the crystallinity increased, thus increasing the γ and α peak intensities. Compared with the 1 MGy sample, only the glass transition temperature had risen, thereby enhancing the β peak intensity. With the foregoing, a theoretical base for the selection and modification of insulation materials for

  12. Dosimeter charging apparatus

    International Nuclear Information System (INIS)

    Reuter, F.A.; Moorman, Ch.J.

    1985-01-01

    An apparatus for charging a dosimeter which has a capacitor connected between first and second electrodes and a movable electrode in a chamber electrically connected to the first electrode. The movable electrode deflects varying amounts depending upon the charge present on said capacitor. The charger apparatus includes first and second charger electrodes couplable to the first and second dosimeter electrodes. To charge the dosimeter, it is urged downwardly into a charging socket on the charger apparatus. The second dosimeter electrode, which is the dosimeter housing, is electrically coupled to the second charger electrode through a conductive ring which is urged upwardly by a spring. As the dosimeter is urged into the socket, the ring moves downwardly, in contact with the second charger electrode. As the dosimeter is further urged downwardly, the first dosimeter electrode and first charger electrode contact one another, and an insulator post carrying the first and second charger electrodes is urged downwardly. Downward movement of the post effects the application of a charging potential between the first and second charger electrodes. After the charging potential has been applied, the dosimeter is moved further into the charging socket against the force of a relatively heavy biasing spring until the dosimeter reaches a mechanical stop in the charging socket

  13. Gravitating discs around black holes

    International Nuclear Information System (INIS)

    Karas, V; Hure, J-M; Semerak, O

    2004-01-01

    Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole-disc system using analytical solutions of stationary, axially symmetric Einstein equations. Then, more detailed considerations are focused to the middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring. However, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging are completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the surrounding environment. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star-disc interactions, which can be recognized in observational properties, such as the relation between the central mass and stellar velocity dispersion. (topical review)

  14. Photoinduced Topological Phase Transitions in Topological Magnon Insulators.

    Science.gov (United States)

    Owerre, S A

    2018-03-13

    Topological magnon insulators are the bosonic analogs of electronic topological insulators. They are manifested in magnetic materials with topologically nontrivial magnon bands as realized experimentally in a quasi-two-dimensional (quasi-2D) kagomé ferromagnet Cu(1-3, bdc), and they also possess protected magnon edge modes. These topological magnetic materials can transport heat as well as spin currents, hence they can be useful for spintronic applications. Moreover, as magnons are charge-neutral spin-1 bosonic quasiparticles with a magnetic dipole moment, topological magnon materials can also interact with electromagnetic fields through the Aharonov-Casher effect. In this report, we study photoinduced topological phase transitions in intrinsic topological magnon insulators in the kagomé ferromagnets. Using magnonic Floquet-Bloch theory, we show that by varying the light intensity, periodically driven intrinsic topological magnetic materials can be manipulated into different topological phases with different sign of the Berry curvatures and the thermal Hall conductivity. We further show that, under certain conditions, periodically driven gapped topological magnon insulators can also be tuned to synthetic gapless topological magnon semimetals with Dirac-Weyl magnon cones. We envision that this work will pave the way for interesting new potential practical applications in topological magnetic materials.

  15. Fas ligand exists on intervertebral disc cells: a potential molecular mechanism for immune privilege of the disc.

    Science.gov (United States)

    Takada, Toru; Nishida, Kotaro; Doita, Minoru; Kurosaka, Masahiro

    2002-07-15

    Rat and human intervertebral disc specimens were examined immunohistochemically. Reverse transcription polymerase chain reaction (RT-PCR) analysis was also performed on rat disc tissue to demonstrate the existence of Fas ligand. To clarify the existence of Fas ligand on intact intervertebral disc cells. The nucleus pulposus has been reported to be an immune-privileged site. The immune-privileged characteristic in other tissues such as the retina and testis has been attributed to the local expression of Fas ligand, which acts by inducing apoptosis of invading Fas-positive T-cells. The existence of Fas ligand in normal disc cells has not yet been addressed. Skeletally mature SD male rats were killed, and the coccygeal discs were harvested. Human disc specimens were obtained from idiopathic scoliosis patients during surgical procedures. Immunohistochemical staining for Fas ligand was performed for cross-sections of the discs by standard procedures. Reverse transcription polymerase chain reaction analysis was also carried out to demonstrate Fas ligand mRNA expression on rat intervertebral discs. Testes of the rats were used for positive controls, and muscles were used for negative controls. The sections were observed by light microscopy. The nucleus pulposus cells exhibited intense positive immune staining for Fas ligand. The outer anulus fibrosus cells and notochordal cells exhibited little immunopositivity. The positive controls exhibited positive immune staining, and the negative control showed no immunopositivity. The result of RT-PCR confirmed the existence of Fas ligand in disc cells. The human nucleus pulposus cells showed a similar predilection to rat disc cells. We demonstrated the existence of Fas ligand on disc cells, which should play a key role in the potential molecular mechanism to maintain immune privilege of the disc. Immune privilege and Fas ligand expression of the intervertebral disc may provide a new insight for basic science research as well as

  16. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  17. Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia.

    Science.gov (United States)

    Lee, Jong Eun; Sung, Kyung Rim; Park, Ji Min; Yoon, Joo Young; Kang, Sung Yong; Park, Sung Bae; Koo, Hyung Jin

    2017-03-01

    To explore optic disc and peripapillary retinal nerve fiber layer (RNFL) features associated with glaucomatous optic disc (GOD) in young myopia. Presence of GOD, optic disc tilt, and disc torsion were determined using fundus photographs. If the measured disc tilt ratio was >1.3, the optic disc was classified as tilted. Optic disc torsion was defined as a >15° deviation in the long axis of the optic disc from the vertical meridian. The average and four quadrants RNFL thicknesses were assessed using spectral domain optical coherence tomography (SD-OCT). Logistic regression analyses were performed to identify factors associated with the presence of GOD. Nine hundred and sixty myopic subjects were recruited from four refractive surgery clinic databases. The mean age was 26.6 ± 5.7 years and spherical equivalent (SE) was -5.5 ± 2.5 diopters. Among 960 eyes, 26 (2.7%) received GOD group classification. Among 934 normal eyes, 290 (31.0%) had titled optic discs. Eighteen eyes (69.2%) in the GOD group had tilted optic discs. When compared to normal eyes, the GOD group had significantly higher tilt ratios (1.4 ± 0.2 vs. 1.2 ± 0.1, p Optic disc tilt was found in approximately one-third of young myopic eyes and was independently associated with the presence of GOD.

  18. The Role of Interfaces in Polyethylene/Metal-Oxide Nanocomposites for Ultrahigh-Voltage Insulating Materials.

    Science.gov (United States)

    Pourrahimi, Amir Masoud; Olsson, Richard T; Hedenqvist, Mikael S

    2018-01-01

    Recent progress in the development of polyethylene/metal-oxide nanocomposites for extruded high-voltage direct-current (HVDC) cables with ultrahigh electric insulation properties is presented. This is a promising technology with the potential of raising the upper voltage limit in today's underground/submarine cables, based on pristine polyethylene, to levels where the loss of energy during electric power transmission becomes low enough to ensure intercontinental electric power transmission. The development of HVDC insulating materials together with the impact of the interface between the particles and the polymer on the nanocomposites electric properties are shown. Important parameters from the atomic to the microlevel, such as interfacial chemistry, interfacial area, and degree of particle dispersion/aggregation, are discussed. This work is placed in perspective with important work by others, and suggested mechanisms for improved insulation using nanoparticles, such as increased charge trap density, adsorption of impurities/ions, and induced particle dipole moments are considered. The effects of the nanoparticles and of their interfacial structures on the mechanical properties and the implications of cavitation on the electric properties are also discussed. Although the main interest in improving the properties of insulating polymers has been on the use of nanoparticles, leading to nanodielectrics, it is pointed out here that larger microscopic hierarchical metal-oxide particles with high surface porosity also impart good insulation properties. The impact of the type of particle and its inherent properties (purity and conductivity) on the nanocomposite dielectric and insulating properties are also discussed based on data obtained by a newly developed technique to directly observe the charge distribution on a nanometer scale in the nanocomposite. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 1D numerical simulation of charge trapping in an insulator submitted to an electron beam irradiation. Part I: Computation of the initial secondary electron emission yield

    International Nuclear Information System (INIS)

    Aoufi, A.; Damamme, G.

    2011-01-01

    The aim of this work is to study by numerical simulation a mathematical modelling technique describing charge trapping during initial charge injection in an insulator submitted to electron beam irradiation. A two-fluxes method described by a set of two stationary transport equations is used to split the electron current j e (z) into coupled forward j e+ (z) and backward j e (z) currents and such that j e (z) = j e+ (z) - j e- (z). The sparse algebraic linear system, resulting from the vertex-centered finite-volume discretization scheme is solved by an iterative decoupled fixed point method which involves the direct inversion of a bi-diagonal matrix. The sensitivity of the initial secondary electron emission yield with respect to the energy of incident primary electrons beam, that is penetration depth of the incident beam, or electron cross sections (absorption and diffusion) is investigated by numerical simulations. (authors)

  20. Surfaces and slabs of fractional topological insulator heterostructures

    Science.gov (United States)

    Sahoo, Sharmistha; Sirota, Alexander; Cho, Gil Young; Teo, Jeffrey C. Y.

    2017-10-01

    Fractional topological insulators (FTIs) are electronic topological phases in (3 +1 ) dimensions enriched by time reversal (TR) and charge U (1 ) conservation symmetries. We focus on the simplest series of fermionic FTIs, whose bulk quasiparticles consist of deconfined partons that carry fractional electric charges in integral units of e*=e /(2 n +1 ) and couple to a discrete Z2 n +1 gauge theory. We propose massive symmetry preserving or breaking FTI surface states. Combining the long-ranged entangled bulk with these topological surface states, we deduce the novel topological order of quasi-(2 +1 ) -dimensional FTI slabs as well as their corresponding edge conformal field theories.

  1. Influence of HLA Matching on the Efficacy of Allogeneic Mesenchymal Stromal Cell Therapies for Osteoarthritis and Degenerative Disc Disease

    Directory of Open Access Journals (Sweden)

    Javier García-Sancho, MD, PhD

    2017-09-01

    Conclusions. This lack of reactivity is presumably due to the cooperation of 2 factors, (1 downregulation of the host immune responses by the transplanted MSCs and (2 effective insulation of these cells inside the articular cavity or the intervertebral disc, respectively. Interestingly, better HLA matching did not enhance efficacy. These observations have medical relevance as they support the clinical use of allogeneic cells, at least as a single-dose administration. Multiple-dose applications will require further research to exclude possible sensitization.

  2. Raman Scattering as a Probe of the Magnetic State of BEDT-TTF Based Mott Insulators

    Directory of Open Access Journals (Sweden)

    Nora Hassan

    2018-05-01

    Full Text Available Quasi-two-dimensional Mott insulators based on BEDT-TTF molecules have recently demonstrated a variety of exotic states, which originate from electron–electron correlations and geometrical frustration of the lattice. Among those states are a triangular S = 1/2 spin liquid and quantum dipole liquid. In this article, we show the power of Raman scattering technique to characterize magnetic and electronic excitations of these states. Our results demonstrate a distinction between a spectrum of magnetic excitations in a simple Mott insulator with antiferromagnetic interactions, and a spectrum of an insulator with an additional on-site charge degree of freedom.

  3. Retina image–based optic disc segmentation

    Directory of Open Access Journals (Sweden)

    Ching-Lin Wang

    2016-05-01

    Full Text Available The change of optic disc can be used to diagnose many eye diseases, such as glaucoma, diabetic retinopathy and macular degeneration. Moreover, retinal blood vessel pattern is unique for human beings even for identical twins. It is a highly stable pattern in biometric identification. Since optic disc is the beginning of the optic nerve and main blood vessels in retina, it can be used as a reference point of identification. Therefore, optic disc segmentation is an important technique for developing a human identity recognition system and eye disease diagnostic system. This article hence presents an optic disc segmentation method to extract the optic disc from a retina image. The experimental results show that the optic disc segmentation method can give impressive results in segmenting the optic disc from a retina image.

  4. Prognosis of intervertebral disc loss from diagnosis of degenerative disc disease

    Science.gov (United States)

    Li, S.; Lin, A.; Tay, K.; Romano, W.; Osman, Said

    2015-03-01

    Degenerative Disc Disease (DDD) is one of the most common causes of low back pain, and is a major factor in limiting the quality of life of an individual usually as they enter older stages of life, the disc degeneration reduces the shock absorption available which in turn causes pain. Disc loss is one of the central processes in the pathogenesis of DDD. In this study, we investigated whether the image texture features quantified from magnetic resonance imaging (MRI) could be appropriate markers for diagnosis of DDD and prognosis of inter-vertebral disc loss. The main objective is to use simple image based biomarkers to perform prognosis of spinal diseases using non-invasive procedures. Our results from 65 subjects proved the higher success rates of the combination marker compared to the individual markers and in the future, we will extend the study to other spine regions to allow prognosis and diagnosis of DDD for a wider region.

  5. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    International Nuclear Information System (INIS)

    Yanchev, I.

    2003-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated

  6. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    CERN Document Server

    Yanchev, I

    2003-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated.

  7. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    Energy Technology Data Exchange (ETDEWEB)

    Yanchev, I

    2003-07-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated.

  8. Physiological pattern of lumbar disc height

    International Nuclear Information System (INIS)

    Biggemann, M.; Frobin, W.; Brinckmann, P.

    1997-01-01

    Purpose of this study is to present a new method of quantifying objectively the height of all discs in lateral radiographs of the lumbar spine and of analysing the normal craniocaudal sequence pattern of lumbar disc heights. Methods: The new parameter is the ventrally measured disc height corrected for the dependence on the angle of lordosis by normalisation to mean angles observed in the erect posture of healthy persons. To eliminate radiographic magnification, the corrected ventral height is related to the mean depth of the cranially adjoining vertebra. In this manner lumbar disc heights were objectively measured in young, mature and healthy persons (146 males and 65 females). The craniocaudal sequence pattern was analysed by mean values from all persons and by height differences of adjoining discs in each individual lumbar spine. Results: Mean normative values demonstrated an increase in disc height between L1/L2 and L4/L5 and a constant or decreasing disc height between L4/L5 and L5/S1. However, this 'physiological sequence of disc height in the statistical mean' was observed in only 36% of normal males and 55% of normal females. Conclusion: The radiological pattern of the 'physiological sequence of lumbar disc height' leads to a relevant portion of false positive pathological results especially at L4/L5. An increase of disc height from L4/L5 to L5/S1 may be normal. The recognition of decreased disc height should be based on an abrupt change in the heights of adjoining discs and not on a deviation from a craniocaudal sequence pattern. (orig.) [de

  9. Effect of Coercive Voltage and Charge Injection on Performance of a Ferroelectric-Gate Thin-Film Transistor

    Directory of Open Access Journals (Sweden)

    P. T. Tue

    2013-01-01

    Full Text Available We adopted a lanthanum oxide capping layer between semiconducting channel and insulator layers for fabrication of a ferroelectric-gate thin-film transistor memory (FGT which uses solution-processed indium-tin-oxide (ITO and lead-zirconium-titanate (PZT film as a channel layer and a gate insulator, respectively. Good transistor characteristics such as a high “on/off” current ratio, high channel mobility, and a large memory window of 108, 15.0 cm2 V−1 s−1, and 3.5 V were obtained, respectively. Further, a correlation between effective coercive voltage, charge injection effect, and FGT’s memory window was investigated. It is found that the charge injection from the channel to the insulator layer, which occurs at a high electric field, dramatically influences the memory window. The memory window’s enhancement can be explained by a dual effect of the capping layer: (1 a reduction of the charge injection and (2 an increase of effective coercive voltage dropped on the insulator.

  10. CT morphometry of adult thoracic intervertebral discs.

    Science.gov (United States)

    Fletcher, Justin G R; Stringer, Mark D; Briggs, Christopher A; Davies, Tilman M; Woodley, Stephanie J

    2015-10-01

    Despite being commonly affected by degenerative disorders, there are few data on normal thoracic intervertebral disc dimensions. A morphometric analysis of adult thoracic intervertebral discs was, therefore, undertaken. Archival computed tomography scans of 128 recently deceased individuals (70 males, 58 females, 20-79 years) with no known spinal pathology were analysed to determine thoracic disc morphometry and variations with disc level, sex and age. Reliability was assessed by intraclass correlation coefficients (ICCs). Anterior and posterior intervertebral disc heights and axial dimensions were significantly greater in men (anterior disc height 4.0±1.4 vs 3.6±1.3 mm; posterior disc height 3.6±0.90 vs 3.4±0.93 mm; p<0.01). Disc heights and axial dimensions at T4-5 were similar or smaller than at T2-3, but thereafter increased caudally (mean anterior disc height T4-5 and T10-11, 2.7±0.7 and 5.4±1.2 mm, respectively, in men; 2.6±0.8 and 5.1±1.3 mm, respectively, in women; p<0.05). Except at T2-3, anterior disc height decreased with advancing age and anteroposterior and transverse disc dimensions increased; posterior and middle disc heights and indices of disc shape showed no consistent statistically significant changes. Most parameters showed substantial to almost perfect agreement for intra- and inter-rater reliability. Thoracic disc morphometry varies significantly and consistently with disc level, sex and age. This study provides unique reference data on adult thoracic intervertebral disc morphometry, which may be useful when interpreting pathological changes and for future biomechanical and functional studies.

  11. Transport of Dirac fermions on the surface of strong topological insulator and graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Arijit

    2012-06-14

    estimates covering the full temperature range are provided for the parameters of Bi{sub 2}Se{sub 3} which possibly can be verified by experiment. Afterwards, a theory of quantum transport and scattering by spatially localized static magnetic fields is developed in a unified way for the low energy Dirac Fermions on topological insulator and graphene. The employed model describes in a unified manner the effects of orbital magnetic fields, Zeeman and exchange fields in topological insulators, and the pseudo-magnetic fields caused by strain or defects in monolayer graphene. The general scattering theory is formulated, and for radially symmetric fields, the scattering amplitude and the total and transport cross sections are expressed in terms of phase shifts. As applications, I study ring-shaped magnetic fields. The Aharonov-Bohm geometry is also studied as a limit to the ring geometry. I also review the superconducting proximity effect on graphene and study resonant tunneling through a superconducting double barrier structure in graphene as a function of the system parameters. In this geometry, transmission resonances occur because of the formation of Andreev bound states. The evolution of the transport through this geometry as a function of the incident energy for various angles of incidence shows the damping of the resonance as normal reflection between the barriers increases. I also consider the phenomenon of quantum charge pumping of electrons in this geometry in the adiabatic limit. Quantum charge pumping can be achieved by modulating the amplitudes (Δ{sub 1} and Δ{sub 2}) of the gaps associated with the two superconducting strips. Because of transmission resonances in the Δ{sub 1} - Δ{sub 2} plane of parameter space, a large value of pumped charge is obtained when the pumping contour encloses the resonances. This is in sharp contrast to the case of charge pumping in a normal double barrier structure in graphene, where the pumped charge is very small, due to the

  12. Are Collapsed Cervical Discs Amenable to Total Disc Arthroplasty?: Analysis of Prospective Clinical Data With 2-Year Follow Up.

    Science.gov (United States)

    Patwardhan, Avinash G; Carandang, Gerard; Voronov, Leonard I; Havey, Robert M; Paul, Gary A; Lauryssen, Carl; Coric, Domagoj; Dimmig, Thomas; Musante, David

    2016-12-15

    Analysis of prospectively collected radiographic data. To investigate the influence of preoperative index-level range of motion (ROM) and disc height on postoperative ROM after cervical total disc arthroplasty (TDA) using compressible disc prostheses. Clinical studies demonstrate benefits of motion preservation over fusion; however, questions remain unanswered as to which preoperative factors have the ability to identify patients who are most likely to have good postoperative motion, which is the primary rationale for TDA. We analyzed prospectively collected data from a single-arm, multicenter study with 2-year follow up of 30 patients with 48 implanted levels. All received compressible cervical disc prostheses of 6 mm-height (M6C, Spinal Kinetics, Sunnyvale, CA). The influence of index-level preoperative disc height and ROM (each with two levels: below-median and above-median) on postoperative ROM was analyzed using 2 x 2 ANOVA. We further analyzed the radiographic outcomes of a subset of discs with preoperative height less than 3 mm, the so-called "collapsed" discs. Shorter (3.0 ± 0.4 mm) discs were significantly less mobile preoperatively than taller (4.4 ± 0.5 mm) discs (6.7° vs. 10.5°, P = 0.01). The postoperative ROM did not differ between the shorter and taller discs (5.6° vs. 5.0°, P = 0.63). Tall discs that were less mobile preoperatively had significantly smaller postoperative ROM than short discs with above-median preoperative mobility (P < 0.05). The "collapsed discs" (n = 8) were less mobile preoperatively compared with all discs combined (5.1° vs. 8.6°, P < 0.01). These discs were distracted to more than two times the preoperative height, from 2.6 to 5.7 mm, and had significantly greater postoperative ROM than all discs combined (7.6° vs. 5.3°, P < 0.05). We observed a significant interaction between preoperative index-level disc height and ROM in influencing postoperative ROM. Although limited by small sample

  13. Disc-halo interactions in ΛCDM

    Science.gov (United States)

    Bauer, Jacob S.; Widrow, Lawrence M.; Erkal, Denis

    2018-05-01

    We present a new method for embedding a stellar disc in a cosmological dark matter halo and provide a worked example from a Λ cold dark matter zoom-in simulation. The disc is inserted into the halo at a redshift z = 3 as a zero-mass rigid body. Its mass and size are then increased adiabatically while its position, velocity, and orientation are determined from rigid-body dynamics. At z = 1, the rigid disc (RD) is replaced by an N-body disc whose particles sample a three-integral distribution function (DF). The simulation then proceeds to z = 0 with live disc (LD) and halo particles. By comparison, other methods assume one or more of the following: the centre of the RD during the growth phase is pinned to the minimum of the halo potential, the orientation of the RD is fixed, or the live N-body disc is constructed from a two rather than three-integral DF. In general, the presence of a disc makes the halo rounder, more centrally concentrated, and smoother, especially in the innermost regions. We find that methods in which the disc is pinned to the minimum of the halo potential tend to overestimate the amount of adiabatic contraction. Additionally, the effect of the disc on the subhalo distribution appears to be rather insensitive to the disc insertion method. The LD in our simulation develops a bar that is consistent with the bars seen in late-type spiral galaxies. In addition, particles from the disc are launched or `kicked up' to high galactic latitudes.

  14. Space charge build-up in XLPE-cable with temperature gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Hjerrild, Jesper

    2000-01-01

    and temperatures were applied in the 20 - 80°C range with gradients across the insulation of up to 15°C. In this paper, the observed charge phenomena in the bulk and at the interfaces are related to the external conditions, in particular to the temperature gradient. The measured space charge distributions...

  15. The comparative analysis of rocks' resistance to forward-slanting disc cutters and traditionally installed disc cutters

    Science.gov (United States)

    Zhang, Zhao-Huang; Fei, Sun; Liang, Meng

    2016-08-01

    At present, disc cutters of a full face rock tunnel boring machine are mostly mounted in the traditional way. Practical use in engineering projects reveals that this installation method not only heavily affects the operation life of disc cutters, but also increases the energy consumption of a full face rock tunnel boring machine. To straighten out this issue, therefore, a rock-breaking model is developed for disc cutters' movement after the research on the rock breaking of forward-slanting disc cutters. Equations of its displacement are established based on the analysis of velocity vector of a disc cutter's rock-breaking point. The functional relations then are brought forward between the displacement parameters of a rock-breaking point and its coordinate through the analysis of micro displacement of a rock-breaking point. Thus, the geometric equations of rock deformation are derived for the forward-slanting installation of disc cutters. With a linear relationship remaining between the acting force and its deformation either before or after the leap breaking, the constitutive relation of rock deformation can be expressed in the form of generalized Hooke law, hence the comparative analysis of the variation in the resistance of rock to the disc cutters mounted in the forward-slanting way with that in the traditional way. It is discovered that with the same penetration, strain of the rock in contact with forward-slanting disc cutters is apparently on the decline, in other words, the resistance of rock to disc cutters is reduced. Thus wear of disc cutters resulted from friction is lowered and energy consumption is correspondingly decreased. It will be useful for the development of installation and design theory of disc cutters, and significant for the breakthrough in the design of full face rock tunnel boring machine.

  16. A Simulation Model of Focus and Radial Servos in Compact Disc Players with Disc Surface Defects

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2004-01-01

    Compact Disc players have been on the market in more than two decades.As a consequence most of the control servo problems have been solved. A large remaining problem to solve is the handling of Compact Discs with severe surface defects like scratches and fingerprints. This paper introduces a method...... for making the design of controllers handling surface defects easier. A simulation model of Compact Disc players playing discs with surface defects is presented. The main novel element in the model is a model of the surface defects. That model is based on data from discs with surface defects. This model...

  17. Space charge dynamic of irradiated cyanate ester/epoxy at cryogenic temperatures

    Science.gov (United States)

    Wang, Shaohe; Tu, Youping; Fan, Linzhen; Yi, Chengqian; Wu, Zhixiong; Li, Laifeng

    2018-03-01

    Glass fibre reinforced polymers (GFRPs) have been widely used as one of the main electrical insulating structures for superconducting magnets. A new type of GFRP insulation material using cyanate ester/epoxy resin as a matrix was developed in this study, and the samples were irradiated by Co-60 for 1 MGy and 5 MGy dose. Space charge distributed within the sample were tested using the pulsed electroacoustic method, and charge concentration was found at the interfaces between glass fibre and epoxy resin. Thermally stimulated current (TSC) and dc conduction current were also tested to evaluate the irradiation effect. It was supposed that charge mobility and density were suppressed at the beginning due to the crosslinking reaction, and for a higher irradiation dose, molecular chain degradation dominated and led to more sever space charge accumulation at interfaces which enhance the internal electric field higher than the external field, and transition field for conduction current was also decreased by irradiation. Space charge dynamic at cryogenic temperature was revealed by conduction current and TSC, and space charge injection was observed for the irradiated samples at 225 K, which was more obvious for the irradiated samples.

  18. Intratracheal Seal Disc

    DEFF Research Database (Denmark)

    Christiansen, Karen J; Moeslund, Niels; Lauridsen, Henrik

    2017-01-01

    . The device consisted of an intratracheal silicone seal disc fixated by a cord through the stoma to an external part. At day 14, computed tomography (CT) was performed before the device was extracted. With the pulling of a cord, the disc unraveled into a thin thread and was extracted through the stoma. At day...

  19. MR image assessment of disc configuration and degree of anterior disc displacement in internal derangement related to age

    International Nuclear Information System (INIS)

    Igarashi, Chinami; Kobayashi, Kaoru; Imanaka, Masahiro; Yuasa, Masao; Yamamoto, Akira

    1999-01-01

    This study was designed to evaluate the configuration of the articular disc and degree of anterior disc displacement on magnetic resonance (MR) imagings in temporomandibular joints (TMJs) with internal derangement. A total of 363 joints diagnosed as having anterior disc displacement with reduction (ADD w R) and 523 joints diagnosed as having anterior disc displacement without reduction (ADD wo R) by MR imaging were examined. These joints did not show severe osseous changes on the condylar head or glenoid fossa. We assessed the configuration of the articular disc and degree of anterior disc displacement. In the ADD w R group, 82.6% of the articular discs showed biconcave configuration; enlargement of the posterior band in 4.6%, biconvex configuration in 0.5%, and others in 10.7%. Moreover 62.5% of the discs showed a slight degree of anterior disc displacement; were 27.2% moderately displaced and were 10.2% severe displaced. The prevalence of slightly displaced discs was higher in the TMJs of cases over 50 years of age than in cases under 30 years in the ADD w R group. On the other hand, in the ADD wo R group 35.9% of the articular discs showed biconcave configuration; enlargement of the posterior band in 12.6%, biconvex configuration in 25.4%, and others in 22.3%. Furthermore, 4.4% of the discs were slightly displaced; 43.9% moderately displaced and 51.6% were severely displaced. The prevalence of severely displaced and deformed discs in joints of cases over 40 years of age was high in the ADD wo R group. The prevalence of slightly displaced biconcave discs was higher in the ADD w R group. The other hand, the prevalence of severely displaced deformed discs was higher in the ADD wo R group. MR findings of internal derangement of the TMJ were found to be significantly correlated with age. (author)

  20. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in mis-structures

    International Nuclear Information System (INIS)

    Yanchev, I; Slavcheva, G.

    1993-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential Γ 2 to which it leads in distinction with the so far known correlation functions leading to divergent dispersion. The important characteristic of the random potential distribution Γ 2 determining the amplitude of the potential fluctuations is calculated. 7 refs. (orig.)

  1. High gradient lens for charged particle beam

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  2. Lumbar disc excision through fenestration

    Directory of Open Access Journals (Sweden)

    Sangwan S

    2006-01-01

    Full Text Available Background : Lumbar disc herniation often causes sciatica. Many different techniques have been advocated with the aim of least possible damage to other structures while dealing with prolapsed disc surgically in the properly selected and indicated cases. Methods : Twenty six patients with clinical symptoms and signs of prolapsed lumbar intervertebral disc having radiological correlation by MRI study were subjected to disc excision by interlaminar fenestration method. Results : The assessment at follow-up showed excellent results in 17 patients, good in 6 patients, fair in 2 patients and poor in 1 patient. The mean preoperative and postoperative Visual Analogue Scores were 9.34 ±0.84 and 2.19 ±0.84 on scale of 0-10 respectively. These were statistically significant (p value< 0.001, paired t test. No significant complications were recorded. Conclusion : Procedures of interlaminar fenestration and open disc excision under direct vision offers sufficient adequate exposure for lumbar disc excision with a smaller incision, lesser morbidity, shorter convalescence, early return to work and comparable overall results in the centers where recent laser and endoscopy facilities are not available.

  3. ESA's tools for internal charging; Outils developpes par l'ESA pour evaluer les repartitions de charges electrostatiques

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, J. [ESA/ESTEC (Netherlands); Rodgers, D.J.; Ryden, K.A.; Latham, P.M. [DERA, Farnborough (United Kingdom); Wrenn, G.L. [T.S. Space Systems (United Kingdom); Levy, L.; Panabiere, G. [Office National d' Etudes et de Recherches Aerospatiales (ONERA/DESP), 31 - Toulouse (France)

    1999-07-01

    Electrostatic discharges, caused by bulk charging of spacecraft insulating materials, are a major cause of satellite anomalies. This is a presentation of ESA's tools to assess whether a given structure is liable to experience electrostatic discharges. (authors)

  4. Metrical analysis of disc-condyle relation with different splint treatment positions in patients with TMJ disc displacement

    Directory of Open Access Journals (Sweden)

    Mu-Qing Liu

    Full Text Available Abstract Objective: To evaluate the effect of bite positions characterizing different splint treatments (anterior repositioning and stabilization splints on the disc-condyle relation in patients with TMJ disc displacement with reduction (DDwR, using magnetic resonance imaging (MRI. Material and Methods: 37 patients, with a mean age of 18.8±4.3 years (7 male and 30 females and diagnosed with DDwR based on the RDC/TMD, were recruited. MRI metrical analysis of the spatial changes of the disc/condyle, as well as their relationships, was done in three positions: maximum intercuspation (Position 1, anterior repositioning splint position (Position 2, and stabilization splint position (Position 3. Disc/condyle coordinate measurements and disc condyle angles were determined and compared. Results: In Position 1, the average disc-condyle angle was 53.4° in the 60 joints with DDwR, while it was −13.3° with Position 2 and 30.1° with Position 3. The frequency of successful "disc recapture" with Position 2 was significantly higher (58/60, 96.7% than Position 3 (20/60, 33.3%. In Positions 2 and 3, the condyle moved forward and downward while the disc moved backward. The movements were, however, more remarkable with Position 2. Conclusions: Anterior repositioning of the mandible improves the spatial relationship between the disc and condyle in patients with DDwR. In addition to anterior and inferior movement of the condyle, transitory posterior movement of the disc also occurred.

  5. Neutralization kinetics of charged polymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Mukherjee, M. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)], E-mail: manabendra.mukherjee@saha.ac.in

    2008-04-15

    In case of photoemission spectroscopy of an insulating material the data obtained from the charged surface are normally distorted due to differential charging. Recently, we have developed a controlled surface neutralization technique to study the kinetics of the surface charging. Using this technique and the associated data analysis scheme with an effective charging model, quantitative information from the apparently distorted photoemission data from PTFE surfaces were extracted. The surface charging was controlled by tuning the electron flood current as well as the X-ray intensity. The effective model was found to describe the charging consistently for both the cases. It was shown that the non-linear neutralization response of differential charging around a critical neutralizing electron flux or a critical X-ray emission current was due to percolation of equipotential surface domains. The obtained value of the critical percolation exponent {gamma} close to unity indicates a percolation similar to that of avalanche breakdown or chain reaction.

  6. Theory of strain-controlled magnetotransport and stabilization of the ferromagnetic insulating phase in manganite thin films.

    Science.gov (United States)

    Mukherjee, Anamitra; Cole, William S; Woodward, Patrick; Randeria, Mohit; Trivedi, Nandini

    2013-04-12

    We show that applying strain on half-doped manganites makes it possible to tune the system to the proximity of a metal-insulator transition and thereby generate a colossal magnetoresistance (CMR) response. This phase competition not only allows control of CMR in ferromagnetic metallic manganites but can be used to generate CMR response in otherwise robust insulators at half-doping. Further, from our realistic microscopic model of strain and magnetotransport calculations within the Kubo formalism, we demonstrate a striking result of strain engineering that, under tensile strain, a ferromagnetic charge-ordered insulator, previously inaccessible to experiments, becomes stable.

  7. Current-induced switching in a magnetic insulator

    Science.gov (United States)

    Avci, Can Onur; Quindeau, Andy; Pai, Chi-Feng; Mann, Maxwell; Caretta, Lucas; Tang, Astera S.; Onbasli, Mehmet C.; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-03-01

    The spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive. Here we demonstrate spin-current-induced switching of a perpendicularly magnetized thulium iron garnet film driven by charge current in a Pt overlayer. We estimate a relatively large spin-mixing conductance and damping-like SOT through spin Hall magnetoresistance and harmonic Hall measurements, respectively, indicating considerable spin transparency at the Pt/MI interface. We show that spin currents injected across this interface lead to deterministic magnetization reversal at low current densities, paving the road towards ultralow-dissipation spintronic devices based on MIs.

  8. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    Directory of Open Access Journals (Sweden)

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  9. Disc Golf: Teaching a Lifetime Activity

    Science.gov (United States)

    Eastham, Susan L.

    2015-01-01

    Disc golf is a lifetime activity that can be enjoyed by students of varying skill levels and abilities. Disc golf follows the principles of ball golf but is generally easier for students to play and enjoy success. The object of disc golf is similar to ball golf and involves throwing a disc from the teeing area to the target in as few throws as…

  10. Observation of a phononic quadrupole topological insulator

    Science.gov (United States)

    Serra-Garcia, Marc; Peri, Valerio; Süsstrunk, Roman; Bilal, Osama R.; Larsen, Tom; Villanueva, Luis Guillermo; Huber, Sebastian D.

    2018-03-01

    The modern theory of charge polarization in solids is based on a generalization of Berry’s phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. The theory of this quantized polarization has recently been extended from the dipole moment to higher multipole moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge modes, which stabilize zero-dimensional in-gap corner states. However, such a state of matter has not previously been observed experimentally. Here we report measurements of a phononic quadrupole topological insulator. We experimentally characterize the bulk, edge and corner physics of a mechanical metamaterial (a material with tailored mechanical properties) and find the predicted gapped edge and in-gap corner states. We corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases that are predicted by the quadrupole theory. These topological corner states are an important stepping stone to the experimental realization of topologically protected wave guides in higher dimensions, and thereby open up a new path for the design of metamaterials.

  11. Metal-insulator transition induced in CaVO3 thin films

    International Nuclear Information System (INIS)

    Gu Man; Laverock, Jude; Chen, Bo; Smith, Kevin E.; Wolf, Stuart A.; Lu Jiwei

    2013-01-01

    Stoichiometric CaVO 3 (CVO) thin films of various thicknesses were grown on single crystal SrTiO 3 (STO) (001) substrates using a pulsed electron-beam deposition technique. The CVO films were capped with a 2.5 nm STO layer. We observed a temperature driven metal-insulator transition (MIT) in CVO films with thicknesses below 4 nm that was not observed in either thick CVO films or STO films. The emergence of this MIT can be attributed to the reduction in effective bandwidth due to a crossover from a three-dimensional metal to a two-dimensional insulator. The insulating phase was only induced with a drive current below 0.1 μA. X-ray absorption measurements indicated different electronic structures for thick and very thin films of CVO. Compared with the thick film (∼60 nm), thin films of CVO (2–4 nm) were more two-dimensional with the V charge state closer to V 4+ .

  12. [Partial nucleotomy of the ovine disc as an in vivo model for disc degeneration].

    Science.gov (United States)

    Guder, E; Hill, S; Kandziora, F; Schnake, K J

    2009-01-01

    The aim of this study was to develop a suitable animal model for the clinical situation of progressive disc degeneration after microsurgical nucleotomy. Twenty sheep underwent standardised partial anterolateral nucleotomy at lumbar segment 3/4. After randomisation, 10 animals were sacrificed after 12 weeks (group 1). The remainder was sacrificed after 48 weeks (group 2). For radiological examination X-rays, MRI and post-mortem CT scans were performed. Lumbar discs L 3/4 with adjacent subchondral trabecular bone were harvested and analysed macroscopically and histologically. An image-analysing computer program was used to measure histomorphometric indices of bone structure. 17 segments could be evaluated. After 12 weeks (group 1) histological and radiological degenerative disc changes were noted. After 48 weeks (group 2), radiological signs in MRI reached statistical significance. Furthermore, group 2 showed significantly more osteophyte formations in CT scans. Histomorphometric changes of the disc and the adjacent vertebral bone structure suggest a significant progressive degenerative remodelling. The facet joints did not show any osteoarthrosis after 48 weeks. Partial nucleotomy of the ovine lumbar disc leads to radiological and histological signs of disc degeneration similar to those seen in humans after microsurgical nucleotomy. The presented in vivo model may be useful to evaluate new orthopaedic treatment strategies.

  13. Radiological assessment of loss of disc height during acute and chronic degenerative lumbar disc alterations

    International Nuclear Information System (INIS)

    Zoellner, J.; Sancaktaroglu, T.; Nafe, B.; Eysel, P.; Loew, R.

    2001-01-01

    Aim of the study: A loss of disc height with increasing segmental mobility is an important reason for low back pain. The measurement of hyaluronic acid content of the nucleus pulposus prolaps shows a difference between acute (group 1) and chronic (group 2) disc degeneration. The purpose of the present investigation was to determine the decreasing of disc height between these two groups and the no-symptomatic segments of these patients. Methods: 20 human lateral preoperative X-ray measurements according to Frobin et al. were taken; group 1 with 7 patients (mean age 41 years) and group 2 with 13 patients (mean age 44 years). Results: There was a significant tendency (p=0.091) to a reduction of disc height in group 2 between symptomatic and asymptomatic discs. Conclusion: The used method is not suitable to answer the present question conclusively. (orig.) [de

  14. Actuator disc edge singularity. The key to a revised actuator disc concept and momentum theory

    Energy Technology Data Exchange (ETDEWEB)

    Kuik, G.A.M. van (The Wind Energy Group of the Technical University Eindhoven (NL))

    1989-01-01

    Since the beginning of rotor aerodynamics the actuator disc momentum theory occupies a prominant place in almost any textbook on this subject. Specially in axial flow the theory provides an easy and rather accurate performance prediction. The results first obtained by Lanchester for the induced power of a hovering rotor and the maximum power of a wind turbine are still used as guidelines for complicated calculations. On the other hand, experimental results for propellers are known to deviate systematically (some 10%) from the momentum theory results. This is commonly attributed to the differences between a real rotor and an actuator disc. However, some actuator disc- and actuator strip (the 2-dimensional version) experiments are described in literature, showing the same deviations from momentum theory results. Therefore, apart from the question how representative an actuator disc is for a real rotor, the actuator disc concept itself may be inadequate. This problem is the subject of the work describe here. It will be shown that the classical actuator disc concept ignores discrete forces resulting from a flow singularity at the edge of the disc. The (extended) momentum theory, applied to this actuator strip model, shows a shift of the results towards the experimental data, and for the static case (hover) even a quantitative agreement is obtained. (author) 12 refs.

  15. Vascular complications of prosthetic inter-vertebral discs.

    Science.gov (United States)

    Daly, Kevin J; Ross, E Raymond S; Norris, Heather; McCollum, Charles N

    2006-10-01

    Five consecutive cases of prosthetic inter-vertebral disc displacement with severe vascular complications on revisional surgery are described. The objective of this case report is to warn spinal surgeons that major vascular complications are likely with anterior displacement of inter-vertebral discs. We have not been able to find a previous report on vascular complications associated with anterior displacement of prosthetic inter-vertebral discs. In all five patients the prosthetic disc had eroded into the bifurcation of the inferior vena cava and the left common iliac vein. In three cases the aortic bifurcation was also involved. The fibrosis was so severe that dissecting out the arteries and veins to provide access to the relevant disc proved impossible. Formal division of the left common iliac vein and artery with subsequent repair was our solution. Anterior inter-vertebral disc displacement was associated with severe vascular injury. Preventing anterior disc displacement is essential in disc design. In the event of anterior displacement, disc removal should be planned with a Vascular Surgeon.

  16. Measurements of the Secondary Electron Emission of Some Insulators

    CERN Document Server

    Bozhko, Y.; Hilleret, N.

    2013-01-01

    Charging up the surface of an insulator after beam impact can lead either to reverse sign of field between the surface and collector of electrons for case of thick sample or appearance of very high internal field for thin films. Both situations discard correct measurements of secondary electron emission (SEE) and can be avoided via reducing the beam dose. The single pulse method with pulse duration of order of tens microseconds has been used. The beam pulsing was carried out by means of an analog switch introduced in deflection plate circuit which toggles its output between "beam on" and "beam off" voltages depending on level of a digital pulse. The error in measuring the beam current for insulators with high value of SEE was significantly reduced due to the use for this purpose a titanium sample having low value of the SEE with DC method applied. Results obtained for some not coated insulators show considerable increase of the SEE after baking out at 3500C what could be explained by the change of work functi...

  17. Electronic heat, charge and spin transport in superconductor-ferromagnetic insulator structures

    Energy Technology Data Exchange (ETDEWEB)

    Bergeret, Sebastian [Materials Physics Center (CFM-CSIC), San Sebastian (Spain); Donostia International Physics Center (DIPC), San Sebastian (Spain)

    2015-07-01

    It is known for some time that a superconducting (S) film in contact with a ferromagnetic insulator (FI) exhibits a spin-splitting in the density of states (DoS). Recently we have explored different S-FI hybrid structures and predicted novel effects exploiting such spin-splitting of the DoS. In this talk I will briefly discuss (i) a heat valve based on a FI-S-I-S-FI Josephson junction; (ii) a thermoelectric transistor and (iii) the occurrence of a giant thermophase in a thermally-biased Josephson junction.

  18. Pressure-induced charge ordering of LiV2O4

    International Nuclear Information System (INIS)

    Takeda, K.; Hidaka, H.; Kotegawa, H.; Kobayashi, T.C.; Shimizu, K.; Harima, H.; Fujiwara, K.; Miyoshi, K.; Takeuchi, J.; Ohishi, Y.; Adachi, T.; Takata, M.; Nishibori, E.; Sakata, M.; Watanuki, T.; Shimomura, O.

    2005-01-01

    The powder X-ray diffraction experiments of LiV 2 O 4 have been performed at low temperature and high pressure using synchrotron radiation. In the isothermal experiment at 10K, the cubic-rhombohedral phase transition corresponding to the metal-insulator transition is found at around 13GPa. This transition seems to be due to charge ordering of V ions on the analogy of the metal-insulator transition in AlV 2 O 4

  19. Calculation and measurement of space charge in MV-size xxtruded cables systems under load conditions

    NARCIS (Netherlands)

    Morshuis, P.H.F.; Bodega, R.; Fabiani, D.; Montanari, G.C.; Dissado, L.A.; Smit, J.J.

    2007-01-01

    A load current in dc high voltage cables results in a temperature drop across the insulation and hence a radial distribution of the insulation conductivity is found. Direct consequence is an accumulation of space charge in the bulk of the nsulation, that may significantly affect its reliability.

  20. Comparison of Heidelberg Retina Tomograph with disc-macula distance to disc diameter ratio in diagnosing optic nerve hypoplasia.

    Science.gov (United States)

    Pang, Yi; Frantz, Kelly A

    2016-05-01

    To evaluate whether Heidelberg Retinal Tomograph (HRT) is a valid test for diagnosing congenital optic nerve hypoplasia (CONH) compared to the ratio of the distance between the centre of the optic disc and the centre of the macula and the mean optic disc diameter (DM:DD ratio). Furthermore, to determine the optimal cut-off value of HRT disc area to differentiate a hypoplastic disc from a normal optic disc. A total of 33 subjects with CONH (4-67 years old) and 160 normal subjects (5-65 years old) were recruited and underwent comprehensive eye examinations, fundus photography and HRT. Receiver operating characteristic curves for DM:DD ratio and HRT disc area were constructed based on data from the 46 CONH eyes and 160 control eyes. Mean (±S.D.) HRT disc area was 1.94 (±0.54) mm(2) for the control eyes and 0.84 (±0.35) mm(2) for the CONH eyes (p < 0.0001). The area under the curve (AUC) for DM:DD ratio was 0.83 (95% confidence interval: 0.76-0.90). The AUC for HRT disc area was 0.96 (95% confidence interval: 0.94-0.99). A statistically significant difference was found between AUC for HRT disc area and that for DM:DD ratio (p = 0.0004). The optimal cut-off value for HRT disc area was 1.42 mm(2) with 95% sensitivity and 85% specificity. The optimal cut-off value for DM:DD ratio was 3.20 with 78% sensitivity and 78% specificity. Both HRT and the DM:DD ratio are valid tests to aid diagnosis of CONH. HRT is superior to DM:DD ratio in diagnosing CONH with higher sensitivity and specificity. We suggest the optimal cut-off value for HRT disc area as 1.42 mm(2) in order to discriminate a hypoplastic disc from a normal optic disc. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  1. A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors

    Science.gov (United States)

    Deligkaris, Christos

    2018-04-01

    The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena. Textbooks may adequately discuss polarization, but there is little material in active learning labs and tutorials on this topic. Since polarization of materials is a microscopic phenomenon, instructors often use diagrams and figures on the classroom board to explain the process in a lecture setting. In this paper I will describe a classroom activity where the students play the role of electrons as an alternative option.

  2. CT findings of lumbar intervertebral disc: II. Disc herniation (HNP)

    International Nuclear Information System (INIS)

    Yang, W. J.; Lee, J. M.; Bahk, Y. W.

    1984-01-01

    In lumbar region the epidural fat pad is relatively abundant so that CT can provides sufficient information in diagnosis of lumbar HNP. Many authors have reported on the CT findings of HNP such as focal nodular protrusion of the posterior disc margin, obliteration of epidural fat pad, impingement of dural sac and nerve root, swelling of nerve root, soft tissue density in the spinal canal and calcification of disc. However there was so previous report describing incidence and reliability of the findings. It is the purpose of the present study to survey the frequency, reliability, and limitation of these CT findings. The clinical material was consisted of 30 operatively proven cases of HNP of the lumbar spine. Each lumbar CT scan was reviewed retrospectively and the findings were analysed by two radiologists independently. There were 20 males and 10 females and the mean age was 36.7 years. Involvement of L4-S5 level was 2.3 times more frequent than that of L5-S1 level. Of 30 cases, 22 were unilateral posterolateral types and 8 cases central or unilateral far lateral types. CT findings observed were nodular protrusion of the posterior margin of the disc, obliteration of epidural fat pad, impingement of dural sac or nerve root, soft tissue density in the spinal canal and calcification in the posterior portion of the protruded disc, in order of decreasing frequency. The conclusions are follows: 1. Nodular protrusion of the posterior disc margin accompanied by obliteration of epidural fat pad was observed in every case. The former findings was designated as direct sign and the latter indirect. 2. Obliteration of the epidural fat appears to be significant in lateral recesses especially when it occurs unilaterally. This was not true, however, in the centrally located fat pad. 3. Impingement of the dural sac and nerve root were observed in 90% and 67%, respectively, and were very helpful in establishing HNP diagnosis when the direct and indirect signs were equivocal

  3. The Galactic stellar disc

    International Nuclear Information System (INIS)

    Feltzing, S; Bensby, T

    2008-01-01

    The study of the Milky Way stellar discs in the context of galaxy formation is discussed. In particular, we explore the properties of the Milky Way disc using a new sample of about 550 dwarf stars for which we have recently obtained elemental abundances and ages based on high-resolution spectroscopy. For all the stars we also have full kinematic information as well as information about their stellar orbits. We confirm results from previous studies that the thin and the thick discs have distinct abundance patterns. But we also explore a larger range of orbital parameters than what has been possible in our previous studies. Several new results are presented. We find that stars that reach high above the Galactic plane and have eccentric orbits show remarkably tight abundance trends. This implies that these stars formed out of well-mixed gas that had been homogenized over large volumes. We find some evidence that suggest that the event that most likely caused the heating of this stellar population happened a few billion years ago. Through a simple, kinematic exploration of stars with super-solar [Fe/H], we show that the solar neighbourhood contains metal-rich, high velocity stars that are very likely associated with the thick disc. Additionally, the HR1614 moving group and the Hercules and Arcturus stellar streams are discussed and it is concluded that, probably, a large fraction of the groups and streams so far identified in the disc are the result of evolution and interactions within the stellar disc rather than being dissolved stellar clusters or engulfed dwarf galaxies.

  4. Björk-Shiley strut fracture and disc escape: literature review and a method of disc retrieval.

    Science.gov (United States)

    Hendel, P N

    1989-03-01

    Embolization of a prosthetic valve poppet is a rare but life-threatening event. It was reported sporadically before the introduction of the Björk-Shiley 70-degree convexoconcave prosthesis in 1980. Since that time, there have been a large number of reported mechanical failures with disc escape. The rate for the 29-mm to 33-mm mitral valves is estimated as 5.2%. In 29 of 35 patients (including the 2 presented here) in whom the site of disc lodgment could be determined, the disc was in the descending or abdominal aorta. Fifteen of these patients died. Six survivors had the disc removed at the same operation and 6 at a later operation. In 2 patients, the disc was not removed. In 2 patients in whom the disc was not removed initially, it was thought to contribute to postoperative complications. Two more cases of structural failure of the Björk-Shiley convexoconcave prosthesis are presented. A transpericardial approach to the descending aorta on bypass is described. It allows easy removal of the disc and eliminates the need for a second operation.

  5. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials.

    Science.gov (United States)

    Masai, Hiroshi; Terao, Jun; Seki, Shu; Nakashima, Shigeto; Kiguchi, Manabu; Okoshi, Kento; Fujihara, Tetsuaki; Tsuji, Yasushi

    2014-02-05

    We report, herein, the design, synthesis, and properties of new materials directed toward molecular electronics. A transition metal-containing insulated molecular wire was synthesized through the coordination polymerization of a Ru(II) porphyrin with an insulated bridging ligand of well-defined structure. The wire displayed not only high linearity and rigidity, but also high intramolecular charge mobility. Owing to the unique properties of the coordination bond, the interconversion between the monomer and polymer states was realized under a carbon monoxide atmosphere or UV irradiation. The results demonstrated a high potential of the metal-containing insulated molecular wire for applications in molecular electronics.

  6. Debris disc constraints on planetesimal formation

    Science.gov (United States)

    Krivov, Alexander V.; Ide, Aljoscha; Löhne, Torsten; Johansen, Anders; Blum, Jürgen

    2018-02-01

    Two basic routes for planetesimal formation have been proposed over the last decades. One is a classical `slow-growth' scenario. Another one is particle concentration models, in which small pebbles are concentrated locally and then collapse gravitationally to form planetesimals. Both types of models make certain predictions for the size spectrum and internal structure of newly born planetesimals. We use these predictions as input to simulate collisional evolution of debris discs left after the gas dispersal. The debris disc emission as a function of a system's age computed in these simulations is compared with several Spitzer and Herschel debris disc surveys around A-type stars. We confirm that the observed brightness evolution for the majority of discs can be reproduced by classical models. Further, we find that it is equally consistent with the size distribution of planetesimals predicted by particle concentration models - provided the objects are loosely bound `pebble piles' as these models also predict. Regardless of the assumed planetesimal formation mechanism, explaining the brightest debris discs in the samples uncovers a `disc mass problem'. To reproduce such discs by collisional simulations, a total mass of planetesimals of up to ˜1000 Earth masses is required, which exceeds the total mass of solids available in the protoplanetary progenitors of debris discs. This may indicate that stirring was delayed in some of the bright discs, that giant impacts occurred recently in some of them, that some systems may be younger than previously thought or that non-collisional processes contribute significantly to the dust production.

  7. T1 hyperintense disc in alkaptonuria.

    Science.gov (United States)

    Sag, Alan A; Silbergleit, Richard; Olson, Rick E; Wilson, Jon; Krishnan, Anant

    2012-10-01

    Case report. To report a rare case of alkaptonuria presenting as a T1-hyperintense disc herniation. A 46-year-old man without previous diagnosis of alkaptonuria underwent evaluation for progressive back pain revealing a T1-hyperintense disc herniation at the L3-L4 level. Discectomy recovered a blackened disc that was pathologically confirmed to be nucleus pulposus with alkaptonuric involvement. The differential diagnosis of a T1-hyperintense, T2-hypointense disc on magnetic resonance imaging is discussed, with emphasis on the pathophysiology of alkaptonuria. A single patient is reported. Pathologically proven patient presentation with radiological and pathological images. We report a rare case of alkaptonuria presenting as a T1-hyperintense disc herniation.

  8. Topological BF field theory description of topological insulators

    International Nuclear Information System (INIS)

    Cho, Gil Young; Moore, Joel E.

    2011-01-01

    Research highlights: → We show that a BF theory is the effective theory of 2D and 3D topological insulators. → The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. → The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. → Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a π flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.

  9. Investigation of charge balance in ion accelerator TEMP–4M

    International Nuclear Information System (INIS)

    Khailov, I P; Pak, V G

    2014-01-01

    The paper presents the results of a study on the balance of charge in accelerator TEMP–4M operating in double-pulse mode with resistance load and ion diode. Crucially, it was found, that during the switching there is no losses of accumulated charge. It means, that all accumulated charge transferred to the load. However when the charge is transferred from the Marx generator to Blumlein line the half of accumulated charge is lost. Calibration of diagnostic equipment showed a good agreement between the calculated and experimental values of voltage and current. It means, that our diagnostic system is correct for registration parameters of the ion accelerator. A distinctive feature of the ion accelerators with self-magnetically insulated diode is that there is no need to use additional energy source for the creation of an external magnetic field. That's why the efficiency of ion diodes with an external magnetic field is not more than 10–15%. The efficiency of energy conversion in self-magnetically insulated diodes will be determined by not only the efficiency of the diode, but the energy losses in the units of the accelerator. The aim of the researches is the analysis of the balance of charge in units of the ion beams pulsed generator and definition of the most significant channels of energy loss

  10. On holographic disorder-driven metal-insulator transitions

    Energy Technology Data Exchange (ETDEWEB)

    Baggioli, Matteo; Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,The Barcelona Institute of Science and Technology,Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2017-01-10

    We give a minimal holographic model of a disorder-driven metal-insulator transition. It consists in a CFT with a charge sector and a translation-breaking sector that interact in the most generic way allowed by the symmetries and by dynamical consistency. In the gravity dual, it reduces to a Massive Gravity-Maxwell model with a new direct coupling between the gauge field and the metric that is allowed when gravity is massive. We show that the effect of this coupling is to decrease the DC electrical conductivity generically. This gives a nontrivial check that holographic massive gravity can be consistently interpreted as disorder from the CFT perspective. The suppression of the conductivity happens to such an extent that it does not obey any lower bound and it can be very small in the insulating phase. In some cases, the large disorder limit produces gradient instabilities that hint at the formation of modulated phases.

  11. On holographic disorder-driven metal-insulator transitions

    International Nuclear Information System (INIS)

    Baggioli, Matteo; Pujolàs, Oriol

    2017-01-01

    We give a minimal holographic model of a disorder-driven metal-insulator transition. It consists in a CFT with a charge sector and a translation-breaking sector that interact in the most generic way allowed by the symmetries and by dynamical consistency. In the gravity dual, it reduces to a Massive Gravity-Maxwell model with a new direct coupling between the gauge field and the metric that is allowed when gravity is massive. We show that the effect of this coupling is to decrease the DC electrical conductivity generically. This gives a nontrivial check that holographic massive gravity can be consistently interpreted as disorder from the CFT perspective. The suppression of the conductivity happens to such an extent that it does not obey any lower bound and it can be very small in the insulating phase. In some cases, the large disorder limit produces gradient instabilities that hint at the formation of modulated phases.

  12. A ceramic radial insulation structure for a relativistic electron beam vacuum diode.

    Science.gov (United States)

    Xun, Tao; Yang, Hanwu; Zhang, Jiande; Liu, Zhenxiang; Wang, Yong; Zhao, Yansong

    2008-06-01

    For one kind of a high current diode composed of a small disk-type alumina ceramic insulator water/vacuum interface, the insulation structure was designed and experimentally investigated. According to the theories of vacuum flashover and the rules for radial insulators, a "cone-column" anode outline and the cathode shielding rings were adopted. The electrostatic field along the insulator surface was obtained by finite element analysis simulating. By adjusting the outline of the anode and reshaping the shielding rings, the electric fields were well distributed and the field around the cathode triple junction was effectively controlled. Area weighted statistical method was applied to estimate the surface breakdown field. In addition, the operating process of an accelerator based on a spiral pulse forming line (PFL) was simulated through the PSPICE software to get the waveform of charging and diode voltage. The high voltage test was carried out on a water dielectric spiral PFL accelerator with long pulse duration, and results show that the diode can work stably in 420 kV, 200 ns conditions. The experimental results agree with the theoretical and simulated results.

  13. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  14. Charge transport in 2DEG/s-wave superconductor junction with Dresselhaus-type spin-orbit coupling

    International Nuclear Information System (INIS)

    Sawa, Y.; Yokoyama, T.; Tanaka, Y.

    2007-01-01

    We study spin-dependent charge transport in superconducting junctions. We consider ballistic two-dimensional electron gas (2DEG)/s-wave superconductor junctions with Dresselhaus-type spin-orbit coupling (DSOC). We calculate the conductance normalized by that in the normal state of superconductor in order to study the effect of DSOC in 2DEG on conductance, changing the height of insulating barrier. We find the DSOC suppresses the conductance for low insulating barrier, while it can slightly enhance the conductance for high insulating barrier. It has a reentrant dependence on DSOC for middle strength insulating barrier. The effect of DSOC is weaken as the insulating barrier becomes high

  15. Non-axisymmetric line-driven disc winds - I. Disc perturbations

    Science.gov (United States)

    Dyda, Sergei; Proga, Daniel

    2018-04-01

    We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al., who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc mid-plane and bounded on the polar side by a less dense, fast stream. In 3D, we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc mid-plane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum, and kinetic energy fluxes are altered by up to 100 per cent. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher than the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so-called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.

  16. Ambipolar field effect in the ternary topological insulator (BixSb1–x)2Te3 by composition tuning

    KAUST Repository

    Kong, Desheng

    2011-10-02

    Topological insulators exhibit a bulk energy gap and spin-polarized surface states that lead to unique electronic properties 1-9, with potential applications in spintronics and quantum information processing. However, transport measurements have typically been dominated by residual bulk charge carriers originating from crystal defects or environmental doping 10-12, and these mask the contribution of surface carriers to charge transport in these materials. Controlling bulk carriers in current topological insulator materials, such as the binary sesquichalcogenides Bi 2Te 3, Sb 2Te 3 and Bi 2Se 3, has been explored extensively by means of material doping 8,9,11 and electrical gating 13-16, but limited progress has been made to achieve nanostructures with low bulk conductivity for electronic device applications. Here we demonstrate that the ternary sesquichalcogenide (Bi xSb 1-x) 2Te 3 is a tunable topological insulator system. By tuning the ratio of bismuth to antimony, we are able to reduce the bulk carrier density by over two orders of magnitude, while maintaining the topological insulator properties. As a result, we observe a clear ambipolar gating effect in (Bi xSb 1-x) 2Te 3 nanoplate field-effect transistor devices, similar to that observed in graphene field-effect transistor devices 17. The manipulation of carrier type and density in topological insulator nanostructures demonstrated here paves the way for the implementation of topological insulators in nanoelectronics and spintronics. © 2011 Macmillan Publishers Limited. All rights reserved.

  17. The presence and absence of lymphatic vessels in the adult human intervertebral disc: relation to disc pathology

    International Nuclear Information System (INIS)

    Kliskey, Karolina; Williams, Kelly; Yu, J.; Urban, Jill; Athanasou, Nick; Jackson, David

    2009-01-01

    Although the normal adult human intervertebral disc is considered to be avascular, vascularised cellular fibrous tissue can be found in pathological conditions involving the disc such as disc herniation. Whether lymphatics vessels form a component of this reparative tissue is not known as the presence or absence of lymphatics in herniated and normal disc tissue is not known. We examined spinal tissues and discectomy specimens for the presence of lymphatics. The examination used immunohistochemistry to identify the specific lymphatic endothelial cell markers, podoplanin and LYVE1. Lymphatic vessels were not found in the nucleus pulposus or annulus fibrosus of intact, non-herniated lumbar and thoracic discs but were present in the surrounding ligaments. Ingrowth of fibrous tissue was seen in 73% of herniated disc specimens of which 36% contained LYVE1+/podoplanin + lymphatic vessels. Lymphatic vessels were not seen in the sacrum and coccyx or biopsies of four sacrococcygeal chordomas, but they were noted in surrounding extra-osseous fat and fibrous tissue at the edge of the infiltrating tumour. Our findings indicate that lymphatic vessels are not present in the normal adult intervertebral disc but that, when there is extrusion of disc material into surrounding soft tissue, there is ingrowth of reparative fibrous tissue containing lymphatic vessels. Our findings also indicate that chordoma, a tumour of notochordal origin, spreads to regional lymph nodes via lymphatics in para-spinal soft tissues. (orig.)

  18. Changes in wetting and contact charge transfer by femtosecond laser-ablation of polyimide

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.D., E-mail: xiaodong.guo@uib.no [Department of Physics and Technology, Allegaten 55, 5020 Bergen, University of Bergen (Norway); Dai, Y.; Gong, M. [Department of Physics, Shanghai 200444, Shanghai University (China); Qu, Y.G. [Center for Geobiology, Allegaten 41, 5020 Bergen, University of Bergen (Norway); Helseth, L.E. [Department of Physics and Technology, Allegaten 55, 5020 Bergen, University of Bergen (Norway)

    2015-09-15

    Highlights: • Laser ablation significantly reduced the triboelectric charging of polyimide films. • Hierarchical micro/nanostructures formed on the surface of the sample. • Structural anisotropy leads to spatially varying contact angles of water droplets. • Raman spectroscopy revealed a carbonization of the polyimide sample. • The corresponding loss of insulation may explain the reduction of charge transfer. - Abstract: In this study it is demonstrated that the triboelectric charging of polyimide thin films is significantly reduced by using a femtosecond laser to nanostructure its. It is found that the contact charge transfer between laser-ablated Kapton and aluminum is almost negligible, and even much lower than the significant current occurring when non-treated Kapton touches the metal. Scanning electron microscopy demonstrates that laser ablation produces a hierarchical micro and nanostructure, and it is found that the structural anisotropy leads to spatially varying contact angles of water droplets residing on the surface. Raman spectra suggest that the centers of the laser-ablated tracks are carbonized; therefore, the loss of insulation can be responsible for the reduction of charge transfer.

  19. Charge Transfer into Aqueous Droplets via Kilovolt Potentials

    Science.gov (United States)

    Hamlin, B. S.; Rosenberg, E. R.; Ristenpart, W. D.

    2012-11-01

    When an aqueous droplet immersed in an insulating oil contacts an electrified surface, the droplet acquires net charge. For sufficiently large field strengths, the charged droplet is driven back and forth electrophoretically between the electrodes, in essence ``bouncing'' between them. Although it is clear that the droplet acquires charge, the underlying mechanism controlling the charge transfer process has been unclear. Here we demonstrate that the chemical species present in the droplet strongly affect the charge transfer process into the drop. Using two independent charge measurement techniques, high speed video velocimetry and direct current measurement, we show that the charge acquired during contact is strongly influenced by the droplet pH. We also provide physical evidence that the electrodes undergo electroplating or corrosion for droplets with appropriate chemical species present. Together, the observations strongly suggest that electrochemical reactions govern the charge transfer process into the droplet.

  20. Archival-grade optical disc design and international standards

    Science.gov (United States)

    Fujii, Toru; Kojyo, Shinichi; Endo, Akihisa; Kodaira, Takuo; Mori, Fumi; Shimizu, Atsuo

    2015-09-01

    Optical discs currently on the market exhibit large variations in life span among discs, making them unsuitable for certain business applications. To assess and potentially mitigate this problem, we performed accelerated degradation testing under standard ISO conditions, determined the probable disc failure mechanisms, and identified the essential criteria necessary for a stable disc composition. With these criteria as necessary conditions, we analyzed the physical and chemical changes that occur in the disc components, on the basis of which we determined technological measures to reduce these degradation processes. By applying these measures to disc fabrication, we were able to develop highly stable optical discs.

  1. Thermochemical modelling of brown dwarf discs

    NARCIS (Netherlands)

    Greenwood, A. J.; Kamp, I.; Waters, L. B. F. M.; Woitke, P.; Thi, W.-F.; Rab, Ch.; Aresu, G.; Spaans, M.

    The physical properties of brown dwarf discs, in terms of their shapes and sizes, are still largely unexplored by observations. ALMA has by far the best capabilities to observe these discs in sub-mm CO lines and dust continuum, while also spatially resolving some discs. To what extent brown dwarf

  2. Metal-insulator transition induced in CaVO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gu Man [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Laverock, Jude; Chen, Bo; Smith, Kevin E. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States); Lu Jiwei [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States)

    2013-04-07

    Stoichiometric CaVO{sub 3} (CVO) thin films of various thicknesses were grown on single crystal SrTiO{sub 3} (STO) (001) substrates using a pulsed electron-beam deposition technique. The CVO films were capped with a 2.5 nm STO layer. We observed a temperature driven metal-insulator transition (MIT) in CVO films with thicknesses below 4 nm that was not observed in either thick CVO films or STO films. The emergence of this MIT can be attributed to the reduction in effective bandwidth due to a crossover from a three-dimensional metal to a two-dimensional insulator. The insulating phase was only induced with a drive current below 0.1 {mu}A. X-ray absorption measurements indicated different electronic structures for thick and very thin films of CVO. Compared with the thick film ({approx}60 nm), thin films of CVO (2-4 nm) were more two-dimensional with the V charge state closer to V{sup 4+}.

  3. Factors affecting the electrostatic charge of ceramic powders

    International Nuclear Information System (INIS)

    Lorite, I.; Romero, J.; Fernandez, J. F.

    2011-01-01

    The phenomenon of electrostatic charge in ceramic powders takes place when the particle surfaces enter in contact between them or with the containers. The accumulation of electrostatic charge is of relevance in ceramic powders in view of their insulating character and the risk of explosions during the material handling. In this work the main factors that affect the appearance of intrinsic charge and tribo-charge in ceramic powder have been studied. In ceramic powders of alumina it has been verified that the smallest particle sizes present an increase of the electrostatic charge of negative polarity. A correlation has been observed between the nature of the OH -surface groups and the electrostatic charge. The intrinsic charge and the tribocharge in ceramic powders can be diminished by compensating the surface groups that support the charge. The dry dispersion of nanoparticles on microparticles allows surface charge compensation with a noticeable modification of the powder agglomeration. (Author) 19 refs.

  4. Higher dimensional quantum Hall effect as A-class topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Kazuki, E-mail: khasebe@stanford.edu

    2014-09-15

    We perform a detail study of higher dimensional quantum Hall effects and A-class topological insulators with emphasis on their relations to non-commutative geometry. There are two different formulations of non-commutative geometry for higher dimensional fuzzy spheres: the ordinary commutator formulation and quantum Nambu bracket formulation. Corresponding to these formulations, we introduce two kinds of monopole gauge fields: non-abelian gauge field and antisymmetric tensor gauge field, which respectively realize the non-commutative geometry of fuzzy sphere in the lowest Landau level. We establish connection between the two types of monopole gauge fields through Chern–Simons term, and derive explicit form of tensor monopole gauge fields with higher string-like singularity. The connection between two types of monopole is applied to generalize the concept of flux attachment in quantum Hall effect to A-class topological insulator. We propose tensor type Chern–Simons theory as the effective field theory for membranes in A-class topological insulators. Membranes turn out to be fractionally charged objects and the phase entanglement mediated by tensor gauge field transforms the membrane statistics to be anyonic. The index theorem supports the dimensional hierarchy of A-class topological insulator. Analogies to D-brane physics of string theory are discussed too.

  5. Total disc replacement using tissue-engineered intervertebral discs in the canine cervical spine.

    Directory of Open Access Journals (Sweden)

    Yu Moriguchi

    Full Text Available The most common reason that adults in the United States see their physician is lower back or neck pain secondary to degenerative disc disease. To date, approaches to treat degenerative disc disease are confined to purely mechanical devices designed to either eliminate or enable flexibility of the diseased motion segment. Tissue engineered intervertebral discs (TE-IVDs have been proposed as an alternative approach and have shown promise in replacing native IVD in the rodent tail spine. Here we demonstrate the efficacy of our TE-IVDs in the canine cervical spine. TE-IVD components were constructed using adult canine annulus fibrosis and nucleus pulposus cells seeded into collagen and alginate hydrogels, respectively. Seeded gels were formed into a single disc unit using molds designed from the geometry of the canine spine. Skeletally mature beagles underwent discectomy with whole IVD resection at levels between C3/4 and C6/7, and were then divided into two groups that received only discectomy or discectomy followed by implantation of TE-IVD. Stably implanted TE-IVDs demonstrated significant retention of disc height and physiological hydration compared to discectomy control. Both 4-week and 16-week histological assessments demonstrated chondrocytic cells surrounded by proteoglycan-rich matrices in the NP and by fibrocartilaginous matrices in the AF portions of implanted TE-IVDs. Integration into host tissue was confirmed over 16 weeks without any signs of immune reaction. Despite the significant biomechanical demands of the beagle cervical spine, our stably implanted TE-IVDs maintained their position, structure and hydration as well as disc height over 16 weeks in vivo.

  6. Summary: Update to ASTM guide E 1523 to charge control and charge referencing techniques in x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Baer, D.R.

    2005-01-01

    An updated version of the American Society for Testing and Materials (ASTM) guide E 1523 to the methods to charge control and charge referencing techniques in x-ray photoelectron spectroscopy has been released by ASTM [Annual Book of ASTM Standards Surface Analysis (American Society for Testing and Materials, West Conshohocken, PA, 2004), Vol. 03.06]. The guide is meant to acquaint x-ray photoelectron spectroscopy (XPS) users with the various charge control and charge referencing techniques that are and have been used in the acquisition and interpretation of XPS data from surfaces of insulating specimens. The current guide has been expanded to include new references as well as recommendations for reporting information on charge control and charge referencing. The previous version of the document had been published in 1997 [D. R. Baer and K. D. Bomben, J. Vac. Sci. Technol. A 16, 754 (1998)

  7. Opportunities in chemistry and materials science for topological insulators and their nanostructures

    KAUST Repository

    Kong, Desheng

    2011-10-24

    Electrical charges on the boundaries of topological insulators favour forward motion over back-scattering at impurities, producing low-dissipation, metallic states that exist up to room temperature in ambient conditions. These states have the promise to impact a broad range of applications from electronics to the production of energy, which is one reason why topological insulators have become the rising star in condensed-matter physics. There are many challenges in the processing of these exotic materials to use the metallic states in functional devices, and they present great opportunities for the chemistry and materials science research communities. © 2011 Macmillan Publishers Limited. All rights reserved.

  8. Analytical charge control model for AlGaN/GaN MIS-HFETs including an undepleted barrier layer

    Energy Technology Data Exchange (ETDEWEB)

    Shenghui, Lu; Jiangfeng, Du; Qian, Luo; Qi, Yu; Wei, Zhou; Jianxin, Xia; Mohua, Yang, E-mail: lushenghui@sohu.co [State key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2010-09-15

    An analytical charge control model considering the insulator/AlGaN interface charge and undepleted Al-GaN barrier layer is presented for AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors (MIS-HFETs) over the entire operation range of gate voltage. The whole process of charge control is analyzed in detail and partitioned into four regions: I-full depletion, II-partial depletion, III-neutral region and IV-electron accumulation at the insulator/AlGaN interface. The results show that two-dimensional electron gas (2DEG) saturates at the boundary of region II/III and the gate voltage should not exceed the 2DEG saturation voltage in order to keep the channel in control. In addition, the span of region II accounts for about 50% of the range of gate voltage before 2DEG saturates. The good agreement of the calculated transfer characteristic with the measured data confirms the validity of the proposed model. (semiconductor devices)

  9. Multicharged ion-induced emission from metal- and insulator surfaces related to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.P. [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1997-01-01

    The edge region of magnetically confined plasmas in thermonuclear fusion experiments couples the hot plasma core with the cold first wall. We consider the dependence of plasma-wall interaction processes on edge plasma properties, with particular emphasis on the role of slow multicharged ions (MCI). After a short survey on the physics of slow MCI-surface interaction we discuss recent extensive studies on MCI-induced electron emission from clean metal surfaces conducted at impact velocities << 1 a.u., from which generally reliable total electron yields can be obtained. We then demonstrate the essentially different role of the MCI charge for electron emission from metallic and insulator surfaces, respectively. Furthermore, we present recent results on slow MCI-induced `potential sputtering` of insulators which, in contrast to the well established kinetic sputtering, already occurs at very low ion impact energy and strongly increases with the MCI charge state. (J.P.N.). 55 refs.

  10. Notochord Cells in Intervertebral Disc Development and Degeneration

    Science.gov (United States)

    McCann, Matthew R.; Séguin, Cheryle A.

    2016-01-01

    The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. PMID:27252900

  11. Notochord Cells in Intervertebral Disc Development and Degeneration

    Directory of Open Access Journals (Sweden)

    Matthew R. McCann

    2016-01-01

    Full Text Available The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches.

  12. The life cycles of Be viscous decretion discs: fundamental disc parameters of 54 SMC Be stars

    Science.gov (United States)

    Rímulo, L. R.; Carciofi, A. C.; Vieira, R. G.; Rivinius, Th; Faes, D. M.; Figueiredo, A. L.; Bjorkman, J. E.; Georgy, C.; Ghoreyshi, M. R.; Soszyński, I.

    2018-05-01

    Be stars are main-sequence massive stars with emission features in their spectrum, which originates in circumstellar gaseous discs. Even though the viscous decretion disc model can satisfactorily explain most observations, two important physical ingredients, namely the magnitude of the viscosity (α) and the disc mass injection rate, remain poorly constrained. The light curves of Be stars that undergo events of disc formation and dissipation offer an opportunity to constrain these quantities. A pipeline was developed to model these events that use a grid of synthetic light curves, computed from coupled hydrodynamic and radiative transfer calculations. A sample of 54 Be stars from the OGLE survey of the Small Magellanic Cloud (SMC) was selected for this study. Because of the way our sample was selected (bright stars with clear disc events), it likely represents the densest discs in the SMC. Like their siblings in the Galaxy, the mass of the disc in the SMC increases with the stellar mass. The typical mass and angular momentum loss rates associated with the disc events are of the order of ˜10-10 M⊙ yr-1 and ˜5 × 1036 g cm2 s-2, respectively. The values of α found in this work are typically of a few tenths, consistent with recent results in the literature and with the ones found in dwarf novae, but larger than current theory predicts. Considering the sample as a whole, the viscosity parameter is roughly two times larger at build-up ( = 0.63) than at dissipation ( = 0.26). Further work is necessary to verify whether this trend is real or a result of some of the model assumptions.

  13. Charge Order in (TMTTF)2TaF6 by Infrared Spectroscopy

    Science.gov (United States)

    Oka, Yuki; Matsunaga, Noriaki; Nomura, Kazushige; Kawamoto, Atsuhi; Yamamoto, Kaoru; Yakushi, Kyuya

    2015-11-01

    We have performed infrared spectroscopy in (TMTTF)2TaF6 (TMTTF: tetramethyltetrathiafulvalene) to investigate the relationship between the charge order (CO) state and the antiferromagnetic (AF) insulating ground state. A clear peak splitting corresponding to the charge disproportionation was observed below the CO transition temperature. We estimated the degree of charge disproportionation, Δρ = ρrich - ρpoor, as 0.28e from the peak splitting and found that the CO state coexists with the AF state and there is no charge redistribution below the AF transition.

  14. Room-Temperature Spin-Orbit Torque Switching Induced by a Topological Insulator

    Science.gov (United States)

    Han, Jiahao; Richardella, A.; Siddiqui, Saima A.; Finley, Joseph; Samarth, N.; Liu, Luqiao

    2017-08-01

    The strongly spin-momentum coupled electronic states in topological insulators (TI) have been extensively pursued to realize efficient magnetic switching. However, previous studies show a large discrepancy of the charge-spin conversion efficiency. Moreover, current-induced magnetic switching with TI can only be observed at cryogenic temperatures. We report spin-orbit torque switching in a TI-ferrimagnet heterostructure with perpendicular magnetic anisotropy at room temperature. The obtained effective spin Hall angle of TI is substantially larger than the previously studied heavy metals. Our results demonstrate robust charge-spin conversion in TI and provide a direct avenue towards applicable TI-based spintronic devices.

  15. Valence band structure of PDMS surface and a blend with MWCNTs: A UPS and MIES study of an insulating polymer

    Energy Technology Data Exchange (ETDEWEB)

    Schmerl, Natalya M.; Khodakov, Dmitriy A.; Stapleton, Andrew J.; Ellis, Amanda V.; Andersson, Gunther G., E-mail: gunther.andersson@flinders.edu.au

    2015-10-30

    Graphical abstract: - Highlights: • Valence electron spectroscopy was performed on an insulating polymer using different charge compensation methods. • MWCNT were embedded in PDMS and found to be the most effective method for reducing the charging of the insulating polymer. • The valence band spectrum of PDMS was obtained via MIES and UPS. • Ion scattering spectroscopy was used to determine the concentration depth profile of the PDMS in the sample. - Abstract: The use of polydimethylsiloxane (PDMS) is increasing with new technologies working toward compact, flexible and transparent devices for use in medical and microfluidic systems. Electronic characterization of PDMS and other insulating materials is difficult due to charging, yet necessary for many applications where the interfacial structure is vital to device function or further modification. The outermost layer in particular is of importance as this is the area where chemical reactions such as surface functionalization will occur. Here, we investigate the valence band structure of the outermost layer and near surface area of PDMS through the use of metastable induced photoelectron spectroscopy (MIES) paired with ultraviolet photoelectron spectroscopy (UPS). The chemical composition of the samples under investigation were measured via X-ray photoelectron spectroscopy (XPS), and the vertical distribution of the polymer was shown with neutral impact collision ion scattering spectroscopy (NICISS). Three separate methods for charge compensation are used for the samples, and their effectiveness is compared.

  16. On the illumination of neutron star accretion discs

    Science.gov (United States)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.

  17. Minimum weight design of inhomogeneous rotating discs

    International Nuclear Information System (INIS)

    Jahed, Hamid; Farshi, Behrooz; Bidabadi, Jalal

    2005-01-01

    There are numerous applications for gas turbine discs in the aerospace industry such as in turbojet engines. These discs normally work under high temperatures while subjected to high angular velocities. Minimizing the weight of such items in aerospace applications results in benefits such as low dead weights and lower costs. High speed of rotation causes large centrifugal forces in a disc and simultaneous application of high temperatures reduces disc material strength. Thus, the latter effects tend to increase deformations of the disc under the applied loads. In order to obtain a reliable disc analysis and arrive at the corresponding correct stress distribution, solutions should consider changes in material properties due to the temperature field throughout the disc. To achieve this goal, an inhomogeneous disc model with variable thickness is considered. Using the variable material properties method, stresses are obtained for the disc under rotation and a steady temperature field. In this paper this is done by modelling the rotating disc as a series of rings of different but constant properties. The optimum disc profile is arrived at by sequentially proportioning the thicknesses of each ring to satisfy the stress requirements. This method vis-a-vis a mathematical programming procedure for optimization shows several advantages. Firstly, it is simple iterative proportioning in each design cycle not requiring involved mathematical operations. Secondly, due to its simplicity it alleviates the necessity of certain simplifications that are common in so-called rigorous mathematical procedures. The results obtained, compared to those published in the literature show agreement and superiority. A further advantage of the proposed method is the independence of the end results from the initially assumed point in the iterative design routine, unlike most methods published so far

  18. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    Science.gov (United States)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  19. Biomaterials for intervertebral disc regeneration and repair.

    Science.gov (United States)

    Bowles, Robert D; Setton, Lori A

    2017-06-01

    The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Development of rupture discs for the FBTR

    International Nuclear Information System (INIS)

    Chetal, S.C.; Raju, C.; Anandkumar, V.; Seetharaman, V.; Rajan, K.K.

    1984-01-01

    Rupture discs are required as a safety device for protecting the secondary sodium circuit and its components against high pressure surges due to accidental water steam leaks in sodium heated steam generator and the consequent sodium water reaction. For identical reasons, rupture discs are also required on the vessels used for decontamination of sodium components. Reverse buckling knife blade concept with austenitic stainless steel disc has been developed for the rupture disc assemblies required for Fast Breeder Test Reactor (FBTR). Hydroforming process without any die has been used for disc fabrication. One rupture disc assembly required for steam generator is undergoing sodium endurance test and has accumulated 4,500 hours. The present status of development work as demonstrated by room temperature experimental results as well as the scope for future work are discussed. (author)

  1. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  2. A study of a direct-injection stratified-charge rotary engine for motor vehicle application

    Science.gov (United States)

    Kagawa, Ryoji; Okazaki, Syunki; Somyo, Nobuhiro; Akagi, Yuji

    1993-03-01

    A study of a direct-injection stratified-charge system (DISC), as applied to a rotary engine (RE) for motor vehicle usage, was undertaken. The goals of this study were improved fuel consumption and reduced exhaust emissions. These goals were thought feasible due to the high thermal efficiency associated with the DISC-RE. This was the first application of this technology to a motor vehicle engine. Stable ignition and ideal stratification systems were developed by means of numerical calculations, air-fuel mixture measurements, and actual engine tests. The use of DISC resulted in significantly improved fuel consumption and reduced exhaust emissions. The use of an exhaust gas recirculating system was studied and found to be beneficial in NOx reduction.

  3. On the diversity and statistical properties of protostellar discs

    Science.gov (United States)

    Bate, Matthew R.

    2018-04-01

    We present results from the first population synthesis study of protostellar discs. We analyse the evolution and properties of a large sample of protostellar discs formed in a radiation hydrodynamical simulation of star cluster formation. Due to the chaotic nature of the star formation process, we find an enormous diversity of young protostellar discs, including misaligned discs, and discs whose orientations vary with time. Star-disc interactions truncate discs and produce multiple systems. Discs may be destroyed in dynamical encounters and/or through ram-pressure stripping, but reform by later gas accretion. We quantify the distributions of disc mass and radii for protostellar ages up to ≈105 yr. For low-mass protostars, disc masses tend to increase with both age and protostellar mass. Disc radii range from of order 10 to a few hundred au, grow in size on time-scales ≲ 104 yr, and are smaller around lower mass protostars. The radial surface density profiles of isolated protostellar discs are flatter than the minimum mass solar nebula model, typically scaling as Σ ∝ r-1. Disc to protostar mass ratios rarely exceed two, with a typical range of Md/M* = 0.1-1 to ages ≲ 104 yr and decreasing thereafter. We quantify the relative orientation angles of circumstellar discs and the orbit of bound pairs of protostars, finding a preference for alignment that strengths with decreasing separation. We also investigate how the orientations of the outer parts of discs differ from the protostellar and inner disc spins for isolated protostars and pairs.

  4. Study of thin insulating films using secondary ion emission

    International Nuclear Information System (INIS)

    Hilleret, Noel

    1973-01-01

    Secondary ion emission from insulating films was investigated using a CASTAING-SLODZIAN ion analyzer. Various different aspects of the problem were studied: charge flow across a silica film; the mobilization of sodium during ion bombardment; consequences of the introduction of oxygen on the emission of secondary ions from some solids; determination of the various characteristics of secondary ion emission from silica, silicon nitride and silicon. An example of measurements made using this type of operation is presented: profiles (concentration as a function of depth) of boron introduced by diffusion or implantation in thin films of silica on silicon or silicon nitride. Such measurements have applications in microelectronics. The same method of operation was extended to other types of insulating film, and in particular, to the metallurgical study of passivation films formed on the surface of stainless steels. (author) [fr

  5. Interaction effects and quantum phase transitions in topological insulators

    International Nuclear Information System (INIS)

    Varney, Christopher N.; Sun Kai; Galitski, Victor; Rigol, Marcos

    2010-01-01

    We study strong correlation effects in topological insulators via the Lanczos algorithm, which we utilize to calculate the exact many-particle ground-state wave function and its topological properties. We analyze the simple, noninteracting Haldane model on a honeycomb lattice with known topological properties and demonstrate that these properties are already evident in small clusters. Next, we consider interacting fermions by introducing repulsive nearest-neighbor interactions. A first-order quantum phase transition was discovered at finite interaction strength between the topological band insulator and a topologically trivial Mott insulating phase by use of the fidelity metric and the charge-density-wave structure factor. We construct the phase diagram at T=0 as a function of the interaction strength and the complex phase for the next-nearest-neighbor hoppings. Finally, we consider the Haldane model with interacting hard-core bosons, where no evidence for a topological phase is observed. An important general conclusion of our work is that despite the intrinsic nonlocality of topological phases their key topological properties manifest themselves already in small systems and therefore can be studied numerically via exact diagonalization and observed experimentally, e.g., with trapped ions and cold atoms in optical lattices.

  6. Queixas auditivas de disc jockeys da cidade de Recife Auditory complaints in disc jockeys in Recife

    Directory of Open Access Journals (Sweden)

    Eliza Maia de Britto Macedo

    2011-06-01

    Full Text Available OBJETIVO: investigar a ocorrência de queixas auditivas em disc jockeys da cidade de Recife/PE. MÉTODOS: foi realizada uma entrevista com 30 disc jockeys, com idade entre 19 e 28 anos, abordando informações ocupacionais, conhecimentos gerais sobre o ruído e queixas auditivas (diminuição da acuidade auditiva, desconforto a sons intensos, zumbido, sensação de ouvido abafado e otalgia. A análise foi realizada por meio de abordagem quantitativa, utilizando o teste estatístico t-student. RESULTADOS: dentre os dados mais relevantes, destacam-se: 46,7% dos disc jockeys apresentaram, espontaneamente, queixas auditivas, em especial, a diminuição da acuidade auditiva (relatada por todos os sujeitos; 14 disc jockeys (46,67% referiram desconforto a sons intensos e 13 (43,33% mencionaram zumbido. Todos afirmaram ter conhecimento sobre os riscos do ruído para a saúde auditiva, mas 76,7% não realizam qualquer medida preventiva de suas consequências. A perda auditiva foi referida pelos sujeitos como o principal risco da exposição a níveis intensos de pressão sonora. CONCLUSÃO: todos os disc jockeys apresentaram queixa de perda auditiva e, entre as demais queixas auditivas, destacaram-se o desconforto a sons intensos e o zumbido. Tendo em vista a irreversibilidade da perda auditiva induzida por elevados níveis de pressão sonora, os disc jockeys devem ser periodicamente avaliados a fim de que se confirme ou não a perda auditiva de que se queixaram e, caso ela exista, deve ser monitorada para que seja passível de intervenção pelo fonoaudiólogo. Desta forma, percebe-se a necessidade de atuação da Fonoaudiologia junto aos disc jockeys, uma vez que poder-se-á propiciar a otimização do exercício profissional com o mínimo de risco possível.PURPOSE: to investigate the occurrence of auditory complaints in disc jockeys from the city of Recife/PE. METHODS: an interview was carried through with 30 disc jockeys aged between 19 and 48 years

  7. The reports of thick discs' deaths are greatly exaggerated. Thick discs are NOT artefacts caused by diffuse scattered light

    Science.gov (United States)

    Comerón, S.; Salo, H.; Knapen, J. H.

    2018-02-01

    Recent studies have made the community aware of the importance of accounting for scattered light when examining low-surface-brightness galaxy features such as thick discs. In our past studies of the thick discs of edge-on galaxies in the Spitzer Survey of Stellar Structure in Galaxies - the S4G - we modelled the point spread function as a Gaussian. In this paper we re-examine our results using a revised point spread function model that accounts for extended wings out to more than 2\\farcm5. We study the 3.6 μm images of 141 edge-on galaxies from the S4G and its early-type galaxy extension. Thus, we more than double the samples examined in our past studies. We decompose the surface-brightness profiles of the galaxies perpendicular to their mid-planes assuming that discs are made of two stellar discs in hydrostatic equilibrium. We decompose the axial surface-brightness profiles of galaxies to model the central mass concentration - described by a Sérsic function - and the disc - described by a broken exponential disc seen edge-on. Our improved treatment fully confirms the ubiquitous occurrence of thick discs. The main difference between our current fits and those presented in our previous papers is that now the scattered light from the thin disc dominates the surface brightness at levels below μ 26 mag arcsec-2. We stress that those extended thin disc tails are not physical, but pure scattered light. This change, however, does not drastically affect any of our previously presented results: 1) Thick discs are nearly ubiquitous. They are not an artefact caused by scattered light as has been suggested elsewhere. 2) Thick discs have masses comparable to those of thin discs in low-mass galaxies - with circular velocities vc< 120 km s-1 - whereas they are typically less massive than the thin discs in high-mass galaxies. 3) Thick discs and central mass concentrations seem to have formed at the same epoch from a common material reservoir. 4) Approximately 50% of the up

  8. The Correlation between Insertion Depth of Prodisc-C Artificial Disc and Postoperative Kyphotic Deformity: Clinical Importance of Insertion Depth of Artificial Disc.

    Science.gov (United States)

    Lee, Do-Youl; Kim, Se-Hoon; Suh, Jung-Keun; Cho, Tai-Hyoung; Chung, Yong-Gu

    2012-09-01

    This study was designed to investigate the correlation between insertion depth of artificial disc and postoperative kyphotic deformity after Prodisc-C total disc replacement surgery, and the range of artificial disc insertion depth which is effective in preventing postoperative whole cervical or segmental kyphotic deformity. A retrospective radiological analysis was performed in 50 patients who had undergone single level total disc replacement surgery. Records were reviewed to obtain demographic data. Preoperative and postoperative radiographs were assessed to determine C2-7 Cobb's angle and segmental angle and to investigate postoperative kyphotic deformity. A formula was introduced to calculate insertion depth of Prodisc-C artificial disc. Statistical analysis was performed to search the correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity, and to estimate insertion depth of Prodisc-C artificial disc to prevent postoperative kyphotic deformity. In this study no significant statistical correlation was observed between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity regarding C2-7 Cobb's angle. Statistical correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity was observed regarding segmental angle (p<0.05). It failed to estimate proper insertion depth of Prodisc-C artificial disc effective in preventing postoperative kyphotic deformity. Postoperative segmental kyphotic deformity is associated with insertion depth of Prodisc-C artificial disc. Anterior located artificial disc leads to lordotic segmental angle and posterior located artificial disc leads to kyphotic segmental angle postoperatively. But C2-7 Cobb's angle is not affected by artificial disc location after the surgery.

  9. Mechanoreceptors in Diseased Cervical Intervertebral Disc and Vertigo.

    Science.gov (United States)

    Yang, Liang; Yang, Cheng; Pang, Xiaodong; Li, Duanming; Yang, Hong; Zhang, Xinwu; Yang, Yi; Peng, Baogan

    2017-04-15

    We collected the samples of cervical intervertebral discs from patients with vertigo to examine the distribution and types of mechanoreceptors in diseased cervical disc. The aim of this study was to determine whether mechanoreceptors are distributed more abundantly in cervical discs from patients with cervical spondylosis, and whether they are related to vertigo. Previous limited studies have found that normal cervical intervertebral discs are supplied with mechanoreceptors that have been considered responsible for proprioceptive functions. Several clinical studies have indicated that the patients with cervical spondylosis manifested significantly impaired postural control and subjective balance disturbance. We collected 77 samples of cervical discs from 62 cervical spondylosis patients without vertigo, 61 samples from 54 patients with vertigo, and 40 control samples from 8 cadaveric donors to investigate distribution of mechanoreceptors containing neurofilament (NF200) and S-100 protein immunoreactive nerve endings. The immunohistochemical investigation revealed that the most frequently encountered mechanoreceptors were the Ruffini corpuscles in all groups of cervical disc samples. They were obviously increased in the number and deeply ingrown into inner annulus fibrosus and even into nucleus pulposus in the diseased cervical discs from patients with vertigo in comparison with the discs from patients without vertigo and control discs. Only three Golgi endings were seen in the three samples from patients with vertigo. No Pacinian corpuscles were found in any samples of cervical discs. The diseased cervical discs from patients with vertigo had more abundant distribution of Ruffini corpuscles than other discs. A positive association between the increased number and ingrowth of Ruffini corpuscles in the diseased cervical disc and the incidence of vertigo in the patients with cervical spondylosis was found, which may indicate a key role of Ruffini corpuscles in the

  10. Are galaxy discs optically thick?

    International Nuclear Information System (INIS)

    Disney, Michael; Davies, Jonathan; Phillipps, Steven

    1989-01-01

    We re-examine the classical optical evidence for the low optical depths traditionally assigned to spiral discs and argue that it is highly model-dependent and unconvincing. In particular, layered models with a physically thin but optically thick dust layer behave like optically thin discs. The opposite hypotheses, that such discs are optically thick is then examined in the light of modern evidence. We find it to be consistent with the near-infrared and IRAS observations, with the surface brightnesses, with the HI and CO column densities and with the Hα measurements. (author)

  11. Vascular complications of prosthetic inter-vertebral discs

    OpenAIRE

    Daly, Kevin J.; Ross, E. Raymond S.; Norris, Heather; McCollum, Charles N.

    2006-01-01

    Five consecutive cases of prosthetic inter-vertebral disc displacement with severe vascular complications on revisional surgery are described. The objective of this case report is to warn spinal surgeons that major vascular complications are likely with anterior displacement of inter-vertebral discs. We have not been able to find a previous report on vascular complications associated with anterior displacement of prosthetic inter-vertebral discs. In all five patients the prosthetic disc had e...

  12. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  13. Examination of turbine discs from nuclear power plants

    International Nuclear Information System (INIS)

    Czajkowski, C.J.; Weeks, J.R.

    1982-01-01

    Investigations were performed on a cracked turbine disc from the Cooper Nuclear Power Station, and on two failed turbine discs (governor and generator ends) from the Yankee-Rowe Nuclear Power Station. Cooper is a boiling water reactor (BWR) which went into commercial operation in July 1974, and Yankee-Rowe is a pressurized water reactor (PWR) which went into commercial operation in June 1961. Cracks were identified in the bore of the Cooper disc after 41,913 hours of operation, and the disc removed for repair. At Yankee-Rowe two discs failed after 100,000 hours of operation. Samples of the Cooper disc and both Yankee-Rowe disc (one from the governor and one from the generator end of the LP turbine) were sent to Brookhaven National Laboratory (BNL) for failure analysis

  14. Investigation of charge-collection efficiency of Kyoto's X-ray astronomical SOI pixel sensors, XRPIX

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Hideaki, E-mail: matumura@cr.scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Tsuru, Takeshi Go; Tanaka, Takaaki; Nakashima, Shinya; Ryu, Syukyo G. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Takeda, Ayaki [Department of Particle and Nuclear Physics, Graduate School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Arai, Yasuo; Miyoshi, Toshinobu [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2014-11-21

    We are developing a monolithic active pixel sensor referred to as XRPIX for X-ray astronomy on the basis of silicon-on-insulator CMOS technology. A crucial issue in our recent development is the impact of incomplete charge collection on the spectroscopic performance. In this paper, we report the spectral responses of several devices having different intra-pixel structures or produced from different wafers. We found that an emission line spectrum exhibits large low-energy tails when the size of the buried p-well, which acts as the charge-collection node, is small. Moreover, in charge sharing events, the peak channels of the emission lines shift toward channels lower than those without charge sharing. This peak shift is more pronounced as the distance between the pixel center and the position of incident photon increases. This suggests that the charge-collection efficiency is degraded at the pixel boundary. We also found that the charge-collection efficiency depends on the strength of the electric field at the interface of the depletion and insulator layers.

  15. Quantum Critical “Opalescence” around Metal-Insulator Transitions

    Science.gov (United States)

    Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2006-08-01

    Divergent carrier-density fluctuations equivalent to the critical opalescence of gas-liquid transition emerge around a metal-insulator critical point at a finite temperature. In contrast to the gas-liquid transitions, however, the critical temperatures can be lowered to zero, which offers a challenging quantum phase transition. We present a microscopic description of such quantum critical phenomena in two dimensions. The conventional scheme of phase transitions by Ginzburg, Landau, and Wilson is violated because of its topological nature. It offers a clear insight into the criticalities of metal-insulator transitions (MIT) associated with Mott or charge-order transitions. Fermi degeneracy involving the diverging density fluctuations generates emergent phenomena near the endpoint of the first-order MIT and must shed new light on remarkable phenomena found in correlated metals such as unconventional cuprate superconductors. It indeed accounts for the otherwise puzzling criticality of the Mott transition recently discovered in an organic conductor. We propose to accurately measure enhanced dielectric fluctuations at small wave numbers.

  16. Experimental and modeling study of the capacitance-voltage characteristics of metal-insulator-semiconductor capacitor based on pentacene/parylene

    KAUST Repository

    Wondmagegn, Wudyalew T.

    2011-04-01

    The capacitance-voltage (C-V) characteristics of metal-insulator- semiconductor (MIS) capacitors consisting of pentacene as an organic semiconductor and parylene as the dielectric have been investigated by experimental, analytical, and numerical analysis. The device simulation was performed using two-dimensional drift-diffusion methods taking into account the Poole-Frenkel field-dependent mobility. Pentacene bulk defect states and fixed charge density at the semiconductor/insulator interface were incorporated into the simulation. The analysis examined pentacene/parylene interface characteristics for various parylene thicknesses. For each thickness, the corresponding flat band voltage extracted from the C-V plot of the MIS structure was more negative than - 2.4 V. From the flat band voltage the existence of a significant mismatch between the work functions of the gate electrode and pentacene active material has been identified. Experimental and simulation results suggest the existence of interface charge density on the order of 3 × 1011 q/cm2 at the insulator/semiconductor interface. The frequency dispersion characteristics of the device are also presented and discussed. © 2011 Elsevier B.V.

  17. Physics Colloquium: Theory of the spin wave Seebeck effect in magnetic insulators

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Lundi 28 février 2011 17h00 - École de Physique, Auditoire Stückelberg Theory of the spin wave Seebeck effect in magnetic insulators Prof. Gerrit Bauer Delft University of Technology The subfield of spin caloritronics addresses the coupling of heat, charge and spin currents in nanostructures. In the center of interest is here the spin Seebeck effect, which was discovered in an iron-nickel alloy. Uchida et al. recently observed the effect also in an electrically insulating Yttrium Iron Garnett (YIG) thin magnetic film. To our knowledge this is the first observation of a Seebeck effect generated by an insulator, implying that the physics is fundamentally different from the conventional Seebeck effect in metals. We explain the experiments by the pumping of a spin current into the detecting contacts by the thermally excited magnetization dynamics. In this talk I will give a brief overview over the state o...

  18. Estimation of thermal insulation performance in multi-layer insulator for liquid helium pipe

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Shibata, Takemasa

    1991-01-01

    For a multi-layer insulator around the liquid helium pipes for cryopumps of JT-60 NBI, a multi-layer insulator composed of 10 layers, which can be wound around the pipe at the same time and in which the respective layers are in concentric circles by shifting them in arrangement, has been developed and tested. As the result, it was shown that the newly developed multi-layer insulator has better thermal insulation performance than the existing one, i.e. the heat load of the newly developed insulator composed of 10 layers was reduced to 1/3 the heat load of the existing insulator, and the heat leak at the joint of the insulator in longitudinal direction of the pipe was negligible. In order to clarify thermal characteristics of the multi-layer insulator, the heat transfer through the insulator has been analyzed considering the radiation heat transfer by the netting spacer between the reflectors, and the temperature dependence on the emissivities and the heat transmission coefficients of these two components of the insulator. The analytical results were in good agreements with the experimental ones, so that the analytical method was shown to be valid. Concerning the influence of the number of layers and the layer density on the insulation performance of the insulator, analytical results showed that the multi-layer insulator with the number of layer about N = 20 and the layer density below 2.0 layer/mm was the most effective for the liquid helium pipe of a JT-60 cryopump. (author)

  19. Analysis of rabbit intervertebral disc physiology based on water metabolism. II. Changes in normal intervertebral discs under axial vibratory load

    International Nuclear Information System (INIS)

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Itoh, T.; Sano, A.

    1988-01-01

    Metabolic changes induced by axial vibratory load to the spine were investigated based on water metabolism in normal intervertebral discs of rabbits with or without pentobarbital anesthesia. Tritiated water concentration in the intervertebral discs of unanesthetized rabbits was reduced remarkably by axial vibration for 30 minutes using the vibration machine developed for this study. Repeated vibratory load for 18 and 42 hours duration showed the recovery of 3 H 2 O concentration of the intervertebral disc without anesthesia. Computer simulation suggested a reduction of blood flow surrounding the intervertebral disc following the vibration stress. However, no reduction of the 3 H 2 O concentration in the intervertebral disc was noted under anesthesia. Emotional stress cannot be excluded as a factor in water metabolism in the intervertebral disc

  20. INJURIES IN DISC GOLF - A DESCRIPTIVE CROSS-SECTIONAL STUDY

    DEFF Research Database (Denmark)

    Rahbek, Martin Amadeus; Nielsen, Rasmus Oestergaard

    2016-01-01

    BACKGROUND: Disc golf is rapidly increasing in popularity and more than two million people are estimated to regularly participate in disc golf activities. Despite this popularity, the epidemiology of injuries in disc golf remains under reported. PURPOSE: The purpose of the present study...... was to investigate the prevalence and anatomic distribution of injuries acquired through disc-golf participation in Danish disc golf players. METHODS: The study was a cross-sectional study conducted on Danish disc-golf players. In May 2015, invitations to complete a web-based questionnaire were spread online via...... social media, and around disc-golf courses in Denmark. The questionnaire included questions regarding disc-golf participation and the characteristics of injuries acquired through disc golf participation. The data was analyzed descriptively. RESULTS: An injury prevalence of 13.3% (95% CI: 6.7% to 19...

  1. Charge and Spin Transport in Spin-orbit Coupled and Topological Systems

    KAUST Repository

    Ndiaye, Papa Birame

    2017-01-01

    for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic

  2. Thermal insulating panel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.T.

    1985-09-11

    A panel of thermal insulation material has at least one main portion which comprises a dry particulate insulation material compressed within a porous envelope so that it is rigid or substantially rigid and at least one auxiliary portion which is secured to and extends along at least one of the edges of the main portions. The auxiliary portions comprise a substantially uncompressed dry particulate insulation material contained within an envelope. The insulation material of the auxiliary portion may be the same as or may be different from the insulation material of the main portion. The envelope of the auxiliary portion may be made of a porous or a non-porous material. (author).

  3. The contribution of the electrostatic proximity force to atomic force microscopy with insulators

    International Nuclear Information System (INIS)

    Stanley Czarnecki, W.; Schein, L.B.

    2005-01-01

    Measurements, using atomic force microscopy, of the force and force derivative on a charged insulating micron sized sphere as a function of gap between the sphere and a conductive plane have revealed attractive forces at finite gaps that are larger than predicted by either van der Waals or conventional electrostatic forces. We suggest that these observations may be due to an electrostatic force that we have identified theoretically and call the proximity force. This proximity force is due to the discrete charges on the surface of the sphere in close proximity to the plane

  4. The contribution of the electrostatic proximity force to atomic force microscopy with insulators

    Energy Technology Data Exchange (ETDEWEB)

    Stanley Czarnecki, W. [Aetas Technology Corporation, P.O. Box 53398, Irvine, CA 92619-3398 (United States); IBM Corporation, 5600 Cottle Rd., Building 13, San Jose, CA 95193 (United States); Schein, L.B. [Aetas Technology Corporation, P.O. Box 53398, Irvine, CA 92619-3398 (United States)]. E-mail: schein@prodigy.net

    2005-05-16

    Measurements, using atomic force microscopy, of the force and force derivative on a charged insulating micron sized sphere as a function of gap between the sphere and a conductive plane have revealed attractive forces at finite gaps that are larger than predicted by either van der Waals or conventional electrostatic forces. We suggest that these observations may be due to an electrostatic force that we have identified theoretically and call the proximity force. This proximity force is due to the discrete charges on the surface of the sphere in close proximity to the plane.

  5. Hydrodynamic forces on two moving discs

    Directory of Open Access Journals (Sweden)

    Burton D.A.

    2004-01-01

    Full Text Available We give a detailed presentation of a flexible method for constructing explicit expressions of irrotational and incompressible fluid flows around two rigid circular moving discs. We also discuss how such expressions can be used to compute the fluid-induced forces and torques on the discs in terms of Killing drives. Conformal mapping techniques are used to identify a meromorphic function on an annular region in C with a flow around two circular discs by a Mobius transformation. First order poles in the annular region correspond to vortices outside of the two discs. Inflows are incorporated by putting a second order pole at the point in the annulus that corresponds to infinity.

  6. Simulation and reconstruction of photon patterns in the PANDA 3D Disc DIRC

    International Nuclear Information System (INIS)

    Merle, O; Düren, M; Föhl, K; Hayrapetyan, A; Koch, P; Kreutzfeldt, K; Kröck, B; Sporleder, M; Stöckmann, N; Zühlsdorf, M

    2012-01-01

    The PANDA Disc DIRC is a novel type of Cherenkov detector, being developed to improve the charged particle identification of the upcoming PANDA experiment at the future FAIR facility. The detector has to cover the endcap region of the target spectrometer, resulting in a geometry that by now has never been applied to a DIRC detector. Additional complications are implied by tight space constraints at the foreseen position, interaction rates of 20 MHz up to 50 MHz and the experiments trigger-less readout scheme. To cope with the lack of experience, the development of detector concepts is driven by the development of computer simulations and dedicated reconstruction methods. The performance analysis of a preceding detector concept, presented at the DIRC workshop in 2009, showed several weaknesses which have been eliminated by revising the detector design. This publication summarizes the current status of the software, the reconstruction method and resulting detector performance of the improved design: the PANDA 3D Disc DIRC.

  7. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    KAUST Repository

    Tahir, M.

    2012-12-06

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  8. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2012-01-01

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  9. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  10. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  11. Effect of Interbody Fusion on the Remaining Discs of the Lumbar Spine in Subjects with Disc Degeneration.

    Science.gov (United States)

    Ryu, Robert; Techy, Fernando; Varadarajan, Ravikumar; Amirouche, Farid

    2016-02-01

    To study effects (stress loads) of lumbar fusion on the remaining segments (adjacent or not) of the lumbar spine in the setting of degenerated adjacent discs. A lumbar spine finite element model was built and validated. The full model of the lumbar spine was a parametric finite element model of segments L 1-5 . Numerous hypothetical combinations of one-level lumbar spine fusion and one-level disc degeneration were created. These models were subjected to 10 Nm flexion and extension moments and the stresses on the endplates and consequently on the intervertebral lumbar discs measured. These values were compared to the stresses on healthy lumbar spine discs under the same load and fusion scenarios. Increased stress at endplates was observed only in the settings of L4-5 fusion and L3-4 disc degeneration (8% stress elevation at L2,3 in flexion or extension, and 25% elevation at L3,4 in flexion only). All other combinations showed less endplate stress than did the control model. For fusion at L3-4 and degeneration at L4-5 , the stresses in the endplates at the adjacent level inferior to the fused disc decreased for both loading disc height reductions. Stresses in flexion decreased after fusion by 29.5% and 25.8% for degeneration I and II, respectively. Results for extension were similar. For fusion at L2-3 and degeneration at L4-5 , stresses in the endplates decreased more markedly at the degenerated (30%), than at the fused level (14%) in the presence of 25% disc height reduction and 10 Nm flexion, whereas in extension stresses decreased more at the fused (24.3%) than the degenerated level (5.86%). For fusion at L3-4 and degeneration at L2-3 , there were no increases in endplate stress in any scenario. For fusion at L4-5 and degeneration at L3-4 , progression of degeneration from I to II had a significant effect only in flexion. A dramatic increase in stress was noted in the endplates of the degenerated disc (L3-4 ) in flexion for degeneration II. Stresses are greater

  12. Reduction of heat insulation upon soaking of the insulation layer

    Science.gov (United States)

    Achtliger, J.

    1983-09-01

    Improved thermal protection of hollow masonry by introduction of a core insulation between the inner and outer shell is discussed. The thermal conductivity of insulation materials was determined in dry state and after soaking by water with different volume-related moisture contents. The interpolated thermal conductivity values from three measured values at 10 C average temperature are presented as a function of the pertinent moisture content. Fills of expanded polystyrene, perlite and granulated mineral fibers, insulating boards made of mineral fibers and in situ cellular plastics produced from urea-formaldehyde resin were investigated. Test results show a confirmation of thermal conductivity values for insulating materials in hollow masonry.

  13. Mechanical design criteria for intervertebral disc tissue engineering.

    Science.gov (United States)

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2010-04-19

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviors, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive, and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying where functional equivalence was achieved, and where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Locally prepared antibiotic sensitivity discs: a substitute for imported ...

    African Journals Online (AJOL)

    Zones of inhibition were compared with those obtained from commercial antibiotic discs. Results obtained showed that discs prepared locally from antibiotic tablets, performed comparably with commercially obtained discs. There was no significant statistical difference between the two tested discs. We therefore recommend ...

  15. Negative differential resistance in the Peierls insulating phases of TTF-TCNQ

    Science.gov (United States)

    Tonouchi, Daiki; Matsushita, Michio M.; Awaga, Kunio

    2017-07-01

    Negative differential resistance (NDR) was observed in the most well known organic conductor, TTF-TCNQ, in its low-temperature Peierls insulator phase below 53 K. The voltage-current (V -I ) characteristics below this temperature, measured by a four-probe method, exhibited unique NDR behavior, in which the d V /d I versus conductivity (σ) plots had the inflection points at the three σ values without depending on temperature. These σ values were found to coincide with the conductivities at the three transition temperatures (53, 49, and 38 K) for the formation of the charge-density waves in TTF-TCNQ. This suggests that the electronic structure of the Peierls insulating phase of TTF-TCNQ is governed by the total carrier density, which is determined by not only thermal excitation but also carrier injection.

  16. Imaging characteristics of noncontained migrating disc fragment and cyst

    International Nuclear Information System (INIS)

    Eerens, I.; Demaerel, P.; Haven, F.; Wilms, G.; Loon, J. van; Calenbergh, F. van

    2001-01-01

    The purpose of this article is to review less common presentations of degenerative disc disease on MR imaging. The images of eight patients were retrospectively analyzed. Six of them had transligamentous (or noncontained) disc herniations, the fragments of which were located in the posterior epidural space in three of them. One patient had a transdural disc fragment and one patient had a disc cyst. The cyst was located in the ventrolateral epidural space. On T2-weighted images, the migrated disc fragment returned a higher signal than the disc of origin in 6 of 7 patients. The disc cyst returned a signal similar to that of cerebrospinal fluid. The MR appearances of disc fragments can be puzzling, particularly if they are located in the posterior epidural space. It is important to recognize the abnormalities in order to differentiate them from less common lesions such as hematoma, abscess and neurinoma. (orig.)

  17. Imaging characteristics of noncontained migrating disc fragment and cyst

    Energy Technology Data Exchange (ETDEWEB)

    Eerens, I.; Demaerel, P.; Haven, F.; Wilms, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Loon, J. van; Calenbergh, F. van [Dept. of Neurosurgery, University Hospitals, Leuven (Belgium)

    2001-05-01

    The purpose of this article is to review less common presentations of degenerative disc disease on MR imaging. The images of eight patients were retrospectively analyzed. Six of them had transligamentous (or noncontained) disc herniations, the fragments of which were located in the posterior epidural space in three of them. One patient had a transdural disc fragment and one patient had a disc cyst. The cyst was located in the ventrolateral epidural space. On T2-weighted images, the migrated disc fragment returned a higher signal than the disc of origin in 6 of 7 patients. The disc cyst returned a signal similar to that of cerebrospinal fluid. The MR appearances of disc fragments can be puzzling, particularly if they are located in the posterior epidural space. It is important to recognize the abnormalities in order to differentiate them from less common lesions such as hematoma, abscess and neurinoma. (orig.)

  18. Relationship of condylar position to disc position and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Incesu, L.; Taskaya-Yilmaz, N. E-mail: nergizy@omu.edu.tr; Oeguetcen-Toller, M.; Uzun, E

    2004-09-01

    Introduction/objective: The purpose of this study was to assess whether condylar position, as depicted by magnetic resonance imaging, was an indicator of disc morphology and position. Methods and material: One hundred and twenty two TMJs of 61 patients with temporomandibular joint disorder were examined. Condylar position, disc deformity and degree of anterior disc displacement were evaluated by using magnetic resonance imaging. Results and discussion: Posterior condyle position was found to be the main feature of temporomandibular joints with slight and moderate anterior disc displacement. No statistical significance was found between the condylar position, and reducing and nonreducing disc positions. On the other hand, superior disc position was found to be statistically significant for centric condylar position. Conclusion: It was concluded that posterior condyle position could indicate anterior disc displacement whereas there was no relation between the position of condyle and the disc deformity.

  19. Thoracic spine disc-related abnormalities: longitudinal MR imaging assessment

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Charles J.; Schweitzer, Mark E.; Morrison, William B.; Parellada, Joan A. [TJUH Radiology, Philadelphia, Pennsylvania (United States); Carrino, J.A. [Department of Radiology ASB-1, Harvard Medical School, Brigham and Women' s Hospital, L1, Room 002B, 75 Francis Street, MA 02115, Boston (United States)

    2004-04-01

    To describe and characterize the temporal changes in disc-related disorders of the thoracic spine using MR imaging. A retrospective longitudinal cohort study was carried out of 40 patients with two sequential thoracic spine MR images at variable intervals. The images were assessed for baseline presence of, new incidence of and changes in disc herniation, degenerative disc disease, endplate marrow signal alteration and Schmorl nodes. The range of follow-up was 4-149 weeks. Baseline presence was: disc herniation, 10% (49/480); degenerative disc disease, 14% (66/480); endplate marrow signal alteration, 2.3% (11/480); Schmorl nodes 9.6% (46/480). Most pre-existing lesions tended to remain unchanged. Herniations showed the most change, tending to improve in 27%. New incidence was: disc herniation, 1.5% (7/480), degenerative disc disease, 2% (10/480); endplate marrow signal alteration, 1.6% (8/480); Schmorl nodes, 2.1% (10/480). Disc degeneration was first visible at an 11-week interval and once established almost never changed over many weeks to months. Endplate signal alterations (Modic changes) were uncommon. Schmorl nodes show no change from baseline for up to 2 1/2 years. All findings predominated in the lower intervertebral levels from T6 to T10. The most prevalent thoracic spine disc-related findings are degeneration and herniation. Disc herniations predominate in the lower segments and are a dynamic phenomenon. Disc degeneration can be rapidly evolving but tends to remain unchanged after occurrence. Endplate marrow signal changes were an uncommon manifestation of thoracic disc disease. Schmorl nodes showed the least change over time. (orig.)

  20. Use NASA GES DISC Data in ArcGIS

    Science.gov (United States)

    Yang, Wenli; Pham, Long B.; Kempler, Steve

    2015-01-01

    This presentation describes GIS relevant data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), GES DISC Services and Support for GIS Users, and use cases of GES DISC data in ArcGIS.

  1. Spin-orbit torque-driven magnetization switching in 2D-topological insulator heterostructure

    Science.gov (United States)

    Soleimani, Maryam; Jalili, Seifollah; Mahfouzi, Farzad; Kioussis, Nicholas

    2017-02-01

    Charge pumping and spin-orbit torque (SOT) are two reciprocal phenomena widely studied in ferromagnet (FM)/topological insulator (TI) heterostructures. However, the SOT and its corresponding switching phase diagram for a FM island in proximity to a two-dimensional topological insulator (2DTI) has not been explored yet. We have addressed these features, using the recently developed adiabatic expansion of time-dependent nonequilibrium Green's function (NEGF) in the presence of both precessing magnetization and bias voltage. We have calculated the angular and spatial dependence of different components of the SOT on the FM island. We determined the switching phase diagram of the FM for different orientations of the easy axis. The results can be used as a guideline for the future experiments on such systems.

  2. Surface Layer Fluorination-Modulated Space Charge Behaviors in HVDC Cable Accessory

    Directory of Open Access Journals (Sweden)

    Jin Li

    2018-05-01

    Full Text Available Space charges tend to accumulate on the surface and at the interface of ethylene–propylene–diene terpolymer (EPDM, serving as high voltage direct current (HVDC cable accessory insulation, which likely induces electrical field distortion and dielectric breakdown. Direct fluorination is an effective method to modify the surface characteristics of the EPDM without altering the bulk properties too much. In this paper, the surface morphology, hydrophobic properties, relative permittivity, and DC conductivity of the EPDM before and after fluorination treatment were tested. Furthermore, the surface and interface charge behaviors in the HVDC cable accessory were investigated by the pulsed electroacoustic (PEA method, and explained from the point of view of trap distribution. The results show that fluorination helps the EPDM polymer obtain lower surface energy and relative permittivity, which is beneficial to the interface match in composite insulation systems. The lowest degree of space charge accumulation occurs in EPDM with 30 min of fluorination. After analyzing the results of the 3D potentials and the density of states (DOS behaviors in EPDM before and after fluorination, it can be found that fluorination treatment introduces shallower electron traps, and the special electrostatic potential after fluorination can significantly suppress the space charge accumulation at the interface in the HVDC cable accessory.

  3. The formation of planets by disc fragmentation

    Directory of Open Access Journals (Sweden)

    Stamatellos Dimitris

    2013-04-01

    Full Text Available I discuss the role that disc fragmentation plays in the formation of gas giant and terrestrial planets, and how this relates to the formation of brown dwarfs and low-mass stars, and ultimately to the process of star formation. Protostellar discs may fragment, if they are massive enough and can cool fast enough, but most of the objects that form by fragmentation are brown dwarfs. It may be possible that planets also form, if the mass growth of a proto-fragment is stopped (e.g. if this fragment is ejected from the disc, or suppressed and even reversed (e.g by tidal stripping. I will discuss if it is possible to distinguish whether a planet has formed by disc fragmentation or core accretion, and mention of a few examples of observed exoplanets that are suggestive of formation by disc fragmentation.

  4. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.

    Science.gov (United States)

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam

    2017-09-01

    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  5. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, B.; Chen, T.; Shklovskii, B. I., E-mail: shklovsk@physics.spa.umn.edu [University of Minnesota, Fine Theoretical Physics Institute (United States)

    2013-09-15

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states.

  6. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators

    International Nuclear Information System (INIS)

    Skinner, B.; Chen, T.; Shklovskii, B. I.

    2013-01-01

    In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-side with the physics of ultrarelativistic Dirac fermions. This unusual pairing creates a novel playground for studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder caused by the three-dimensionally distributed charged impurities that are ubiquitous in TIs, and we outline the effects it has on both the bulk and surface transport in TIs. We present self-consistent theories for Coulomb screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to explore different degrees of impurity compensation. For the surface, where the TI has gapless Dirac modes, we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface of the TI into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density of states

  7. Intervertebral Disc Characteristic on Progressive Neurological Deficit

    Directory of Open Access Journals (Sweden)

    Farid Yudoyono

    2017-09-01

    Full Text Available Objective: To examine the intervertebral disc characteristic on magnetic resonance imaging (MRI in lumbar herniated disc (LHD patients with progressive neurological deficit. Methods: Patients were collected retrospectively from Dr. Hasan Sadikin General Hospital Database from 2011–2013 with LHD, had neurological deficit such as radiculopathy and cauda equine syndrome for less than four weeks with a positive sign confirmed by neurological examination and confirmatory with MRI examination. Results: A total of 14 patients with lumbar herniated disc disease (10 males, 4 females suffered from progressive neurological deficit with an average age of (52.07±10.9 years old. Early disc height was 9.38±0.5 mm and progressive neurological deficit state disc height was 4.03±0.53 mm, which were significantly different statisticaly (p<0.01. Symptoms of radiculopathy were seen in 11 patients and cauda equine syndrome in three patients. Modic changes grade 1 was found in five patients, grade 2 in eight patients,grade 3 in one patient, Pfirmman grade 2 in eleven patients and grade 3 in three patients. Thecal sac compression 1/3 compression was seen in four patients and 2/3 compression in ten patients. Conclusions: Neurosurgeon should raise concerns on the characteristic changes of intervertebral disc in magnetic resonance imaging examination to avoid further neural injury in lumbar herniated disc patients.

  8. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    Science.gov (United States)

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-01

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.

  9. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    International Nuclear Information System (INIS)

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-01

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data

  10. Propagation Characteristics of Multilayer Hybrid Insulator-Metal-Insulator and Metal-Insulator-Metal Plasmonic Waveguides

    Directory of Open Access Journals (Sweden)

    M. Talafi Noghani

    2014-02-01

    Full Text Available Propagation characteristics of symmetrical and asymmetrical multilayer hybrid insulator-metal-insulator (HIMI and metal-insulator-metal (HMIM plasmonic slab waveguides are investigated using the transfer matrix method. Propagation length (Lp and spatial length (Ls are used as two figures of merit to qualitate the plasmonic waveguides. Symmetrical structures are shown to be more performant (having higher Lp and lower Ls, nevertheless it is shown that usage of asymmetrical geometry could compensate for the performance degradation in practically realized HIMI waveguides with different substrate materials. It is found that HMIM slab waveguide could support almost long-range subdiffraction plasmonic modes at dimensions lower than the spatial length of the HIMI slab waveguide.

  11. Numerical noise analysis for insulator of overhead transmission line

    Science.gov (United States)

    Zhang, Yulin; Chen, Yuwen; Huang, Yu

    2018-04-01

    As an important and complex issue in aero acoustic field, a lot of explorations have been devoted to the wind-induced noise. However, there is still lack of intensive investigations for aerodynamic noise in high-voltage transmission. The overhead transmission line system leads to serious occupational noise exposure in high wind-speed environment, and the noise can even injure the electricians in charge of insulator. By using computational fluid dynamics (CFD) which combined with computational aero acoustics (CAA), this paper predicts the noise generated by insulator of high voltage electricity transmission line which explores in wind environment. The simulation results indicate that the wind velocity, the assembly angle of the insulator and its ribs' distribution are the main contributory factors for the aerodynamic noise. Specifically, when wind velocity is greater than 15m/s, the alteration of noise is not sensitive to the wind velocity; furthermore, when the assembly angle increases from 0°to 60°, the noise decreases gradually, however, if the angle is happening to be 75°or 90°, it would be even greater than that at 0°. In order to inhibit the aerodynamic noise, it is necessary to control the flow blowing across the boundary of the insulator. Consequently, the result indicates that if the outermost rib is shorter than the second one, the noise reduced evidently. This information expects to provide useful help for the extremely suppression of aerodynamic noise, and also supply practical reference material for the design and application of overhead transmission line system.

  12. Only marginal alignment of disc galaxies

    Science.gov (United States)

    Andrae, René; Jahnke, Knud

    2011-12-01

    Testing theories of angular-momentum acquisition of rotationally supported disc galaxies is the key to understanding the formation of this type of galaxies. The tidal-torque theory aims to explain this acquisition process in a cosmological framework and predicts positive autocorrelations of angular-momentum orientation and spiral-arm handedness, i.e. alignment of disc galaxies, on short distance scales of 1 Mpc h-1. This disc alignment can also cause systematic effects in weak-lensing measurements. Previous observations claimed discovering these correlations but are overly optimistic in the reported level of statistical significance of the detections. Errors in redshift, ellipticity and morphological classifications were not taken into account, although they have a significant impact. We explain how to rigorously propagate all the important errors through the estimation process. Analysing disc galaxies in the Sloan Digital Sky Survey (SDSS) data base, we find that positive autocorrelations of spiral-arm handedness and angular-momentum orientations on distance scales of 1 Mpc h-1 are plausible but not statistically significant. Current data appear not good enough to constrain parameters of theory. This result agrees with a simple hypothesis test in the Local Group, where we also find no evidence for disc alignment. Moreover, we demonstrate that ellipticity estimates based on second moments are strongly biased by galactic bulges even for Scd galaxies, thereby corrupting correlation estimates and overestimating the impact of disc alignment on weak-lensing studies. Finally, we discuss the potential of future sky surveys. We argue that photometric redshifts have too large errors, i.e. PanSTARRS and LSST cannot be used. Conversely, the EUCLID project will not cover the relevant redshift regime. We also discuss the potentials and problems of front-edge classifications of galaxy discs in order to improve the autocorrelation estimates of angular-momentum orientation.

  13. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  14. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian, E-mail: lijian@cqu.edu.cn; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan

    2016-02-05

    Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe{sub 3}O{sub 4} nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values. - Highlights: • Three different sized Fe{sub 3}O{sub 4} vegetable-oil based nanofluids was successfully prepared. • The trapping depth of the Fe{sub 3}O{sub 4} nanofluids was investigated. • A new model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids.

  15. Evaluation of bone and disc configuration in TMJ internal derangement

    International Nuclear Information System (INIS)

    Park, Cheol Woo; Hwang, Eui Hwan; Lee, Sang Rae

    2001-01-01

    To investigate bone and disc configuration on MR images in internal derangement related to age. MR images of 150 TMJs in 107 patients were analyzed to determine the morphologic changes. Two groups were distinguished to be correlated with age. Group 1 consisted of TMJs that were diagnosed as having anterior disc displacement with reduction (ADDwR), and Group 2 consisted of TMJs that were diagnosed as having anterior disc displacement without reduction (ADDwR). We assessed the configuration of the articular disc, degree of anterior disc displacement, and osseous changes of TMJs. The third decade (83 of 150 joints) was most frequent in this study. In the ADDwR group biconcave disc was most frequent at all ages except fifth decade, but in the ADDwoR group deformed discs was most frequent at third and forth decades. In the ADDwR group slightly displaced discs was most frequent at all ages, but in the ADDwoR group severely displaced discs was most frequent at second decade, and the degree of disc displacement was increased with aging over 30 years of age. TM joints showed osseous changes in 17% of the ADDwR group, and in 30% of the ADDwoR group. MR findings of osseous changes of the TMJ were not found to be significantly correlated with age. The prevalence of deformation of disc, displacement of disc, and osseous changes of TMJ was higher in the ADDwoR group than in the ADDwR group. MR findings of disc configuration and degree of disc displacement were found to be correlated with age

  16. A computational study of intervertebral disc degeneration in relation to changes in regional tissue composition and disc nutrition

    OpenAIRE

    Ruiz Wills, Carlos

    2015-01-01

    Up to 85% of the world population suffers from low back pain, a clinical condition often related to the intervertebral disc (IVD) degeneration (DD). Altered disc cell nutrition affects cell viability and can generate catabolic cascades that degrade the extracellular matrix (ECM). Also, a major degenerative biochemical change in the disc is the proteoglycan (PG) loss, which affects the osmotic pressure and hydration that is critical for cell nutrition. However, the relationship between biochem...

  17. Schrödinger evolution of self-gravitating discs

    Science.gov (United States)

    Batygin, Konstantin

    2018-04-01

    An understanding of the long-term evolution of self-gravitating discs ranks among the classic outstanding problems of astrophysics. In this work, we show that the secular inclination dynamics of a geometrically thin quasi-Keplerian disc, with a surface density profile that scales as the inverse square-root of the orbital radius, are described by the time-dependent Schrödinger equation. Within the context of this formalism, nodal bending waves correspond to the eigenmodes of a quasi-particle's wavefunction, confined in an infinite square well with boundaries given by the radial extent of the disc. We further show that external secular perturbations upon self-gravitating discs exhibit a mathematical similarity to quantum scattering theory. Employing this framework, we derive an analytic criterion for the gravitational rigidity of a nearly-Keplerian disc under external perturbations. Applications of the theory to circumstellar discs and Galactic nuclei are discussed.

  18. Evidence for accreted component in the Galactic discs

    Science.gov (United States)

    Xing, Q. F.; Zhao, G.

    2018-06-01

    We analyse the distribution of [Mg/Fe] abundance in the Galactic discs with F- and G-type dwarf stars selected from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) archive. The sample stars are assigned into different stellar populations by using kinematic criteria. Our analysis reveals the chemical inhomogeneities in the Galactic thick disc. A few of metal-poor stars in the thick disc exhibit relatively low [Mg/Fe] abundance in respect to the standard thick-disc sample. The orbital eccentricities and maximum Galactocentric radii of low-α metal-poor stars are apparently greater than that of high-α thick-disc stars. The orbital parameters and chemical components of low-α stars in the thick disc suggest that they may have been formed in regions with low star formation rate that were located at large distances from the Galactic centre, such as infalling dwarf spheroidal galaxies.

  19. Gas Modelling in the Disc of HD 163296

    Science.gov (United States)

    Tilling, I.; Woitke, P.; Meeus, G.; Mora, A.; Montesinos, B.; Riviere-Marichalar, P.; Eiroa, C.; Thi, W. -F.; Isella, A.; Roberge, A.; hide

    2011-01-01

    We present detailed model fits to observations of the disc around the Herbig Ae star HD 163296. This well-studied object has an age of approx. 4Myr, with evidence of a circumstellar disc extending out to approx. 540AU. We use the radiation thermo-chemical disc code ProDiMo to model the gas and dust in the circumstellar disc of HD 163296, and attempt to determine the disc properties by fitting to observational line and continuum data. These include new Herschel/PACS observations obtained as part of the open-time key program GASPS (Gas in Protoplanetary Systems), consisting of a detection of the [Oi] 63 m line and upper limits for several other far infrared lines. We complement this with continuum data and ground-based observations of the CO-12 3-2, 2-1 and CO-13 J=1-0 line transitions, as well as the H2 S(1) transition. We explore the effects of stellar ultraviolet variability and dust settling on the line emission, and on the derived disc properties. Our fitting efforts lead to derived gas/dust ratios in the range 9-100, depending on the assumptions made. We note that the line fluxes are sensitive in general to the degree of dust settling in the disc, with an increase in line flux for settled models. This is most pronounced in lines which are formed in the warm gas in the inner disc, but the low excitation molecular lines are also affected. This has serious implications for attempts to derive the disc gas mass from line observations. We derive fractional PAH abundances between 0.007 and 0.04 relative to ISM levels. Using a stellar and UV excess input spectrum based on a detailed analysis of observations, we find that the all observations are consistent with the previously assumed disc geometry

  20. DZ Chamaeleontis: a bona fide photoevaporating disc

    Science.gov (United States)

    Canovas, H.; Montesinos, B.; Schreiber, M. R.; Cieza, L. A.; Eiroa, C.; Meeus, G.; de Boer, J.; Ménard, F.; Wahhaj, Z.; Riviere-Marichalar, P.; Olofsson, J.; Garufi, A.; Rebollido, I.; van Holstein, R. G.; Caceres, C.; Hardy, A.; Villaver, E.

    2018-02-01

    Context. DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright protoplanetary disc with evidence of inner disc clearing. Its narrow Hα line and infrared spectral energy distribution suggest that DZ Cha may be a photoevaporating disc. Aims: We aim to analyse the DZ Cha star + disc system to identify the mechanism driving the evolution of this object. Methods: We have analysed three epochs of high resolution optical spectroscopy, photometry from the UV up to the sub-mm regime, infrared spectroscopy, and J-band imaging polarimetry observations of DZ Cha. Results: Combining our analysis with previous studies we find no signatures of accretion in the Hα line profile in nine epochs covering a time baseline of 20 yr. The optical spectra are dominated by chromospheric emission lines, but they also show emission from the forbidden lines [SII] 4068 and [OI] 6300Å that indicate a disc outflow. The polarized images reveal a dust depleted cavity of 7 au in radius and two spiral-like features, and we derive a disc dust mass limit of Mdust 80 MJup) companions are detected down to 0.̋07 ( 8 au, projected). Conclusions: The negligible accretion rate, small cavity, and forbidden line emission strongly suggests that DZ Cha is currently at the initial stages of disc clearing by photoevaporation. At this point the inner disc has drained and the inner wall of the truncated outer disc is directly exposed to the stellar radiation. We argue that other mechanisms like planet formation or binarity cannot explain the observed properties of DZ Cha. The scarcity of objects like this one is in line with the dispersal timescale (≲105 yr) predicted by this theory. DZ Cha is therefore an ideal target to study the initial stages of photoevaporation. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 097.C-0536. Based on data obtained from the ESO Science Archive Facility under request number 250112.

  1. On the mechanism of charge transport in low density polyethylene

    Science.gov (United States)

    Upadhyay, Avnish K.; Reddy, C. C.

    2017-08-01

    Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

  2. Relation between microstructure and dielectric breakdown in the case of aluminous ceramics (SEMM method); Comportement d'alumines face a l'injection de charges. Relation microstructure - claquage dielectrique - mesure des charges d'influence (methode SEMM)

    Energy Technology Data Exchange (ETDEWEB)

    Liebault, J.

    1999-02-01

    The dielectric breakdown is strongly linked to the injection and the accumulation of charges in a non-conducting material. The physics of charged insulators proposes mechanisms of trapping and transport of charges in aluminium oxides by considering defects as localization sources of charges and of energy. In order to measure the influence of defects on dielectric breakdown, various aluminous ceramics have been elaborated. The nature and the quantity of defects have been characterized by the nature and the rate of impurities, by porosity, by the quantity of grain boundaries and by the presence and distribution of secondary phases. These materials have undergone breakdown tests. The dielectric rigidity depends strongly on the nature and the distribution of crystallographic defects (vacancy, interstitial ions and dislocation), on the other hand porosity below 5% has no influence. The doping of an alumina ceramic containing less than 100 ppm of impurities implies a diminution of its dielectric rigidity. The measurement of the SEMM (scanning electron microscopy mirror) effect allows the characterization of insulating materials. This method permits the evaluation of the ability for materials to trap charges, it gives information about the charge kinetic of trapping, charge localization and the energy levels of traps. (A.C.)

  3. Feasibility study on partial insulation winding technique for the development of self-protective MgB2 magnet

    Science.gov (United States)

    Kim, Y. G.; Kim, J. C.; Kim, J. M.; Yoo, B. H.; Hwang, D. Y.; Lee, H. G.

    2018-06-01

    This study investigates the feasibility of using the partial insulation winding technique for the development of a self-protective MgB2 MRI magnet with a fast charge-discharge rate. Charge-discharge and quench tests for a prototype PI MgB2 magnet confirmed that the magnet was successfully operated at full-field performance and exhibited self-protecting behavior in the event of a quench. Nonetheless, the required time to charge the 0.5-T/300-mm PI MgB2 magnet was almost five days, implying that the charge-discharge delay of the PI MgB2 magnet still needs to be ameliorated further to develop a real-scale MgB2 MRI magnet with a fast charge-discharge rate.

  4. DC Model Cable under Polarity Inversion and Thermal Gradient: Build-Up of Design-Related Space Charge

    Directory of Open Access Journals (Sweden)

    Nugroho Adi

    2017-07-01

    Full Text Available In the field of energy transport, High-Voltage DC (HVDC technologies are booming at present due to the more flexible power converter solutions along with needs to bring electrical energy from distributed production areas to consumption sites and to strengthen large-scale energy networks. These developments go with challenges in qualifying insulating materials embedded in those systems and in the design of insulations relying on stress distribution. Our purpose in this communication is to illustrate how far the field distribution in DC insulation systems can be anticipated based on conductivity data gathered as a function of temperature and electric field. Transient currents and conductivity estimates as a function of temperature and field were recorded on miniaturized HVDC power cables with construction of 1.5 mm thick crosslinked polyethylene (XLPE insulation. Outputs of the conductivity model are compared to measured field distributions using space charge measurements techniques. It is shown that some features of the field distribution on model cables put under thermal gradient can be anticipated based on conductivity data. However, space charge build-up can induce substantial electric field strengthening when materials are not well controlled.

  5. Magnetic resonance imaging of intervertebral disc degeneration

    International Nuclear Information System (INIS)

    Maeda, Hiroshi; Noguchi, Masao; Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi.

    1993-01-01

    The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.)

  6. Magnetic resonance imaging of intervertebral disc degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hiroshi; Noguchi, Masao (Kitakyushu City Yahata Hospital, Fukuoka (Japan)); Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi

    1993-02-01

    The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.).

  7. Self-Healing Wire Insulation

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  8. The comparative study of lumbar disc disruption with MRI and CT discography

    International Nuclear Information System (INIS)

    Chen Xingcan; Liu Naifang; Li Xiaohong; Xu Wengen; Zou Qing; Yang Yonghong

    2005-01-01

    Objective: To compare MRI with CT discography (CTD) for diagnostic assessment of lumbar disc disruption. Methods: Paired comparative examination in 16 patients with chronic lower back pain without radicular pain and no disc herniation was conducted using CT or MRI. The standard of CTD classification and positive disc was formulated and the correlation between the induced lower back pain and dosage used in CTD was observed. Results: For a total of 21 discs in the 16 patients, CTD showed the disc as type 2 in 12 discs and type 5 in 1 disc with 13 positive discs, while MRI only showed the high-intensity zone of posterior annulus in 6 discs as the indirect sign of disc disruption and disc degeneration in 7 discs. Conclusion: CTD was the only method for showing the direct sign of disc disruption. The induced lower back pain was related with the type of disc disruption. MRI can show some of the indirect signs of disc disruption and CTD can show the direct sign of disc disruption. (authors)

  9. Poly(4-vinylphenol-co-methyl methacrylate) / titanium dioxide nanocomposite gate insulators for 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xue; Park, Jiho; Baang, Sungkeun; Park, Jaehoon [Hallym University, Chuncheon (Korea, Republic of); Piao, Shanghao; Kim, Sohee; Choi, Hyoungjin [Inha University, Incheon (Korea, Republic of)

    2014-12-15

    Poly(4-vinylphenol-co-methyl methacrylate) / titanium dioxide (TiO{sub 2}) nanocomposite insulators were fabricated for application in 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) thin-film transistors (TFTs). The capacitance of the fabricated capacitors with this nanocomposite insulator increased with increasing content of the high-dielectric-constant TiO{sub 2} nanoparticles. Nonetheless, particle aggregates, which were invariably produced in the insulator at higher TiO{sub 2} contents, augmented gate-leakage currents during device operation while the rough surface of the insulator obstructed charge transport in the conducting channel of the TIPS-Pn TFTs. These results suggest a significant effect of the morphological characteristics of nanocomposite insulators on TFT performance, as well as on their dielectric properties. Herein, the optimal particle composition was determined to be approximately 1.5 wt%, which contributed to characteristic improvements in the drain current, field-effect mobility, and threshold voltage of TIPS-Pn TFTs.

  10. Exoplanet recycling in massive white-dwarf debris discs

    Science.gov (United States)

    van Lieshout, R.; Kral, Q.; Charnoz, S.; Wyatt, M. C.; Shannon, A.

    2018-05-01

    Several tens of white dwarfs are known to host circumstellar discs of dusty debris, thought to arise from the tidal disruption of rocky bodies originating in the star's remnant planetary system. This paper investigates the evolution of such discs if they are very massive, as may be the case if their progenitor was a terrestrial planet, moon, or dwarf planet. Assuming the discs are physically thin and flat, like Saturn's rings, their evolution is governed by Poynting-Robertson drag or viscous spreading, where the disc's effective viscosity is due to self-gravity wakes. For discs with masses ≳ 1026 g, located in the outer parts of the tidal disruption zone, viscous spreading dominates the evolution, and mass is transported both in- and outwards. When outwards-spreading material flows beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of moonlets at the outer edge of Saturn's rings. The newly formed bodies migrate outwards by exchanging angular momentum with the disc and coalesce into larger objects through mutual collisions. Eventually, the disc's Roche-limit overflow recycles tens of percent of the original disc mass; most ends up in a single large body near 2:1 mean-motion resonance with the disc's outer edge. Hence, the recycling of a tidally disrupted super-Earth, for example, could yield an Earth-mass planet on a ˜10-h orbit, located in the habitable zone for 2-to-10-Gyr-old white dwarfs. The recycling process also creates a population of smaller bodies just outside the Roche limit, which may explain the minor planets recently postulated to orbit WD 1145+017.

  11. Proximity Band Structure and Spin Textures on Both Sides of Topological-Insulator/Ferromagnetic-Metal Interface and Their Charge Transport Probes.

    Science.gov (United States)

    Marmolejo-Tejada, Juan Manuel; Dolui, Kapildeb; Lazić, Predrag; Chang, Po-Hao; Smidstrup, Søren; Stradi, Daniele; Stokbro, Kurt; Nikolić, Branislav K

    2017-09-13

    The control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of understanding of band structure and spin textures around their interfaces. Here we combine density functional theory with Green's function techniques to obtain the spectral function at any plane passing through atoms of Bi 2 Se 3 and Co or Cu layers comprising the interface. Instead of naively assumed Dirac cone gapped by the proximity exchange field spectral function, we find that the Rashba ferromagnetic model describes the spectral function on the surface of Bi 2 Se 3 in contact with Co near the Fermi level E F 0 , where circular and snowflake-like constant energy contours coexist around which spin locks to momentum. The remnant of the Dirac cone is hybridized with evanescent wave functions from metallic layers and pushed, due to charge transfer from Co or Cu layers, a few tenths of an electron-volt below E F 0 for both Bi 2 Se 3 /Co and Bi 2 Se 3 /Cu interfaces while hosting distorted helical spin texture wounding around a single circle. These features explain recent observation of sensitivity of spin-to-charge conversion signal at TI/Cu interface to tuning of E F 0 . Crucially for spin-orbit torque in TI/FM heterostructures, few monolayers of Co adjacent to Bi 2 Se 3 host spectral functions very different from the bulk metal, as well as in-plane spin textures (despite Co magnetization being out-of-plane) due to proximity spin-orbit coupling in Co induced by Bi 2 Se 3 . We predict that out-of-plane tunneling anisotropic magnetoresistance in Cu/Bi 2 Se 3 /Co vertical heterostructure can serve as a sensitive probe of the type of spin texture residing at E F 0 .

  12. Disc degeneration: current surgical options

    Directory of Open Access Journals (Sweden)

    C Schizas

    2010-10-01

    Full Text Available Chronic low back pain attributed to lumbar disc degeneration poses a serious challenge to physicians. Surgery may be indicated in selected cases following failure of appropriate conservative treatment. For decades, the only surgical option has been spinal fusion, but its results have been inconsistent. Some prospective trials show superiority over usual conservative measures while others fail to demonstrate its advantages. In an effort to improve results of fusion and to decrease the incidence of adjacent segment degeneration, total disc replacement techniques have been introduced and studied extensively. Short-term results have shown superiority over some fusion techniques. Mid-term results however tend to show that this approach yields results equivalent to those of spinal fusion. Nucleus replacement has gained some popularity initially, but evidence on its efficacy is scarce. Dynamic stabilisation, a technique involving less rigid implants than in spinal fusion and performed without the need for bone grafting, represents another surgical option. Evidence again is lacking on its superiority over other surgical strategies and conservative measures. Insertion of interspinous devices posteriorly, aiming at redistributing loads and relieving pain, has been used as an adjunct to disc removal surgery for disc herniation. To date however, there is no clear evidence on their efficacy. Minimally invasive intradiscal thermocoagulation techniques have also been tried, but evidence of their effectiveness is questioned. Surgery using novel biological solutions may be the future of discogenic pain treatment. Collaboration between clinicians and basic scientists in this multidisciplinary field will undoubtedly shape the future of treating symptomatic disc degeneration.

  13. Charge of a quasiparticle in a superconductor.

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-02-16

    Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.

  14. SIMULTANEOUS DISC HERNIATION IN PATIENTS WITH MULTIPLE SCLEROSIS

    Directory of Open Access Journals (Sweden)

    Kalina V. Drenska

    2013-04-01

    Full Text Available Background: Multiple sclerosis (MS is a chronic autoimmune, inflammatory demyelinating disease of the central nervous system. Commonly, MS patients present with accompanying degenerative vertebral disc diseases. Simultaneous disc herniations situated in the cervical or lumbosacral spine can mimic the clinical symptoms of MS and worsen patients’ quality of life.Objective: to investigate the incidence rate and clinical impact of accompanying disc herniations in patients with MS.Material and methods: Our study covered 330 patients (220 females and 110 males, mean age 40.5±12.4 years with clinically definite MS, according to McDonald’s criteria. Comprehensive neurological examinations, EDSS (Expanded Disability Status Scale assessments, and MRI neuroimaging were carried out. Statistical data processing was performed by using the method of variation analysis.Results: Relapsing-remitting MS (RRMS was diagnosed in 280 patients while 50 patients presented with secondary progressive MS (SPMS. Disc herniation was found in 64 (19.4% of our patients. Cervical disc pathology was detected in 38 patients (11.5% of the cases and lumbosacral - in 26 (7.9% of the cases. EDSS scores ranged from 2.5 to 5.5. EDSS evaluation showed statistically significantly worse scores in MS patients with disc herniation comorbidity (p<0, 05.Conclusion: Our own data confirm the assumption that MS patients often present with accompanying degenerative disc pathology. We suggest that comorbidity of disc herniation and MS exert an additional unfavorable effect on patient’s disability and individual quality of life.

  15. CT in diagnosis of recurrent vertebral disc hernias after preceding lumbar disc prolapse surgery

    International Nuclear Information System (INIS)

    Burval, S.; Nekula, J.; Vaverka, M.; Veliskova, J.

    1992-01-01

    20 patients with recurrent symptoms following operations for disc prolapse and resistant to treatment were studied by CT, using plain and enhanced images. The results have been analysed. In 10 patients a recurrence of disc prolapse was diagnosed, and this was confirmed surgically in 8 cases. In 2 patients there was epidural scarring. The findings indicate that differential diagnosis between scarring and recurring prolapse can by accurately made by this technique. (orig.) [de

  16. LUMBOSACRAL TRANSITIONAL ANATOMY TYPES AND DISC DEGENERATIVE CHANGES

    Directory of Open Access Journals (Sweden)

    Chabukovska Radulovska Jasminka

    2014-07-01

    Full Text Available Background and purpose: The relationship between presence of lumbo sacral transitional vertebra (LSTV and disc degenerative changes is unclear. The aim of the study was to examine the relation between different types of LSTV and disc degenerative changes at the transitional and the adjacent cephalad segment. Material and methods: Sixty-three patients (mean age 51.48 ± 13.51 out of 200 adults with low back pain who performed MRI examination of the lumbo sacral spine, classified as positive for LSTV, were included in the study. Annular tears, disc degeneration according to Phirmann classification and disc herniations were evaluated and graded at transitional and adjacent cephalad level. Results: The severity of disc degeneration at the transitional level and the adjacent level correlated with the types of LSTV. Severe disc degenerative changes were most frequent in articulated connection LSTV types and incombined LSTV type at the transitional level and in osseus connection LSTV types at the adjacent cephalad level. These changes were more frequent in unilateral articulated connection LSTV subtype (64% vs 54%; and in unilateral osseus connection LSTV subtype (25% vs no patients at transitional level, and in bilateral osseus connection LSTV subtype (100% vs 50% at the level above. High prevalence of disc herniations was observed in articulated connection LSTV types as well as in unilateral osseus connection LSTV subtype at transitional and the adjacent cephalad level. At the transitional level higher prevalence of disc herniations was characteristic for unilateral articulated connection LSTV sub type (46%vs 41% and for unilateral osseus connection LSTV subtype (50% vs no patients. At the adjacent level higher prevalence of disc herniations was observed in bilateral articulated connection LSTV subtype (38% vs 27% and in bilateral osseus connection LSTV subtype (50% vs 25%. Conclusions: The compact osseus connection (osseus bridging vs articular

  17. Lumbosacral transitional anatomy types and disc degenerative changes

    Directory of Open Access Journals (Sweden)

    Chabukovska-Radulovska Jasminka

    2014-07-01

    Full Text Available Background and purpose: The relationship between presence of lumbosacral transitional vertebra (LSTV and disc degenerative changes is unclear. The aim of the study was to examine the relation between different types of LSTV and disc degenerative changes at the transitional and the adjacent cephalad segment. Material and methods: Sixty-three patients (mean age 51.48 ± 13.51 out of200 adults with low back pain who performed MRI examination of the lumbosacral spine, classified as positive for LSTV, were included in the study. Annular tears, disc degeneration according to Phirmann classification and disc herniations were evaluated and graded at transitional and adjacent cephalad level. Results: The severity of disc degeneration at the transitional level and the adjacent level correlated with the types of LSTV. Severe disc degenerative changes were most frequent in articulated connection LSTV types and in combined LSTV type at the transitional level and in osseus connection LSTV types at the adjacent cephalad level. These changes were more frequent in unilateral articulated connection LSTV subtype (64% vs 54%; and in unilateral osseus connection LSTV subtype (25% vs no patients at transitional level, and in bilateral osseus connection LSTV subtype (100% vs 50% at the level above. High prevalence of disc herniations was observed in articulated connection LSTV types as well as in unilateral osseus connection LSTV subtype at transitional and the adjacent cephalad level. At the transitional level higher prevalence of disc herniations was characteristic for unilateral articulated connection LSTV subtype (46%vs 41% and for unilateral osseus connection LSTV subtype (50% vs no patients. At the adjacent level higher prevalence of disc herniations was observed in bilateral articulated connection LSTV subtype (38% vs 27% and in bilateral osseus connection LSTV subtype (50% vs 25%. Conclusions: The compact osseus connection (osseus bridging vs articular

  18. Optical Manipulation and Detection of Emergent Phenomena in Topological Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Gedik, Nuh [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics

    2017-02-17

    The three-dimensional topological insulator (TI) is a new quantum phase of matter that exhibits quantum-Hall-like properties, even in the absence of an external magnetic field. These materials are insulators in the bulk but have a topologically protected conducting state at the surface. Charge carriers on these surface states behave like a two-dimensional gas of massless helical Dirac fermions for which the spin is ideally locked perpendicular to the momentum. The purpose of this project is to probe the unique collective electronic behaviors of topological insulators by developing and using advanced time resolved spectroscopic techniques with state-of-the-art temporal and spatial resolutions. The nature of these materials requires development of specialized ultrafast techniques (such as time resolved ARPES that also has spin detection capability, ultrafast electron diffraction that has sub-100 fs time resolution and THz magneto-spectroscopy). The focus of this report is to detail our achievements in terms of establishing state of the art experimental facilities. Below, we will describe achievements under this award for the entire duration of five years. We will focus on detailing the development of ultrafast technqiues here. The details of the science that was done with these technqiues can be found in the publications referencing this grant.

  19. The evolution of stellar exponential discs

    NARCIS (Netherlands)

    Ferguson, AMN; Clarke, CJ

    2001-01-01

    Models of disc galaxies which invoke viscosity-driven radial flows have long been known to provide a natural explanation for the origin of stellar exponential discs, under the assumption that the star formation and viscous time-scales are comparable. We present models which invoke simultaneous star

  20. Heat insulation support device

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Koda, Tomokazu; Motojima, Osamu; Yamamoto, Junya.

    1994-01-01

    The device of the present invention comprises a plurality of heat insulation legs disposed in a circumferential direction. Each of the heat insulative support legs has a hollow shape, and comprises an outer column and an inner column as support structures having a heat insulative property (heat insulative structure), and a thermal anchor which absorbs compulsory displacement by a thin flat plate (displacement absorber). The outer column, the thermal anchor and the inner column are connected by a support so as to offset the positional change of objects to be supported due to shrinkage when they are shrunk. In addition, the portion between the superconductive coils as the objects to be supported and the inner column is connected by the support. The superconductive thermonuclear device is entirely contained in a heat insulative vacuum vessel, and the heat insulative support legs are disposed on a lower lid of the heat insulative vacuum vessel. With such a constitution, they are strengthened against lateral load and buckling, thereby enabling to reduce the amount of heat intrusion while keeping the compulsory displacement easy to be absorbed. (I.N.)

  1. Spin-dependent Peltier effect in 3D topological insulators

    Science.gov (United States)

    Sengupta, Parijat; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard

    2013-03-01

    The Peltier effect represents the heat carrying capacity of a certain material when current passes through it. When two materials with different Peltier coefficients are placed together, the Peltier effect causes heat to flow either towards or away from the interface between them. This work utilizes the spin-polarized property of 3D topological insulator (TI) surface states to describe the transport of heat through the spin-up and spin-down channels. It has been observed that the spin channels are able to carry heat independently of each other. Spin currents can therefore be employed to supply or extract heat from an interface between materials with spin-dependent Peltier coefficients. The device is composed of a thin film of Bi2Se3 sandwiched between two layers of Bi2Te3. The thin film of Bi2Se3serves both as a normal and topological insulator. It is a normal insulator when its surfaces overlap to produce a finite band-gap. Using an external gate, Bi2Se3 film can be again tuned in to a TI. Sufficiently thick Bi2Te3 always retain TI behavior. Spin-dependent Peltier coefficients are obtained and the spin Nernst effect in TIs is shown by controlling the temperature gradient to convert charge current to spin current.

  2. Economically optimal thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1978-10-01

    Exemplary calculations to show that exact adherence to the demands of the thermal insulation ordinance does not lead to an optimal solution with regard to economics. This is independent of the mode of financing. Optimal thermal insulation exceeds the values given in the thermal insulation ordinance.

  3. Grain size segregation in debris discs

    Science.gov (United States)

    Thebault, P.; Kral, Q.; Augereau, J.-C.

    2014-01-01

    Context. In most debris discs, dust grain dynamics is strongly affected by stellar radiation pressure. Because this mechanism is size-dependent, we expect dust grains to be spatially segregated according to their sizes. However, because of the complex interplay between radiation pressure, grain processing by collisions, and dynamical perturbations, this spatial segregation of the particle size distribution (PSD) has proven difficult to investigate and quantify with numerical models. Aims: We propose to thoroughly investigate this problem by using a new-generation code that can handle some of the complex coupling between dynamical and collisional effects. We intend to explore how PSDs behave in both unperturbed discs at rest and in discs pertubed by planetary objects. Methods: We used the DyCoSS code to investigate the coupled effect of collisions, radiation pressure, and dynamical perturbations in systems that have reached a steady-state. We considered two setups: a narrow ring perturbed by an exterior planet, and an extended disc into which a planet is embedded. For both setups we considered an additional unperturbed case without a planet. We also investigated the effect of possible spatial size segregation on disc images at different wavelengths. Results: We find that PSDs are always spatially segregated. The only case for which the PSD follows a standard dn ∝ s-3.5ds law is for an unperturbed narrow ring, but only within the parent-body ring itself. For all other configurations, the size distributions can strongly depart from such power laws and have steep spatial gradients. As an example, the geometrical cross-section of the disc is very rarely dominated by the smallest grains on bound orbits, as it is expected to be in standard PSDs in sq with q ≤ -3. Although the exact profiles and spatial variations of PSDs are a complex function of the set-up that is considered, we are still able to derive some reliable results that will be useful for image or SED

  4. Panels of microporous insulation

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.J.

    1990-08-07

    Microporous thermal insulation materials have a lattice structure in which the average interstitial dimension is less than the mean free path of the molecules of air or other gas in which the material is arranged. This results in a heat flow which is less than that attributable to the molecular heat diffusion of the gas. According to this invention, a method is provided for manufacturing panels of microporous thermal insulation, in particular such panels in which the insulation material is bonded to a substrate. The method comprises the steps of applying a film of polyvinyl acetate emulsion to a non-porous substrate, and compacting powdery microporous thermal insulation material against the film so as to cause the consolidated insulation material to bond to the substrate and form a panel. The polyvinyl acetate may be applied by brushing or spraying, and is preferably allowed to dry prior to compacting the insulation material. 1 fig.

  5. Dynamic behavior of correlated electrons in the insulating doped semiconductor Si:P

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Elvira

    2009-06-04

    At low energy scales charge transport in the insulating Si:P is dominated by activated hopping between the localized donor electron states. Theoretical models for a disordered electronic system with a long-range Coulomb interaction are appropriate to interpret the electric conductivity spectra. With a novel and advanced method we perform broadband phase sensitive measurements of the reflection coefficient from 45 MHz up to 5 GHz, employing a vector network analyzer with a 2.4 mm coaxial sensor, which is terminated by the sample under test. While the material parameters (conductivity and permittivity) can be easily extracted from the obtained impedance data if the sample is metallic, no direct solution is possible if the material under investigation is an insulator. Focusing on doped semiconductors with largely varying conductivity and dielectric function, we present a closed calibration and evaluation procedure with an optimized theoretical and experimental complexity, based on the rigorous solution for the electromagnetic field inside the insulating sample, combined with the variational principle. Basically no limiting assumptions are necessary in a strictly defined parameter range. As an application of our new method, we have measured the complex broadband microwave conductivity of Si:P in a broad range of phosphorus concentration n/n{sub c} from 0.56 to 0.9 relative to the critical value n{sub c}=3.5 x 10{sup 18} cm{sup -3} of the metal-insulator transition driven by doping at temperatures down to 1.1 K, and studied unresolved issues of fundamental research concerning the electronic correlations and the metal-insulator transition. (orig.)

  6. Effects of gamma-rays irradiation on tracking resistance of organic insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Du, Boxue; Suzuki, Akio; Kobayashi, Shigeo [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology

    1996-04-01

    This paper describes the influence of gamma-rays irradiation on tracking failure of organic insulating materials by use of the IEC Publ.112 method. Tracking resistance of organic insulating materials under wet polluted condition has been studied by many investigators with a test method of the IEC Publ.112. The investigations on irradiation effects on tracking resistance should be enhanced due to the increasing usage of organic insulating materials in the radiation environments. The tracking resistance seems to be affected by gamma-irradiation, but the knowledge on the influence of gamma-irradiation is quite a few and systematic studies are needed. In this paper, modified polyphenylene oxide, polybutylene naphthalate, modified polycarbonate and polybutylene terephthalate which were irradiated in air until 1x10{sup 7}R and 1x10{sup 8}R with dose rate of 10{sup 6}R/hr using {sup 60}Co gamma-source have been employed. The total dose effects on the number of drops to tracking failure, contact angle and charges of scintillation have been studied. As the total doses are increased, the number of drops to tracking failure decreases with polybutylene terephthalate. On the other hand, the number of drops to tracking failure increases with polybutylene naphthalate and modified polycarbonate when the total doses are increased. The effects of gamma-rays irradiation on tracking failure are due to radiation-induced degradation or cross-linking of organic insulating materials. When the organic insulating materials are degraded by gamma-irradiation, the tracking resistance decreases, but for cross-linking type materials, the tracking resistance increases. (author)

  7. Survey of thermal insulation systems

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    1983-01-01

    Better thermal insulations have been developed to meet the growing demands of industry, and studies on thermal insulation at both high temperature and low temperature have been widely performed. The purpose of this survey is to summarize data on the performances and characteristics of thermal insulation materials and thermal insulation structures (for instance, gas cooled reactors, space vehicles and LNG storage tanks), and to discuss ravious problems regarding the design of thermal insulation structures of pool-type LMFBRs. (author)

  8. Time Localisation of Surface Defects on Optical Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, M.V.

    Many have experienced problems with their Compact Disc player when a disc with a scratch or a finger print is tried played. One way to improve the playability of discs with such a defect, is to locate the defect in time and then handle it in a special way. As a consequence this time localisation...

  9. Time Localisation of Surface Defects on Optical Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, M.V.

    2004-01-01

    Many have experienced problems with their Compact Disc Player when a disc with a scratch or a fingerprint is tried played. One way to improve the playability of discs with such a defect, is to locate the defect in time and then handle it in a special way. As a consequence this time localization...

  10. Dose errors due to charge storage in electron irradiated plastic phantoms

    International Nuclear Information System (INIS)

    Galbraith, D.M.; Rawlinson, J.A.; Munro, P.

    1984-01-01

    Commercial plastics used for radiation dosimetry are good electrical insulators. Used in electron beams, these insulators store charge and produce internal electric fields large enough to measurably alter the electron dose distribution in the plastic. The reading per monitor unit from a cylindrical ion chamber imbedded in a polymethylmethacrylate (PMMA) or polystyrene phantom will increase with accumulated electron dose, the increase being detectable after about 20 Gy of 6-MeV electrons. The magnitude of the effect also depends on the type of the plastic, the thickness of the plastic, the wall thickness of the detector, the diameter and depth of the hole in the plastic, the energy of the electron beam, and the dose rate used. Effects of charge buildup have been documented elsewhere for very low energy electrons at extremely high doses and dose rates. Here we draw attention to the charging effects in plastics at the dose levels encountered in therapy dosimetry where ion chamber or other dosimeter readings may easily increase by 5% to 10% and where a phantom, once charged, will also affect subsequent readings taken in 60 Co beams and high-energy electron and x-ray beams for periods of several days to many months. It is recommended that conducting plastic phantoms replace PMMA and polystyrene phantoms in radiation dosimetry

  11. Intradiscal injection of simvastatin results in radiologic, histologic, and genetic evidence of disc regeneration in a rat model of degenerative disc disease

    Science.gov (United States)

    Than, Khoi D.; Rahman, Shayan U.; Wang, Lin; Khan, Adam; Kyere, Kwaku A.; Than, Tracey T.; Miyata, Yoshinari; Park, Yoon-Shin; La Marca, Frank; Kim, Hyungjin M.; Zhang, Huina; Park, Paul; Lin, Chia-Ying

    2014-01-01

    BACKGROUND CONTEXT A large percentage of back pain can be attributed to degeneration of the intervertebral disc (IVD). Bone morphogenetic protein-2 (BMP-2) is known to play an important role in chondrogenesis of the IVD. Simvastatin is known to up-regulate expression of BMP-2. Thus, we hypothesized that intradiscal injection of simvastatin in a rat model of degenerative disc disease (DDD) would result in retardation of DDD. PURPOSE To develop a novel conservative treatment for DDD and related discogenic back pain. STUDY DESIGN/SETTING Laboratory investigation. METHODS Disc injury was induced in 272 rats via 21-gauge needle puncture. After 6 weeks, injured discs were treated with simvastatin in a saline or hydrogel carrier. Rats were sacrificed at predetermined time points. Outcome measures assessed were radiologic, histologic, and genetic. Radiologically, the MRI index (number of pixels multiplied by corresponding image densities) was determined. Histologically, disc spaces were read by 3 blinded scorers employing a previously described histological grading scale. Genetically, nuclei pulposi were harvested and polymerase chain reaction was run to determine relative levels of aggrecan, collagen type II, and BMP-2 gene expression. This project was supported by Grant No. R01 AR056649 from NIAMS/NIH. There are no other financial conflicts of interest to report. RESULTS Radiologically, discs treated with 5 mg/mL simvastatin in hydrogel or saline demonstrated MRI indices that were normal through 8 weeks post-treatment, although this was more sustained when delivered in hydrogel. Histologically, discs treated with 5 mg/mL simvastatin in hydrogel demonstrated improved grades in comparison to discs treated at higher doses. Genetically, discs treated with 5 mg/mL of simvastatin in hydrogel demonstrated higher gene expression of aggrecan and collagen type II than control. CONCLUSIONS Degenerate discs treated with 5 mg/mL simvastatin in a hydrogel carrier demonstrated

  12. New Brown Dwarf Discs in Upper Scorpius Observed with WISE

    Science.gov (United States)

    Dawson, P.; Scholz, A.; Ray, T. P.; Natta, A.; Marsh, K. A.; Padgett, D.; Ressler, M. E.

    2013-01-01

    We present a census of the disc population for UKIDSS selected brown dwarfs in the 5-10 Myr old Upper Scorpius OB association. For 116 objects originally identified in UKIDSS, the majority of them not studied in previous publications, we obtain photometry from the Wide-Field Infrared Survey Explorer data base. The resulting colour magnitude and colour colour plots clearly show two separate populations of objects, interpreted as brown dwarfs with discs (class II) and without discs (class III). We identify 27 class II brown dwarfs, 14 of them not previously known. This disc fraction (27 out of 116, or 23%) among brown dwarfs was found to be similar to results for K/M stars in Upper Scorpius, suggesting that the lifetimes of discs are independent of the mass of the central object for low-mass stars and brown dwarfs. 5 out of 27 discs (19 per cent) lack excess at 3.4 and 4.6 microns and are potential transition discs (i.e. are in transition from class II to class III). The transition disc fraction is comparable to low-mass stars.We estimate that the time-scale for a typical transition from class II to class III is less than 0.4 Myr for brown dwarfs. These results suggest that the evolution of brown dwarf discs mirrors the behaviour of discs around low-mass stars, with disc lifetimes of the order of 5 10 Myr and a disc clearing time-scale significantly shorter than 1 Myr.

  13. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    Science.gov (United States)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  14. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  15. Wrapped Multilayer Insulation

    Science.gov (United States)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  16. Role of solvent environments in single molecule conductance used insulator-modified mechanically controlled break junctions

    Science.gov (United States)

    Muthusubramanian, Nandini; Maity, Chandan; Galan Garcia, Elena; Eelkema, Rienk; Grozema, Ferdinand; van der Zant, Herre; Kavli Institute of Nanoscience Collaboration; Department of Chemical Engineering Collaboration

    We present a method for studying the effects of polar solvents on charge transport through organic/biological single molecules by developing solvent-compatible mechanically controlled break junctions of gold coated with a thin layer of aluminium oxide using plasma enhanced atomic layer deposition (ALD). The optimal oxide thickness was experimentally determined to be 15 nm deposited at ALD operating temperature of 300°C which yielded atomically sharp electrodes and reproducible single-barrier tunnelling behaviour across a wide conductance range between 1 G0 and 10-7 G0. The insulator protected MCBJ devices were found to be effective in various solvents such as deionized water, phosphate buffered saline, methanol, acetonitrile and dichlorobenzene. The yield of molecular junctions using such insulated electrodes was tested by developing a chemical protocol for synthesizing an amphipathic form of oligo-phenylene ethynylene (OPE3-PEO) with thioacetate anchoring groups. This work has further applications in studying effects of solvation, dipole orientation and other thermodynamic interactions on charge transport. Eu Marie Curie Initial Training Network (ITN). MOLECULAR-SCALE ELECTRONICS: ``MOLESCO'' Project Number 606728.

  17. MRI findings of traumatic cervical disc herniation

    International Nuclear Information System (INIS)

    Tanaka, Hisato; Kasahara, Takaki; Akiyama, Nanae

    2011-01-01

    In general practice, disc hernia is increasingly being questioned about its relation with traffic injuries. In this study, we examined the image findings of cervical disc herniation for findings indicative of traumatic hernia. In 2008, we examined 35 cases of cervical disc herniation at our hospital by MRI. The patients were divided into two groups; patients with trauma history (19 cases) and those without (16 cases), and their images were compared. Disc herniation in the trauma group showed high intensity at T2, with some of the patients in this group also indicating continuous high intensity of the internal and herniated discs. Traumatic force was found to cause swelling under the laryngeal soft tissue. Cases with further flexion injury showed interspinous ligament hemorrhage. These findings strongly suggest the involvement of injury. But given that some younger patients in the non-trauma group also show high intensity at T2*, attention must be paid not to confuse swelling below the larynx with inflammation of the longus colli muscle. (author)

  18. Charge ordered insulating phases of DODHT salts with octahedral anions and a new radical salt, β''-(DODHT)2TaF6

    Science.gov (United States)

    Nishikawa, H.; Oshio, H.; Higa, M.; Kondo, R.; Kagoshima, S.; Nakao, A.; Sawa, H.; Yasuzuka, S.; Murata, K.

    2008-10-01

    Physical properties of isostructural β''-(DODHT)2X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF6, AsF6, and SbF6] at ambient pressure have been compared. The insulating phase of β''-(DODHT)2PF6 salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of β''-(DODHT)2SbF6 salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF6 salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, β''-(DODHT)2TaF6, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of β''-(DODHT)2SbF6 salt.

  19. Physical Limitations to Tissue Engineering of Intervertabral Disc Cells

    OpenAIRE

    Kobayashi, Shigeru; Baba, Hisatoshi; Takeno, Kenichi; Miyazaki, Tsuyoshi; Meir, Adam; Urban, Jill

    2010-01-01

    There is increasing interest in the using biological methods to repair degenerate discs. Biological repair depends on the disc maintaining a population of viable and active cells. Adequate nutrition of the disc influences the outcome of such therapies and, hence, must be considered to be a crucial parameter. Therefore, it is very important to maintain an appropriate physicochemical environment to achieve successful disc repair by biological methods and tissue engineering procedures.

  20. Nonlinear dynamics of the human lumbar intervertebral disc.

    Science.gov (United States)

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J

    2015-02-05

    Systems with a quasi-static response similar to the axial response of the intervertebral disc (i.e. progressive stiffening) often present complex dynamics, characterized by peculiar nonlinearities in the frequency response. However, such characteristics have not been reported for the dynamic response of the disc. The accurate understanding of disc dynamics is essential to investigate the unclear correlation between whole body vibration and low back pain. The present study investigated the dynamic response of the disc, including its potential nonlinear response, over a range of loading conditions. Human lumbar discs were tested by applying a static preload to the top and a sinusoidal displacement at the bottom of the disc. The frequency of the stimuli was set to increase linearly from a low frequency to a high frequency limit and back down. In general, the response showed nonlinear and asymmetric characteristics. For each test, the disc had different response in the frequency-increasing compared to the frequency-decreasing sweep. In particular, the system presented abrupt changes of the oscillation amplitude at specific frequencies, which differed between the two sweeps. This behaviour indicates that the system oscillation has a different equilibrium condition depending on the path followed by the stimuli. Preload and amplitude of the oscillation directly influenced the disc response by changing the nonlinear dynamics and frequency of the jump-phenomenon. These results show that the characterization of the dynamic response of physiological systems should be readdressed to determine potential nonlinearities. Their direct effect on the system function should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Prevalence of disc cupping in non-glaucomatous eyes

    Directory of Open Access Journals (Sweden)

    José Pablo Chiappe

    2015-02-01

    Full Text Available This study assessed optic disc size and cupping, using a commercially available ophthalmoscope, in order to show norms of these values for clinical practice. Subjects were office-workers referred from their respective workplaces for a routine medical examination, which included eye examination. The optic disc size was classified as small, medium or large, for having a diameter 1.5 times (respectively the diameter of the ophthalmoscope's selected light spot on the posterior pole. The cupping was classified as the ratio of the vertical cupping diameter and the vertical disc diameter on a relative decimal scale from 0.0 to 1.0.This study included 184 subjects with a mean age of 40.5 ± 9.5 years; 149 (81% were males. Their mean ocular pressure was 12.4 ± 1.5 mmHg (range 10-17 mmHg. There was a high correlation between optic disc sizes and cupping in the right and left eyes (Pearson Correlation r = 0.866, p < 0.001; therefore, for simplicity only the data for right eyes are presented. According to our definition, the optic discs in these eyes comprised 27 (14.7% small, 141 (76.6% medium and 16 (8.7% large. The small optic discs were rarely cupped, and the large optic discs were always cupped. Optic disc cupping greater than 0.7 was rarely found and should be suspect of glaucoma. Clinical doctors should be aware of this and refer those subjects with abnormal cupping to the specialist.

  2. Efficacy and safety of Mobi-C cervical artificial disc versus anterior discectomy and fusion in patients with symptomatic degenerative disc disease: A meta-analysis.

    Science.gov (United States)

    Lu, Hui; Peng, Lihua

    2017-12-01

    Total disc replacement (TDR) using Mobi-C cervical artificial disc might be promising to treat symptomatic degenerative disc disease. However, the results remained controversial. We conducted a systematic review and meta-analysis to compare the efficacy and safety of Mobi-C cervical artificial disc and anterior cervical discectomy and fusion (ACDF) in patients with symptomatic degenerative disc disease. PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases were systematically searched. Randomized controlled trials (RCTs) assessing the effect of Mobi-C versus ACDF on the treatment of symptomatic degenerative disc disease were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcomes were neck disability index (NDI) score, patient satisfaction, and subsequent surgical intervention. Meta-analysis was performed using the random-effect model. Four RCTs were included in the meta-analysis. Overall, compared with ACDF surgery for symptomatic degenerative disc disease, TDR using Mobi-C was associated with a significantly increased NDI score (Std. mean difference = 0.32; 95% CI = 0.10-0.53; P = .004), patient satisfaction (odds risk [OR] = 2.75; 95% confidence interval [CI] = 1.43-5.27; P = .002), and reduced subsequent surgical intervention (OR = 0.20; 95% CI = 0.11-0.37; P degenerative disc disease, TDR using Mobi-C cervical artificial disc resulted in a significantly improved NDI score, patient satisfaction, and reduced subsequent surgical intervention. There was no significant difference of neurological deterioration, radiographic success, and overall success between TDR using Mobi-C cervical artificial disc versus ACDF surgery. TDR using Mobi-C cervical artificial disc should be recommended for the treatment of symptomatic degenerative disc disease.

  3. Tests and developments of the PANDA Endcap Disc DIRC

    International Nuclear Information System (INIS)

    Etzelmüller, E.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Britting, A.; Eyrich, W.; Lehmann, A.

    2016-01-01

    The PANDA experiment at the future Facility for Antiproton and Ion Research (FAIR) requires excellent particle identification. Two different DIRC detectors will utilize internally reflected Cherenkov light of charged particles to enable the separation of pions and kaons up to momenta of 4 GeV/c. The Endcap Disc DIRC will be placed in the forward endcap of PANDA's central spectrometer covering polar angles between 5° and 22°. Its final design is based on MCP-PMTs for the photon detection and an optical system made of fused silica. A new prototype has been investigated during a test beam at CERN in May 2015 and first results will be presented. In addition a new synthetic fused silica material by Nikon has been tested and was found to be radiation hard.

  4. Optic Disc Change during Childhood Myopic Shift: Comparison between Eyes with an Enlarged Cup-To-Disc Ratio and Childhood Glaucoma Compared to Normal Myopic Eyes.

    Directory of Open Access Journals (Sweden)

    Hae-Young Lopilly Park

    Full Text Available Progressive disc tilting and the development or enlargement of peripapillary atrophy (PPA are observed during a myopic shift in children. This could be related to the changes around the optic nerve head during eyeball elongation. If the biomechanical properties at or around the optic nerve head are changed after exposure to elevated intraocular pressure (IOP in glaucoma eyes, different response of the disc tilting and PPA changes could take place during eyeball elongation by myopic shift. On the basis of this background, the aim of this study was to compare the morphological changes in the optic disc induced by a myopic shift during childhood between normal control eyes, eyes from disc suspects with an enlarged cup-to-disc ratio (CDR, and eyes with childhood glaucoma.Total of 82 eyes from 82 subjects younger than 14 years of age were included in the study. Serial disc photographs were classified into one of two groups: eyes with an optic nerve head (ONH or peripapillary atrophy (PPA change or without an ONH/PPA change. Using ImageJ software, the outlines of the optic disc and PPA were plotted, and the vertical disc diameter (VDD, horizontal disc diameter (HDD, and maximum PPA width (PPW were measured. The changes in the ratios of these parameters and the relationships between the degree of myopic shift or the ONH/PPA change were analyzed.Twenty-five eyes with normal optic disc appearance, 36 eyes with enlarged cup-to-disc ratio, and 21 eyes of glaucoma patients were analyzed. The initial intraocular pressure (IOP at diagnosis was significantly different among the groups (P<0.001. The degree of myopic shift during follow-up period was not significantly different among the groups (P=0.612. However, the changes in the HDD/VDD and PPW/VDD ratios were significantly greater in the disc suspect group and significantly smaller in the glaucoma group. Among the 42 eyes with an ONH/PPA change, 16 (38.1% were from the normal control group, 24 (57.1% were

  5. Theory of thermal and charge transport in diffusive normal metal / superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Asano, Y.

    2005-01-01

    Thermal and charge transport in diffusive normal metal (DN)/insulator/s-, d-, and p-wave superconductor junctions are studied based on the Usadel equation with the Nazarov's generalized boundary condition. We derive a general expression of the thermal conductance in unconventional superconducting

  6. Apparent quasar disc sizes in the "bird's nest" paradigm

    Science.gov (United States)

    Abolmasov, P.

    2017-04-01

    Context. Quasar microlensing effects make it possible to measure the accretion disc sizes around distant supermassive black holes that are still well beyond the spatial resolution of contemporary instrumentation. The sizes measured with this technique appear inconsistent with the standard accretion disc model. Not only are the measured accretion disc sizes larger, but their dependence on wavelength is in most cases completely different from the predictions of the standard model. Aims: We suggest that these discrepancies may arise not from non-standard accretion disc structure or systematic errors, as it was proposed before, but rather from scattering and reprocession of the radiation of the disc. In particular, the matter falling from the gaseous torus and presumably feeding the accretion disc may at certain distances become ionized and produce an extended halo that is free from colour gradients. Methods: A simple analytical model is proposed assuming that a geometrically thick translucent inflow acts as a scattering mirror changing the apparent spatial properties of the disc. This inflow may be also identified with the broad line region or its inner parts. Results: Such a model is able to explain the basic properties of the apparent disc sizes, primarily their large values and their shallow dependence on wavelength. The only condition required is to scatter a significant portion of the luminosity of the disc. This can easily be fulfilled if the scattering inflow has a large geometrical thickness and clumpy structure.

  7. The diagnosis of internal disc disruption with CT discography

    International Nuclear Information System (INIS)

    Liu Miao; Chen Xingcan; Li Xiaohong; Pan Yongqin

    2008-01-01

    Objective: To study the value of diagnosis for internal disc disruption (IDD)with CT discography(CTD). Methods: 42 discs of 32 patients showing no disc herniation on CT or MRI, but suffering from chronic low back pain, were undertaken CTD to work out the types of CTD with correlation between contrast medium dosages and the induction of pain. Results: CTD demonstrated 4 types of IDD which was individually correlated with the contrast dosages and induced pain; furthermore the dosages for positive and negative disc cases showed significant differece (P<0.01). Conclusions: CTD can show the direct sign of internal disc disruption, providing more information than conventional discography. (authors)

  8. Percutaneous treatment of cervical and lumbar herniated disc

    Energy Technology Data Exchange (ETDEWEB)

    Kelekis, A., E-mail: akelekis@med.uoa.gr; Filippiadis, D.K., E-mail: dfilippiadis@yahoo.gr

    2015-05-15

    Therapeutic armamentarium for symptomatic intervertebral disc herniation includes conservative therapy, epidural infiltrations (interlaminar or trans-foraminal), percutaneous therapeutic techniques and surgical options. Percutaneous, therapeutic techniques are imaging-guided, minimally invasive treatments for intervertebral disc herniation which can be performed as outpatient procedures. They can be classified in 4 main categories: mechanical, thermal, chemical decompression and biomaterials implantation. Strict sterility measures are a prerequisite and should include extensive local sterility and antibiotic prophylaxis. Indications include the presence of a symptomatic, small to medium sized contained intervertebral disc herniation non-responding to a 4–6 weeks course of conservative therapy. Contraindications include sequestration, infection, segmental instability (spondylolisthesis), uncorrected coagulopathy or a patient unwilling to provide informed consent. Decompression techniques are feasible and reproducible, efficient (75–94% success rate) and safe (>0.5% mean complications rate) therapies for the treatment of symptomatic intervertebral disc herniation. Percutaneous, imaging guided, intervertebral disc therapeutic techniques can be proposed either as an initial treatment or as an attractive alternative prior to surgery for the therapy of symptomatic herniation in both cervical and lumbar spine. This article will describe the mechanism of action for different therapeutic techniques applied to intervertebral discs of cervical and lumbar spine, summarize the data concerning safety and effectiveness of these treatments, and provide a rational approach for the therapy of symptomatic intervertebral disc herniation in cervical and lumbar spine.

  9. Percutaneous treatment of cervical and lumbar herniated disc

    International Nuclear Information System (INIS)

    Kelekis, A.; Filippiadis, D.K.

    2015-01-01

    Therapeutic armamentarium for symptomatic intervertebral disc herniation includes conservative therapy, epidural infiltrations (interlaminar or trans-foraminal), percutaneous therapeutic techniques and surgical options. Percutaneous, therapeutic techniques are imaging-guided, minimally invasive treatments for intervertebral disc herniation which can be performed as outpatient procedures. They can be classified in 4 main categories: mechanical, thermal, chemical decompression and biomaterials implantation. Strict sterility measures are a prerequisite and should include extensive local sterility and antibiotic prophylaxis. Indications include the presence of a symptomatic, small to medium sized contained intervertebral disc herniation non-responding to a 4–6 weeks course of conservative therapy. Contraindications include sequestration, infection, segmental instability (spondylolisthesis), uncorrected coagulopathy or a patient unwilling to provide informed consent. Decompression techniques are feasible and reproducible, efficient (75–94% success rate) and safe (>0.5% mean complications rate) therapies for the treatment of symptomatic intervertebral disc herniation. Percutaneous, imaging guided, intervertebral disc therapeutic techniques can be proposed either as an initial treatment or as an attractive alternative prior to surgery for the therapy of symptomatic herniation in both cervical and lumbar spine. This article will describe the mechanism of action for different therapeutic techniques applied to intervertebral discs of cervical and lumbar spine, summarize the data concerning safety and effectiveness of these treatments, and provide a rational approach for the therapy of symptomatic intervertebral disc herniation in cervical and lumbar spine

  10. Thermal analysis on motorcycle disc brake geometry

    Science.gov (United States)

    W. M. Zurin W., S.; Talib, R. J.; Ismail, N. I.

    2017-08-01

    Braking is a phase of slowing and stop the movement of motorcycle. During braking, the frictional heat was generated and the energy was ideally should be faster dissipated to surrounding to prevent the built up of the excessive temperature which may lead to brake fluid vaporization, thermoelastic deformation at the contact surface, material degradation and failure. In this paper, solid and ventilated type of motorcycle disc brake are being analyse using Computational Fluid Dynamic (CFD) software. The main focus of the analysis is the thermal behaviour during braking for solid and ventilated disc brake. A comparison between both geometries is being discussed to determine the better braking performance in term of temperature distribution. It is found that ventilated disc brake is having better braking performance in terms of heat transfer compare to solid disc.

  11. Magnetically self-insulated transformers

    International Nuclear Information System (INIS)

    Novac, B.M.; Smith, I.R.; Brown, J.

    2002-01-01

    Magnetic insulation is the only practicable form of insulation for much equipment used in ultrahigh pulsed-power work, including transmission lines and plasma opening switches. It has not however so far been successfully exploited in the transformers that are necessarily involved, and the first proposed design that appeared more than 30 years ago raised apparently insuperable problems. The two novel arrangements for a magnetically insulated transformer described in this paper overcome the problems faced by the earlier designs and also offer considerable scope for development in a number of important areas. Theoretical justification is given for their insulating properties, and this is confirmed by proof-of-principle results obtained from a small-scale experimental prototype in which magnetic insulation was demonstrated at up to 100 kV. (author)

  12. Positional and morphologic changes of the temporomandibular joint disc using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ahn, Hyoun Suk; Cho, Su Beom; Koh, Kwang Joon

    2001-01-01

    To evaluate displacement and morphologic changes of the temporomandibular joint (TMJ) disc in patient with internal derangement using magnetic resonance imaging (MRI). One hundred and forty five MR images of TMJs in 73 patients were evaluated. Positional and morphologic changes of the TMJ disc were assessed. Lateral or medial disc displacement was also evaluated on cornal images. Among 63 discs with anterior disc displacement, 37 discs were assessed as a biconcave disc and 21 as a deformed disc. Rotational disc displacement was observed in 35 disc. Anteromedial disc displacement was observed in 29 discs, and anterolateral direction in 6 discs. Among 35 rotational displacement, 5 biconcave discs and 21 deformed discs were observed. Rotational and sideways displacement of TMJ discs were found to be common and an important aspect of internal derangement. This study also suggests that sagittal and coronal images of the TMJ have complementary abilities for an assessment of joint abnormality

  13. Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine--a finite element based study.

    Science.gov (United States)

    Faizan, Ahmad; Goel, Vijay K; Biyani, Ashok; Garfin, Steven R; Bono, Christopher M

    2012-03-01

    Studies delineating the adjacent level effect of single level disc replacement systems have been reported in literature. The aim of this study was to compare the adjacent level biomechanics of bi-level disc replacement, bi-level fusion and a construct having adjoining level disc replacement and fusion system. In total, biomechanics of four models- intact, bi level disc replacement, bi level fusion and fusion plus disc replacement at adjoining levels- was studied to gain insight into the effects of various instrumentation systems on cranial and caudal adjacent levels using finite element analysis (73.6N+varying moment). The bi-level fusion models are more than twice as stiff as compared to the intact model during flexion-extension, lateral bending and axial rotation. Bi-level disc replacement model required moments lower than intact model (1.5Nm). Fusion plus disc replacement model required moment 10-25% more than intact model, except in extension. Adjacent level motions, facet loads and endplate stresses increased substantially in the bi-level fusion model. On the other hand, adjacent level motions, facet loads and endplate stresses were similar to intact for the bi-level disc replacement model. For the fusion plus disc replacement model, adjacent level motions, facet loads and endplate stresses were closer to intact model rather than the bi-level fusion model, except in extension. Based on our finite element analysis, fusion plus disc replacement procedure has less severe biomechanical effects on adjacent levels when compared to bi-level fusion procedure. Bi-level disc replacement procedure did not have any adverse mechanical effects on adjacent levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Metallic Interface Emerging at Magnetic Domain Wall of Antiferromagnetic Insulator: Fate of Extinct Weyl Electrons

    Directory of Open Access Journals (Sweden)

    Youhei Yamaji

    2014-05-01

    Full Text Available Topological insulators, in contrast to ordinary semiconductors, accompany protected metallic surfaces described by Dirac-type fermions. Here, we theoretically show that another emergent two-dimensional metal embedded in the bulk insulator is realized at a magnetic domain wall. The domain wall has long been studied as an ingredient of both old-fashioned and leading-edge spintronics. The domain wall here, as an interface of seemingly trivial antiferromagnetic insulators, emergently realizes a functional interface preserved by zero modes with robust two-dimensional Fermi surfaces, where pyrochlore iridium oxides proposed to host the condensed-matter realization of Weyl fermions offer such examples at low temperatures. The existence of in-gap states that are pinned at domain walls, theoretically resembling spin or charge solitons in polyacetylene, and protected as the edges of hidden one-dimensional weak Chern insulators characterized by a zero-dimensional class-A topological invariant, solves experimental puzzles observed in R_{2}Ir_{2}O_{7} with rare-earth elements R. The domain wall realizes a novel quantum confinement of electrons and embosses a net uniform magnetization that enables magnetic control of electronic interface transports beyond the semiconductor paradigm.

  15. Isolated Optic Disc Tuberculosis

    Science.gov (United States)

    Mansour, Ahmad M.; Tabbara, Khalid F.; Tabbarah, Zuhair

    2015-01-01

    We present a healthy male subject who developed progressive visual loss in the left eye initially diagnosed as optic neuritis. Upon suspicion of infectious etiology, testing was positive for tuberculosis. There were no signs or symptoms of active systemic tuberculosis infection. The patient responded swiftly to antimycobacterial therapy with return of vision and resolution of disc swelling. Positive purified protein derivative skin test, negative chest radiograph, negative systemic workup, negative workup for other causes of unilateral optic neuritis and quick response to mycobacterial therapy reaffirm the entity of isolated optic disc tuberculosis similar to isolated choroidal tuberculosis without systemic manifestation. PMID:26483675

  16. Isolated Optic Disc Tuberculosis

    Directory of Open Access Journals (Sweden)

    Ahmad M. Mansour

    2015-09-01

    Full Text Available We present a healthy male subject who developed progressive visual loss in the left eye initially diagnosed as optic neuritis. Upon suspicion of infectious etiology, testing was positive for tuberculosis. There were no signs or symptoms of active systemic tuberculosis infection. The patient responded swiftly to antimycobacterial therapy with return of vision and resolution of disc swelling. Positive purified protein derivative skin test, negative chest radiograph, negative systemic workup, negative workup for other causes of unilateral optic neuritis and quick response to mycobacterial therapy reaffirm the entity of isolated optic disc tuberculosis similar to isolated choroidal tuberculosis without systemic manifestation.

  17. Auto fluorescence of intervertebral disc tissue: a new diagnostic tool.

    Science.gov (United States)

    Hoell, T; Huschak, G; Beier, A; Hüttmann, G; Minkus, Y; Holzhausen, H J; Meisel, H J

    2006-08-01

    The paper reports on auto fluorescence phenomena of inter-vertebral human discs. It systematically investigates the auto fluorescence effects of ex vivo disc specimen and reports on surgical cases to demonstrate the potential value of the new method. The paper offers biologic explanations of the phenomenon and discusses the potential value of the UV auto fluorescence technique as a diagnostic tool. Intra- and postoperative observations are made by a surgical microscope with an integrated UV light source. Quantitative measurements were carried out using a photon counter and a spectrometer ex vivo. The auto fluorescence phenomenon allows the differentiation of traumatized and degenerated disc tissue intraoperatively in some cases, it allows the differentiation of bony and collagen endplate in cervical disc surgery. The source of the auto fluorescent light emission are amino acids of the collagen molecules. The proteoglycan components and the liquid components of the disc do not show relevant auto fluorescence. Emission wavelength of disc material is equivalent to color perception. It differs due to different collagen composition of the intervertebral disc components from yellow-green to blue-green and can be visualized in situ by naked eye.UV-auto fluorescence of inter-vertebral discs is a new clinical tool that has the potential to differentiate disc material from the anatomical surrounding, to distinguish between different fractions of the disc and to give information on the quality and status of the disc material. Since the technology has just emerged, it needs further investigations to quantify the clinical observations reported in this paper.

  18. Angiogenesis in the degeneration of the lumbar intervertebral disc

    OpenAIRE

    David, Gh; Ciurea, AV; Iencean, SM; Mohan, A

    2010-01-01

    The goal of the study is to show the histological and biochemical changes that indicate the angiogenesis of the intervertebral disc in lumbar intervertebral disc hernia and the existence of epidemiological correlations between these changes and the risk factors of lumbar intervertebral disc hernia, as well as the patient's quality of life (QOL). We have studied 50 patients aged between 18 and 73 years old, who have undergone lumbar intervertebral disc hernia surgery, making fibroblast growth ...

  19. Lumbar disc herniation in patients with chronic backache.

    Science.gov (United States)

    Ali, Asghar; Khan, Shahbaz Ali; Aurangzeb, Ahsan; Ahmed, Ehtisham; Ali, Gohar; Muhammad, Gul; Mehmood, Shakir

    2013-01-01

    Low back pain with or without lower extremity pain is the most common problem among chronic pain disorders with significant economic, social, and health impact. This study was conducted to determine the frequency of lumbar disc herniation and its different levels, among patients with chronic backache. This cross sectional study was conducted in the department of Neurosurgery, Ayub Medical College Abbottabad from January 2011 to January 2013. All the patients presenting with chronic low backache of either gender above the age 14 years were included in the study. Magnetic resonance imaging (MRI) was done in all the patients included in the study to look for lumbar disc herniation. A total of 477 patients with chronic low backache were included in the study out of which 274 (57.4%) were males. Age of the patients ranged from 19 to 75 (39.92 +/- 12.31) years. Out of 477 patients 38 (7.9%) had significant radiological evidence of disc prolapse at lumbar vertebral levels, with 26 (9.5%) males and 12 (5.9%) females. Among these 38 patients with inter-vertebral disc, 20 (52.6%) of patients had disc herniation at L5-S1, 15 (39.5%) at L4-L5, 2 (5.26%) cases at L3-L4 level and only one case (2.6%) had the involvement of L2-L3 level. No cases of L1-L2 disc prolapse were found. Patients with chronic backache can have inter-vertebral lumbar disc prolapsed disease. Middle age group are more affected by lumbar disc disease especially at the lower lumbar regions.

  20. Radiographic identification of ingested disc batteries

    International Nuclear Information System (INIS)

    Maves, M.D.

    1986-01-01

    Recently, the hazards by posed the accidental ingestion and impaction of small disc batteries have been widely publicized in the medical and lay press. These foreign bodies, when lodged in the esophagus, leak a caustic solution of 26 to 45% sodium or potassium hydroxide which can cause a burn injury to the esophagus in a very short period of time. Because of the considerable clinical morbidity and mortality from this foreign body, it becomes imperative for the radiologist to quickly and accurately identify disc batteries on plain radiographs. This communication offers a series of radiologic signs important in the identification of disc batteries demonstrate a double density shadow due to the bilaminar structure of the battery. On lateral view, the edges of most disc batteries are round and again present a step-off at the junction of the cathode and anode. These findings are differentiated from the more common esophageal foreign body of a coin which does not have a double density on frontal projection, has a much sharper edge and no visible stepoff. (orig.)

  1. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer

    International Nuclear Information System (INIS)

    Son, Dong-Ick; Park, Dong-Hee; Choi, Won Kook; Cho, Sung-Hwan; Kim, Won-Tae; Kim, Tae Whan

    2009-01-01

    The bistable effects of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) (PMMA) polymer single layer by using flexible polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that ZnO nanoparticles were formed inside the PMMA polymer layer. Current-voltage (I-V) measurement on the Al/ZnO nanoparticles embedded in an insulating PMMA polymer layer/ITO/PET structures at 300 K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the ZnO nanoparticles, indicative of trapping, storing, and emission of charges in the electronic states of the ZnO nanoparticles. The carrier transport mechanism of the bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results by analyzing the effect of space charge.

  2. Deep Charging Evaluation of Satellite Power and Communication System Components

    Science.gov (United States)

    Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.

    2016-01-01

    A set of deep charging tests has been carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. The samples, which included solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, were placed in passive and active (powered) circuit configurations and exposed to electron radiation. The energy of the electron radiation was chosen to deeply penetrate insulating (dielectric) materials on each sample. Each circuit configuration was monitored to determine if potentially damaging electrostatic discharge events (arcs) were developed on the coupon as a result of deep charging. The motivation for the test, along with charging levels, experimental setup, sample details, and results will be discussed.

  3. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  4. Fundamental study on articular disc with magnetic resonance imagings

    International Nuclear Information System (INIS)

    Chiba, Toyokazu

    1993-01-01

    In order to establish criteria of reading MRI of the temporomandibular joint, a morphological comparison between MRI and the section, and an observation of the articular disc associated with the opening were made. Five temporomandibular joints isolated from 3 human cadavers were subjected to MRI, and sections were prepared to examine criteria of reading MRI. In 20 male adults, 40 temporomandibular joints underwent MRI in three conditions of the intercuspal position, 10 and 20 mm opening positions, and the kinetics of the articular disc were examined. External feature of the head of mandible and that of the articular fossa, the articular tubercule and the postglenoid process were outlined in a row of blacks. The articular disc was outlined in a row of dark ashen areas of the anterior band, the intermediate region, and the posterior band. In the intercuspal position, the head of mandible was rarely covered with the articular disc, and being situated postero-inferiorly, at the most rear point of the posterior band of the articular disc. In the 10 mm-opening position, the head of mandible was practically covered with the articular disc. In the 20 mm-opening position, the intermediate region of the articular disc, and the head of mandible were situated in an approximate position. Quantitative movement of the articular disc was slower than that of the head of mandible. Comparison of various points of the articular disc revealed that movements of the anterior and posterior band varied almost proportionally to the opening distance, but with lesser movement of the intermediate region. (author)

  5. Spin-transport-phenomena in metals, semiconductors, and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias Klaus

    2012-07-19

    Assuming that one could deterministically inject, transport, manipulate, store and detect spin information in solid state devices, the well-established concepts of charge-based electronics could be transferred to the spin realm. This thesis explores the injection, transport, manipulation and storage of spin information in metallic conductors, semiconductors, as well as electrical insulators. On the one hand, we explore the spin-dependent properties of semiconducting zinc oxide thin films deposited via laser-molecular beam epitaxy (laser-MBE). After demonstrating that the zinc oxide films fabricated during this thesis have excellent structural, electrical, and optical properties, we investigate the spin-related properties by optical pump/probe, electrical injection/optical detection, and all electrical spin valve-based experiments. The two key results from these experiments are: (i) Long-lived spin states with spin dephasing times of 10 ns at 10 K related to donor bound excitons can be optically addressed. (ii) The spin dephasing times relevant for electrical transport-based experiments are {<=} 2 ns at 10 K and are correlated with structural quality. On the other hand we focus on two topics of current scientific interest: the comparison of the magnetoresistance to the magnetothermopower of conducting ferromagnets, and the investigation of pure spin currents generated in ferromagnetic insulator/normal metal hybrid structures. We investigate the magnetoresistance and magnetothermopower of gallium manganese arsenide and Heusler thin films as a function of external magnetic field orientation. Using a series expansion of the resistivity and Seebeck tensors and the inherent symmetry of the sample's crystal structure, we show that a full quantitative extraction of the transport tensors from such experiments is possible. Regarding the spin currents in ferromagnetic insulator/normal metal hybrid structures we studied the spin mixing conductance in yttrium iron garnet

  6. CT reconstruction technique in lumbar intraneuroforaminal disc herniation

    International Nuclear Information System (INIS)

    Volle, E.; Claussen, C.; Kern, A.; Stoltenburg, G.

    1988-01-01

    The CT appearance of the lumbar neural foramina and contents is described in detail and compared to histopathological specimens. Direct axial scans with secondary sagittal, coronal and paraxial reconstruction series of slices of the neuralforamen were derived from lumbar spine examination of fifty normal adults. These normal parameters were then used to evaluate and subdivide 20 patients with disc herniation involving the neuralforamen. The new paraxial reformation was able to show an intraneuroforaminal disc involvement. CT-reformation technique and operative results in intraneuroforaminal disc herniation correspond in 80%. This improvement in preoperative diagnosis demonstrates to the neurosurgeon the full extent of disc herniation and results in an optimized operative approach. (orig.)

  7. CT reconstruction technique in lumbar intraneuroforaminal disc herniation

    Energy Technology Data Exchange (ETDEWEB)

    Volle, E.; Claussen, C.; Kern, A.; Stoltenburg, G.

    1988-04-01

    The CT appearance of the lumbar neural foramina and contents is described in detail and compared to histopathological specimens. Direct axial scans with secondary sagittal, coronal and paraxial reconstruction series of slices of the neuralforamen were derived from lumbar spine examination of fifty normal adults. These normal parameters were then used to evaluate and subdivide 20 patients with disc herniation involving the neuralforamen. The new paraxial reformation was able to show an intraneuroforaminal disc involvement. CT-reformation technique and operative results in intraneuroforaminal disc herniation correspond in 80%. This improvement in preoperative diagnosis demonstrates to the neurosurgeon the full extent of disc herniation and results in an optimized operative approach.

  8. Cervical disc hernia operations through posterior laminoforaminotomy.

    Science.gov (United States)

    Yolas, Coskun; Ozdemir, Nuriye Guzin; Okay, Hilmi Onder; Kanat, Ayhan; Senol, Mehmet; Atci, Ibrahim Burak; Yilmaz, Hakan; Coban, Mustafa Kemal; Yuksel, Mehmet Onur; Kahraman, Umit

    2016-01-01

    The most common used technique for posterolateral cervical disc herniations is anterior approach. However, posterior cervical laminotoforaminomy can provide excellent results in appropriately selected patients with foraminal stenosis in either soft disc prolapse or cervical spondylosis. The purpose of this study was to present the clinical outcomes following posterior laminoforaminotomy in patients with radiculopathy. We retrospectively evaluated 35 patients diagnosed with posterolateral cervical disc herniation and cervical spondylosis with foraminal stenosis causing radiculopathy operated by the posterior cervical keyhole laminoforaminotomy between the years 2010 and 2015. The file records and the radiographic images of the 35 patients were assessed retrospectively. The mean age was 46.4 years (range: 34-66 years). Of the patients, 19 were males and 16 were females. In all of the patients, the neurologic deficit observed was radiculopathy. The posterolaterally localized disc herniations and the osteophytic structures were on the left side in 18 cases and on the right in 17 cases. In 10 of the patients, the disc level was at C5-6, in 18 at C6-7, in 2 at C3-4, in 2 at C4-5, in 1 at C7-T1, in 1 patient at both C5-6 and C6-7, and in 1 at both C4-5 and C5-6. In 14 of these 35 patients, both osteophytic structures and protruded disc herniation were present. Intervertebral foramen stenosis was present in all of the patients with osteophytes. Postoperatively, in 31 patients the complaints were relieved completely and four patients had complaints of neck pain and paresthesia radiating to the arm (the success of operation was 88.5%). On control examinations, there was no finding of instability or cervical kyphosis. Posterior cervical laminoforaminotomy is an alternative appropriate choice in both cervical soft disc herniations and cervical stenosis.

  9. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  10. Spiral density waves and vertical circulation in protoplanetary discs

    Science.gov (United States)

    Riols, A.; Latter, H.

    2018-06-01

    Spiral density waves dominate several facets of accretion disc dynamics - planet-disc interactions and gravitational instability (GI) most prominently. Though they have been examined thoroughly in two-dimensional simulations, their vertical structures in the non-linear regime are somewhat unexplored. This neglect is unwarranted given that any strong vertical motions associated with these waves could profoundly impact dust dynamics, dust sedimentation, planet formation, and the emissivity of the disc surface. In this paper, we combine linear calculations and shearing box simulations in order to investigate the vertical structure of spiral waves for various polytropic stratifications and wave amplitudes. For sub-adiabatic profiles, we find that spiral waves develop a pair of counter-rotating poloidal rolls. Particularly strong in the non-linear regime, these vortical structures issue from the baroclinicity supported by the background vertical entropy gradient. They are also intimately connected to the disc's g modes which appear to interact non-linearly with the density waves. Furthermore, we demonstrate that the poloidal rolls are ubiquitous in gravitoturbulence, emerging in the vicinity of GI spiral wakes, and potentially transporting grains off the disc mid-plane. Other than hindering sedimentation and planet formation, this phenomena may bear on observations of the disc's scattered infrared luminosity. The vortical features could also impact on the turbulent dynamo operating in young protoplanetary discs subject to GI, or possibly even galactic discs.

  11. Collimation of particle beams from thick accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [N. Copernicus Astronomical Center, Warszawa (Poland); Wilson, D B [Cambridge Univ. (UK). Inst. of Astronomy

    1981-11-01

    The acceleration and collimation of particle beams in the funnel of thick accretion discs is studied in the approximation that the flow is optically thin. Such flows can be collimated to within approximately 0.1 radians by sufficiently thick discs. The flow cannot convert more than a small fraction of the disc's (super-Eddington) luminosity into the energy flow of a narrow beam without being optically thick.

  12. Metallicity gradient of the thick disc progenitor at high redshift

    Science.gov (United States)

    Kawata, Daisuke; Allende Prieto, Carlos; Brook, Chris B.; Casagrande, Luca; Ciucă, Ioana; Gibson, Brad K.; Grand, Robert J. J.; Hayden, Michael R.; Hunt, Jason A. S.

    2018-01-01

    We have developed a novel Markov Chain Monte Carlo chemical 'painting' technique to explore possible radial and vertical metallicity gradients for the thick disc progenitor. In our analysis, we match an N-body simulation to the data from the Apache Point Observatory Galactic Evolution Experiment survey. We assume that the thick disc has a constant scaleheight and has completed its formation at an early epoch, after which time radial mixing of its stars has taken place. Under these assumptions, we find that the initial radial metallicity gradient of the thick disc progenitor should not be negative, but either flat or even positive, to explain the current negative vertical metallicity gradient of the thick disc. Our study suggests that the thick disc was built-up in an inside-out and upside-down fashion, and older, smaller and thicker populations are more metal poor. In this case, star-forming discs at different epochs of the thick disc formation are allowed to have different radial metallicity gradients, including a negative one, which helps to explain a variety of slopes observed in high-redshift disc galaxies. This scenario helps to explain the positive slope of the metallicity-rotation velocity relation observed for the Galactic thick disc. On the other hand, radial mixing flattens the slope of an existing gradient.

  13. Upper thoracic-spine disc degeneration in patients with cervical pain.

    Science.gov (United States)

    Arana, Estanislao; Martí-Bonmatí, Luis; Mollá, Enrique; Costa, Salvador

    2004-01-01

    To study the relationship of upper thoracic spine degenerative disc contour changes on MR imaging in patients with neck pain. The relation between upper thoracic and cervical spine degenerative disc disease is not well established. One hundred and fifty-six patients referred with cervical pain were studied. There were 73 women and 77 men with a mean age of 48.6 +/- 14.6 years (range, 19 to 83 years). All MR studies were performed with a large 23-cm FOV covering at least from the body of T4 to the clivus. Discs were coded as normal, protrusion/bulge or extrusion. Degenerative thoracic disc contour changes were observed in 13.4% of patients with cervical pain. T2-3 was the most commonly affected level of the upper thoracic spine, with 15 bulge/protrusions and one extrusion. Upper degenerative thoracic disc contour changes presented in older patients than the cervical levels (Student-Newman-Keuls test, P < 0.001). Degenerative disc contour changes at the C7-T1, T1-2, T2-3 and T3-4 levels were significantly correlated ( P = 0.001), but unrelated to any other disc disease, patient's gender or age. Degenerative cervical disc disease was closely related together ( P < 0.001), but not with any thoracic disc. A statistically significant relation was found within the upper thoracic discs, reflecting common pathoanatomical changes. The absence of relation to cervical segments is probably due to differences in their pathomechanisms.

  14. Upper thoracic-spine disc degeneration in patients with cervical pain

    Energy Technology Data Exchange (ETDEWEB)

    Arana, Estanislao; Marti-Bonmati, Luis; Costa, Salvador [Department of Radiology, Clinica Quiron, Avda Blasco Ibanez 14, 46010, Valencia (Spain); Molla, Enrique [Department of Radiology, Clinica Quiron, Avda Blasco Ibanez 14, 46010, Valencia (Spain); Department of Morphological Sciences, University of Valencia, Valencia (Spain)

    2004-01-01

    To study the relationship of upper thoracic spine degenerative disc contour changes on MR imaging in patients with neck pain. The relation between upper thoracic and cervical spine degenerative disc disease is not well established. One hundred and fifty-six patients referred with cervical pain were studied. There were 73 women and 77 men with a mean age of 48.6{+-}14.6 years (range, 19 to 83 years). All MR studies were performed with a large 23-cm FOV covering at least from the body of T4 to the clivus. Discs were coded as normal, protrusion/bulge or extrusion. Degenerative thoracic disc contour changes were observed in 13.4% of patients with cervical pain. T2-3 was the most commonly affected level of the upper thoracic spine, with 15 bulge/protrusions and one extrusion. Upper degenerative thoracic disc contour changes presented in older patients than the cervical levels (Student-Newman-Keuls test, P<0.001). Degenerative disc contour changes at the C7-T1, T1-2, T2-3 and T3-4 levels were significantly correlated (P=0.001), but unrelated to any other disc disease, patient's gender or age. Degenerative cervical disc disease was closely related together (P<0.001), but not with any thoracic disc. A statistically significant relation was found within the upper thoracic discs, reflecting common pathoanatomical changes. The absence of relation to cervical segments is probably due to differences in their pathomechanisms. (orig.)

  15. Human disc degeneration is associated with increased MMP 7 expression.

    Science.gov (United States)

    Le Maitre, C L; Freemont, A J; Hoyland, J A

    2006-01-01

    During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.

  16. Upper thoracic-spine disc degeneration in patients with cervical pain

    International Nuclear Information System (INIS)

    Arana, Estanislao; Marti-Bonmati, Luis; Costa, Salvador; Molla, Enrique

    2004-01-01

    To study the relationship of upper thoracic spine degenerative disc contour changes on MR imaging in patients with neck pain. The relation between upper thoracic and cervical spine degenerative disc disease is not well established. One hundred and fifty-six patients referred with cervical pain were studied. There were 73 women and 77 men with a mean age of 48.6±14.6 years (range, 19 to 83 years). All MR studies were performed with a large 23-cm FOV covering at least from the body of T4 to the clivus. Discs were coded as normal, protrusion/bulge or extrusion. Degenerative thoracic disc contour changes were observed in 13.4% of patients with cervical pain. T2-3 was the most commonly affected level of the upper thoracic spine, with 15 bulge/protrusions and one extrusion. Upper degenerative thoracic disc contour changes presented in older patients than the cervical levels (Student-Newman-Keuls test, P<0.001). Degenerative disc contour changes at the C7-T1, T1-2, T2-3 and T3-4 levels were significantly correlated (P=0.001), but unrelated to any other disc disease, patient's gender or age. Degenerative cervical disc disease was closely related together (P<0.001), but not with any thoracic disc. A statistically significant relation was found within the upper thoracic discs, reflecting common pathoanatomical changes. The absence of relation to cervical segments is probably due to differences in their pathomechanisms. (orig.)

  17. PROTO-II: a short pulse water insulated accelerator

    International Nuclear Information System (INIS)

    Martin, T.H.; VanDevender, J.P.; Johnson, D.L.; McDaniel, D.H.; Aker, M.

    1975-01-01

    A new accelerator, designated Proto-II, is presently under construction at Sandia Laboratories. Proto-II will have a nominal output of 100 kJ into a two-sided diode at a voltage of 1.5 MV and a total current of over 6 MA for 24 ns. This accelerator will be utilized for electron beam fusion experiments and for pulsed power and developmental studies leading to a proposed further factor of five scale-up in power. The design of Proto-II is based upon recent water switching developments and represents a 10-fold extrapolation of those results. Initial testing of Proto-II is scheduled to begin in 1976. Proto-II power flow starts with eight Marx generators which charge 16 water-insulated storage capacitors. Eight triggered, 3 MV, SF 6 gas-insulated switches next transfer the energy through oil-water interfaces into the first stage of 16 parallel lines. Next, the 16 first stages transfer their energy into the pulse forming lines and fast switching sections.The energy is then delivered to two converging, back-to-back, disk-shaped transmission line. Two back-to-back diodes then form the electron beams which are focused onto a common anode

  18. The inaccuracy of heat transfer characteristics for non-insulated and insulated spherical containers neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, King-Leung; Salazar, Jose Luis Leon; Prasad, Leo; Chen, Wen-Lih

    2011-01-01

    In this investigation, the differences of heat transfer characteristics for insulated and non-insulated spherical containers between considering and neglecting the influence of heat radiation are studied by the simulations in some practical situations. It is found that the heat radiation effect cannot be ignored in conditions of low ambient convection heat coefficients (such ambient air) and high surface emissivities, especially for the non-insulated and thin insulated cases. In most practical situations when ambient temperature is different from surroundings temperature and the emissivity of insulation surface is different from that of metal wall surface, neglecting heat radiation will result in inaccurate insulation effect and heat transfer errors even with very thick insulation. However, the insulation effect considering heat radiation will only increase a very small amount after some dimensionless insulated thickness (such insulation thickness/radius ≥0.2 in this study), thus such dimensionless insulated thickness can be used as the optimum thickness in practical applications. Meanwhile, wrapping a material with low surface emissivity (such as aluminum foil) around the oxidized metal wall or insulation layer (always with high surface emissivity) can achieve very good insulated effect for the non-insulated or thin insulated containers.

  19. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  20. Generation of high brightness ion beam from insulated anode PED

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu

    1988-01-01

    Generation and focusing of a high density ion beam with high brightness from a organic center part of anode of a PED was reported previously. Mass, charge and energy distribution of this beam were analyzed. Three kind of anode were tried. Many highly ionized medium mass ions (up to C 4+ , O 6+ ) accelarated to several times of voltage difference between anode and cathode were observed. In the case of all insulator anode the current carried by the medium mass ions is about half of that carried by protons. (author)

  1. Retinal Nerve Fiber Layer Protrusion Associated with Tilted Optic Discs.

    Science.gov (United States)

    Chiang, Jaclyn; Yapp, Michael; Ly, Angelica; Hennessy, Michael P; Kalloniatis, Michael; Zangerl, Barbara

    2018-03-01

    This study resulted in the identification of an optic nerve head (ONH) feature associated with tilted optic discs, which might potentially contribute to ONH pathologies. Knowledge of such findings will enhance clinical insights and drive future opportunities to understand disease processes related to tilted optic discs. The aim of this study was to identify novel retinal nerve fiber layer (RNFL) anomalies by evaluating tilted optic discs using optical coherence tomography. An observed retinal nerve fiber protrusion was further investigated for association with other morphological or functional parameters. A retrospective review of 400 randomly selected adult patients with ONH examinations was conducted in a referral-only, diagnostic imaging center. After excluding other ONH pathologies, 215 patients were enrolled and evaluated for optic disc tilt and/or torsion. Gross anatomical ONH features, including size and rim or parapapillary region elevation, were assessed with stereoscopic fundus photography. Optical coherence tomography provided detailed morphological information of individual retinal layers. Statistical analysis was applied to identify significant changes between individual patient cohorts. A dome-shaped hyperreflective RNFL bulge, protruding into the neurosensory retina at the optic disc margins, was identified in 17 eyes with tilted optic discs. Available follow-up data were inconclusive regarding natural changes with this ONH feature. This RNFL herniation was significantly correlated with smaller than average optic disc size (P = .005), congenital disc tilt (P optic discs, which has not previously been assessed as an independent ONH structure. The feature is predominantly related to congenital crowded, small optic discs and variable between patients. This study is an important first step to elucidate diagnostic capabilities of tilted disc morphological changes and understanding associated functional deficits.

  2. PATHOGENESIS OF OPTIC DISC EDEMA IN RAISED INTRACRANIAL PRESSURE

    Science.gov (United States)

    Hayreh, Sohan Singh

    2015-01-01

    Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with

  3. Improved DC Gun and Insulator Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Michael [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-01-11

    Many user facilities such as synchrotron radiation light sources and free electron lasers rely on DC high voltage photoguns with internal field gradients as high as 10 to 15 MV/m. These high gradients often lead to field emission which poses serious problems for the photocathode used to generate the electron beam and the ceramic insulators used to bias the photocathode at high voltage. Ceramic insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic causing a buildup of charge and eventual puncture, and also because large diameter ceramics are difficult to braze reliably. The lifetimes of photo cathodes inside high current DC guns exhibiting field emission are limited to less than a hundred hours. Reducing the surface gradients on the metals reduces the field emission, which serves to maintain the required ultrahigh vacuum condition. A novel gun design with gradients around 5 MV/m and operating at 350 kV, a major improvement over existing designs, was proposed that allows for the in-situ replacement of photo cathodes in axially symmetric designs using inverted ceramics. In this project, the existing JLAB CEBAF asymmetric gun design with an inverted ceramic support was modeled and the beam dynamics characterized. An improved structure was designed that reduces the surface gradients and improves the beam optics. To minimize the surface gradients, a number of electrostatic gun designs were studied to determine the optimum configuration of the critical electrodes within the gun structure. Coating experiments were carried out to create a charge dissipative coating for cylindrical ceramics. The phase II proposal, which was not granted, included the design and fabrication of an axially symmetric DC Gun with an inverted ceramic that would operate with less than 5 MV/m at 350 kV and would be designed with an in-situ replaceable photo-cathode.

  4. Biodegradation performance of environmentally-friendly insulating oil

    Science.gov (United States)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  5. A Monte Carlo modeling on charging effect for structures with arbitrary geometries

    Science.gov (United States)

    Li, C.; Mao, S. F.; Zou, Y. B.; Li, Yong Gang; Zhang, P.; Li, H. M.; Ding, Z. J.

    2018-04-01

    Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron–long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron–hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method—which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO2 for a semi-infinite solid, the charging for a heterostructure of SiO2 film grown on an Au substrate, and SEM imaging of a SiO2 line structure with rough surfaces and SiO2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution

  6. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  7. Herniated Cervical Disc

    Science.gov (United States)

    ... are sometimes prescribed for more severe arm and neck pain because of their very powerful anti-inflammatory effect. ... caused by a herniated cervical disc. However, some neck pain may persist. Most patients respond well to discectomy; ...

  8. Hybrid testing of lumbar CHARITE discs versus fusions.

    Science.gov (United States)

    Panjabi, Manohar; Malcolmson, George; Teng, Edward; Tominaga, Yasuhiro; Henderson, Gweneth; Serhan, Hassan

    2007-04-20

    An in vitro human cadaveric biomechanical study. To quantify effects on operated and other levels, including adjacent levels, due to CHARITE disc implantations versus simulated fusions, using follower load and the new hybrid test method in flexion-extension and bilateral torsion. Spinal fusion has been associated with long-term accelerated degeneration at adjacent levels. As opposed to the fusion, artificial discs are designed to preserve motion and diminish the adjacent-level effects. Five fresh human cadaveric lumbar specimens (T12-S1) underwent multidirectional testing in flexion-extension and bilateral torsion with 400 N follower load. Intact specimen total ranges of motion were determined with +/-10 Nm unconstrained pure moments. The intact range of motion was used as input for the hybrid tests of 5 constructs: 1) CHARITE disc at L5-S1; 2) fusion at L5-S1; 3) CHARITE discs at L4-L5 and L5-S1; 4) CHARITE disc at L4-L5 and fusion at L5-S1; and 5) 2-level fusion at L4-L5-S1. Using repeated-measures single factor analysis of variance and Bonferroni statistical tests (P < 0.05), intervertebral motion redistribution of each construct was compared with the intact. In flexion-extension, 1-level CHARITE disc preserved motion at the operated and other levels, while 2-level CHARITE showed some amount of other-level effects. In contrast, 1- and 2-level fusions increased other-level motions (average, 21.0% and 61.9%, respectively). In torsion, both 1- and 2-level discs preserved motions at all levels. The 2-level simulated fusion increased motions at proximal levels (22.9%), while the 1-level fusion produced no significant changes. In general, CHARITE discs preserved operated- and other-level motions. Fusion simulations affected motion redistribution at other levels, including adjacent levels.

  9. Magnetic fields in giant planet formation and protoplanetary discs

    Science.gov (United States)

    Keith, Sarah Louise

    2015-12-01

    Protoplanetary discs channel accretion onto their host star. How this is achieved is critical to the growth of giant planets which capture their massive gaseous atmosphere from the surrounding flow. Theoretical studies find that an embedded magnetic field could power accretion by hydromagnetic turbulence or torques from a large-scale field. This thesis presents a study of the inuence of magnetic fields in three key aspects of this process: circumplanetary disc accretion, gas flow across gaps in protoplanetary discs, and magnetic-braking in accretion discs. The first study examines the conditions needed for self-consistent accretion driven by magnetic fields or gravitational instability. Models of these discs typically rely on hydromagnetic turbulence as the source of effective viscosity. However, magnetically coupled,accreting regions may be so limited that the disc may not support sufficient inflow. An improved Shakura-Sunyaev ? disc is used to calculate the ionisation fraction and strength of non-ideal effects. Steady magnetically-driven accretion is limited to the thermally ionised, inner disc so that accretion in the remainder of the disc is time-dependent. The second study addresses magnetic flux transport in an accretion gap evacuated by a giant planet. Assuming the field is passively drawn along with the gas, the hydrodynamical simulation of Tanigawa, Ohtsuki & Machida (2012) is used for an a posteriori analysis of the gap field structure. This is used to post-calculate magnetohydrodynamical quantities. This assumption is self-consistent as magnetic forces are found to be weak, and good magnetic coupling ensures the field is frozen into the gas. Hall drift dominates across much of the gap, with the potential to facilitate turbulence and modify the toroidal field according to the global field orientation. The third study considers the structure and stability of magnetically-braked accretion discs. Strong evidence for MRI dead-zones has renewed interest in

  10. Insulation structure of thermonuclear device

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Usami, Saburo; Tsukamoto, Hideo; Kikuchi, Mitsuru

    1998-01-01

    The present invention provides an insulating structure of a thermonuclear device, in which insulation materials between toroidal coils are not broken even if superconductive toroidal coils are used. Namely, a tokamak type thermonuclear device of an insulating structure type comprises superconductive toroidal coils for confining plasmas arranged in a circular shape directing the center each at a predetermined angle, and the toroidal coils are insulated from each other. The insulation materials are formed by using a biaxially oriented fiber reinforced plastics. The contact surface of the toroidal coils and the insulating materials are arranged so that they are contact at a woven surface of the fiber reinforced plastics. Either or both of the contact surfaces of the fiber reinforced plastics and the toroidal coils are coated with a high molecular compound having a low friction coefficient. With such a constitution, since the interlayer shearing strength of the biaxially oriented fiber reinforced plastics is about 1/10 of the compression strength, the shearing stress exerted on the insulation material is reduced. Since a static friction coefficient on the contact surface is reduced to provide a structure causing slipping, shearing stress does not exceeds a predetermined limit. As a result, breakage of the insulation materials between the toroidal coils can be prevented. (I.S.)

  11. Analysis of an Assemblage of Discs Employing Interactive Graphics.

    Science.gov (United States)

    1980-12-01

    facilitate the program’s efficiency. Indeed, the ulsabilitv of tie distinct element method is pred icated on ef f ic ielt Irogramming techniques...paragraphs. Any subsequent user of DISC should not necessarily feel bound to this scheme. 33. At the outset of writing DISC, it was decided that a disc

  12. Utility of Digital Stereo Images for Optic Disc Evaluation

    Science.gov (United States)

    Ying, Gui-shuang; Pearson, Denise J.; Bansal, Mayank; Puri, Manika; Miller, Eydie; Alexander, Judith; Piltz-Seymour, Jody; Nyberg, William; Maguire, Maureen G.; Eledath, Jayan; Sawhney, Harpreet

    2010-01-01

    Purpose. To assess the suitability of digital stereo images for optic disc evaluations in glaucoma. Methods. Stereo color optic disc images in both digital and 35-mm slide film formats were acquired contemporaneously from 29 subjects with various cup-to-disc ratios (range, 0.26–0.76; median, 0.475). Using a grading scale designed to assess image quality, the ease of visualizing optic disc features important for glaucoma diagnosis, and the comparative diameters of the optic disc cup, experienced observers separately compared the primary digital stereo images to each subject's 35-mm slides, to scanned images of the same 35-mm slides, and to grayscale conversions of the digital images. Statistical analysis accounted for multiple gradings and comparisons and also assessed image formats under monoscopic viewing. Results. Overall, the quality of primary digital color images was judged superior to that of 35-mm slides (P digital color images were mostly equivalent to the scanned digitized images of the same slides. Color seemingly added little to grayscale optic disc images, except that peripapillary atrophy was best seen in color (P digital over film images was maintained under monoscopic viewing conditions. Conclusions. Digital stereo optic disc images are useful for evaluating the optic disc in glaucoma and allow the application of advanced image processing applications. Grayscale images, by providing luminance distinct from color, may be informative for assessing certain features. PMID:20505199

  13. On the formation of exponential discs

    International Nuclear Information System (INIS)

    Yoshii, Yuzuru; Sommer-Larsen, Jesper

    1989-01-01

    Spiral galaxy discs are characterized by approximately exponential surface luminosity profiles. In this paper the evolutionary equations for a star-forming, viscous disc are solved analytically or semi-analytically. It is shown that approximately exponential stellar surface density profiles result if the viscous time-scale t ν is comparable to the star-formation time scale t * everywhere in the disc. The analytical solutions are used to illuminate further on the issue of why the above mechanism leads to resulting exponential stellar profiles under certain conditions. The sensitivity of the solution to variations of various parameters are investigated and show that the initial gas surface density distribution has to be fairly regular in order that final exponential stellar surface density profiles result. (author)

  14. M6-C artificial disc placement.

    Science.gov (United States)

    Coric, Domagoj; Parish, John; Boltes, Margaret O

    2017-01-01

    There has been a steady evolution of cervical total disc replacement (TDR) devices over the last decade resulting in surgical technique that closely mimics anterior cervical discectomy and fusion as well as disc design that emphasizes quality of motion. The M6-C TDR device is a modern-generation artificial disc composed of titanium endplates with tri-keel fixation as well as a polyethylene weave with a polyurethane core. Although not yet approved by the FDA, M6-C has finished a pilot and pivotal US Investigational Device Exemption (IDE) study. The authors present the surgical technique for implantation of a 2-level M6-C cervical TDR device. The video can be found here: https://youtu.be/rFEAqINLRCo .

  15. Effect of five-membered ring and heteroatom substitution on charge transport properties of perylene discotic derivatives: A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Amparo, E-mail: anavarro@ujaen.es; Fernández-Liencres, M. Paz; Peña-Ruiz, Tomás; Granadino-Roldán, José M.; Fernández-Gómez, Manuel [Departamento de Química Física y Analítica, Universidad de Jaén, Campus Las Lagunillas, E23071 Jaén (Spain); García, Gregorio [Instituto de Energía Solar and Departamento TFB, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid 28040 (Spain)

    2016-08-07

    Density functional theory calculations were carried out to investigate the evolvement of charge transport properties of a set of new discotic systems as a function of ring and heteroatom (B, Si, S, and Se) substitution on the basic structure of perylene. The replacement of six-membered rings by five-membered rings in the reference compound has shown a prominent effect on the electron reorganization energy that decreases ∼0.2 eV from perylene to the new carbon five-membered ring derivative. Heteroatom substitution with boron also revealed to lower the LUMO energy level and increase the electron affinity, therefore lowering the electron injection barrier compared to perylene. Since the rate of the charge transfer between two molecules in columnar discotic systems is strongly dependent on the orientation of the stacked cores, the total energy and transfer integral of a dimer as a disc is rotated with respect to the other along the stacking axis have been predicted. Aimed at obtaining a more realistic approach to the bulk structure, the molecular geometry of clusters made up of five discs was fully optimized, and charge transfer rate and mobilities were estimated for charge transport along a one dimensional pathway. Heteroatom substitution with selenium yields electron transfer integral values ∼0.3 eV with a relative disc orientation of 25°, which is the preferred angle according to the dimer energy profile. All the results indicate that the tetraselenium-substituted derivative, not synthetized so far, could be a promising candidate among those studied in this work for the fabrication of n-type semiconductors based on columnar discotic liquid crystals materials.

  16. Developments in intervertebral disc disease research: pathophysiology, mechanobiology, and therapeutics.

    Science.gov (United States)

    Weber, Kathryn T; Jacobsen, Timothy D; Maidhof, Robert; Virojanapa, Justin; Overby, Chris; Bloom, Ona; Quraishi, Shaheda; Levine, Mitchell; Chahine, Nadeen O

    2015-03-01

    Low back pain is a leading cause of disability worldwide and the second most common cause of physician visits. There are many causes of back pain, and among them, disc herniation and intervertebral disc degeneration are the most common diagnoses and targets for intervention. Currently, clinical treatment outcomes are not strongly correlated with diagnoses, emphasizing the importance for characterizing more completely the mechanisms of degeneration and their relationships with symptoms. This review covers recent studies elucidating cellular and molecular changes associated with disc mechanobiology, as it relates to degeneration and regeneration. Specifically, we review findings on the biochemical changes in disc diseases, including cytokines, chemokines, and proteases; advancements in disc disease diagnostics using imaging modalities; updates on studies examining the response of the intervertebral disc to injury; and recent developments in repair strategies, including cell-based repair, biomaterials, and tissue engineering. Findings on the effects of the omega-6 fatty acid, linoleic acid, on nucleus pulposus tissue engineering are presented. Studies described in this review provide greater insights into the pathogenesis of disc degeneration and may define new paradigms for early or differential diagnostics of degeneration using new techniques such as systemic biomarkers. In addition, research on the mechanobiology of disease enriches the development of therapeutics for disc repair, with potential to diminish pain and disability associated with disc degeneration.

  17. Appearance of Keplerian discs orbiting Kerr superspinars

    Energy Technology Data Exchange (ETDEWEB)

    Stuchlik, Zdenek; Schee, Jan, E-mail: zdenek.stuchlik@fpf.slu.c, E-mail: jan.schee@fpf.slu.c [Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezrucovo nam. 13, Opava (Czech Republic)

    2010-11-07

    We study optical phenomena related to the appearance of Keplerian accretion discs orbiting Kerr superspinars predicted by string theory. The superspinar exterior is described by standard Kerr naked singularity geometry breaking the black hole limit on the internal angular momentum (spin). We construct local photon escape cones for a variety of orbiting sources that enable us to determine the superspinars silhouette in the case of distant observers. We show that the superspinar silhouette depends strongly on the assumed edge where the external Kerr spacetime is joined to the internal spacetime governed by string theory and significantly differs from the black hole silhouette. The appearance of the accretion disc is strongly dependent on the value of the superspinar spin in both their shape and frequency shift profile. Apparent extension of the disc grows significantly with the growing spin, while the frequency shift grows with the descending spin. This behaviour differs substantially from the appearance of discs orbiting black holes enabling thus, at least in principle, to distinguish clearly the Kerr superspinars and black holes. In vicinity of a Kerr superspinar the non-escaped photons have to be separated to those captured by the superspinar and those being trapped in its strong gravitational field leading to self-illumination of the disc that could even influence its structure and cause self-reflection effect of radiation of the disc. The amount of trapped photons grows with descending superspinar spin. We thus can expect significant self-illumination effects in the field of Kerr superspinars with near-extreme spin a {approx} 1.

  18. Normal modes of Bardeen discs

    International Nuclear Information System (INIS)

    Verdaguer, E.

    1983-01-01

    The short wavelength normal modes of self-gravitating rotating polytropic discs in the Bardeen approximation are studied. The discs' oscillations can be seen in terms of two types of modes: the p-modes whose driving forces are pressure forces and the r-modes driven by Coriolis forces. As a consequence of differential rotation coupling between the two takes place and some mixed modes appear, their properties can be studied under the assumption of weak coupling and it is seen that they avoid the crossing of the p- and r-modes. The short wavelength analysis provides a basis for the classification of the modes, which can be made by using the properties of their phase diagrams. The classification is applied to the large wavelength modes of differentially rotating discs with strong coupling and to a uniformly rotating sequence with no coupling, which have been calculated in previous papers. Many of the physical properties and qualitative features of these modes are revealed by the analysis. (author)

  19. Power diagrams and interaction processes for unions of discs

    DEFF Research Database (Denmark)

    Møller, Jesper; Helisova, Katarina

    We study a flexible class of finite disc process models with interaction between the discs. We let U denote the random set given by the union of discs, and use for the disc process an exponential family density with the canonical sufficient statistic only depending on geometric properties of U......, becomes useful for handling the problem of edge effects when only U is observed within a bounded observation window. The power tessellation and its dual graph become major tools when establishing inclusion-exclusion formulae, formulae for computing geometric characteristics of U, and stability properties...

  20. Power diagrams and interaction processes for unions of discs

    DEFF Research Database (Denmark)

    Møller, Jesper; Helisova, Katerina

    2008-01-01

     We study a flexible class of finite-disc process models with interaction between the discs. We let U denote the random set given by the union of discs, and use for the disc process an exponential family density with the canonical sufficient statistic depending only on geometric properties of U......, becomes useful for handling the problem of edge effects when only U is observed within a bounded observation window. The power tessellation and its dual graph become major tools when establishing inclusion-exclusion formulae, formulae for computing geometric characteristics of U, and stability properties...

  1. Printing Semiconductor-Insulator Polymer Bilayers for High-Performance Coplanar Field-Effect Transistors.

    Science.gov (United States)

    Bu, Laju; Hu, Mengxing; Lu, Wanlong; Wang, Ziyu; Lu, Guanghao

    2018-01-01

    Source-semiconductor-drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next-generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross-talk among different devices, and simplify the fabrication process of circuits. Here, a one-step, drop-casting-like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3-hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO 2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor-insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor-insulator bilayer structure is an ideal system for injecting charges into the insulator via gate-stress, and the thus-formed PS electret layer acts as a "nonuniform floating gate" to tune the threshold voltage and effective mobility of the transistors. Effective field-effect mobility higher than 1 cm 2 V -1 s -1 with an on/off ratio > 10 7 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. [Surgical treatment of thoracic disc herniation].

    Science.gov (United States)

    Hrabálek, L; Kalita, O; Langová, K

    2010-08-01

    The aim of this study was to compare the efficiency of different surgical approaches to thoracic disc herniation, and to show the role of segmental fusion and selection of an appropriate microsurgical decompression technique for the successful outcome of surgery. A group of 27 patients, 10 men and 17 women, between 31 and 70 years (average age, 49.33 years) were included in this prospective study. They underwent surgery for thoracic degeneration disc disease in the period from June 1994 to August 2008. In all patients, the severity of myelopathy was assessed using the grading Frankel system and JOA score, axial and radicular pain intensity was evaluated with VAS and ODI rating systems. The diagnosis was established on the basis of thoracic spine radiography, thoracic spine MRI and a CT scan of the segment. A total of 30 thoracic segments, in the range of Th4/Th5 to Th12/L1, were indicated for surgery. Localisation of the hernia was medial at 19 segments, mediolateral at three and lateral at eight segments. Soft disc herniation was found in 17 cases and hard disc protrusion at the remaining 13 segments. Surgery for significant myelopathy was carried out in 23 patients and for pain in four patients. According to the surgical procedure used, the patients were allocated to two groups: group A comprised 10 patients treated without disc replacement through a laminectomy or a costotransversectomy exposure, and group B consisted of 17 patients undergo- ing intersomatic fusion via a thoracotomy. Clinical and radiographic examinations were made at regular intervals for at least 1 year of follow-up. The results of clinical assessment, including JOA scores, JOA Recovery Rate, VAS scores at rest and after exercise and ODI, were statistically analysed for each group and compared. There was a statistically significant difference in JOA evaluation of myelopathy between the groups in group A, the mean JOA score declined from 7.9 to 7.0, i.e., -0.9 point, while in group B it

  3. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  4. Clinical evaluation of disc battery ingestion in children.

    Science.gov (United States)

    Mirshemirani, AliReza; Khaleghnejad-Tabari, Ahmad; Kouranloo, Jaefar; Sadeghian, Naser; Rouzrokh, Mohsen; Roshanzamir, Fatolah; Razavi, Sajad; Sayary, Ali Akbar; Imanzadeh, Farid

    2012-04-01

    BACKGROUND The purpose of this study was to evaluate the characteristics, management, and outcomes of disc battery ingestion in children. METHODS We reviewed the medical records of children admitted to Mofid Children's Hospital due to disc battery ingestion from January 2006 to January 2010. Clear history, clinical symptoms and results of imaging studies revealed diagnosis of disc battery ingestion in suspected patients. The clinical data reviewed included age, gender, clinical manifestation, radiologic findings, location of disc battery, duration of ingestion, endoscopic results and surgical treatment. RESULTS We found 22 cases (11 males and 11 females) of disc battery ingestion with a mean age of 4.3 years (range: 9 months to 12 years). Common symptoms were vomiting, cough, dysphagia, and dyspnea. The mean duration of ingestion was 2.7 days (4 hours to 1.5 months). A total of 19 patients had histories of disc battery ingestion, but three cases referred with the above symptoms, and the batteries were accidentally found by x-ray. Only three cases had batteries impacted in the esophagus. Twelve batteries were removed endoscopically, 6 batteries spontaneously passed through the gastrointestinal (GI) tract within 5 to 7 days, and 4 patients underwent surgery due to complications: 3 due to tracheo-esophageal fistula (TEF) and 1 due to intestinal perforation. There was no mortality in our study. CONCLUSION Most cases of disc battery ingestion run uneventful courses, but some may be complicated. If the battery lodges in the esophagus, emergency endoscopic management is necessary. However, once in the stomach, it will usually pass through the GI tract.

  5. Indigenous development of rupture discs for FBTR (Paper No. 028)

    International Nuclear Information System (INIS)

    Chetal, S.C.; Raju, Chander; Anandkumar, V.; Seetharaman, V.

    1987-02-01

    Rupture discs are required as a safety device for protecting the secondary sodium circuit and its components against high pressure surges due to accidental water-steam leaks in sodium heated steam generator and the consequent sodium water reaction. For identical reasons, rupture discs are also required on the vessels used for decontamination of sodium components. As an import substitution of the costly items for the FBTR Project, development of the rupture disc assemblies has been in progress at Indira Gandhi Centre for Atomic Research, Kalpakkam. Reverse buckling knife blade concept with stainless steel disc has been taken up for development. Hydroforming process without any die has been selected for disc fabrication. One rupture disc assembly required for steam generator has been tested in sodium satisfactorily. (author). 4 tables, 5 figs

  6. Insulation Reformulation Development

    Science.gov (United States)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  7. CFD Numerical Simulation of Biodiesel Synthesis in a Spinning Disc Reactor

    Directory of Open Access Journals (Sweden)

    Wen Zhuqing

    2015-03-01

    Full Text Available In this paper a two-disc spinning disc reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat discs, located coaxially and parallel to each other with a gap of 0.2 mm between the discs. The upper disc is located on a rotating shaft while the lower disc is stationary. The feed liquids, triglycerides (TG and methanol are introduced coaxially along the centre line of rotating disc and stationary disc. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction species transport model by the CFD software ANSYS©Fluent v. 13.0. The effect of the upper disc’s spinning speed is evaluated. The results show that the rotational speed increase causes an increase of TG conversion despite the fact that the residence time decreases. Compared to data obtained from adequate experiments, the model shows a satisfactory agreement.

  8. Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface

    Science.gov (United States)

    Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.

    2018-01-01

    The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.

  9. Computing Decoupled Residuals for Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    a pair of residuals generated by Compact Disc Player. However, these residuals depend on the performance of position servos in the Compact Disc Player. In other publications of the same authors a pair of decoupled residuals is derived. However, the computation of these alternative residuals has been...

  10. A comparison of cup-to-disc ratio estimates by fundus biomicroscopy and stereoscopic optic disc photography in the Tema Eye Survey.

    Science.gov (United States)

    Mwanza, J C; Grover, D S; Budenz, D L; Herndon, L W; Nolan, W; Whiteside-de Vos, J; Hay-Smith, G; Bandi, J R; Bhansali, K A; Forbes, L A; Feuer, W J; Barton, K

    2017-08-01

    PurposeTo determine if there are systematic differences in cup-to-disc ratio (CDR) grading using fundus biomicroscopy compared to stereoscopic disc photograph reading.MethodsThe vertical cup-to-disc ratio (VCDR) and horizontal cup-to-disc ratio (HCDR) of 2200 eyes (testing set) were graded by glaucoma subspecialists through fundus biomicroscopy and by a reading center using stereoscopic disc photos. For validation, the glaucoma experts also estimated VCDR and HCDR using stereoscopic disc photos in a subset of 505 eyes that they had assessed biomicroscopically. Agreement between grading methods was assessed with Bland-Altman plots.ResultsIn both sets, photo reading tended to yield small CDRs marginally larger, but read large CDRs marginally smaller than fundus biomicroscopy. The mean differences in VCDR and HCDR were 0.006±0.18 and 0.05±0.18 (testing set), and -0.053±0.23 and -0.028±0.21 (validation set), respectively. The limits of agreement were ~0.4, which is twice as large as the cutoff of clinically significant CDR difference between methods. CDR estimates differed by 0.2 or more in 33.8-48.7% between methods.ConclusionsThe differences in CDR estimates between fundus biomicroscopy and stereoscopic optic disc photo reading showed a wide variation, and reached clinically significance threshold in a large proportion of patients, suggesting a poor agreement. Thus, glaucoma should be monitored by comparing baseline and subsequent CDR estimates using the same method rather than comparing photographs to fundus biomicroscopy.

  11. Aspects of space charge theory applied to dielectric under electron beam irradiation

    International Nuclear Information System (INIS)

    Oliveira, L.N. de.

    1975-01-01

    Irradiation of solid dielectric with electron beams has been used as a power full tool in investigations of charge storage and transport in such materials. Some of the results that have been obtained in this area are reviewed and the formulation of a transport equation for excess charge in irradiated insulators is dicussed. This equation is subsequently applied to various experimental set-ups. It is found that space charge effects play an essential role in the establishment of stationary currents in samples subject to quasi-penetrating electron beams. Such effects may, however, be neglected for low electron ranges. Theoretical results are in good agreement with experimental findings by Spear (1955)

  12. Cervical artificial disc extrusion after a paragliding accident

    OpenAIRE

    Niu, Tianyi; Hoffman, Haydn; Lu, Daniel C.

    2017-01-01

    Background: Cervical total disc replacement (TDR) is an established alternative to anterior cervical discectomy and fusion (ACDF) with excellent long-term outcomes and low failure rates. Cases of implant failure and migration are scarce and primarily limited to several years postoperatively. The authors report a case of anterior extrusion of a C4-C5 ProDisc-C (DePuy Synthes, West Chester, PA, USA) cervical artificial disc (CAD) 14 months after placement due to minor trauma. Case Description: ...

  13. Effects of charging and electric field on graphene functionalized with titanium

    International Nuclear Information System (INIS)

    Gürel, H Hakan; Ciraci, S

    2013-01-01

    Titanium atoms are adsorbed to graphene with a significant binding energy and render diverse functionalities to it. Carrying out first-principles calculations, we investigated the effects of charging and static electric field on the physical and chemical properties of graphene covered by Ti adatoms. When uniformly Ti covered graphene is charged positively, its antiferromagnetic ground state changes to ferromagnetic metal and attains a permanent magnetic moment. Static electric field applied perpendicularly causes charge transfer between Ti and graphene, and can induce metal–insulator transition. While each Ti adatom adsorbed to graphene atom can hold four hydrogen molecules with a weak binding, these molecules can be released by charging or applying electric field perpendicularly. Hence, it is demonstrated that charging and applied static electric field induce quasi-continuous and side specific modifications in the charge distribution and potential energy of adatoms absorbed to single-layer nanostructures, resulting in fundamentally crucial effects on their physical and chemical properties. (paper)

  14. Cervical disc hernia operations through posterior laminoforaminotomy

    Directory of Open Access Journals (Sweden)

    Coskun Yolas

    2016-01-01

    Full Text Available Objective: The most common used technique for posterolateral cervical disc herniations is anterior approach. However, posterior cervical laminotoforaminomy can provide excellent results in appropriately selected patients with foraminal stenosis in either soft disc prolapse or cervical spondylosis. The purpose of this study was to present the clinical outcomes following posterior laminoforaminotomy in patients with radiculopathy. Materials and Methods: We retrospectively evaluated 35 patients diagnosed with posterolateral cervical disc herniation and cervical spondylosis with foraminal stenosis causing radiculopathy operated by the posterior cervical keyhole laminoforaminotomy between the years 2010 and 2015. Results: The file records and the radiographic images of the 35 patients were assessed retrospectively. The mean age was 46.4 years (range: 34-66 years. Of the patients, 19 were males and 16 were females. In all of the patients, the neurologic deficit observed was radiculopathy. The posterolaterally localized disc herniations and the osteophytic structures were on the left side in 18 cases and on the right in 17 cases. In 10 of the patients, the disc level was at C5-6, in 18 at C6-7, in 2 at C3-4, in 2 at C4-5, in 1 at C7-T1, in 1 patient at both C5-6 and C6-7, and in 1 at both C4-5 and C5-6. In 14 of these 35 patients, both osteophytic structures and protruded disc herniation were present. Intervertebral foramen stenosis was present in all of the patients with osteophytes. Postoperatively, in 31 patients the complaints were relieved completely and four patients had complaints of neck pain and paresthesia radiating to the arm (the success of operation was 88.5%. On control examinations, there was no finding of instability or cervical kyphosis. Conclusion: Posterior cervical laminoforaminotomy is an alternative appropriate choice in both cervical soft disc herniations and cervical stenosis.

  15. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    Science.gov (United States)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  16. On the evolution of vortices in massive protoplanetary discs

    Science.gov (United States)

    Pierens, Arnaud; Lin, Min-Kai

    2018-05-01

    It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vortices. We present the results of 2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in self-gravitating discs with Toomre parameter in the range 4 - 30. We consider isothermal plus non-isothermal disc models that employ either the classical β prescription or a more realistic treatment for cooling. The main aim is to investigate whether the condensating effect of self-gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc models with Q ≳ 15, vortex decay occurs due to the vortex self-gravitational torque. For discs with 3≲ Q ≲ 7, the vortex develops gravitational instabilities within its core and undergoes gravitational collapse, whereas more massive discs give rise to the formation of global eccentric modes. In non-isothermal discs with β cooling, the vortex maintains a turbulent core prior to undergoing gravitational collapse for β ≲ 0.1, whereas it decays if β ≥ 1. In models that incorpore both self-gravity and a better treatment for cooling, however, a stable vortex is formed with aspect ratio χ ˜ 3 - 4. Our results indicate that self-gravity significantly impacts the evolution of vortices forming in protoplanetary discs, although the thermodynamical structure of the vortex is equally important for determining its long-term dynamics.

  17. The use of genetic algorithms to model protoplanetary discs

    Science.gov (United States)

    Hetem, Annibal; Gregorio-Hetem, Jane

    2007-12-01

    The protoplanetary discs of T Tauri and Herbig Ae/Be stars have previously been studied using geometric disc models to fit their spectral energy distribution (SED). The simulations provide a means to reproduce the signatures of various circumstellar structures, which are related to different levels of infrared excess. With the aim of improving our previous model, which assumed a simple flat-disc configuration, we adopt here a reprocessing flared-disc model that assumes hydrostatic, radiative equilibrium. We have developed a method to optimize the parameter estimation based on genetic algorithms (GAs). This paper describes the implementation of the new code, which has been applied to Herbig stars from the Pico dos Dias Survey catalogue, in order to illustrate the quality of the fitting for a variety of SED shapes. The star AB Aur was used as a test of the GA parameter estimation, and demonstrates that the new code reproduces successfully a canonical example of the flared-disc model. The GA method gives a good quality of fit, but the range of input parameters must be chosen with caution, as unrealistic disc parameters can be derived. It is confirmed that the flared-disc model fits the flattened SEDs typical of Herbig stars; however, embedded objects (increasing SED slope) and debris discs (steeply decreasing SED slope) are not well fitted with this configuration. Even considering the limitation of the derived parameters, the automatic process of SED fitting provides an interesting tool for the statistical analysis of the circumstellar luminosity of large samples of young stars.

  18. Radiation induced leakage due to stochastic charge trapping in isolation layers of nanoscale MOSFETs

    Science.gov (United States)

    Zebrev, G. I.; Gorbunov, M. S.; Pershenkov, V. S.

    2008-03-01

    The sensitivity of sub-100 nm devices to microdose effects, which can be considered as intermediate case between cumulative total dose and single event errors, is investigated. A detailed study of radiation-induced leakage due to stochastic charge trapping in irradiated planar and nonplanar devices is developed. The influence of High-K insulators on nanoscale ICs reliability is discussed. Low critical values of trapped charge demonstrate a high sensitivity to single event effect.

  19. The insulation structure of the 1 MV transmission line for the ITER neutral beam injector

    International Nuclear Information System (INIS)

    De Lorenzi, A.; Grando, L.; Gobbo, R.; Pesavento, G.; Bettini, P.; Specogna, R.; Trevisan, F.

    2007-01-01

    The paper describes the studies and the tests for the development of the insulation structure of the 1 MV-50 A gas insulated (SF 6 ) line of the ITER NBI in the SinGap configuration characterized by two kinds of spacers: at least a couple of disk-shaped spacers, designed to be gas tight, and a larger number (several tens) of inner conductor post spacers. To this aim a test campaign has been carried out to assess the capability of standard epoxy spacers to withstand a high dc voltage with frequent short circuits, simulating the operational condition for the ITER NBI. Two computational tools, the first for the epoxy spacer shape optimization under electrostatic distribution and the other for the nonlinear time variant evolution of the electric field and surface charge, have been developed specifically for designing epoxy spacer under dc voltage stress. The results on the optimization of the disk spacer and on the electric field-surface charge time evolution of the post spacer are reported and discussed. The effects of the SF 6 radiation induced conductivity on the post spacer are also reported

  20. The insulation structure of the 1 MV transmission line for the ITER neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    De Lorenzi, A. [Consorzio RFX, Associazione Euratom-Enea sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)], E-mail: antonio.delorenzi@igi.cnr.it; Grando, L. [Consorzio RFX, Associazione Euratom-Enea sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gobbo, R.; Pesavento, G. [DIE, Universita di Padova, Via Gradenigo 6A, I-35100 Padova (Italy); Bettini, P.; Specogna, R.; Trevisan, F. [DIEGM, Universita di Udine, Via delle Scienze 208, I-33100 Udine (Italy)

    2007-10-15

    The paper describes the studies and the tests for the development of the insulation structure of the 1 MV-50 A gas insulated (SF{sub 6}) line of the ITER NBI in the SinGap configuration characterized by two kinds of spacers: at least a couple of disk-shaped spacers, designed to be gas tight, and a larger number (several tens) of inner conductor post spacers. To this aim a test campaign has been carried out to assess the capability of standard epoxy spacers to withstand a high dc voltage with frequent short circuits, simulating the operational condition for the ITER NBI. Two computational tools, the first for the epoxy spacer shape optimization under electrostatic distribution and the other for the nonlinear time variant evolution of the electric field and surface charge, have been developed specifically for designing epoxy spacer under dc voltage stress. The results on the optimization of the disk spacer and on the electric field-surface charge time evolution of the post spacer are reported and discussed. The effects of the SF{sub 6} radiation induced conductivity on the post spacer are also reported.

  1. The effect of parental factors in children with large cup-to-disc ratios.

    Directory of Open Access Journals (Sweden)

    Hae-Young Lopilly Park

    Full Text Available To investigate large cup-to-disc ratios (CDR in children and to determine the relationship between parental CDR and clinical characteristics associated with glaucoma.Two hundred thirty six children aged 6 to 12 years with CDR ≥ 0.6 were enrolled in this study. Subjects were classified into two groups based on parental CDR: disc suspect children with disc suspect (CDR ≥0.6 parents and disc suspect children without disc suspect parents. Ocular variables were compared between the two groups.Of the 236 disc suspect children, 100 (42.4% had at least one disc suspect parent. Intraocular pressure (IOP was higher in disc suspect children with disc suspect parents (16.52±2.66 mmHg than in disc suspect children without disc suspect parents (14.38±2.30 mmHg, p = 0.023. In the group with disc suspect parents, vertical CDR significantly correlated with IOP (R = -0.325, p = 0.001, average retinal nerve fiber layer (RNFL thickness (R = -0.319, p = 0.001, rim area (R = -0.740, p = 0.001, and cup volume (R = 0.499, p = 0.001. However, spherical equivalent (R = 0.333, p = 0.001, AL (R = -0.223, p = 0.009, and disc area (R = 0.325, p = 0.001 significantly correlated with vertical CDR in disc suspect children without disc suspect parents, in contrast to those with disc suspect parents. Larger vertical CDR was associated with the presence of disc suspect parents (p = 0.001, larger disc area (p = 0.001, thinner rim area (p = 0.001, larger average CDR (p = 0.001, and larger cup volume (p = 0.021.Family history of large CDR was a significant factor associated with large vertical CDR in children. In children with disc suspect parents, there were significant correlations between IOP and average RNFL thickness and vertical CDR.

  2. The effect of parental factors in children with large cup-to-disc ratios.

    Science.gov (United States)

    Park, Hae-Young Lopilly; Ha, Min Ji; Shin, Sun Young

    2017-01-01

    To investigate large cup-to-disc ratios (CDR) in children and to determine the relationship between parental CDR and clinical characteristics associated with glaucoma. Two hundred thirty six children aged 6 to 12 years with CDR ≥ 0.6 were enrolled in this study. Subjects were classified into two groups based on parental CDR: disc suspect children with disc suspect (CDR ≥0.6) parents and disc suspect children without disc suspect parents. Ocular variables were compared between the two groups. Of the 236 disc suspect children, 100 (42.4%) had at least one disc suspect parent. Intraocular pressure (IOP) was higher in disc suspect children with disc suspect parents (16.52±2.66 mmHg) than in disc suspect children without disc suspect parents (14.38±2.30 mmHg, p = 0.023). In the group with disc suspect parents, vertical CDR significantly correlated with IOP (R = -0.325, p = 0.001), average retinal nerve fiber layer (RNFL) thickness (R = -0.319, p = 0.001), rim area (R = -0.740, p = 0.001), and cup volume (R = 0.499, p = 0.001). However, spherical equivalent (R = 0.333, p = 0.001), AL (R = -0.223, p = 0.009), and disc area (R = 0.325, p = 0.001) significantly correlated with vertical CDR in disc suspect children without disc suspect parents, in contrast to those with disc suspect parents. Larger vertical CDR was associated with the presence of disc suspect parents (p = 0.001), larger disc area (p = 0.001), thinner rim area (p = 0.001), larger average CDR (p = 0.001), and larger cup volume (p = 0.021). Family history of large CDR was a significant factor associated with large vertical CDR in children. In children with disc suspect parents, there were significant correlations between IOP and average RNFL thickness and vertical CDR.

  3. Dynamic conductivity from audio to optical frequencies of semiconducting manganites approaching the metal-insulator transition

    Science.gov (United States)

    Lunkenheimer, P.; Mayr, F.; Loidl, A.

    2006-07-01

    We report the frequency-dependent conductivity of the manganite system La1-xSrxMnO3 (x0.2) when approaching the metal-insulator transition from the insulating side. Results from low-frequency dielectric measurements are combined with spectra in the infrared region. For low doping levels the behavior is dominated by hopping transport of localized charge carriers at low frequencies and by phononic and electronic excitations in the infrared region. For the higher Sr contents the approach of the metallic state is accompanied by the successive suppression of the hopping contribution at low frequencies and by the development of polaronic excitations in the infrared region, which finally become superimposed by a strong Drude contribution in the fully metallic state.

  4. The Gaia-ESO Survey: the Galactic thick to thin disc transition

    NARCIS (Netherlands)

    Recio-Blanco, A.; de Laverny, P.; Kordopatis, G.; Helmi, A.; Hill, V.; Gilmore, G.; Wyse, R.; Adibekyan, V.; Randich, S.; Asplund, M.; Feltzing, S.; Jeffries, R.; Micela, G.; Vallenari, A.; Alfaro, E.; Allende Prieto, C.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Korn, A.; Lanzafame, A.; Pancino, E.; Smiljanic, R.; Jackson, R.; Lewis, J.; Magrini, L.; Morbidelli, L.; Prisinzano, L.; Sacco, G.; Worley, C. C.; Hourihane, A.; Bergemann, M.; Costado, M. T.; Heiter, U.; Joffre, P.; Lardo, C.; Lind, K.; Maiorca, E.

    Aims: The nature of the thick disc and its relation to the thin disc is presently an important subject of debate. In fact, the structural and chemo-dynamical transition between disc populations can be used as a test of the proposed models of Galactic disc formation and evolution. Methods: We used

  5. Can magnetic resonance imaging accurately predict concordant pain provocation during provocative disc injection?

    International Nuclear Information System (INIS)

    Kang, Chang Ho; Kim, Yun Hwan; Kim, Jung Hyuk; Chung, Kyoo Byung; Sung, Deuk Jae; Lee, Sang-Heon; Derby, Richard

    2009-01-01

    To correlate magnetic resonance (MR) image findings with pain response by provocation discography in patients with discogenic low back pain, with an emphasis on the combination analysis of a high intensity zone (HIZ) and disc contour abnormalities. Sixty-two patients (aged 17-68 years) with axial low back pain that was likely to be disc related underwent lumbar discography (178 discs tested). The MR images were evaluated for disc degeneration, disc contour abnormalities, HIZ, and endplate abnormalities. Based on the combination of an HIZ and disc contour abnormalities, four classes were determined: (1) normal or bulging disc without HIZ; (2) normal or bulging disc with HIZ; (3) disc protrusion without HIZ; (4) disc protrusion with HIZ. These MR image findings and a new combined MR classification were analyzed in the base of concordant pain determined by discography. Disc protrusion with HIZ [sensitivity 45.5%; specificity 97.8%; positive predictive value (PPV), 87.0%] correlated significantly with concordant pain provocation (P < 0.01). A normal or bulging disc with HIZ was not associated with reproduction of pain. Disc degeneration (sensitivity 95.4%; specificity 38.8%; PPV 33.9%), disc protrusion (sensitivity 68.2%; specificity 80.6%; PPV 53.6%), and HIZ (sensitivity 56.8%; specificity 83.6%; PPV 53.2%) were not helpful in the identification of a disc with concordant pain. The proposed MR classification is useful to predict a disc with concordant pain. Disc protrusion with HIZ on MR imaging predicted positive discography in patients with discogenic low back pain. (orig.)

  6. Intervertebral disc herniation: prevalence and association with ...

    African Journals Online (AJOL)

    Background: Low back pain is one of the common health problems encountered in life with intervertebral disc herniation being a common cause of its occurrence. Magnetic resonance imaging has emerged the gold standard for diagnosing a herniated disc. Aims and Objectives: To assess the frequency and pattern of ...

  7. Robust control of a compact disc mechanism

    NARCIS (Netherlands)

    Steinbuch, M.; Schootstra, G.; Bosgra, O.H.; Levine, W.S.

    1995-01-01

    A compact disc (CD) player is an optical decoding device that reproduces high-quality audio from a digitally coded signal recorded as a spiral-shaped track on a reflective disc. Apart from the audio application, other optical data systems (CD-ROM, optical data drive) and combined audio/video

  8. Suspected herniated lumbar disc - computed tomography in differential diagnosis of non-disc-related sciatica

    International Nuclear Information System (INIS)

    Weiss, T.; Koehler, D.; Treisch, J.; Claussen, C.; Felix, R.

    1984-01-01

    The most common reason a patient is referred for spinal CT examination is to exclude a ruptured intervertebral disc. Besides nerve root entrapment due to herniated disc, a number of unusual for unexpected conditions have been encountered in the course of CT lumbar spine studies. These include spondylolisthesis, spinal dysraphism, Paget's disease, and inflammatory, neoplastic, or metastatic lesions. The application of spinal (small-circle) target imaging includes the risk to overlook soft tissue lesions that extend beyond the reconstruction circle. Therefore, complete (large-circle) circumferential abdominal scanning is recommended in case of a suspected extraspinal cause of sciatica. (orig.) [de

  9. Suspected herniated lumbar disc - computed tomography in differential diagnosis of non-disc-related sciatica

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, T.; Koehler, D.; Treisch, J.; Claussen, C.; Felix, R.

    1984-07-01

    The most common reason a patient is referred for spinal CT examination is to exclude a ruptured intervertebral disc. Besides nerve root entrapment due to herniated disc, a number of unusual or unexpected conditions have been encountered in the course of CT lumbar spine studies. These include spondylolisthesis, spinal dysraphism, Paget's disease, and inflammatory, neoplastic, or metastatic lesions. The application of spinal (small-circle) target imaging includes the risk of overlooking soft tissue lesions that extend beyond the reconstruction circle. Therefore, complete (large-circle) circumferential abdominal scanning is recommended in case of a suspected extraspinal cause of sciatica.

  10. Effect of surface topography and morphology on space charge packets in polyethylene

    International Nuclear Information System (INIS)

    Zhou Yuanxiang; Wang Yunshan; Sun Qinghua; Wang Ninghua

    2009-01-01

    Polyethylene (PE) is a major kind of internal insulating material. With great progresses of space charge measurement technologies in the last three decades, lots of researches are focused on space charge in PE. The heat pressing and annealing condition of polyethylene affect its morphology obviously. During the heat pressing, the surface of PE forms different surface topographies because of different substrate materials. Surface topography has great relation to the epitaxial crystallization layer and influences the space charge characteristic of PE dramatically. This paper studied the formation process of different surface topographies and their micrographic characters in low density polyethylene (LDPE). pulsed electro-acoustic (PEA) method was used to measure the space charge distribution of samples with different surface topographies and morphologies in LDPE. The effect of surface topography and morphology to space charge packet were studied. The surface topography has great influence on space charge packet polarity and morphology has influence on both movement speed rate and polarity of space charge packet.

  11. Design of an Annular Disc Subject to Thermomechanical Loading

    Directory of Open Access Journals (Sweden)

    Sergei Alexandrov

    2012-01-01

    Full Text Available Two solutions to design a thin annular disc of variable thickness subject to thermomechanical loading are proposed. It is assumed that the thickness of the disc is everywhere sufficiently small for the stresses to be averaged through the thickness. The state of stress is plane. The initiation of plastic yielding is controlled by Mises yield criterion. The design criterion for one of the solutions proposed requires that the distribution of stresses is uniform over the entire disc. In this case there is a relation between optimal values of the loading parameters at the final stage. The specific shape of the disc corresponds to each pair of such parameters. The other solution is obtained under the additional requirement that the distribution of strains is uniform. This solution exists for the disc of constant thickness at specific values of the loading parameters.

  12. ASSOCIATION OF SPINOPELVIC PARAMETERS WITH THE LOCATION OF LUMBAR DISC HERNIATION

    Directory of Open Access Journals (Sweden)

    Jefferson Coelho de Léo

    2015-09-01

    Full Text Available Objective:To associate spinopelvic parameters, pelvic incidence, sacral slope, pelvic tilt and lumbar lordosis with the axial location of lumbar disc herniation.Methods:Retrospective study, which evaluated imaging and medical records of 61 patients with lumbar disc herniation, who underwent surgery with decompression and instrumented lumbar fusion in only one level. Pelvic incidence, sacral slope, pelvic tilt and lumbar lordosis with simple lumbopelvic lateral radiographs, which included the lumbar spine, the sacrum and the proximal femur. The affected segment was identified as the level and location of lumbar disc herniation in the axial plane with MRI scans.Results:Of 61 patients, 29 (47.5% had low lumbar lordosis; in this group 24 (82.8% had central disc herniation, 4 (13.8% had lateral recess disc herniation and 1 (3.4% had extraforaminal disc herniation (p<0.05. Of the 61 patients, 18 (29.5% had low sacral slope; of this group 15 (83.3% had central disc herniation and 3 (16.7% had disc herniation in lateral recess (p<0.05.Conclusions:There is a trend towards greater load distribution in the anterior region of the spine when the spine has hypolordotic curve. This study found an association between low lordosis and central disc herniation, as well as low sacral slope and central disc herniation.

  13. Biomechanical analysis of the camelid cervical intervertebral disc

    Directory of Open Access Journals (Sweden)

    Dean K. Stolworthy

    2015-01-01

    Full Text Available Chronic low back pain (LBP is a prevalent global problem, which is often correlated with degenerative disc disease. The development and use of good, relevant animal models of the spine may improve treatment options for this condition. While no animal model is capable of reproducing the exact biology, anatomy, and biomechanics of the human spine, the quality of a particular animal model increases with the number of shared characteristics that are relevant to the human condition. The purpose of this study was to investigate the camelid (specifically, alpaca and llama cervical spine as a model of the human lumbar spine. Cervical spines were obtained from four alpacas and four llamas and individual segments were used for segmental flexibility/biomechanics and/or morphology/anatomy studies. Qualitative and quantitative data were compared for the alpaca and llama cervical spines, and human lumbar specimens in addition to other published large animal data. Results indicate that a camelid cervical intervertebral disc (IVD closely approximates the human lumbar disc with regard to size, spinal posture, and biomechanical flexibility. Specifically, compared with the human lumbar disc, the alpaca and llama cervical disc size are approximately 62%, 83%, and 75% with regard to area, depth, and width, respectively, and the disc flexibility is approximately 133%, 173%, and 254%, with regard to range of motion (ROM in axial-rotation, flexion-extension, and lateral-bending, respectively. These results, combined with the clinical report of disc degeneration in the llama lower cervical spine, suggest that the camelid cervical spine is potentially well suited for use as an animal model in biomechanical studies of the human lumbar spine.

  14. Electrostatic doping of a Mott insulator in an oxide heterostructure: the case of LaVO{sub 3}/SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Andreas; Pfaff, Florian; Sing, Michael; Claessen, Ralph [Physikalisches Insititut and Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany); Boschker, Hans; Kamp, Martin; Koster, Gertjan; Rijnders, Guus [Faculty of Science and Technology and MESA-plus Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands)

    2012-07-01

    The discovery of a quasi-two-dimensional electron system at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3} has triggered intense investigations of oxide heterostructures with other material combinations. The hope is that by combining a polar overlayer with a non-polar substrate electronic reconstruction will lead to highly mobile interface charge carriers with special properties. The formation of a conducting interface layer in epitaxial LaVO{sub 3}/SrTiO{sub 3}, where LaVO{sub 3} is a Mott insulator, is studied by transport measurements and hard X-ray photoelectron spectroscopy. We identify an insulator-to-metal transition above a critical LaVO{sub 3} thickness with transport properties similar to those recently reported for LaAlO{sub 3}/SrTiO{sub 3} interfaces. Interestingly, our photoemission measurements give evidence that electronic charge is transferred exclusively to the LaVO{sub 3}-side of the interface caused by an electronic reconstruction within the film itself. This opens the opportunity to study a band-filling controlled Mott transition induced by a purely electrostatic mechanism.

  15. MR image findings on advanced internal derangement of the temporomandibular joints. Cases of disc position changed from anterior disc displacement with reduction to without reduction

    International Nuclear Information System (INIS)

    Igarashi, Chinami; Kobayashi, Kaoru; Yuasa, Masao; Imanaka, Masahiro; Yamamoto, Akira

    2005-01-01

    This study was designed to evaluate the suggestion that the clinical findings and MR image findings of anterior disc displacement with reduction cases could not reduce the disc displacement within the follow-up period. We selected 26 joints without remarkable bone changes in the condylar head or glenoid fossa in which reduction disappeared during follow-up. Clinical evaluation focused on temporomandibular pain, trismus, and joint sound. MR imaging was targeted for configuration of articular disc, degree of disc displacement, and condylar head position. Clinical signs observed with progression of the condition were disappearance of joint sound in 12/26 joints (46.1%), temporomandibular pain in 15/26 joints (57.6%), and decreased distance of opening mouth in 19/26 joints (73%). MR image findings were disc configuration changes in 12/26 joints (46.1%), increased degree of anterior displacement of disc in 20/26 joints (76.9%), and condylar head position changes in 9/26 joints (34.6%). It is suggested that the advanced stage of internal derangement is closely associated with the degree of disc displacement. (author)

  16. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  17. [Influence of disc height on outcome of posterolateral fusion].

    Science.gov (United States)

    Drain, O; Lenoir, T; Dauzac, C; Rillardon, L; Guigui, P

    2008-09-01

    Experimentally, posterolateral fusion only provides incomplete control of flexion-extension, rotation and lateral inclination forces. The stability deficit increases with increasing height of the anterior intervertebral space, which for some warrants the adjunction of an intersomatic arthrodesis in addition to the posterolateral graft. Few studies have been devoted to the impact of disc height on the outcome of posterolateral fusion. The purpose of this work was to investigate the spinal segment immobilized by the posterolateral fusion: height of the anterior intervertebral space, the clinical and radiographic impact of changes in disc height, and the short- and long-term impact of disc height measured preoperatively on clinical and radiographic outcome. In order to obtain a homogeneous group of patients, the series was limited to patients undergoing posterolateral arthrodesis for degenerative spondylolisthesis, in combination with radicular release. This was a retrospective analysis of a consecutive series of 66 patients with mean 52 months follow-up (range 3-63 months). A dedicated self-administered questionnaire was used to collect data on pre- and postoperative function, the SF-36 quality of life score, and patient satisfaction. Pre- and postoperative (early, one year, last follow-up) radiographic data were recorded: olisthesic level, disc height, intervertebral angle, intervertebral mobility (angular, anteroposterior), and global measures of sagittal balance (thoracic kyphosis, lumbar lordosis, T9 sagittal tilt, pelvic version, pelvic incidence, sacral slope). SpineView was used for all measures. Univariate analysis searched for correlations between variation in disc height and early postoperative function and quality of fusion at last follow-up. Multivariate analysis was applied to the following preoperative parameters: intervertebral angle, disc height, intervertebral mobility, sagittal balance parameters, use of osteosynthesis or not. At the olisthesic

  18. Transient events in bright debris discs: Collisional avalanches revisited

    Science.gov (United States)

    Thebault, P.; Kral, Q.

    2018-01-01

    Context. A collisional avalanche is set off by the breakup of a large planetesimal, releasing vast amounts of small unbound grains that enter a debris disc located further away from the star, triggering there a collisional chain reaction that could potentially create detectable transient structures. Aims: We investigate this mechanism, using for the first time a fully self-consistent code coupling dynamical and collisional evolutions. We also quantify for the first time the photometric evolution of the system and investigate whether or not avalanches could explain the short-term luminosity variations recently observed in some extremely bright debris discs. Methods: We use the state-of-the-art LIDT-DD code. We consider an avalanche-favoring A6V star, and two set-ups: a "cold disc" case, with a dust release at 10 au and an outer disc extending from 50 to 120 au, and a "warm disc" case with the release at 1 au and a 5-12 au outer disc. We explore, in addition, two key parameters: the density (parameterized by its optical depth τ) of the main outer disc and the amount of dust released by the initial breakup. Results: We find that avalanches could leave detectable structures on resolved images, for both "cold" and "warm" disc cases, in discs with τ of a few 10-3, provided that large dust masses (≳1020-5 × 1022 g) are initially released. The integrated photometric excess due to an avalanche is relatively limited, less than 10% for these released dust masses, peaking in the λ 10-20 μm domain and becoming insignificant beyond 40-50 μm. Contrary to earlier studies, we do not obtain stronger avalanches when increasing τ to higher values. Likewise, we do not observe a significant luminosity deficit, as compared to the pre-avalanche level, after the passage of the avalanche. These two results concur to make avalanches an unlikely explanation for the sharp luminosity drops observed in some extremely bright debris discs. The ideal configuration for observing an

  19. Likelihood inference for unions of interacting discs

    DEFF Research Database (Denmark)

    Møller, Jesper; Helisova, K.

    2010-01-01

    This is probably the first paper which discusses likelihood inference for a random set using a germ-grain model, where the individual grains are unobservable, edge effects occur and other complications appear. We consider the case where the grains form a disc process modelled by a marked point...... process, where the germs are the centres and the marks are the associated radii of the discs. We propose to use a recent parametric class of interacting disc process models, where the minimal sufficient statistic depends on various geometric properties of the random set, and the density is specified......-based maximum likelihood inference and the effect of specifying different reference Poisson models....

  20. Electron beam patterning for writing of positively charged gold colloidal nanoparticles

    Science.gov (United States)

    Zafri, Hadar; Azougi, Jonathan; Girshevitz, Olga; Zalevsky, Zeev; Zitoun, David

    2018-02-01

    Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68 ± 18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate. [Figure not available: see fulltext.

  1. Posterior epidural disc fragment masquerading as spinal tumor: Review of the literature.

    Science.gov (United States)

    Park, Taejune; Lee, Ho Jun; Kim, Jae Seong; Nam, Kiyeun

    2018-03-09

    Posterior epidural lumbar disc fragment is infrequent because of anatomical barriers, and it is difficult to diagnose posterior epidural lumbar disc fragment because of its rare incidence and the ambiguity of radiologic evaluations. And it is difficult to differentiate it from other diseases such as spinal tumors. Differential diagnosis of posterior epidural lumbar disc fragment is clinically important because its diagnosis can affect treatment and prognosis. To investigate the incidence, anatomical concern, etiology, symptom, diagnostic tool, management and prognosis of posterior epidural lumbar disc fragment, we reviewed articles including case report. We performed a search of all clinical studies of posterior epidural lumbar disc fragment published to date. The following keywords were searched: Posterior epidural lumbar disc fragment, disc migration, posterior epidural disc, extradural migration, dorsal epidural migration, sequestrated disc, and disc fragment. We identified 40 patients of posterior epidural lumbar disc fragment from 28 studies. The most common presentation of posterior epidural lumbar disc fragment was sudden onset radiculopathy (70.0%), followed by cauda equina syndrome (27.5%). The most frequently used diagnostic modality was magnetic resonance imaging (MRI), conducted in 36 cases (90.0%), and followed by computed tomography in 14 cases (35.0%). After the imaging studies, the preoperative diagnoses were 45.0% masses, 20.0% lesions, and 12.5% tumors. Characteristic MRI findings in posterior epidural lumbar disc fragment are helpful for diagnosis; it typically displays low signals on T1-weighted images and high signals on T2-weighted images with respect to the parent disc. In addition, most of the disc fragments show peripheral rim enhancement on MRI with gadolinium administration. Electrodiagnostic testing is useful for verifying nerve damage. Surgical treatment was performed in all cases, and neurologic complications were observed in 12.5%. As

  2. Influence of magnetic impurities on charge transport in diffusive-normal-metal/superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Inoue, J.; Asano, Y.

    2005-01-01

    Charge transport in the diffusive normal metal (DN)/insulator/s- and d-wave superconductor junctions is studied in the presence of magnetic impurities in DN in the framework of the quasiclassical Usadel equations with the generalized boundary conditions. The cases of s- and d-wave superconducting

  3. Environmental safety providing during heat insulation works and using thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Velichko Evgeny

    2017-01-01

    Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

  4. 16 CFR 460.18 - Insulation ads.

    Science.gov (United States)

    2010-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.18 Insulation ads. (a) If your ad gives an R-value, you must give the type of insulation and... your ad gives a price, you must give the type of insulation, the R-value at a specific thickness, the...

  5. Electrical insulators for the theta-pinch fusion reactor

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1976-01-01

    The five major applications for electrical insulators in the Reference Theta Pinch Reactor are as follows: (1) first-wall insulator, (2) blanket intersegment insulator, (3) graphite encapsulating insulator, (4) implosion coil insulator, and (5) compression coil insulator. Insulator design proposals and some preliminary test results are given for each application

  6. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  7. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    Science.gov (United States)

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  8. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    Science.gov (United States)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  9. Magnetic resonance imaging of diseased cervical and lumbar intervertebral discs

    Energy Technology Data Exchange (ETDEWEB)

    Kadoya, Satoru; Nakamura, Tsutomu; Takarada, Akira; Yamamoto, Itaru; Sato, Shuji.

    1989-02-01

    Magnetic resonance images (MRI) of diseased cervical and lumbar intervertebral discs involving both intrinsic and extrinsic cord lesions were examined using either a 0.15 T resistive or a 0.5 T superconductive magnetic imaging system. The vertebrae, intervertebral discs, and spinal cord were delineated on spin-echo (SE) images with a long repetition time (TR) and a short echo time (proton density-weighted image). Protrusion of degenerated intervertebral discs into the spinal canal was clearly demonstrated not only on sagittal but also on parasagittal and transverse views. The location of protruded discs and compression of the spinal cord, caudal sac, and nerve roots were well visualized three-dimensionally. Pathological features of intervertebral discs were well appreciated on T/sub 2/-weighted images with long TR and SE pulse sequences. Degeneration of intervertebral discs resulted in decreased signal intensity in cases of lumbar disc involvement. For suspected myelomalacia, the intrinsic cord lesion resulting from traumatic disc protrusion appeared as focal low signal intensity on T/sub 1/-weithed images and as somewhat high intensity on T/sub 2/ weighted images. The inversion recovery sequence with median inversion time displayed an inferior image of low contrast and was judged uninformative in comparison to SE imags. The findings showed MRI to be an essential diagnostic technique for spinal cord disorders. It clearly pinpoints the anatomic structures of the spine and the features of disc degeneration. Both extrinsic and intrinsic cord abnormalities can be identified with MRI. The selection of proper pulse sequences is required for the differentiation of the object of interest. (Namekawa, K).

  10. Magnetic resonance imaging of diseased cervical and lumbar intervertebral discs

    International Nuclear Information System (INIS)

    Kadoya, Satoru; Nakamura, Tsutomu; Takarada, Akira; Yamamoto, Itaru; Sato, Shuji.

    1989-01-01

    Magnetic resonance images (MRI) of diseased cervical and lumbar intervertebral discs involving both intrinsic and extrinsic cord lesions were examined using either a 0.15 T resistive or a 0.5 T superconductive magnetic imaging system. The vertebrae, intervertebral discs, and spinal cord were delineated on spin-echo (SE) images with a long repetition time (TR) and a short echo time (proton density-weighted image). Protrusion of degenerated intervertebral discs into the spinal canal was clearly demonstrated not only on sagittal but also on parasagittal and transverse views. The location of protruded discs and compression of the spinal cord, caudal sac, and nerve roots were well visualized three-dimensionally. Pathological features of intervertebral discs were well appreciated on T 2 -weighted images with long TR and SE pulse sequences. Degeneration of intervertebral discs resulted in decreased signal intensity in cases of lumbar disc involvement. For suspected myelomalacia, the intrinsic cord lesion resulting from traumatic disc protrusion appeared as focal low signal intensity on T 1 -weithed images and as somewhat high intensity on T 2 weighted images. The inversion recovery sequence with median inversion time displayed an inferior image of low contrast and was judged uninformative in comparison to SE imags. The findings showed MRI to be an essential diagnostic technique for spinal cord disorders. It clearly pinpoints the anatomic structures of the spine and the features of disc degeneration. Both extrinsic and intrinsic cord abnormalities can be identified with MRI. The selection of proper pulse sequences is required for the differentiation of the object of interest. (Namekawa, K)

  11. DISC1 (disrupted-in-schizophrenia-1 regulates differentiation of oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hattori

    Full Text Available Disrupted-in-schizophrenia 1 (DISC1 is a gene disrupted by a translocation, t(1;11 (q42.1;q14.3, that segregates with major psychiatric disorders, including schizophrenia, recurrent major depression and bipolar affective disorder, in a Scottish family. Here we report that mammalian DISC1 endogenously expressed in oligodendroglial lineage cells negatively regulates differentiation of oligodendrocyte precursor cells into oligodendrocytes. DISC1 expression was detected in oligodendrocytes of the mouse corpus callosum at P14 and P70. DISC1 mRNA was expressed in primary cultured rat cortical oligodendrocyte precursor cells and decreased when oligodendrocyte precursor cells were induced to differentiate by PDGF deprivation. Immunocytochemical analysis showed that overexpressed DISC1 was localized in the cell bodies and processes of oligodendrocyte precursor cells and oligodendrocytes. We show that expression of the myelin related markers, CNPase and MBP, as well as the number of cells with a matured oligodendrocyte morphology, were decreased following full length DISC1 overexpression. Conversely, both expression of CNPase and the number of oligodendrocytes with a mature morphology were increased following knockdown of endogenous DISC1 by RNA interference. Overexpression of a truncated form of DISC1 also resulted in an increase in expression of myelin related proteins and the number of mature oligodendrocytes, potentially acting via a dominant negative mechanism. We also identified involvement of Sox10 and Nkx2.2 in the DISC1 regulatory pathway of oligodendrocyte differentiation, both well-known transcription factors involved in the regulation of myelin genes.

  12. High-resolution ultrasonography in assessing temporomandibular joint disc position.

    Science.gov (United States)

    Talmaceanu, Daniel; Lenghel, Lavinia Manuela; Bolog, Nicolae; Popa Stanila, Roxana; Buduru, Smaranda; Leucuta, Daniel Corneliu; Rotar, Horatiu; Baciut, Mihaela; Baciut, Grigore

    2018-02-04

    The purpose of this study was to determine the diagnostic value of high-resolution ultrasonography (US) in temporomandibular joint (TMJ) disc displacements. A number of 74 patients (148 TMJs) with signs and symptoms of TMJ disorders, according to the Research Diagnostic Criteria for Temporomandibular Disorders, were included in this study. All patients received US and magnetic resonance imaging (MRI) of both TMJs 1 to 5 days after the clinical examination. MRI examinations were performed using 1.5 T MRI equipment (Siemens Avanto, Siemens, Erlangen). Ultrasonographic examination was performed on a Hitachi EUB 8500 (Hitachi Medical Corp., Tokyo, Japan) scanner with L 54 M6.5-13 MHz linear transducer. MRI depicted 68 (45.95%) normal joints, 47 (31.76%) with disc displacement with reduction, 33 (22.3%) with disc displacement without reduction and 34 (22.97%) with degenerative changes. US detected 78 (52.7%) normal joints, 37 (25%) with disc displacement with reduction, 33 (22.3%) with disc displacement without reduction and 21 (14.19%) with degenerative changes. Compared to MRI, US showed a sensitivity of 93.1%, specificity of 87.88%, accuracy of 90.32%, a positive predictive value of 87.1% and a negative predictive value of 93.55% for overall diagnosis of disc displacement. The Youden index was 0.81. Based on our results, high-resolution ultrasonography showed high sensitivity, specificity and accuracy in the diagnosis of TMJ disc displacement. It could be a valuable imaging technique in assessing TMJ disc position. The diagnostic value of high-resolution ultrasonography depends strictly on the examiner's skills and on the equipment used.

  13. Protective effects of cannabidiol on lesion-induced intervertebral disc degeneration.

    Directory of Open Access Journals (Sweden)

    João W Silveira

    Full Text Available Disc degeneration is a multifactorial process that involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content. Cannabidiol is the main non-psychotropic component of the Cannabis sativa with protective and anti-inflammatory properties. However, possible therapeutic effects of cannabidiol on intervertebral disc degeneration have not been investigated yet. The present study investigated the effects of cannabidiol intradiscal injection in the coccygeal intervertebral disc degeneration induced by the needle puncture model using magnetic resonance imaging (MRI and histological analyses. Disc injury was induced in the tail of male Wistar rats via a single needle puncture. The discs selected for injury were punctured percutaneously using a 21-gauge needle. MRI and histological evaluation were employed to assess the results. The effects of intradiscal injection of cannabidiol (30, 60 or 120 nmol injected immediately after lesion were analyzed acutely (2 days by MRI. The experimental group that received cannabidiol 120 nmol was resubmitted to MRI examination and then to histological analyses 15 days after lesion/cannabidiol injection. The needle puncture produced a significant disc injury detected both by MRI and histological analyses. Cannabidiol significantly attenuated the effects of disc injury induced by the needle puncture. Considering that cannabidiol presents an extremely safe profile and is currently being used clinically, these results suggest that this compound could be useful in the treatment of intervertebral disc degeneration.

  14. Feature Based Control of Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh

    Two servo control loops are used to keep the Optical Pick-up Unit focused and radially on the information track of the Compact Disc. These control servos have problems handling surface faults on the Compact Disc. In this Ph.D thesis a method is proposed to improve the handling of these surface...

  15. Super-Cavitating Flow Around Two-Dimensional Conical, Spherical, Disc and Stepped Disc Cavitators

    Science.gov (United States)

    Sooraj, S.; Chandrasekharan, Vaishakh; Robson, Rony S.; Bhanu Prakash, S.

    2017-08-01

    A super-cavitating object is a high speed submerged object that is designed to initiate a cavitation bubble at the nose which extends past the aft end of the object, substantially reducing the skin friction drag that would be present if the sides of the object were in contact with the liquid in which the object is submerged. By reducing the drag force the thermal energy consumption to move faster can also be minimised. The super-cavitation behavioural changes with respect to Cavitators of various geometries have been studied by varying the inlet velocity. Two-dimensional computational fluid dynamics analysis has been carried out by applying k-ε turbulence model. The variation of drag coefficient, cavity length with respect to cavitation number and inlet velocity are analyzed. Results showed conical Cavitator with wedge angle of 30° has lesser drag coefficient and cavity length when compared to conical Cavitators with wedge angles 45° and 60°, spherical, disc and stepped disc Cavitators. Conical cavitator 60° and disc cavitator have the maximum cavity length but with higher drag coefficient. Also there is significant variation of supercavitation effect observed between inlet velocities of 32 m/s to 40 m/s.

  16. Disc displacement patterns in lumbar anterior spondylolisthesis: Contribution to foraminal stenosis

    International Nuclear Information System (INIS)

    MacMahon, P.J.; Taylor, D.H.; Duke, D.; Brennan, D.D.; Eustace, S.J.

    2009-01-01

    Purpose: To describe the particular disc displacement pattern seen at MRI in patients with spondylolisthesis, and its potential contribution to foraminal stenosis. Methods: 38 patients with symptomatic lumbar anterior spondylolisthesis and 38 sex and aged matched control patients with herniated disc disease, at corresponding disc space levels, were included for study. In each case note was made of the presence, absence and direction of disc displacement and also the presence and location of neural contact with the displaced disc. Results: In 33 of 38 (86.8%) patients in the spondylolisthesis group, the vertical disc displacement was upward. In the control group only 3 patients (7.8%) had upward vertical disc displacement. 19 patients (53%) from the spondylolisthesis group had exit foraminal nerve root contact, compared to 7 patients (18.4%) from the control group. 27 control patients (71%) had contact within the lateral recess, compared to only 6 patients (17%) with spondylolisthesis. Differences for upward displacement were significant (p < 0.05). Conclusion: Disc displacement in patients with spondylolisthesis is predominately in a cephalad and lateral direction. Although this disc displacement pattern can occur in patients without spondylolisthesis, its incidence is much greater in the subset of patients with concomitant spondylolisthesis. In the setting of acquired osseous narrowing of the exit foramen, this described pattern of disc displacement superiorly and laterally in spondylolisthesis increases the susceptibility of spondylolisthesis patients to radicular symptoms and accounts for the exiting nerve root being more commonly affected than the traversing nerve root.

  17. Holographic entanglement entropy in two-order insulator/superconductor transitions

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yan, E-mail: yanpengphy@163.com; Liu, Guohua

    2017-04-10

    We study holographic superconductor model with two orders in the five dimensional AdS soliton background away from the probe limit. We disclose properties of phase transitions mostly from the holographic topological entanglement entropy approach. Our results show that the entanglement entropy is useful in investigating transitions in this general model and in particular, there is a new type of first order phase transition in the insulator/superconductor system. We also give some qualitative understanding and obtain the analytical condition for this first order phase transition to occur. As a summary, we draw the complete phase diagram representing effects of the scalar charge on phase transitions.

  18. A feasibility study of space-charge neutralized ion induction linacs: Final report

    International Nuclear Information System (INIS)

    Slutz, S.A.; Primm, P.; Renk, T.; Johnson, D.J.

    1997-03-01

    Applications for high current (> 1 kA) ion beams are increasing. They include hardening of material surfaces, transmutation of radioactive waste, cancer treatment, and possibly driving fusion reactions to create energy. The space-charge of ions limits the current that can be accelerated in a conventional ion linear accelerator (linac). Furthermore, the accelerating electric field must be kept low enough to avoid the generation and acceleration of counter-streaming electrons. These limitations have resulted in ion accelerator designs that employ long beam lines and would be expensive to build. Space-charge neutralization and magnetic insulation of the acceleration gaps could substantially reduce these two limitations, but at the expense of increasing the complexity of the beam physics. We present theory and experiments to determine the degree of charge-neutralization that can be achieved in various environments found in ion accelerators. Our results suggest that, for high current applications, space-charge neutralization could be used to improve on the conventional ion accelerator technology. There are two basic magnetic field geometries that can be used to insulate the accelerating gaps, a radial field or a cusp field. We will present studies related to both of these geometries. We shall also present numerical simulations of open-quotes multicuspclose quotes accelerator that would deliver potassium ions at 400 MeV with a total beam power of approximately 40 TW. Such an accelerator could be used to drive fusion

  19. Charging effects of PET under electron beam irradiation in a SEM

    International Nuclear Information System (INIS)

    Jbara, O; Rondot, S; Hadjadj, A; Patat, J M; Fakhfakh, S; Belhaj, M

    2008-01-01

    This paper deals with charge trapping and charge transport of polyethylene terephthalate (PET) polymer subjected to electron irradiation in a scanning electron microscope (SEM). Measurement of displacement current and leakage current using an arrangement adapted to the SEM allows the amount of trapped charge during and after electron irradiation to be determined and the charge mechanisms regulation to be studied. These mechanisms involve several parameters related to the electronic injection, the characteristics of insulator and the effects of the trapped charge itself. The dynamic trapping properties of PET samples are investigated and the time constants of charging are evaluated for various conditions of irradiation. The determination of the trapping cross section for electrons is possible by using the trapping rate at the onset of irradiation. Many physical processes are involved in the charging and discharging mechanisms; among them surface conduction is outlined. Through the control of irradiation conditions, various types of surface discharging (flashover phenomenon) behaviour are also observed. The strength of the electric field initiating surface discharge is estimated.

  20. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.