WorldWideScience

Sample records for charge transfer excitons

  1. Frenkel-Charge-Transfer exciton intermixing theory for molecular crystals with two isolated Frenkel exciton states.

    Science.gov (United States)

    Bondarev, Igor; Popescu, Adrian

    We develop an analytical theory for the intra-intermolecular exciton intermixing in periodic 1D chains of planar organic molecules with two isolated low-lying Frenkel exciton states, typical of copper phthalocyanine (CuPc) and other transition metal phthalocyanine molecules. We formulate the Hamiltonian and use the exact Bogoliubov diagonalization procedure to derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer (CT) exciton state. By comparing our theoretical spectrum with available experimental CuPc absorption data, we obtain the parameters of the Frenkel-CT exciton intermixing in CuPc thin films. The two Frenkel exciton states here are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the CT exciton, showing the coupling constant 0.17 eV in agreement with earlier electron transport experiments. Our results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines. DOE-DE-SC0007117 (I.B.), UNC-GA ROI Grant (A.P.).

  2. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures

    Science.gov (United States)

    Zhu, Tong; Yuan, Long; Zhao, Yan; Zhou, Mingwei; Wan, Yan; Mei, Jianguo; Huang, Libai

    2018-01-01

    Charge-transfer (CT) excitons at heterointerfaces play a critical role in light to electricity conversion using organic and nanostructured materials. However, how CT excitons migrate at these interfaces is poorly understood. We investigate the formation and transport of CT excitons in two-dimensional WS2/tetracene van der Waals heterostructures. Electron and hole transfer occurs on the time scale of a few picoseconds, and emission of interlayer CT excitons with a binding energy of ~0.3 eV has been observed. Transport of the CT excitons is directly measured by transient absorption microscopy, revealing coexistence of delocalized and localized states. Trapping-detrapping dynamics between the delocalized and localized states leads to stretched-exponential photoluminescence decay with an average lifetime of ~2 ns. The delocalized CT excitons are remarkably mobile with a diffusion constant of ~1 cm2 s−1. These highly mobile CT excitons could have important implications in achieving efficient charge separation. PMID:29340303

  3. Reduced Charge Transfer Exciton Recombination in Organic Semiconductor Heterojunctions by Molecular Doping

    Science.gov (United States)

    Deschler, Felix; da Como, Enrico; Limmer, Thomas; Tautz, Raphael; Godde, Tillmann; Bayer, Manfred; von Hauff, Elizabeth; Yilmaz, Seyfullah; Allard, Sybille; Scherf, Ullrich; Feldmann, Jochen

    2011-09-01

    We investigate the effect of molecular doping on the recombination of electrons and holes localized at conjugated-polymer-fullerene interfaces. We demonstrate that a low concentration of p-type dopant molecules (<4% weight) reduces the interfacial recombination via charge transfer excitons and results in a favored formation of separated carriers. This is observed by the ultrafast quenching of photoluminescence from charge transfer excitons and the increase in photoinduced polaron density by ˜70%. The results are consistent with a reduced formation of emissive charge transfer excitons, induced by state filling of tail states.

  4. Impact of charge-transfer excitons in regioregular polythiophene on the charge separation at polythiophene-fullerene heterojunctions

    Science.gov (United States)

    Polkehn, M.; Tamura, H.; Burghardt, I.

    2018-01-01

    This study addresses the mechanism of ultrafast charge separation in regioregular oligothiophene-fullerene assemblies representative of poly-3-hexylthiophene (P3HT)-[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) heterojunctions, with special emphasis on the inclusion of charge transfer excitons in the oligothiophene phase. The formation of polaronic inter-chain charge separated species in highly ordered oligothiophene has been demonstrated in recent experiments and could have a significant impact on the net charge transfer to the fullerene acceptor. The present approach combines a first-principles parametrized multi-site Hamiltonian, based on time-dependent density functional theory calculations, with accurate quantum dynamics simulations using the multi-layer multi-configuration time-dependent Hartree method. Quantum dynamical studies are carried out for up to 182 electronic states and 112 phonon modes. The present analysis follows up on our previous study of (Huix-Rotllant et al 2015 J. Phys. Chem. Lett. 6 1702) and significantly expands the scope of this analysis by including the dynamical role of charge transfer excitons. Our investigation highlights the pronounced mixing of photogenerated Frenkel excitons with charge transfer excitons in the oligothiophene domain, and the opening of new transfer channels due the creation of such charge-separated species. As a result, it turns out that the interfacial donor/acceptor charge transfer state can be largely circumvented due to the presence of charge transfer excitons. However, the latter states in turn act as a trap, such that the free carrier yield observed on ultrafast time scales is tangibly reduced. The present analysis underscores the complexity of the transfer pathways at P3HT-PCBM type junctions.

  5. Reduced Charge Transfer Exciton Recombination in Organic Semiconductor Heterojunctions by Molecular Doping

    NARCIS (Netherlands)

    Deschler, Felix; Da Como, Enrico; Limmer, Thomas; Tautz, Raphael; Godde, Tillmann; Bayer, Manfred; von Hauff, Elizabeth; Yilmaz, Seyfullah; Allard, Sybille; Scherf, Ullrich; Feldmann, Jochen

    2011-01-01

    We investigate the effect of molecular doping on the recombination of electrons and holes localized at conjugated-polymer–fullerene interfaces. We demonstrate that a low concentration of p-type dopant molecules (<4% weight) reduces the interfacial recombination via charge transfer excitons and

  6. Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

    Science.gov (United States)

    Hestand, Nicholas J.

    The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J

  7. The Dual Role of Disorder on the Dissociation of Interfacial Charge Transfer Excitons

    Science.gov (United States)

    Shi, Liang; Lee, Chee-Kong; Willard, Adam

    In organic-based photovoltaics (OPV), dissociation of neutral photo-excitations (i.e., Frenkel excitons) into free charge carriers requires the excitons to overcome binding energy that can significantly exceed thermal energies. The inability of bound charges to overcome this large binding energy has been implicated as a primary source of efficiency loss in OPVs. Despite the potential impact on the performance of organic solar cells much remains to be understood about the microscopic mechanism of exciton dissociation in OPV materials. Here we explore the role of static molecular disorder in mediating this charge dissociation process. Using a simple lattice model of exciton dynamics we demonstrate that random spatial variations in the energetic landscape can mitigate the effects of the exciton binding energy by lowering the free energy barrier. By considering the competition between this thermodynamic effect and the disorder-induced slowing of dissociation kinetics we demonstrate that exciton dissociation yields are expected to depend non-monotonically on the degree of static disorder. We conclude that a certain amount of molecular-scale disorder is desirable in order to optimize the performance of organic photovoltaic materials.

  8. Spectroscopy and dynamics of charge transfer excitons in type-II band aligned quantum confined heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kushavah, Dushyant [Centre for Research in Nanotechnology and Science, IIT Bombay-400076, Mumbai (India); Mohapatra, P. K.; Vasa, P.; Singh, B. P., E-mail: bhanups@iitb.ac.in [Department of physics, IIT Bombay, Mumbai-400076 (India); Rustagi, K. C. [Indian Institute of Science Education and Research Bhopal-462066, Bhopal (India); Bahadur, D. [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai-400076 (India)

    2015-05-15

    We illustrate effect of charge transfer (CT) in type-II quantum confined heterostructure by comparing CdSe quantum dots (QDs), CdSe/CdTe heterostructure quantum dots (HQDs) and CdSe/CdTe/CdSe quantum well-quantum dots (QWQDs) heterostructures. CdSe core QDs were synthesized using a kinetic growth method where QD size depends on reaction time. For shell coating we used modified version of successive ionic layer adsorption and reaction (SILAR). Size of different QDs ∼5 to 7 nm were measured by transmission electron microscopy (TEM). Strong red shift from ∼597 to ∼746 nm in photoluminescence (PL) spectra from QDs to QWQDs shows high tunability which is not possible with single constituent semiconductor QDs. PL spectra have been recorded at different temperatures (10K-300K). Room temperature time correlated single photon counting (TCSPC) measurements for QDs to QWQDs show three exponential radiative decay. The slowest component decay constant in QWQDs comes around eight fold to ∼51 ns as compared to ∼6.5 ns in HQD suggesting new opportunities to tailor the radiative carrier recombination rate of CT excitons.

  9. Influence of Frenkel Excitons and Charge Transfer States on the Spectroscopic Properties of Organic Molecular Crystals

    OpenAIRE

    Gisslén, Linus Mathias

    2010-01-01

    Perylene derivatives are robust organic dyes absorbing and emitting light in the visible range and in the near infrared. They display a strong tendency to self-assemble into molecular aggregates, liquid crystals, or even crystals. In this thesis, we have demonstrated a successful realization of a theoretical approach describing the fundamental interactions influencing on exciton transfer in crystalline perylenes pigments. Furthermore, the microscopic parameter set obtained has allowed to calc...

  10. Theoretical study on the cooperative exciton dissociation process based on dimensional and hot charge-transfer state effects in an organic photocell

    International Nuclear Information System (INIS)

    Shimazaki, Tomomi; Nakajima, Takahito

    2016-01-01

    This paper discusses the exciton dissociation process at the donor–acceptor interface in organic photocells. In our previous study, we introduced a local temperature to handle the hot charge-transfer (CT) state and calculated the exciton dissociation probability based on the 1D organic semiconductor model [T. Shimazaki and T. Nakajima, Phys. Chem. Chem. Phys. 17, 12538 (2015)]. Although the hot CT state plays an essential role in exciton dissociations, the probabilities calculated are not high enough to efficiently separate bound electron–hole pairs. This paper focuses on the dimensional (entropy) effect together with the hot CT state effect and shows that cooperative behavior between both effects can improve the exciton dissociation process. In addition, we discuss cooperative effects with site-disorders and external-electric-fields.

  11. Ab initio modeling of excitonic and charge-transfer states in organic semiconductors: the PTB1/PCBM low band gap system.

    Science.gov (United States)

    Borges, Itamar; Aquino, Adélia J A; Köhn, Andreas; Nieman, Reed; Hase, William L; Chen, Lin X; Lischka, Hans

    2013-12-11

    A detailed quantum chemical simulation of the excitonic and charge-transfer (CT) states of a bulk heterojunction model containing poly(thieno[3,4-b]thiophene benzodithiophene) (PTB1)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is reported. The largest molecular model contains two stacked PTB1 trimer chains interacting with C60 positioned on top of and lateral to the (PTB1)3 stack. The calculations were performed using the algebraic diagrammatic construction method to second order (ADC(2)). One main result of the calculations is that the CT states are located below the bright inter-chain excitonic state, directly accessible via internal conversion processes. The other important aspects of the calculations are the formation of discrete bands of CT states originating from the lateral C60's and the importance of inter-chain charge delocalization for the stability of the CT states. A simple model for the charge separation step is also given, revealing the energetic feasibility of the overall photovoltaic process.

  12. Exciton generation/dissociation/charge-transfer enhancement in inorganic/organic hybrid solar cells by robust single nanocrystalline LnPxOy (Ln = Eu, Y) doping.

    Science.gov (United States)

    Jin, Xiao; Sun, Weifu; Chen, Zihan; Wei, Taihuei; Chen, Chuyang; He, Xingdao; Yuan, Yongbiao; Li, Yue; Li, Qinghua

    2014-06-11

    Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole transfer. Inorganic/organic hybrid solar cell, although still in its infancy, has attracted great interest thus far. One of the promising ways to enhance exciton dissociation or electron-hole transport is the doping of lanthanide phosphate ions. However, the underlying photophysical mechanism remains poorly understood. Herein, by applying femtosecond transient absorption spectroscopy, we successfully distinguished hot electron, less energetic electron, hole transport from electron-hole recombination. Concrete evidence has been provided that lanthanide phosphate doping improves the efficiency of both hot electron and "less energetic" electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 12.7 ps, that is, more than 60% faster than pure TiO2 acceptor. Such improvement was ascribed to the facts that the conduction band (CB) edge energy level of TiO2 has been elevated by 0.2 eV, while the valence band level almost remains unchanged, thus not only narrowing the energy offset between CB levels of TiO2 and P3HT, but also meanwhile enlarging the band gap of TiO2 itself that permits one to inhibit electron-hole recombination within TiO2. Consequently, lanthanide phosphate doped TiO2/P3HT bulk-heterojunction solar cell has been demonstrated to be a promising hybrid solar cell, and a notable power conversion efficiency of 2.91% is therefore attained. This work indicates that lanthanide compound ions can efficiently facilitate exciton generation, dissociation, and charge transport, thus enhancing photovoltaic performance.

  13. Exciton-dopant and exciton-charge interactions in electronically doped OLEDs

    International Nuclear Information System (INIS)

    Williams, Christopher; Lee, Sergey; Ferraris, John; Zakhidov, A. Anvar

    2004-01-01

    The electronic dopants, like tetrafluorocyanoquinodimethane (F 4 -TCNQ) molecules, used for p-doping of hole transport layers in organic light-emitting diodes (OLEDs) are found to quench the electroluminescence (EL) if they diffuse into the emissive layer. We observed EL quenching in OLED with F 4 -TCNQ doped N,N'-diphenyl-N'N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine hole transport layer at large dopant concentrations, >5%. To separate the effects of exciton-dopant quenching, from exciton-polaron quenching we have intentionally doped the emissive layer of (8-tris-hydroxyquinoline) with three acceptors (A) of different electron affinities: F 4 -TCNQ, TCNQ, and C 60 , and found that C 60 is the strongest EL-quencher, while F 4 -TCNQ is the weakest, contrary to intuitive expectations. The new effects of charge transfer and usually considered energy transfer from exciton to neutral (A) and charged acceptors (A - ) are compared as channels for non-radiative Ex-A decay. At high current loads the EL quenching is observed, which is due to decay of Ex on free charge carriers, hole polarons P + . We consider contributions to Ex-P + interaction by short-range charge transfer and describe the structure of microscopic charge transfer (CT)-processes responsible for it. The formation of metastable states of 'charged excitons' (predicted and studied by Agranovich et al. Chem. Phys. 272 (2001) 159) by electron transfer from a P to an Ex is pointed out, and ways to suppress non-radiative Ex-P decay are suggested

  14. Resonant transfer of excitons and quantum computation

    International Nuclear Information System (INIS)

    Lovett, Brendon W.; Reina, John H.; Nazir, Ahsan; Kothari, Beeneet; Briggs, G. Andrew D.

    2003-01-01

    Resonant energy transfer mechanisms have been observed in the sensitized luminescence of solids, and in quantum dots, molecular nanostructures, and photosynthetic organisms. We demonstrate that such mechanisms, together with the exciton-exciton binding energy shift typical of these nanostructures, can be used to perform universal quantum logic and generate quantum entanglement

  15. How exciton-vibrational coherences control charge separation in the photosystem II reaction center.

    Science.gov (United States)

    Novoderezhkin, Vladimir I; Romero, Elisabet; van Grondelle, Rienk

    2015-12-14

    In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary processes of energy and charge transfer. Based on quantitative modeling we identify the exciton-vibrational coherences observed in 2D photon echo of the photosystem II reaction center (PSII-RC). We find that the vibrations resonant with the exciton splittings can modify the delocalization of the exciton states and produce additional states, thus promoting directed energy transfer and allowing a switch between the two charge separation pathways. We conclude that the coincidence of the frequencies of the most intense vibrations with the splittings within the manifold of exciton and charge-transfer states in the PSII-RC is not occurring by chance, but reflects a fundamental principle of how energy conversion in photosynthesis was optimized.

  16. Energy and Information Transfer Via Coherent Exciton Wave Packets

    Science.gov (United States)

    Zang, Xiaoning

    Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The

  17. The relationship between the electric field induced dissociation of charge transfer (CT) excitons and the photocurrent in novel hybrid small molecular/polymeric solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Inal, Sahika; Neher, Dieter [Universitaet Potsdam (Germany). Institut fuer Physik und Astronomie; Sellinger, Alan [Institute of Materials Research and Engineering, Singapore (China)

    2010-07-01

    Complete dissociation of coulombically bound interfacial states is an ultimate step accounting for photovoltaic performance. Recent work has proposed that the emission of CT-exciton, i.e. an exciplex, is a competing process to the generation of free charges. Here, we investigated the photophysical processes in a bulk heterojunction system using a soluble poly(p-phenylenevinylene) donor and a novel small molecular electron acceptor based on Vinazene (2-vinyl-4,5-dicyanoimidazole). Recent work has shown that this blend exhibits a featureless emission, prominent at long wavelengths of the spectrum, which was attributed to a CT-exciton. We monitored the field induced dissociation of these CT-excitons by means of steady state and time resolved PL spectroscopy. Shortened decay times and reduced PL emission in blend film evidence the dissociation of the emissive intermolecular pair by the external electric field. Analyzing the dependence of the photocurrent and external quantum efficiency on the external field, the fate of the separated exciplex pairs is tackled. It is suggested that the formation of free carriers involves channels other than CT-excitons in such blends.

  18. Energy relaxation and transfer in excitonic trimer

    International Nuclear Information System (INIS)

    Herman, Pavel; Barvik, Ivan; Urbanec, Martin

    2004-01-01

    Two models describing exciton relaxation and transfer (the Redfield model in the secular approximation and Capek's model) are compared for a simple example - a symmetric trimer coupled to a phonon bath. Energy transfer within the trimer occurs via resonance interactions and coupling between the trimer and the bath occurs via modulation of the monomer energies by phonons. Two initial conditions are adopted: (1) one of higher eigenstates of the trimer is initially occupied and (2) one local site of the trimer is initially occupied. The diagonal exciton density matrix elements in the representation of eigenstates are found to be the same for both models, but this is not so for the off-diagonal density matrix elements. Only if the off-diagonal density matrix elements vanish initially (initial condition (1)), they then vanish at arbitrary times in both models. If the initial excitation is local, the off-diagonal matrix elements essentially differ

  19. Exciton transfer under dichotomic noise: GME treatment

    International Nuclear Information System (INIS)

    Barvik, I.; Warns, C.; Reineker, P.

    1995-08-01

    The exciton energy transfer between molecules in a dimer is investigated using a model, in which the influence of the phonons is described by a dichotomic stochastic process with colored noise giving rise to modulations of the molecular excitation energies. The solution of equations of motion for the density matrix of the system (obtained algebraically on a computer) is used to determine (also algebraically) the form of the memory functions which enter the Generalized Master Equation. The behaviour of the roots and their weights in the memory function is discussed thoroughly. Connection of the so called coherence time to stochastic parameters is treated analytically. Different limiting cases are investigated. (author). 14 refs, 9 figs

  20. Optical absorption of charged excitons in semiconducting carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2012-01-01

    In this article we examine the absorption coefficient of charged excitons in carbon nanotubes. We investigate the temperature and damping dependence of the absorption spectra. We show that the trion peak in the spectrum is asymmetric for temperatures greater than approximately 1 K whereas...

  1. Charging and exciton-mediated decharging of metal nanoparticles in organic semiconductor matrices

    International Nuclear Information System (INIS)

    Ligorio, Giovanni; Vittorio Nardi, Marco; Christodoulou, Christos; Florea, Ileana; Ersen, Ovidiu; Monteiro, Nicolas-Crespo; Brinkmann, Martin; Koch, Norbert

    2014-01-01

    Gold nanoparticles (Au-NPs) were deposited on the surface of n- and p-type organic semiconductors to form defined model systems for charge storage based electrically addressable memory elements. We used ultraviolet photoelectron spectroscopy to study the electronic properties and found that the Au-NPs become positively charged because of photoelectron emission, evidenced by spectral shifts to higher binding energy. Upon illumination with light that can be absorbed by the organic semiconductors, dynamic charge neutrality of the Au-NPs could be re-established through electron transfer from excitons. The light-controlled charge state of the Au-NPs could add optical addressability to memory elements

  2. Finite life time effects in the coherent exciton transfer

    International Nuclear Information System (INIS)

    Barvik, I.; Herman, P.

    1992-04-01

    The paper addresses a specific problem in the exciton transfer in molecular aggregates, namely the influence of the finite life time effects, on the memory functions entering the Generalized Master Equation (GME) which connect different sites of the system. 7 refs, 2 figs

  3. Excitonic processes at organic heterojunctions

    Science.gov (United States)

    He, ShouJie; Lu, ZhengHong

    2018-02-01

    Understanding excitonic processes at organic heterojunctions is crucial for development of organic semiconductor devices. This article reviews recent research on excitonic physics that involve intermolecular charge transfer (CT) excitons, and progress on understanding relationships between various interface energy levels and key parameters governing various competing interface excitonic processes. These interface excitonic processes include radiative exciplex emission, nonradiative recombination, Auger electron emission, and CT exciton dissociation. This article also reviews various device applications involving interface CT excitons, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells, organic rectifying diodes, and ultralow-voltage Auger OLEDs.

  4. Phonons and charge-transfer excitations in HTS superconductors

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1989-01-01

    Some of the experimental and theoretical evidence implicating phonons and charge-transfer excitations in HTS superconductors is reviewed. It is suggested that superconductivity may be driven by a synergistic interplay of (anharmonic) phonons and electronic degrees of freedom (e.g., charge fluctuations, excitons). 47 refs., 5 figs

  5. Symposium GC: Nanoscale Charge Transport in Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bommisetty, Venkat [Univ. of South Dakota, Vermillion, SD (United States)

    2011-06-23

    This paper provides a summary only and table of contents of the sessions. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  6. Charge transfer in astrophysical nebulae

    International Nuclear Information System (INIS)

    Shields, G.A.

    1990-01-01

    Charge transfer has become a standard ingredient in models of ionized nebulae, supernovae remnants and active galactic nuclei. Charge transfer rate coefficients and the physics of ionized nebulae are considered. Charge transfer is applied to the ionization structure and line emission of ionized nebulae. Photoionized nebulae observations are used to test theoretical predictions of charge transfer rates. (author)

  7. Exciton emissions in alkali cyanides

    International Nuclear Information System (INIS)

    Weid, J.P. von der.

    1979-10-01

    The emissions of Alkali Cyanides X irradiated at low temperature were measured. In addition to the molecular (Frenkel Type) exciton emissions, another emitting centre was found and tentatively assigned to a charge transfer self trapped exciton. The nature of the molecular exciton emitting state is discussed. (Author) [pt

  8. Excitons

    International Nuclear Information System (INIS)

    Kozhushner, M.

    1975-01-01

    The theory of quasi particles is explained to layman readers and the significance of the discovery of excitons is pointed out. New possibilities of the study of electron-hole interactions and of superconductivity are indicated. (L.O.)

  9. Excitons

    Energy Technology Data Exchange (ETDEWEB)

    Kozhushner, M

    1975-06-01

    The theory of quasi particles is explained to layman readers and the significance of the discovery of excitons is pointed out. New possibilities of the study of electron-hole interactions and of superconductivity are indicated.

  10. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  11. Charge separation in excitonic and bipolar solar cells - A detailed balance approach

    International Nuclear Information System (INIS)

    Kirchartz, Thomas; Rau, Uwe

    2008-01-01

    A generalized solar cell model for excitonic and classical, bipolar solar cells is developed that describes the combined transport and interaction of electrons, holes and excitons. Both, conventional inorganic solar cells as well as organic solar cells, where excitons play a dominant role for energy transport, turn out to be special cases of this model. Due to the inclusion of photon recycling effects, the approach is compatible with the principle of detailed balance and the Shockley-Queisser limit. We show how varying the interaction between excitons and charge carriers as well as varying the respective mobilities of the different species changes the operation mode of the solar cell path between excitonic and bipolar

  12. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells

    KAUST Repository

    Yi, Yuanping

    2011-01-01

    The exciton-dissociation and charge-recombination processes in donor-acceptor complexes found in α-sexithienyl/C60 and α-sexithienyl/perylenetetracarboxydiimide (PDI) solar cells are investigated by means of quantum-chemical methods. The electronic couplings and exciton-dissociation and charge-recombination rates have been evaluated for various configurations of the complexes. The results suggest that the decay of the lowest charge-transfer state to the ground state in the PDI-based devices: (i) is faster than that in the fullerene-based devices and (ii) in most cases, can compete with the dissociation of the charge-transfer state into mobile charge carriers. This faster charge-recombination process is consistent with the lower performance observed experimentally for the devices using PDI derivatives as the acceptor. © 2011 The Royal Society of Chemistry.

  13. Phosphorescence as a probe of exciton formation and energy transfer in organic light emitting diodes

    International Nuclear Information System (INIS)

    Baldo, M.; Segal, M.

    2004-01-01

    The development of highly efficient phosphorescent molecules has approximately quadrupled the quantum efficiency of organic light emitting devices (OLEDs). By harnessing triplet as well as singlet excitons, efficient molecular phosphorescence has also enabled novel studies of exciton physics in organic semiconductors. In this review, we will summarize recent progress in understanding exciton formation and energy transfer using phosphorescent molecular probes. Particular emphasis is given to two topics of current interest: energy transfer in blue phosphorescent OLEDs, and quantifying the formation ratio of singlet to triplet excitons in small-molecular weight materials and polymers. (orig.)

  14. Energy transfer of excitons between quantum wells separated by a wide barrier

    International Nuclear Information System (INIS)

    Lyo, S. K.

    2000-01-01

    We present a microscopic theory of the excitonic Stokes and anti-Stokes energy-transfer mechanisms between two widely separated unequal quantum wells with a large energy mismatch (Δ) at low temperatures (T). Several important intrinsic energy-transfer mechanisms have been examined, including dipolar coupling, real and virtual photon-exchange coupling, and over-barrier ionization of the excitons via exciton-exciton Auger processes. The transfer rate is calculated as a function of T and the center-to-center distance d between the wells. The rates depend sensitively on T for plane-wave excitons. For localized excitons, the rates depend on T only through the T dependence of the exciton localization radius. For Stokes energy transfer, the dominant energy transfer occurs through a photon-exchange interaction, which enables the excitons from the higher-energy wells to decay into free electrons and holes in the lower-energy wells. The rate has a slow dependence on d, yielding reasonable agreement with recent data from GaAs/Al x Ga 1-x As quantum wells. The dipolar rate is about an order of magnitude smaller for large d (e.g., d=175Aa) with a stronger range dependence proportional to d -4 . However, the latter can be comparable to the radiative rate for small d (e.g., d≤80Aa). For anti-Stokes transfer through exchange-type (e.g., dipolar and photon-exchange) interactions, we show that thermal activation proportional to exp(-Δ/k B T) is essential for the transfer, contradicting a recent nonactivated result based on the Fo''rster-Dexter's spectral-overlap theory. Phonon-assisted transfer yields a negligibly small rate. On the other hand, energy transfer through over-barrier ionization of excitons via Auger processes yields a significantly larger nonactivated rate which is independent of d. The result is compared with recent data

  15. Exciton shelves for charge and energy transport in third-generation quantum-dot devices

    Science.gov (United States)

    Goodman, Samuel; Singh, Vivek; Noh, Hyunwoo; Casamada, Josep; Chatterjee, Anushree; Cha, Jennifer; Nagpal, Prashant

    2014-03-01

    Quantum dots are semiconductor nanocrystallites with size-dependent quantum-confined energy levels. While they have been intensively investigated to utilize hot-carriers for photovoltaic applications, to bridge the mismatch between incident solar photons and finite bandgap of semiconductor photocells, efficient charge or exciton transport in quantum-dot films has proven challenging. Here we show development of new coupled conjugated molecular wires with ``exciton shelves'', or different energy levels, matched with the multiple energy levels of quantum dots. Using single nanoparticle and ensemble device measurements we show successful extraction and transport of both bandedge and high-energy charge carriers, and energy transport of excitons. We demonstrate using measurements of electronic density of states, that careful matching of energy states of quantum-dot with molecular wires is important, and any mismatch can generate midgap states leading to charge recombination and reduced efficiency. Therefore, these exciton-shelves and quantum dots can lead to development of next-generation photovoltaic and photodetection devices using simultaneous transport of bandedge and hot-carriers or energy transport of excitons in these nanostructured solution-processed films.

  16. Decay dynamics of neutral and charged excitonic complexes in single InAs/GaAs QDs

    International Nuclear Information System (INIS)

    Feucker, Max; Seguin, Robert; Rodt, Sven; Poetschke, Konstantin; Bimberg, Dieter

    2008-01-01

    Across the inhomogeneously broadened lineshape of a quantum dot (QD) ensemble the decay times are expected to vary since the wavefunctions and the oscillator strengths are sensitive to the actual geometry of the QD. We performed time-resolved cathodoluminescence spectroscopy of 26 different single InAs/GaAs QDs to investigate the decay dynamics of neutral and charged excitonic complexes. The largest decay rate was found for the XX + , followed by XX, X + and finally the X. We will show that the ratios of lifetimes of the different excitonic complexes are mainly governed by the number of involved recombination channels. There is excellent agreement between the measured and predicted values for the lifetime ratios of the neutral (X/XX) and the positively charged (X + /XX + ) complexes. Surprisingly the lifetime of the exciton (X) shows a much larger yet unexplained scatter than that of all the other complexes

  17. Efficient Exciton Diffusion and Resonance-Energy Transfer in Multi-Layered Organic Epitaxial Nanofibers

    DEFF Research Database (Denmark)

    Tavares, Luciana; Cadelano, Michele; Quochi, Francesco

    2015-01-01

    Multi-layered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials due to their well-defined morphology, high luminescence efficiencies, and color tunability. We resort to temperature-dependent cw and picosecond photoluminescence (PL......) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multi-layered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T), serving as exciton donor and acceptor material, respectively. The high probability for RET processes...... is confirmed by Quantum Chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P...

  18. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  19. Electrical control of charged carriers and excitons in atomically thin materials

    Science.gov (United States)

    Wang, Ke; De Greve, Kristiaan; Jauregui, Luis A.; Sushko, Andrey; High, Alexander; Zhou, You; Scuri, Giovanni; Taniguchi, Takashi; Watanabe, Kenji; Lukin, Mikhail D.; Park, Hongkun; Kim, Philip

    2018-02-01

    Electrical confinement and manipulation of charge carriers in semiconducting nanostructures are essential for realizing functional quantum electronic devices1-3. The unique band structure4-7 of atomically thin transition metal dichalcogenides (TMDs) offers a new route towards realizing novel 2D quantum electronic devices, such as valleytronic devices and valley-spin qubits8. 2D TMDs also provide a platform for novel quantum optoelectronic devices9-11 due to their large exciton binding energy12,13. However, controlled confinement and manipulation of electronic and excitonic excitations in TMD nanostructures have been technically challenging due to the prevailing disorder in the material, preventing accurate experimental control of local confinement and tunnel couplings14-16. Here we demonstrate a novel method for creating high-quality heterostructures composed of atomically thin materials that allows for efficient electrical control of excitations. Specifically, we demonstrate quantum transport in the gate-defined, quantum-confined region, observing spin-valley locked quantized conductance in quantum point contacts. We also realize gate-controlled Coulomb blockade associated with confinement of electrons and demonstrate electrical control over charged excitons with tunable local confinement potentials and tunnel couplings. Our work provides a basis for novel quantum opto-electronic devices based on manipulation of charged carriers and excitons.

  20. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    Charge photocurrent generation is a key process in solar energy conversion systems. Effective dissociation of the photo-generated electron-hole pairs (excitons) has a strong influence on the efficiency of the organic solar cells. Charge dissociation takes place at the donor/acceptor interface via...... which the maximum open-circuit voltage can be estimated, and further can be used in the modeling and optimization of the OPV devices. [1] C. Deibe, T. Strobe, and V. Dyakonov, “Role of the charge transfer state in organic donor-acceptor solar cells,” Adv. Mater., vol. 22, pp. 4097–4111, 2010. [2] K...... charge transfer (CT) excitons, which is Coulombically bound interfacial electron- hole pairs residing at the donor/acceptor heterojunctions. The CT state represents an intermediate state between the exciton dissociation and recombination back to the ground state. Since the recombination of photo...

  1. Electrical control of optical orientation of neutral and negatively charged excitons in an n -type semiconductor quantum well

    Science.gov (United States)

    Dzhioev, R. I.; Korenev, V. L.; Lazarev, M. V.; Sapega, V. F.; Gammon, D.; Bracker, A. S.

    2007-01-01

    We report electric field induced increase of spin orientation of negatively charged excitons (trions) localized in n -type GaAs/AlGaAs quantum well. Under resonant excitation of free neutral heavy-hole excitons, the polarization of trions increases dramatically with electrical injection of electrons. The polarization enhancement correlates strongly with trion/exciton luminescence intensity ratio. This effect results from a very efficient trapping of free neutral excitons by the quantum well interfacial fluctuations (“natural” quantum dots) containing resident electrons.

  2. Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C 60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry

    KAUST Repository

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2009-01-01

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C60 heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation

  3. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites.

    Science.gov (United States)

    Gélvez-Rueda, María C; Hutter, Eline M; Cao, Duyen H; Renaud, Nicolas; Stoumpos, Constantinos C; Hupp, Joseph T; Savenije, Tom J; Kanatzidis, Mercouri G; Grozema, Ferdinand C

    2017-11-30

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron-hole pairs is of prime importance. In this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. We demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations.

  4. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites

    International Nuclear Information System (INIS)

    Gélvez-Rueda, María C.; Hutter, Eline M.; Cao, Duyen H.; Renaud, Nicolas; Stoumpos, Constantinos C.

    2017-01-01

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron–hole pairs is of prime importance. Here in this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. We demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations.

  5. Energy and charge transfer in ionized argon coated water clusters

    International Nuclear Information System (INIS)

    Kočišek, J.; Lengyel, J.; Fárník, M.; Slavíček, P.

    2013-01-01

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H 2 O) n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar + and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar + * and water opens leading to new products Ar n H + and (H 2 O) n H + . On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H 2 O) n H 2 2+ and (H 2 O) n 2+ ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent

  6. Attosecond Electron Processes in Materials: Excitons, Plasmons, and Charge Dynamics

    Science.gov (United States)

    2015-05-19

    focused using a f=1.5 m lens into a 250 micron hollow core fiber (HCF) filled with neon gas at atmospheric pressure to stretch the pulse spectrum from... insulator to metal transition. Introduction: The goal of this work was to understand the generation, transport, and manipulation of electronic charge...chemically sensitive probe pulse utilizing specific core level transitions in atoms that are part of a material under study. The measurements follow

  7. Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry.

    Science.gov (United States)

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2009-11-04

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C(60) heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C(60) complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C(60)-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C(60) interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C(60) bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices.

  8. Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C 60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry

    KAUST Repository

    Yi, Yuanping

    2009-11-04

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C60 heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C60 complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C60-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C60 interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C60 bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices. © 2009 American Chemical Society.

  9. Triplet energy transfer and triplet exciton recycling in singlet fission sensitized organic heterojunctions

    Science.gov (United States)

    Hamid, Tasnuva; Yambem, Soniya D.; Crawford, Ross; Roberts, Jonathan; Pandey, Ajay K.

    2017-08-01

    Singlet exciton fission is a process where an excited singlet state splits into two triplets, thus leading to generation of multiple excitons per absorbed photon in organic semiconductors. Herein, we report a detailed exciton management approach for multiexciton harvesting over a broadband region of the solar spectrum in singlet fission sensitized organic photodiodes. Through systematic studies on the model cascade of pentacene/rubrene/C60, we found that efficient photocurrent generation from pentacene can still occur despite the presence of a >10nm thick interlayer of rubrene in between the pentacene/C60 heterojunction. Our results show that thin rubrene interlayers of thickness pentacene despite having a reasonably thick rubrene interlayer, that too with higher triplet energy (T1=1.12 eV) than pentacene (T1= 0.86 eV), makes its operation a rather interesting result. We discuss the role of rubrene interlayer film discontinuity, triplet exciton reflection from rubrene interlayer and triplet energy transfer from rubrene to pentacene layer followed by diffusion of triplet excitons through rubrene as plausible mechanisms that would enable triplet excitons from pentacene to generate significant photocurrent in a multilayer organic heterojunction.

  10. Charge transfer state in DBP:C70 organic solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Benduhn, Johannes; Spoltore, Donato

    -acceptor interface via delocalized charge-transfer (CT) states, which represents an intermediate state between the exciton dissociation and recombination back to the ground state. In this work we perform the electroluminescence (EL) created by bimolecular free career recombination and sensitive external quantum...

  11. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    Science.gov (United States)

    Goodman, Samuel M.; Noh, Hyunwoo; Singh, Vivek; Cha, Jennifer N.; Nagpal, Prashant

    2015-02-01

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  12. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Samuel M.; Singh, Vivek [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Noh, Hyunwoo [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering Program and Department of Nanoengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093 (United States); Cha, Jennifer N. [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering Program and Department of Nanoengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Nagpal, Prashant, E-mail: pnagpal@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Renewable and Sustainable Energy Institute, University of Colorado Boulder, 2445 Kittredge Loop, Boulder, Colorado 80309 (United States)

    2015-02-23

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  13. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    International Nuclear Information System (INIS)

    Goodman, Samuel M.; Singh, Vivek; Noh, Hyunwoo; Cha, Jennifer N.; Nagpal, Prashant

    2015-01-01

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers

  14. Pressure-Dependent Light Emission of Charged and Neutral Excitons in Monolayer MoSe 2

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xinpeng [State; Li, Fangfei [State; Lin, Jung-Fu [Department; Gong, Yuanbo [State; Huang, Xiaoli [State; Huang, Yanping [State; Han, Bo [State; Zhou, Qiang [State; Cui, Tian [State

    2017-07-19

    Tailoring the excitonic properties in two-dimensional monolayer transition metal dichalcogenides (TMDs) through strain engineering is an effective means to explore their potential applications in optoelectronics and nanoelectronics. Here we report pressure-tuned photon emission of trions and excitons in monolayer MoSe2 via a diamond anvil cell (DAC) through photoluminescence measurements and theoretical calculations. Under quasi-hydrostatic compressive strain, our results show neutral (X0) and charged (X–) exciton emission of monolayer MoSe2 can be effectively tuned by alcohol mixture vs inert argon pressure transmitting media (PTM). During this process, X– emission undergoes a continuous blue shift until reaching saturation, while X0 emission turns up splitting. The pressure-dependent charging effect observed in alcohol mixture PTM results in the increase of the X– exciton component and facilitates the pressure-tuned emission of X– excitons. This substantial tunability of X– and X0 excitons in MoSe2 can be extended to other 2D TMDs, which holds potential for developing strained and optical sensing devices.

  15. Influence of image charge effect on exciton fine structure in an organic-inorganic quantum well material

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Hidetsugu; Kunugita, Hideyuki; Ema, Kazuhiro [Department of Physics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Sato, Mikio; Takeoka, Yuko [Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2013-12-04

    We have investigated experimentally excitonic properties in organic-inorganic hybrid multi quantum well crystals, (C{sub 4}H{sub 9}NH{sub 3}){sub 2}PbBr{sub 4} and (C{sub 6}H{sub 5}−C{sub 2}H{sub 4}NH{sub 3}){sub 2}PbBr{sub 4}, by measuring photoluminescence, reflectance, photoluminescence excitation spectra. In these materials, the excitonic binding energies are enhanced not only by quantum confinement effect (QCE) but also by image charge effect (ICE), since the dielectric constant of the barrier layers is much smaller than that of the well layers. By comparing the 1s-exciton and 2s-exciton energies, we have investigated the influence of ICE with regard to the difference of the Bohr radius.

  16. Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure.

    Science.gov (United States)

    Li, Han; Zheng, Xin; Liu, Yu; Zhang, Zhepeng; Jiang, Tian

    2018-01-25

    The idea of fabricating artificial solids with band structures tailored to particular applications has long fascinated condensed matter physicists. Heterostructure (HS) construction is viewed as an effective and appealing approach to engineer novel electronic properties in two dimensional (2D) materials. Different from common 2D/2D heterojunctions where energy transfer is rarely observed, CsPbBr 3 quantum dots (0D-QDs) interfaced with 2D materials have become attractive HSs for exploring the physics of charge transfer and energy transfer, due to their superior optical properties. In this paper, a new 0D/2D HS is proposed and experimentally studied, making it possible to investigate both light utilization and energy transfer. Specifically, this HS is constructed between monolayer WS 2 and CsPbBr 3 QDs, and exhibits a hybrid band alignment. The dynamics of energy transfer within the investigated 0D/2D HS is characterized by femtosecond transient absorption spectrum (TAS) measurements. The TAS results reveal that ultrafast energy transfer caused by optical excitation is observed from CsPbBr 3 QDs to the WS 2 layer, which can increase the exciton fluence within the WS 2 layer up to 69% when compared with pristine ML WS 2 under the same excitation fluence. Moreover, the formation and dynamics of interlayer excitons have also been investigated and confirmed in the HS, with a calculated recombination time of 36.6 ps. Finally, the overall phenomenological dynamical scenario for the 0D/2D HS is established within the 100 ps time region after excitation. The techniques introduced in this work can also be applied to versatile optoelectronic devices based on low dimensional materials.

  17. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons

    Science.gov (United States)

    Tongay, Sefaattin; Suh, Joonki; Ataca, Can; Fan, Wen; Luce, Alexander; Kang, Jeong Seuk; Liu, Jonathan; Ko, Changhyun; Raghunathanan, Rajamani; Zhou, Jian; Ogletree, Frank; Li, Jingbo; Grossman, Jeffrey C.; Wu, Junqiao

    2013-01-01

    Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering. PMID:24029823

  18. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  19. Impact of undamped and damped intramolecular vibrations on the efficiency of photosynthetic exciton energy transfer

    Science.gov (United States)

    Juhász, Imre Benedek; Csurgay, Árpád I.

    2018-04-01

    In recent years, the role of molecular vibrations in exciton energy transfer taking place during the first stage of photosynthesis attracted increasing interest. Here, we present a model formulated as a Lindblad-type master equation that enables us to investigate the impact of undamped and especially damped intramolecular vibrational modes on the exciton energy transfer, particularly its efficiency. Our simulations confirm the already reported effects that the presence of an intramolecular vibrational mode can compensate the energy detuning of electronic states, thus promoting the energy transfer; and, moreover, that the damping of such a vibrational mode (in other words, vibrational relaxation) can further enhance the efficiency of the process by generating directionality in the energy flow. As a novel result, we show that this enhancement surpasses the one caused by pure dephasing, and we present its dependence on various system parameters (time constants of the environment-induced relaxation and excitation processes, detuning of the electronic energy levels, frequency of the intramolecular vibrational modes, Huang-Rhys factors, temperature) in dimer model systems. We demonstrate that vibrational-relaxation-enhanced exciton energy transfer (VREEET) is robust against the change of these characteristics of the system and occurs in wide ranges of the investigated parameters. With simulations performed on a heptamer model inspired by the Fenna-Matthews-Olson (FMO) complex, we show that this mechanism can be even more significant in larger systems at T = 300 K. Our results suggests that VREEET might be prevalent in light-harvesting complexes.

  20. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, Sabine [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany); Tong, Ning-Hua [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, 76128 Karlsruhe (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany)

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  1. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties.

    Science.gov (United States)

    Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  2. Employing exciton transfer molecules to increase the lifetime of phosphorescent red organic light emitting diodes

    Science.gov (United States)

    Lindla, Florian; Boesing, Manuel; van Gemmern, Philipp; Bertram, Dietrich; Keiper, Dietmar; Heuken, Michael; Kalisch, Holger; Jansen, Rolf H.

    2011-04-01

    The lifetime of phosphorescent red organic light emitting diodes (OLEDs) is investigated employing either N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), TMM117, or 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) as hole-conducting host material (mixed with an electron conductor). All OLED (organic vapor phase deposition-processed) show similar efficiencies around 30 lm/W but strongly different lifetimes. Quickly degrading OLED based on TCTA can be stabilized by doping exciton transfer molecules [tris-(phenyl-pyridyl)-Ir (Ir(ppy)3)] to the emission layer. At a current density of 50 mA/cm2 (12 800 cd/m2), a lifetime of 387 h can be achieved. Employing exciton transfer molecules is suggested to prevent the degradation of the red emission layer in phosphorescent white OLED.

  3. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    International Nuclear Information System (INIS)

    Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong; Yu Yunjin; Cao Jianshu

    2012-01-01

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.

  4. Excitonic energy transfer in light-harvesting complexes in purple bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jun; Sun Kewei; Zhao Yang; Lee, Chee Kong [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yu Yunjin [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); College of Physics Science and Technology, Shenzhen University, Guangdong 518060 (China); Cao Jianshu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2012-06-28

    Two distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4 ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.

  5. Charge migration and charge transfer in molecular systems

    Directory of Open Access Journals (Sweden)

    Hans Jakob Wörner

    2017-11-01

    Full Text Available The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.

  6. Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures

    NARCIS (Netherlands)

    Dusanowski, L.; Syperek, M.; Marynski, A.; Li, L.H.; Misiewicz, J.; Höfling, S.; Kamp, M.; Fiore, A.; Sek, G.

    2015-01-01

    We demonstrate a non-classical photon emitter at near infrared wavelength based on a single (In,Ga)As/GaAs epitaxially grown columnar quantum dot. Charged exciton complexes have been identified in magneto-photoluminescence. Photon auto-correlation histograms from the recombination of a trion

  7. Spontaneous charged lipid transfer between lipid vesicles.

    Science.gov (United States)

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  8. Spatial propagation of excitonic coherence enables ratcheted energy transfer

    OpenAIRE

    Hoyer, Stephan; Ishizaki, Akihito; Whaley, K. Birgitta

    2011-01-01

    Experimental evidence shows that a variety of photosynthetic systems can preserve quantum beats in the process of electronic energy transfer, even at room temperature. However, whether this quantum coherence arises in vivo and whether it has any biological function have remained unclear. Here we present a theoretical model that suggests that the creation and recreation of coherence under natural conditions is ubiquitous. Our model allows us to theoretically demonstrate a mechanism for a ratch...

  9. Dissociative electron attachment and charge transfer in condensed matter

    International Nuclear Information System (INIS)

    Bass, A.D.; Sanche, L.

    2003-01-01

    Experiments using energy-selected beams of electrons incident from vacuum upon thin vapour deposited solids show that, as in the gas-phase, scattering cross sections at low energies are dominated by the formation of temporary negative ions (or resonances) and that molecular damage may be effected via dissociative electron attachment (DEA). Recent results also show that charge transfer between anionic states of target molecules and their environment is often crucial in determining cross sections for electron driven processes. Here, we review recent work from our laboratory, in which charge transfer is observed. For rare gas solids, electron exchange between the electron-exciton complex and either a metal substrate or co-adsorbed molecule enhances the desorption of metastable atoms and/or molecular dissociation. We discuss how transient electron capture by surface electron states of a substrate and subsequent electron transfer to a molecular adsorbate enhances the effective cross sections for DEA. We also consider the case of DEA to CF 2 Cl 2 condensed on water and ammonia ices, where electron exchange between pre-solvated electron states of ice and transient molecular anions can also increase DEA cross sections. Electron transfer from molecular resonances into pre-solvated electron states of ice is also discussed

  10. Dynamics of Charged Excitons and Biexcitons in CsPbBr3 Perovskite Nanocrystals Revealed by Femtosecond Transient-Absorption and Single-Dot Luminescence Spectroscopy.

    Science.gov (United States)

    Yarita, Naoki; Tahara, Hirokazu; Ihara, Toshiyuki; Kawawaki, Tokuhisa; Sato, Ryota; Saruyama, Masaki; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-04-06

    Metal-halide perovskite nanocrystals (NCs) are promising photonic materials for use in solar cells, light-emitting diodes, and lasers. The optoelectronic properties of these devices are determined by the excitons and exciton complexes confined in their NCs. In this study, we determined the relaxation dynamics of charged excitons and biexcitons in CsPbBr 3 NCs using femtosecond transient-absorption (TA), time-resolved photoluminescence (PL), and single-dot second-order photon correlation spectroscopy. Decay times of ∼40 and ∼200 ps were obtained from the TA and PL decay curves for biexcitons and charged excitons, respectively, in NCs with an average edge length of 7.7 nm. The existence of charged excitons even under weak photoexcitation was confirmed by the second-order photon correlation measurements. We found that charged excitons play a dominant role in luminescence processes of CsPbBr 3 NCs. Combining different spectroscopic techniques enabled us to clarify the dynamical behaviors of excitons, charged excitons, and biexcitons.

  11. Modelling excitonic energy transfer in the photosynthetic unit of purple bacteria

    International Nuclear Information System (INIS)

    Linnanto, J.M.; Korppi-Tommola, J.E.I.

    2009-01-01

    Molecular mechanics and quantum chemical configuration interaction calculations in combination with exciton theory were used to predict vibronic energies and eigenstates of light harvesting antennae and the reaction centre and to evaluate excitation energy transfer rates in the photosynthetic unit of purple bacteria. Excitation energy transfer rates were calculated by using the transition matrix formalism and exciton basis sets of the interacting antenna systems. Energy transfer rates of 600-800 fs from B800 ring to B850 ring in the LH2 antenna, 3-10 ps from LH2 to LH2 antenna, 2-8 ps from LH2 to LH1 antenna and finally 30-70 ps from LH1 to the reaction centre were obtained. Dependencies of energy transfer rates on lateral and vertical inter-complex distances were determined. The results indicate that a fair amount of spatial heterogeneity of antenna complexes in the photosynthetic membrane is tolerated without much loss in excitation energy transfer efficiency

  12. Modelling excitonic energy transfer in the photosynthetic unit of purple bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Linnanto, J.M. [Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyvaeskylae, Jyvaeskylae (Finland)], E-mail: juha.m.linnanto@jyu.fi; Korppi-Tommola, J.E.I. [Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyvaeskylae, Jyvaeskylae (Finland)

    2009-02-23

    Molecular mechanics and quantum chemical configuration interaction calculations in combination with exciton theory were used to predict vibronic energies and eigenstates of light harvesting antennae and the reaction centre and to evaluate excitation energy transfer rates in the photosynthetic unit of purple bacteria. Excitation energy transfer rates were calculated by using the transition matrix formalism and exciton basis sets of the interacting antenna systems. Energy transfer rates of 600-800 fs from B800 ring to B850 ring in the LH2 antenna, 3-10 ps from LH2 to LH2 antenna, 2-8 ps from LH2 to LH1 antenna and finally 30-70 ps from LH1 to the reaction centre were obtained. Dependencies of energy transfer rates on lateral and vertical inter-complex distances were determined. The results indicate that a fair amount of spatial heterogeneity of antenna complexes in the photosynthetic membrane is tolerated without much loss in excitation energy transfer efficiency.

  13. Non-Markovian reduced dynamics of ultrafast charge transfer at an oligothiophene–fullerene heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Keith H., E-mail: keith.hughes@bangor.ac.uk [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Cahier, Benjamin [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martinazzo, Rocco [Dipartimento di Chimica Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Tamura, Hiroyuki [WPI-Advanced Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany)

    2014-10-17

    Highlights: • Quantum dynamical study of exciton dissociation at a heterojunction interface. • The non-Markovian quantum dynamics involves a highly structured spectral density. • Spectral density is reconstructed from an effective mode transformation of the Hamiltonian. • The dynamics is studied using the hierarchical equations of motion approach. • It was found that the temperature has little effect on the charge transfer. - Abstract: We extend our recent quantum dynamical study of the exciton dissociation and charge transfer at an oligothiophene–fullerene heterojunction interface (Tamura et al., 2012) [6] by investigating the process using the non-perturbative hierarchical equations of motion (HEOM) approach. Based upon an effective mode reconstruction of the spectral density the effect of temperature on the charge transfer is studied using reduced density matrices. It was found that the temperature had little effect on the charge transfer and a coherent dynamics persists over the first few tens of femtoseconds, indicating that the primary charge transfer step proceeds by an activationless pathway.

  14. Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene-MoS2 van der Waals Heterojunction.

    Science.gov (United States)

    Bettis Homan, Stephanie; Sangwan, Vinod K; Balla, Itamar; Bergeron, Hadallia; Weiss, Emily A; Hersam, Mark C

    2017-01-11

    van der Waals heterojunctions between two-dimensional (2D) layered materials and nanomaterials of different dimensions present unique opportunities for gate-tunable optoelectronic devices. Mixed-dimensional p-n heterojunction diodes, such as p-type pentacene (0D) and n-type monolayer MoS 2 (2D), are especially interesting for photovoltaic applications where the absorption cross-section and charge transfer processes can be tailored by rational selection from the vast library of organic molecules and 2D materials. Here, we study the kinetics of excited carriers in pentacene-MoS 2 p-n type-II heterojunctions by transient absorption spectroscopy. These measurements show that the dissociation of MoS 2 excitons occurs by hole transfer to pentacene on the time scale of 6.7 ps. In addition, the charge-separated state lives for 5.1 ns, up to an order of magnitude longer than the recombination lifetimes from previously reported 2D material heterojunctions. By studying the fractional amplitudes of the MoS 2 decay processes, the hole transfer yield from MoS 2 to pentacene is found to be ∼50%, with the remaining holes undergoing trapping due to surface defects. Overall, the ultrafast charge transfer and long-lived charge-separated state in pentacene-MoS 2 p-n heterojunctions suggest significant promise for mixed-dimensional van der Waals heterostructures in photovoltaics, photodetectors, and related optoelectronic technologies.

  15. Charge transfer in ionic systems

    International Nuclear Information System (INIS)

    Bacchus-Montabonel, M.C.; Tergiman, Y.S.; Vaeck, N.; Baloitcha, E.; Desouter-Lecomte, M.

    2002-01-01

    Charge transfer involving multiply charged ions in collision with atomic or molecular targets are determinant processes in controlled thermonuclear fusion research and astrophysical plasma. In such processes, an electron is generally captured in a excited state of the ion, followed by line emission. The observation of line intensities provides important information on the electron temperature, density and spacial distributions in the emitting region of the plasma. From a theoretical point of view, different approaches may be used with regard to the collisional energy range of the process. A semi-classical method is currently used at keV energies, but the description of very low-velocity processes requires a complete quantum mechanical treatment of the dynamics of both electrons and nuclei. The first approach extensively used is the resolution of the stationary close-coupling equations, but we have analyzed recently the efficiency of a time-dependent wave packet method which provides a clear and physical insight into the dynamics of the processes and may be particularly interesting for polyatomic systems since it allows the possibility of developing a fully quantal mechanical treatment for some degrees of freedom, the other ones being treated classically. The keV energy range treatment is presented on two examples pointing out the case of complex ion-atom collision systems, as well as the differences between ion-atom and ion-molecule mechanisms. In connection with translation energy spectroscopy experiments of McLaughlin et al in the 4-28 keV impact energy range, we present a complete ab-initio theoretical approach of the N 4+ (2s) 2 S + He system taking into account both single and double electron capture channels. This is an extremely complex collisional system which involves numerous channels with short range interactions and a very intricate interaction region may be observed for interatomic distances around R = 3.5 a.u.. In agreement with experimental data, the

  16. Electrical control of truly two-dimensional neutral and charged excitons in monolayer MoSe2

    Science.gov (United States)

    Ross, Jason; Wu, Sanfeng; Yu, Hongyi; Ghimire, Nirmal; Jones, Aaron; Aivazian, Grant; Yan, Jiaqiang; Mandrus, David; Xiao, Di; Xiao, Di; Xu, Xiaodong

    2013-03-01

    Monolayer transition metal dichalcogenides (TMDs) have emerged as ideal 2D semiconductors with valley and spin polarized excitations expected to enable true valley-tronics. Here we investigate MoSe2, a TMD which has yet to be characterized in the monolayer limit. Specifically, we examine excitons and trions (their singly charged counterparts) in the ultimate 2D limit. Utilizing high quality exfoliated MoSe2 monolayers, we report the observation and electrostatic tunability of positively charged (X +) , neutral (Xo), and negatively charged (X-) excitons via photoluminescence in FETs. The trion charging energy is large (30 meV), enhanced by strong confinement and heavy effective masses, while the linewidth is narrow (5 meV) at temperatures below 55 K. This is greater spectral contrast than in any known quasi-2D system. Further, the charging energies for X + and X- to are nearly identical implying the same effective mass for electrons and holes, which supports their recent description as massive Dirac fermions. This work demonstrates that monolayer MoSe2 is an ultimate 2D semiconductor opening the door for the investigation of truly 2D exciton physics while laying the ground work necessary to begin valley-spin polarization studies. Support: US DoE, BES, Division of MSE. HY and WY supported by Research Grant Council of Hong Kong

  17. Charge orders in organic charge-transfer salts

    International Nuclear Information System (INIS)

    Kaneko, Ryui; Valentí, Roser; Tocchio, Luca F; Becca, Federico

    2017-01-01

    Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ -(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order. (paper)

  18. Photoinduced partial charge transfer between conjugated polymer and fullerene in solutions

    International Nuclear Information System (INIS)

    Lin Hongzhen; Weng Yufeng; Huang Hongmin; He Qingguo; Zheng Min; Bai Fenglian

    2004-01-01

    Photoinduced charge transfer between a conjugated polymer and C 60 and the related processes were investigated in dilute solutions. The substantial fluorescence quenching is correlated with the efficient exciton diffusion within the polymer chains, according to which a sphere-of-action mechanism is proposed. An emissive exciplex was found formed between the conjugated polymer and fullerene in a nonpolar solvent, indicating the occurrence of a photoinduced partial charge transfer process. The low-energy sites in the polymer are believed to play a crucial role in the partial charge transfer. The asymmetry of the exciplex provides a method for evaluating the tendency of photoinduced charge separation between the donor and the acceptor. This method allows screening candidates for photovoltaic applications

  19. Symmetric charge transfer cross section of uranium

    International Nuclear Information System (INIS)

    Shibata, Takemasa; Ogura, Koichi

    1995-03-01

    Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d 3/2 electron in the U atom transfers into the d-electron site of U + ( 4 I 9/2 ) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10 -15 cm 2 ) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U + ion. Charge transfer cross section between U + in the first excited state (289 cm -1 ) and U in the ground state was also obtained. (author)

  20. Single-crystal charge transfer interfaces for efficient photonic devices (Conference Presentation)

    Science.gov (United States)

    Alves, Helena; Pinto, Rui M.; Maçôas, Ermelinda M. S.; Baleizão, Carlos; Santos, Isabel C.

    2016-09-01

    Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior performance when compared with materials in a more disordered form. Combining crystals of two different conjugated materials as even enable a new 2D electronic system. However, the use of organic single crystals in devices is still limited to a few applications, such as field-effect transistors. In 2013, we presented the first system composed of single-crystal charge transfer interfaces presenting photoconductivity behaviour. The system composed of rubrene and TCNQ has a responsivity reaching 1 A/W, corresponding to an external quantum efficiency of nearly 100%. A similar approach, with a hybrid structure of a PCBM film and rubrene single crystal also presents high responsivity and the possibility to extract excitons generated in acceptor materials. This strategy led to an extended action towards the near IR. By adequate material design and structural organisation of perylediimides, we demonstrate that is possible to improve exciton diffusion efficiency. More recently, we have successfully used the concept of charge transfer interfaces in phototransistors. These results open the possibility of using organic single-crystal interfaces in photonic applications.

  1. Bond charges and electronic charge transfer in ternary semiconductors

    International Nuclear Information System (INIS)

    Pietsch, U.

    1986-01-01

    By means of a simple molecule-theoretic model of 'linear superposition of two-electron molecules' the bond charges between nearest neighbours and the effective charges of ions are calculated for ternary zinc-blende structure alloys as well as chalcopyrite semiconductors. Taking into account both, the charge transfer among the ions caused by the differences of electronegativities of atoms used and between the bonds created by the internal stress of the lattice a nearly unvaried averaged bond charge amount of the alloy is found, but rather dramatically changed local bond charge parameters in comparison with the respective values of binary compounds used. This fact should influence the noncentral force interaction in such semiconductors. (author)

  2. From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine-Substituted Polymer Donors

    KAUST Repository

    Gorenflot, Julien

    2017-09-28

    An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices\\' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.

  3. From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine-Substituted Polymer Donors

    KAUST Repository

    Gorenflot, Julien; Paulke, Andreas; Piersimoni, Fortunato; Wolf, Jannic Sebastian; Kan, Zhipeng; Cruciani, Federico; El Labban, Abdulrahman; Neher, Dieter; Beaujuge, Pierre; Laquai, Fré dé ric

    2017-01-01

    An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.

  4. Conformation-related exciton localization and charge-pair formation in polythiophenes: ensemble and single-molecule study.

    Science.gov (United States)

    Sugimoto, Toshikazu; Habuchi, Satoshi; Ogino, Kenji; Vacha, Martin

    2009-09-10

    We study conformation-dependent photophysical properties of polythiophene (PT) by molecular dynamics simulations and by ensemble and single-molecule optical experiments. We use a graft copolymer consisting of a polythiophene backbone and long polystyrene branches and compare its properties with those obtained on the same polythiophene derivative without the side chains. Coarse-grain molecular dynamics simulations show that in a poor solvent, the PT without the side chains (PT-R) forms a globulelike conformation in which distances between any two conjugated segments on the chain are within the Forster radius for efficient energy transfer. In the PT with the polystyrene branches (PT-PS), the polymer main PT chain retains an extended coillike conformation, even in a poor solvent, and the calculated distances between conjugated segments favor energy transfer only between a few neighboring chromophores. The theoretical predictions are confirmed by measurements of fluorescence anisotropy and fluorescence blinking of the polymers' single chains. High anisotropy ratios and two-state blinking in PT-R are due to localization of the exciton on a single conjugated segment. These signatures of exciton localization are absent in single chains of PT-PS. Electric-field-induced quenching measured as a function of concentration of PT dispersed in an inert matrix showed that in well-isolated chains of PT-PS, the exciton dissociation is an intrachain process and that aggregation of the PT-R chains causes an increase in quenching due to the onset of interchain interactions. Measurements of the field-induced quenching on single chains indicate that in PT-R, the exciton dissociation is a slower process that takes place only after the exciton is localized on one conjugated segment.

  5. Pentacene Excitons in Strong Electric Fields.

    Science.gov (United States)

    Kuhnke, Klaus; Turkowski, Volodymyr; Kabakchiev, Alexander; Lutz, Theresa; Rahman, Talat S; Kern, Klaus

    2018-02-05

    Electroluminescence spectroscopy of organic semiconductors in the junction of a scanning tunneling microscope (STM) provides access to the polarizability of neutral excited states in a well-characterized molecular geometry. We study the Stark shift of the self-trapped lowest singlet exciton at 1.6 eV in a pentacene nanocrystal. Combination of density functional theory (DFT) and time-dependent DFT (TDDFT) with experiment allows for assignment of the observation to a charge-transfer (CT) exciton. Its charge separation is perpendicular to the applied field, as the measured polarizability is moderate and the electric field in the STM junction is strong enough to dissociate a CT exciton polarized parallel to the applied field. The calculated electric-field-induced anisotropy of the exciton potential energy surface will also be of relevance to photovoltaic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ultrafast endothermic transfer of non-radiative exciplex state to radiative excitons in polyfluorene random copolymer for blue electroluminescence

    Science.gov (United States)

    Moghe, Dhanashree A.; Dey, Amrita; Johnson, Kerr; Lu, L.-P.; Friend, Richard H.; Kabra, Dinesh

    2018-04-01

    We report a blue-emitting random copolymer (termed modified Aryl-F8) consisting of three repeat units of polydioctylfluorene (F8), Aryl-polydioctylfluorene (Aryl-F8), and an aromatic amine comonomer unit, poly(bis-N,Ν'-(4-butylphenyl)-bis-N,N'-phenyl-1,4 phenylenediamine) chemically linked to get an improved charge carrier balance without compromising on the photoluminescence (PL) quantum yield with respect to the Aryl-F8 homo-polymer. The measured photoluminescence quantum efficiency (˜70%) of the blue-emitting polymer is comparable to or greater than the individual monomer units. The time resolved PL spectra from the modified Aryl-F8 are similar to those of Arylated-poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4 phenylenediamine) (PFB) even at a time scale of 100-250 ps, indicating an ultrafast energy transfer from the (Aryl-F8 or F8):Arylated-PFB interface to Arylated-PFB, i.e., endothermic transfer of non-radiative exciplex to a radiative molecular exciton. Furthermore, the presence of non-radiative exciplex is confirmed by the photoluminescence decay profile and temperature dependent PL spectra. The luminance efficiency achieved for the modified Aryl-F8 polymer light-emitting diodes is ˜11 cd A-1 with an external quantum efficiency (EQE) of ˜4.5%, whereas it is 0.05 cd/A with an EQE of ˜0.025% for Aryl-F8. Almost two orders of higher efficiency is achieved due to the improved charge carrier balance from the random copolymer without compromising on the photoluminescence yield.

  7. Triplet exciton diffusion in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Anna [Department of Physics, University of Bayreuth (Germany)

    2010-07-01

    Efficient triplet exciton emission has allowed improved operation of organic light-emitting diodes (LEDs). To enhance the device performance, it is necessary to understand what governs the motion of triplet excitons through the organic semiconductor. We use a series of poly(p-phenylene)-type conjugated polymers and oligomers of variable degree of molecular distortion (i.e. polaron formation) and energetic disorder as model systems to study the Dexter-type triplet exciton diffusion in thin films. We show that triplet diffusion can be quantitatively described in the framework of a Holstein small polaron model (Marcus theory) that is extended to include contributions from energetic disorder. The model predicts a tunnelling process at low temperatures followed by a thermally activated hopping process above a transition temperature. In contrast to charge transfer, the activation energy required for triplet exciton transfer can be deduced from the optical spectra. We discuss the implications for device architecture.

  8. Charge transfer reactions in Xe plasma expansion

    International Nuclear Information System (INIS)

    Jiao, C. Q.; Garscadden, A.; Ganguly, B. N.

    2007-01-01

    Charge transfer reactions of fast Xe ions with hydrocarbons including methane (CH 4 ), ethene (C 2 H 4 ), and propane (C 3 H 8 ) are studied by adding these hydrocarbon gases into a cross flowing Xe plasma expansion. Branching ratios and relative reaction rates for the charge transfers of fast Xe + with each of the three hydrocarbon gases are measured under different rf powers of the inductively coupled Xe discharge. For CH 4 /Xe system, we find that fast Xe + reacts readily with CH 4 generating CH 4 + and CH 3 + in a ratio of 1:0.56, with an estimated rate coefficient of (2.3±0.3)x10 -10 cm 3 /s at 75 W rf power which slowly increases to (2.9±0.3)x10 -10 cm 3 /s at 250 W (error bars reflect only the uncertainties due to the unknown extent of the ion recombination that follows the charge transfer reaction). These observed charge transfer reactions are made possible by the kinetically excited Xe ions produced by free expansion of the plasma. For the C 2 H 4 /Xe system product ions C 2 H 4 + and C 2 H 2 + are observed, and for C 3 H 8 /Xe, C 2 H 4 + and C 2 H 5 + and minor product ions including C 2 H 2 + and C 3 H 7 + are observed

  9. Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder

    KAUST Repository

    Zheng, Zilong

    2017-05-08

    We investigate the impact of electronic polarization, charge delocalization, and energetic disorder on the charge-transfer (CT) states formed at a planar C60/pentacene interface. The ability to examine large complexes containing up to seven pentacene molecules and three C60 molecules allows us to take explicitly into account the electronic polarization effects. These complexes are extracted from a bilayer architecture modeled by molecular dynamics simulations and evaluated by means of electronic-structure calculations based on long-range-separated functionals (ωB97XD and BNL) with optimized range-separation parameters. The energies of the lowest charge-transfer states derived for the large complexes are in very good agreement with the experimentally reported values. The average singlet-triplet energy splittings of the lowest CT states are calculated not to exceed 10 meV. The rates of geminate recombination as well as of dissociation of the triplet excitons are also evaluated. In line with experiment, our results indicate that the pentacene triplet excitons generated through singlet fission can dissociate into separated charges on a picosecond time scale, despite the fact that their energy in C60/pentacene heterojunctions is slightly lower than the energies of the lowest CT triplet states.

  10. Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces

    KAUST Repository

    Van Regemorter, Tanguy; Guillaume, Maxime; Sini, Gjergji; Sears, John S.; Geskin, Victor; Bré das, Jean-Luc; Beljonne, David; Cornil, Jé rô me

    2012-01-01

    In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.

  11. Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces

    KAUST Repository

    Van Regemorter, Tanguy

    2012-09-15

    In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.

  12. Does charge transfer correlate with ignition probability?

    International Nuclear Information System (INIS)

    Holdstock, Paul

    2008-01-01

    Flammable or explosive atmospheres exist in many industrial environments. The risk of ignition caused by electrostatic discharges is very real and there has been extensive study of the incendiary nature of sparks and brush discharges. It is clear that in order to ignite a gas, an amount of energy needs to be delivered to a certain volume of gas within a comparatively short time. It is difficult to measure the energy released in an electrostatic discharge directly, but it is possible to approximate the energy in a spark generated from a well defined electrical circuit. The spark energy required to ignite a gas, vapour or dust cloud can be determined by passing such sparks through them. There is a relationship between energy and charge in a capacitive circuit and so it is possible to predict whether or not a spark discharge will cause an ignition by measuring the charge transferred in the spark. Brush discharges are in many ways less well defined than sparks. Nevertheless, some work has been done that has established a relationship between charge transferred in brush discharges and the probability of igniting a flammable atmosphere. The question posed by this paper concerns whether such a relationship holds true in all circumstances and if there is a universal correlation between charge transfer and ignition probability. Data is presented on discharges from textile materials that go some way to answering this question.

  13. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory.

    Science.gov (United States)

    Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael

    2012-08-14

    Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

  14. Photoinduced Charge Transfer from Titania to Surface Doping Site.

    Science.gov (United States)

    Inerbaev, Talgat; Hoefelmeyer, James D; Kilin, Dmitri S

    2013-05-16

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO 2 . Charge transfer from the photo-excited TiO 2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO 2 nanorod and catalytic site. A slab of TiO 2 represents a fragment of TiO 2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO 2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO 2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting.

  15. How exciton-vibrational coherences control charge separation in the photosystem II reaction center

    NARCIS (Netherlands)

    Novoderezhkin, V.I.; Romero Mesa, E.; van Grondelle, R.

    2015-01-01

    In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary

  16. Computational Approach to Electron Charge Transfer Reactions

    DEFF Research Database (Denmark)

    Jónsson, Elvar Örn

    -molecular mechanics scheme, and tools to analyse statistical data and generate relative free energies and free energy surfaces. The methodology is applied to several charge transfer species and reactions in chemical environments - chemical in the sense that solvent, counter ions and substrate surfaces are taken...... in to account - which directly influence the reactants and resulting reaction through both physical and chemical interactions. All methods are though general and can be applied to different types of chemistry. First, the basis of the various theoretical tools is presented and applied to several test systems...... and asymmetric charge transfer reactions between several first-row transition metals in water. The results are compared to experiments and rationalised with classical analytic expressions. Shortcomings of the methods are accounted for with clear steps towards improved accuracy. Later the analysis is extended...

  17. Perovskite Excitonics : Primary Exciton Creation and Crossover from Free Carriers to a Secondary Exciton Phase

    NARCIS (Netherlands)

    Sarritzu, Valerio; Sestu, Nicola; Marongiu, Daniela; Chang, Xueqing; Wang, Qingqian; Loi, Maria Antonietta; Quochi, Francesco; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni

    2018-01-01

    Understanding exciton formation is of fundamental importance for emerging optoelectronic materials, like hybrid organic-inorganic perovskites, as excitons are the lowest-energy photoexcitations in semiconductors, are electrically neutral, and do not directly contribute to charge transport, but can

  18. Charge transfer in gas electron multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Ottnad, Jonathan; Ball, Markus; Ketzer, Bernhard; Ratza, Viktor; Razzaghi, Cina [HISKP, Bonn University, Nussallee 14-16, D-53115 Bonn (Germany)

    2015-07-01

    In order to efficiently employ a Time Projection Chamber (TPC) at interaction rates higher than ∝1 kHz, as foreseen e.g. in the ALICE experiment (CERN) and at CB-ELSA (Bonn), a continuous operation and readout mode is required. A necessary prerequisite is to minimize the space charge coming from the amplification system and to maintain an excellent spatial and energy resolution. Unfortunately these two goals can be in conflict to each other. Gas Electron Multipliers (GEM) are one candidate to fulfill these requirements. It is necessary to understand the processes within the amplification structure to find optimal operation conditions. To do so, we measure the charge transfer processes in and between GEM foils with different geometries and field configurations, and use an analytical model to describe the results. This model can then be used to predict and optimize the performance. The talk gives the present status of the measurements and describes the model.

  19. Charged excitonic complexes in GaAs/Al0.35Ga0.65As p-i-n double quantum wells

    DEFF Research Database (Denmark)

    Timofeev, V. B.; Larionov, A. V.; Alessi, M. Grassi

    1999-01-01

    Photoluminescence (PL) and PL excitation measurements (PLE) have been performed in GaAs/AlxGa1-xAs double quantum well (QW) structures under different applied electric fields. An emission due to charged excitons (trions) has been identified in the PL spectra similar to 3 meV below the heavy...

  20. Theory of interfacial charge-transfer complex photophysics in π-conjugated polymer-fullerene blends

    Science.gov (United States)

    Aryanpour, K.; Psiachos, D.; Mazumdar, S.

    2010-03-01

    We present a theory of the electronic structure and photophysics of 1:1 blends of derivatives of polyparaphenylenevinylene and fullerenes [1]. Within the same Coulomb-correlated Hamiltonian applied previously to interacting chains of single-component π-conjugated polymers [2], we find an exciplex state that occurs below the polymer's optical exciton. Weak absorption from the ground state occurs to the exciplex. We explain transient photoinduced absorptions in the blend [3], observed for both above-gap and below-gap photoexcitations, within our theory. Photoinduced absorptions for above-gap photoexcitation are from the optical exciton as well as the exciplex, while for below-gap photoexcitation induced absorptions are from the exciplex alone. In neither case are free polarons generated in the time scale of the experiment. Importantly, the photophysics of films of single-component π-conjugated polymers and blends can both be understood by extending Mulliken's theory of ground state charge-transfer to the case of excited state charge-transfer. [1] K. Aryanpour, D. Psiachos, and S. Mazumdar, arXiv:0908.0366 [2] D. Psiachos and S. Mazumdar, Phys. Rev. B. 79 155106 (2009) [3] T. Drori et al., Phys. Rev. Lett. 101, 037402 (2008)

  1. Energy and charge transfer cascade in methylammonium lead bromide perovskite nanoparticle aggregates.

    Science.gov (United States)

    Bouduban, Marine E F; Burgos-Caminal, Andrés; Ossola, Rachele; Teuscher, Joël; Moser, Jacques-E

    2017-06-01

    Highly photoluminescent hybrid lead halide perovskite nanoparticles have recently attracted wide interest in the context of high-stake applications, such as light emitting diodes (LEDs), light emitting transistors and lasers. In addition, they constitute ideal model systems to explore energy and charge transport phenomena occurring at the boundaries of nanocrystalline grains forming thin films in high-efficiency perovskite solar cells (PSCs). Here we report a complete photophysical study of CH 3 NH 3 PbBr 3 perovskite nanoparticles suspended in chlorobenzene and highlight some important interaction properties. Colloidal suspensions under study were constituted of dispersed aggregates of quasi-2D platelets of a range of thicknesses, decorated with 3D-like spherical nanoparticles. These types of nanostructures possess different optical properties that afford a handle for probing them individually. The photophysics of the colloidal particles was studied by femtosecond pump-probe spectroscopy and time-correlated single-photon counting. We show here that a cascade of energy and exciton-mediated charge transfer occurs between nanostructures: upon photoexcitation, localized excitons within one nanostructure can either recombine on a ps timescale, yielding a short-lived emission, or form charge-transfer states (CTSs) across adjacent domains, resulting in longer-lived photoluminescence in the millisecond timescale. Furthermore, CTSs exhibit a clear signature in the form of a strong photoinduced electroabsorption evidenced in femtosecond transient absorption measurements. Charge transfer dynamics at the surface of the nanoparticles have been studied with various quenchers in solution. Efficient hole transfer to N , N , N ', N '-tetrakis(4-methoxyphenyl)benzidine (MeO-TPD) and 1,4-bis(diphenyl-amino)benzene (BDB) donors was attested by the quenching of the nanoparticles emission. The charge transfer rate was limited by the organic layer used to stabilize the nanoparticles

  2. Exciton broadening in WS2 /graphene heterostructures

    International Nuclear Information System (INIS)

    Hill, Heather M.; Rigosi, Albert F.; Raja, Archana

    2017-01-01

    Here, we have used optical spectroscopy to observe spectral broadening of WS 2 exciton reflectance peaks in heterostructures of monolayer WS 2 capped with mono- to few-layer graphene. The broadening is found to be similar for the A and B excitons and on the order of 5–10 meV. No strong dependence on the number of graphene layers was observed within experimental uncertainty. The broadening can be attributed to charge- and energy-transfer processes between the two materials, providing an observed lower bound for the corresponding time scales of 65 fs.

  3. Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells

    KAUST Repository

    Joseph, Saju

    2017-10-02

    We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.

  4. Communication: Broad manifold of excitonic states in light-harvesting complex 1 promotes efficient unidirectional energy transfer in vivo

    Science.gov (United States)

    Sohail, Sara H.; Dahlberg, Peter D.; Allodi, Marco A.; Massey, Sara C.; Ting, Po-Chieh; Martin, Elizabeth C.; Hunter, C. Neil; Engel, Gregory S.

    2017-10-01

    In photosynthetic organisms, the pigment-protein complexes that comprise the light-harvesting antenna exhibit complex electronic structures and ultrafast dynamics due to the coupling among the chromophores. Here, we present absorptive two-dimensional (2D) electronic spectra from living cultures of the purple bacterium, Rhodobacter sphaeroides, acquired using gradient assisted photon echo spectroscopy. Diagonal slices through the 2D lineshape of the LH1 stimulated emission/ground state bleach feature reveal a resolvable higher energy population within the B875 manifold. The waiting time evolution of diagonal, horizontal, and vertical slices through the 2D lineshape shows a sub-100 fs intra-complex relaxation as this higher energy population red shifts. The absorption (855 nm) of this higher lying sub-population of B875 before it has red shifted optimizes spectral overlap between the LH1 B875 band and the B850 band of LH2. Access to an energetically broad distribution of excitonic states within B875 offers a mechanism for efficient energy transfer from LH2 to LH1 during photosynthesis while limiting back transfer. Two-dimensional lineshapes reveal a rapid decay in the ground-state bleach/stimulated emission of B875. This signal, identified as a decrease in the dipole strength of a strong transition in LH1 on the red side of the B875 band, is assigned to the rapid localization of an initially delocalized exciton state, a dephasing process that frustrates back transfer from LH1 to LH2.

  5. Ultrafast Charge Photogeneration in MEH-PPV Charge-Transfer Complexes

    NARCIS (Netherlands)

    Bakulin, Artem A.; Paraschuk, Dmitry Yu; Pshenichnikov, Maxim S.; van Loosdrecht, Paul H. M.; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E; Schoenlein, RW

    2009-01-01

    Visible-pump - IR-probe spectroscopy is used to study the ultrafast charge dynamics in MEH-PPV based charge-transfer complexes and donor-acceptor blends. Transient anisotropy of the polymer polaron band provides invaluable insights into excitation localisation and charge-transfer pathways.

  6. Hopping approach towards exciton dissociation in conjugated polymers

    International Nuclear Information System (INIS)

    Emelianova, E. V.; Auweraer, M. van der; Baessler, H.

    2008-01-01

    By employing random walk an analytic theory for the dissociation of singlet excitons in a random organic solid, for instance, a conjugated polymer, has been developed. At variance of conventional three-dimensional Onsager theory, it is assumed that an exciton with finite lifetime can first transfer endothermically an electron to an adjacent site, thereby generating a charge transfer state whose energy is above the energy of that of the initial exciton. In a second step the latter can fully dissociate in accordance with Onsager's concept Brownian motion. The results indicate that, depending of the energy required for the first jump, the first jump contributes significantly to the field dependence of the dissociation yield. Disorder weakens the temperature dependence of the yield dramatically and precludes extracting information on the exciton binding energy from it

  7. Charge Transfer into Aqueous Droplets via Kilovolt Potentials

    Science.gov (United States)

    Hamlin, B. S.; Rosenberg, E. R.; Ristenpart, W. D.

    2012-11-01

    When an aqueous droplet immersed in an insulating oil contacts an electrified surface, the droplet acquires net charge. For sufficiently large field strengths, the charged droplet is driven back and forth electrophoretically between the electrodes, in essence ``bouncing'' between them. Although it is clear that the droplet acquires charge, the underlying mechanism controlling the charge transfer process has been unclear. Here we demonstrate that the chemical species present in the droplet strongly affect the charge transfer process into the drop. Using two independent charge measurement techniques, high speed video velocimetry and direct current measurement, we show that the charge acquired during contact is strongly influenced by the droplet pH. We also provide physical evidence that the electrodes undergo electroplating or corrosion for droplets with appropriate chemical species present. Together, the observations strongly suggest that electrochemical reactions govern the charge transfer process into the droplet.

  8. Triplet exciton formation in organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xudong; Westenhoff, Sebastian; Howard, Ian; Ford, Thomas; Friend, Richard; Hodgkiss, Justin; Greenham, Neil [Cavendish Laboratory, University of Cambridge (United Kingdom)

    2009-07-01

    We have recently found that the formation of triplet excitons can be an important loss mechanism in organic photovoltaics, particularly in donor-acceptor blends designed to have high open-circuit voltages. This can occur when the intrachain triplet state lies lower in energy than the charge-transfer state formed at the heterojunction. We find that in a blend based on the polyfluorene derivatives F8BT and PFB, triplet excitons are formed after photoexcitation with much higher efficiency than in the component polymers. We use transient absorption spectroscopy to study the dynamics of charges and triplet excitons on timescales from picoseconds to microseconds. This allows us to determine a characteristic time of {proportional_to} 40 ns for intersystem crossing in the charge-separated state, and to estimate that as many as 75% of photoexcitations lead to the formation of triplet states. To avoid losses to triplet excitons in photovoltaic devices, it is necessary to separate charge pairs before intersystem crossing can occur. We also present photophysical measurements of saturation and relaxation of the triplet excited state absorption used to quantify triplet populations.

  9. Graphene Charge Transfer, Spectroscopy, and Photochemical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis [Columbia Univ., New York, NY (United States)

    2017-01-31

    This project focused on the special electronic and optical properties of graphene and adsorbed molecular species. Graphene makes an excellent substrate for current collection in nanostructured photovoltaic designs. Graphene is almost transparent, and can be used as a solar cell window. It also has no surface states, and thus current is efficiently transported over long distances. Progress in graphene synthesis indicates that there will soon be practical methods for making large pieces of graphene for devices. We now need to understand exactly what happens to both ground state and electronically excited molecules and Qdots near graphene, if we are going to use them to absorb light in a nano-structured photovoltaic device using graphene to collect photocurrent. We also need to understand how to shift the graphene Fermi level, to optimize the kinetics of electron transfer to graphene. And we need to learn how to convert local graphene areas to semiconductor structure, to make useful spatially patterned graphenes. In this final report, we describe how we addressed these goals. We explored the question of possible Surface Enhanced Raman spectroscopy from molecular Charge Transfer onto Graphene substrates. We observed strong hole doping of graphene by adsorbed halogens as indicated by the shift of the graphene G Raman band. In the case of iodine adsorption, we also observed the anionic species made by hole doping. At low frequency in the Raman spectrum, we saw quite intense lines from I3- and I5- , suggesting possible SERS. We reported on Fresnel calculations on this thin film system, which did not show any net electromagnetic field enhancement.

  10. Charge-transfer spectra of tetravalent lanthanide ions in oxides

    NARCIS (Netherlands)

    Hoefdraad, H.E.

    The charge-transfer spectra of Ce4+, Pr4+ and Tb4+ in a number of oxides are reported. It is noted that the position of the first charge-transfer band is fixed for the metal ion in an oxygen coordination of VI, but varies in VIII coordination as a function of the host lattice. It is argued that this

  11. Characterisation of a CMOS charge transfer device for TDI imaging

    International Nuclear Information System (INIS)

    Rushton, J.; Holland, A.; Stefanov, K.; Mayer, F.

    2015-01-01

    The performance of a prototype true charge transfer imaging sensor in CMOS is investigated. The finished device is destined for use in TDI applications, especially Earth-observation, and to this end radiation tolerance must be investigated. Before this, complete characterisation is required. This work starts by looking at charge transfer inefficiency and then investigates responsivity using mean-variance techniques

  12. Coupled quantum-classical method for long range charge transfer: relevance of the nuclear motion to the quantum electron dynamics

    International Nuclear Information System (INIS)

    Da Silva, Robson; Hoff, Diego A; Rego, Luis G C

    2015-01-01

    Charge and excitonic-energy transfer phenomena are fundamental for energy conversion in solar cells as well as artificial photosynthesis. Currently, much interest is being paid to light-harvesting and energy transduction processes in supramolecular structures, where nuclear dynamics has a major influence on electronic quantum dynamics. For this reason, the simulation of long range electron transfer in supramolecular structures, under environmental conditions described within an atomistic framework, has been a difficult problem to study. This work describes a coupled quantum mechanics/molecular mechanics method that aims at describing long range charge transfer processes in supramolecular systems, taking into account the atomistic details of large molecular structures, the underlying nuclear motion, and environmental effects. The method is applied to investigate the relevance of electron–nuclei interaction on the mechanisms for photo-induced electron–hole pair separation in dye-sensitized interfaces as well as electronic dynamics in molecular structures. (paper)

  13. Internal Electric Field In The Space Charge Layer Of A Solar Cell Based On Silicon In The Presence Of Excitons

    Directory of Open Access Journals (Sweden)

    Modou Faye

    2015-08-01

    Full Text Available Abstract The author faced with the impossibility of assessing the relative importance of the different contributions of physical quantities appearing in the equations of transport he appealed to the dimensional analysis. Thus by grouping the physical parameters the dependent and independent variables it generates dimensionless numbers. The latter having a physical significance make it possible to characterize the various contributions. To solve the dimensionless equations obtained strongly coupled reduced scale the author opts for a numerical method. The spatial discretization variable pitch and tight at the interfaces of different zones of the field because of the strong gradients in these regions is adopted. The equations are then integrated in the numerical domain using the finite volume method and the coefficients are approached by the schema of the power Patankar law. The resulting system of algebraic equations is solved by the method of double course combined with an iterative relaxation line by line type Gauss-Seidel. Furthermore with a volumetric coefficient of coupling which depends on the dissociation of the excitons and the average temperature field the author has studied the influence of some physical parameters on the total density of photocurrent such that the heating factor the conversion velocity and the volume coupling coefficient of charge carriers.

  14. Photophysics of charge transfer in a polyfluorene/violanthrone blend

    Science.gov (United States)

    Cabanillas-Gonzalez, J.; Virgili, T.; Lanzani, G.; Yeates, S.; Ariu, M.; Nelson, J.; Bradley, D. D. C.

    2005-01-01

    We present a study of the photophysical and photovoltaic properties of blends of violanthrone in poly[9, 9-bis (2-ethylhexyl)-fluorene-2, 7-diyl ] (PF2/6) . Photoluminescence quenching and photocurrent measurements show moderate efficiencies for charge generation, characteristic of such polymer/dye blends. Pump-probe measurements on blend films suggest that while ˜47% of the total exciton population dissociates within 4ps of photoexcitation, only ˜32% subsequently results in the formation of dye anions. We attribute the discrepancy to the likely formation of complex species with long lifetimes, such as stabilized interface charge pairs or exciplexes. This conclusion is supported by the appearance of a long lifetime component of 2.4ns in the dynamics of the photoinduced absorption signal associated to polarons in photoinduced absorption bands centered at 560nm .

  15. Efficient charge-carrier extraction from Ag₂S quantum dots prepared by the SILAR method for utilization of multiple exciton generation.

    Science.gov (United States)

    Zhang, Xiaoliang; Liu, Jianhua; Johansson, Erik M J

    2015-01-28

    The utilization of electron-hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the results suggest that the threshold energy (hνth) for MEG is 2.41Eg. The results reveal that Ag2S QD is a promising material for efficient extraction of charges from MEG and that QDs prepared by SILAR have an advantageous electrical contact facilitating charge separation and extraction.

  16. Robust singlet fission in pentacene thin films with tuned charge transfer interactions.

    Science.gov (United States)

    Broch, K; Dieterle, J; Branchi, F; Hestand, N J; Olivier, Y; Tamura, H; Cruz, C; Nichols, V M; Hinderhofer, A; Beljonne, D; Spano, F C; Cerullo, G; Bardeen, C J; Schreiber, F

    2018-03-05

    Singlet fission, the spin-allowed photophysical process converting an excited singlet state into two triplet states, has attracted significant attention for device applications. Research so far has focused mainly on the understanding of singlet fission in pure materials, yet blends offer the promise of a controlled tuning of intermolecular interactions, impacting singlet fission efficiencies. Here we report a study of singlet fission in mixtures of pentacene with weakly interacting spacer molecules. Comparison of experimentally determined stationary optical properties and theoretical calculations indicates a reduction of charge-transfer interactions between pentacene molecules with increasing spacer molecule fraction. Theory predicts that the reduced interactions slow down singlet fission in these blends, but surprisingly we find that singlet fission occurs on a timescale comparable to that in pure crystalline pentacene. We explain the observed robustness of singlet fission in such mixed films by a mechanism of exciton diffusion to hot spots with closer intermolecular spacings.

  17. Charge Transfer and Catalysis at the Metal Support Interface

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lawrence Robert [Univ. of California, Berkeley, CA (United States)

    2012-07-31

    Kinetic, electronic, and spectroscopic characterization of model Pt–support systems are used to demonstrate the relationship between charge transfer and catalytic activity and selectivity. The results show that charge flow controls the activity and selectivity of supported metal catalysts. This dissertation builds on extensive existing knowledge of metal–support interactions in heterogeneous catalysis. The results show the prominent role of charge transfer at catalytic interfaces to determine catalytic activity and selectivity. Further, this research demonstrates the possibility of selectively driving catalytic chemistry by controlling charge flow and presents solid-state devices and doped supports as novel methods for obtaining electronic control over catalytic reaction kinetics.

  18. Time-dependent screening of a positive charge distribution in metals: Excitons on an ultra-short time scale

    OpenAIRE

    Schöne, Wolf-Dieter; Ekardt, Walter

    2000-01-01

    Experiments determining the lifetime of excited electrons in crystalline copper reveal states which cannot be interpreted as Bloch states [S. Ogawa {\\it et al.}, Phys. Rev. B {\\bf 55}, 10869 (1997)]. In this article we propose a model which explains these states as transient excitonic states in metals. The physical background of transient excitons is the finite time a system needs to react to an external perturbation, in other words, the time which is needed to build up a polarization cloud. ...

  19. Transfer Pricing; Charging of head office costs

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Joergen

    1998-07-01

    The key issues discussed in this presentation are (1) What are head office costs?, (2) Why is the charging an area of concern for international companies?, (3) Which part of head office costs should be charged?, (4) OECD guidelines on charging. Head office costs are classified as Shareholder costs, Stewardship costs, Costs related to a specific subsidiary or group of subsidiaries (on call), and Costs related to operational activities in the parent company. The OECD reports of 1984 and 1996 are discussed. In Norsk Hydro's experience, the practising of the OECD guidelines by national authorities are confusing and not consistent over time or across borders. To get a better understanding of how charging of corporate head office costs are dealt with on an international level, Norsk Hydro asked Deloitte and Touche in London to carry out a study on international companies' behaviour. Their conclusions are included.

  20. Effects of acid concentration on intramolecular charge transfer ...

    Indian Academy of Sciences (India)

    rate. Time-dependent density functional theory calculations have been performed to understand the observed spectroscopic results. Keywords. Intramolecular charge transfer; absorption and fluorescence; time resolved fluorescence measurements; acid concentration dependence; time-dependent density functional theory.

  1. Charge-transfer collisions for polarized ion sources

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1983-06-01

    Charge-transfer processes relevant to polarized ion sources are discussed and results are summarized. The primary atom discussed is hydrogen, with particulr emphasis on H - formation. Heavier negative ions are briefly discussed

  2. Charge transfers in complex transition metal alloys (Ti2Fe)

    International Nuclear Information System (INIS)

    Abramovici, G.

    1998-01-01

    We introduce a new non-orthogonal tight-binding model, for complex alloys, in which electronic structure is characterized by charge transfers. We give the analytic calculation of a charge transfer, in which overlapping two-center terms are rigorously taken into account. Then, we apply numerically this result to an approximant phase of a quasicrystal of Ti 2 Fe alloy. This model is more particularly adapted to transition metals, and gives realistic densities of states. (orig.)

  3. Charge transfer induced activity of graphene for oxygen reduction

    International Nuclear Information System (INIS)

    Shen, Anli; Xia, Weijun; Dou, Shuo; Wang, Shuangyin; Zhang, Lipeng; Xia, Zhenhai

    2016-01-01

    Tetracyanoethylene (TCNE), with its strong electron-accepting ability, was used to dope graphene as a metal-free electrocatalyst for the oxygen reduction reaction (ORR). The charge transfer process was observed from graphene to TCNE by x-ray photoelectron spectroscopy and Raman characterizations. Our density functional theory calculations found that the charge transfer behavior led to an enhancement of the electrocatalytic activity for the ORR. (paper)

  4. Theoretical treatment of charge transfer processes of relevance to astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Krstic, P.S.; Stancil, P.C.; Schultz, D.R.

    1997-12-01

    Charge transfer is an important process in many astrophysical and atmospheric environments. While numerous experimental and theoretical studies exist for H and He targets, data on other targets, particularly metals and molecules, are sparse. Using a variety of theoretical methods and computational techniques the authors are developing methods to estimate the cross sections for electron capture (charge transfer) in slow collisions of low charge state ions with heavy (Mg, Ca, Fe, Co, Ni and Zn) neutrals. In this ongoing work particular attention is paid to ascertaining the importance of double electron capture.

  5. Theoretical treatment of charge transfer processes of relevance to astrophysics

    International Nuclear Information System (INIS)

    Krstic, P.S.; Stancil, P.C.; Schultz, D.R.

    1997-12-01

    Charge transfer is an important process in many astrophysical and atmospheric environments. While numerous experimental and theoretical studies exist for H and He targets, data on other targets, particularly metals and molecules, are sparse. Using a variety of theoretical methods and computational techniques the authors are developing methods to estimate the cross sections for electron capture (charge transfer) in slow collisions of low charge state ions with heavy (Mg, Ca, Fe, Co, Ni and Zn) neutrals. In this ongoing work particular attention is paid to ascertaining the importance of double electron capture

  6. Through space and through bridge channels of charge transfer at p-n nano-junctions: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Dandu, Naveen [Department of Chemistry and Biochemistry, NDSU, Fargo, ND 58108 (United States); Tretiak, Sergei [Theoretical Division, Center for Nonlinear Studies (CNLS) and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, 57069, NM 87454 (United States); Kilina, Svetlana [Department of Chemistry and Biochemistry, NDSU, Fargo, ND 58108 (United States); Kilin, Dmitri, E-mail: Dmitri.Kilin@ndsu.edu [Department of Chemistry and Biochemistry, NDSU, Fargo, ND 58108 (United States)

    2016-12-20

    Highlights: • Properties of interacting QDs depend on the fashion of interaction: through-bond or through-space. • The disconnected and undoped dimer models shows FÓ§rster band formation. • Dimer models with some doping exhibit degenerate charge-transfer excitons. • p- and n-doped qds shows polarization at the interface. • A photoexcitation polarizes p-n interface, in relation to phototovoltaic effect. - Abstract: Details of charge density distribution at p-n nano interface are analyzed with density functional theory techniques using model system of dimers of doped silicon quantum dots interacting through bond and through space. Spatial distributions of transition densities between the ground and excited states suggest the character of essential electronic excitations, which have a FÓ§rster, bound, unbound, or charge transfer character. A redistribution of electronic density from n-impurities to p-impurities results in a ground state polarization and creates an offset of energies of the bands localized on p-doped quantum dot and the bands localized on n-doped quantum dot. Although impurities contribute very few orbitals to the total density, a ground state charge redistribution and polarization are both responsible for the presence of a large number of charge transfer excitations involving solely silicon orbitals.

  7. Nearly Perfect Triplet-Triplet Energy Transfer from Wannier Excitons to Naphthalene in Organic-Inorganic Hybrid Quantum-Well Materials

    Science.gov (United States)

    Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.

    2008-06-01

    We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.

  8. The excitonic insulator route through a dynamical phase transition induced by an optical pulse

    Energy Technology Data Exchange (ETDEWEB)

    Brazovskii, S., E-mail: brazov@lptms.u-psud.fr [Université Paris-Saclay, LPTMS, CNRS, Univ. Paris-sud (France); Kirova, N. [Université Paris-Saclay, LPS, CNRS, Univ. Paris-sud (France)

    2016-03-15

    We consider a dynamical phase transition induced by a short optical pulse in a system prone to thermodynamical instability. We address the case of pumping to excitons whose density contributes directly to the order parameter. To describe both thermodynamic and dynamic effects on equal footing, we adopt a view of the excitonic insulator for the phase transition and suggest a formation of the Bose condensate for the pumped excitons. The work is motivated by experiments in donor–acceptor organic compounds with a neutral- ionic phase transition coupled to the spontaneous lattice dimerization and to charge transfer excitons. The double nature of the ensemble of excitons leads to an intricate time evolution, in particular, to macroscopic quantum oscillations from the interference between the Bose condensate of excitons and the ground state of the excitonic insulator. The coupling of excitons and the order parameter also leads to self-trapping of their wave function, akin to self-focusing in optics. The locally enhanced density of excitons can surpass a critical value to trigger the phase transformation, even if the mean density is below the required threshold. The system is stratified in domains that evolve through dynamical phase transitions and sequences of merging. The new circumstances in experiments and theory bring to life, once again, some remarkable inventions made by L.V. Keldysh.

  9. Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer

    Science.gov (United States)

    Lee, Victor; James, Nicole M.; Waitukaitis, Scott R.; Jaeger, Heinrich M.

    2018-03-01

    Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to O H- ions as the charge carriers.

  10. Spin-dependent exciton-exciton interaction potential in two- and three-dimensional structure semiconductors under excitation

    International Nuclear Information System (INIS)

    Nguyen Ba An; Hoang Ngoc Cam; Nguyen Trung Dan

    1990-08-01

    Analytical expressions of the exciton-exciton interaction potentials have been approximately derived in both 2D and 3D structure materials exhibiting explicit dependences on exciton momentum difference, momentum transfer, electron-hole effective mass ratio and two-exciton state spin symmetry. Numerical calculations show that the character of the exciton-exciton interaction is determined by all of the above-mentioned dependences. (author). 32 refs, 7 figs

  11. Chemical sensors based on surface charge transfer

    Science.gov (United States)

    Mohtasebi, Amirmasoud; Kruse, Peter

    2018-02-01

    The focus of this review is an introduction to chemiresistive chemical sensors. The general concept of chemical sensors is briefly introduced, followed by different architectures of chemiresistive sensors and relevant materials. For several of the most common systems, the fabrication of the active materials used in such sensors and their properties are discussed. Furthermore, the sensing mechanism, advantages, and limitations of each group of chemiresistive sensors are briefly elaborated. Compared to electrochemical sensors, chemiresistive sensors have the key advantage of a simpler geometry, eliminating the need for a reference electrode. The performance of bulk chemiresistors can be improved upon by using freestanding ultra-thin films (nanomaterials) or field effect geometries. Both of those concepts have also been combined in a gateless geometry, where charge transport though a percolation network of nanomaterials is modulated via adsorbate doping.

  12. Excitation transfer pathways in excitonic aggregates revealed by the stochastic Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Abramavicius, Vytautas, E-mail: vytautas.ab@gmail.com; Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Faculty of Physics, Department of Theoretical Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius (Lithuania)

    2014-02-14

    We derive the stochastic Schrödinger equation for the system wave vector and use it to describe the excitation energy transfer dynamics in molecular aggregates. We suggest a quantum-measurement based method of estimating the excitation transfer time. Adequacy of the proposed approach is demonstrated by performing calculations on a model system. The theory is then applied to study the excitation transfer dynamics in a photosynthetic pigment-protein Fenna-Matthews-Olson (FMO) aggregate using both the Debye spectral density and the spectral density obtained from earlier molecular dynamics simulations containing strong vibrational high-frequency modes. The obtained results show that the excitation transfer times in the FMO system are affected by the presence of the vibrational modes; however, the transfer pathways remain the same.

  13. Charge transfer cross sections for dysprosium and cerium

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Hajime; Tamura, Koji; Okazaki, Tetsuji; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-06-01

    Symmetric resonant charge transfer cross sections between singly ionized ions and the parent atoms were measured for dysprosium and cerium in the impact energy of 200-2000eV. The cross sections were determined from the ratio between the number of ions produced by charge transfer and those in primary ion beam. The primary ion beam was produced by a laser ion source in which their atoms were ionized by laser resonant photo-ionization. The slow ions produced by charge transfer and fast primary ions were detected with Faraday cups. The obtained cross sections were (1.82{+-}0.14) x 10{sup -14} cm{sup 2} for dysprosium and (0.88{+-}0.12) x 10{sup -14} cm{sup 2} for cerium in the above energy range. The difference of these values can mostly be explained by considering the electron configurations of these atoms and ions. (author)

  14. Charge transfer properties of pentacene adsorbed on silver: DFT study

    Energy Technology Data Exchange (ETDEWEB)

    N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in [PG & Research Department of Physics, Lady Doak College, Madurai 625002 (India)

    2015-06-24

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  15. Charge transfer cross sections for dysprosium and cerium

    International Nuclear Information System (INIS)

    Adachi, Hajime; Tamura, Koji; Okazaki, Tetsuji; Shibata, Takemasa

    1998-06-01

    Symmetric resonant charge transfer cross sections between singly ionized ions and the parent atoms were measured for dysprosium and cerium in the impact energy of 200-2000eV. The cross sections were determined from the ratio between the number of ions produced by charge transfer and those in primary ion beam. The primary ion beam was produced by a laser ion source in which their atoms were ionized by laser resonant photo-ionization. The slow ions produced by charge transfer and fast primary ions were detected with Faraday cups. The obtained cross sections were (1.82±0.14) x 10 -14 cm 2 for dysprosium and (0.88±0.12) x 10 -14 cm 2 for cerium in the above energy range. The difference of these values can mostly be explained by considering the electron configurations of these atoms and ions. (author)

  16. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells

    KAUST Repository

    Yi, Yuanping; Coropceanu, Veaceslav; Bré das, Jean-Luc

    2011-01-01

    ) is faster than that in the fullerene-based devices and (ii) in most cases, can compete with the dissociation of the charge-transfer state into mobile charge carriers. This faster charge-recombination process is consistent with the lower performance observed

  17. Mass and charge transfer within a floating water bridge

    Science.gov (United States)

    Fuchs, Elmar C.; Agostinho, Luewton L. F.; Eisenhut, Mathias; Woisetschläger, Jakob

    2010-11-01

    When high voltage is applied to pure water filled into two beakers close to each other, a connection forms spontaneously, giving the impression of a floating water bridge 1-8. This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the charge and mass transfer through the water bridge are investigated with schlieren visualization and laser interferometry. It can be shown that the addition of a pH dye increases the H+ and OH- production with subsequent electrolysis, whereas schlieren and interferometric methods reveal another mechanism where charge and mass transfer appear to be coupled. Whereas this mechanism seems to be responsible for the electrolysis-less charge and mass transfer in the water bridge, it is increasingly superseded by the electrochemical mechanism with rising conductivity. Thus it can be shown that a pH dye does only indirectly visualize the charge transfer in the water bridge since it is dragged along with the water flow like any other dye, and additionally promotes conventional electrochemical conduction mechanisms, thereby enhancing electrolysis and reducing the masscoupled charge transport and thus destabilizing the bridge.

  18. Charge-transfer properties in the gas electron multiplier

    International Nuclear Information System (INIS)

    Han, Sanghyo; Kim, Yongkyun; Cho, Hyosung

    2004-01-01

    The charge transfer properties of a gas electron multiplier (GEM) were systematically investigated over a broad range of electric field configurations. The electron collection efficiency and the charge sharing were found to depend on the external fields, as well as on the GEM voltage. The electron collection efficiency increased with the collection field up to 90%, but was essentially independent of the drift field strength. A double conical GEM has a 10% gain increase with time due to surface charging by avalanche ions whereas this effect was eliminated with the cylindrical GEM. The positive-ion feedback is also estimated. (author)

  19. Possible charge analogues of spin transfer torques in bulk superconductors

    Science.gov (United States)

    Garate, Ion

    2014-03-01

    Spin transfer torques (STT) occur when electric currents travel through inhomogeneously magnetized systems and are important for the motion of magnetic textures such as domain walls. Since superconductors are easy-plane ferromagnets in particle-hole (charge) space, it is natural to ask whether any charge duals of STT phenomena exist therein. We find that the superconducting analogue of the adiabatic STT vanishes in a bulk superconductor with a momentum-independent order parameter, while the superconducting counterpart of the nonadiabatic STT does not vanish. This nonvanishing superconducting torque is induced by heat (rather than charge) currents and acts on the charge (rather than spin) degree of freedom. It can become significant in the vicinity of the superconducting transition temperature, where it generates a net quasiparticle charge and alters the dispersion and linewidth of low-frequency collective modes. This work has been financially supported by Canada's NSERC.

  20. Charge transfer processes in hybrid solar cells composed of amorphous silicon and organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Sebastian; Neher, Dieter [Universitaet Potsdam, Inst. Physik u. Astronomie, Karl-Liebknecht-Strasse 24/25, 14467 Potsdam-Golm (Germany); Schulze, Tim; Korte, Lars [Helmholtz Zentrum Berlin, Inst. fuer Silizium Photovoltaik, Kekulestrasse 5, 12489 Berlin (Germany)

    2011-07-01

    The efficiency of hybrid solar cells composed of organic materials and amorphous hydrogenated silicon (a-Si:H) strongly depends upon the efficiency of charge transfer processes at the inorganic-organic interface. We investigated the performance of devices comprising an ITO/a-Si:H(n-type)/a-Si:H(intrinsic)/organic/metal multilayer structure and using two different organic components: zinc phthalocyanine (ZnPc) and poly(3-hexylthiophene) (P3HT). The results show higher power conversion- and quantum efficiencies for the P3HT based cells, compared to ZnPc. This can be explained by larger energy-level offset at the interface between the organic layer and a-Si:H, which facilitates hole transfer from occupied states in the valence band tail to the HOMO of the organic material and additionally promotes exciton splitting. The performance of the a-Si:H/P3HT cells can be further improved by treatment of the amorphous silicon surface with hydrofluoric acid (HF) and p-type doping of P3HT with F4TCNQ. The improved cells reached maximum power conversion efficiencies of 1%.

  1. Evaluation of intramolecular charge transfer state of 4-N, N ...

    Indian Academy of Sciences (India)

    Abstract. Intramolecular charge transfer of 4-N,N-dimethylamino cinnamaldehyde (DMACA) in vacuum and in five different aprotic solvents has been studied by using time-dependent density functional theory. (TDDFT). Polarizable continuum model (PCM) was employed to consider solvent–solute interactions. The potential ...

  2. Two-Centre Close-Coupling method in charge transfer

    Directory of Open Access Journals (Sweden)

    Reza Bagheri

    2017-09-01

    Full Text Available In the present work, the transition matrix elements as well as differential and total scattering cross-sections for positronium formation in Positron-Hydrogen atom collision and hydrogen formation in Positronium-Hydrogen ion collision, through the charge transfer channel by Two-Centre Close-Coupling method up to a first order approximation have been calculated. The charge transfer collision is assumed to be a three-body reaction, while the projectile is a plane wave. Additionally, the hydrogen and positronium atoms are assumed, initially, to be in their ground states. For the case of charge transfer in the scattering of positron by hydrogen atoms, the differential cross sections are plotted for the energy range of 50eV to 10keV, where the Thomas peak is clearly observable. Finally, the total scattering cross-section for the charge transfer in the collision of Positron-Hydrogen and Positronium-Hydrogen ion are plotted as a function of projectile energies and compared with other methods in the literature.

  3. Charge transfer in chromium-transition metal alloys

    International Nuclear Information System (INIS)

    Kulakowski, K.; Maksymowicz, A.

    1984-07-01

    The average T-matrix approximation is applied for calculations of charge transfer of 3d-electrons in transition metal alloys. The role of concentration, long-range and short-range atomic order is investigated. The results are in reasonable agreement with experimental data. (author)

  4. Charge-Transfer Complexes Studied by Dynamic Force Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jurriaan Huskens

    2013-03-01

    Full Text Available In this paper, the strength and kinetics of two charge-transfer complexes, naphthol-methylviologen and pyrene-methylviologen, are studied using dynamic force spectroscopy. The dissociation rates indicate an enhanced stability of the pyrene-methylviologen complex, which agrees with its higher thermodynamic stability compared to naphthol-methylviologen complex.

  5. Positron Annihilation in Solid Charge-Transfer Complexes

    DEFF Research Database (Denmark)

    Lévay, B.; Jansen, P.

    1979-01-01

    Positron lifetime and angular correlation measurements have been carried out on 1:1 charge-transfer complexes, on their pure donor and acceptor components and on the 1:1 M mechanical mixtures of these components. Complex formation reduced the intensity of the long-lifetime component of the donor...

  6. Modeling charge transfer at organic donor-acceptor semiconductor interfaces

    NARCIS (Netherlands)

    Cakir, Deniz; Bokdam, Menno; de Jong, Machiel Pieter; Fahlman, M.; Brocks, G.

    2012-01-01

    We develop an integer charge transfer model for the potential steps observed at interfaces between donor and acceptor molecular semiconductors. The potential step can be expressed as the difference between the Fermi energy pinning levels of electrons on the acceptor material and holes on the donor

  7. Enhancing SERS by Means of Supramolecular Charge Transfer

    Science.gov (United States)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  8. Charge transfer devices and their application in physics

    Energy Technology Data Exchange (ETDEWEB)

    Soroko, L M [Joint Inst. for Nuclear Research, Dubna (USSR)

    1979-01-01

    Physical properties and technical specifications of charge transfer devices (CTD) are reviewed. The CTD are semiconductor devices based on silicon single crystals. The limiting charge density of the CTD, their efficiency of charge transfer, the background noise and radiation effects are considered. Fast response and low energy consumption are characteristic features of the devices. The application of the CTD in storage devices, real time spectral data processing systems and in streamer chambers is described. The algorithms of topological transformations in the stage of scanning particle track images, which can be realized with the help of the CTD are shortly considered. It is pointed out that applications of the CTD in different fields of science and technology are numerous and expanding.

  9. Interplay between Dephasing and Geometry and Directed Heat Flow in Exciton Transfer Complexes

    OpenAIRE

    Dubi, Yonatan

    2015-01-01

    The striking efficiency of energy transfer in natural photosynthetic systems and the recent evidence of long-lived quantum coherence in biological light harvesting complexes has triggered much excitement, due to the evocative possibility that these systems - essential to practically all life on earth -- use quantum mechanical effects to achieve optimal functionality. A large body of theoretical work has addressed the role of local environments in determining the transport properties of excito...

  10. Theory and simulation of charge transfer through DNA - nanotube contacts

    International Nuclear Information System (INIS)

    Rink, Gunda; Kong Yong; Koslowski, Thorsten

    2006-01-01

    We address the problem of charge transfer between a single-stranded adenine oligomer and semiconducting boron nitride nanotubes from a theoretical and numerical perspective. The model structures have been motivated by computer simulations; sample geometries are used as the input of an electronic structure theory that is based upon an extended Su-Schrieffer-Heeger Hamiltonian. By analyzing the emerging potential energy surfaces, we obtain hole transfer rates via Marcus' theory of charge transfer. In the presence of nanotubes, these rates exceed those of isolated DNA single strands by a factor of up to 10 4 . This enhancement can be rationalized and quantified as a combination of a template effect and the participation of the tube within a superexchange mechanism

  11. Active pixel sensor with intra-pixel charge transfer

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  12. Charge-transfer modified embedded atom method dynamic charge potential for Li-Co-O system.

    Science.gov (United States)

    Kong, Fantai; Longo, Roberto C; Liang, Chaoping; Nie, Yifan; Zheng, Yongping; Zhang, Chenxi; Cho, Kyeongjae

    2017-11-29

    To overcome the limitation of conventional fixed charge potential methods for the study of Li-ion battery cathode materials, a dynamic charge potential method, charge-transfer modified embedded atom method (CT-MEAM), has been developed and applied to the Li-Co-O ternary system. The accuracy of the potential has been tested and validated by reproducing a variety of structural and electrochemical properties of LiCoO 2 . A detailed analysis on the local charge distribution confirmed the capability of this potential for dynamic charge modeling. The transferability of the potential is also demonstrated by its reliability in describing Li-rich Li 2 CoO 2 and Li-deficient LiCo 2 O 4 compounds, including their phase stability, equilibrium volume, charge states and cathode voltages. These results demonstrate that the CT-MEAM dynamic charge potential could help to overcome the challenge of modeling complex ternary transition metal oxides. This work can promote molecular dynamics studies of Li ion cathode materials and other important transition metal oxides systems that involve complex electrochemical and catalytic reactions.

  13. The charge transfer structure and effective energy transfer in multiplayer assembly film

    International Nuclear Information System (INIS)

    Li Mingqiang; Jian Xigao

    2005-01-01

    Charge transfer multiplayer films have been prepared by layer-by-layer self-assembly technique. The films incorporate the rare-earth-containing polyoxometalate K 11 [Eu{PW 11 O 39 } 2 ].nH 2 O and the rich electron polyelectrolyte poly(3-viny-1-methyl-pyridine) quaternary ammonium and display a linear increase in the absorption and film thickness with the number of deposition cycles. Ultraviolet and visible absorption spectra, atomic force micrographs, small-angle X-ray reflectivity measurements, and photoluminescence spectra were used to determine the structure of films. Linear and regular multilayer growth was observed. We can observe the formation of charge transfer complex compound in multiplayer by layer-by-layer assembly method. Most importantly, the luminescence spectra show the charge transfer band in assembly films, which suggest that energy could be effectively transferred to rare earth ions in assembly multiplayer films

  14. Field-induced exciton dissociation in PTB7-based organic solar cells

    Science.gov (United States)

    Gerhard, Marina; Arndt, Andreas P.; Bilal, Mühenad; Lemmer, Uli; Koch, Martin; Howard, Ian A.

    2017-05-01

    The physics of charge separation in organic semiconductors is a topic of ongoing research of relevance to material and device engineering. Herein, we present experimental observations of the field and temperature dependence of charge separation from singlet excitons in PTB7 and PC71BM , and from charge-transfer states created across interfaces in PTB 7 /PC71BM bulk heterojunction solar cells. We obtain this experimental data by time-resolving the near infrared emission of the states from 10 K to room temperature and electric fields from 0 to 2.5 MVcm -1 . Examining how the luminescence is quenched by field and temperature gives direct insight into the underlying physics. We observe that singlet excitons can be split by high fields, and that disorder broadens the high threshold fields needed to split the excitons. Charge-transfer (CT) states, on the other hand, can be separated by both field and temperature. Also, the data imply a strong reduction of the activation barrier for charge splitting from the CT state relative to the exciton state. The observations provided herein of the field-dependent separation of CT states as a function of temperature offer a rich data set against which theoretical models of charge separation can be rigorously tested; it should be useful for developing the more advanced theoretical models of charge separation.

  15. Study of charge transfer reactions in a microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E.; Savadogo, O. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Chimique; National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.; Tartakovsky, B. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2008-07-01

    Electron transfer reactions in a microbial fuel cell (MFC) were evaluated. The MFC was inoculated with anaerobic mesophilic sludge and operated with carbon felt, carbon cloth, and platinum (Pt) coated carbon cloth. The MFC was then fed with either acetate or glucose as a source of fuel and operated at a temperature of 25 degrees C and a pH of 7. Scanning electron microscopy (SEM) micrographs demonstrated that the micro-organisms colonized the anodes. Cyclic voltammetry and polarization tests were conducted using different fractions of the anodophilic biofilm in order to determine charge transfer routes. The study characterized the electron transfer mechanisms used by the exoelectrogenic micro-organisms to produce electricity. It was concluded that further research is needed to characterize reaction transfer routes. 2 refs., 1 fig.

  16. Charge transfer in pi-stacked systems including DNA

    International Nuclear Information System (INIS)

    Siebbeles, L.D.A.

    2003-01-01

    Charge migration in DNA is a subject of intense current study motivated by long-range detection of DNA damage and the potential application of DNA as a molecular wire in nanoscale electronic devices. A key structural element, which makes DNA a medium for long-range charge transfer, is the array of stacked base pairs in the interior of the double helix. The overlapping pi-orbitals of the nucleobases provide a pathway for motion of charge carriers generated on the stack. This 'pi-pathway' resembles the columnarly stacked macrocyclic cores in discotic materials such as triphenylenes. The structure of these pi-stacked systems is highly disordered with dynamic fluctuations occurring on picosecond to nanosecond time scales. Theoretical calculations, concerning the effects of structural disorder and nucleobase sequence in DNA, on the dynamics of charge carriers are presented. Electronic couplings and localization energies of charge carriers were calculated using density functional theory (DFT). Results for columnarly stacked triphenylenes and DNA nucleobases are compared. The results are used to provide insight into the factors that control the mobility of charge carriers. Further, experimental results on the site-selective oxidation of guanine nucleobases in DNA (hot spots for DNA damage) are analyzed on basis of the theoretical results

  17. Protein-induced geometric constraints and charge transfer in bacteriochlorophyll-histidine complexes in LH2.

    Science.gov (United States)

    Wawrzyniak, Piotr K; Alia, A; Schaap, Roland G; Heemskerk, Mattijs M; de Groot, Huub J M; Buda, Francesco

    2008-12-14

    Bacteriochlorophyll-histidine complexes are ubiquitous in nature and are essential structural motifs supporting the conversion of solar energy into chemically useful compounds in a wide range of photosynthesis processes. A systematic density functional theory study of the NMR chemical shifts for histidine and for bacteriochlorophyll-a-histidine complexes in the light-harvesting complex II (LH2) is performed using the BLYP functional in combination with the 6-311++G(d,p) basis set. The computed chemical shift patterns are consistent with available experimental data for positive and neutral(tau) (N(tau) protonated) crystalline histidines. The results for the bacteriochlorophyll-a-histidine complexes in LH2 provide evidence that the protein environment is stabilizing the histidine close to the Mg ion, thereby inducing a large charge transfer of approximately 0.5 electronic equivalent. Due to this protein-induced geometric constraint, the Mg-coordinated histidine in LH2 appears to be in a frustrated state very different from the formal neutral(pi) (N(pi) protonated) form. This finding could be important for the understanding of basic functional mechanisms involved in tuning the electronic properties and exciton coupling in LH2.

  18. Photosynthesis Revisited: Optimization of Charge and Energy Transfer in Quantum Materials

    Science.gov (United States)

    Gabor, Nathaniel

    2014-03-01

    The integration of new nano- and molecular-scale quantum materials into ultra-efficient energy harvesting devices presents significant scientific challenges. Of the many challenges, the most difficult is achieving high photon-to-electron conversion efficiency while maintaining broadband absorption. Due to exciton effects, devices composed of quantum materials may allow near-unity optical absorption efficiency yet require the choice of precisely one fundamental energy (HOMO-LUMO gap). To maximize absorption, the simplest device would absorb at the peak of the solar spectrum, which spans the visible wavelengths. If the peak of the solar spectrum spans the visible wavelengths, then why are terrestrial plants green? Here, I discuss a physical model of photosynthetic absorption and photoprotection in which the cell utilizes active feedback to optimize charge and energy transfer, thus maximizing stored energy rather than absorption. This model, which addresses the question of terrestrial greenness, is supported by several recent results that have begun to unravel the details of photoprotection in higher plants. More importantly, this model indicates a novel route for the design of next-generation energy harvesting systems based on nano- and molecular-scale quantum materials.

  19. Absence of Intramolecular Singlet Fission in Pentacene-Perylenediimide Heterodimers: The Role of Charge Transfer State.

    Science.gov (United States)

    Wang, Long; Wu, Yishi; Chen, Jianwei; Wang, Lanfen; Liu, Yanping; Yu, Zhenyi; Yao, Jiannian; Fu, Hongbing

    2017-11-16

    A new class of donor-acceptor heterodimers based on two singlet fission (SF)-active chromophores, i.e., pentacene (Pc) and perylenediimide (PDI), was developed to investigate the role of charge transfer (CT) state on the excitonic dynamics. The CT state is efficiently generated upon photoexcitation. However, the resulting CT state decays to different energy states depending on the energy levels of the CT state. It undergoes extremely rapid deactivation to the ground state in polar CH 2 Cl 2 , whereas it undergoes transformation to a Pc triplet in nonpolar toluene. The efficient triplet generation in toluene is not due to SF but CT-mediated intersystem crossing. In light of the energy landscape, it is suggested that the deep energy level of the CT state relative to that of the triplet pair state makes the CT state actually serve as a trap state that cannot undergoes an intramolecular singlet fission process. These results provide guidance for the design of SF materials and highlight the requisite for more widely applicable design principles.

  20. Energy Migration in Organic Thin Films--From Excitons to Polarons

    Science.gov (United States)

    Mullenbach, Tyler K.

    The rise of organic photovoltaic devices (OPVs) and organic light-emitting devices has generated interest in the physics governing exciton and polaron dynamics in thin films. Energy transfer has been well studied in dilute solutions, but there are emergent properties in thin films and greater complications due to complex morphologies which must be better understood. Despite the intense interest in energy transport in thin films, experimental limitations have slowed discoveries. Here, a new perspective of OPV operation is presented where photovoltage, instead of photocurrent, plays the fundamental role. By exploiting this new vantage point the first method of measuring the diffusion length (LD) of dark (non-luminescent) excitons is developed, a novel photodetector is invented, and the ability to watch exciton arrival, in real-time, at the donor-acceptor heterojunction is presented. Using an enhanced understanding of exciton migration in thin films, paradigms for enhancing LD by molecular modifications are discovered, and the first exciton gate is experimentally and theoretically demonstrated. Generation of polarons from exciton dissociation represents a second phase of energy migration in OPVs that remains understudied. Current approaches are capable of measuring the rate of charge carrier recombination only at open-circuit. To enable a better understanding of polaron dynamics in thin films, two new approaches are presented which are capable of measuring both the charge carrier recombination and transit rates at any OPV operating voltage. These techniques pave the way for a more complete understanding of charge carrier kinetics in molecular thin films.

  1. Charge transfer in conjugated oligomers encapsulated into carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Almadori, Y.; Alvarez, L.; Michel, T.; Le Parc, R.; Bantignies, J.L.; Hermet, P.; Sauvajol, J.L. [Laboratoire Charles Coulomb UMR 5521, Universite Montpellier 2, 34095 Montpellier (France); Laboratoire Charles Coulomb UMR 5521, CNRS, 34095 Montpellier (France); Arenal, R. [Laboratoire d' Etude des Microstructures, CNRS-ONERA, 92322 Chatillon (France); Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, U. Zaragoza, 50018 Zaragoza (Spain); Babaa, R. [Laboratoire de Chimie des Surfaces et Interfaces, CEA, IRAMIS, SPCSI, 91191 Gif-sur-Yvette Cedex (France); Chemical Engineering Department, University of Technology PETRONAS, UTP, Ipoh-Perak (Malaysia); Jouselme, B.; Palacin, S. [Laboratoire de Chimie des Surfaces et Interfaces, CEA, IRAMIS, SPCSI, 91191 Gif-sur-Yvette Cedex (France)

    2011-11-15

    This study deals with a hybrid system consisting in quaterthiophene derivative encapsulated inside single-walled and multi-walled carbon nanotubes. Investigations of the encapsulation step are performed by transmission electron microscopy. Raman spectroscopy data point out different behaviors depending on the laser excitation energy with respect to the optical absorption of quaterthiophene. At low excitation energy (far from the oligomer resonance window) there is no significant modification of the Raman spectra before and after encapsulation. By contrast, at high excitation energy (close to the oligomer resonance window), Raman spectra exhibit a G-band shift together with an important RBM intensity loss, suggesting a significant charge transfer between the inserted molecule and the host nanotubes. Those results suggest a photo induced process leading to a significant charge transfer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Barrier discharge. The transferred charge and ozone synthesis

    International Nuclear Information System (INIS)

    Gibalov, V.I.; Samoilovich, V.G.

    1991-01-01

    We have undertaken an experimental investigation of the influence of the conditions of barrier discharge implementation such as: the discharge gap value, the type of gas, and the polarity and dielectric permittivity of the dielectric electrode on the value of charge transferred in a micro-discharge. It is shown that the increase in the specific capacitance of the electrodes leads to proportional increase in the transferred charge value, reaching 100-200 nC in a discharge gap 1 mm, in air. In this case the amplitude and duration of a current pulse in the microdischarge reach, respectively, 10 to 15 A and 40 ns. It is also demonstrated that in air with increase in the discharge gap value one can observe a decrease in the efficiency of the ozone synthesis whereas in oxygen there exists a more complicated dependence: the maximum of efficiency is observed at a discharge gap value of 0.7 to 1.0 mm. (orig.)

  3. Quasi-resonant K-K charge transfer

    International Nuclear Information System (INIS)

    Hagmann, S.; Cocke, C.L.; Richard, P.; Skutlartz, A.; Kelbch, S.; Schmidt-Boecking, H.; Schuch, R.

    1983-01-01

    The impact parameter dependence, P(b), of single and double K to K charge transfer have been deduced from the coincidences between K-Auger electrons and scattered particles for F 9+ + Ne and F 9+ + Ne collisions at 10 MeV and 4.4 MeV. The 4.4 MeV single K-K transfer probability exhibits oscillations with b. The P(b) for delta-electron emission is also reported. To obtain more details on the mechanism, K-Auger electron-Ne recoil ion coincidences are measured for both F 8+ and F 9+ projectiles. The relative amounts of recoil ions and of satellite and hypersatellite Auger transitions vary substantially with projectile charge state. 11 references, 11 figures

  4. Transfer of momentum, mass and charge in heavy ion collisions

    International Nuclear Information System (INIS)

    Beck, F.; Feldmeier, H.; Dworzecka, M.

    1979-01-01

    A model for the first two phases of heavy ion collisions based on the transport of single nucleons through the window between the two scattering nuclei is described in some detail. It is pointed out that the model can account simultaneously for a large portion of the energy transfer from relative to intrinsic motion and for the observed variances in mass and charge numbers for reaction times up to the order of 10 -21 s. (P.L.)

  5. Superconductivity and charge transfer excitations in high Tc superconductors

    International Nuclear Information System (INIS)

    Balseiro, C.A.; Alascio, B.; Gagliano, E.; Rojo, A.

    1988-01-01

    We present some numerical results to show that in a simple model which includes Cu 3d and O 2p orbitals together with inter and intra atomic correlations pairing between holes can occur due to charge transfer excitations. We present also a simple approximation to derive an effective Hamiltonian containing an interaction between particles which is attractive for some values of the different microscopic parameters

  6. Momentum transfer in relativistic heavy ion charge-exchange reactions

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  7. "Inverted" Solvent Effect on Charge Transfer in the Excited State.

    Science.gov (United States)

    Nau; Pischel

    1999-10-04

    Faster in cyclohexane than in acetonitrile is the fluorescence quenching of the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by amines and sulfides. Although this photoreaction is induced by charge transfer (CT; see picture) and exciplexes are formed, the increase in the dipole moment of the exciplex is not large enough to offset the solvent stabilization of the excited reactants, and an "inverted" solvent effect results.

  8. Interfacial Charge Transfer States in Condensed Phase Systems

    Science.gov (United States)

    Vandewal, Koen

    2016-05-01

    Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.

  9. Plasma effect on tunnelling, charge transfer and transient quasimolecular states

    International Nuclear Information System (INIS)

    Fisher, D V

    2003-01-01

    The influence of a dense plasma environment on electron tunnelling between two ion potential wells in collectivized states and in charge-transfer collisions is studied. We show that the tunnelling probabilities in dilute plasma (in a close ion-ion collision) and in dense plasma differ strongly. The difference is due to the mixing between Stark components of donor-ion energy levels, caused by the field of spectator ions in a dense plasma. The mixing is determined by an angle α between the nearest-neighbour ion field and the total electric field acting on the donor ion. In close ion-ion binary collisions the mixing may be considered weak. However, for most plasma ions charge transfer, electron state collectivization and transient quasimolecule formation are strongly affected by the field of spectator ions. We derive approximate analytical expressions for the distribution function of α in an ideal plasma and perform molecular dynamics simulations to find the distribution function of α in both ideal and nonideal plasmas. Both α-dependent and average mixing coefficients are determined. We have found that the mixing is strong, even in ideal plasmas, and increases further with an increase in plasma nonideality. It is shown that there is no resonant charge transfer in dense plasmas. The applicability of a transient 'dicenter' quasimolecule model for dense plasmas is discussed

  10. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption.

    Science.gov (United States)

    He, Yuanyuan; Xia, Feifei; Shao, Zhibin; Zhao, Jianwei; Jie, Jiansheng

    2015-12-03

    Monolayer phosphorene has attracted much attention owing to its extraordinary electronic, optical, and structural properties. Rationally tuning the electrical transport characteristics of monolayer phosphorene is essential to its applications in electronic and optoelectronic devices. Herein, we study the electronic transport behaviors of monolayer phosphorene with surface charge transfer doping of electrophilic molecules, including 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), NO2, and MoO3, using density functional theory combined with the nonequilibrium Green's function formalism. F4TCNQ shows optimal performance in enhancing the p-type conductance of monolayer phosphorene. Static electronic properties indicate that the enhancement is originated from the charge transfer between adsorbed molecule and phosphorene layer. Dynamic transport behaviors demonstrate that additional channels for hole transport in host monolayer phosphorene were generated upon the adsorption of molecule. Our work unveils the great potential of surface charge transfer doping in tuning the electronic properties of monolayer phosphorene and is of significance to its application in high-performance devices.

  11. Doping Phosphorene with Holes and Electrons through Molecular Charge Transfer.

    Science.gov (United States)

    Vishnoi, Pratap; Rajesh, S; Manjunatha, S; Bandyopadhyay, Arkamita; Barua, Manaswee; Pati, Swapan K; Rao, C N R

    2017-11-03

    An important aspect of phosphorene, the novel two-dimensional semiconductor, is whether holes and electrons can both be doped in this material. Some reports found that only electrons can be preferentially doped into phosphorene. There are some theoretical calculations showing charge-transfer interaction with both tetrathiafulvalene (TTF) and tetracyanoethylene (TCNE). We have carried out an investigation of chemical doping of phosphorene by a variety of electron donor and acceptor molecules, employing both experiment and theory, Raman scattering being a crucial aspect of the study. We find that both electron acceptors and donors interact with phosphorene by charge-transfer, with the acceptors having more marked effects. All the three Raman bands of phosphorene soften and exhibit band broadening on interaction with both donor and acceptor molecules. First-principles calculations establish the occurrence of charge-transfer between phosphorene with donors as well as acceptors. The absence of electron-hole asymmetry is noteworthy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Organic solar cells: understanding the role of Förster resonance energy transfer.

    Science.gov (United States)

    Feron, Krishna; Belcher, Warwick J; Fell, Christopher J; Dastoor, Paul C

    2012-12-12

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  13. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Paul C. Dastoor

    2012-12-01

    Full Text Available Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  14. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen

    2013-11-17

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  15. A new technique for the study of charge transfer in multiply charged ion-ion collisions

    International Nuclear Information System (INIS)

    Shinpaugh, J.L.; Meyer, F.W.; Datz, S.

    1994-01-01

    While large cross sections (>10 -16 cm 2 ) have been predicted for resonant charge transfer in ion-ion collisions, no experimental data exist for multiply charged systems. A novel technique is being developed at the ORNL ECR facility to allow study of symmetric charge exchange in multiply charged ion-ion collisions using a single ion source. Specific intra-beam charge transfer collisions occurring in a well-defined interaction region labeled by negative high voltage are identified and analyzed by electrostatic analysis in combination with ion time-of-flight coincidence detection of the collision products. Center-of-mass collision energies from 400 to 1000 eV are obtained by varying source and labeling-cell voltages. In addition, by the introduction of a target gas into the high-voltage cell, this labeling-voltage method allows measurement of electron-capture and -loss cross sections for ion-atom collisions. Consequently, higher collision energies can be investigated without the requirement of placing the ECR source on a high-voltage platform

  16. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen; Albrecht, Steve N.; Hoke, Eric T.; Graham, Kenneth; Widmer, Johannes; Douglas, Jessica D.; Schubert, Marcel; Mateker, William R.; Bloking, Jason T.; Burkhard, George F.; Sellinger, Alan; Frechet, Jean; Amassian, Aram; Riede, Moritz Kilian; McGehee, Michael D.; Neher, Dieter; Salleo, Alberto

    2013-01-01

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  17. Charge Transfer Channels in Formation of Exciplex in Polymer Blends

    Science.gov (United States)

    Dou, Fei; Zhang, Xin-Ping

    2011-09-01

    The strong dependence of photoluminescence of charge transfer excited states or exciplex in a blend film of poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4- phenylenediamine) (PFB) on the excitation wavelengths and morphology is investigated. The experimental results reveal that electron transfer in the LUMOs from PFB to F8BT is more efficient than hole transfer in the HOMOs from PFB to F8BT for the formation of exciplex at the interfacial junctions between these two types of molecules in the blend film. Furthermore, energy transfer from the blue-emitting PFB to the green-emitting F8BT at the interfaces introduces an additional two-step channel and thus enhances the formation of an exciplex. This is important for understanding of charge generation and separation in organic bulk heterojunctions and for design of optoelectronic devices.

  18. Charge Transfer Channels in Formation of Exciplex in Polymer Blends

    International Nuclear Information System (INIS)

    Dou Fei; Zhang Xin-Ping

    2011-01-01

    The strong dependence of photoluminescence of charge transfer excited states or exciplex in a blend film of poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4- phenylenediamine) (PFB) on the excitation wavelengths and morphology is investigated. The experimental results reveal that electron transfer in the LUMOs from PFB to F8BT is more efficient than hole transfer in the HOMOs from PFB to F8BT for the formation of exciplex at the interfacial junctions between these two types of molecules in the blend film. Furthermore, energy transfer from the blue-emitting PFB to the green-emitting F8BT at the interfaces introduces an additional two-step channel and thus enhances the formation of an exciplex. This is important for understanding of charge generation and separation in organic bulk heterojunctions and for design of optoelectronic devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Quantum information transfer between topological and conventional charge qubits

    International Nuclear Information System (INIS)

    Li Jun; Zou Yan

    2016-01-01

    We propose a scheme to realize coherent quantum information transfer between topological and conventional charge qubits. We first consider a hybrid system where a quantum dot (QD) is tunnel-coupled to a semiconductor Majorana-hosted nanowire (MNW) via using gated control as a switch, the information encoded in the superposition state of electron empty and occupied state can be transferred to each other through choosing the proper interaction time to make measurements. Then we consider another system including a double QDs and a pair of parallel MNWs, it is shown that the entanglement information transfer can be realized between the two kinds of systems. We also realize long distance quantum information transfer between two quantum dots separated by an MNW, by making use of the nonlocal fermionic level formed with the pared Majorana feimions (MFs) emerging at the two ends of the MNW. Furthermore, we analyze the teleportationlike electron transfer phenomenon predicted by Tewari et al. [Phys. Rev. Lett. 100, 027001 (2008)] in our considered system. Interestingly, we find that this phenomenon exactly corresponds to the case that the information encoded in one QD just returns back to its original place during the dynamical evolution of the combined system from the perspective of quantum state transfer. (paper)

  20. Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: a Redfield theory approach

    NARCIS (Netherlands)

    Novoderezhkin, V.; Salverda, J.M.; Amerongen, van H.; Grondelle, van R.

    2003-01-01

    We propose an exciton model for the peripheral plant light-harvesting complex LHCII that allows us to explain the absorption (OD) and linear dichroism (LD) spectra, the superradiance (SR), the pump-probe transient absorption (TA), the three-pulse photon echo peak shift (3PEPS), and transient grating

  1. Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: A redfield theory approach

    NARCIS (Netherlands)

    Novoderezhkin, V.; Salverda, J.M.; van Amerongen, H.; van Grondelle, R.

    2003-01-01

    We propose an exciton model for the peripheral plant light-harvesting complex LHCII that allows us to explain the absorption (OD) and linear dichroism (LD) spectra, the superradiance (SR), the pump-probe transient absorption (TA), the three-pulse photon echo peak shift (3PEPS), and transient grating

  2. Field-modulation spectroscopy of pentacene thin films using field-effect devices: Reconsideration of the excitonic structure

    Science.gov (United States)

    Haas, Simon; Matsui, Hiroyuki; Hasegawa, Tatsuo

    2010-10-01

    We report pure electric-field effects on the excitonic absorbance of pentacene thin films as measured by unipolar field-effect devices that allowed us to separate the charge accumulation effects. The field-modulated spectra between 1.8 and 2.6 eV can be well fitted with the first derivative curve of Frenkel exciton absorption and its vibronic progression, and at higher energy a field-induced feature appears at around 2.95 eV. The results are in sharp contrast to the electroabsorption spectra reported by Sebastian in previous studies [Chem. Phys. 61, 125 (1981)10.1016/0301-0104(81)85055-0], and leads us to reconsider the excitonic structure including the location of charge-transfer excitons. Nonlinear π -electronic response is discussed based on second-order electro-optic (Kerr) spectra.

  3. Charge transfer between O6+ and atomic hydrogen

    Science.gov (United States)

    Wu, Y.; Stancil, P. C.; Liebermann, H. P.; Buenker, R. J.; Schultz, D. R.; Hui, Y.

    2011-05-01

    The charge exchange process has been found to play a dominant role in the production of X-rays and/or EUV photons observed in cometary and planetary atmospheres and from the heliosphere. Charge transfer cross sections, especially state-selective cross sections, are necessary parameters in simulations of X-ray emission. In the present work, charge transfer due to collisions of ground state O6+(1s2 1 S) with atomic hydrogen has been investigated theoretically using the quantum-mechanical molecular-orbital close-coupling method (QMOCC). The multi-reference single- and double-excitation configuration interaction approach (MRDCI) has been applied to compute the adiabatic potential and nonadiabatic couplings, and the atomic basis sets used have been optimized with the method proposed previously to obtain precise potential data. Total and state-selective cross sections are calculated for energies between 10 meV/u and 10 keV/u. The QMOCC results are compared to available experimental and theoretical data as well as to new atomic-orbital close-coupling (AOCC) and classical trajectory Monte Carlo (CTMC) calculations. A recommended set of cross sections, based on the MOCC, AOCC, and CTMC calculations, is deduced which should aid in X-ray modeling studies.

  4. Super-iron Nanoparticles with Facile Cathodic Charge Transfer

    Energy Technology Data Exchange (ETDEWEB)

    M Farmand; D Jiang; B Wang; S Ghosh; D Ramaker; S Licht

    2011-12-31

    Super-irons contain the + 6 valence state of iron. One advantage of this is that it provides a multiple electron opportunity to store additional battery charge. A decrease of particle size from the micrometer to the nanometer domain provides a higher surface area to volume ratio, and opportunity to facilitate charge transfer, and improve the power, voltage and depth of discharge of cathodes made from such salts. However, super-iron salts are fragile, readily reduced to the ferric state, with both heat and contact with water, and little is known of the resultant passivating and non-passivating ferric oxide products. A pathway to decrease the super-iron particle size to the nano-domain is introduced, which overcomes this fragility, and retains the battery capacity advantage of their Fe(VI) valence state. Time and power controlled mechanosynthesis, through less aggressive, dry ball milling, leads to facile charge transfer of super-iron nanoparticles. Ex-situ X-ray Absorption Spectroscopy is used to explore the oxidation state and structure of these iron oxides during discharge and shows the significant change in stability of the ferrate structure to lower oxidation state when the particle size is in the nano-domain.

  5. Investigation of exciton photodissociation, charge transport and photovoltaic response of poly(N-vinyl carbazole):TiO2 nanocomposites for solar cell applications

    International Nuclear Information System (INIS)

    Dridi, C; Chaabane, H; Barlier, V; Davenas, J; Ouada, H Ben

    2008-01-01

    The photogeneration of charge carriers in spin-coated thin films of nanocrystalline (nc-)TiO 2 particles dispersed in a semiconducting polymer, poly(N-vinylcarbazole) (PVK), has been studied by photoluminescence and charge transport measurements. The solvent and the TiO 2 particle concentration have been selected to optimize the composite morphology. A large number of small domains leading to a large interface and an improved exciton dissociation could be obtained with tetrahydrofuran (THF). The charge transport mechanism and trap distribution at low and high voltage in ITO/nc-TiO 2 :PVK/Al diodes in the dark could be identified by current-voltage measurements and impedance spectroscopy. The transport mechanism is space charge limited with an exponential trap distribution in the high voltage regime (1-4 V), whereas a Schottky process with a barrier height of about 0.9 eV is observed at low bias voltages ( sc and open circuit voltage V oc for a 30% TiO 2 volume content corresponding to the morphology exhibiting the best dispersion of TiO 2 particles. A degradation of the photovoltaic properties is induced at higher compositions by the formation of larger TiO 2 aggregates. A procedure has been developed to extract the physical parameters from the J-V characteristics in the dark and under illumination on the basis of an equivalent circuit. The variation of the solar cell parameters with the TiO 2 composition confirms that the photovoltaic response is optimum for 30% TiO 2 volume content. It is concluded that the photovoltaic properties of nc-TiO 2 :PVK nanocomposites are controlled by the interfacial area between the donor and the acceptor material and are limited by the dispersion of the TiO 2 nanoparticles in the polymer

  6. Collective charge and mass transfer in heavy ion reactions

    International Nuclear Information System (INIS)

    Hahn, J.

    1982-01-01

    In this thesis the dynamics of the charge and mass asymmetry degree of freedom was studied in the framework of the fragmentation theory by means of a time-dependent Schroedinger equation. New is the introduction of a friction potential which describes the coupling of these collective degrees of freedom to the not explicitely treated other collective respectively internal degrees of freedom. Thereby it was shown that the measured widths of the isobaric charge distributions in the 86 Kr+sup(92,98)Mo reaction can be explained mainly by the quantum mechanical uncertainty in the charge asymmetry degree of freedom. The charge equilibration occurring at the begin of a deep inelastic collision can therefore by considered as a quantum mechanical, collective, damped motion which is connected with the excitation of the isovector giant dipole resonance of the nucleus-nucleus system. The study of the mass transfer in the reactions 132 Xe+ 120 Sn and 86 Kr+ 166 Er shows, how important at the begin of a deep inelastic collision shell structures and their conservation are for a large part of the reaction, even if the elemental distribution show no maxima in the region of magic shell closures. The experimental width are up to 10 MeV/A well described under conservation of the shell structure. (orig./HSI) [de

  7. Charge Transfer in Collisions of S^4+ with H.

    Science.gov (United States)

    Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-05-01

    Charge transfer processes due to collisions of ground state S^4+ ions with atomic hydrogen were investigated for energies between 1 meV/u and 10 MeV/u using the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially-stripped S^3+ excited classical states. Hydrogen target isotope effects were explored and rate coefficients for temperatures between 100 and 10^6 K will be presented

  8. Charge transfer in proton-hydrogen collisions under Debye plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Arka [Department of Mathematics, Burdwan University, Golapbag, Burdwan 713 104, West Bengal (India); Kamali, M. Z. M. [Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ghoshal, Arijit, E-mail: arijit98@yahoo.com [Department of Mathematics, Burdwan University, Golapbag, Burdwan 713 104, West Bengal (India); Department of Mathematics, Kazi Nazrul University, B.C.W. Campus, Asansol 713 304, West Bengal (India); Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ratnavelu, K. [Department of Mathematics, Kazi Nazrul University, B.C.W. Campus, Asansol 713 304, West Bengal (India)

    2015-02-15

    The effect of plasma environment on the 1s → nlm charge transfer, for arbitrary n, l, and m, in proton-hydrogen collisions has been investigated within the framework of a distorted wave approximation. The effect of external plasma has been incorporated using Debye screening model of the interacting charge particles. Making use of a simple variationally determined hydrogenic wave function, it has been possible to obtain the scattering amplitude in closed form. A detailed study has been made to investigate the effect of external plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range of 20–1000 keV. For the unscreened case, our results are in close agreement with some of the most accurate results available in the literature.

  9. Polarization and charge transfer in the hydration of chloride ions

    International Nuclear Information System (INIS)

    Zhao Zhen; Rogers, David M.; Beck, Thomas L.

    2010-01-01

    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters. The quantum theory of atoms in molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. The clusters extracted from the AMOEBA simulations exhibit high probabilities of anisotropic solvation for chloride ions in bulk water. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared to the quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2-level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.

  10. Charge transfer in gold--alkali-metal systems

    International Nuclear Information System (INIS)

    Watson, R.E.; Weinert, M.

    1994-01-01

    Based on conventional electronegativity arguments, gold--alkali-metal compounds are expected to be among the most ''ionic'' of metallic compounds. The concepts of ionicity and charge transfer are difficult to quantify. However, the changes in bonding in the 50/50 Au--alkali-metal systems between the elemental metals and the compounds are so severe that observations can readily be made concerning their character. The results, as obtained from self-consistent electronic-structure calculations, lead to the apparently odd observation that the electron density at the alkali-metal sites in the compound increases significantly and this involves high l componennts in the charge density. This increase, however, can be attributed to Au-like orbitals spatially overlapping the alkali-metal sites. In a chemical sense, it is reasonable to consider the alkali-metal transferring charge to these Au orbitals. While normally the difference in heats of formation between muffin-tin and full-potential calculations for transition-metal--transition-metal and transition-metal--main-group (e.g., Al) compounds having high site symmetry are small, for the gold--alkali-metal systems, the changes in bonding in the compounds cause differences of ∼0.5 eV/atom between the two classes of potential. Any serious estimate of the electronic structure in these systems must account for these aspherical bonding charges. The origin of the semiconducting behavior of the heavy-alkali-metal Au compounds is shown to arise from a combination of the Au-Au separations and the ionic character of the compounds; the light-alkali-metal Au compounds, with their smaller Au-Au separations, do not have a semiconducting gap. Core-level shifts and isomer shifts are also briefly discussed

  11. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C60 Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Dowgiallo, Anne-Marie; Mistry, Kevin S.; Johnson, Justin C.; Reid, Obadiah G.; Blackburn, Jeffrey L.

    2016-05-19

    The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorption measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT 'reporter layer'. In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.

  12. Quantum computing based on space states without charge transfer

    International Nuclear Information System (INIS)

    Vyurkov, V.; Filippov, S.; Gorelik, L.

    2010-01-01

    An implementation of a quantum computer based on space states in double quantum dots is discussed. There is no charge transfer in qubits during a calculation, therefore, uncontrolled entanglement between qubits due to long-range Coulomb interaction is suppressed. Encoding and processing of quantum information is merely performed on symmetric and antisymmetric states of the electron in double quantum dots. Other plausible sources of decoherence caused by interaction with phonons and gates could be substantially suppressed in the structure as well. We also demonstrate how all necessary quantum logic operations, initialization, writing, and read-out could be carried out in the computer.

  13. Negative thermal expansion induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-06-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu 3 Fe 4 O 12 and LaCu 3 Fe 4- x Mn x O 12 , as well as in Bi or Ni substituted BiNiO 3 . The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding -70 × 10 -6 K -1 near room temperature, in the temperature range which can be controlled by substitution.

  14. Charge transfer between acenes and PbS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D M N M [Solid State Electronics Laboratory, University of Michigan, Ann Arbor, MI 48109-2122 (United States); Hatton, R A [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Lutz, T [Departments of Chemistry and Physics, Imperial College, London SW7 2AY (United Kingdom); Curry, R J; Silva, S R P [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: ndissa@umich.edu

    2009-05-13

    Organic-inorganic hybrid heterojunctions have potential as the basis for future photovoltaic devices. Herein, we report the results of investigations exploring the possibility of using pentacene and tetracene as photoelectron donors in conjunction with PbS nanocrystals (PbS-NCs). Photoinduced charge transfer was probed using external quantum efficiency measurements on acene:PbS-NC hybrid photovoltaic devices in conjunction with photoluminescence studies of the corresponding bilayer films. It is shown that photoelectron transfer from pentacene to the PbS-NCs is inefficient as compared to that between tetracene and PbS-NCs. The latter case can be rationalized in terms of the energy level alignment at the heterojunction assuming a common vacuum level. However, in the case of pentacene:PbS-NC junctions an interfacial energy level shift must be considered in order to explain the observations.

  15. Exciton Seebeck effect in molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yun-An, E-mail: yunan@nano.gznc.edu.cn [Guizhou Provincial Key Laboratory of Computational Nanomaterial Science, Guizhou Normal College, Guiyang, Guizhou 550018 (China); Cai, Shaohong [Guizhou Key Laboratory of Economic System Simulation, Guizhou University of Finance and Economics, Guiyang 550004 (China)

    2014-08-07

    We investigate the exciton dynamics under temperature difference with the hierarchical equations of motion. Through a nonperturbative simulation of the transient absorption of a heterogeneous trimer model, we show that the temperature difference causes exciton population redistribution and affects the exciton transfer time. It is found that one can reproduce not only the exciton population redistribution but also the change of the exciton transfer time induced by the temperature difference with a proper tuning of the site energies of the aggregate. In this sense, there exists a site energy shift equivalence for any temperature difference in a broad range. This phenomenon is similar to the Seebeck effect as well as spin Seebeck effect and can be named as exciton Seebeck effect.

  16. PbSe Nanocrystal Excitonic Solar Cells

    KAUST Repository

    Choi, Joshua J.

    2009-11-11

    We report the design, fabrication, and characterization of colloidal PbSe nanocrystal (NC)-based photovoltaic test structures that exhibit an excitonic solar cell mechanism. Charge extraction from the NC active layer is driven by a photoinduced chemical potential energy gradient at the nanostructured heterojunction. By minimizing perturbation to PbSe NC energy levels and thereby gaining insight into the "intrinsic" photovoltaic properties and charge transfer mechanism of PbSe NC, we show a direct correlation between interfacial energy level offsets and photovoltaic device performance. Size dependent PbSe NC energy levels were determined by cyclic voltammetry and optical spectroscopy and correlated to photovoltaic measurements. Photovoltaic test structures were fabricated from PbSe NC films sandwiched between layers of ZnO nanoparticles and PEDOT:PSS as electron and hole transporting elements, respectively. The device current-voltage characteristics suggest a charge separation mechanism that Is distinct from previously reported Schottky devices and consistent with signatures of excitonic solar cells. Remarkably, despite the limitation of planar junction structure, and without film thickness optimization, the best performing device shows a 1-sun power conversion efficiency of 3.4%, ranking among the highest performing NC-based solar cells reported to date. © 2009 American Chemical Society.

  17. Charge Transfer Based Colorimetric Detection of Silver Ion

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Choul; Kim, Kwang Seob; Choi, Soon Kyu; Oh, Jinho; Lee, Jae Wook [Dong-A Univ., Busan (Korea, Republic of)

    2014-05-15

    We have demonstrated the colorimetric chemosensor for detection of Ag{sup +} via formation of nanoparticles which is based on the intramolecular CT interaction between the electron-rich (2,6-dialkoxynaphthalene; Np) moiety and the electron-deficient (methyl viologen; MV{sup 2+}) moiety of a single sensor molecule. Under irradiation of light, Ag{sup +} was reduced to very small silver nanoparticle by CT interaction in the presence of OEGs as flexible recognition moiety of Ag{sup +} and stabilizer for Ag nanoparticles, thus Ag nanoparticles resulted to reddish brown in the color change of sensor solution, gradually. Therefore, the charge-transfer interaction between an electron-deficient and an electron-rich units existing at a sensor molecule can be regarded as a new and efficient method to construct various colorimetric chemosensors. Donor.acceptor interactions or charge transfer (CT) interactions are an important class of non-covalent interactions and have been widely exploited in self-assembling systems. Beyond molecular chemistry, supramolecular chemistry aims at constituting highly complex, functional chemical systems from components held together by intermolecular forces. Chemosensors are the molecules of abiotic origin that bind selectively and reversibly with the analyte with concomitant change in one or more properties of the system. The recognition and signaling of ionic and neutral species of varying complexity is one of the most intensively studied areas of contemporary supramolecular chemistry.

  18. Near thermal charge transfer between Ar+2 and N2

    International Nuclear Information System (INIS)

    Holzscheiter, H.M.; Church, D.A.

    1981-01-01

    The near thermal charge transfer reaction of Ar +2 with N 2 has been studied at total pressures below 10 -7 Torr using a stored ion technique. Ar +2 ions produced by electron impact double ionization of Ar gas were selectively stored for times the order of seconds in a split-ring Penning-type ion trap. The decay with time of the initial ion sample number in a mixture of Ar and N 2 gases was fit to the sum of two exponentials, corresponding to different reaction rates for the 3 P and 1 D low-lying Ar +2 levels. The observed Ar +2 number decrease is attributed to the double-charge transfer process Ar +2 +N 2 →Ar+N 2 +2 →Ar+N + +N + in accord with recent flow-tube measurements. A rate constant for the metastable Ar +2 ( 1 D) level reaction with a value k( 1 D)=1.4 x 10 -9 cm 3 /sec is obtained, using the previously measured rate constant for the Ar +2 ( 3 P) state

  19. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    Van Tassle, Aaron Justin

    2006-01-01

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  20. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    Science.gov (United States)

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  1. Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface

    KAUST Repository

    Gruenewald, Marco; Schirra, Laura K.; Winget, Paul; Kozlik, Michael; Ndione, Paul F.; Sigdel, Ajaya K.; Berry, Joseph J.; Forker, Roman; Bredas, Jean-Luc; Fritz, Torsten; Monti, Oliver L. A.

    2015-01-01

    with localized states (the shallow donors) in the substrate and charge back-donation, resulting in an effectively integer charge transfer across the interface. Charge transfer is thus not merely a question of locating the Fermi level above the PTCDA electron

  2. Influence of excitonic effects on luminescence quantum yield in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sachenko, A.V.; Kostylyov, V.P.; Vlasiuk, V.M. [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 prospect Nauky, 03028 Kyiv (Ukraine); Sokolovskyi, I.O., E-mail: isokolovskyi@mun.ca [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 prospect Nauky, 03028 Kyiv (Ukraine); Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, NL, A1B 3X7 Canada (Canada); Evstigneev, M. [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, NL, A1B 3X7 Canada (Canada)

    2017-03-15

    Nonradiative exciton lifetime in silicon is determined by comparison of the experimental and theoretical curves of bulk minority charge carriers lifetime on doping and excitation levels. This value is used to analyze the influence of excitonic effects on internal luminescence quantum yield at room temperature, taking into account both nonradiative and radiative exciton lifetimes. A range of Shockley-Hall-Reed lifetimes is found, where excitonic effects lead to an increase of internal luminescence quantum yield.

  3. Charge transfer of O3+ ions with atomic hydrogen

    International Nuclear Information System (INIS)

    Wang, J.G.; Stancil, P.C.; Turner, A.R.; Cooper, D.L.

    2003-01-01

    Charge transfer processes due to collisions of ground state O 3+ (2s 2 2p 2 P) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with existing experimental and theoretical data shows our results to be in better agreement with the measurements than the previous calculations, although problems with some of the state-selective measurements are noted. Our calculations demonstrate that rotational coupling is not important for the total cross section, but for state-selective cross sections, its relevance increases with energy. For the ratios of triplet to singlet cross sections, significant departures from a statistical value are found, generally in harmony with experiment

  4. Charge transfer of O3+ ions with atomic hydrogen

    Science.gov (United States)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-01-01

    Charge transfer processes due to collisions of ground state O3+(2s22p 2P) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with existing experimental and theoretical data shows our results to be in better agreement with the measurements than the previous calculations, although problems with some of the state-selective measurements are noted. Our calculations demonstrate that rotational coupling is not important for the total cross section, but for state-selective cross sections, its relevance increases with energy. For the ratios of triplet to singlet cross sections, significant departures from a statistical value are found, generally in harmony with experiment.

  5. Charge Transfer in Collisions of S^4+ with He.

    Science.gov (United States)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-05-01

    Charge transfer processes due to collisions of ground state S^4+ ions with atomic helium were investigated for energies between 0.1 meV/u and 10 MeV/u. Total and state-selective cross sections and rate coefficients were obtained utilizing the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were also explored. Previous data are limited to an earlier Landau-Zener calculation of the total rate coefficient for which our results are two orders of magnitude larger. An observed multichannel interference effect in the MOCC results will also be discussed.

  6. Angular distribution in proton-hydrogen charge-transfer collisions

    International Nuclear Information System (INIS)

    Glembocki, O.; Halpern, A.M.

    1977-01-01

    Theoretical angular distributions for p-H charge transfer to the 1s state for energies of 1 keV and above have been examined and compared for three approximation schemes: the plane-wave Born approximation of Jackson and Schiff (JS), the Coulomb projected Born approximation of Geltman (G), and the distorted-wave eikonal approximation of one of the authors (D). The sharp dip in the forward distribution characteristic of JS is found to exist in G and D as well. As expected, G and D give identical results for all but the lowest energies. In the cases of G and D the dip, which is located close to that of JS, disappears and then reappears as the energy rises. Analytic high-energy limits for the angular dependence in both the JS and G cases have been found and are discussed

  7. Laser-induced charge transfer in the CH6+ quasimolecule

    International Nuclear Information System (INIS)

    Errea, L.F.; Mendez, L.; Riera, A.

    1985-01-01

    The charge transfer cross section is calculated for C 6+ +CH(1s) collisions, through photon assisted 5gsigma--6hsigma, 5gsigma--4fsigma, 5gsigma--4fπ, and 5gsigma--4dsigma transitions. The theory developed by Copeland and Tang, and ourselves, is employed, and the validity of the approximations used is tested. The four processes considered have widely different characteristics with regards to the laser wavelength needed, the collision dynamics and the applicability of back-of-the-envelope estimates based on the Landau--Zener approximation. We point out the relevance of those processes to the impurity diagnostics of magnetically confined fusion plasmas and to the development of short wavelength lasers

  8. Scaling of the helium--nitrogen charge transfer laser

    International Nuclear Information System (INIS)

    Collins, C.B.; Cunningham, A.J.

    1975-01-01

    The scaling to high powers of the nitrogen ion laser pumped by charge transfer from He + 2 is reported. Intense emission has been found from three laser lines at 3914, 4278, and 4709 A upon discharge of a fast-pulsed electron beam gun, APEX-1, into several atmospheres of a mixture of helium and nitrogen. Excitation current densities were 1.3 kA/cm 2 at 1 MV over a 1times10-cm transverse geometry. The efficiency of the 4278-A laser emission was found to be proportional to the total pressure raised to the 1.2 power. Outputs of 36 mJ have been obtained from the 16-cm 3 working volume at 30-atm pressure and a peak efficiency of 1.6% relative to the energy lost by the electron beam in this radiating volume has been achieved

  9. Charge-transfer collisions involving few-electron systems

    International Nuclear Information System (INIS)

    Kirchner, T.

    2016-01-01

    Ion-atom collision systems that involve more than one electron constitute nonseparable few-body problems, whose full solution is difficult to say the least. At impact energies well below 1 keV/amu an expansion of the stationary scattering wave function in terms of a limited number of products of nuclear and molecular state wave functions (amended to satisfy scattering boundary conditions) is feasible and usually sufficient to obtain accurate charge-transfer cross sections provided the electronic wave functions include configuration interaction. At energies above 1 keV/amu this approach becomes inefficient and close-coupling methods within the semi classical approximation are better suited to treat the problem. For bare-ion collisions from helium target atoms explicit solutions of the two-electron time-dependent Schrödinger equation can be achieved, but are computationally costly and cannot be extended to problems which involve more than two electrons.

  10. Positron annihilation studies of some charge transfer molecular complexes

    CERN Document Server

    El-Sayed, A; Boraei, A A A

    2000-01-01

    Positron annihilation lifetimes were measured for some solid charge transfer (CT) molecular complexes of quinoline compounds (2,6-dimethylquinoline, 6-methoxyquinoline, quinoline, 6-methylquinoline, 3-bromoquinoline and 2-chloro-4-methylquinoline) as electron donor and picric acid as an electron acceptor. The infrared spectra (IR) of the solid complexes clearly indicated the formation of the hydrogen-bonding CT-complexes. The annihilation spectra were analyzed into two lifetime components using PATFIT program. The values of the average and bulk lifetimes divide the complexes into two groups according to the non-bonding ionization potential of the donor (electron donating power) and the molecular weight of the complexes. Also, it is found that the ionization potential of the donors and molecular weight of the complexes have a conspicuous effect on the average and bulk lifetime values. The bulk lifetime values of the complexes are consistent with the formation of stable hydrogen-bonding CT-complexes as inferred...

  11. Exciplex: An Intermolecular Charge-Transfer Approach for TADF.

    Science.gov (United States)

    Sarma, Monima; Wong, Ken-Tsung

    2018-04-03

    Organic materials that display thermally activated delayed fluorescence (TADF) are a striking class of functional materials that have witnessed a booming progress in recent years. In addition to pure TADF emitters achieved by the subtle manipulations of intramolecular charge transfer processes with sophisticated molecular structures, a new class of efficient TADF-based OLEDs with emitting layer formed by blending electron donor and acceptor molecules that involve intermolecular charge transfer have also been fabricated. In contrast to pure TADF materials, the exciplex-based systems can realize small ΔEST (0-0.05 eV) much more easily since the electron and hole are positioned on two different molecules, thereby giving small exchange energy. Consequently, exciplex-based OLEDs have the prospective to maximize the TADF contribution and achieve theoretical 100% internal quantum efficiency. Therefore, the challenging issue of achieving small ΔEST in organic systems could be solved. In this article, we summarize and discuss the latest and most significant developments regarding these rapidly evolving functional materials, wherein the majority of the reported exciplex forming systems are categorized into two sub-groups, viz. (a) exciplex as TADF emitters and (b) those as hosts for fluorescent, phosphorescent and TADF dopants according to their structural features and applications. The working mechanisms of the direct electroluminescence from the donor/acceptor interface and the exciplex-forming systems as co-host for the realization of high efficiency OLEDs are reviewed and discussed. This article delivers a summary of the current progresses and achievements of exciplex-based researches and points out the future challenges to trigger more research endeavors to this growing field.

  12. Charge amplification and transfer processes in the gas electron multiplier

    International Nuclear Information System (INIS)

    Bachmann, S.; Bressan, A.; Ropelewski, L.; Sauli, F.; Sharma, A.; Moermann, D.

    1999-01-01

    We report the results of systematic investigations on the operating properties of detectors based on the gas electron multiplier (GEM). The dependence of gain and charge collection efficiency on the external fields has been studied in a range of values for the hole diameter and pitch. The collection efficiency of ionization electrons into the multiplier, after an initial increase, reaches a plateau extending to higher values of drift field the larger the GEM voltage and its optical transparency. The effective gain, fraction of electrons collected by an electrode following the multiplier, increases almost linearly with the collection field, until entering a steeper parallel plate multiplication regime. The maximum effective gain attainable increases with the reduction in the hole diameter, stabilizing to a constant value at a diameter approximately corresponding to the foil thickness. Charge transfer properties appear to depend only on ratios of fields outside and within the channels, with no interaction between the external fields. With proper design, GEM detectors can be optimized to satisfy a wide range of experimental requirements: tracking of minimum ionizing particles, good electron collection with small distortions in high magnetic fields, improved multi-track resolution and strong ion feedback suppression in large volume and time-projection chambers

  13. Fabrication and charge/energy-transfer study of 4,7-bis(4-triphenylamino)benzo- 2,1,3-thiadiazole/CuPc composite films

    International Nuclear Information System (INIS)

    Zhu Yuanyuan; Wei Xiao; Xue Minzhao; Zhang Qing; Sheng Qiaorong; Liu Yangang; Gu Shuangxi

    2010-01-01

    Composite films of 4,7-bis(4-triphenylamino)benzo-2,1,3-thiadiazole (TBT) and copper phthalocyanine (CuPc) are fabricated via protonation-coelectrophoretic deposition from nitromethane solutions of TBT/CuPc mixture in the presence of trifluoroacetic acid as a protonation reagent. A nanospheres-nanowires interpenetrating network structure is obtained when the molar percentage of TBT is 70%. Furthermore, the existence of TBT makes α-phased CuPc be partly transformed into the β-phase, and simultaneously, CuPc disorganizes the TBT unit cells. The blue shift on the absorption edge of TBT and the significant fluorescence quenching in the composite films indicate energy/charge transfer and donor-acceptor (D-A) heterojunction formation. Then these results are proved from another point of view: the mutual overlap of absorption and emission spectra of TBT and CuPc lead to a bidirectional Foerster resonance energy transfer at the interface; the molecular energy levels calculated from the results of cyclic voltammetry theoretically determine that there exist a D-A heterojunction and charge transfer from TBT to CuPc. Finally, from the investigation of the field-induced surface photovoltage spectra, it can be concluded that this charge transfer results in efficient dissociation of the photoinduced excitons in the composite films, followed by the generation of a strong photovoltage response.

  14. Fabrication and charge/energy-transfer study of 4,7-bis(4-triphenylamino)benzo- 2,1,3-thiadiazole/CuPc composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yuanyuan; Wei Xiao; Xue Minzhao; Zhang Qing; Sheng Qiaorong; Liu Yangang [School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gu Shuangxi, E-mail: mzxue@sjtu.edu.c [Department of Chemistry, Fudan University, Shanghai 200433 (China)

    2010-12-15

    Composite films of 4,7-bis(4-triphenylamino)benzo-2,1,3-thiadiazole (TBT) and copper phthalocyanine (CuPc) are fabricated via protonation-coelectrophoretic deposition from nitromethane solutions of TBT/CuPc mixture in the presence of trifluoroacetic acid as a protonation reagent. A nanospheres-nanowires interpenetrating network structure is obtained when the molar percentage of TBT is 70%. Furthermore, the existence of TBT makes {alpha}-phased CuPc be partly transformed into the {beta}-phase, and simultaneously, CuPc disorganizes the TBT unit cells. The blue shift on the absorption edge of TBT and the significant fluorescence quenching in the composite films indicate energy/charge transfer and donor-acceptor (D-A) heterojunction formation. Then these results are proved from another point of view: the mutual overlap of absorption and emission spectra of TBT and CuPc lead to a bidirectional Foerster resonance energy transfer at the interface; the molecular energy levels calculated from the results of cyclic voltammetry theoretically determine that there exist a D-A heterojunction and charge transfer from TBT to CuPc. Finally, from the investigation of the field-induced surface photovoltage spectra, it can be concluded that this charge transfer results in efficient dissociation of the photoinduced excitons in the composite films, followed by the generation of a strong photovoltage response.

  15. The Roles of Structural Order and Intermolecular Interactions in Determining Ionization Energies and Charge-Transfer State Energies in Organic Semiconductors

    KAUST Repository

    Graham, Kenneth; Ngongang Ndjawa, Guy Olivier; Conron, Sarah M.; Munir, Rahim; Vandewal, Koen; Chen, John J.; Sweetnam, Sean; Thompson, Mark E.; Salleo, Alberto; Mcgehee, Michael D.; Amassian, Aram

    2016-01-01

    The energy landscape in organic semiconducting materials greatly influences charge and exciton behavior, which are both critical to the operation of organic electronic devices. These energy landscapes can change dramatically depending on the phases

  16. Simulation of excitonic optical line shapes of cyclic oligomers - models for basic units of photosynthetic antenna systems: Transfer integral versus local energy fluctuations with dichotomic coloured noise

    International Nuclear Information System (INIS)

    Barvik, I.; Reineker, P.; Warns, C.; Neidlinger, T.

    1995-08-01

    For Frenkel excitons moving on cyclic and linear molecular chains modeling in part photosynthetic antenna systems we investigate the influence of dynamic and static disorder on their optical line shapes. The dynamic disorder describes the influence of vibrational degrees of freedom and is taken into account by fluctuations of the transfer matrix element between neighbouring molecules. The fluctuations are represented by dichotomic Markov processes with coloured noise. We obtain a closed set of equations of motion for the correlation functions determining the optical line shape which is solved exactly. The line shapes are discussed for various sets of the model parameters and arrangements of molecules and their dipole moments. (author). 63 refs, 10 figs

  17. Doping graphene films via chemically mediated charge transfer

    Directory of Open Access Journals (Sweden)

    Ishikawa Ryousuke

    2011-01-01

    Full Text Available Abstract Transparent conductive films (TCFs are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ, is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs.

  18. Classical/quantum correspondence in state selective charge transfer and excitation reactions involving highly charged ions and hydrogen

    International Nuclear Information System (INIS)

    Purkait, M

    2009-01-01

    State selective charge transfer and excitation cross sections for collisions of Ne q+ (q = 1-10) with atomic hydrogen are calculated within the framework of Classical Trajectory Monte Carlo (CTMC) method and Boundary Corrected Continuum Intermediate State (BCCIS) approximation.

  19. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport through Pt and overcome the Schottky barrier at the interface with TiO2. The yield for this phenomenon is on the order of 10-4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D2 compared to H2, contrary to what is expected given the higher mass of D2. Reversible changes in the rectification factor of the diode are observed when switching between D2 and H2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H2 oxidation. Absorption of the light in the Si, combined with

  20. Experimental evidence of state-selective charge transfer in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2004-01-01

    State-selective charge-transfer behavior was observed for Fe, Cr, Mn and Cu in inductively coupled plasma (ICP)-atomic emission spectrometry. Charge transfer from Ar + to Fe, Cr and Mn is state-selective because of inefficient collisional mixing of the quasiresonant charge-transfer energy levels with nearby levels. This low efficiency is the consequence of differences in electronic configuration of the core electrons. The reason for state-selective charge-transfer behavior to Cu is not clear, although a tentative explanation based on efficiency of intramultiplet and intermultiplet mixing for this special case is offered

  1. Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Charge-Transfer States in Organic Solar Cells

    KAUST Repository

    Chen, Xiankai

    2016-09-05

    In organic solar cells, a major source of energy loss is attributed to nonradiative recombination from the interfacial charge transfer states to the ground state. By taking pentacene–C60 complexes as model donor–acceptor systems, a comprehensive theoretical understanding of how molecular packing and charge delocalization impact these nonradiative recombination rates at donor–acceptor interfaces is provided.

  2. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    Energy Technology Data Exchange (ETDEWEB)

    Vanden Bout, David A. [Univ. of Texas, Austin, TX (United States)

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  3. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    International Nuclear Information System (INIS)

    Gross, Dieter Konrad Michael

    2013-01-01

    -quenching vanishes when this offset approaches 0.0 eV. The fact that PL-quenching and its correlation with the energetic offset was observed for both clustered and layered assembly provides a strong indirect indication of charge separation via electron transfer from CdTe to CdSe nanocrystals. The main result of this thesis is the direct proof of the charge separation on the type II interface of CdTe and CdSe nanocrystal layers. SPV-measurements as a direct measurement methode showed clearly the directionality of charge separation since the SPV measures the electric field of the separated charges. Electrons are collected on CdSe nanocrystal layers, holes on CdTe nanocrystal layers. A change in the order between CdSe and CdTe therefore leads to a change in the sign of the SPV-signal. Both SPVspectra and time-resolved SPV-measurements support this finding and showed that the charge selectivity of the CdTe-CdSe interface is unidirectional for the whole excitation spectrum and the entire investigated time range. This indicates that the directionality of the CdTe-CdSe interface is the only dominant charge separation mechanism that was observed. Hence, the type II alignment of the self-assembled nanocrystals used was clearly proven. Introducing an additional barrier between the nanocrystal layers doubled the barrier width so that the SPV-signal is quenched. This is consistent with tunneling transfer which is exponentially dependent on barrier width. Moreover, we learned that both absorption in CdTe and CdSe nanocrystals and the sample thickness contribute to the SPV-signal. Thus, we could observe electron diffusion in CdSe multilayers which was faster than the charge carrier diffusion dynamics in CdTe nanocrystal multilayers. Future research may address the combination of energy transfer dynamics with the charge separation processes presented in this thesis. On the one hand, this may provide a better understanding of their fundamental processes and differentiate between excitonic FRET and

  4. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    -quenching vanishes when this offset approaches 0.0 eV. The fact that PL-quenching and its correlation with the energetic offset was observed for both clustered and layered assembly provides a strong indirect indication of charge separation via electron transfer from CdTe to CdSe nanocrystals. The main result of this thesis is the direct proof of the charge separation on the type II interface of CdTe and CdSe nanocrystal layers. SPV-measurements as a direct measurement methode showed clearly the directionality of charge separation since the SPV measures the electric field of the separated charges. Electrons are collected on CdSe nanocrystal layers, holes on CdTe nanocrystal layers. A change in the order between CdSe and CdTe therefore leads to a change in the sign of the SPV-signal. Both SPVspectra and time-resolved SPV-measurements support this finding and showed that the charge selectivity of the CdTe-CdSe interface is unidirectional for the whole excitation spectrum and the entire investigated time range. This indicates that the directionality of the CdTe-CdSe interface is the only dominant charge separation mechanism that was observed. Hence, the type II alignment of the self-assembled nanocrystals used was clearly proven. Introducing an additional barrier between the nanocrystal layers doubled the barrier width so that the SPV-signal is quenched. This is consistent with tunneling transfer which is exponentially dependent on barrier width. Moreover, we learned that both absorption in CdTe and CdSe nanocrystals and the sample thickness contribute to the SPV-signal. Thus, we could observe electron diffusion in CdSe multilayers which was faster than the charge carrier diffusion dynamics in CdTe nanocrystal multilayers. Future research may address the combination of energy transfer dynamics with the charge separation processes presented in this thesis. On the one hand, this may provide a better understanding of their fundamental processes and differentiate between excitonic FRET and

  5. Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.

    Science.gov (United States)

    Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong

    2013-03-07

    Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.

  6. Versatile charge transfer through anthraquinone films for electrochemical sensing applications

    International Nuclear Information System (INIS)

    Venarusso, Luna B.; Tammeveski, Kaido; Maia, Gilberto

    2011-01-01

    Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to study the effect of anthraquinone (AQ) films on the charge transfer rate of β-nicotinamide adenine dinucleotide (NAD + ), dopamine (DA), and ferricyanide on glassy carbon (GC) electrodes in solutions of different pH. Maximum blocking action on the Fe(CN) 6 3- redox probe was observed at pH 7 and open-circuit potential (OCP). However, maximum electron hopping effect was observed at pH 9 at both -0.58 V and -0.85 V for Fe(CN) 6 3- , pH 7 at -0.58 V for NAD + , and pH 9 at -0.58 V for DA, suggesting that electron hopping in AQ films on a GC surface is dependent on both pH and electrode potential. These findings lend support for the application of these films in the detection of soluble redox probes such as NAD + and DA at biological pH values (from 7 to 9).

  7. Low-energy charge transfer excitations in NiO

    International Nuclear Information System (INIS)

    Sokolov, V I; Yermakov, A Ye; Uimin, M A; Gruzdev, N B; Pustovarov, V A; Churmanov, V N; Ivanov, V Yu; Sokolov, P S; Baranov, A N; Moskvin, A S

    2012-01-01

    Comparative analysis of photoluminescence (PL) and photoluminescence excitation (PLE) spectra of NiO poly- and nanocrystals in the spectral range 2-5.5 eV reveals two PLE bands peaked near 3.7 and 4.6 eV with a dramatic rise in the low-temperature PLE spectral weight of the 3.7 eV PLE band in the nanocrystalline NiO as compared with its polycrystalline counterpart. In frames of a cluster model approach we assign the 3.7 eV PLE band to the low-energy bulk-forbidden p-d (t 1g (π)-e g ) charge transfer (CT) transition which becomes the allowed one in the nanocrystalline state while the 4.6 eV PLE band is related to a bulk allowed d-d (e g -e g ) CT transition scarcely susceptible to the nanocrystallization. The PLE spectroscopy of the nanocrystalline materials appears to be a novel informative technique for inspection of different CT transitions.

  8. Vibrational spectra of charge transfer complexes of lead phthalocyanine

    International Nuclear Information System (INIS)

    Oza, A.T.; Patel, S.G.; Patel, R.G.; Prajapati, S.M.; Vaidya, Rajiv

    2005-01-01

    Infrared spectra of six charge transfer complexes of lead phthalocyanine (PbPc), namely, PbPc-I 2 , PbPc-TCNQ, PbPc-DDQ, PbPc-chloranil, PbPc-TCNE and PbPc-TNF, where TCNQ=7,7,8,8-tetracyano-1,4-quinodimethane, DDQ=2,3-dichloro-5,6-dicyano-p-benzoquinone, TCNE=tetracyano-p-ethylene and TNF=2,4,5,7-tetranitro-9-fluorenone have been studied in the range of 400-4000 cm -1 . The analysis of featureless absorption is carried out for studying transition across the Peierls gap of 0.225 eV. The electronic absorption envelopes at 1500, 1100 and 3400 cm -1 are found to have Gaussian shapes and not the degenerate oscillators, as found in purely organic conductors. There is a pairing of two electrons on phthalocyanine ligand as required in Little's model, and consequently, the electronic absorption envelope is a doublet. Electronic absorption envelope is a doublet showing two peaks at 1500 and 1100 cm -1 , indicating a two-electron problem in PbPc. Metal-ligand vibrations between 400 and 700 cm -1 lead to indirect transition between the valence and conduction bands and phonon-mediated coupling between metal chains and the side chains

  9. Versatile charge transfer through anthraquinone films for electrochemical sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Venarusso, Luna B. [Department of Chemistry, Universidade Federal de Mato Grosso do Sul, Caixa Postal 549, Campo Grande, MS 79070-900 (Brazil); Tammeveski, Kaido [Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu (Estonia); Maia, Gilberto, E-mail: gilberto.maia@ufms.br [Department of Chemistry, Universidade Federal de Mato Grosso do Sul, Caixa Postal 549, Campo Grande, MS 79070-900 (Brazil)

    2011-10-01

    Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to study the effect of anthraquinone (AQ) films on the charge transfer rate of {beta}-nicotinamide adenine dinucleotide (NAD{sup +}), dopamine (DA), and ferricyanide on glassy carbon (GC) electrodes in solutions of different pH. Maximum blocking action on the Fe(CN){sub 6}{sup 3-} redox probe was observed at pH 7 and open-circuit potential (OCP). However, maximum electron hopping effect was observed at pH 9 at both -0.58 V and -0.85 V for Fe(CN){sub 6}{sup 3-}, pH 7 at -0.58 V for NAD{sup +}, and pH 9 at -0.58 V for DA, suggesting that electron hopping in AQ films on a GC surface is dependent on both pH and electrode potential. These findings lend support for the application of these films in the detection of soluble redox probes such as NAD{sup +} and DA at biological pH values (from 7 to 9).

  10. Magnetically coupled resonance wireless charging technology principles and transfer mechanisms

    Science.gov (United States)

    Zhou, Jiehua; Wan, Jian; Ma, Yinping

    2017-05-01

    With the tenure of Electric-Vehicle rising around the world, the charging methods have been paid more and more attention, the current charging mode mainly has the charging posts and battery swapping station. The construction of the charging pile or battery swapping station not only require lots of manpower, material costs but the bare conductor is also easy to generate electric spark hidden safety problems, still occupies large space. Compared with the wired charging, wireless charging mode is flexible, unlimited space and location factors and charging for vehicle safety and quickly. It complements the traditional charging methods in adaptability and the independent charge deficiencies. So the researching the wireless charging system have an important practical significance and application value. In this paper, wireless charging system designed is divided into three parts: the primary side, secondary side and resonant coupling. The main function of the primary side is to generate high-frequency alternating current, so selecting CLASS-E amplifier inverter structure through the research on full bridge, half-bridge and power amplification circuit. Addition, the wireless charging system is susceptible to outside interference, frequency drift phenomenon. Combined with the wireless energy transmission characteristics, resonant parts adopt resonant coupling energy transmission scheme and the Series-Series coupling compensation structure. For the electric vehicle charging power and voltage requirements, the main circuit is a full bridge inverter and Boost circuit used as the secondary side.

  11. Charge-transfer cross sections in collisions of ground-state Ca and H+

    Science.gov (United States)

    Dutta, C. M.; Oubre, C.; Nordlander, P.; Kimura, M.; Dalgarno, A.

    2006-03-01

    We have investigated collisions of Ca(4s2) with H+ in the energy range of 200eV/u-10keV/u using the semiclassical molecular-orbital close-coupling (MOCC) method with 18 coupled molecular states ( 11Σ+1 and seven Π+1 states) to determine charge-transfer cross sections. Except for the incoming channel 6Σ+1 , the molecular states all correspond to charge-transfer channels. Inclusion of Ca2+-H- is crucial in the configuration-interaction calculation for generating the molecular wave functions and potentials. Because of the Coulomb attraction, the state separating to Ca2+-H- creates many avoided crossings, even though at infinite separation it lies energetically above all other states that we included. Because of the avoided crossings between the incoming channel 6Σ+1 and the energetically close charge-transfer channel 7Σ+1 the charge-transfer interaction occurs at long range. This makes calculations of charge-transfer cross sections by the MOCC method very challenging. The total charge-transfer cross sections increase monotonically from 3.4×10-15cm2 at 200eV/u to 4.5×10-15cm2 at 10keV/u . Charge transfer occurs mostly to the excited Ca+(5p) state in the entire energy range, which is the sum of the charge transfer to 7Σ+1 and 4Π+1 . It accounts for ˜47% of the total charge transfer cross sections at 200eV/u . However, as the energy increases, transfer to Ca+(4d) increases, and at 10keV/u the charge-transfer cross sections for Ca+(5p) and Ca+(4d) become comparable, each giving ˜38% of the total cross section.

  12. Charge-transfer cross sections in collisions of ground-state Ca and H+

    International Nuclear Information System (INIS)

    Dutta, C. M.; Oubre, C.; Nordlander, P.; Kimura, M.; Dalgarno, A.

    2006-01-01

    We have investigated collisions of Ca(4s 2 ) with H + in the energy range of 200 eV/u-10 keV/u using the semiclassical molecular-orbital close-coupling (MOCC) method with 18 coupled molecular states (11 1 Σ + and seven 1 Π + states) to determine charge-transfer cross sections. Except for the incoming channel 6 1 Σ + , the molecular states all correspond to charge-transfer channels. Inclusion of Ca 2+ -H - is crucial in the configuration-interaction calculation for generating the molecular wave functions and potentials. Because of the Coulomb attraction, the state separating to Ca 2+ -H - creates many avoided crossings, even though at infinite separation it lies energetically above all other states that we included. Because of the avoided crossings between the incoming channel 6 1 Σ + and the energetically close charge-transfer channel 7 1 Σ + the charge-transfer interaction occurs at long range. This makes calculations of charge-transfer cross sections by the MOCC method very challenging. The total charge-transfer cross sections increase monotonically from 3.4x10 -15 cm 2 at 200 eV/u to 4.5x10 -15 cm 2 at 10 keV/u. Charge transfer occurs mostly to the excited Ca + (5p) state in the entire energy range, which is the sum of the charge transfer to 7 1 Σ + and 4 1 Π + . It accounts for ∼47% of the total charge transfer cross sections at 200 eV/u. However, as the energy increases, transfer to Ca + (4d) increases, and at 10 keV/u the charge-transfer cross sections for Ca + (5p) and Ca + (4d) become comparable, each giving ∼38% of the total cross section

  13. Interlayer excitons in a bulk van der Waals semiconductor

    DEFF Research Database (Denmark)

    Arora, Ashish; Drueppel, Matthias; Schmidt, Robert

    2017-01-01

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity......, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments...

  14. Charge transfer and ionization occurring in proton- and helium ion-atom collisions

    International Nuclear Information System (INIS)

    DuBois, R.D.

    1985-12-01

    Two examples are presented where specific channels have been identified that are responsible for single and double target ionization via direct coulomb ionization or charge transfer processes. Using ratios of absolute cross sections that have been measured for these processes it was shown that an independent electron model should be appropriate for calculating direct double target ionization but generally appears to be inadequate in calculating charge transfer plus ionization and double charge transfer cross sections. At present such detailed information can be obtained only in limited cases. However cross sections with detailed final charge state information should provide stringent tests for present and future theoretical work. 22 refs., 2 figs

  15. Migration of CT triplet excitons in TCNB-biphenyl and TCNB-HMB crystals

    Science.gov (United States)

    Kozankiewicz, BolesAw

    1994-01-01

    Delayed fluorescence decay curves of charge transfer (CT) crystals of tetracyanobenzene with biphenyl (TCNB-B) and with hexamethylbenzene (TCNB-HMB) have been studied over a wide temperature range (5-200 K). The decay curves have been adequately described by decay expressions derived for different mechanisms of triplet-triplet annihilation. This analysis points to one-dimensional, thermally activated motion of CT triplet excitons. The estimated activation energies for the exciton hopping are 360±60 and 650±100 cm -1 (or 550±150 cm -1 depending on the applied model) for the TCNB-B and TCNB-HMB crystals, respectively. The results seem to confirm the self-trapping of triplet CT excitons.

  16. Crystal growth of new charge-transfer salts based on π-conjugated donor molecules

    Energy Technology Data Exchange (ETDEWEB)

    Morherr, Antonia, E-mail: morherr@stud.uni-frankfurt.de [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Witt, Sebastian [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Chernenkaya, Alisa [Graduate School Materials Science in Mainz, 55128 Mainz (Germany); Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Bäcker, Jan-Peter [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Schönhense, Gerd [Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Bolte, Michael [Institut für anorganische Chemie, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany); Krellner, Cornelius [Physikalisches Institut, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main (Germany)

    2016-09-01

    New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure are reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-F{sub x}, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.

  17. Dynamical interaction of He atoms with metal surfaces: Charge transfer processes

    International Nuclear Information System (INIS)

    Flores, F.; Garcia Vidal, F.J.; Monreal, R.

    1993-01-01

    A self-consistent Kohn-Sham LCAO method is presented to calculate the charge transfer processes between a He * -atom and metal surfaces. Intra-atomic correlation effects are taken into account by considering independently each single He-orbital and by combining the different charge transfer processes into a set of dynamical rate equations for the different ion charge fractions. Our discussion reproduces qualitatively the experimental evidence and gives strong support to the method presented here. (author). 24 refs, 4 figs

  18. Directing energy transport in organic photovoltaic cells using interfacial exciton gates.

    Science.gov (United States)

    Menke, S Matthew; Mullenbach, Tyler K; Holmes, Russell J

    2015-04-28

    Exciton transport in organic semiconductors is a critical, mediating process in many optoelectronic devices. Often, the diffusive and subdiffusive nature of excitons in these systems can limit device performance, motivating the development of strategies to direct exciton transport. In this work, directed exciton transport is achieved with the incorporation of exciton permeable interfaces. These interfaces introduce a symmetry-breaking imbalance in exciton energy transfer, leading to directed motion. Despite their obvious utility for enhanced exciton harvesting in organic photovoltaic cells (OPVs), the emergent properties of these interfaces are as yet uncharacterized. Here, directed exciton transport is conclusively demonstrated in both dilute donor and energy-cascade OPVs where judicious optimization of the interface allows exciton transport to the donor-acceptor heterojunction to occur considerably faster than when relying on simple diffusion. Generalized systems incorporating multiple exciton permeable interfaces are also explored, demonstrating the ability to further harness this phenomenon and expeditiously direct exciton motion, overcoming the diffusive limit.

  19. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    -quenching vanishes when this offset approaches 0.0 eV. The fact that PL-quenching and its correlation with the energetic offset was observed for both clustered and layered assembly provides a strong indirect indication of charge separation via electron transfer from CdTe to CdSe nanocrystals. The main result of this thesis is the direct proof of the charge separation on the type II interface of CdTe and CdSe nanocrystal layers. SPV-measurements as a direct measurement methode showed clearly the directionality of charge separation since the SPV measures the electric field of the separated charges. Electrons are collected on CdSe nanocrystal layers, holes on CdTe nanocrystal layers. A change in the order between CdSe and CdTe therefore leads to a change in the sign of the SPV-signal. Both SPVspectra and time-resolved SPV-measurements support this finding and showed that the charge selectivity of the CdTe-CdSe interface is unidirectional for the whole excitation spectrum and the entire investigated time range. This indicates that the directionality of the CdTe-CdSe interface is the only dominant charge separation mechanism that was observed. Hence, the type II alignment of the self-assembled nanocrystals used was clearly proven. Introducing an additional barrier between the nanocrystal layers doubled the barrier width so that the SPV-signal is quenched. This is consistent with tunneling transfer which is exponentially dependent on barrier width. Moreover, we learned that both absorption in CdTe and CdSe nanocrystals and the sample thickness contribute to the SPV-signal. Thus, we could observe electron diffusion in CdSe multilayers which was faster than the charge carrier diffusion dynamics in CdTe nanocrystal multilayers. Future research may address the combination of energy transfer dynamics with the charge separation processes presented in this thesis. On the one hand, this may provide a better understanding of their fundamental processes and differentiate between excitonic FRET and

  20. Dynamics of the excited state intramolecular charge transfer

    International Nuclear Information System (INIS)

    Joo, T.; Kim, C.H.

    2006-01-01

    The 6-dodecanoyl-2-dimethylaminonaphtalene (laurdan), a derivative of 6-propanoyl- 2-dimethylaminonaphthalene (prodan), has been used as a fluorescent probe in cell imaging, especially in visualizing the lipid rafts by the generalized polarization (GP) images, where GP=(I 440 -I 490 )/(I 440 +I 490 ) with I being the fluorescence intensity. The fluorescence spectrum of laurdan is sensitive to its dipolar environment due to the intramolecular charge transfer (ICT) process in S 1 state, which results in a dual emission from the locally excited (LE) and the ICT states. The ICT process and the solvation of the ICT state are very sensitive to the dipolar nature of the environment. In this work, the ICT of laurdan in ethanol has been studied by femtosecond time resolved fluorescence (TRF), especially TRF spectra measurement without the conventional spectral reconstruction method. TRF probes the excited states exclusively, a unique advantage over the pump/probe transient absorption technique, although time resolution of the TRF is generally lower than transient absorption and the TRF spectra measurement was possible only though the spectral reconstruction. Over the years, critical advances in TRF technique have been made in our group to achieve <50 fs time resolution with direct full spectra measurement capability. Detailed ICT and the subsequent solvation processes can be visualized unambiguously from the TRF spectra. Fig. 1 shows the TRF spectra of laurdan in ethanol at several time delays. Surprisingly, two bands at 433 and 476 nm are clearly visible in the TRF spectra of laurdan even at T = 0 fs. As time increases, the band at 476 nm shifts to the red while its intensity increases. The band at 433 nm also shifts slightly to the red, but loses intensity as time increases. The intensity of the 476 nm band reaches maximum at around 5 ps, where it is roughly twice as intense as that at 0 fs, and stays constant until lifetime decay is noticeable. The spectra were fit by

  1. Charge-transfer interactions of Cr species with DNA.

    Science.gov (United States)

    Nowicka, Anna M; Matysiak-Brynda, Edyta; Hepel, Maria

    2017-10-01

    Interactions of Cr species with nucleic acids in living organisms depend strongly on Cr oxidation state and the environmental conditions. As the effects of these interactions range from benign to pre-mutagenic to carcinogenic, careful assessment of the hazard they pose to human health is necessary. We have investigated methods that would enable quantifying the DNA damage caused by Cr species under varying environmental conditions, including UV, O 2 , and redox potential, using simple instrumental techniques which could be in future combined into a field-deployable instrumentation. We have employed electrochemical quartz crystal nanogravimetry (EQCN), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) to evaluate the extent of DNA damage expressed in terms of guanine oxidation yield (η) and changes in specific characteristics provided by these techniques. The effects of the interactions of Cr species with DNA were analyzed using a model calf thymus DNA (ctDNA) film on a gold electrode (Au@ctDNA) in different media, including: (i) Cr(VI), (ii) Cr(VI) reduced at -0.2V, (iii) Cr(III)+UV radiation+O 2 , and Cr(III), obtaining the η values: 7.4±1.4, 1.5±0.4, 1.1±0.31%, and 0%, respectively, thus quantifying the hazard posed. The EIS measurements have enabled utilizing the decrease in charge-transfer resistance (R ct ) for ferri/ferrocyanide redox probe at an Au@ctDNA electrode to assess the oxidative ctDNA damage by Cr(VI) species. In this case, circular dichroism indicates an extensive damage to the ctDNA hydrogen bonding. On the other hand, Cr(III) species have not induced any damage to ctDNA, although the EQCN measurements show an electrostatic binding to DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Charged-particle transfer reactions and nuclear astrophysics problems

    International Nuclear Information System (INIS)

    Artemov, S.V.; Yarmukhamedov, R.; Yuldashev, B.S.; Burtebaev, N.; Duysebaev, A.; Kadyrzhanov, K.K.

    2002-01-01

    In the report a review of the recent results of calculation of the astrophysical S-factors S(E) for the D(α, γ) 6 Li, 3 He(α, γ) 7 Be, 7 Be(p, γ) 8 Be, 12,13 C(p, γ) 13, 14 N and 12 C(p,γ) 16 O* reactions at extremely low energies E, including value E=0 , performed within the framework of a new method taking into account the additional information about the nuclear vertex constant (Nc) (or the respective asymptotic normalization coefficient) are presented. The required values of Nc can be obtained from an analysis of measured differential cross-sections of proton and α-particle transfer reactions (for example A( 3 He,d)B, 6 Li(d, 6 Li)d, 6 Li(α, 6 Li)α, 12 C( 6 Li, d) 16 O* etc.). A comparative analysis between the results obtained by different authors is also done. Taking into account an important role of the NVC's values for the nuclear astrophysical A(p, γ)B and A(α, γ)B reactions, a possibility of obtaining the reliable NVC values for the virtual decay B→A+p and B→A+α from the analysis of differential cross sections both sub- and above-barrier A( 3 He, d) and A( 6,7 Li, 2,3 H)B reactions is discussed in detail. In this line the use the isochronous cyclotron U-150 M, the 'DC-60' heavy ion machine and electrostatic charge-exchanging accelerator UKP-2-1 of Institute of Nuclear Physics of National Nuclear Center of the Republic of Kazakhstan for carrying out the needed experiments is considered and the possibility of the obtained data application for the astrophysical interest is also discussed

  3. Self-interaction and charge transfer in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Koerzdoerfer, Thomas

    2009-12-18

    This work concentrates on the problem of self-interaction, which is one of the most serious problems of commonly used approximative density functionals. As a major result of this work, it is demonstrated that self-interaction plays a decisive role for the performance of different approximative functionals in predicting accurate electronic properties of organic molecular semiconductors. In search for a solution to the self-interaction problem, a new concept for correcting commonly used density functionals for self-interaction is introduced and applied to a variety of systems, spanning small molecules, extended molecular chains, and organic molecular semiconductors. It is further shown that the performance of functionals that are not free from self-interaction can vary strongly for different systems and observables of interest, thus entailing the danger of misinterpretation of the results obtained from those functionals. The underlying reasons for the varying performance of commonly used density functionals are discussed thoroughly in this work. Finally, this thesis provides strategies that allow to analyze the reliability of commonly used approximations to the exchange-correlation functional for particular systems of interest. This cumulative dissertation is divided into three parts. Part I gives a short introduction into DFT and its time-dependent extension (TDDFT). Part II provides further insights into the self-interaction problem, presents a newly developed concept for the correction of self-interaction, gives an introduction into the publications, and discusses their basic results. Finally, the four publications on self-interaction and charge-transfer in extended molecular systems and organic molecular semiconductors are collected in Part III. (orig.)

  4. Exploring ultrafast dynamics of excitons and multiexcitons in "giant" nanocrystal quantum dots

    Science.gov (United States)

    Sampat, Siddharth

    In this work, we have performed extensive time resolved photoluminescence (PL) studies to further the understanding of charge dynamics in semiconductor nanocrystal quantum dots (QDs). Recent developments in QD synthesis have introduced a new set of QD known as "giant" quantum dots (gQDs) that consist of a CdSe core coated with up to 19 monolayers of a CdS shell. The thick shell layer is grown using a SILAR method resulting in a defect free, alloyed CdSe/CdS interface. This has been attributed to gQDs exhibiting excellent optical properties such as high excitonic quantum yield (QY), prolonged photostability and inhibition of flourescence intermittency ("blinking"), which is regularly observed in conventional QDs. In gQDs, however, owing to unique fabrication methods and material selection, the Auger process is strongly suppressed resulting in efficient radiative recombination of photogenerated excitons as well as high PL QY of charged excitonic and multiexcitonic species. We perform extensive single gQDs studies that establish the role played by gQD shell thickness and core size in governing their optical properties. It is found that both the core and shell dimensions can be tuned in order to achieve the smallest gQDs with the highest vii Auger suppression resulting in photostable dots with high QYs. Next, we perform a study of multiexcitonic species in gQDs that are encapsulated in an insulating SiO2shell. These silica-coated gQDs exhibit strong PL from charged excitons, biexcitons as well as triexcitons. This observation has led to an accurate description of excitonic and multiexcitonic behavior which is modeled using a statistical scaling approach. As a demonstration of the practical applicability of gQDs, energy transfer of excitons as well as multiexcitons to different substrates is studied. Finally, a back gated silicon nanomembrane FET device is discussed that exhibits a large photocurrent increase when sensitized with QDs.

  5. Excitons in insulators

    International Nuclear Information System (INIS)

    Grasser, R.; Scharmann, A.

    1983-01-01

    This chapter investigates absorption, reflectivity, and intrinsic luminescence spectra of free and/or self-trapped (localized) excitons in alkali halides and rare gas solids. Introduces the concepts underlying the Wannier-Mott and Frenkel exciton models, two extreme pictures of an exciton in crystalline materials. Discusses the theoretical and experimental background; excitons in alkali halides; and excitons in rare gas solids. Shows that the intrinsic optical behavior of wide gap insulators in the range of the fundamental absorption edge is controlled by modified Wannier-Mott excitons. Finds that while that alkali halides only show free and relaxed molecular-like exciton emission, in rare gas crystals luminescence due to free, single and double centered localized excitons is observed. Indicates that the simultaneous existence of free and self-trapped excitons in these solid requires an energy barrier for self-trapping

  6. Theoretical rationalization of the singlet-triplet gap in OLEDs materials: impact of charge-transfer character.

    Science.gov (United States)

    Moral, M; Muccioli, L; Son, W-J; Olivier, Y; Sancho-García, J C

    2015-01-13

    New materials for OLED applications with low singlet-triplet energy splitting have been recently synthesized in order to allow for the conversion of triplet into singlet excitons (emitting light) via a Thermally Activated Delayed Fluorescence (TADF) process, which involves excited-states with a non-negligible amount of Charge-Transfer (CT). The accurate modeling of these states with Time-Dependent Density Functional Theory (TD-DFT), the most used method so far because of the favorable trade-off between accuracy and computational cost, is however particularly challenging. We carefully address this issue here by considering materials with small (high) singlet-triplet gap acting as emitter (host) in OLEDs and by comparing the accuracy of TD-DFT and the corresponding Tamm-Dancoff Approximation (TDA), which is found to greatly reduce error bars with respect to experiments thanks to better estimates for the lowest singlet-triplet transition. Finally, we quantitatively correlate the singlet-triplet splitting values with the extent of CT, using for it a simple metric extracted from calculations with double-hybrid functionals, that might be applied in further molecular engineering studies.

  7. Excitons in the Fractional Quantum Hall Effect

    Science.gov (United States)

    Laughlin, R. B.

    1984-09-01

    Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.

  8. Voltammetry for the charge transfer at two immiscible electrolyte solutions interface

    International Nuclear Information System (INIS)

    Kihara, S.; Suzuki, M.; Maeda, K.; Ogura, K.; Matsui, M.; Yoshida, Z.

    1989-01-01

    The voltammetry for the charge transfer (VCT) at the interface of immicible solutions is a very powerful method for understanding the dynamic features of the charge transfer because of its unmatched advantage that the transfer energy and the number of charges transferred can be measured simultaneously and in situ. In the present paper, several novel systems for electron transfer are outlined, and the following topics are discussed based on results obtained by the current scan polarography at the solution dropping electrode developed as a technique for VCT: the relation between the half-wave potential in VCT for ion transfer and the characteristics of the ion transferred; the relation between the half-wave potential in VCT for electron transfer and the electrochemical nature of a redox couple added in water and that added in organic solution; and the ion transfer through a liquid membrane promoted by electron transfer. Observations are presented and discussion is made on the characteristics of ion transfer polarograms, those of electron transfer polarograms, and ion transfer promoted by electron transfer at a liquid/membrane interface. (N.K.)

  9. Exciton in type-II quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Ortega, J; Escorcia, R A [Universidad del Magdalena, A. A. 731, Santa Marta (Colombia); Mikhailov, I D, E-mail: jsierraortega@gmail.co [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)

    2009-05-01

    We study the quantum-size effect and the influence of the external magnetic field on the exciton ground state energy in the type-II InP quantum disk, lens and pyramid deposited on a wetting layer and embedded in a GaInP matrix. We show that the charge distribution over and below quantum dot and wetting layer induced by trapped exciton strongly depends on the quantum dot morphology and the strength of the magnetic field.

  10. Luminescence and optical spectroscopy of charge transfer processes in solid solutions NiCMg1−CO and NixZn1−xO

    International Nuclear Information System (INIS)

    Sokolov, V.I.; Pustovarov, V.A.; Churmanov, V.N.; Gruzdev, N.B.; Uimin, M.A.; Byzov, I.V.; Druzhinin, A.V.; Mironova-Ulmane, N.A.

    2016-01-01

    In this work photoluminescence spectra for Ni c Mg 1−c O and Ni x Zn 1−x O solid solutions with the rock-salt crystal structure were obtained under synchrotron radiation excitation. Periodical peaks in the photoluminescence excitation spectrum of Ni c Mg 1−c O (c=0.008) have been discovered for a wide-gap oxide doped with 3d impurities for the first time. They can be considered as LO phonon repetitions of the narrow zero phonon line resulted from the optical transitions into the p–d charge transfer exciton [d 9 h] state. A close coincidence in energy of different peculiarities in the optical absorption and photoluminescence excitation spectra for the Ni c Mg 1−c O and Ni x Zn 1−x O solid solutions is due to the practically equal interatomic distances Ni–O in the investigated materials. The bulk of new experimental results is the trustworthy evidence that only the p–d charge transfer transitions manifest themselves in the spectral region of 3.5–6.5 eV. - Highlights: • Emission of Ni c Mg 1−c O nanocystals excited by synchrotron radiation is obtained. • LO phonon repetitions have been observed in PLE spectra of Ni c Mg 1−c O firstly for wide gap oxide materials doped with 3d impurities. • The [d 9 h] acceptor exciton state in Ni c Mg 1−c O (c=0.008) are indirectly revealed. • The begin of PLE spectra of Ni x Zn 1−x O are not virtually shifted with a change of composition x. • The near energy coincidence of absorption peaks for nanocrystals NiO and single crystal Ni c Mg 1−c O (c=0.0006) manifests itself.

  11. Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging

    Directory of Open Access Journals (Sweden)

    Weitong Chen

    2016-11-01

    Full Text Available This paper presents a cost-effectiveness comparison of coupler designs for wireless power transfer (WPT, meant for electric vehicle (EV dynamic charging. The design comparison of three common types of couplers is first based on the raw material cost, output power, transfer efficiency, tolerance of horizontal offset, and flux density. Then, the optimal cost-effectiveness combination is selected for EV dynamic charging. The corresponding performances of the proposed charging system are compared and analyzed by both simulation and experimentation. The results verify the validity of the proposed dynamic charging system for EVs.

  12. Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption

    NARCIS (Netherlands)

    Novoderezhkin, V.I.; Andrizhiyevskaya, E.G.; Dekker, J.P.; van Grondelle, R.

    2005-01-01

    We model the dynamics of energy transfer and primary charge separation in isolated photosystem II (PSII) reaction centers. Different exciton models with specific site energies of the six core pigments and two peripheral chlorophylls (Chls) in combination with different charge transfer schemes have

  13. The Roles of Structural Order and Intermolecular Interactions in Determining Ionization Energies and Charge-Transfer State Energies in Organic Semiconductors

    KAUST Repository

    Graham, Kenneth

    2016-08-17

    The energy landscape in organic semiconducting materials greatly influences charge and exciton behavior, which are both critical to the operation of organic electronic devices. These energy landscapes can change dramatically depending on the phases of material present, including pure phases of one molecule or polymer and mixed phases exhibiting different degrees of order and composition. In this work, ultraviolet photoelectron spectroscopy measurements of ionization energies (IEs) and external quantum efficiency measurements of charge-transfer (CT) state energies (ECT) are applied to molecular photovoltaic material systems to characterize energy landscapes. The results show that IEs and ECT values are highly dependent on structural order and phase composition. In the sexithiophene:C60 system both the IEs of sexithiophene and C60 shift by over 0.4 eV while ECT shifts by 0.5 eV depending on molecular composition. By contrast, in the rubrene:C60 system the IE of rubrene and C60 vary by ≤0.11 eV and ECT varies by ≤0.04 eV as the material composition varies. These results suggest that energy landscapes can exist whereby the binding energies of the CT states are overcome by energy offsets between charges in CT states in mixed regions and free charges in pure phases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Generic mechanism of optimal energy transfer efficiency: a scaling theory of the mean first-passage time in exciton systems.

    Science.gov (United States)

    Wu, Jianlan; Silbey, Robert J; Cao, Jianshu

    2013-05-17

    An asymptotic scaling theory is presented using the conceptual basis of trapping-free subspace (i.e., orthogonal subspace) to establish the generic mechanism of optimal efficiency of excitation energy transfer in light-harvesting systems. A quantum state orthogonal to the trap will exhibit noise-assisted transfer, clarifying the significance of initial preparation. For such an initial state, the efficiency is enhanced in the weak damping limit (⟨t⟩ ∼ 1/Γ), and suppressed in the strong damping limit (⟨t⟩ ∼ Γ), analogous to Kramers turnover in classical rate theory. An interpolating expression ⟨t⟩ = A/Γ + B + CΓ quantitatively describes the trapping time over the entire range of the dissipation strength, and predicts the optimal efficiency at Γ(opt) ∼ J for homogenous systems. In the presence of static disorder, the scaling law of transfer time with respect to dephasing rate changes from linear to square root, suggesting a weaker dependence on the environment. The prediction of the scaling theory is verified in a symmetric dendrimer system by numerically exact quantum calculations. Though formulated in the context of excitation energy transfer, the analysis and conclusions apply in general to open quantum processes, including electron transfer, fluorescence emission, and heat conduction.

  15. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    International Nuclear Information System (INIS)

    Berkelbach, Timothy C.; Reichman, David R.; Hybertsen, Mark S.

    2014-01-01

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems

  16. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    Energy Technology Data Exchange (ETDEWEB)

    Berkelbach, Timothy C., E-mail: tcb2112@columbia.edu; Reichman, David R., E-mail: drr2103@columbia.edu [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Hybertsen, Mark S., E-mail: mhyberts@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2014-08-21

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.

  17. Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers.

    Science.gov (United States)

    Ji, Ziheng; Hong, Hao; Zhang, Jin; Zhang, Qi; Huang, Wei; Cao, Ting; Qiao, Ruixi; Liu, Can; Liang, Jing; Jin, Chuanhong; Jiao, Liying; Shi, Kebin; Meng, Sheng; Liu, Kaihui

    2017-12-26

    Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as it directly determines the fundamental response speed and photon-electron conversion efficiency. However, general belief and theoretical studies have shown that the charge transfer behavior depends sensitively on interlayer configurations, which is difficult to control accurately, bringing great uncertainties in device designing. Here we investigate the ultrafast dynamics of interlayer charge transfer in a prototype heterostructure, the MoS 2 /WS 2 bilayer with various stacking configurations, by optical two-color ultrafast pump-probe spectroscopy. Surprisingly, we found that the charge transfer is robust against varying interlayer twist angles and interlayer coupling strength, in time scale of ∼90 fs. Our observation, together with atomic-resolved transmission electron characterization and time-dependent density functional theory simulations, reveals that the robust ultrafast charge transfer is attributed to the heterogeneous interlayer stretching/sliding, which provides additional channels for efficient charge transfer previously unknown. Our results elucidate the origin of transfer rate robustness against interlayer stacking configurations in optical devices based on 2D heterostructures, facilitating their applications in ultrafast and high-efficient optoelectronic and photovoltaic devices in the near future.

  18. Energy transfer in LH2 of Rhodospirillum Molischianum, studied by subpicosecond spectroscopy and configuration interaction exciton calculations.

    NARCIS (Netherlands)

    Ihalainen, J.A.; Linnanto, J.; Myllyperkio, P.; van Stokkum, I.H.M.; Ucker, B.; Scheer, H.; Korppi-Tommola, J.E.I.

    2001-01-01

    Two color transient absorption measurements were performed on a LH2 complex from Rhodospirillum molischianum by using several excitation wavelengths (790, 800, 810, and 830 nm) and probing in the spectral region from 790 to 870 nm at room temperature. The observed energy transfer time of ∼1.0 ps

  19. Exciton dynamics at the heteromolecular interface between N,N′-dioctyl-3,4,9,10-perylenedicarboximide and quaterrylene, studied using time-resolved photoluminescence

    Directory of Open Access Journals (Sweden)

    Nobuya Hiroshiba

    2014-06-01

    Full Text Available To elucidate the exciton dynamics at the heteromolecular interface, the temperature dependence of time-resolved photoluminescence (TRPL spectra of neat-N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8 and PTCDI-C8/Quaterrylene (QT heteromolecular thin films was investigated. The lifetimes of excitons were evaluated to identify the Frenkel (FE, high energy charge-transfer (CTEhigh, low energy charge-transfer (CTElow, and excimer exciton states. The thermal activation energy (Δact of CTElow in PTCDI-C8 thin film was evaluated as 25 meV, which is 1/5 of that of FE, indicating that CTElow is more thermally sensitive than FE in PTCDI-C8 thin film. We investigated the exciton transport length (l along the vertical direction against the substrate surface in PTCDI-C8/QT thin film at 30 K, and demonstrated that lFE = 9.9 nm, lCTElow = 4.2 nm, lCTEhigh = 4.3 nm, and lexcimer = 11.9 nm. To elucidate the difference in l among these excitons, the activation energies (Ea for quenching at the heteromolecular interface were investigated. Ea values were estimated to be 13.1 meV for CTElow and 18.6 meV for CTEhigh. These values agree with the thermal sensitivity of CTEs as reported in a previous static PL study. This latter situation is different from the case of FE and excimer excitons, which are transported via a resonant process and have no temperature dependence. The small Ea values of CTEs suggest that exciton transport takes place via a thermal hopping process in CTEs. The present experimental study provides information on nano-scaled exciton dynamics in a well-defined PTCDI-C8 (2 ML/QT (2 ML system.

  20. b-Cyclodextrin-assisted intervalence charge transfer in mixed- valent

    Indian Academy of Sciences (India)

    Administrator

    The study of intramolecular electron transfer in redox active binuclear transition metal complexes is of great fundamental importance and is an area of contemporary research interest. Though there are many reports on the role of bridging ligands (BL) in tuning metal–metal interactions and intramolecular electron transfers in ...

  1. Engineering Interfacial Charge Transfer in CsPbBr3 Perovskite Nanocrystals by Heterovalent Doping

    KAUST Repository

    Begum, Raihana; Parida, Manas R.; Abdelhady, Ahmed L.; Banavoth, Murali; AlYami, Noktan; Ahmed, Ghada H.; Hedhili, Mohamed N.; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Since compelling device efficiencies of perovskite solar cells have been achieved, investigative efforts have turned to understand other key challenges in these systems, such as engineering interfacial energy-level alignment and charge transfer (CT

  2. Multiple nucleon transfer in damped nuclear collisions. [Lectures, mass charge, and linear and angular momentum transport

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, J.

    1979-07-01

    This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references.

  3. Positronium Inhibition and Quenching by Organic Electron Acceptors and Charge Transfer Complexes

    DEFF Research Database (Denmark)

    Jansen, P.; Eldrup, Morten Mostgaard; Jensen, Bror Skytte

    1975-01-01

    Positron lifetime measurements were performed on a series of organic electron acceptors and charge-transfer complexes in solution. The acceptors cause both positronium (Ps) inhibition (with maybe one exception) and quenching, but when an acceptor takes part in a charge-transfer complex...... in terms of the spur reaction model of Ps formation. Correlation was also made to gas phase reaction between electron acceptors and free electron, as well as to pulse radiolysis data....

  4. Synthesis and photophysical properties of a novel terephthalic PH sensor based on internal charge transfer

    International Nuclear Information System (INIS)

    Miladinova, Polya M.

    2016-01-01

    A novel fluorescence sensing derivative of 2-aminodimethylterephthalate configured as a “fluorophore-receptor” system was synthesized and investigated. Due to the internal charge transfer, the designed fluorophore was able to act as a pH-probe via an “off-on” fluorescence sensing mechanism. The sensor activity toward protons as cations and hydroxide as anions in DMF was studied by monitoring the changes of the fluorescence intensity. Keywords: 2-aminoterephthalic derivative, ICT (internal charge transfer), pH sensor.

  5. High Pressure Optical Studies of the Thallous Halides and of Charge-Transfer Complexes

    Science.gov (United States)

    Jurgensen, Charles Willard

    High pressure was used to study the insulator -to-metal transition in sulfur and the thallous halides and to study the intermolecular interactions in charge -transfer complexes. The approach to the band overlap insulator -to-metal transition was studied in three thallous halides and sulfur by optical absorption measurements of the band gap as a function of pressure. The band gap of sulfur continuously decreases with pressure up to the insulator -to-metal transition which occurs between 450 and 485 kbars. The results on the thallous halides indicate that the indirect gap decreases more rapidly than the direct gap; the closing of the indirect gap is responsible for the observed insulator -to-metal transitions. High pressure electronic and vibrational spectroscopic measurements on the solid-state complexes of HMB-TCNE were used to study the intermolecular interactions of charge -transfer complexes. The vibrational frequency shifts indicate that the degree of charge transfer increases with pressure which is independently confirmed by an increase in the molar absorptivity of the electronic charge-transfer peak. Induction and dispersion forces contribute towards a red shift of the charge-transfer peak; however, charge-transfer resonance contributes toward a blue shift and this effect is dominant for the HMB-TCNE complexes. High pressure electronic spectra were used to study the effect of intermolecular interactions on the electronic states of TCNQ and its complexes. The red shifts with pressure of the electronic spectra of TCNQ and (TCNQ)(' -) in polymer media and of crystalline TCNQ can be understood in terms of Van der Waals interactions. None of the calculations which considered intradimer distance obtained the proper behavior for either the charge-transfer of the locally excited states of the complexes. The qualitative behavior of both states can be interpreted as the effect of increased mixing of the locally excited and charge transfer states.

  6. The influence of electric charge transferred during electro-mechanical reshaping on mechanical behavior of cartilage

    Science.gov (United States)

    Protsenko, Dimitry E.; Lim, Amanda; Wu, Edward C.; Manuel, Cyrus; Wong, Brian J. F.

    2011-03-01

    Electromechanical reshaping (EMR) of cartilage has been suggested as an alternative to the classical surgical techniques of modifying the shape of facial cartilages. The method is based on exposure of mechanically deformed cartilaginous tissue to a low level electric field. Electro-chemical reactions within the tissue lead to reduction of internal stress, and establishment of a new equilibrium shape. The same reactions offset the electric charge balance between collagen and proteoglycan matrix and interstitial fluid responsible for maintenance of cartilage mechanical properties. The objective of this study was to investigate correlation between the electric charge transferred during EMR and equilibrium elastic modulus. We used a finite element model based on the triphasic theory of cartilage mechanical properties to study how electric charges transferred in the electro-chemical reactions in cartilage can change its mechanical responses to step displacements in unconfined compression. The concentrations of the ions, the strain field and the fluid and ion velocities within the specimen subject to an applied mechanical deformation were estimated and apparent elastic modulus (the ratio of the equilibrium axial stress to the axial strain) was calculated as a function of transferred charge. The results from numerical calculations showed that the apparent elastic modulus decreases with increase in electric charge transfer. To compare numerical model with experimental observation we measured elastic modulus of cartilage as a function of electric charge transferred in electric circuit during EMR. Good correlation between experimental and theoretical data suggests that electric charge disbalance is responsible for alteration of cartilage mechanical properties.

  7. Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study.

    Science.gov (United States)

    Wilhelm, Florian; Schmickler, Wolfgang; Spohr, Eckhard

    2010-05-05

    A recently developed empirical valence bond (EVB) model for proton transfer on Pt(111) electrodes (Wilhelm et al 2008 J. Phys. Chem. C 112 10814) has been applied in molecular dynamics (MD) simulations of a water film in contact with a charged Pt surface. A total of seven negative surface charge densities σ between -7.5 and -18.9 µC cm(-2) were investigated. For each value of σ, between 30 and 84 initial conditions of a solvated proton within a water slab were sampled, and the trajectories were integrated until discharge of a proton occurred on the charged surfaces. We have calculated the mean rates for discharge and for adsorption of solvated protons within the adsorbed water layer in contact with the metal electrode as a function of surface charge density. For the less negative values of σ we observe a Tafel-like exponential increase of discharge rate with decreasing σ. At the more negative values this exponential increase levels off and the discharge process is apparently transport limited. Mechanistically, the Tafel regime corresponds to a stepwise proton transfer: first, a proton is transferred from the bulk into the contact water layer, which is followed by transfer of a proton to the charged surface and concomitant discharge. At the more negative surface charge densities the proton transfer into the contact water layer and the transfer of another proton to the surface and its discharge occur almost simultaneously.

  8. The nature of singlet excitons in oligoacene molecular crystals

    KAUST Repository

    Yamagata, H.; Norton, J.; Hontz, E.; Olivier, Y.; Beljonne, D.; Brédas, J. L.; Silbey, R. J.; Spano, F. C.

    2011-01-01

    A theory for polarized absorption in crystalline oligoacenes is presented, which includes Frenkel exciton coupling, the coupling between Frenkel and charge-transfer (CT) excitons, and the coupling of all neutral and ionic excited states to the dominant ring-breathing vibrational mode. For tetracene, spectra calculated using all Frenkel couplings among the five lowest energy molecular singlet states predict a Davydov splitting (DS) of the lowest energy (0-0) vibronic band of only -32cm-1, far smaller than the measured value of 631cm-1 and of the wrong sign-a negative sign indicating that the polarizations of the lower and upper Davydov components are reversed from experiment. Inclusion of Frenkel-CT coupling dramatically improves the agreement with experiment, yielding a 0-0 DS of 601cm-1 and a nearly quantitative reproduction of the relative spectral intensities of the 0-n vibronic components. Our analysis also shows that CT mixing increases with the size of the oligoacenes. We discuss the implications of these results on exciton dissociation and transport. © 2011 American Institute of Physics.

  9. Electron transfer and decay processes of highly charged iodine ions

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Danjo, Atsunori; Hosaka, Kazumoto

    2005-01-01

    In the present experimental work we have investigated multi-electron transfer processes in I q+ (q=10, 15, 20 and 25) + Ne, Ar, Kr and Xe collisions at 1.5q keV energy. The branching ratios between Auger and radiative decay channels have been measured in decay processes of multiply excited states formed by multi-electron transfer collisions. It has been shown that, in all the multi-electron transfer processes investigated, the Auger decays are far dominant over the radiative decay processes and the branching ratios are clearly characterized by the average principal quantum number of the initial excited states of projectile ions. We could express the branching ratios in high Rydberg states formed in multi-electron transfer processes by using the decay probability of one Auger electron emission. (author)

  10. CNDO/SCF molecular orbital structural studies and charge transfer ...

    African Journals Online (AJOL)

    dimethoxy- diquinone (DQ) has been discussed and compared with some related compounds. The electron transfer between DQ and uracil was studied in ethanol as an interaction medium. The ionization potentials and the electron affinities of the ...

  11. High Power Wireless Transfer : For Charging High Power Batteries

    OpenAIRE

    Gill, Himmat

    2017-01-01

    Wireless power transfer (WPT) is developing with emerging of new technologies that has made it possible to transfer electricity over certain distances without any physical contact, offering significant benefits to modern automation systems, medical applications, consumer electronic, and especially in electric vehicle systems. The goal of this study is to provide a brief review of existing compensation topologies for the loosely coupled transformer. The technique used to simulate a co...

  12. Exciton management in organic photovoltaic multidonor energy cascades.

    Science.gov (United States)

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.

  13. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory.

    Science.gov (United States)

    Isegawa, Miho; Gao, Jiali; Truhlar, Donald G

    2011-08-28

    Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics

  14. Charge transfer in DNA: role of base pairing

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Bunček, M.; Schneider, Bohdan

    2009-01-01

    Roč. 38, Suppl. (2009), S123-S123 ISSN 0175-7571. [EBSA European Biophysics Congress /7./. Genoa, 11.07.2009-15.07.2009] Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z50520701 Keywords : DNA * charge transport * base pairing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.437, year: 2009

  15. Dark excitons in transition metal dichalcogenides

    Science.gov (United States)

    Malic, Ermin; Selig, Malte; Feierabend, Maja; Brem, Samuel; Christiansen, Dominik; Wendler, Florian; Knorr, Andreas; Berghäuser, Gunnar

    2018-01-01

    Monolayer transition metal dichalcogenides (TMDs) exhibit a remarkably strong Coulomb interaction that manifests in tightly bound excitons. Due to the complex electronic band structure exhibiting several spin-split valleys in the conduction and valence band, dark excitonic states can be formed. They are inaccessibly by light due to the required spin-flip and/or momentum transfer. The relative position of these dark states with respect to the optically accessible bright excitons has a crucial impact on the emission efficiency of these materials and thus on their technological potential. Based on the solution of the Wannier equation, we present the excitonic landscape of the most studied TMD materials including the spectral position of momentum- and spin-forbidden excitonic states. We show that the knowledge of the electronic dispersion does not allow to conclude about the nature of the material's band gap since excitonic effects can give rise to significant changes. Furthermore, we reveal that an exponentially reduced photoluminescence yield does not necessarily reflect a transition from a direct to a nondirect gap material, but can be ascribed in most cases to a change of the relative spectral distance between bright and dark excitonic states.

  16. Identification of the Heat Transfer Coefficient at the Charge Surface Heated on the Chamber Furnace

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2017-06-01

    Full Text Available The inverse method was applied to determine the heat flux reaching the charge surface. The inverse solution was based upon finding the minimum of the error norm between the measured and calculated temperatures. The charge temperature field was calculated with the finite element method by solving the heat transfer equation for a square charge made of 15HM steel heated on all its surfaces. On the basis of the mean value of heat flux, the value of the heat transfer coefficient at each surface was determined depending on the surface temperature of the material heated.

  17. Charge transfer and bond lengths in YBa2Cu3-xMxO6+y

    International Nuclear Information System (INIS)

    Jorgensen, J.D.; Rhyne, J.J.; Neumann, D.A.; Miceli, P.F.; Tarascon, J.M.; Greene, L.H.; Barboux, P.

    1989-01-01

    We discuss the effects of doping on the Cu chain sites in YBa 2 Cu 3-x M x O 6+y . The relationship between bond lengths obtained from neutron scattering and charge transfer is evaluated in terms of bond valence. In particular, it is concluded that removing an oxygen from the chains transfers one electron to the planes. 24 refs., 3 figs

  18. Using metal complex-labeled peptides for charge transfer-based biosensing with semiconductor quantum dots

    Science.gov (United States)

    Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi

    2009-02-01

    Luminescent colloidal semiconductor quantum dots (QDs) have unique optical and photonic properties and are highly sensitive to charge transfer in their surrounding environment. In this study we used synthetic peptides as physical bridges between CdSe-ZnS core-shell QDs and some of the most common redox-active metal complexes to understand the charge transfer interactions between the metal complexes and QDs. We found that QD emission underwent quenching that was highly dependent on the choice of metal complex used. We also found that quenching traces the valence or number of metal complexes brought into close proximity of the nanocrystal surface. Monitoring of the QD absorption bleaching in the presence of the metal complex provided insight into the charge transfer mechanism. The data suggest that two distinct charge transfer mechanisms can take place. One directly to the QD core states for neutral capping ligands and a second to surface states for negatively charged capping ligands. A basic understanding of the proximity driven charge-transfer and quenching interactions allowed us to construct proteolytic enzyme sensing assemblies with the QD-peptide-metal complex conjugates.

  19. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends

    NARCIS (Netherlands)

    Veldman, D.; Ipek, Ö.; Meskers, S.C.J.; Sweelssen, J.; Koetse, M.M.; Veenstra, S.C.; Kroon, J.M.; Bavel, S.S. van; Loos, J.; Janssen, R.A.J.

    2008-01-01

    The electro-optical properties of thin films of electron donor-acceptor blends of a fluorene copolymer (PF10TBT) and a fullerene derivative (PCBM) were studied. Transmission electron microscopy shows that in these films nanocrystalline PCBM clusters are formed at high PCBM content. For all

  20. Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface

    KAUST Repository

    Gruenewald, Marco

    2015-02-11

    We investigate the prototypical hybrid interface formed between PTCDA and conductive n-doped ZnO films by means of complementary optical and electronic spectroscopic techniques. We demonstrate that shallow donors in the vicinity of the ZnO surface cause an integer charge transfer to PTCDA, which is clearly restricted to the first monolayer. By means of DFT calculations, we show that the experimental signatures of the anionic PTCDA species can be understood in terms of strong hybridization with localized states (the shallow donors) in the substrate and charge back-donation, resulting in an effectively integer charge transfer across the interface. Charge transfer is thus not merely a question of locating the Fermi level above the PTCDA electron-transport level but requires rather an atomistic understanding of the interfacial interactions. The study reveals that defect sites and dopants can have a significant influence on the specifics of interfacial coupling and thus on carrier injection or extraction.

  1. An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events.

    Science.gov (United States)

    Alarcos, Noemí; Gutierrez, Mario; Liras, Marta; Sánchez, Félix; Douhal, Abderrazzak

    2015-07-07

    We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer. This subsequent proton motion occurs in 1.2 ps (n-heptane), 14 ps (DCM) and 35 ps (MeOH). In MeOH, it is assisted by the solvent molecules and occurs through tunneling for which we got a large kinetic isotope effect (KIE) of about 13. For the 6A-DBO (deuterated sample in CD3OD) the global proton-transfer reaction takes place in 200 ps, showing a remarkable slow KIE regime. The slow ESIPT reaction in DCM (14 ps), not through tunnelling as it is not sensitive to OH/OD exchange, has however to overcome an energy barrier using intramolecular as well as solvent coordinates. The rich ESIPT dynamics of 6A-HBO in the used solutions is governed by an ICT reaction, triggered by the amino group, and it is solvent dependent. Thus, the charge injection to a 6A-HBO molecular frame makes the ICT species more stable, and the phenol group less acidic, slowing down the subsequent ESIPT reaction. Our findings bring new insights into the coupling between ICT and ESIPT reactions on the potential-energy surfaces of several barriers.

  2. Complexes with charge transfer and ion-radical salts in catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, O V [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1978-01-01

    Considered are the data experimentally proving formation of complexes with charge transfer as intermediate complexes in homogeneous and heterogeneous catalysis. Catalytic activity correlations with charge transfer energy (and in heterogeneous catalysis with width of semiconductor forbidden band can be useful while selection of catalysts (MoO/sub 3//MgO; V/sub 2/O/sub 5//MgO; MoO/sub 3//Al/sub 2/O/sub 3/; V/sub 2/O/sub 5//Al/sub 2/O/sub 3/). A review of papers on catalytic activity of the previously prepared complexes with charge transfer and ion-radical salts is given. The use of alkali metal complexes with aromatic compounds showed their high activity in hydrogenation reactions and proved principle possibility of activation of hydrogen and hydrocarbons by the systems which do not contain transfer metals.

  3. Exciton fission in monolayer transition metal dichalcogenide semiconductors.

    Science.gov (United States)

    Steinhoff, A; Florian, M; Rösner, M; Schönhoff, G; Wehling, T O; Jahnke, F

    2017-10-27

    When electron-hole pairs are excited in a semiconductor, it is a priori not clear if they form a plasma of unbound fermionic particles or a gas of composite bosons called excitons. Usually, the exciton phase is associated with low temperatures. In atomically thin transition metal dichalcogenide semiconductors, excitons are particularly important even at room temperature due to strong Coulomb interaction and a large exciton density of states. Using state-of-the-art many-body theory, we show that the thermodynamic fission-fusion balance of excitons and electron-hole plasma can be efficiently tuned via the dielectric environment as well as charge carrier doping. We propose the observation of these effects by studying exciton satellites in photoemission and tunneling spectroscopy, which present direct solid-state counterparts of high-energy collider experiments on the induced fission of composite particles.

  4. Dexter energy transfer pathways.

    Science.gov (United States)

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  5. Charge Transfer Properties Through Graphene Layers in Gas Detectors

    CERN Document Server

    Thuiner, P.; Jackman, R.B.; Müller, H.; Nguyen, T.T.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.A.; van Stenis, M.; Veenhof, R.

    2016-01-01

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.

  6. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    International Nuclear Information System (INIS)

    Cao Zhongxiang; Li Quanliang; Han Ye; Qin Qi; Feng Peng; Liu Liyuan; Wu Nanjian

    2014-01-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques. (semiconductor devices)

  7. Electrostatic sensors applied to the measurement of electric charge transfer in gas-solids pipelines

    International Nuclear Information System (INIS)

    Woodhead, S R; Denham, J C; Armour-Chelu, D I

    2005-01-01

    This paper describes the development of a number of electric charge sensors. The sensors have been developed specifically to investigate triboelectric charge transfer which takes place between particles and the pipeline wall, when powdered materials are conveyed through a pipeline using air. A number of industrial applications exist for such gas-solids pipelines, including pneumatic conveyors, vacuum cleaners and dust extraction systems. The build-up of electric charge on pipelines and powdered materials can lead to electrostatic discharge and so is of interest from a safety viewpoint. The charging of powders can also adversely affect their mechanical handling characteristics and so is of interest to handling equipment engineers. The paper presents the design of the sensors, the design of the electric charge test rig and electric charge measurement test results

  8. Confined exciton spectroscopy

    International Nuclear Information System (INIS)

    Torres, Clivia M.S.

    1998-01-01

    Full text: In this work, the exciton is considered as a sensor of the electronic and optical properties of materials such as semiconductors, which have size compared to the exciton De Broglie wavelength, approximately 20 nm, depending on the semiconductor. Examples of electron-phonon, electron-electron, photon-electron, exciton-polariton, phonon-plasmon, are presented, under different confinement conditions such as quantum wells, superlattices

  9. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.

    Science.gov (United States)

    Guzelturk, Burak; Demir, Hilmi Volkan

    2015-06-18

    Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics.

  10. How to Draw Energy Level Diagrams in Excitonic Solar Cells.

    Science.gov (United States)

    Zhu, X-Y

    2014-07-03

    Emerging photovoltaic devices based on molecular and nanomaterials are mostly excitonic in nature. The initial absorption of a photon in these materials creates an exciton that can subsequently dissociate in each material or at their interfaces to give charge carriers. Any attempt at mechanistic understanding of excitonic solar cells must start with drawing energy level diagrams. This seemingly elementary exercise, which is described in textbooks for inorganic solar cells, has turned out to be a difficult subject in the literature. The problem stems from conceptual confusion of single-particle energy with quasi-particle energy and the misleading practice of mixing the two on the same energy level diagram. Here, I discuss how to draw physically accurate energy diagrams in excitonic solar cells using only single-particle energies (ionization potentials and electron affinities) of both ground and optically excited states. I will briefly discuss current understanding on the electronic energy landscape responsible for efficient charge separation in excitonic solar cells.

  11. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    International Nuclear Information System (INIS)

    Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.

    2003-01-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring

  12. High-energy behavior of the charge-transfer cross section in the eikonal approximation

    International Nuclear Information System (INIS)

    Dewangan, D.P.

    1982-01-01

    In the now popular version of the eikonal theory of charge transfer, the eikonal wave function does not satisfy the proper boundary conditions and the charge-transfer amplitude is uncertain by an undefined phase factor. The inclusion of the internuclear potential in a consistent way, in the eikonal theory overcomes theses difficulties. However, it also changes the high-energy asymptotic form of proton-hydrogen charge-transfer cross section from sigma/sub eik/ approx.(23/48) sigma/sub BK/ by a small amount to sigma/sub G/approx.(20.109/48)sigma/sub BK/ where sigma/sub BK/ is the Brinkman-Kramers cross section

  13. Polyoxometalate active charge-transfer material for mediated redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  14. Charge-transfer channel in quantum dot-graphene hybrid materials

    Science.gov (United States)

    Cao, Shuo; Wang, Jingang; Ma, Fengcai; Sun, Mengtao

    2018-04-01

    The energy band theory of a classical semiconductor can qualitatively explain the charge-transfer process in low-dimensional hybrid colloidal quantum dot (QD)-graphene (GR) materials; however, the definite charge-transfer channels are not clear. Using density functional theory (DFT) and time-dependent DFT, we simulate the hybrid QD-GR nanostructure, and by constructing its orbital interaction diagram, we show the quantitative coupling characteristics of the molecular orbitals (MOs) of the hybrid structure. The main MOs are derived from the fragment MOs (FOs) of GR, and the Cd13Se13 QD FOs merge with the GR FOs in a certain proportion to afford the hybrid system. Upon photoexcitation, electrons in the GR FOs jump to the QD FOs, leaving holes in the GR FOs, and the definite charge-transfer channels can be found by analyzing the complex MOs coupling. The excited electrons and remaining holes can also be localized in the GR or the QD or transfer between the QD and GR with different absorption energies. The charge-transfer process for the selected excited states of the hybrid QD-GR structure are testified by the charge difference density isosurface. The natural transition orbitals, charge-transfer length analysis and 2D site representation of the transition density matrix also verify the electron-hole delocalization, localization, or coherence chacracteristics of the selected excited states. Therefore, our research enhances understanding of the coupling mechanism of low-dimensional hybrid materials and will aid in the design and manipulation of hybrid photoelectric devices for practical application in many fields.

  15. Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors

    CERN Document Server

    Franchino, S.; Hall-Wilton, R.; Jackman, R.B.; Muller, H.; Nguyen, T.T.; de Oliveira, R.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.; van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.

    2016-07-11

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm$^2$, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.

  16. Improving radiation hardness in space-based Charge-Coupled Devices through the narrowing of the charge transfer channel

    Science.gov (United States)

    Hall, D. J.; Skottfelt, J.; Soman, M. R.; Bush, N.; Holland, A.

    2017-12-01

    Charge-Coupled Devices (CCDs) have been the detector of choice for imaging and spectroscopy in space missions for several decades, such as those being used for the Euclid VIS instrument and baselined for the SMILE SXI. Despite the many positive properties of CCDs, such as the high quantum efficiency and low noise, when used in a space environment the detectors suffer damage from the often-harsh radiation environment. High energy particles can create defects in the silicon lattice which act to trap the signal electrons being transferred through the device, reducing the signal measured and effectively increasing the noise. We can reduce the impact of radiation on the devices through four key methods: increased radiation shielding, device design considerations, optimisation of operating conditions, and image correction. Here, we concentrate on device design operations, investigating the impact of narrowing the charge-transfer channel in the device with the aim of minimising the impact of traps during readout. Previous studies for the Euclid VIS instrument considered two devices, the e2v CCD204 and CCD273, the serial register of the former having a 50 μm channel and the latter having a 20 μm channel. The reduction in channel width was previously modelled to give an approximate 1.6× reduction in charge storage volume, verified experimentally to have a reduction in charge transfer inefficiency of 1.7×. The methods used to simulate the reduction approximated the charge cloud to a sharp-edged volume within which the probability of capture by traps was 100%. For high signals and slow readout speeds, this is a reasonable approximation. However, for low signals and higher readout speeds, the approximation falls short. Here we discuss a new method of simulating and calculating charge storage variations with device design changes, considering the absolute probability of capture across the pixel, bringing validity to all signal sizes and readout speeds. Using this method, we

  17. Evidence for charge transfer in Bi-based superconductors studied by positron annihilation

    International Nuclear Information System (INIS)

    Tang, Z.; Wang, S.J.; Gao, X.H.; Ce, G.C.; Zhao, Z.X.

    1993-01-01

    We have measured Doppler-broadening annihilation radiation (DBAR) spectra and positron lifetimes in normal and superconducting states for three kinds of Bi-based superconductors: Bi2212, Pb-doped Bi2223, Pb- and F-doped Bi2223. The difference spectra after deconvolution between two states show a sharpening effect with increasing temperature; the F-doped sample has the greatest amplitude in difference spectra but nearly the same positron lifetimes as the Pb-doped sample. The results are interpreted in terms of charge transfer between the Cu-O and Bi-O planes. The role of oxygen defects in charge transfer is discussed. (orig.)

  18. Charge transfer and excitation in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.

    1986-11-01

    Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture

  19. Photoinduced charge transfer within polyaniline-encapsulated quantum dots decorated on graphene.

    Science.gov (United States)

    Nguyen, Kim Truc; Li, Dehui; Borah, Parijat; Ma, Xing; Liu, Zhaona; Zhu, Liangliang; Grüner, George; Xiong, Qihua; Zhao, Yanli

    2013-08-28

    A new method to enhance the stability of quantum dots (QDs) in aqueous solution by encapsulating them with conducting polymer polyaniline was reported. The polyaniline-encapsulated QDs were then decorated onto graphene through π-π interactions between graphene and conjugated polymer shell of QDs, forming stable polyaniline/QD/graphene hybrid. A testing electronic device was fabricated using the hybrid in order to investigate the photoinduced charge transfer between graphene and encapsulated QDs within the hybrid. The charge transfer mechanism was explored through cyclic voltammetry and spectroscopic studies. The hybrid shows a clear response to the laser irradiation, presenting a great advantage for further applications in optoelectronic devices.

  20. Symmetric resonance double charge transfer in Kr++ + Kr and Xe++ + Xe systems

    International Nuclear Information System (INIS)

    Okuno, K.; Koizumi, T.; Kaneko, Y.

    1978-01-01

    Cross sections of processes Kr ++ + Kr → Ke + Kr ++ and Xe ++ + Xe → Xe + Xe ++ were measured by the injected-ion-drift-tube technique from 0.04 to 20 eV. For both cases, the cross section below 1 eV coincides with the orbiting cross sections with a charge-transfer probability 1/2. Above 1 eV, the energy dependence of the cross sectcion is like that for single charge transfer. Mobilities of Kr ++ and Xe ++ in He are presented also

  1. Lithium-modulated conduction band edge shifts and charge-transfer dynamics in dye-sensitized solar cells based on a dicyanamide ionic liquid.

    Science.gov (United States)

    Bai, Yu; Zhang, Jing; Wang, Yinghui; Zhang, Min; Wang, Peng

    2011-04-19

    Lithium ions are known for their potent function in modulating the energy alignment at the oxide semiconductor/dye/electrolyte interface in dye-sensitized solar cells (DSCs), offering the opportunity to control the associated multichannel charge-transfer dynamics. Herein, by optimizing the lithium iodide content in 1-ethyl-3-methylimidazolium dicyanamide-based ionic liquid electrolytes, we present a solvent-free DSC displaying an impressive 8.4% efficiency at 100 mW cm(-2) AM1.5G conditions. We further scrutinize the origins of evident impacts of lithium ions upon current density-voltage characteristics as well as photocurrent action spectra of DSCs based thereon. It is found that, along with a gradual increase of the lithium content in ionic liquid electrolytes, a consecutive diminishment of the open-circuit photovoltage arises, primarily owing to a noticeable downward movement of the titania conduction band edge. The conduction band edge displacement away from vacuum also assists the formation of a more favorable energy offset at the titania/dye interface, and thereby leads to a faster electron injection rate and a higher exciton dissociation yield as implied by transient emission measurements. We also notice that the adverse influence of the titania conduction band edge downward shift arising from lithium addition upon photovoltage is partly compensated by a concomitant suppression of the triiodide involving interfacial charge recombination. © 2011 American Chemical Society

  2. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    2007-01-01

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with opposite charges and a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum of their relative motion is well described...

  3. One dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, P.; Pedersen, Thomas Garm

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  4. Heat transfer from the evaporator outlet to the charge of thermostatic expansion valves

    DEFF Research Database (Denmark)

    Langmaack, Lasse Nicolai; Knudsen, Hans-Jørgen Høgaard

    2006-01-01

    outlet with a special mounting strap. The heat transfer is quite complex because it takes place both directly through the contact points between bulb and pipe and indirectly through the mounting strap The TXV has to react to temperature changes at the evaporator outlet. Therefore, the dynamic behavior...... of the valve (and thereby the whole refrigeration system) depends greatly on the heat transfer between the evaporator outlet tube and the charge in the bulb. In this paper a model for the overall heat transfer between the pipe and the charge is presented. Geometrical data and material properties have been kept...... been found to predict the time constant for the temperature development in the bulb within 1-10 %. Furthermore it has been found that app. 20% of the heat transfer takes place trough the mounting strap....

  5. Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Fujisawa, Tomotsumi; Creelman, Mark; Mathies, Richard A

    2012-09-06

    Femtosecond stimulated Raman spectroscopy is used to examine the structural dynamics of photoinduced charge transfer within a noncovalent electron acceptor/donor complex of pyromellitic dianhydride (PMDA, electron acceptor) and hexamethylbenzene (HMB, electron donor) in ethylacetate and acetonitrile. The evolution of the vibrational spectrum reveals the ultrafast structural changes that occur during the charge separation (Franck-Condon excited state complex → contact ion pair) and the subsequent charge recombination (contact ion pair → ground state complex). The Franck-Condon excited state is shown to have significant charge-separated character because its vibrational spectrum is similar to that of the ion pair. The charge separation rate (2.5 ps in ethylacetate and ∼0.5 ps in acetonitrile) is comparable to solvation dynamics and is unaffected by the perdeuteration of HMB, supporting the dominant role of solvent rearrangement in charge separation. On the other hand, the charge recombination slows by a factor of ∼1.4 when using perdeuterated HMB, indicating that methyl hydrogen motions of HMB mediate the charge recombination process. Resonance Raman enhancement of the HMB vibrations in the complex reveals that the ring stretches of HMB, and especially the C-CH(3) deformations are the primary acceptor modes promoting charge recombination.

  6. Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

    International Nuclear Information System (INIS)

    Paret, Stefan

    2010-01-01

    A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)

  7. Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Stefan

    2010-02-22

    A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)

  8. Transfer of energy or charge between quasi-zero-dimensional nanostructures

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2016-01-01

    Roč. 45, č. 4 (2016), s. 243-255 ISSN 2332-4309 R&D Projects: GA ČR(CZ) GA14-05053S; GA MŠk(CZ) LD14011; GA MŠk LH12236 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : charge transfer * electron-phonon interaction * energy transfer * nanostructures * quantum dots Subject RIV: BM - Solid Matter Physics ; Magnetism; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 0.171, year: 2016

  9. Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure

    Science.gov (United States)

    Cadiz, F.; Robert, C.; Courtade, E.; Manca, M.; Martinelli, L.; Taniguchi, T.; Watanabe, K.; Amand, T.; Rowe, A. C. H.; Paget, D.; Urbaszek, B.; Marie, X.

    2018-04-01

    We have combined spatially resolved steady-state micro-photoluminescence with time-resolved photoluminescence to investigate the exciton diffusion in a WSe2 monolayer encapsulated with hexagonal boron nitride. At 300 K, we extract an exciton diffusion length of LX = 0.36 ± 0.02 μm and an exciton diffusion coefficient of DX = 14.5 ± 2 cm2/s. This represents a nearly 10-fold increase in the effective mobility of excitons with respect to several previously reported values on nonencapsulated samples. At cryogenic temperatures, the high optical quality of these samples has allowed us to discriminate the diffusion of the different exciton species: bright and dark neutral excitons, as well as charged excitons. The longer lifetime of dark neutral excitons yields a larger diffusion length of LXD=1.5 ±0.02 μ m.

  10. Coupled quantum treatment of vibrationally inelastic and vibronic charge transfer in proton-O2 collisions

    International Nuclear Information System (INIS)

    Gianturco, F.A.; Palma, A.; Semprini, E.; Stefani, F.; Baer, M.

    1990-01-01

    A three-dimensional quantum-mechanical study of vibrational, state-resolved differential cross sections (DCS) for the direct inelastic and for the charge-transfer scattering channels has been carried out for the H + +O 2 system. The collision energy considered was E c.m. =23.0 eV, which is the same as that examined by Noll and Toennies in their experiments [J. Chem. Phys. 85, 3313 (1986)]. The scattering treatment employed was the charge-transfer infinite-order sudden approximation (CT IOSA) with the vibrational states correctly expanded over the relevant adiabatic basis for each of the two electronic channels. The state-to-state DCS are found to follow closely the behavior of the experimental quantities, both in the inelastic and the charge-transfer channels. Moreover, a careful comparison between the measured relative probabilities and computed values allows us to test in minute detail the efficiency of the scattering model and the reliability of the potential-energy surfaces employed. It is found that vibrational energy transfer is overestimated in the vibrational inelastic channels while in the charge-transfer inelastic channels the same energy transfer is slightly underestimated by the calculations. The total flux distribution, however, is found to be in very good accord with experiments. Angular distributions are also well reproduced both by the DCS and by the average energy-transfer values. The study of some of the CT IOSA quantities also allows us to establish clearly the importance of nonadiabatic transitions in enhancing vibrational inelasticity in the present system

  11. Changes in wetting and contact charge transfer by femtosecond laser-ablation of polyimide

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.D., E-mail: xiaodong.guo@uib.no [Department of Physics and Technology, Allegaten 55, 5020 Bergen, University of Bergen (Norway); Dai, Y.; Gong, M. [Department of Physics, Shanghai 200444, Shanghai University (China); Qu, Y.G. [Center for Geobiology, Allegaten 41, 5020 Bergen, University of Bergen (Norway); Helseth, L.E. [Department of Physics and Technology, Allegaten 55, 5020 Bergen, University of Bergen (Norway)

    2015-09-15

    Highlights: • Laser ablation significantly reduced the triboelectric charging of polyimide films. • Hierarchical micro/nanostructures formed on the surface of the sample. • Structural anisotropy leads to spatially varying contact angles of water droplets. • Raman spectroscopy revealed a carbonization of the polyimide sample. • The corresponding loss of insulation may explain the reduction of charge transfer. - Abstract: In this study it is demonstrated that the triboelectric charging of polyimide thin films is significantly reduced by using a femtosecond laser to nanostructure its. It is found that the contact charge transfer between laser-ablated Kapton and aluminum is almost negligible, and even much lower than the significant current occurring when non-treated Kapton touches the metal. Scanning electron microscopy demonstrates that laser ablation produces a hierarchical micro and nanostructure, and it is found that the structural anisotropy leads to spatially varying contact angles of water droplets residing on the surface. Raman spectra suggest that the centers of the laser-ablated tracks are carbonized; therefore, the loss of insulation can be responsible for the reduction of charge transfer.

  12. Charge transfer to a dielectric target by guided ionization waves using electric field measurements

    NARCIS (Netherlands)

    Slikboer, E.T.; Garcia-Caurel, E.; Guaitella, O.; Sobota, A.

    2017-01-01

    A kHz-operated atmospheric pressure plasma jet is investigated by measuring charge transferred to a dielectric electro-optic surface (BSO crystal) allowing for the measurement of electric field by exploiting the Pockels effect. The electric field values, distribution of the surface discharge and

  13. Mechanism and Dynamics of Charge Transfer in Donor-Bridge-Acceptor Systems

    NARCIS (Netherlands)

    Gorczak-Vos, N.

    2016-01-01

    Photoinduced charge transfer in organic materials is a fundamental process in various biological and technological areas. Donor-bridge-acceptor (DBA) molecules are used as model systems in numerous theoretical and experimental work to systematically study and unravel the underlying mechanisms of

  14. Simple heuristic derivation of some charge-transfer probabilities at asymptotically high incident velocities

    International Nuclear Information System (INIS)

    Spruch, L.; Shakeshaft, R.

    1984-01-01

    For asymptotically high incident velocities we provide simple, heuristic, almost classical, derivations of the cross section for forward charge transfer, and of the ratio of the cross section for capture to the elastic-scattering cross section for the projectile scattered through an angle close to π/3

  15. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive...

  16. Charge distribution effects in polyatomic reactants involved in simple electron transfer reactions

    Czech Academy of Sciences Publication Activity Database

    Fawcett, W. R.; Chavis, G. J.; Hromadová, Magdaléna

    2008-01-01

    Roč. 53, č. 23 (2008), s. 6787-6792 ISSN 0013-4686 Institutional research plan: CEZ:AV0Z40400503 Keywords : electron transfer kinetics * charge distribution effects * double - layer effects in electrode kinetics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.078, year: 2008

  17. Integer charge transfer at the tetrakis(dimethylamino)ethylene/Au interface

    DEFF Research Database (Denmark)

    Lindell, L.; Unge, Mikael; Osikowicz, W.

    2008-01-01

    In organic-based electronics, interfacial properties have a profound impact on device performance. The lineup of energy levels is usually dependent on interface dipoles, which may arise from charge transfer reactions. In many applications, metal-organic junctions are prepared under ambient...

  18. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  19. Charge transfer to the continuum by heavy ions in atomic hydrogen

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1981-01-01

    Design and installation of an atomic hydrogen target for measurements of charge transfer to the continuum by heavy ions are discussed. The design consists of a tungsten gas cell operated at temperatures of 2500 to 2600 0 K. Initial testing is underway

  20. Mechanism of the Primary Charge Transfer Reaction in the Cytochrome bc1 Complex

    DEFF Research Database (Denmark)

    Barragan, Angela M; Schulten, Klaus; Solov'yov, Ilia A

    2016-01-01

    , the quinol-protein interaction, which initiates the Q-cycle, has not yet been completely described. Furthermore, the initial charge transfer reactions of the Q-cycle lack a physical description. The present investigation utilizes classical molecular dynamics simulations in tandem with quantum density...

  1. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China); Guo, Yanling, E-mail: guoyanling@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China); Chen, Ximeng, E-mail: chenxm@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China)

    2016-11-30

    Highlights: • We first observe that negative-ion fractions present no variation with the doping concentration, which is very different from the results of low energy Li neutralization from doped Si samples. • Our work shows that the affinity levels and collision time significantly counteract the band gap effect on negative ion formation. The work will improve our understanding on electron transfer on semiconductor surfaces associated with doping. • In addition, we build a complete theoretical framework to quantitatively calculate the negative-ion fractions. • Our work is related to charge transfer on semiconductor surfaces, which will be of interest to a broad audience due to the wide necessity of the knowledge of charge exchange on semiconductor surfaces in different fields. - Abstract: Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5–22.5 keV C{sup −} and F{sup −} ions scattering on H{sub 2}O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  2. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.; Patel, Niral M.; Roberts, Sean T.; Allen, Kathryn; Djurovich, Peter I.; Bradforth, Stephen E.; Thompson, Mark E.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  3. Enhanced intersystem crossing via a high energy charge transfer state in a perylenediimide-perylenemonoimide dyad

    NARCIS (Netherlands)

    Veldman, D.; Chopin-Cado, S.M.A; Meskers, S.C.J.; Janssen, R.A.J.

    2008-01-01

    The electronic relaxation processes of a photoexcited linear perylenediimide-perylenemonoimide (PDI-PMI) acceptor-donor dyad were studied. PDI-PMI serves as a model compound for donor-acceptor systems in photovoltaic devices and has been designed to have a high-energy PDI--PMI + charge transfer (CT)

  4. Charge transfer between hydrogen(deuterium) ions and atoms in metal vapors

    International Nuclear Information System (INIS)

    Alvarez T, I.; Cisneros G, C.

    1981-01-01

    The current state of the experiments on charge transfer between hydrogen (deuterium) ions and atoms in metal vapors are given. Emphasis is given to describing different experimental techniques. The results of calculations if available, are compared with existing experimental data. (author)

  5. Radiative charge-transfer lifetime of the excited state of (NaCa)+

    International Nuclear Information System (INIS)

    Makarov, Oleg P.; Cote, R.; Michels, H.; Smith, W.W.

    2003-01-01

    New experiments were proposed recently to investigate the regime of cold atomic and molecular ion-atom collision processes in a special hybrid neutral-atom-ion trap under high-vacuum conditions. We study the collisional cooling of laser precooled Ca + ions by ultracold Na atoms. Modeling this process requires knowledge of the radiative lifetime of the excited singlet A 1 Σ + state of the (NaCa) + molecular system. We calculate the rate coefficient for radiative charge transfer using a semiclassical approach. The dipole radial matrix elements between the ground and the excited states, and the potential curves were calculated using complete active space self-consistent field and Moeller-Plesset second-order perturbation theory with an extended Gaussian basis, 6-311+G (3df). The semiclassical charge-transfer rate coefficient was averaged over a thermal Maxwellian distribution. In addition, we also present elastic collision cross sections and the spin-exchange cross section. The rate coefficient for charge transfer was found to be 2.3x10 -16 cm 3 /sec, while those for the elastic and spin-exchange cross sections were found to be several orders of magnitude higher (1.1x10 -8 cm 3 /sec and 2.3x10 -9 cm 3 /sec, respectively). This confirms our assumption that the milli-Kelvin regime of collisional cooling of calcium ions by sodium atoms is favorable with the respect to low loss of calcium ions due to the charge transfer

  6. Crystalline Nanoporous Frameworks: a Nanolaboratory for Probing Excitonic Device Concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Azoulay, Jason; Ford, Alexandra Caroline; Foster, Michael E.; El Gabaly Marquez, Farid; Leonard, Francois Leonard; Leong-Hau, Kirsty; Stavila, Vitalie; Talin, Albert Alec; Wong, Brian M.; Brumbach, Michael T.; Van Gough, D.; Lambert, Timothy N.; Rodriguez, Mark A.; Spoerke, Erik David; Wheeler, David Roger; Deaton, Joseph C.; Centrone, Andrea; Haney, Paul; Kinney, R.; Szalai, Veronika; Yoon, Heayoung P.

    2014-09-01

    in disordered systems. Implementing this concept also creates entirely new dimensions for device fabrication that could both improve performance, increase durability, and reduce costs with unprecedented control of over properties. This report summarizes the key results of this project and is divided into sections based on publications that resulted from the work. We begin in Section 2 with an investigation of light harvesting and energy transfer in a MOF infiltrated with donor and acceptor molecules of the type typically used in OPV devices (thiophenes and fullerenes, respectively). The results show that MOFs can provide multiple functions: as a light harvester, as a stabilizer and organizer or the infiltrated molecules, and as a facilitator of energy transfer. Section 3 describes computational design of MOF linker groups to accomplish light harvesting in the visible and facilitate charge separation and transport. The predictions were validated by UV-visible absorption spectroscopy, demonstrating that rational design of MOFs for light-harvesting purposes is feasible. Section 4 extends the infiltration concept discussed in Section to, which we now designate as "Molecule@MOF" to create an electrically conducting framework. The tailorability and high conductivity of this material are unprecedented, meriting publication in the journal Science and spawning several Technical Advances. Section 5 discusses processes we developed for depositing MOFs as thin films on substrates, a critical enabling technology for fabricating MOF-based electronic devices. Finally, in Section 6 we summarize results showing that a MOF thin film can be used as a sensitizer in a DSSC, demonstrating that MOFs can serve as active layers in excitonic devices. Overall, this project provides several crucial proofs-of- concept that the potential of MOFs for use in optoelectronic devices that we predicted several years ago [ 3 ] can be realized in practice.

  7. Temperature dependence of positronium reactivities with charge transfer molecules in bilayer membranes

    International Nuclear Information System (INIS)

    Jean, Y.C.; Yu, C.; Wang, Y.Y.; Yeh, Y.Y.

    1984-01-01

    Rate constants for positronium atoms reacting chemically with charge-transfer molecules such as p-benzoquinone, nitrobenzene, and coenzyme Q-10 in a model bilayer membrane, dipalmitoylphosphatidylcholine (DPPC), have been measured at temperatures between 23 and 65 0 C. A strong variation of the positronium chemical reactivities, k/sub Ps/ was observed in these systems: k/sub Ps/ increases with increasing temperature until the pretransition temperature of the membrane reaches a maximum value near the main transition temperature and decreases at temperatures higher than the main transition temperature. This variation is interpreted in terms of fluidity and permeability changes associated with the phase transitions of membranes and in terms of charge-transfer-complex formation between the solubilized molecules and the polar head of the membrane. These results demonstrate that positronium and its annihilation characteristics can be employed to investigate charge transport phenomena and microstructural changes of real biological membranes

  8. A schematic model for energy and charge transfer in the chlorophyll complex

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F.B.

    2011-01-01

    A theory for simultaneous charge and energy transfer in the carotenoid-chlorophyll-a complex is presented here and discussed. The observed charge transfer process in these chloroplast complexes is reasonably explained in terms of this theory. In addition, the process leads to a mechanism to drive...... an electron in a lower to a higher-energy state, thus providing a mechanism for the ejection of the electron to a nearby molecule (chlorophyll) or into the environment. The observed lifetimes of the electronically excited states are in accord/agreement with the investigations of Sundström et al....... and are in the range of pico-seconds and less. The change in electronic charge distribution in internuclear space as the system undergoes an electronic transition to a higher-energy state could, under appropriate physical conditions, lead to oscillating dipoles capable of transmitting energy from the carotenoid-chlorophylls...

  9. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    Science.gov (United States)

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  10. Measurement of Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Chen, Xi; Zhu, Bairen; Cui, Xiaodong

    Excitonic effects are prominent in monolayer crystal of transition metal dichalcogenides (TMDCs) because of spatial confinement and reduced Coulomb screening. Here we use linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE) to measure the exciton binding energy of monolayer WS2. Peaks for excitonic absorptions of the direct gap located at K valley of the Brillouin zone and transitions from multiple points near Γ point of the Brillouin zone, as well as trion side band are shown in the linear absorption spectra of WS2. But there is no gap between distinct excitons and the continuum of the interband transitions. Strong electron-phonon scattering, overlap of excitons around Γ point and the transfer of the oscillator strength from interband continuum to exciton states make it difficult to resolve the electronic interband transition edge even down to 10K. The gap between excited states of the band-edge exciton and the single-particle band is probed by TP-PLE measurements. And the energy difference between 1s exciton and the single-particle gap gives the exciton binding energy of monolayer WS2 to be about 0.71eV. The work is supported by Area of excellency (AoE/P-04/08), CRF of Hong Kong Research Grant Council (HKU9/CRF/13G) and SRT on New Materials of The University of Hong Kong.

  11. Extraordinary Mechanism of the Diels-Alder Reaction: Investigation of Stereochemistry, Charge Transfer, Charge Polarization, and Biradicaloid Formation.

    Science.gov (United States)

    Sexton, Thomas; Kraka, Elfi; Cremer, Dieter

    2016-02-25

    The Diels-Alder reaction between 1,3-butadiene and ethene is investigated from far-out in the entrance channel to the very last step in the exit channel thus passing two bifurcation points and extending the range of the reaction valley studied with URVA (Unified Reaction Valley Approach) by 300% compared to previous studies. For the first time, the pre- and postchemical steps of the reaction are analyzed at the same level of theory as the actual chemical processes utilizing the path curvature and its decomposition into internal coordinate or curvilinear coordinate components. A first smaller charge transfer to the dienophile facilitates the rotation of gauche butadiene into its cis form. The actual chemical processes are initiated by a second larger charge transfer to the dienophile that facilitates pyramidalization of the reacting carbon centers, bond equalization, and biradicaloid formation of the reactants. The transition state is aromatically stabilized and moved by five path units into the entrance channel in line with the Hammond-Leffler postulate. The pseudorotation of the boat form into the halfchair of cyclohexene is analyzed. Predictions are made for the Diels-Alder reaction based on a 11-phase mechanism obtained by the URVA analysis.

  12. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    Directory of Open Access Journals (Sweden)

    Rebecca Boll

    2016-07-01

    Full Text Available Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse.

  13. Ion-atom charge-transfer system for a heavy-ion-beam pumped laser

    International Nuclear Information System (INIS)

    Ulrich, A.; Gernhaeuser, R.; Kroetz, W.; Wieser, J.; Murnick, D.E.

    1994-01-01

    An Ar target to which Cs vapor could be added, excited by a pulsed beam of 100-MeV 32 S ions, was studied as a prototype ion-atom charge-transfer system for pumping short-wavelength lasers. Low-velocity Ar 2+ ions were efficiently produced; a huge increase in the intensity of the Ar II 4d-4p spectral lines was observed when Cs vapor was added to the argon. This observation is explained by a selective charge transfer of the Cs 6s electron into the upper levels of the observed transitions. A rate constant of (1.4±0.2)x10 -9 cm 3 /s for the transfer process was determined

  14. Synthetic system mimicking the energy transfer and charge separation of natural photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gust, D.; Moore, T.A.

    1985-05-01

    A synthetic molecular triad consisting of a porphyrin P linked to both a quinone Q and a carotenoid polyene C has been prepared as a mimic of natural photosynthesis for solar energy conversion purposes. Laser flash excitation of the porphyrin moiety yields a charge-separated state Csup(+.)-P-Qsup(-.) within 100 ps with a quantum yield of more than 0.25. This charge-separated state has a lifetime on the microsecond time scale in suitable solvents. The triad also models photosynthetic antenna function and photoprotection from singlet oxygen damge. The successful biomimicry of photosynthetic charge separation is in part the result of multistep electron transfers which rapidly separate the charges and leave the system at high potential, but with a considerable barrier to recombination.

  15. Theoretical Study of the Charge-Transfer State Separation within Marcus Theory

    DEFF Research Database (Denmark)

    Volpi, Riccardo; Nassau, Racine; Nørby, Morten Steen

    2016-01-01

    We study, within Marcus theory, the possibility of the charge-transfer (CT) state splitting at organic interfaces and a subsequent transport of the free charge carriers to the electrodes. As a case study we analyze model anthracene-C60 interfaces. Kinetic Monte Carlo (KMC) simulations on the cold...... CT state were performed at a range of applied electric fields, and with the fields applied at a range of angles to the interface to simulate the action of the electric field in a bulk heterojunction (BHJ) interface. The results show that the inclusion of polarization in our model increases CT state...... dissociation and charge collection. The effect of the electric field on CT state splitting and free charge carrier conduction is analyzed in detail with and without polarization. Also, depending on the relative orientation of the anthracene and C60 molecules at the interface, CT state splitting shows different...

  16. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  17. Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots

    International Nuclear Information System (INIS)

    Mihalache, Iuliana; Radoi, Antonio; Mihaila, Mihai; Munteanu, Cornel; Marin, Alexandru; Danila, Mihai; Kusko, Mihaela; Kusko, Cristian

    2015-01-01

    Highlights: • We report a one pot synthesis metod of GQD with controlled size and optoelectronic properties. • An improvement of common N3-DSSC characteristics is achieved when GQDs are used as co-sensitiser. • The role of GQD as cosensitisers in hybrid DSSC was investigated and the interplay between charge and energy transfer phenomena mediated by GQDs was demonstrated. • The GQDs presence determines an inhibition of the recombination processes at the TiO 2 /electrolyte interface. - Abstract: We explored the role of graphene quantum dots (GQDs) as co-sensitizers in hybrid dye sensitized solar cell (DSSC) architectures, focusing on various concurring mechanisms, such as: charge transfer, energy transfer and recombination rate, towards light harvesting improvement. GQDs were prepared by the hydrothermal method that allows the tuning of electronic levels and optical properties by employing appropriate precursors and synthesis conditions. The aim was to realize a type II alignment for TiO 2 /GQD/dye hybrid configuration, using standard N3 Ru-dye in order to improve charge transfer. When GQDs were used as co-sensitizers together with N3 Ru-dye, an improvement in power conversion efficiency was achieved, as shown by electrical measurements. The experimental analysis indicates that this improvement arises from the interplay of various mechanisms mediated by GQDs: (i) enhancement of charge separation and collection due to the cascaded alignment of the energy levels; (ii) energy transfer from GQDs to N3 Ru-dye due to the overlap between GQD photoluminescence and N3 Ru-dye absorption spectra; and (iii) reduction of the electron recombination to the redox couple due to the inhibition of the back electron transfer to the electrolyte by the GQDs

  18. A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence

    DEFF Research Database (Denmark)

    Chabera, Pavel; Liu, Yizhu; Prakash, Om

    2017-01-01

    Transition-metal complexes are used as photosensitizers(1), in light-emitting diodes, for biosensing and in photocatalysis(2). A key feature in these applications is excitation from the ground state to a charge-transfer state(3,4); the long charge-transfer-state lifetimes typical for complexes...

  19. Photo-induced charge transfer at heterogeneous interfaces: Dye-sensitized tin disulfide, the theory and the experiment

    International Nuclear Information System (INIS)

    Lanzafame, J.M.

    1993-01-01

    The study of photo-induced charge transfer is an endeavor that spans the entire industrial period of man's history. Its great importance demands an ever greater understanding of its underlying principles. The work discussed here attempts to probe elementary aspects of the charge transfer process. Investigations into the theory of charge transfer reactions are made in an attempt to isolate the relevant parameters. An analytical discussion is made of a simple Golden Rule type rate equation to describe the transfer kinetics. Then a quantum simulation is carried out to follow the wavefunction propagation as a test of the applicability of the assumptions made in deriving the simpler rate equation. Investigation of charge transfer at surfaces is bet served by the application of ultrafast optical spectroscopies to probe carrier dynamics. A discussion of the properties of the short pulse laser systems employed is included along with a discussion of the different optical spectroscopies available. These tools are then brought to bear upon dye-sensitized SnS 2 , a model system for the study of charge injection processes. The unique properties of the semiconductor are discussed with respect to the charge transfer process. The unique properties of the semiconductor are discussed with respect to the charge transfer process. The optical experiments performed on the dye/SnS 2 systems elucidate the fundamental carrier dynamics and these dynamics are discussed within the theoretical framework to provide a complete picture of the charge transfer kinetics

  20. Excitons in single-walled carbon nanotubes: environmental effect

    International Nuclear Information System (INIS)

    Smyrnov, O.A.

    2010-01-01

    The properties of excitons in semiconducting single-walled carbon nanotubes (SWCNTs) isolated in vacuum or a medium and their contributions to the optical spectra of nanotubes are studied within the elementary potential model, in which an exciton is represented as a bound state of two oppositely charged quasiparticles confined to the nanotube surface. The emphasis is given on the influence of the dielectric environment surrounding a nanotube on the exciton spectra. For nanotubes in the environment with a permittivity less than ∼ 1:8; the ground-state exciton binding energies exceed the respective energy gaps, whereas the obtained binding energies of excitons in nanotubes in a medium with permittivity greater than ∼ 4 are in good accordance with the corresponding experimental data and consistent with the known scaling relation for the environmental effect. The stabilization of a single-electron spectrum in SWCNTs in media with rather low permittivities is discussed.

  1. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  2. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroanilin

    DEFF Research Database (Denmark)

    Eriksen, J.J.; Sauer, S.P.A.; Mikkelsen, K.V.

    2013-01-01

    We investigate the failure of Time{Dependent Density Functional Theory (TDDFT) with the CAM{B3LYP exchange{correlation (xc) functional coupled to the Polarizable Embedding (PE) scheme (PE-CAM-B3LYP) in reproducing the solvatochromic shift of the lowest intense charge{transfer excitation in para...... the electric dipole moments in the gas phase and for 100 solvent congurations. We find that CAM-B3LYP overestimates the amount of charge separation inherent in the ground state and TDDFT/CAM-B3LYP drastically underestimates this amount in the excited charge-transfer state. As the errors in the solvatochromatic...... to benchmark results of TDDFT calculations with CAM-B3LYP for intramolecular charge{transfer excitations in molecular systems similar to pNA against higher{level ab initio wave function methods, like, e.g., CCSD, prior to their use. Using the calculated change in dipole moment upon excitation as a measure...

  3. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells.

    Science.gov (United States)

    Chang, Jin; Ogomi, Yuhei; Ding, Chao; Zhang, Yao Hong; Toyoda, Taro; Hayase, Shuzi; Katayama, Kenji; Shen, Qing

    2017-03-01

    The surface chemistry of colloidal quantum dots (QDs) plays an important role in determining the photoelectric properties of QD films and the corresponding quantum dot heterojunction solar cells (QDHSCs). To investigate the effects of the ligand structure on the photovoltaic performance and exciton dynamics of QDHSCs, PbS QDHSCs were fabricated by the solid state ligand exchange method with mercaptoalkanoic acid as the cross-linking ligand. Temperature-dependent photoluminescence and ultrafast transient absorption spectra show that the electronic coupling and charge transfer rate within QD ensembles were monotonically enhanced as the ligand length decreased. However, in practical QDHSCs, the second shortest ligand 3-mercaptopropionic acid (MPA) showed higher power conversion efficiency than the shortest ligand thioglycolic acid (TGA). This could be attributed to the difference in their surface trap states, supported by thermally stimulated current measurements. Moreover, compared with the non-conjugated ligand MPA, the conjugated ligand 4-mercaptobenzoic acid (MBA) introduces less trap states and has a similar charge transfer rate in QD ensembles, but has poor photovoltaic properties. This unexpected result could be contributed by the QD-ligand orbital mixing, leading to the charge transfer from QDs to ligands instead of charge transfer between adjacent QDs. This work highlights the significant effects of ligand structures on the photovoltaic properties and exciton dynamics of QDHSCs, which would shed light on the further development of QD-based photoelectric devices.

  4. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    International Nuclear Information System (INIS)

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-01-01

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations

  5. State-selective charge transfer cross sections for light ion impact of atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D. R. [University of North Texas; Stancil, Phillip C. [University of Georgia, Athens; Havener, C. C. [Oak Ridge National Laboratory (ORNL)

    2015-01-01

    Owing to the utility of diagnosing plasma properties such as impurity concentration and spatial distribution, and plasma temperature and rotation, by detection of photon emission following capture of electrons from atomic hydrogen to excited states of multiply charged ions, new calculations of state-selective charge transfer involving light ions have been carried out using the atomic orbital close-coupling and the classical trajectory Monte Carlo methods. By comparing these with results of other approaches applicable in a lower impact energy regime, and by benchmarking them using key experimental data, knowledge of the cross sections can be made available across the range parameters needed by fusion plasma diagnostics.

  6. Fermi level alignment in molecular nanojunctions and its relation to charge transfer

    DEFF Research Database (Denmark)

    Stadler, Robert; Jacobsen, Karsten Wedel

    2006-01-01

    The alignment of the Fermi level of a metal electrode within the gap of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of a molecule is a key quantity in molecular electronics, which can vary the electron transparency of a single-molecule junction...... by orders of magnitude. We present a quantitative analysis of the relation between this level alignment (which can be estimated from charging free molecules) and charge transfer for bipyridine and biphenyl dithiolate (BPDT) molecules attached to gold leads based on density functional theory calculations...... end of the gap in the transmission function for bipyridine and at its lower end for BPDT....

  7. Molecular control of photoexcited charge transfer and recombination at a quaterthiophene/zinc oxide interface

    International Nuclear Information System (INIS)

    Mou Weiwei; Nakano, Aiichiro; Ohmura, Satoshi; Shimojo, Fuyuki

    2012-01-01

    Nonadiabatic quantum molecular dynamics simulations are performed to study photoexcited charge transfer (CT) and charge recombination (CR) at an interface between a conjugated oligomer donor, quaterthiophene (QT), and an inorganic acceptor (ZnO). Simulations reveal a detrimental effect of static disorder in QT conformation on the efficiency of hybrid QT/ZnO solar cells due to increased CR. On the contrary, dynamic disorder (i.e., fluctuation of carbon-hydrogen bonds in QT) is essential for high efficiency by assisting CT. The separate controllability of CT and CR at the molecular level has impacts on molecular design for efficient solar cells and explains recent experimental observations.

  8. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers

    KAUST Repository

    Andernach, Rolf

    2015-07-22

    We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple timescales and investigated the mechanism of triplet exciton formation. During sensitization, single exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and find that 60% of the complex triplet excitons are transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and up-conversion layers.

  9. Energy and charge transfer dynamics between Alq3 and CdSeS nanocrystals.

    Science.gov (United States)

    Zhang, Shuping; Liu, Yuqiang; Yang, Yanqiang

    2010-03-01

    The photoluminescence properties of the blend films consisting of organic small molecules and nanocrystals (NCs)--Alq3 and CdSeS NCs--were studied by steady-state and time-resolved photoluminescence (PL) spectroscopy with different excited wavelengths. Both the fluorescence intensity and lifetime are intensively dependent on the NC concentration. The detailed analysis of experiment data proves that Forster energy transfer from the Alq3 to the NCs exists simultaneously with the charge transfer and both compete with each other in the blend films.

  10. Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO+ with CH4 and CD4.

    Science.gov (United States)

    Melko, Joshua J; Ard, Shaun G; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2014-09-18

    We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

  11. Defects or charge transfer: Different possibilities to explain the photoluminescence in crystalline Ba(Zr{sub x}Ti{sub 1−x})O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Agda E., E-mail: agda@fct.unesp.br [Universidade Estadual Paulista, Faculdade de Ciências e Tecnologia, Presidente Prudente, SP (Brazil); Sasaki, Guilherme S.; Camacho, Sabrina A.; Teixeira, Silvio R. [Universidade Estadual Paulista, Faculdade de Ciências e Tecnologia, Presidente Prudente, SP (Brazil); Li, Maximo S. [Universidade de São Paulo, Instituto de Física, São Carlos, SP (Brazil); Longo, Elson [Universidade estadual Paulista, Instituto de Química, Araraquara, SP (Brazil)

    2016-11-15

    In this work, BZT (Ba (Zr{sub x}Ti{sub 1−x})O{sub 3}), composite ceramic powder with x=0, 0.25, 0.50, 0.75 and 1 (mol) was prepared by the microwave-assisted hydrothermal method. The structural, morphological and optical properties of the compounds were determined by XRD, SEM, Raman, UV–vis and photoluminescence analysis. The results showed that the stability of the BZ phase was strongly influenced by the isomorphic Zr/Ti substitution, and that the BZ sample had the greatest structural order for short and long distances compared to the other. The BZT ceramic composite showed optical behavior also influenced by the concentration of Zr, resulting in a growing photoluminescence emission with increasing Zr ion in the network. The BZ sample showed higher photoluminescent intensity in a region including the entire visible spectrum. Although the effect of photoluminescence in these materials is dependent on the presence of defects, which produce excitons for radiative recombination, in the BZ compound, there might have been other effects causing the intense photoluminescence. In this case, high emission is associated with the a charge transfer between neighboring clusters [ZrO{sub 6}] in a nanoparticle surface interface, which in turn are joined to form BZ mesocrystals on a micrometer scale. The photoluminescence observed in the BZT compound had a predominantly white color, a feature that gives it high potential for applications in white light-emitting devices.

  12. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    Science.gov (United States)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  13. Interlayer excitons in a bulk van der Waals semiconductor.

    Science.gov (United States)

    Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf

    2017-09-21

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.

  14. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin Thomas [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  15. Bands dispersion and charge transfer in β-BeH2

    Science.gov (United States)

    Trivedi, D. K.; Galav, K. L.; Joshi, K. B.

    2018-04-01

    Predictive capabilities of ab-initio method are utilised to explore bands dispersion and charge transfer in β-BeH2. Investigations are carried out using the linear combination of atomic orbitals method at the level of density functional theory. The crystal structure and related parameters are settled by coupling total energy calculations with the Murnaghan equation of state. Electronic bands dispersion from PBE-GGA is reported. The PBE-GGA, and PBE0 hybrid functional, show that β-BeH2 is a direct gap semiconductor with 1.18 and 2.40 eV band gap. The band gap slowly decreases with pressure and beyond l00 GPa overlap of conduction and valence bands at the r point is observed. Charge transfer is studied by means of Mullikan population analysis.

  16. Charge transfer complex in diketopyrrolopyrrole polymers and fullerene blends: Implication for organic solar cell efficiency

    Science.gov (United States)

    Moghe, D.; Yu, P.; Kanimozhi, C.; Patil, S.; Guha, S.

    2012-02-01

    Copolymers based on diketopyrrolopyrrole (DPP) have recently gained potential in organic photovoltaics. When blended with another acceptor such as PCBM, intermolecular charge transfer occurs which may result in the formation of charge transfer (CT) states. We present here the spectral photocurrent characteristics of two donor-acceptor DPP based copolymers, PDPP-BBT and TDPP-BBT, blended with PCBM to identify the CT states. The spectral photocurrent measured using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) methods are compared with P3HT:PCBM, where the CT state is well known. PDPP-BBT:PCBM shows a stable CT state while TDPP-BBT does not. Our analysis shows that the larger singlet state energy difference between TDPP-BBT and PCBM along with the lower optical gap of TDPP-BBT obliterates the formation of a midgap CT state resulting in an enhanced photovoltaic efficiency over PDPP-BBT:PCBM.

  17. Study on charge transfer reaction of several organic molecules with accelerated rare gas ions

    International Nuclear Information System (INIS)

    Takahasi, Makoto; Okuda, Sachiko; Arai, Eiichi; Ichinose, Akira; Takakubo, Masaaki.

    1984-01-01

    Observing the charge transfer mass spectra of ethylbenzene, cyclobutane and methanol in Ar and Xe ion impacts, we investigated the dependence of the secondary ion peak intensities (normalized to primary ion current and target pressure) on the translational energy of primary ions (0-3500 eV).In the case of ethylbenzene, several maxima of the secondary i on peak intensities were observed in Ar and Xe ion impacts. The correlation between the maxima and the primary ion energy was examined in terms of near adiabatic theory of Massey. Supplementary studies on the energy distribution of primary ion, charge transfer cross section between methanol and Xe ion, and final product analysis in rare gas ion irradiation on cyclobutane were described. (author)

  18. Oxidation and Metal-Insertion in Molybdenite Surfaces: Evaluation of Charge-Transfer Mechanisms and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle V.; Becker, U.; Shutthanandan, V.; Julien, C. M.

    2008-06-05

    Molybdenum sulfide (MoS2), an important representative member of the layered transition-metal dichalcogenides, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and industrial science and technology. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. On the other hand understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is quite important to utilize these minerals in technological applications. Furthermore, such a detailed investigation of thermal oxidation behavior and intercalation process will provide a basis to further explore and model the mechanism of adsorption of metal ions on to geomedia. Therefore, the present work was performed to understand the oxidation and intercalation processes of molybdenite surfaces. The results obtained, using a wide variety of analytical techniques, are presented and discussed in this paper.

  19. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Zanni, Martin T.

    1999-01-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents

  20. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers.

    Science.gov (United States)

    Sun, Baichuan; Barnard, Amanda S

    2016-08-07

    Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.

  1. Probing long-lived dark excitons in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Julsgaard, Brian; Stobbe, Søren

    2010-01-01

    Long-lived dark exciton states are formed in self-assembled quantum dots due to the combination of the angular momentum of electrons and holes. The lifetime of dark excitons are determined by spin-flip processes that transfer dark excitons into radiative bright excitons. We employ time......-resolved spontaneous emission measurements in a modified local density of optical states to unambiguously record the spin-flip rate. Pronounced variations in the spin-flip rate with the quantum dot emission energy are observed demonstrating that the exciton storage time can be extended by controlling the quantum dot......, which illustrates the important role of interfaces for quantum dot based nanophotonic structures....

  2. Muon transfer from muonic hydrogen to heavier atoms; Transfert de charge muonique

    Energy Technology Data Exchange (ETDEWEB)

    Dupays, A

    2004-06-01

    This work concerns muon transfer from muonic hydrogen to heavier atoms. Recently, a method of measurement of the hyperfine structure of ground-state muonic hydrogen based on the collision energy dependence of the muon transfer rate to oxygen has been proposed. This proposal is based on measurements which where performed at the Paul Scherrer Institute in the early nineties which indicate that the muon transfer from muonic hydrogen to oxygen increases by a factor of 4 going from thermal to 0.12 eV energies. The motivation of our calculations was to confirm this behaviour. To study the collision energy dependence of the muon transfer rate, we have used a time-independent close-coupling method. We have set up an hyperspherical elliptic formalism valid for nonzero total angular momentum which allows accurate computations of state-to-state reactive and charge exchange processes. We have applied this formalism to muon-transfer process to oxygen and neon. The comparison with experimental results is in both cases excellent. Finally, the neon transfer rate dependence with energy suggests to use neon instead of oxygen to perform a measurement of the hyperfine structure of muonic hydrogen. The results of accurate calculations of the muon transfer rates from muonic protium and deuterium atoms to nitrogen, oxygen and neon are also reported. Very good agreement with measured rates is obtained and for the three systems, the isotopic effect is perfectly reproduced. (author)

  3. Oxygen-assisted charge transfer between ZnO quantum dots and graphene.

    Science.gov (United States)

    Guo, Wenhao; Xu, Shuigang; Wu, Zefei; Wang, Ning; Loy, M M T; Du, Shengwang

    2013-09-23

    Efficient charge transfer between ZnO quantum dots (QDs) and graphene is demonstrated by decorating ZnO QDs on top of graphene, with the assistance of oxygen molecules from the air. The electrical response of the device to UV light is greatly enhanced, and a photoconductive gain of up to 10(7) can be obtained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    Directory of Open Access Journals (Sweden)

    Shutthanandan V

    2008-06-01

    Full Text Available Abstract Molybdenum disulfide (MoS2, a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM, scanning electron microscopy (SEM, transmission electron microscopy (TEM, Rutherford backscattering spectrometry (RBS, and nuclear reaction analysis (NRA. Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and

  5. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics.

    Science.gov (United States)

    Ramana, C V; Becker, U; Shutthanandan, V; Julien, C M

    2008-06-05

    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA).Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400 degrees C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant

  6. Lifetimes of partial charge transfer exciplexes of 9-cyanophenanthrene and 9-cyanoanthracene

    OpenAIRE

    Dolotova, Elena; Dogadkin, Denis; Soboleva, Irina; Kuzmin, Michael; Nicolet, Olivier; Vauthey, Eric

    2003-01-01

    The fluorescence decays of several exciplexes with partial charge transfer have been investigated in solvents of various polarity. The measured lifetimes are found to be in reasonable agreement with the activation enthalpy and entropy of exciplex decay obtained earlier from the temperature dependence of the exciplex emission quantum yields. For exciplexes with 9-cyanophenanthrene substantial contribution of the higher local excited state into the exciplex electronic structure is found and bor...

  7. Imidazole as a parent π-conjugated backbone in charge-transfer chromophores

    Directory of Open Access Journals (Sweden)

    Jiří Kulhánek

    2012-01-01

    Full Text Available Research activities in the field of imidazole-derived push–pull systems featuring intramolecular charge transfer (ICT are reviewed. Design, synthetic pathways, linear and nonlinear optical properties, electrochemistry, structure–property relationships, and the prospective application of such D-π-A organic materials are described. This review focuses on Y-shaped imidazoles, bi- and diimidazoles, benzimidazoles, bis(benzimidazoles, imidazole-4,5-dicarbonitriles, and imidazole-derived chromophores chemically bound to a polymer chain.

  8. Development and capital investment tasks involved in the production of charge transfer equipment

    International Nuclear Information System (INIS)

    Simon, Sandor

    1983-01-01

    Stringent requirements had to be considered in the course of the production development of charge transfer equipment. The production of structures demanding extremely high endurance was based on extensive co-operation. Special alloys were needed for parts and bearings, special heat-treatment was required at certain sections for large dimensions etc. Appropriate mashine stock, assembly and test hall have been built for assembling and testing the equipment with both 440 and 100 MW.(Sz.J.)

  9. Charge transfer collisions of Si^3+ with H at low energies

    Science.gov (United States)

    Joseph, D. C.; Gu, J. P.; Saha, B. C.

    2009-11-01

    Charge transfer of positively charged ions with atomic hydrogen is important not only in magnetically confined plasmas between impurity ions and H atoms from the chamber walls influences the overall ionization balance and effects the plasma cooling but also in astrophysics, where it plays a key role in determining the properties of the observed gas. It also provides a recombination mechanism for multiply charged ions in X-ray ionized astronomical environments. We report an investigation using the molecular-orbital close-coupling (MOCC) method, both quantum mechanically and semi-classically, in the adiabatic representation. Ab initio adiabatic potentials and coupling matrix elements--radial and angular--are calculated using the MRD-CI method. Comparison of our results with other theoretical as well as experimental findings will be discussed.

  10. Computational models of an inductive power transfer system for electric vehicle battery charge

    Science.gov (United States)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  11. Computational models of an inductive power transfer system for electric vehicle battery charge

    International Nuclear Information System (INIS)

    Anele, A O; Hamam, Y; Djouani, K; Chassagne, L; Alayli, Y; Linares, J

    2015-01-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV. (paper)

  12. Exciton center-of-mass localization and dielectric environment effect in monolayer WS2

    Science.gov (United States)

    Hichri, Aïda; Ben Amara, Imen; Ayari, Sabrine; Jaziri, Sihem

    2017-06-01

    The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional semiconductors. They have attracted increasing attention due to their unique optical properties originate from neutral and charged excitons. In this paper, we study the strong localization of exciton center-of-mass motion within random potential fluctuations caused by the monolayer defects. Here, we report negatively charged exciton formation in monolayer TMDs, notably tungsten disulfide WS2. Our theory is based on an effective mass model of neutral and charged excitons, parameterized by ab-initio calculations. Taking into the account the strong correlation between the monolayer WS2 and the surrounding dielectric environment, our theoretical results are in good agreement with one-photon photoluminescence (PL) and reflectivity measurements. We also show that the exciton state with p-symmetry, experimentally observed by two-photon PL emission, is energetically below the 2s-state. We use the equilibrium mass action law, to quantify the relative weight of exciton and trion PL. We show that exciton and trion emission can be tuned and controlled by external parameters like temperature, pumping, and injection electrons. Finally, in comparison with experimental measurements, we show that exciton emission in monolayer tungsten dichalcogenides is substantially reduced. This feature suggests that free exciton can be trapped in disordered potential wells to form a localized exciton and therefore offers a route toward novel optical properties.

  13. Charge transfer through DNA/DNA duplexes and DNA/RNA hybrids: complex theoretical and experimental studies.

    Science.gov (United States)

    Kratochvílová, Irena; Vala, Martin; Weiter, Martin; Špérová, Miroslava; Schneider, Bohdan; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír

    2013-01-01

    Oligonucleotides conduct electric charge via various mechanisms and their characterization and understanding is a very important and complicated task. In this work, experimental (temperature dependent steady state fluorescence spectroscopy, time-resolved fluorescence spectroscopy) and theoretical (Density Functional Theory) approaches were combined to study charge transfer processes in short DNA/DNA and RNA/DNA duplexes with virtually equivalent sequences. The experimental results were consistent with the theoretical model - the delocalized nature of HOMO orbitals and holes, base stacking, electronic coupling and conformational flexibility formed the conditions for more effective short distance charge transfer processes in RNA/DNA hybrids. RNA/DNA and DNA/DNA charge transfer properties were strongly connected with temperature affected structural changes of molecular systems - charge transfer could be used as a probe of even tiny changes of molecular structures and settings. © 2013. Published by Elsevier B.V. All rights reserved.

  14. Development of highly accurate approximate scheme for computing the charge transfer integral

    Energy Technology Data Exchange (ETDEWEB)

    Pershin, Anton; Szalay, Péter G. [Laboratory for Theoretical Chemistry, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest (Hungary)

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

  15. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  16. Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface

    KAUST Repository

    El-Ballouli, Ala'a O.

    2015-11-17

    Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD-based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron-accepting unit with a new driving force for CT is urgently needed to harvest the light from large-sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time-resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD-based solar cells that make the best use of the diverse photons making up the Sun\\'s broad irradiance spectrum.

  17. Charge transfer in photorechargeable composite films of TiO2 and polyaniline

    Science.gov (United States)

    Nomiyama, Teruaki; Sasabe, Kenichi; Sakamoto, Kenta; Horie, Yuji

    2015-07-01

    A photorechargeable battery (PRB) is a photovoltaic device having an energy storage function in a single cell. The photoactive electrode of PRB is a bilayer film consisting of bare porous TiO2 and a TiO2-polyaniline (PANi) mixture that work as a photovoltaic current generator and an electrochemical energy storage by ion dedoping, respectively. To study the charge transfer between TiO2 and PANi, the photorechargeable quantum efficiency QE ([electron count on discharge]/[incident photon count on photocharge]) was measured by varying the thickness LS of the TiO2-PANi mixture. The quantum efficiency QEuv for UV photons had a maximum of ˜7% at LS ˜ 7 µm. The time constant τTP for the charge transfer was about 10-1 s, which was longer ten times or more than the lifetime of excited electrons within TiO2. These facts reveal that the main rate-limiting factor in the photocharging process is the charge transfer between TiO2 and PANi.

  18. Tuning electronic properties of graphene nanoflake polyaromatic hydrocarbon through molecular charge-transfer interactions

    Science.gov (United States)

    Sharma, Vaishali; Dabhi, Shweta D.; Shinde, Satyam; Jha, Prafulla K.

    2018-05-01

    By means of first principles calculation we have tuned the electronic properties of graphene nanoflake polyaromatic hydrocarbon via molecular charge transfer. Acceptor/donor Tetracyanoquinodimethane (TCNQ) and Tetrathiafulvalene (TTF) organic molecules are adsorbed on polyaromatic hydrocarbons (PAH) in order to introduce the charge transfer. The substrate's n- or p- type nature depends on the accepting/donating behavior of dopant molecules. Two different classes of PAH (extended form of triangulene) namely Bow-tie graphene nanoflake (BTGNF) and triangular zigzag graphene nanoflake (TZGNF). It is revealed that all the TCNQ and TTF modified graphene nanoflakes exhibit significant changes in HOMO-LUMO gap in range from 0.58 eV to 0.64 eV and 0.01 eV to 0.05 eV respectively. The adsorption energies are in the range of -0.05 kcal/mol to -2.6 kcal/mol. The change in work function is also calculated and discussed, the maximum charge transfer is for TCNQ adsorbed BTGNF. These alluring findings in the tuning of electronic properties will be advantageous for promoting graphene nanoflake polyaromatic hydrocarbon for their applications in electronic devices.

  19. Models of charge transport and transfer in molecular switch tunnel junctions of bistable catenanes and rotaxanes

    International Nuclear Information System (INIS)

    Flood, Amar H.; Wong, Eric W.; Stoddart, J. Fraser

    2006-01-01

    The processes by which charge transfer can occur play a foundational role in molecular electronics. Here we consider simplified models of the transfer processes that could be present in bistable molecular switch tunnel junction (MSTJ) devices during one complete cycle of the device from its low- to high- and back to low-conductance state. The bistable molecular switches, which are composed of a monolayer of either switchable catenanes or rotaxanes, exist in either a ground-state co-conformation or a metastable one in which the conduction properties of the two co-conformations, when measured at small biases (+0.1 V), are significantly different irrespective of whether transport is dominated by tunneling or hopping. The voltage-driven generation (±2 V) of molecule-based redox states, which are sufficiently long-lived to allow the relative mechanical movements necessary to switch between the two co-conformations, rely upon unequal charge transfer rates on to and/or off of the molecules. Surface-enhanced Raman spectroscopy has been used to image the ground state of the bistable rotaxane in MSTJ-like devices. Consideration of these models provide new ways of looking at molecular electronic devices that rely, not only on nanoscale charge-transport, but also upon the bustling world of molecular motion in mechanically interlocked bistable molecules

  20. Photoinduced charge and energy transfer in dye-doped conjugated polymers

    International Nuclear Information System (INIS)

    Veldman, Dirk; Bastiaansen, Jolanda J.A.M.; Langeveld-Voss, Bea M.W.; Sweelssen, Joergen; Koetse, Marc M.; Meskers, Stefan C.J.; Janssen, Rene A.J.

    2006-01-01

    Conjugated polymer-molecular dye blends of MDMO-PPV (poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene]) and PF1CVTP (poly[9,9-dioctylfluorene-2,7-diyl-alt-2,5-bis(2-thienyl-1-cyanovinyl) -1-(3',7= '-dimethyloctyloxy)-4-methoxybenzene-5'',5''-diyl]) with three dipyrrometheneboron difluoride (bodipy) dyes were studied by (time-resolved) fluorescence and photoinduced absorption spectroscopy to determine quantitatively the relation between the electronic HOMO and LUMO levels and the occurrence of energy or charge transfer after optical excitation. We find that for MDMO-PPV photoinduced charge transfer to the dyes occurs, while photoexcitation of PF1CVTP exclusively results in energy transfer. The differences can be rationalized by assuming that the energy of the charge separated state is 0.33-0.45 eV higher than the energy determined from oxidation and reduction potentials of donor and acceptor, respectively. This provides an important design rule to identify appropriate materials for polymer solar cells that can have a high open-circuit voltage

  1. Charge-transfer complexes and their role in exciplex emission and near-infrared photovoltaics.

    Science.gov (United States)

    Ng, Tsz-Wai; Lo, Ming-Fai; Fung, Man-Keung; Zhang, Wen-Jun; Lee, Chun-Sing

    2014-08-20

    Charge transfer and interactions at organic heterojunctions (OHJs) are known to have critical influences on various properties of organic electronic devices. In this Research News article, a short review is given from the electronic viewpoint on how the local molecular interactions and interfacial energetics at P/N OHJs contribute to the recombination/dissociation of electron-hole pairs. Very often, the P-type materials donate electrons to the N-type materials, giving rise to charge-transfer complexes (CTCs) with a P(δ+) -N(δ-) configuration. A recently observed opposite charge-transfer direction in OHJs is also discussed (i.e., N-type material donates electrons to P-type material to form P(δ-) -N(δ+) ). Recent studies on the electronic structures of CTC-forming material pairs are also summarized. The formation of P(δ-) -N(δ+) -type CTCs and their correlations with exciplex emission are examined. Furthermore, the potential applications of CTCs in NIR photovoltaic devices are reviewed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Microchip-calorimetry of organic charge transfer complex which shows superconductivity at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Yuki [Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043 (Japan); Yamashita, Satoshi [RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Yamamoto, Takashi [Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043 (Japan); Nakazawa, Yasuhiro, E-mail: nakazawa@chem.sci.osaka-u.ac.jp [Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043 (Japan); Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585 (Japan)

    2012-03-20

    Highlights: Black-Right-Pointing-Pointer Organic charge transfer salt of {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Br shows superconductivity. Black-Right-Pointing-Pointer We succeeded to detect thermal anomaly microchip device TCG3880. Black-Right-Pointing-Pointer Development details of the calorimeter and the detection system is presented. Black-Right-Pointing-Pointer The magnetic fields dependence shows typical character of layered superconductor. - Abstract: We carried out thermodynamic measurements of organic charge transfer complex of {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Br, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene by TCG3880 chip device in order to examine capability of the chip calorimeter at low temperature region and under magnetic fields. TCG3880 chip is mounted on a {sup 3}He cryostat available in combination with a superconductive magnet up to 7 T. Thermal anomalies related to the glass-like freezing of ethylene groups of BEDT-TTF molecules and the superconductive transition were observed. A frequency dependence of the thermal anomaly of the glass formation and a magnetic fields dependence of the thermal anomaly of the superconductive transition are reported. The results presented in this work demonstrate that the TCG3880 is quite useful for thermodynamic investigations of the organic charge transfer complex with much reduced sample quantity as compared with those of relaxation and adiabatic calorimetry.

  3. The charge transfer characteristic of tetraphenylporphyrin iron chloride Langmuir–Blodgett films

    International Nuclear Information System (INIS)

    Du, Y.; Li, Z.H.; Qi, P.; Wang, F.; Liu, D.

    2013-01-01

    The charge transfer characteristic of tetraphenylporphyrin iron (III) chloride (FeP) Langmuir–Blodgett (LB) films on the surface of the ITO glass electrode was reported. When the cyclic voltammetry (CV) scanning was running, the charge transfer characteristic was controlled by the oxidation–reduction process of Fe(III)/Fe(II). The charge transfer characteristic was related to the following factors: the cross-sectional area, relative to the electrode, of FeP as the electron donor (or acceptor). The greater the cross-sectional area of the aggregation of FeP as the electron donor (or acceptor) was, the larger the number of the donated (or accepted) electrons was. The projected area of the cross-section on the ITO electrode. The greater the projected area was, the larger the number of the donated (or accepted) electrons was. The distance between the center of the electron donor (or acceptor) of FeP and the surface of ITO electrode. The smaller the distance was, the greater the rate of donating (or accepting) electrons was. The monolayer coverage, which formed because of the FeP lying on the ITO surface in the form of the monomer and aggregate, was more sensitive to detect oxygen

  4. Overcoming the Cut-Off Charge Transfer Bandgaps at the PbS Quantum Dot Interface

    KAUST Repository

    El-Ballouli, Ala'a O.; Alarousu, Erkki; Kirmani, Ahmad R.; Amassian, Aram; Bakr, Osman; Mohammed, Omar F.

    2015-01-01

    Light harvesting from large size of semiconductor PbS quantum dots (QDs) with a bandgap of less than 1 eV is one of the greatest challenges precluding the development of PbS QD-based solar cells because the interfacial charge transfer (CT) from such QDs to the most commonly used electron acceptor materials is very inefficient, if it occurs at all. Thus, an alternative electron-accepting unit with a new driving force for CT is urgently needed to harvest the light from large-sized PbS QDs. Here, a cationic porphyrin is utilized as a new electron acceptor unit with unique features that bring the donor–acceptor components into close molecular proximity, allowing ultrafast and efficient electron transfer for QDs of all sizes, as inferred from the drastic photoluminescence quenching and the ultrafast formation of the porphyrin anionic species. The time-resolved results clearly demonstrate the possibility of modulating the electron transfer process between PbS QDs and porphyrin moieties not only by the size quantization effect but also by the interfacial electrostatic interaction between the positively charged porphyrin and the negatively charged QDs. This approach provides a new pathway for engineering QD-based solar cells that make the best use of the diverse photons making up the Sun's broad irradiance spectrum.

  5. Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors.

    Science.gov (United States)

    Zhang, Yahong; Duan, Yuping; Song, Lulu; Zheng, Daoyuan; Zhang, Mingxing; Zhao, Guangjiu

    2017-09-21

    The intramolecular charge transfer properties of a phenyl-end-capped aniline tetramer (ANIH) and a chloro-substituted derivative (ANICl) as organic semiconductors were theoretically studied through the first-principles calculation based on the Marcus-Hush theory. The reorganization energies, intermolecular electronic couplings, angular resolution anisotropic mobilities, and density of states of the two crystals were evaluated. The calculated results demonstrate that both ANIH and ANICl crystals show the higher electron transfer mobilities than the hole-transfer mobilities, which means that the two crystals should prefer to function as n-type organic semiconductors. Furthermore, the angle dependence mobilities of the two crystals show remarkable anisotropic character. The maximum mobility μ max of ANIH and ANICl crystals is 1.3893 and 0.0272 cm 2 V -1 s -1 , which appear at the orientation angles near 176°/356° and 119°/299° of a conducting channel on the a-b reference plane. It is synthetically evaluated that the ANIH crystal possesses relatively lower reorganization energy, higher electronic coupling, and electron transfer mobility, which means that the ANIH crystal may be the more ideal candidate as a high performance n-type organic semiconductor material. The systematic theoretical studies on organic crystals should be conducive to evaluating the charge-transport properties and designing higher performance organic semiconductor materials.

  6. Charge transfer dynamics from adsorbates to surfaces with single active electron and configuration interaction based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Raghunathan, E-mail: r.ramakrishnan@unibas.ch [Institute of Physical Chemistry, National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Nest, Mathias [Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching (Germany)

    2015-01-13

    Highlights: • We model electron dynamics across cyano alkanethiolates attached to gold cluster. • We present electron transfer time scales from TD-DFT and TD-CI based simulations. • Both DFT and CI methods qualitatively predict the trend in time scales. • TD-CI predicts the experimental relative time scale very accurately. - Abstract: We employ wavepacket simulations based on many-body time-dependent configuration interaction (TD-CI), and single active electron theories, to predict the ultrafast molecule/metal electron transfer time scales, in cyano alkanethiolates bonded to model gold clusters. The initial states represent two excited states where a valence electron is promoted to one of the two virtual π{sup ∗} molecular orbitals localized on the cyanide fragment. The ratio of the two time scales indicate the efficiency of one charge transfer channel over the other. In both our one-and many-electron simulations, this ratio agree qualitatively with each other as well as with the previously reported experimental time scales (Blobner et al., 2012), measured for a macroscopic metal surface. We study the effect of cluster size and the description of electron correlation on the charge transfer process.

  7. Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O12 phosphates

    International Nuclear Information System (INIS)

    Stryganyuk, G; Zazubovich, S; Voloshinovskii, A; Pidzyrailo, M; Zimmerer, G; Peters, R; Petermann, K

    2007-01-01

    Spectral-kinetic studies have been performed for LiY 1-x Yb x P 4 O 12 (x = 0; 0.1; 0.9) phosphates at T = 8-320 K using synchrotron radiation for excitation within the 5-17 eV energy range. Mechanisms for the excitation of Yb 3+ charge transfer and f-f luminescence are discussed. The quasimolecular character of Yb 3+ charge transfer luminescence (CTL) is pointed out. The central Yb 2+ ion and hole delocalized over the surrounding ligands are proposed for consideration as a 'charge transfer cluster' (Yb 2+ CT cluster). Possible mechanisms of Yb 3+ CTL quenching are presumed

  8. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems.

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui

    2016-01-07

    The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.

  9. Charge-exchange breakup of the deuteron with the production of two protons and spin structure of the amplitude of the nucleon charge transfer reaction

    International Nuclear Information System (INIS)

    Glagolev, V.V.; Lyuboshits, V.L.; Lyuboshits, V.V.; Piskunov, N.M.

    1999-01-01

    In the framework of the impulse approximation, the relation between the effective cross section of the charge-exchange breakup of a fast deuteron d + a → (pp) + b and the effective cross section of the charge transfer process n + a → p + b is discussed. In doing so, the effects of the proton identity (Fermi-statistics) and of the Coulomb and strong interactions of protons in the final state are taken into account. The distribution over relative momenta of the protons, produced in the charge-exchange process d + p → (pp) + n in the forward direction, is investigated. At the transfer momenta being close to zero the effective cross section of the charge-exchange breakup of a fast deuteron, colliding with the proton target, is determined only by the spin-flip part of the amplitude of the charge transfer reaction n + p → p + n at the zero angle. It is shown that the study of the process d + p → (pp) + n in a beam of the polarized (aligned) deuterons allows one, in principle, to separate two spin-dependent terms in the amplitude of the charge transfer reaction n + p → p + n, one of which does not conserve and the other one conserves the projection of the nucleon spin onto the direction of momentum at the transition of the neutron into the proton

  10. Deflection effects and charge transfer in inner-shell vacancy production

    International Nuclear Information System (INIS)

    Swafford, G.L.

    1978-01-01

    A method used in the calculation of inner shell ionization in asymmetric ion-atom collisions is extended to include projectile deflection effects and charge transfer to the projectile. Work is done in an independent electron model (Hartree-Fock) for the target, and the interaction is treated with the projectile as a time-dependent perturbation of the system. It is shown tht the time-dependent problem can be solved for the projectile moving along the classical hyperbolic trajectory that results from the nuclear repulsion. The method is very efficient due to the utilization the target-centered expansion of the system wave function. This means that all the required matrix elements can be pretabulated and are then available for use at all impact parameters. The method is first applied to the impact-parameter dependence of K-shell ionization by protons incident upon copper in the energy range 0.5 to 2 MeV. Excellent agreement with the experiments of Andersen et al., is found at the lower energy. Less satisfactory agreement is obtained in the higher energy region. Next the projectile is considered to move in a straight line path with constant velocity, and extend the method to include charge transfer between the target inner shells and the K-shell of the projectile. A critical feature of the results is the recognition of the importance of target continuum states of energy approximately equal to the kinetic energy (in the target frame) of the electron on the projectile. An approach is developed to properly include such resonance states in our pseudostate calculation. Selected numerical results are presented to illustrate the method and to demonstrate the projectile energy and nuclear charge dependence of the charge transfer cross sections

  11. Electronic and vibronic properties of a discotic liquid-crystal and its charge transfer complex

    Energy Technology Data Exchange (ETDEWEB)

    Haverkate, Lucas A.; Mulder, Fokko M. [Reactor Institute Delft, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Zbiri, Mohamed, E-mail: zbiri@ill.fr; Johnson, Mark R. [Institut Laue Langevin, 38042 Grenoble Cedex 9 (France); Carter, Elizabeth [Vibrational Spectroscopy Facility, School of Chemistry, The University of Sydney, NSW 2008 (Australia); Kotlewski, Arek; Picken, S. [ChemE-NSM, Faculty of Chemistry, Delft University of Technology, 2628BL/136 Delft (Netherlands); Kearley, Gordon J. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW 2234 (Australia)

    2014-01-07

    Discotic liquid crystalline (DLC) charge transfer (CT) complexes combine visible light absorption and rapid charge transfer characteristics, being favorable properties for photovoltaic (PV) applications. We present a detailed study of the electronic and vibrational properties of the prototypic 1:1 mixture of discotic 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6) and 2,4,7-trinitro-9-fluorenone (TNF). It is shown that intermolecular charge transfer occurs in the ground state of the complex: a charge delocalization of about 10{sup −2} electron from the HAT6 core to TNF is deduced from both Raman and our previous NMR measurements [L. A. Haverkate, M. Zbiri, M. R. Johnson, B. Deme, H. J. M. de Groot, F. Lefeber, A. Kotlewski, S. J. Picken, F. M. Mulder, and G. J. Kearley, J. Phys. Chem. B 116, 13098 (2012)], implying the presence of permanent dipoles at the donor-acceptor interface. A combined analysis of density functional theory calculations, resonant Raman and UV-VIS absorption measurements indicate that fast relaxation occurs in the UV region due to intramolecular vibronic coupling of HAT6 quinoidal modes with lower lying electronic states. Relatively slower relaxation in the visible region the excited CT-band of the complex is also indicated, which likely involves motions of the TNF nitro groups. The fast quinoidal relaxation process in the hot UV band of HAT6 relates to pseudo-Jahn-Teller interactions in a single benzene unit, suggesting that the underlying vibronic coupling mechanism can be generic for polyaromatic hydrocarbons. Both the presence of ground state CT dipoles and relatively slow relaxation processes in the excited CT band can be relevant concerning the design of DLC based organic PV systems.

  12. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    Science.gov (United States)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  13. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals - II. Application to Fe2+ --> Ti4+ charge transfer transitions in oxides and silicates

    Science.gov (United States)

    Sherman, David M.

    1987-01-01

    A molecular orbital description, based on Xα-Scattered wave calculations on a (FeTiO10)14− cluster, is given for Fe2+ → Ti4+ charge transfer transitions in minerals. The calculated energy for the lowest Fe2+ → Ti4+ metal-metal charge transfer transition is 18040 cm−1 in reasonable agreement with energies observed in the optical spectra of Fe-Ti oxides and silicates. As in the case of Fe2+ → Fe3+ charge transfer in mixed-valence iron oxides and silicates, Fe2+ → Ti4+ charge transfer is associated with Fe-Ti bonding across shared polyhedral edges. Such bonding results from the overlap of the Fe(t 2g ) and Ti(t 2g ) 3d orbitals.

  14. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu

    2017-03-14

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex dynamical processes, including hydrogen bond formation, energy transfer, and solvation dynamics occurring on similar time scales. In this study, we explore the remarkable impact of hydrogen-bond formation on the interfacial charge transfer between a negatively charged electron donating anionic porphyrin and a positively charged electron accepting pi-conjugated polymer, as a model system in solvents with different polarities and capabilities for hydiogen bonding using femtosecond transient absorption spectroscopy. Unlike the conventional understanding of the key role of hydrogen bonding in promoting the charge-transfer process, our steadystate and time-resolved results reveal that the intervening hydrogen-bonding environment and, consequently, the probable longer spacing between the donor and acceptor molecules significantly hinders the charge-transfer process between them. These results show that site-specific hydrogen bonding and geometric considerations between donor and acceptor can be exploited to control both the charge-transfer dynamics and its efficiency not only at donor acceptor interfaces but also in complex biological systems.

  15. An Electronic Structure Approach to Charge Transfer and Transport in Molecular Building Blocks for Organic Optoelectronics

    Science.gov (United States)

    Hendrickson, Heidi Phillips

    A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their

  16. Physical adsorption and charge transfer of molecular Br2 on graphene.

    Science.gov (United States)

    Chen, Zheyuan; Darancet, Pierre; Wang, Lei; Crowther, Andrew C; Gao, Yuanda; Dean, Cory R; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Marianetti, Chris A; Brus, Louis E

    2014-03-25

    We present a detailed study of gaseous Br2 adsorption and charge transfer on graphene, combining in situ Raman spectroscopy and density functional theory (DFT). When graphene is encapsulated by hexagonal boron nitride (h-BN) layers on both sides, in a h-BN/graphene/h-BN sandwich structure, it is protected from doping by strongly oxidizing Br2. Graphene supported on only one side by h-BN shows strong hole doping by adsorbed Br2. Using Raman spectroscopy, we determine the graphene charge density as a function of pressure. DFT calculations reveal the variation in charge transfer per adsorbed molecule as a function of coverage. The molecular adsorption isotherm (coverage versus pressure) is obtained by combining Raman spectra with DFT calculations. The Fowler-Guggenheim isotherm fits better than the Langmuir isotherm. The fitting yields the adsorption equilibrium constant (∼0.31 Torr(-1)) and repulsive lateral interaction (∼20 meV) between adsorbed Br2 molecules. The Br2 molecule binding energy is ∼0.35 eV. We estimate that at monolayer coverage each Br2 molecule accepts 0.09 e- from single-layer graphene. If graphene is supported on SiO2 instead of h-BN, a threshold pressure is observed for diffusion of Br2 along the (somewhat rough) SiO2/graphene interface. At high pressure, graphene supported on SiO2 is doped by adsorbed Br2 on both sides.

  17. Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging

    Directory of Open Access Journals (Sweden)

    Kafeel Ahmed Kalwar

    2016-11-01

    Full Text Available The inductive power transfer (IPT system for electric vehicle (EV charging has acquired more research interest in its different facets. However, the misalignment tolerance between the charging coil (installed in the ground and pick-up coil (mounted on the car chassis, has been a challenge and fundamental interest in the future market of EVs. This paper proposes a new coil design QDQ (Quad D Quadrature that maintains the high coupling coefficient and efficient power transfer during reasonable misalignment. The QDQ design makes the use of four adjacent circular coils and one square coil, for both charging and pick-up side, to capture the maximum flux at any position. The coil design has been modeled in JMAG software for calculation of inductive parameters using the finite element method (FEM, and its hardware has been tested experimentally at various misaligned positions. The QDQ coils are shown to be capable of achieving good coupling coefficient and high efficiency of the system until the misalignment displacement reaches 50% of the employed coil size.

  18. Ultrafast dynamics of solvation and charge transfer in a DNA-based biomaterial.

    Science.gov (United States)

    Choudhury, Susobhan; Batabyal, Subrata; Mondol, Tanumoy; Sao, Dilip; Lemmens, Peter; Pal, Samir Kumar

    2014-05-01

    Charge migration along DNA molecules is a key factor for DNA-based devices in optoelectronics and biotechnology. The association of a significant amount of water molecules in DNA-based materials for the intactness of the DNA structure and their dynamic role in the charge-transfer (CT) dynamics is less documented in contemporary literature. In the present study, we have used a genomic DNA-cetyltrimethyl ammonium chloride (CTMA) complex, a technological important biomaterial, and Hoechest 33258 (H258), a well-known DNA minor groove binder, as fluorogenic probe for the dynamic solvation studies. The CT dynamics of CdSe/ZnS quantum dots (QDs; 5.2 nm) embedded in the as-prepared and swollen biomaterial have also been studied and correlated with that of the timescale of solvation. We have extended our studies on the temperature-dependent CT dynamics of QDs in a nanoenvironment of an anionic, sodium bis(2-ethylhexyl)sulfosuccinate reverse micelle (AOT RMs), whereby the number of water molecules and their dynamics can be tuned in a controlled manner. A direct correlation of the dynamics of solvation and that of the CT in the nanoenvironments clearly suggests that the hydration barrier within the Arrhenius framework essentially dictates the charge-transfer dynamics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shanlin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  20. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu; Adhikari, Aniruddha; Parida, Manas R.; Aly, Shawkat Mohammede; Bakr, Osman; Mohammed, Omar F.

    2017-01-01

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex

  1. State-selective charge transfer and excitation in ion-ion interactions at intermediate and high energies

    International Nuclear Information System (INIS)

    Samanta, R; Purkait, M

    2012-01-01

    Boundary Corrected Continuum Intermediate State (BCCIS) approximation and Classical Trajectory Monte Carlo (CTMC) methods are applied to calculate the charge transfer and excitation cross sections for ion-ion collisions.

  2. Low energy cross section data for ion-molecule reactions in hydrogen systems and for charge transfer of multiply charged ions with atoms and molecules

    International Nuclear Information System (INIS)

    Okuno, Kazuhiko

    2007-04-01

    Systematic cross section measurements for ion-molecule reactions in hydrogen systems and for charge transfer of multiply charged ions in low energy collisions with atoms and molecules have been performed continuously by the identical apparatus installed with an octo-pole ion beam guide (OPIG) since 1980 till 2004. Recently, all of accumulated cross section data for a hundred collision systems has been entered into CMOL and CHART of the NIFS atomic and molecular numerical database together with some related cross section data. In this present paper, complicated ion-molecule reactions in hydrogen systems are revealed and the brief outlines of specific properties in low energy charge transfer collisions of multiply charged ions with atoms and molecules are introduced. (author)

  3. A statewide teleradiology system reduces radiation exposure and charges in transferred trauma patients.

    Science.gov (United States)

    Watson, Justin J J; Moren, Alexis; Diggs, Brian; Houser, Ben; Eastes, Lynn; Brand, Dawn; Bilyeu, Pamela; Schreiber, Martin; Kiraly, Laszlo

    2016-05-01

    Trauma transfer patients routinely undergo repeat imaging because of inefficiencies within the radiology system. In 2009, the virtual private network (VPN) telemedicine system was adopted throughout Oregon allowing virtual image transfer between hospitals. The startup cost was a nominal $3,000 per hospital. A retrospective review from 2007 to 2012 included 400 randomly selected adult trauma transfer patients based on a power analysis (200 pre/200 post). The primary outcome evaluated was reduction in repeat computed tomography (CT) scans. Secondary outcomes included cost savings, emergency department (ED) length of stay (LOS), and spared radiation. All data were analyzed using Mann-Whitney U and chi-square tests. P less than .05 indicated significance. Spared radiation was calculated as a weighted average per body region, and savings was calculated using charges obtained from Oregon Health and Science University radiology current procedural terminology codes. Four-hundred patients were included. Injury Severity Score, age, ED and overall LOS, mortality, trauma type, and gender were not statistically different between groups. The percentage of patients with repeat CT scans decreased after VPN implementation: CT abdomen (13.2% vs 2.8%, P < .01) and cervical spine (34.4% vs 18.2%, P < .01). Post-VPN, the total charges saved in 2012 for trauma transfer patients was $333,500, whereas the average radiation dose spared per person was 1.8 mSV. Length of stay in the ED for patients with Injury Severity Score less than 15 transferring to the ICU was decreased (P < .05). Implementation of a statewide teleradiology network resulted in fewer total repeat CT scans, significant savings, decrease in radiation exposure, and decreased LOS in the ED for patients with less complex injuries. The potential for health care savings by widespread adoption of a VPN is significant. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Refrigerant charge, pressure drop, and condensation heat transfer in flattened tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M J; Newell, T A; Chato, J C [University of Illinois, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering; Infante Ferreira, C A [Delft University of Technology (Netherlands). Laboratory for Refrigeration and Indoor Climate Control

    2003-06-01

    Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m{sup -2} s{sup -}2{sup 1} and a quality range from approximately 10-80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18{sup o} helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile. (author)

  5. Fractional Solitons in Excitonic Josephson Junctions

    Science.gov (United States)

    Su, Jung-Jung; Hsu, Ya-Fen

    The Josephson effect is especially appealing because it reveals macroscopically the quantum order and phase. Here we study this effect in an excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. Such a junction is proposed to take place in the quantum Hall bilayer (QHB) that makes it subtler than in superconductor because of the counterflow of excitonic supercurrent and the interlayer tunneling in QHB. We treat the system theoretically by first mapping it into a pseudospin ferromagnet then describing it by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, the excitonic Josephson junction can possess a family of fractional sine-Gordon solitons that resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Interestingly, each fractional soliton carries a topological charge Q which is not necessarily a half/full integer but can vary continuously. The resultant current-phase relation (CPR) shows that solitons with Q =ϕ0 / 2 π are the lowest energy states for small ϕ0. When ϕ0 > π , solitons with Q =ϕ0 / 2 π - 1 take place - the polarity of CPR is then switched.

  6. Theoretical perspectives on electron transfer and charge separation events in photochemical water cleavage systems

    International Nuclear Information System (INIS)

    Kozak, J.J.; Lenoir, P.M.; Musho, M.K.; Tembe, B.L.

    1984-01-01

    We study in this paper the dynamics induced by models for photochemical water cleavage systems, focusing on the spatial and temporal factors influencing electron transfer and charge separation processes in such systems. The reaction-diffusion theory is formulated in full generality and the consequences explored in a number of spatio-temporal regimes, viz. the spatially homogeneous system in the long-time limit (i.e. the steady state for a well-stirred system), the spatially homogeneous system in evolution, and the spatially inhomogeneous system in evolution (where, in the latter study, we consider electron transfer at the cluster surface to be governed by a rate constant that reflects the localized nature of such processes). The results of numerical simulations are presented for all three cases and used to highlight the importance of heterogeneous environments in enhancing the cage escape yield of charge separated species, and to demonstrate the dependence of the hydrogen yield on the localization of electron-transfer processes in the vicinity of the microcatalyst surface

  7. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron

    Science.gov (United States)

    Barklem, P. S.

    2018-05-01

    Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90

  8. Low-Energy Charge Transfer in Multiply-Charged Ion-Atom Collisions Studied with the Combined SCVB-MOCC Approach

    OpenAIRE

    Cooper, D. L.; Stancil, P. C.; Turner, A. R.; Wang, J. G.; Clarke, N. J.; Zygelman, B.

    2002-01-01

    A survey of theoretical studies of charge transfer involving collisions of multiply-charged ions with atomic neutrals (H and He) is presented. The calculations utilized the quantum-mechanical molecular-orbital close-coupling (MOCC) approach where the requisite potential curves and coupling matrix elements have been obtained with the spin-coupled valence bond (SCVB) method. Comparison is made among various collision partners, for equicharged systems, where it is illustrated that even for total...

  9. Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia)

    2014-07-07

    The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.

  10. Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field

    International Nuclear Information System (INIS)

    Ding, Baofu; Alameh, Kamal

    2014-01-01

    The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.

  11. Collisions of fast multicharged ions in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1981-05-01

    Measurements of cross sections for charge transfer and ionization of H 2 and rare-gas targets have been made with fast, highly stripped projectiles in charge states as high as 59+. We have found an empirical scaling rule for electron-capture cross section in H 2 valid at energies above 275 keV/amu. Similar scaling might exist for other target gases. Cross sections are generally in good agreement with theory. We have found a scaling rule for electron loss from H in collisions with a fast highly stripped projectile, based on Olson's classical-trajectory Monte-Carlo calculations, and confirmed by measurements in an H 2 target. We have found a similar scaling rule for net ionization of rare-gas targets, based on Olson's CTMC calculations and the independent-electron model. Measurements are essentially consistent with the scaled cross sections. Calculations and measurements of recoil-ion charge-state spectra show large cross sections for the production of highly charged slow recoil ions

  12. Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors

    International Nuclear Information System (INIS)

    Di Bartolomeo, Antonio; Giubileo, Filippo; Santandrea, Salvatore; Romeo, Francesco; Citro, Roberta; Schroeder, Thomas; Lupina, Grzegorz

    2011-01-01

    We discuss the origin of an additional dip other than the charge neutrality point observed in the transfer characteristics of graphene-based field-effect transistors with a Si/SiO 2 substrate used as the back-gate. The double dip is proved to arise from charge transfer between the graphene and the metal electrodes, while charge storage at the graphene/SiO 2 interface can make it more evident. Considering a different Fermi energy from the neutrality point along the channel and partial charge pinning at the contacts, we propose a model which explains all the features observed in the gate voltage loops. We finally show that the double dip enhanced hysteresis in the transfer characteristics can be exploited to realize graphene-based memory devices.

  13. Study of the cold charge transfer state separation at the TQ1/PC71 BM interface.

    Science.gov (United States)

    Volpi, Riccardo; Linares, Mathieu

    2017-05-30

    Charge transfer (CT) state separation is one of the most critical processes in the functioning of an organic solar cell. In this article, we study a bilayer of TQ1 and PC 71 BM molecules presenting disorder at the interface, obtained by means of Molecular Dynamics. The study of the CT state splitting can be first analyzed through the CT state splitting diagram, introduced in a previous work. Through this analysis, we identify the possibility of CT state splitting within Marcus Theory in function of the electric field. Once the right range of electric fields has been identified, we perform Kinetic Monte Carlo simulations to estimate percentages and times for the CT state splitting and the free charge carriers collection. Statistical information extracted from these simulations allows us to highlight the importance of polarization and to test the limits of the predictions given by the CT state splitting diagram. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Charge transfer properties and photoelectrocatalytic activity of TiO{sub 2}/MWCNT hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Liaochuan [Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China); Zhang Weide, E-mail: zhangwd@scut.edu.c [Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China)

    2010-12-15

    The vertically aligned multiwalled carbon nanotube (MWCNT) arrays on tantalum foils were successfully coated with TiO{sub 2} nanoparticles by a hydrothermal process. The prepared TiO{sub 2}/MWCNT hybrid was characterized by scanning electron microscopy and transmission electron microscopy. The charge transfer properties and photocatalytic degradation of rhodamine B with and without bias potential under UV irradiation were investigated. The MWCNTs promoted the separation of photoinduced carriers in the TiO{sub 2}, thus enhanced photocatalytic activity. Applying bias potential on the photoanode further enhanced its catalytic activity. The efficient charge transportation and high photoelectrocatalytic activity towards degradation of rhodamine B made this hybrid material promising for photocatalyst and for the development of photoelectrical devices.

  15. Charge-Transfer Effects in Ligand Exchange Reactions of Au25 Monolayer-Protected Clusters.

    Science.gov (United States)

    Carducci, Tessa M; Blackwell, Raymond E; Murray, Royce W

    2015-04-16

    Reported here are second-order rate constants of associative ligand exchanges of Au25L18 nanoparticles (L = phenylethanethiolate) of various charge states, measured by proton nuclear magnetic resonance at room temperature and below. Differences in second-order rate constants (M(-1) s(-1)) of ligand exchange (positive clusters ∼1.9 × 10(-5) versus negative ones ∼1.2 × 10(-4)) show that electron depletion retards ligand exchange. The ordering of rate constants between the ligands benzeneselenol > 4-bromobenzene thiol > benzenethiol reveals that exchange is accelerated by higher acidity and/or electron donation capability of the incoming ligand. Together, these observations indicate that partial charge transfer occurs between the nanoparticle and ligand during the exchange and that this is a rate-determining effect in the process.

  16. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what

  17. Charge transfer and injection barrier at the metal-organic interfaces

    Science.gov (United States)

    Yan, Li

    2002-09-01

    The metal-organic interface plays a critical role in determining the functionality and performance of many innovative organic based devices. It has attracted extensive research interests in recent years. This thesis presents investigations of the electronic structures of organic materials, such as tris-(8-hydroxyquinoline) aluminum (Alq3) and copper phthalocyanine (CuPc), during their interface formation with metals. The characterization is accomplished by X-ray and ultraviolet photoelectron spectroscopes (XPS and UPS) and inverse photoelectron spectroscopy (IPES). As discussed herein, both occupied and unoccupied electronic states at the interfaces are carefully examined in different aspects. In Chapter 4, the charge transfer and chemical reaction at various metal/Alq3 interfaces are investigated using XPS and UPS to study the electron injection into the Alga film. Electron transfer from the low work function metal and Al/LiF(CsF) bilayer to the Alga has been observed. The role of the dielectric and possible chemistry at the interface are discussed in comparison of the low work function metals. Further in Chapter 5, the origin of the metal-interface dipole and the estimation of charge injection barrier is explored using several organic materials. A thermodynamic equilibrium model is extended to explain the relation between the charge transfer process ad the interface dipole. Further, in Chapter 6 the combination of XPS, UPS and IPES detailed the evolution of both occupied and unoccupied energy states during the alkali metal doping. The energy gap modification in organic due to metal doping is observed directly for the spectra. Chapter 7 provides stability study of the organic thin films under x-ray and UV light. The results verify the usability of UPS and XPS for the organic materials used in the thesis. Chapter 7 also shows the secondary ion mass spectroscopy results of metal diffusion in organic thin films.

  18. Interface charge transfer process in ZnO:Mn/ZnS nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, M.; Toloman, D., E-mail: dana.toloman@itim-cj.ro; Popa, A. [National Institute for R & D of Isotopic and Molecular Technology (Romania); Mesaros, A. [Technical University of Cluj-Napoca, Superconductivity, Spintronics and Surface Science Center – C4S (Romania); Vasile, O. R. [University “Politehnica” from Bucharest, Faculty of Applied Chemistry and Material Science (Romania); Leostean, C.; Pana, O. [National Institute for R & D of Isotopic and Molecular Technology (Romania)

    2016-03-15

    ZnO:Mn/ZnS nanocomposites were prepared by seed-mediated growth of ZnS QDs onto the preformed ZnO:Mn nanoparticles. The formation of the nanocomposite structure has been evidenced by XRD, HRTEM, and XPS. The architecture of the nanocomposite with outer ZnS QDs around ZnO:Mn cores is sustained by the sulfur and oxygen depth profiles resulted from XPS. When the two components are brought together, the band gap of ZnS component decreases while that of ZnO:Mn increases. It is the result of interface charge transfer from ZnO:Mn to ZnS QDs. Here ZnO:Mn valence states are extended through the interface into unoccupied gap states of ZnS. The energy band setup is modified from a type II into a type I band alignment. The process is accompanied by enhancement of composite UV emission of PL spectra as compared to its counterparts. The charge transfer from valence band also determines the increase of the core-polarization effect of sshell electrons at Mn{sup 2+} nucleus, thus determining the increase of the hyperfine field through the reduction of the covalency degree of Zn(Mn)–O bonds. The quantum confinement in ZnS QDs promotes the ferromagnetic coupling of singly occupied states due to Zn vacancies determining a superparamagnetic behavior of the ensemble. When the nanocomposites are formed, due to interface charge transfer effects, an increased number of filled cation vacancies in ZnS QDs develop, thus disrupting the pre-existing ferromagnetic coupling between spins resulting in a significant reduction of the overall saturation magnetization. The possibility to modulate nanocomposite properties by controlling the interface interactions may be foreseen in these types of materials.

  19. Theoretical Investigation of OCN(-) Charge Transfer Complexes in Condensed Phase Media: Spectroscopic Properties in Amorphous Ice

    Science.gov (United States)

    Park, Jin-Young; Woon, David E.

    2004-01-01

    Density functional theory (DFT) calculations of cyanate (OCN(-)) charge-transfer complexes were performed to model the "XCN" feature observed in interstellar icy grain mantles. OCN(-) charge-transfer complexes were formed from precursor combinations of HNCO or HOCN with either NH3 or H2O. Three different solvation strategies for realistically modeling the ice matrix environment were explored, including (1) continuum solvation, (2) pure DFT cluster calculations, and (3) an ONIOM DFT/PM3 cluster calculation. The model complexes were evaluated by their ability to reproduce seven spectroscopic measurements associated with XCN: the band origin of the OCN(-) asymmetric stretching mode, shifts in that frequency due to isotopic substitutions of C, N, O, and H, plus two weak features. The continuum solvent field method produced results consistent with some of the experimental data but failed to account for other behavior due to its limited capacity to describe molecular interactions with solvent. DFT cluster calculations successfully reproduced the available spectroscopic measurements very well. In particular, the deuterium shift showed excellent agreement in complexes where OCN(-) was fully solvated. Detailed studies of representative complexes including from two to twelve water molecules allowed the exploration of various possible solvation structures and provided insights into solvation trends. Moreover, complexes arising from cyanic or isocyanic acid in pure water suggested an alternative mechanism for the formation of OCN(-) charge-transfer complexes without the need for a strong base such as NH3 to be present. An extended ONIOM (B3LYP/PM3) cluster calculation was also performed to assess the impact of a more realistic environment on HNCO dissociation in pure water.

  20. Interfacial electronic charge transfer and density of states in short period Cu/Cr multilayers; TOPICAL

    International Nuclear Information System (INIS)

    Barbee, T W; Bello, A F; Klepeis, J E; Van Buuren, T

    1999-01-01

    Nanometer period metallic multilayers are ideal structures to investigate electronic phenomena at interfaces between metal films since interfacial atoms comprise a large atomic fraction of the samples. The Cu/Cr binary pair is especially suited to study the interfaces in metals since these elements are mutually insoluble, thus eliminating mixing effects and compound formation and the lattice mismatch is very small. This allows the fabrication of high structural quality Cu/Cr multilayers that have a structure which can be approximated in calculations based on idealized atomic arrangements. The electronic structure of the Cu and the Cr layers in several samples of thin Cu/Cr multilayers were studied using x-ray absorption spectroscopy (XAS). Total electron yield was measured and used to study the white lines at the Cu L(sub 2) and L(sub 3) absorption edges. The white lines at the Cu absorption edges are strongly related to the unoccupied d-orbitals and are used to calculate the amount of charge transfer between the Cr and Cu atoms in interfaces. Analysis of the Cu white lines show a charge transfer of 0.026 electrons/interfacial Cu atom to the interfacial Cr atoms. In the Cu XAS spectra we also observe a van Hove singularity between the L(sub 2) and L(sub 3) absorption edges as expected from the structural analysis. The absorption spectra are compared to partial density of states obtained from a full-potential linear muffin-tin orbital calculation. The calculations support the presence of charge transfer and indicate that it is localized to the first two interfacial layers in both Cu and Cr

  1. Fragment-orbital tunneling currents and electronic couplings for analysis of molecular charge-transfer systems.

    Science.gov (United States)

    Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn

    2018-04-04

    In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.

  2. Molecular distortion and charge transfer effects in ZnPc/Cu(111)

    KAUST Repository

    Amin, B.; Nazir, S.; Schwingenschlö gl, Udo

    2013-01-01

    The adsorption geometry and electronic properties of a zinc-phthalocyanine molecule on a Cu(111) substrate are studied by density functional theory. In agreement with experiment, we find remarkable distortions of the molecule, mainly as the central Zn atom tends towards the substrate to minimize the Zn-Cu distance. As a consequence, the Zn-N chemical bonding and energy levels of the molecule are significantly modified. However, charge transfer induces metallic states on the molecule and therefore is more important for the ZnPc/Cu(111) system than the structural distortions.

  3. Specific optical signalling of anions via intramolecular charge transfer pathway based on acridinedione fluorophore

    International Nuclear Information System (INIS)

    Thiagarajan, Viruthachalam; Ramamurthy, Perumal

    2007-01-01

    We present a simple but highly specific acridinedione fluorophore (ADD-1) that acts both as a fluorescent and colorimetric sensor for anions in acetonitrile. The specific optical signalling of ADD-1 is due to the formation of new distinct intramolecular charge transfer (ICT) emitting states in the presence of AcO - (490 nm), H 2 PO 4 - (440 nm), and F - (510 nm) over other anions. Presence of F - shows a colour change that is perceptible to the naked eye, from colourless to an intense fluorescent green due to the deprotonation of acridinedione ring amino hydrogen

  4. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    Science.gov (United States)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical

  5. Laser-induced charge transfer in the HeH2+ quasimolecule

    International Nuclear Information System (INIS)

    Errea, L.F.; Mendez, L.; Riera, A.

    1983-01-01

    In a recent publication, the charge transfer cross section for He 2+ +H(ls) collisions through photon-assisted 2psigma--3dsigma transitions was calculated; this calculation, however, contained several errors whose quantitative--even qualitative effect on the results is not obvious. We present a correct evaluation of this laser-induced cross section, which turns out to be larger, and present a maximum for longer wavelengths, than the values previously reported. In addition, we have checked the applicability of perturbation theory, of the stationary phase, uniform and Landau--Zener approximations, and the importance of potentially competitive photon-assisted reactions

  6. Effective interactions between concentration fluctuations and charge transfer in chemically ordering liquid alloys

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1992-08-01

    The correlations between long-wavelength fluctuations of concentration in a liquid binary alloy are determined by a balance between an elastic strain free energy and an Ornstein-Zernike effective interaction. The latter is extracted from thermodynamic data in the case of the Li-Pb system, which is well known to chemically order with stoichiometric composition corresponding to Li 4 Pb. Strong attractive interactions between concentration fluctuations near the composition of chemical ordering originate from electronic charge transfer, which is estimated from the electron-ion partial structure factors as functions of composition in the liquid alloy. (author). 20 refs, 2 figs

  7. On the charge transfer between single-walled carbon nanotubes and graphene

    International Nuclear Information System (INIS)

    Rao, Rahul; Pierce, Neal; Dasgupta, Archi

    2014-01-01

    It is important to understand the electronic interaction between single-walled carbon nanotubes (SWNTs) and graphene in order to use them efficiently in multifunctional hybrid devices. Here, we deposited SWNT bundles on graphene-covered copper and SiO 2 substrates by chemical vapor deposition and investigated the charge transfer between them by Raman spectroscopy. Our results revealed that, on both copper and SiO 2 substrates, graphene donates electrons to the SWNTs, resulting in p-type doped graphene and n-type doped SWNTs.

  8. Surface charges and J H Poynting’s disquisitions on energy transfer in electrical circuits

    Science.gov (United States)

    Matar, M.; Welti, R.

    2017-11-01

    In this paper we review applications given by J H Poynting (1884) on the transfer of electromagnetic energy in DC circuits. These examples were strongly criticized by O Heaviside (1887). Heaviside stated that Poynting had a misconception about the nature of the electric field in the vicinity of a wire through which a current flows. The historical review of this conflict and its resolution based on the consideration of electrical charges on the surface of the wires can be useful for student courses on electromagnetism or circuit theory.

  9. Study of charge transfer complexes of menadione (vitamin K 3) with a series of anilines

    Science.gov (United States)

    Pal, Purnendu; Saha, Avijit; Mukherjee, Asok K.; Mukherjee, Dulal C.

    2004-01-01

    Menadione (vitamin K 3) has been shown to form charge transfer complexes with N, N-dimethyl aniline, N, N-dimethyl p-toluidine and N, N-dimethyl m-toluidine in CCl 4 medium. The CT transition energies are well correlated with the ionisation potentials of the anilines. The formation constants of the complexes have been determined at a number of temperatures from which the enthalpies and entropies of formation have been obtained. The formation constants exhibit a very good linear free energy relationship (Hammett) at all the temperatures studied.

  10. Formation of an intermolecular charge-transfer compound in UHV codeposited tetramethoxypyrene and tetracyanoquinodimethane

    DEFF Research Database (Denmark)

    Medjanik, K.; Perkert, S.; Naghavi, S.

    2010-01-01

    Ultrahigh vacuum (UHV)-deposited films of the mixed phase of tetramethoxypyrene and tetracyanoquinodimethane (TMP -TCNQ ) on gold have been studied using ultraviolet photoelectron spectroscopy (UPS), x-ray diffraction (XRD), infrared (IR) spectroscopy, and scanning tunneling spectroscopy (STS......). The formation of an intermolecular charge-transfer (CT) compound is evident from the appearance of new reflexes in XRD (d =0.894nm and d =0.677nm). A softening of the CN stretching vibration (redshift by 7 cm⊃-1) of TCNQ is visible in the IR spectra, being indicative of a CT on the order of 0.3e from TMP...

  11. Metallic conductivity in a disordered charge-transfer salt derived from cis-BET-TTF

    Energy Technology Data Exchange (ETDEWEB)

    Rovira, C. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Tarres, J. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Ribera, E. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Veciana, J. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Canadell, E. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Molins, E. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Mas, M. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain); Laukhin, V. [Inst. de Ciencia de Materials de Barcelona (CSIC) (Spain)]|[Rossijskaya Akademiya Nauk, Chernogolovka (Russian Federation). Inst. Khimicheskoj Fiziki; Doublet, M.L. [Lab. de Structure et Dynamique (CNRS), Univ. de Montpellier 2 (France); Cowan, D.O. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Chemistry; Yang, S. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Chemistry

    1997-02-28

    The first example of a metallic charge-transfer salt derived from cis-bis(ethylenethio)-tetrathiafulvalene (BET-TTF) is reported. (BET-TTF){sub 2}SCN and (BET-TTF)SCN salts were obtained by electrocrystallization starting from trans-BET-TTF. X-ray crystal structure of the mixed-valence salt revealed that trans-cis isomerization occurs upon one electron oxidation. In spite of the structural disorder in both BET-TTF and the counterion, 2:1 salt is metallic down to 60 K and then resistance increases slowly down to 4 K. (orig.)

  12. Laser-induced charge transfer in the HeH/sup 2 +/ quasimolecule

    Energy Technology Data Exchange (ETDEWEB)

    Errea, L.F.; Mendez, L.; Riera, A.

    1983-11-01

    In a recent publication, the charge transfer cross section for He/sup 2 +/+H(ls) collisions through photon-assisted 2psigma--3dsigma transitions was calculated; this calculation, however, contained several errors whose quantitative--even qualitative effect on the results is not obvious. We present a correct evaluation of this laser-induced cross section, which turns out to be larger, and present a maximum for longer wavelengths, than the values previously reported. In addition, we have checked the applicability of perturbation theory, of the stationary phase, uniform and Landau--Zener approximations, and the importance of potentially competitive photon-assisted reactions.

  13. Ab initio study of H + + H 2 collisions: Elastic/inelastic and charge transfer processes

    Science.gov (United States)

    Saieswari, A.; Kumar, Sanjay

    2007-12-01

    An ab initio full configuration interaction study has been undertaken to obtain the global potential energy surfaces for the ground and the first excited electronic state of the H + + H 2 system employing Dunning's cc-pVQZ basis set. Using the ab initio approach the corresponding quasi-diabatic potential energy surfaces and coupling potentials have been obtained. A time-independent quantum mechanical study has been also undertaken for both the inelastic and charge transfer processes at the experimental collision energy Ec.m. = 20.0 eV and the preliminary results show better agreement with the experimental data as compared to the earlier available theoretical studies.

  14. Estimation of instantaneous heat transfer coefficients for a direct-injection stratified-charge rotary engine

    Science.gov (United States)

    Lee, C. M.; Addy, H. E.; Bond, T. H.; Chun, K. S.; Lu, C. Y.

    1987-01-01

    The main objective of this report was to derive equations to estimate heat transfer coefficients in both the combustion chamber and coolant pasage of a rotary engine. This was accomplished by making detailed temperature and pressure measurements in a direct-injection stratified-charge rotary engine under a range of conditions. For each sppecific measurement point, the local physical properties of the fluids were calculated. Then an empirical correlation of the coefficients was derived by using a multiple regression program. This correlation expresses the Nusselt number as a function of the Prandtl number and Reynolds number.

  15. Spectroscopy of charge transfer complexes of four amino acids as organic two-dimensional conductors

    International Nuclear Information System (INIS)

    Padhiyar, Ashvin; Patel, A J; Oza, A T

    2007-01-01

    It is found in this study that four amino acids, namely asparagine, arginine, histidine and glutamine form two-dimensional conducting systems which are charge transfer complexes (CTCs) with organic acceptors like TCNQ, TCNE, chloranil, DDQ, TNF and iodine. It is verified using optical absorption edges that these are 2d conductors like transition metal dichalcogenides obeying absorption functions different from 1d and 3d conductors. This 2d nature is related to the network of intermolecular H-bonding in these complexes, which leads to a global H-bonded network resulting in the absence of local deformation due to the relaxation of strain

  16. Charge-transfer complexes between p-toluidine and iodine in solution: a kinetic study

    International Nuclear Information System (INIS)

    Beggiato, G.; Casalbore, G.; Marconi, G.; Baraldi, C.

    1985-01-01

    The kinetics of charge-transfer interaction between p-toluidine and iodine in methylene chloride was investigated in depth. The thermal process of formation of the 'inner' complex was found to proceed to an equilibrium. The photochemical process follows a different reaction coordinate, going through the formation of an exciplex between the excited 'outer' complex and the amine ground state. In both cases the same ionic complex (Am 2 I + I - 3 , where Am stands for p-toluidine) was detected as the final product. (Author)

  17. Molecular distortion and charge transfer effects in ZnPc/Cu(111)

    KAUST Repository

    Amin, B.

    2013-04-23

    The adsorption geometry and electronic properties of a zinc-phthalocyanine molecule on a Cu(111) substrate are studied by density functional theory. In agreement with experiment, we find remarkable distortions of the molecule, mainly as the central Zn atom tends towards the substrate to minimize the Zn-Cu distance. As a consequence, the Zn-N chemical bonding and energy levels of the molecule are significantly modified. However, charge transfer induces metallic states on the molecule and therefore is more important for the ZnPc/Cu(111) system than the structural distortions.

  18. Absolute Charge Transfer and Fragmentation Cross Sections in He2+-C60 Collisions

    International Nuclear Information System (INIS)

    Rentenier, A.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.; Ruiz, L. F.; Diaz-Tendero, S.; Alcami, M.; Martin, F.; Zarour, B.; Hanssen, J.; Hervieux, P.-A.; Politis, M. F.

    2008-01-01

    We have determined absolute charge transfer and fragmentation cross sections in He 2+ +C 60 collisions in the impact-energy range 0.1-250 keV by using a combined experimental and theoretical approach. We have found that the cross sections for the formation of He + and He 0 are comparable in magnitude, which cannot be explained by the sole contribution of pure single and double electron capture but also by contribution of transfer-ionization processes that are important even at low impact energies. The results show that multifragmentation is important only at impact energies larger than 40 keV; at lower energies, sequential C 2 evaporation is the dominant process

  19. Femtosecond stimulated Raman evidence for charge-transfer character in pentacene singlet fission.

    Science.gov (United States)

    Hart, Stephanie M; Silva, W Ruchira; Frontiera, Renee R

    2018-02-07

    Singlet fission is a spin-allowed process in which an excited singlet state evolves into two triplet states. We use femtosecond stimulated Raman spectroscopy, an ultrafast vibrational technique, to follow the molecular structural evolution during singlet fission in order to determine the mechanism of this process. In crystalline pentacene, we observe the formation of an intermediate characterized by pairs of excited state peaks that are red- and blue-shifted relative to the ground state features. We hypothesize that these features arise from the formation of cationic and anionic species due to partial transfer of electron density from one pentacene molecule to a neighboring molecule. These observations provide experimental evidence for the role of states with significant charge-transfer character which facilitate the singlet fission process in pentacene. Our work both provides new insight into the singlet fission mechanism in pentacene and demonstrates the utility of structurally-sensitive time-resolved spectroscopic techniques in monitoring ultrafast processes.

  20. Charge transfer through single molecule contacts: How reliable are rate descriptions?

    Directory of Open Access Journals (Sweden)

    Denis Kast

    2011-08-01

    Full Text Available Background: The trend for the fabrication of electrical circuits with nanoscale dimensions has led to impressive progress in the field of molecular electronics in the last decade. However, a theoretical description of molecular contacts as the building blocks of future devices is challenging, as it has to combine the properties of Fermi liquids in the leads with charge and phonon degrees of freedom on the molecule. Outside of ab initio schemes for specific set-ups, generic models reveal the characteristics of transport processes. Particularly appealing are descriptions based on transfer rates successfully used in other contexts such as mesoscopic physics and intramolecular electron transfer. However, a detailed analysis of this scheme in comparison with numerically exact solutions is still elusive.Results: We show that a formulation in terms of transfer rates provides a quantitatively accurate description even in domains of parameter space where strictly it is expected to fail, e.g., at lower temperatures. Typically, intramolecular phonons are distributed according to a voltage driven steady state that can only roughly be captured by a thermal distribution with an effective elevated temperature (heating. An extension of a master equation for the charge–phonon complex, to effectively include the impact of off-diagonal elements of the reduced density matrix, provides very accurate solutions even for stronger electron–phonon coupling.Conclusion: Rate descriptions and master equations offer a versatile model to describe and understand charge transfer processes through molecular junctions. Such methods are computationally orders of magnitude less expensive than elaborate numerical simulations that, however, provide exact solutions as benchmarks. Adjustable parameters obtained, e.g., from ab initio calculations allow for the treatment of various realizations. Even though not as rigorously formulated as, e.g., nonequilibrium Green’s function

  1. Triplet exciton dynamics

    International Nuclear Information System (INIS)

    Strien, A.J. van.

    1981-01-01

    Results are presented of electron spin echo experiments combined with laser flash excitation on triplet states of aromatic molecules. Some of the theoretical and experimental aspects of the photoexcited triplet state are discussed in detail and the electron spin echo spectrometers and laser systems are described. All the experiments described in this thesis were performed at liquid helium temperatures. An account is given of the ESE experiments performed on the photoexcited, non-radiative, triplet state of pentacene in napthalene. This is an example of the ESE technique being used to ascertain the zero-field splitting parameters, the populating and depopulating rates, and the orientation of the pentacene molecules in the naphthalene host. A combination of high resolution laser flash excitation and electron-spin echoes in zero-magnetic field allowed the author to observe directly k(vector)→k(vector)' exciton scattering processes in the one-dimensional triplet excitons in tetrachlorobenzene for the first time. Additional experimental data about exciton scattering is provided and a study of the orientational dependence of the spin-lattice relaxation of the triplet excitons in an external magnetic field is described. (Auth.)

  2. Quasienergy Spectroscopy of Excitons

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1999-01-01

    We theoretically study nonlinear optics of excitons under intense THz irradiation. In particular, the linear near-infrared absorption and resonantly enhanced nonlinear sideband generation are described. We predict a rich structure in the spectra which an be interpreted in terms of the quasienergy...

  3. Charge Transfer Processes in Collisions of Si4+ Ions with He Atoms at Intermediate Energies

    Science.gov (United States)

    Suzuki, R.; Watanabe, A.; Sato, H.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Kimura, M.; Stancil, P. C.

    Charge transfer in collisions of Si4+ ions with He atoms below 100 keV/u is studied by using a molecular orbital representation within both the semiclassical and quantal representations. Single transfer reaction Si4++He →Si3++He+ has been studied by a number of theoretical investigations. In addition to the reaction (1), the first semiclassical MOCC calculations are performed for the double transfer channel Si4++HE→Si2++He2+ Nine molecular states that connect both with single and double electron transfer processes are considered in the present model. Electronic states and corresponding couplings are determined by the multireference single- and double- excitation configuration interaction method. The present cross sections tie well with the earlier calculations of Stancil et al., Phys. Rev. A 55, 1064 (1997) at lower energies, but show a rather different magnitude from those of Bacchus-Montabonel and Ceyzeriat, Phys. Rev. A 58, 1162 (1998). The present rate constant is found to be significantly different from the experimental finding of Fang and Kwong, Phys. Rev. A 59, 342 (1996) at 4,600 K, and hence does not support the experiment.

  4. 129I Moessbauer spectroscopic study of several n-σ charge-transfer complexes of iodine with thioethers

    International Nuclear Information System (INIS)

    Sakai, Hiroshi; Matsuyama, Tomochika; Maeda, Yutaka

    1986-01-01

    129 I Moessbauer studies have been made of n-σ charge-transfer complexes of iodine with thioethers, such as thiane, 1,4-oxathiane, and 1,4-dithiane. The spectra of these complexes consist of two sets of quadrupole octets, corresponding to the bridging and terminal iodine atoms. The transferred charges from the thioethers are localized on the terminal iodine atoms, and the bridging iodine atoms have slightly positive charges. This result can be well explained in terms of a covalent bond between the sulfur and bridging iodine atoms or the MO treatment of a delocalized three-center four-electron bonding. The contributions of the dative structure to the ground state are estimated to be 36, 28, and 24 % for thiane-iodine, 1,4-oxathiane-iodine, and 1,4-dithiane-iodine respectively. The nature of the charge-transfer bond is discussed in comparison with amine-iodine complexes. (author)

  5. Spectroscopic studies of charge transfer complexes of some amino aromatic donors with some acceptors

    International Nuclear Information System (INIS)

    Al-Ani, S.S.

    1989-01-01

    Charge transfer (C.T.) complexes are the products of the weak reversible interactions between electron donors and electron acceptors. Sixteen novel C.T. complexes were studied and discussed. These complexes were formed from aromatic electron donors with various electron acceptors in absolute ethyl alcohol at 20 0 C. Electronic absorption spectra of these complexes and their donors and acceptors were taken. New charge transfer absorption bands appeared for these complexes in the UV-VIS region. The donors used are tetramethyl diamino benzophenone, P-amino-N:N-dimethyl aniline, tetramethyl-diamino-diphenylmethane, P-amino-azobenzene and benzidine, while the acceptors are iodine, bromine, picric acid, 2,4-dinitrophenol, trifluoroacetic acid and trichloroacetic acid. The results showed a disappearance of some donors and acceptors absorption bands. The energy of C.T. bands were calculated from which the ionization potentials of donors were obtained. The results showed that energies of C.T. Bands for complexes of a given donor with a series of acceptors are very similar. Some C.T. complexes showed low value of energy and high values of electrical conductivity. These are ionic complexes rather than molecular ones. 4 tabs.; 2 figs.; 99 refs

  6. Observation of excited state charge transfer with fs/ps-CARS

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

  7. Experimental and modeling study on charge storage/transfer mechanism of graphene-based supercapacitors

    Science.gov (United States)

    Ban, Shuai; Jing, Xie; Zhou, Hongjun; Zhang, Lei; Zhang, Jiujun

    2014-12-01

    A symmetrical graphene-based supercapacitor is constructed for studying the charge-transfer mechanism within the graphene-based electrodes using both experiment measurements and molecular simulation. The in-house synthesized graphene is characterized by XRD, SEM and BET measurements for morphology and surface area. It is observed that the electric capacity of graphene electrode can be reduced by both high internal resistance and limited mass transfer. Computer modeling is conducted at the molecular level to characterize the diffusion behavior of electrolyte ions to the interior of electrode with emphasis on the unique 2D confinement imposed by graphene layers. Although graphene powder poses a moderate internal surface of 400 m2 g-1, the capacitance performance of graphene electrode can be as good as that of commercial activated carbon which has an overwhelming surface area of 1700 m2 g-1. An explanation to this abnormal correlation is that graphene material has an intrinsic capability of adaptively reorganizing its microporous structure in response to intercalation of ions and immergence of electrolyte solvent. The accessible surface of graphene is believed to be dramatically enlarged for ion adsorption during the charging process of capacitor.

  8. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen

    Science.gov (United States)

    Barklem, P. S.

    2018-02-01

    Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data

  9. Charge Transfer Mechanism in Titanium-Doped Microporous Silica for Photocatalytic Water-Splitting Applications

    Directory of Open Access Journals (Sweden)

    Wendi Sapp

    2016-02-01

    Full Text Available Solar energy conversion into chemical form is possible using artificial means. One example of a highly-efficient fuel is solar energy used to split water into oxygen and hydrogen. Efficient photocatalytic water-splitting remains an open challenge for researchers across the globe. Despite significant progress, several aspects of the reaction, including the charge transfer mechanism, are not fully clear. Density functional theory combined with density matrix equations of motion were used to identify and characterize the charge transfer mechanism involved in the dissociation of water. A simulated porous silica substrate, using periodic boundary conditions, with Ti4+ ions embedded on the inner pore wall was found to contain electron and hole trap states that could facilitate a chemical reaction. A trap state was located within the silica substrate that lengthened relaxation time, which may favor a chemical reaction. A chemical reaction would have to occur within the window of photoexcitation; therefore, the existence of a trapping state may encourage a chemical reaction. This provides evidence that the silica substrate plays an integral part in the electron/hole dynamics of the system, leading to the conclusion that both components (photoactive materials and support of heterogeneous catalytic systems are important in optimization of catalytic efficiency.

  10. K-shell-hole production, multiple-hole production, charge transfer, and antisymmetry

    International Nuclear Information System (INIS)

    Reading, J.F.; Ford, A.L.

    1980-01-01

    In calculating K-shell-hole production when an ion collides with an atom, account must be taken of the fact that processes involving electrons other than the K-shell electron can occur. For example, after making a K-shell hole an L-shell electron may be knocked into it, or an L-shell vacancy may be produced and the K-shell electron promoted to that vacancy in the ''Fermi sea'' of the target-atom orbitals. In 1973 a theorem was proved by one of the present authors demonstrating that all these multielectron processes cancel in an independent-particle model for the target atom. In this paper it is shown that the same thing occurs for hole production by charge transfer to the ion. The authors demonstrate that multihole production does not obey this simple rule and that the probability for multihole production is not the product of independent single-electron probabilities. The correct expressions that should be used for these processes are given, together with new results for charge-transfer processes accompanied by hole production

  11. Momentum transfer theory of non-conservative charged particle transport in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Vrhovac, S.B.; Petrovic, Z.Lj.

    1995-01-01

    Momentum - transfer approximation is applied to momentum and energy balance equations describing reacting particle swarms in gases in crossed electric and magnetic fields. Transport coefficients of charged particles undergoing both inelastic and reactive, non-particle-conserving collisions with a gas of neutral molecules are calculated. Momentum - transfer theory (MTT) has been developed mainly by Robson and collaborators. It has been applied to a single reactive gas and mixtures of reactive gases in electric field only. MTT has also been applied in crossed electric and magnetic fields recently and independently of our work but the reactive collisions were not considered. Consider a swarm of electrons of charge e and mass m moving with velocity rvec v through a neutral gas under the influence of an applied electric rvec E and magnetic rvec B field. The collision processes which we shall investigate are limited to elastic, inelastic and reactive collisions of electrons with gas molecules. Here we interpret reactive collisions as collisions which produce change in number of the swarm particles. Reactive collisions involve creation (ionization by electron impact) or loss (electron attachment) of swarm particles. We consider only single ionization in approximation of the mass ratio m/m 0 0 are masses of electrons and neutral particles, respectively. We assume that the stage of evolution of the swarm is the hydrodynamic limit (HDL). In HDL, the space - time dependence of all properties is carried by the number density n of swarm particles

  12. Spectroscopic and theoretical investigations on intramolecular charge transfer phenomenon in 1-3-dioxolane derivative

    Science.gov (United States)

    Zhang, Zhiyong; Zhang, Zhongzhi; Luo, Yijing; Sun, Shanshan; Zhang, Guangqing

    2018-02-01

    High fluorescence quantum yield (FQY) and large Stokes shift (SS) cannot be easily achieved simultaneously by traditional PICT or TICT fluorescent probe. However, an 1-3-dioxolane derivative named 5-methyl-8,9-dihydro-5H-[1,3]dioxolo[4,5-b]carbazol-6(7H)-one (MDDCO) features both high FQY and large SS. The purpose of this study is to search the mechanism behind this phenomenon by theoretical method. Simulated structure changes and charge transfer suggest ICT process in MDDCO is similar to PLICT (Planarized Intramolecular Charge Transfer) process. Calculated UV-Vis spectra and fluorescence spectra show that PLICT-like state (S1 state) of MDDCO leads to large SS. Computed transient-absorption spectra and radiative decay rates indicate that PLICT-like state is key factor for high FQY of MDDCO. These findings suggest that PLICT-like state in 1,3-dioxolane derivatives can achieve both large SS and high FQY, which presents a new method for high-performance fluorescent probe design.

  13. Observation of excited state charge transfer with fs/ps-CARS

    International Nuclear Information System (INIS)

    Blom, Alex Jason

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4(prime)-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4(prime)-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles

  14. Differential charge-transfer cross sections for systems with energetically degenerate or near-degenerate channels

    International Nuclear Information System (INIS)

    Nguyen, H.; Bredy, R.; Camp, H.A.; DePaola, B.D.; Awata, T.

    2004-01-01

    Resolution plays a vital role in spectroscopic studies. In the usual recoil-ion momentum spectroscopy (RIMS), Q-value resolution is relied upon to distinguish between different collision channels: The better the Q-value resolution, the better one is able to resolve energetically similar channels. Although traditional COLTRIMS greatly improves Q-value resolution by cooling the target and thus greatly reducing the initial target momentum spread, the resolution of the technique is still limited by target temperature. However, with the recent development in RIMS, namely, magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) superior recoil ion momentum resolution as well as charge transfer measurements with laser excited targets have become possible. Through MOTRIMS, methods for the measurements of target excited state fraction and kinematically complete relative charge transfer cross sections have been developed, even for some systems having energetically degenerate or nearly degenerate channels. In the present work, the systems of interest having energy degeneracies or near degeneracies are Rb + , K + , and Li + colliding with trapped Rb(5l), where l=s and p

  15. Real-time observation of intersystem crossing induced by charge recombination during bimolecular electron transfer reactions

    KAUST Repository

    Alsam, Amani Abdu

    2016-09-21

    Real-time probing of intersystem crossing (ISC) and triplet-state formation after photoinduced electron transfer (ET) is a particularly challenging task that can be achieved by time-resolved spectroscopy with broadband capability. Here, we examine the mechanism of charge separation (CS), charge recombination (CR) and ISC of bimolecular photoinduced electron transfer (PET) between poly[(9,9-di(3,3′-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and dicyanobenzene (DCB) using time-resolved spectroscopy. PET from PFN to DCB is confirmed by monitoring the transient absorption (TA) and infrared spectroscopic signatures for the radical ion pair (DCB─•-PFN+•). In addition, our time-resolved results clearly demonstrate that CS takes place within picoseconds followed by CR within nanoseconds. The ns-TA data exhibit the clear spectroscopic signature of PFN triplet-triplet absorption, induced by the CR of the radical ion pairs (DCB─•-PFN+•). As a result, the triplet state of PFN (3PFN*) forms and subsequently, the ground singlet state is replenished within microseconds. © 2016

  16. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  17. Heat exchange between a microparticle and plasma. Contribution of charge transfer processes

    International Nuclear Information System (INIS)

    Uglov, A.A.; Gnedovets, A.G.

    1983-01-01

    Heat- and mass-transfer in interaction of a microparticle with a dense plasma have been considered analytically. At that, calculation methods developed as applied to probe diagnostics of slightly ionized plasma are also used in the case of relatively high degrees of ionization, at which heat flows of plasma charged particles Qe and Qi become comparable with molecular ones. High efficiency of energy transfer during electron and ion collisions with a microparticle is due to the following: 1) effective cross section of ion collision with a microparticle, which acquires in a quasineutral plasma the potential phisub(f) < 0, surpasses the geometric one; the maximum contribution of electron and ion constituent is achieved when the cross section ion collisions with a microparticle is linearly connected with its potential, 2) with a charged microparticle electrons from distribution function ''tail'' collide, their energy exceeds potential barrier near the surface and, consequently, the mean heat energy; 3) besides the energy of a microparticle thermal movement during electron recombination and ion neutralization on its surface the heat Qsub(e) and Qsub(i), which considerably exceed the heat of molecular adsorption and mean heat energy of plasma particles at kT approximately 1 eV, are transmitted to the microparticle

  18. Electronic properties of Fe charge transfer complexes – A combined experimental and theoretical approach

    International Nuclear Information System (INIS)

    Ferreira, Hendrik; Eschwege, Karel G. von; Conradie, Jeanet

    2016-01-01

    Highlights: • Experimental and computational study of Fe II -phen, -bpy & -tpy compleesx. • Close correlations between experimental redox and spectral, and computational data. • Computational methods fast-track DSSC research. - Abstract: Dye-sensitized solar cell technology holds huge potential in renewable electricity generation of the future. Due to demand urgency, ways need to be explored to reduce research time and cost. Against this background, quantum computational chemistry is illustrated to be a reliable tool at the onset of studies in this field, simulating charge transfer, spectral (solar energy absorbed) and electrochemical (ease by which electrons may be liberated) tuning of related photo-responsive dyes. Comparative experimental and theoretical DFT studies were done under similar conditions, involving an extended series of electrochemically altered phenanthrolines, bipyridyl and terpyridyl complexes of Fe II . Fe II/III oxidation waves vary from 0.363 V for tris(3,6-dimethoxybipyridyl)Fe II to 0.894 V (versus Fc/Fc + ) for the 5-nitrophenanthroline complex. Theoretical DFT computed ionization potentials in the bipyridyl sub-series achieved an almost 100% linear correlation with experimental electrochemical oxidation potentials, while the phenanthroline sub-series gave R 2 = 0.95. Apart from the terpyridyl complex which accorded an almost perfect match, in general, TDDFT oscillators were computed at slightly lower energies than what was observed experimentally, while molecular HOMO and LUMO renderings reveal desired complexes with directional charge transfer propensities.

  19. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    Science.gov (United States)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  20. The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell

    2015-03-01

    Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.

  1. One-dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, Pierre; Pedersen, Thomas Garm

    2004-01-01

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  2. Microgravity and Charge Transfer in the Neuronal Membrane: Implications for Computational Neurobiology

    Science.gov (United States)

    Wallace, Ron

    1995-01-01

    Evidence from natural and artificial membranes indicates that the neural membrane is a liquid crystal. A liquid-to-gel phase transition caused by the application of superposed electromagnetic fields to the outer membrane surface releases spin-correlated electron pairs which propagate through a charge transfer complex. The propagation generates Rydberg atoms in the lipid bilayer lattice. In the present model, charge density configurations in promoted orbitals interact as cellular automata and perform computations in Hilbert space. Due to the small binding energies of promoted orbitals, their automata are highly sensitive to microgravitational perturbations. It is proposed that spacetime is classical on the Rydberg scale, but formed of contiguous moving segments, each of which displays topological equivalence. This stochasticity is reflected in randomized Riemannian tensor values. Spacetime segments interact with charge automata as components of a computational process. At the termination of the algorithm, an orbital of high probability density is embedded in a more stabilized microscopic spacetime. This state permits the opening of an ion channel and the conversion of a quantum algorithm into a macroscopic frequency code.

  3. Application of double-hybrid density functionals to charge transfer in N-substituted pentacenequinones.

    Science.gov (United States)

    Sancho-García, J C

    2012-05-07

    A set of N-heteroquinones, deriving from oligoacenes, have been recently proposed as n-type organic semiconductors with high electron mobilities in thin-film transistors. Generally speaking, this class of compounds self-assembles in neighboring π-stacks linked by weak hydrogen bonds. We aim at theoretically characterizing here the sequential charge transport (hopping) process expected to take place across these arrays of molecules. To do so, we need to accurately address the preferred packing of these materials simultaneously to single-molecule properties related to charge-transfer events, carefully employing dispersion-corrected density functional theory methods to accurately extract the key molecular parameters governing this phenomenon at the nanoscale. This study confirms the great deal of interest around these compounds, since controlled functionalization of model molecules (i.e., pentacene) allows to efficiently tune the corresponding charge mobilities, and the capacity of modern quantum-chemical methods to predict it after rationalizing the underlying structure-property relationships.

  4. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water

    Energy Technology Data Exchange (ETDEWEB)

    Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148 (United States); Kumar, Revati [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70808 (United States)

    2015-07-28

    The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is a hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface.

  5. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    Science.gov (United States)

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  6. Improper ferroelectric polarization in a perovskite driven by intersite charge transfer and ordering

    Science.gov (United States)

    Chen, Wei-Tin; Wang, Chin-Wei; Wu, Hung-Cheng; Chou, Fang-Cheng; Yang, Hung-Duen; Simonov, Arkadiy; Senn, M. S.

    2018-04-01

    It is of great interest to design and make materials in which ferroelectric polarization is coupled to other order parameters such as lattice, magnetic, and electronic instabilities. Such materials will be invaluable in next-generation data storage devices. Recently, remarkable progress has been made in understanding improper ferroelectric coupling mechanisms that arise from lattice and magnetic instabilities. However, although theoretically predicted, a compact lattice coupling between electronic and ferroelectric (polar) instabilities has yet to be realized. Here we report detailed crystallographic studies of a perovskite HgAMn3A'Mn4BO12 that is found to exhibit a polar ground state on account of such couplings that arise from charge and orbital ordering on both the A'- and B-sites, which are themselves driven by a highly unusual MnA '-MnB intersite charge transfer. The inherent coupling of polar, charge, orbital, and hence magnetic degrees of freedom make this a system of great fundamental interest, and demonstrating ferroelectric switching in this and a host of recently reported hybrid improper ferroelectrics remains a substantial challenge.

  7. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water

    International Nuclear Information System (INIS)

    Soniat, Marielle; Rick, Steven W.; Kumar, Revati

    2015-01-01

    The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is a hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface

  8. Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems

    Science.gov (United States)

    Nistor, Razvan A.

    The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high

  9. Intra-molecular Charge Transfer and Electron Delocalization in Non-fullerene Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qinghe [Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China; Zhao, Donglin [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Goldey, Matthew B. [Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Filatov, Alexander S. [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Sharapov, Valerii [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Colón, Yamil J. [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Cai, Zhengxu [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States; Chen, Wei [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; de Pablo, Juan [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Galli, Giulia [Institute for Molecular Engineering, Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637, United States; Yu, Luping [Department of Chemistry, The James Franck Institute, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States

    2018-03-02

    Two types of electron acceptors were synthesized by coupling two kinds of electron-rich cores with four equivalent perylene diimides (PDIs) at the a position. With fully aromatic cores, TPB and TPSe have pi-orbitals spread continuously over the whole aromatic conjugated backbone, unlike TPC and TPSi, which contain isolated PDI units due to the use of a tetrahedron carbon or silicon linker. Density functional theory calculations of the projected density of states showed that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for TPB are localized in separate regions of space. Further, the LUMO of TPB shows a greater contribution from the orbitals belonging to the connective core of the molecules than that of TPC. Overall, the properties of the HOMO and LUMO point at increased intra-molecular delocalization of negative charge carriers for TPB and TPSe than for TPC and TPSi and hence at a more facile intra-molecular charge transfer for the former. The film absorption and emission spectra showed evidences for the inter -molecular electron delocalization in TPB and TPSe, which is consistent with the network structure revealed by X-ray diffraction studies on single crystals of TPB. These features benefit the formation of charge transfer states and/or facilitate charge transport. Thus, higher electron mobility and higher charge dissociation probabilities under J(sc) condition were observed in blend films of TPB:PTB7-Th and TPSe:PTB7-Th than those in TPC:PTB7Th and TPSi:PTB7-Th blend films. As a result, the J(sc) and fill factor values of 15.02 mA/cm(2), 0.58 and 14.36 mA/cm(2), 0.55 for TPB- and TPSe-based solar cell are observed, whereas those for TPC and TPSi are 11.55 mA/cm2, 0.47 and 10.35 mA/cm(2), 0.42, respectively.

  10. Collisions of highly stripped ions at MeV energies in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1980-01-01

    Cross sections have been measured for charge transfer and ionization in H 2 and rare-gas targets by fast, highly ionized carbon, iron, niobium, and lead ions in charge states +3 to +59, with energies in the range 0.1 to 4.8 MeV/amu. Experimental results are compared with classical-trajectory calculations; agreement is generally good. For a given target, the cross sections for net ionization reduce to a common curve when plotted as cross section divided by charge state versus energy per nucleon divided by charge state

  11. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures

    Science.gov (United States)

    Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue

    2017-06-01

    Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.

  12. Molecular Engineering for Enhanced Charge Transfer in Thin-Film Photoanode.

    Science.gov (United States)

    Kim, Jeong Soo; Kim, Byung-Man; Kim, Un-Young; Shin, HyeonOh; Nam, Jung Seung; Roh, Deok-Ho; Park, Jun-Hyeok; Kwon, Tae-Hyuk

    2017-10-11

    We developed three types of dithieno[3,2-b;2',3'-d]thiophene (DTT)-based organic sensitizers for high-performance thin photoactive TiO 2 films and investigated the simple but powerful molecular engineering of different types of bonding between the triarylamine electron donor and the conjugated DTT π-bridge by the introduction of single, double, and triple bonds. As a result, with only 1.3 μm transparent and 2.5-μm TiO 2 scattering layers, the triple-bond sensitizer (T-DAHTDTT) shows the highest power conversion efficiency (η = 8.4%; V OC = 0.73 V, J SC = 15.4 mA·cm -2 , and FF = 0.75) in an iodine electrolyte system under one solar illumination (AM 1.5, 1000 W·m -2 ), followed by the single-bond sensitizer (S-DAHTDTT) (η = 7.6%) and the double-bond sensitizer (D-DAHTDTT) (η = 6.4%). We suggest that the superior performance of T-DAHTDTT comes from enhanced intramolecular charge transfer (ICT) induced by the triple bond. Consequently, T-DAHTDTT exhibits the most active photoelectron injection and charge transport on a TiO 2 film during operation, which leads to the highest photocurrent density among the systems studied. We analyzed these correlations mainly in terms of charge injection efficiency, level of photocharge storage, and charge-transport kinetics. This study suggests that the molecular engineering of a triple bond between the electron donor and the π-bridge of a sensitizer increases the performance of dye-sensitized solar cell (DSC) with a thin photoactive film by enhancing not only J SC through improved ICT but also V OC through the evenly distributed sensitizer surface coverage.

  13. Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study

    Science.gov (United States)

    Amaran, Saieswari; Kumar, Sanjay

    2007-12-01

    State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.

  14. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    Science.gov (United States)

    Lee, Chi M.; Schock, Harold J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.

  15. Theoretical studies of charge transfer and proton transfer complex formation between 3,5-dinitrobenzic acid and 1,2-dimethylimidazole

    Science.gov (United States)

    Afroz, Ziya; Faizan, Mohd.; Alam, Mohammad Jane; Ahmad, Shabbir; Ahmad, Afaq

    2018-05-01

    Natural atomic charge analysis and molecular electrostatic potential (MEP) surface analysis of hydrogen bonded charge transfer (HBCT) and proton transfer (PT) complex of 3,5-dinitrobenzoic acid (DNBA) and 1,2-dimethylimidazole (DMI) have been investigated by theoretical modelling using widely employed DFT/B3LYP/6-311G(d,p) level of theory. Along with this analysis, Hirshfeld surface study of the intermolecular interactions and associated 2D finger plot for reported PT complex between DNBA and DMI have been explored.

  16. Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy

    International Nuclear Information System (INIS)

    Gupta, S.; Hughes, M.; Windle, A.H.; Robertson, J.

    2004-01-01

    Charge transfer dynamics on the surface of single-wall carbon nanotube sheets is investigated using in situ Raman spectroscopy in order to understand the actuation mechanism of an electrochemical actuator and to determine associated parameters. We built an actuator from single-wall carbon nanotube mat and studied its actuation in several alkali metal (Li, Na, and K) and alkaline earth (Ca) halide and sulfate solutions in order to clarify the role of counterion as mobile ions in the film. The variation of bonding with applied potential was monitored using in situ Raman spectroscopy. This is because Raman can detect changes in C-C bond length: the radial breathing mode at ∼190 cm-1 varies inversely with the nanotube diameter, and the G band at ∼1590 cm-1 varies with the axial bond length. In addition, the intensities of both the modes vary with the emptying/depleting or filling of the bonding and antibonding states due to electrochemical charge injection. We discussed the variation of peak height and wave numbers of these modes providing valuable information concerning electrochemical charge injection on the carbon nanotube mat surface. We found in-plane microscopic compressive strain (∼-0.25%) and the equivalent charge transfer per carbon atom (f c ∼-0.005) as an upper bound for the actuators studied hereby. It is demonstrated that though the present analysis does comply with the proposition for the actuation principle made earlier, the quantitative estimates are significantly lower if compared with those of reported values. Furthermore, the extent of variation, i.e., coupled electro-chemo-mechanical response of single-wall carbon nanotubes (SWNT) mat depended upon the type of counterion used (Group I versus Group II). The cyclic voltammetry and ac electrochemical impedance spectroscopy results were described briefly, which help to demonstrate well-developed capacitive behavior of SWNT mat and to estimate the specific capacitances as well. Summarizing, the

  17. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Christopher J. [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-11-12

    Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.

  18. Low-Energy Charge Transfer in Multiply-Charged Ion-Atom Collisions Studied with the Combined SCVB-MOCC Approach

    Directory of Open Access Journals (Sweden)

    B. Zygelman

    2002-03-01

    Full Text Available A survey of theoretical studies of charge transfer involving collisions of multiply-charged ions with atomic neutrals (H and He is presented. The calculations utilized the quantum-mechanical molecular-orbital close-coupling (MOCC approach where the requisite potential curves and coupling matrix elements have been obtained with the spin-coupled valence bond (SCVB method. Comparison is made among various collision partners, for equicharged systems, where it is illustrated that even for total charge transfer cross sections, scaling-laws do not exist for low-energy collisions (i.e. < 1 keV/amu. While various empirical scaling-laws are well known in the intermediateand high-energy regimes, the multi-electron configurations of the projectile ions results in a rich and varied low-energy dependence, requiring an explicit calculation for each collision-partner pair. Future charge transfer problems to be addressed with the combined SCVB-MOCC approach are briefly discussed.

  19. Plasmonic Structure Enhanced Exciton Generation at the Interface between the Perovskite Absorber and Copper Nanoparticles

    Science.gov (United States)

    Lin, Kuen-Feng; Chiang, Chien-Hung; Wu, Chun-Guey

    2014-01-01

    The refractive index and extinction coefficient of a triiodide perovskite absorber (TPA) were obtained by fitting the transmittance spectra of TPA/PEDOT:PSS/ITO/glass using the transfer matrix method. Cu nanoplasmonic structures were designed to enhance the exciton generation in the TPA and to simultaneously reduce the film thickness of the TPA. Excitons were effectively generated at the interface between TPA and Cu nanoparticles, as observed through the 3D finite-difference time-domain method. The exciton distribution is advantageous for the exciton dissociation and carrier transport. PMID:25295290

  20. Sodium dodecyl benzene sulphonate mediated tautomerism of Eriochrome Black-T: Effect of charge transfer interaction

    Science.gov (United States)

    Ghosh, Sumit

    2010-11-01

    Interaction between anionic surfactant, sodium dodecyl benzene sulphonate, (SDBS) and an anionic dye Eriochrome Black-T, (EBT) has been investigated by visible spectroscopy, conductometry, dynamic light scattering and zeta potential measurements. Spectral changes of EBT observed on addition of SDBS indicate formation of quinone-hydrazone tautomer at pH 7.0, whereas in absence of SDBS this change appears at pH ˜ 9.45. However, at pH 7.0 this change in tautomerism is not observed in presence of sodium dodecyl sulphate (SDS). Experimental results indicate presence of charge transfer interaction between less stable quinone-hydrazone tautomer of EBT and SDBS molecules, which is confirmed using Benesi-Hildebrand and Scott equations.

  1. Charge transfer in carbon composites based on fullerenes and exfoliated graphite

    Science.gov (United States)

    Berezkin, V. I.

    2017-07-01

    Kinetic processes have been studied in composites based on fullerenes and exfoliated graphite at the initial proportions of components from 1: 16 to 16: 1 in mass. The samples are produced by heat treatment of initial dispersed mixtures in vacuum in the diffusion-adsorption process, their further cold pressing, and annealing. It is shown that the annealing almost does not influence the conduction mechanisms and only induces additional structural defects acting as electron traps. As a whole, the results obtained at the noted proportions of components make it possible to consider the material as a compensated metallic system with a structural disorder in which the charge transfer at temperatures from 4.2 K to room temperature is controlled by quantum interference phenomena. At low temperatures, the effect of a weak localization is observed, and the electron-electron interactions take place at medium and high temperatures.

  2. Charge transfer in graphene oxide-dye system for photonic applications

    International Nuclear Information System (INIS)

    Bongu, Sudhakara Reddy; Bisht, Prem B.; Thu, Tran V.; Sandhu, Adarsh

    2014-01-01

    The fluorescence of a standard dye Rhodamine 6G (R6G) in solution decreases on addition of reduced graphene oxide (rGO). The absorption spectra and lifetime measurements confirm that no excited-state but a ground-state complex formation is responsible for this effect. For silver decorated rGO (Ag-rGO), the quenching efficiency and ground state complex formation process is small. Z-scan measurements have been done to study the optical nonlinearity at 532 nm under ps time scale. Remarkable reduction in the saturable absorption (SA) effect of R6G indicates no nonlinear contribution from the ground state complex. The results have been explained with varying charge transfer rates and non-fluorescence nature of the complex

  3. Charge transfer in rectifying oxide heterostructures and oxide access elements in ReRAM

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovich, G. B.; Pergament, A. L.; Boriskov, P. P.; Kuroptev, V. A., E-mail: v.a.kuroptev@gmail.com; Stefanovich, T. G. [Petrozavodsk State University (Russian Federation)

    2016-05-15

    The main aspects of the synthesis and experimental research of oxide diode heterostructures are discussed with respect to their use as selector diodes, i.e., access elements in oxide resistive memory. It is shown that charge transfer in these materials differs significantly from the conduction mechanism in p–n junctions based on conventional semiconductors (Si, Ge, A{sup III}–B{sup V}), and the model should take into account the electronic properties of oxides, primarily the low carrier drift mobility. It is found that an increase in the forward current requires an oxide with a small band gap (<1.3 eV) in the heterostructure composition. Heterostructures with Zn, In–Zn (IZO), Ti, Ni, and Cu oxides are studied; it is found that the CuO–IZO heterojunction has the highest forward current density (10{sup 4} A/cm{sup 2}).

  4. Charge transfer of He2+ with H in a strong magnetic field

    International Nuclear Information System (INIS)

    Liu Chun-Lei; Zou Shi-Yang; He Bin; Wang Jian-Guo

    2015-01-01

    By solving a time-dependent Schrödinger equation (TDSE), we studied the electron capture process in the He 2+ +H collision system under a strong magnetic field in a wide projectile energy range. The strong enhancement of the total charge transfer cross section is observed for the projectile energy below 2.0 keV/u. With the projectile energy increasing, the cross sections will reduce a little and then increase again, compared with those in the field-free case. The cross sections to the states with different magnetic quantum numbers are presented and analyzed where the influence due to Zeeman splitting is obviously found, especially in the low projectile energy region. The comparison with other models is made and the tendency of the cross section varying with the projectile energy is found closer to that from other close coupling models. (paper)

  5. Low-energy charge transfer for collisions of Si3+ with atomic hydrogen

    Science.gov (United States)

    Bruhns, H.; Kreckel, H.; Savin, D. W.; Seely, D. G.; Havener, C. C.

    2008-06-01

    Cross sections of charge transfer for Si3+ ions with atomic hydrogen at collision energies of ≈40-2500eV/u were carried out using a merged-beam technique at the Multicharged Ion Research Facility at Oak Ridge National Laboratory. The data span an energy range in which both molecular orbital close coupling (MOCC) and classical trajectory Monte Carlo (CTMC) calculations are available. The influence of quantum mechanical effects of the ionic core as predicted by MOCC is clearly seen in our results. However, discrepancies between our experiment and MOCC results toward higher collision energies are observed. At energies above 1000 eV/u good agreement is found with CTMC results.

  6. Ab initio study of charge transfer in B2+ low-energy collisions with atomic hydrogen

    Science.gov (United States)

    Turner, A. R.; Cooper, D. L.; Wang, J. G.; Stancil, P. C.

    2003-07-01

    Charge transfer processes due to collisions of ground state B2+(2s 2S) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with the existing experiments shows our results to be in good agreement. When EMOCC cross sections with and without rotational coupling are small (400 eV/u, inclusion of rotational coupling increases the total cross section by 50% 80%, improving the agreement between the current calculations and experiments. For state-selective cross sections, rotational coupling induces mixing between different symmetries; however, its effect, especially at low collision energies, is not as important as had been suggested in previous work.

  7. Vibrationally-resolved Charge Transfer of O^3+ Ions with Molecular Hydrogen

    Science.gov (United States)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-05-01

    Charge transfer processes due to collisions of ground state O^3+ ions with H2 are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Vibrationally-resolved cross sections for energies between 0.1 eV/u and 2 keV/u using the infinite order sudden approximation (IOSA), vibrational sudden approximation (VSA), and electronic approximation (EA), but including Frank-Condon factors (the centroid approximation) will be presented. Comparison with existing experimental data for total cross sections shows best agreement with IOSA and discrepancies for VSA and EA. Triplet-singlet cross section ratios obtained with IOSA are found generally to be in harmony with experiment. JGW and PCS acknowledge support from NASA grant 11453.

  8. Low Energy Charge Transfer for Collisions of Si3+ with Atomic Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bruhns, H. [Columbia University; Kreckel, H. [Columbia University; Savin, D. W. [Columbia University; Seely, D. G. [Albion College; Havener, Charles C [ORNL

    2008-01-01

    Cross sections of charge transfer for Si{sup 3+} ions with atomic hydrogen at collision energies of {approx} 40-2500 eV/u were carried out using a merged-beam technique at the Multicharged Ion Research Facility at Oak Ridge National Laboratory. The data span an energy range in which both molecular orbital close coupling (MOCC) and classical trajectory Monte Carlo (CTMC) calculations are available. The influence of quantum mechanical effects of the ionic core as predicted by MOCC is clearly seen in our results. However, discrepancies between our experiment and MOCC results toward higher collision energies are observed. At energies above 1000 eV/u good agreement is found with CTMC results.

  9. Ab initio study of charge transfer in B2+ low-energy collisions with atomic hydrogen

    International Nuclear Information System (INIS)

    Turner, A.R.; Cooper, D.L.; Wang, J.G.; Stancil, P.C.

    2003-01-01

    Charge transfer processes due to collisions of ground state B 2+ (2s 2 S) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with the existing experiments shows our results to be in good agreement. When E 400 eV/u, inclusion of rotational coupling increases the total cross section by 50%-80%, improving the agreement between the current calculations and experiments. For state-selective cross sections, rotational coupling induces mixing between different symmetries; however, its effect, especially at low collision energies, is not as important as had been suggested in previous work

  10. Dielectric Losses and Charge Transfer in Antimony-Doped TlGaS2 Single Crystal

    Science.gov (United States)

    Asadov, S. M.; Mustafaeva, S. N.

    2018-03-01

    Effect of semimetallic antimony (0.5 mol % Sb) on the dielectric properties and ac-conductivity of TlGaS2-based single crystals grown by the Bridgman-Stockbarger method has been studied. The experimental results on the frequency dispersion of dielectric coefficients and the conductivity of TlGa0.995Sb0.005S2 single crystals allowed the revealing of the dielectric loss nature, the charge transfer mechanism, and the estimation of the parameters of the states localized in the energy gap. The antimony-doping of the TlGaS2 single crystal leads to an increase in the density of states near the Fermi level and a decrease in the average time and average distance of hopes.

  11. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications

    Science.gov (United States)

    Wang, Zhijie; Cao, Dawei; Wen, Liaoyong; Xu, Rui; Obergfell, Manuel; Mi, Yan; Zhan, Zhibing; Nasori, Nasori; Demsar, Jure; Lei, Yong

    2016-01-01

    Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond transient absorbance in different configurations, we demonstrate an effective charge transfer between the nanoparticle array and PZT. Most importantly, we show that the photocurrent can be tuned by nearly an order of magnitude when changing the ferroelectric polarization in PZT, demonstrating a versatile and tunable system for energy harvesting. PMID:26753764

  12. Charge-transfer interaction mediated organogels from 18β-glycyrrhetinic acid appended pyrene

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2013-12-01

    Full Text Available We describe herein the two-component charge-transfer (CT interaction induced organogel formation with 18β-glycyrrhetinic acid appended pyrene (GA-pyrene, 3 as the donor, and 2,4,7-trinitrofluorenone (TNF, 4 as the acceptor. The use of TNF (4 as a versatile electron acceptor in the formation of CT gels is demonstrated through the formation of gels in a variety of solvents. Thermal stability, stoichiometry, scanning electron microscopy (SEM, optical micrographs, and circular dichroism (CD are performed on these CT gels to investigate their thermal and assembly properties. UV–vis, fluorescence, mass spectrometric as well as variable-temperature 1H NMR experiments on these gels suggest that the CT interaction is one of the major driving forces for the formation of these organogels.

  13. ZnO nanowires: Synthesis and charge transfer mechanism in the detection of ammonia vapour

    Science.gov (United States)

    Nancy Anna Anasthasiya, A.; Ramya, S.; Rai, P. K.; Jeyaprakash, B. G.

    2018-01-01

    ZnO nanowires with hexagonal wurtzite structure were grown on the glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method. Both experimental and theoretical studies demonstrated that NH3 chemisorbed and transferred the charge to the surface of the nanowire via its nitrogen site to the zinc site of ZnO nanowires, leading to the detection of NH3 vapour. The adsorbed ammonia dissociated into NH2 and H due to steric repulsion, and then into N2 and H2 gas. The formation of the N2 gas during the desorption process confirmed by observing peak at 14 and 28 m/z in the GC-MS spectrum.

  14. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  15. Charge transfer complex states in diketopyrrolopyrrole polymers and fullerene blends: Implications for organic solar cell efficiency

    Science.gov (United States)

    Moghe, D.; Yu, P.; Kanimozhi, C.; Patil, S.; Guha, S.

    2011-12-01

    The spectral photocurrent characteristics of two donor-acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) blended with a fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were studied using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) method. PDPP-BBT:PCBM shows the onset of the lowest charge transfer complex (CTC) state at 1.42 eV, whereas TDPP-BBT:PCBM shows no evidence of the formation of a midgap CTC state. The FTPS and PC spectra of P3HT:PCBM are also compared. The larger singlet state energy difference of TDPP-BBT and PCBM compared to PDPP-BBT/P3HT and PCBM obliterates the formation of a midgap CTC state resulting in an enhanced photovoltaic efficiency over PDPP-BBT:PCBM.

  16. Positron annihilation in liquids and in solutions containing electron acceptors and charge-transfer complexes

    International Nuclear Information System (INIS)

    Jansen, P.

    1976-05-01

    Positron lifetime measurements and angular correlation measurements were performed in several organic liquids. The results strongly indicate that positronium is contained in a 'bubble' in the liquids. The radius of the bubble can be estimated by using broadness of the narrow component in the angular correlation distribution, and by using the surface tension of the liquids. Both methods give bubble radii from 4-7 A in the solvents investigated. The bubble influences the reaction mechanism between Ps and weak electron acceptors in such a way that the presence of the bubble decreases the reactivity of Ps. Positron lifetime measurements were also performed on a series of mixtures of organic liquids and on electron acceptors and charge-transfer complexes in solution. The results were is agreement with the spur model of Ps formation. (Auth.)

  17. The effect of interfacial charge transfer on ferromagnetism in perovskite oxide superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F. [Univ. of California, Davis, CA (United States). Department of Chemical Engineering and Materials Science; Gu, M. [Univ. of California, Davis, CA (United States). Department of Chemical Engineering and Materials Science; Arenholz, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Browning, N. D. [Univ. of California, Davis, CA (United States). Department of Molecular and Cellular Biology; Takamura, Y. [Univ. of California, Davis, CA (United States). Department of Chemical Engineering and Materials Science

    2012-01-05

    We investigate the structural, magnetic, and electrical properties of superlattices composed of the ferromagnetic/metal La0.7Sr0.3MnO3 and non-magnetic/metal La0.5Sr0.5TiO3 grown on (001)-oriented SrTiO3 substrates. Using a combination of bulk magnetometry, soft x-ray magnetic spectroscopy, and scanning transmission electron microscopy, we demonstrate that robust ferromagnetic properties can be maintained in this superlattice system where charge transfer at the interfaces is minimized. Thus, ferromagnetism can be controlled effectively through the chemical identity and the thickness of the individual superlattice layers.

  18. Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics.

    Science.gov (United States)

    Sanders, Simon; Cabrero-Vilatela, Andrea; Kidambi, Piran R; Alexander-Webber, Jack A; Weijtens, Christ; Braeuninger-Weimer, Philipp; Aria, Adrianus I; Qasim, Malik M; Wilkinson, Timothy D; Robertson, John; Hofmann, Stephan; Meyer, Jens

    2015-08-14

    Using thermally evaporated cesium carbonate (Cs2CO3) in an organic matrix, we present a novel strategy for efficient n-doping of monolayer graphene and a ∼90% reduction in its sheet resistance to ∼250 Ohm sq(-1). Photoemission spectroscopy confirms the presence of a large interface dipole of ∼0.9 eV between graphene and the Cs2CO3/organic matrix. This leads to a strong charge transfer based doping of graphene with a Fermi level shift of ∼1.0 eV. Using this approach we demonstrate efficient, standard industrial manufacturing process compatible graphene-based inverted organic light emitting diodes on glass and flexible substrates with efficiencies comparable to those of state-of-the-art ITO based devices.

  19. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    Science.gov (United States)

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  20. Supramolecular fullerene/porphyrin charge transfer interaction studied by absorption spectrophotometric method

    Science.gov (United States)

    Mukherjee, Partha; Bhattacharya (Banerjee), Shrabanti; Nayak, Sandip K.; Chattopadhyay, Subrata; Bhattacharya, Sumanta

    2009-06-01

    A detailed UV-Vis spectrometric and thermodynamic studies were done to look insight into the nature of molecular interactions of the electron donor-acceptor complexes of C60 and C70 with 5,10,15,20-tetrakis(octadecyloxyphenyl)-21H,23H-porphyrin (1) in chloroform and toluene. Charge transfer (CT) absorption bands were located in the visible region and vertical ionization potential of 1 was determined utilizing CT transition energy. Low values of oscillator and transition dipole strengths suggested that the complexes were almost of neutral character in ground states. The high binding constant value for the C70-1 complex indicated high selectivity of 1 molecule towards C70. Experimental as well as theoretically determined of enthalpies of formation value substantiated the trend in K values for fullerene-1 complexes.