WorldWideScience

Sample records for charge separation effect

  1. In search of chiral magnetic effect: separating flow-driven background effects and quantifying anomaly-induced charge separations

    CERN Document Server

    Huang, Xu-Guang; Liao, Jinfeng

    2015-01-01

    We report our recent progress on the search of Chiral Magnetic Effect (CME) by developing new measurements as well as by hydrodynamic simulations of CME and background effects, with both approaches addressing the pressing issue of separating flow-driven background contributions and possible CME signal in current heavy ion collision measurements.

  2. The effect of charge separation on the phase behavior of dipolar colloidal rods.

    Science.gov (United States)

    Rutkowski, David M; Velev, Orlin D; Klapp, Sabine H L; Hall, Carol K

    2016-06-14

    Colloids with anisotropic shape and charge distribution can assemble into a variety of structures that could find use as novel materials for optical, photonic, electronic and structural applications. Because experimental characterization of the many possible types of multi-shape and multipolar colloidal particles that could form useful structures is difficult, the search for novel colloidal materials can be enhanced by simulations of colloidal particle assembly. We have simulated a system of dipolar colloidal rods at fixed aspect ratio using discontinuous molecular dynamics (DMD) to investigate how the charge separation of an embedded dipole affects the types of assemblies that occur. Each dipolar rod is modeled as several overlapping spheres fixed in an elongated shape to represent excluded volume and two smaller, embedded spheres to represent the charges that make up the extended dipole. Large charge separations predominately form structures where the rods link head-to-tail while small charge separations predominately form structures where the rods stack side-by-side. Rods with small charge separations tend to form dense aggregates while rods with large charge separations tend to form coarse gel-like structures. Structural phase boundaries between fluid, string-fluid, and "gel" (networked) phases are mapped out and characterized as to whether they have global head-to-tail or global side-by-side order. A structural coarsening transition is observed for particles with large charge separations in which the head-tail networks thicken as temperature is lowered due to an increased tendency to form side-by-side structures. Triangularly connected networks form at small charge separations; these may be useful for encapsulating smaller particles. PMID:27151445

  3. Doping effect on photoabsorption and charge-separation dynamics in light-harvesting organic molecule

    Directory of Open Access Journals (Sweden)

    Satoshi Ohmura

    2016-01-01

    Full Text Available Using ab-initio theoretical methods, we demonstrate possible enhancement of photo-conversion efficiency of an organic solar cell via intentional doping in molecular graphene-fullerene heterojunction [the hexabenzocoronene (HBC-triethylene glycol (TEG–C60 molecule]. Photoabsorption analysis indicates oxygen substitution into HBC leads to an extension of the spectra up to an infrared regime. A quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals that a dissociated charge state (D+ and A- in the O-doped system is more stable than the pristine case due to the presence of an effective barrier by the TEG HOMO/LUMO level. We also find that oxygen doping in HBC enhances the intermolecular carrier mobility after charge separation. On the other hand, the pristine molecule undergoes rapid recombination between donor and acceptor charges at the interface. These analyses suggest that the graphene oxidation opens a new window in the application of organic super-molecules to solar cells.

  4. Doping effect on photoabsorption and charge-separation dynamics in light-harvesting organic molecule

    Energy Technology Data Exchange (ETDEWEB)

    Ohmura, Satoshi, E-mail: s.ohmura.m4@cc.it-hiroshima.ac.jp [Research Center for Condensed Matter Physics, Department of Civil Engineering and Urban Design, Hiroshima Institute of Technology, Hiroshima 731-5193 (Japan); Tsuruta, Kenji [Department of Electrical and Electronic Engineering, Okayama University, Okayama 700-8530 (Japan); Shimojo, Fuyuki [Department of Physics, Kumamoto University, Kumamoto 860-8555 Japan (Japan); Nakano, Aiichiro [Collaboratory for Advanced Computing and Simulations, Department of Computer Science, Department of Physics & Astronomy, Department of Chemical Engineering & Materials Science, Department of Biological Sciences, University of Southern California, CA90089-024 (United States)

    2016-01-15

    Using ab-initio theoretical methods, we demonstrate possible enhancement of photo-conversion efficiency of an organic solar cell via intentional doping in molecular graphene-fullerene heterojunction [the hexabenzocoronene (HBC)-triethylene glycol (TEG)–C{sub 60} molecule]. Photoabsorption analysis indicates oxygen substitution into HBC leads to an extension of the spectra up to an infrared regime. A quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals that a dissociated charge state (D{sup +} and A{sup -}) in the O-doped system is more stable than the pristine case due to the presence of an effective barrier by the TEG HOMO/LUMO level. We also find that oxygen doping in HBC enhances the intermolecular carrier mobility after charge separation. On the other hand, the pristine molecule undergoes rapid recombination between donor and acceptor charges at the interface. These analyses suggest that the graphene oxidation opens a new window in the application of organic super-molecules to solar cells.

  5. Doping effect on photoabsorption and charge-separation dynamics in light-harvesting organic molecule

    International Nuclear Information System (INIS)

    Using ab-initio theoretical methods, we demonstrate possible enhancement of photo-conversion efficiency of an organic solar cell via intentional doping in molecular graphene-fullerene heterojunction [the hexabenzocoronene (HBC)-triethylene glycol (TEG)–C60 molecule]. Photoabsorption analysis indicates oxygen substitution into HBC leads to an extension of the spectra up to an infrared regime. A quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals that a dissociated charge state (D+ and A-) in the O-doped system is more stable than the pristine case due to the presence of an effective barrier by the TEG HOMO/LUMO level. We also find that oxygen doping in HBC enhances the intermolecular carrier mobility after charge separation. On the other hand, the pristine molecule undergoes rapid recombination between donor and acceptor charges at the interface. These analyses suggest that the graphene oxidation opens a new window in the application of organic super-molecules to solar cells

  6. Effect of bridge on energy transfer and photoinduced charge separation in perylene-diimide-naphthalene-bisimide-hexathiophene based donor-bridge-acceptor triads

    Directory of Open Access Journals (Sweden)

    Tilley T.D.

    2013-03-01

    Full Text Available Femtosecond transient absorption spectroscopy is performed to assess bridge effects on energy transfer and charge separation in molecular junctions. A short, conjugated bridge can facilitate charge separation from both donor and acceptor, whereas in longer bridges charge separation only occurs from the excited donor.

  7. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K., E-mail: paul.hurley@tyndall.ie [Tyndall National Institute, University College Cork, Dyke Parade, Cork (Ireland)

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  8. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    International Nuclear Information System (INIS)

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (Ninv) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed Id-Vg measurements enabled an accurate effective mobility vs Ninv extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs

  9. Separation of Contaminants from Deinking Process Water by Dissolved Air Flotation: Effect of Flocculant Charge Density

    OpenAIRE

    Miranda Carreño, Rubén; Blanco Suárez, Ángeles; Fuente González, Elena de la; Negro Álvarez, Carlos Manuel

    2008-01-01

    The effect of charge density of 5 cationic polyacrylamides (C-PAMs)and 3 anionic polyacrylamides (A-PAMs) in single and in dual treatments with a coagulant on the flocculation and removal of dissolved and colloidal material by dissolved air flotation (DAF) in papermaking has been studied. In single systems, good results were achieved both with low and high charge C-PAMs(1.0and 3.0–3.5 meq/g). In dual sy tems, high charge C-PAMs (3.0–3.5 meq/g)and A-PAMs (1.5 meq/g), were the most efficient. R...

  10. Charge regularization in phase separating polyelectrolyte solutions

    OpenAIRE

    Muthukumar, M.; Hua, Jing; Kundagrami, Arindam

    2010-01-01

    Theoretical investigations of phase separation in polyelectrolyte solutions have so far assumed that the effective charge of the polyelectrolyte chains is fixed. The ability of the polyelectrolyte chains to self-regulate their effective charge due to the self-consistent coupling between ionization equilibrium and polymer conformations, depending on the dielectric constant, temperature, and polymer concentration, affects the critical phenomena and phase transitions drastically. By considering ...

  11. Charge separation in organic solar cells: Effects of Coulomb interaction, recombination and hole propagation

    Science.gov (United States)

    Nemati Aram, Tahereh; Asgari, Asghar; Mayou, Didier

    2016-07-01

    Bulk heterojunction (BHJ) organic photovoltaic cells are analysed within a simple efficient model that includes the important physical properties of such photovoltaic systems. In this model, in contrast with most of the previous studies, we take into account the motion of both the electron and the hole in the separation process at the donor-acceptor interface. We theoretically examine the exciton dissociation yield under the influences of charge Coulomb interaction and non-radiative recombination. We find that the electron-hole local Coulomb attraction and charge carriers' coupling parameters play an important role in the system performance and in the optimal energy conversion efficiency of the BHJ photocell. We show that the fixed-hole models tend to underestimate the yield.

  12. Detergent effects on primary charge separation in wild-type and mutant Rhodobacter capsulatus reaction centers

    International Nuclear Information System (INIS)

    The primary electron-transfer processes in reaction centers (RCs) from wild-type and several mutants of Rhodobacter capsulatus have been investigated as a function of the detergent used to extract the RC protein from the membrane. Wild-type and L(M212)H mutant RCs that have been isolated using the detergent Deriphat 160-C both display somewhat slower initial charge separation (longer P* lifetimes) than the same RCs isolated using the detergent LDAO. For the F(L181)Y/Y(M208)F/L(M212)H triple mutant, the differences in the initial charge separation events for Deriphat-versus LDAO-isolated RCs are more significant. In all cases, use of Deriphat 160-C to extract the protein from the membrane yields RCs in which the QY band of P is retained at its native position near 865 nm, whereas LDAO extraction yields RCs that have the P band near 850 nm. Origins of the differences in both the ground state spectrum and the photochemistry, including possible RC-lipid associations, are considered

  13. Degree of phase separation effects on the charge transfer properties of P3HT:Graphene nanocomposites

    International Nuclear Information System (INIS)

    Graphene layers were introduced into the matrix of regioregular poly (3-hexylthiophene-2, 5-diyl) (RR-P3HT) via solution processing in the perspective of the development of organic nanocomposites with high P3HT/Graphene interfaces areas for efficient charge transfer process. P3HT and graphene act as electrons donor and electrons acceptor materials, respectively. Spatial Fourier Transforms (FFT) and power spectral density (PSD) analysis of the AFM images show that the phase separation decreases with increasing the graphene weight ratio in the P3HT matrix. The Raman spectra of the P3HT:Graphene nanocomposites shows that the G-band of graphene shifts to low frequencies with progressive addition of graphene which proves that there is an interaction between the nanowires of P3HT and the graphene layers. We suggest that the shift of the G-band is due to electrons transfer from P3HT to graphene. The quenching of the photoluminescence (PL) intensity of P3HT with addition of graphene proves also that an electrons transfer process occurred at the P3HT/Graphene interfaces. - Highlights: • Graphene layers are elaborated from expandable graphite oxide. • The effects of the graphene doping level on the charge transfer process were studied. • The phase separation process decreases with increasing the graphene content in the P3HT matrix. • Quenching of the PL intensity is due to electrons transfer from P3HT to graphene

  14. CHARGE BOTTLE FOR A MASS SEPARATOR

    Science.gov (United States)

    Davidson, P.H.

    1959-07-01

    Improved mass separator charge bottles are described for containing a dense charge of a chemical compound of copper, nickel, lead or other useful substance which is to be vaporized, and to the method of utilizing such improvcd charge bottles so that the chemical compound is vaporized from the under surface of the charge and thus permits the non-volatile portion thereof to fall to the bottom of the charge bottle where it does not form an obstacle to further evaporation. The charge bottle comprises a vertically disposed cylindrical portion, an inner re-entrant cylindrical portion extending axially and downwardly into the same from the upper end thereof, and evaporative source material in the form of a chemical compound compacted within the upper annular pontion of the charge bottle formed by the re-entrant cylindrical portion, whereby vapor from the chemical compound will pass outwardly from the charge bottle through an apertured closure.

  15. Charge separation effects in solid targets and ion acceleration with a two-temperature electron distribution

    International Nuclear Information System (INIS)

    The electrostatic field at the solid-vacuum interface generated by two electron populations with different thermal energies, each following a Boltzmann distribution, is analytically derived from the Poisson equation and studied in terms of plasma parameters. In particular, the effect of the pressure of each of the two populations on the amplitude of the electric field and on its spatial extension is described. In order to evaluate the cold electron temperature, an analytical model for the Ohmic heating of the background electron population by laser generated fast electrons is developed and the consequences on ion detachment, ionization, and acceleration processes in laser-solid experiments are discussed. The efficiency of ion acceleration is shown to be controlled by the heating rate of the background electrons

  16. Assessment of Hot-Carrier Effects on Charge Separation in Type-II CdS/CdTe Heterostructured Nanorods.

    Science.gov (United States)

    Okano, Makoto; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2014-09-01

    Charge separation in semiconducting materials is an essential process that determines the efficiency of photovoltaic devices and photocatalysts. Herein, we report the charge-separation dynamics in type-II CdS/CdTe heterostructured nanorods revealed by femtosecond transient-absorption (TA) measurements with a broad-band white-light probe. Under selective excitation of the CdTe segment, bleaching signals at the band gap energy of CdS were clearly observed with a rise component on a subpicosecond time scale, which indicates efficient electron transfer from CdTe to CdS. The pump-energy dependence of the TA dynamics shows that hot electrons rapidly relax to the bottom of the conduction band of CdTe, and then the electrons transfer to the CdS segment. PMID:26278242

  17. Energy storage device with large charge separation

    Energy Technology Data Exchange (ETDEWEB)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  18. Charge renormalization and phase separation in colloidal suspensions

    OpenAIRE

    Diehl, Alexandre; Barbosa, Marcia C.; Levin, Yan

    2000-01-01

    We explore the effects of counterion condensation on fluid-fluid phase separation in charged colloidal suspensions. It is found that formation of double layers around the colloidal particles stabilizes suspensions against phase separation. Addition of salt, however, produces an instability which, in principle, can lead to a fluid-fluid separation. The instability, however, is so weak that it should be impossible to observe a fully equilibrated coexistence experimentally.

  19. Directional charge separation in isolated organic semiconductor crystalline nanowires

    Science.gov (United States)

    Labastide, J. A.; Thompson, H. B.; Marques, S. R.; Colella, N. S.; Briseno, A. L.; Barnes, M. D.

    2016-02-01

    One of the fundamental design paradigms in organic photovoltaic device engineering is based on the idea that charge separation is an extrinsically driven process requiring an interface for exciton fission. This idea has driven an enormous materials science engineering effort focused on construction of domain sizes commensurate with a nominal exciton diffusion length of order 10 nm. Here, we show that polarized optical excitation of isolated pristine crystalline nanowires of a small molecule n-type organic semiconductor, 7,8,15,16-tetraazaterrylene, generates a significant population of charge-separated polaron pairs along the π-stacking direction. Charge separation was signalled by pronounced power-law photoluminescence decay polarized along the same axis. In the transverse direction, we observed exponential decay associated with excitons localized on individual monomers. We propose that this effect derives from an intrinsic directional charge-transfer interaction that can ultimately be programmed by molecular packing geometry.

  20. Directional charge separation in isolated organic semiconductor crystalline nanowires.

    Science.gov (United States)

    Labastide, J A; Thompson, H B; Marques, S R; Colella, N S; Briseno, A L; Barnes, M D

    2016-01-01

    One of the fundamental design paradigms in organic photovoltaic device engineering is based on the idea that charge separation is an extrinsically driven process requiring an interface for exciton fission. This idea has driven an enormous materials science engineering effort focused on construction of domain sizes commensurate with a nominal exciton diffusion length of order 10 nm. Here, we show that polarized optical excitation of isolated pristine crystalline nanowires of a small molecule n-type organic semiconductor, 7,8,15,16-tetraazaterrylene, generates a significant population of charge-separated polaron pairs along the π-stacking direction. Charge separation was signalled by pronounced power-law photoluminescence decay polarized along the same axis. In the transverse direction, we observed exponential decay associated with excitons localized on individual monomers. We propose that this effect derives from an intrinsic directional charge-transfer interaction that can ultimately be programmed by molecular packing geometry. PMID:26912040

  1. Photoinduced Charge Separation in Porphyrin Ion Pairs.

    Science.gov (United States)

    Natali, Mirco; Scandola, Franco

    2016-03-10

    Ion pairs between porphyrin-type compounds have been successfully employed for spectral sensitization of semiconductor surfaces and for the preparation of collective binary ionic materials for photonic and (photo)catalytic applications. The understanding of the photophysical processes occurring within ion-paired porphyrin dimers is thus of remarkable importance for the optimization and improvement of such systems. Herein the ion-pair species formed between ZnTMePyP(4+) (Zn1) or H2TMePyP(4+) (H21) and ZnTPPS(4-) (Zn2) or H2TPPS(4-) (H22) in a variety of solvent mixtures are characterized and their photophysics thoroughly investigated by time-resolved techniques. In all the systems studied, very fast and efficient photoinduced charge separation is observed, with the cationic porphyrin being reduced and the anionic one oxidized. Interestingly, despite the very short charge separation distance, the lifetime for charge recombination, depending on the energy gap, can extend into the nanosecond time domain, showing great potential for the utilization of this molecular design within energy conversion schemes. PMID:26905260

  2. Charged particle separation by an electrically tunable nanoporous membrane

    International Nuclear Information System (INIS)

    We study the applicability of an electrically tunable nanoporous semiconductor membrane for the separation of nanoparticles by charge. We show that this type of membrane can overcome one of the major shortcomings of nanoporous membrane applications for particle separation: the compromise between membrane selectivity and permeability. The computational model that we have developed describes the electrostatic potential distribution within the system and tracks the movement of the filtered particle using Brownian dynamics while taking into consideration effects from dielectrophoresis, fluid flow, and electric potentials. We found that for our specific pore geometry, the dielectrophoresis plays a negligible role in the particle dynamics. By comparing the results for charged and uncharged particles, we show that for the optimal combination of applied electrolyte and membrane biases the same membrane can effectively separate same-sized particles based on charge with a difference of up to 3 times in membrane permeability. (paper)

  3. Antiferroelectric-to-Ferroelectric Switching in CH3NH3PbI3 Perovskite and Its Potential Role in Effective Charge Separation in Perovskite Solar Cells

    Science.gov (United States)

    Sewvandi, Galhenage A.; Hu, Dengwei; Chen, Changdong; Ma, Hao; Kusunose, Takafumi; Tanaka, Yasuhiro; Nakanishi, Shunsuke; Feng, Qi

    2016-08-01

    Perovskite solar cells (PSCs) often suffer from large performance variations which impede to define a clear charge-transfer mechanism. Ferroelectric polarization is measured numerically using CH3NH3PbI3 (M A PbI3 ) pellets to overcome the measurement issues such as pinholes and low uniformity of thickness, etc., with M A PbI3 thin films. M A PbI3 perovskite is an antiferroelectric semiconductor which is different from typical semiconducting materials and ferroelectric materials. The effect of polarization carrier separation on the charge-transfer mechanism in the PSCs is elucidated by using the results of ferroelectric and structural studies on the perovskite. The ferroelectric polarization contributes to an inherent carrier-separation effect and the I - V hysteresis. The ferroelectric and semiconducting synergistic charge-separation effect gives an alternative category of solar cells, ferroelectric semiconductor solar cells. Our findings identify the ferroelectric semiconducting behavior of the perovskite absorber as being significant to the improvement of the ferroelectric PSCs performances in future developments.

  4. Color-charge separation in trapped SU(3) fermionic atoms

    International Nuclear Information System (INIS)

    Cold fermionic atoms with three different hyperfine states with SU(3) symmetry confined in one-dimensional optical lattices show color-charge separation, generalizing the conventional spin-charge separation for interacting SU(2) fermions in one dimension. Through time-dependent density-matrix renormalization-group simulations, we explore the features of this phenomenon for a generalized SU(3) Hubbard Hamiltonian. In our numerical simulations of finite-size systems, we observe different velocities of the charge and color degrees of freedom when a Gaussian wave packet or a charge (color) density response to a local perturbation is evolved. The differences between attractive and repulsive interactions are explored and we note that neither a small anisotropy of the interaction, breaking the SU(3) symmetry, nor the filling impedes the basic observation of these effects.

  5. Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation

    CERN Document Server

    Tamura, Hiroyuki

    2013-01-01

    In organic photovoltaics, the mechanism by which free electrons and holes are generated overcoming the Coulomb attraction is a currently much debated topic. To elucidate this mechanism at a molecular level, we carried out a combined electronic structure and quantum dynamical analysis that captures the elementary events from the exciton dissociation to the free carrier generation at polymer/fullerene donor-acceptor heterojunctions. Our calculations show that experimentally observed efficient charge separations can be explained by a combination of two effects: First, the delocalization of charges which substantially reduces the Coulomb barrier, and second, the vibronically hot nature of the charge transfer state which promotes charge dissociation beyond the barrier. These effects facilitate an ultrafast charge separation even at low-band-offset heterojunctions.

  6. The vorticity induced chiral separation effect from the compactified D4-branes with smeared D0-brane charge

    CERN Document Server

    Wu, Chao; Huang, Mei

    2016-01-01

    By using the boundary derivative expansion formalism of fluid/gravity correspondence, we study the chiral vortical separation effect in a strongly coupled nonconformal relativistic fluid in the background of D0-D4 Sakai-Sugimoto model. The relativistic fluid of this model is nonconformal with a conserved axial vector current, and the presence of the chiral vortical separation effect is induced by the addition of a Chern-Simons term in the bulk action. Except the non-dissipative anomalous viscous coefficient and the sound speed, all other thermal and hydrodynamical quantities of first order depend on the temperature and the axial chemical potential. Stability analysis shows that this anomalous relativistic fluid is stable and the doping of smeared D0-brane will slow down the sound speed.

  7. Analysis of charge-sign separation in AMS-02 data

    International Nuclear Information System (INIS)

    The AMS-02 experiment stationed at the International Space Station is taking cosmic-ray data since May 2011. Promising observables to improve the understanding of cosmic rays, antimatter-matter asymmetry and search for dark matter include the positron fraction, the antiproton to proton ratio and anti-helium search. For these observables a proper separation of charge sign up to the high energies is of great importance. For leptons the kinetic energy is determined redundantly by two sub-detectors: The electromagnetic calorimeter with 16 radiation lengths and the powerful spectrometer consisting of a silicon strip tracker combined with a permanent magnet. On the other hand the spectrometer is the only sub-detector in AMS-02 able separate particles according to their charge sign. This separation is limited by the resolution of the spectrometer and interactions in the detector. The resulting charge confusion needs to be understood and carefully taken into account. The preliminary results of this analysis to determine charge confusion from measured data and methods to correct for this misidentification are presented. The effect of charge confusion to the positron fraction and the antiproton proton ratio is discussed.

  8. Charged colloids at low ionic strength: macro- or microphase separation?

    OpenAIRE

    Warren, Patrick B.

    2000-01-01

    Phase separation in charged systems may involve the replacement of critical points by microphase separated states, or charge-density-wave states. A density functional theory for highly charged colloids at low ionic strength is developed to examine this possibility. It is found that the lower critical solution point is most susceptible to microphase separation. Moreover the tendency can be quantified, and related to the importance of small ion entropy in suppressing phase separation at low add...

  9. Probing spin-charge separation using spin transport

    OpenAIRE

    Si, Qimiao

    2000-01-01

    Pedagogical discussions are given on what constitutes a signature of spin-charge separation. A proposal is outlined to probe spin-charge separation in the normal state of the high $T_c$ cuprates using spin transport. Specifically, the proposal is to compare the temperature dependences of the spin resistivity and electrical resistivity: Spin-charge separation will be manifested in the different temperature dependences of these two resistivities. We also estimate the spin diffusion length and s...

  10. Space Charge Effects

    CERN Document Server

    Ferrario, M; Palumbo, L

    2014-01-01

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  11. Functional Arrays for Light Energy Capture and Charge Separation.

    Science.gov (United States)

    Flamigni, Lucia

    2016-06-01

    This article draws, with a simplified but rigorous approach, the typical procedure for the design and optimization of functional multicomponent structures for light to chemical energy conversion for two series of multipartite structures based on prototypical chromophores: polypyridyl metal complexes and porphyrinoids. Starting from a photophysical study performed by steady-state and time-resolved spectroscopic methods, the full deactivation dynamics of the light-absorbing chromophore(s) are disclosed. The preferred deactivation step (electron transfer in this case) is then optimized. This can be done by simply operating on the solvent, but also by changing structure/components that can alter electronic and nuclear factors, via continuous feedback with the research groups in charge of the synthesis. With a presentation suitable for a wide audience, it is here discussed how the effective design of functional multicomponent structures for charge separation can be achieved. PMID:27027981

  12. Spin Charge Separation in the Quantum Spin Hall State

    OpenAIRE

    Qi, Xiao-Liang; Zhang, Shou-Cheng

    2007-01-01

    The quantum spin Hall state is a topologically non-trivial insulator state protected by the time reversal symmetry. We show that such a state always leads to spin-charge separation in the presence of a $\\pi$ flux. Our result is generally valid for any interacting system. We present a proposal to experimentally observe the phenomenon of spin-charge separation in the recently discovered quantum spin Hall system.

  13. Spin Charge Separation in the Quantum Spin Hall State

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum spin Hall state is a topologically non-trivial insulator state protected by the time reversal symmetry. We show that such a state always leads to spin-charge separation in the presence of a {pi} flux. Our result is generally valid for any interacting system. We present a proposal to experimentally observe the phenomenon of spin-charge separation in the recently discovered quantum spin Hall system.

  14. Charge separation in organic photovoltaic cells

    CERN Document Server

    Giazitzidis, Paraskevas; Bisquert, Juan; Vikhrenko, Vyacheslav S

    2014-01-01

    We consider a simple model for the geminate electron-hole separation process in organic photovoltaicssss cells, in order to illustrate the influence of dimensionality of conducting channels on the efficiency of the process. The Miller-Abrahams expression for the transition rates between nearest neighbor sites was used for simulating random walks of the electron in the Coulomb field of the hole. The non-equilibrium kinetic Monte Carlo simulation results qualitatively confirm the equilibrium estimations, although quantitatively the efficiency of the higher dimensional systems is less pronounced. The lifetime of the electron prior to recombination is approximately equal to the lifetime prior to dissociation. Their values indicate that electrons perform long stochastic walks before they are captured by the collector or recombined. The non-equilibrium free energy considerably differs from the equilibrium one. The efficiency of the separation process decreases with increasing the distance to the collector, and this...

  15. Laser-induced charge separation in organic nanofibers

    DEFF Research Database (Denmark)

    Tavares, Luciana; Behn, Dino; Kjelstrup-Hansen, Jakob;

    ), and organic phototransistors (OPTs). However, several device-related issues incl. charge-separation and local band structure remain poorly understood. In this work, we use electrostatic force microscopy (EFM) combined with optical microscopy to study the local surface charge of an individual organic...

  16. Impact of the Vertical Velocity Field on Charging Processes and Charge Separation in a Simulated Thunderstorm

    Institute of Scientific and Technical Information of China (English)

    王飞; 张文军; 郑栋; 徐良韬

    2015-01-01

    A three-dimensional (3D) charging-discharging cloud resolution model was used to investigate the impact of the vertical velocity fi eld on the charging processes and the formation of charge structure in a strong thunderstorm. The distribution and evolution of ice particle content and charges on ice particles were analyzed in diff erent vertical velocity fi elds. The results show that the ice particles in the vertical velocity range from 1 to 5 m s−1 obtained the most charge through charging processes during the lifetime of the thunderstorm. The magnitude of the charges could reach 1014 nC. Before the beginning of lightning activity, the charges produced in updraft region 2 (updraft speed ? 13 m s−1) and updraft region 1 (updraft speed between 5 and 13 m s−1) were relatively signifi cant. The magnitudes of charge reached 1013 nC, which clearly impacted upon the early lightning activity. The vertical velocity conditions in the quasi-steady region (updraft speed between –1 and 1 m s−1) were the most conducive for charge separation on ice particles on diff erent scales. Accordingly, a net charge structure always appeared in the quasi-steady and adjacent regions. Based on the results, a conceptual model of ice particle charging, charge separation, and charge structure formation in the fl ow fi eld was constructed. The model helps to explain observations of the“lightning hole”phenomenon.

  17. Space-Charge Effect

    CERN Document Server

    Chauvin, N

    2013-01-01

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.

  18. Energetics and Kinetics of Primary Charge Separation in Bacterial Photosynthesis

    CERN Document Server

    LeBard, David N; Matyushov, Dmitry V

    2008-01-01

    We report the results of Molecular Dynamics (MD) simulations and formal modeling of the free energy surfaces and reaction rates of primary charge separation in the reaction center of \\textit{Rhodobacter sphaeroides}. Two simulation protocols were used to produce MD trajectories. Standard force field potentials were employed in the first protocol. In the second protocol, the special pair was made polarizable to reproduce a high polarizability of its photoexcited state observed by Stark spectroscopy. The charge distribution between covalent and charge-transfer states of the special pair was dynamically adjusted during the simulation run. We found from both protocols that the breadth of electrostatic fluctuations of the protein/water environment far exceeds previous estimates resulting in about 1.6 eV reorganization energy of electron transfer in the first protocol and 2.5 eV in the second protocol. Most of these electrostatic fluctuations become dynamically frozen on the time-scale of primary charge separation ...

  19. Charge-Neutralization Electrodes for High-Tension Separators

    OpenAIRE

    Dascalescu, L.; R Morar; Iuga, Al.; Neamtu, V.; Suarasan, I.

    1993-01-01

    Safe and efficient operation of industrial high-tension separators requires a strict control of residual electric charge of the particles emerging the process. Principles of charge neutralization in a roll-type electroseparator are briefly discussed, in order to establish the general features of the corona electrodes that might accomplish this task. A new electrode design is suggested. Its spacific features: small cross-section (neglectable perturbation of the material stream), low corona on-...

  20. The role of interfacial water layer in atmospherically relevant charge separation

    Science.gov (United States)

    Bhattacharyya, Indrani

    Charge separation at interfaces is important in various atmospheric processes, such as thunderstorms, lightning, and sand storms. It also plays a key role in several industrial processes, including ink-jet printing and electrostatic separation. Surprisingly, little is known about the underlying physics of these charging phenomena. Since thin films of water are ubiquitous, they may play a role in these charge separation processes. This talk will focus on the experimental investigation of the role of a water adlayer in interfacial charging, with relevance to meteorologically important phenomena, such as atmospheric charging due to wave actions on oceans and sand storms. An ocean wave generates thousands of bubbles, which upon bursting produce numerous large jet droplets and small film droplets that are charged. In the 1960s, Blanchard showed that the jet droplets are positively charged. However, the charge on the film droplets was not known. We designed an experiment to exclusively measure the charge on film droplets generated by bubble bursting on pure water and aqueous salt solution surfaces. We measured their charge to be negative and proposed a model where a slight excess of hydroxide ions in the interfacial water layer is responsible for generating these negatively charged droplets. The findings from this research led to a better understanding of the ionic disposition at the air-water interface. Sand particles in a wind-blown sand layer, or 'saltation' layer, become charged due to collisions, so much so, that it can cause lightning. Silica, being hydrophilic, is coated with a water layer even under low-humidity conditions. To investigate the importance of this water adlayer in charging the silica surfaces, we performed experiments to measure the charge on silica surfaces due to contact and collision processes. In case of contact charging, the maximum charge separation occurred at an optimum relative humidity. On the contrary, in collisional charging process, no

  1. Maximal charge injection of consecutive electron pulses with uniform temporal pulse separation

    International Nuclear Information System (INIS)

    A charge sheet model is proposed for the study of the space-charge limited density of consecutive electron pulses injected to in a diode with uniform temporal pulse separation. Based on the model, an analytical formula is derived for expressing the dependency of the charge density limit on the gap spacing, gap voltage, and pulse separation. The theoretical results are verified by numerical solutions up to electron energy of a few MeV, including relativistic effects. The model can be applied to the design of multiple-pulse electron beams for time resolved electron microscopy and free electron lasers

  2. Directional charge separation in isolated organic semiconductor crystalline nanowires

    OpenAIRE

    Labastide, J. A.; Thompson, H. B.; Marques, S.R.; Colella, N. S.; Briseno, A. L.; M.D. Barnes

    2016-01-01

    One of the fundamental design paradigms in organic photovoltaic device engineering is based on the idea that charge separation is an extrinsically driven process requiring an interface for exciton fission. This idea has driven an enormous materials science engineering effort focused on construction of domain sizes commensurate with a nominal exciton diffusion length of order 10 nm. Here, we show that polarized optical excitation of isolated pristine crystalline nanowires of a small molecule n...

  3. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, C. [Muons, Inc.; Ankenbrandt, Charles M. [Muons, Inc.; Johnson, Rolland P. [Muons, Inc.; Derbenev, Yaroslav [JLAB; Morozov, Vasiliy [JLAB; Neuffer, David [FNAL; Yonehara, K. [FNAL

    2013-12-01

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We report here on the study of the charge separator that created the simulated particles.

  4. Promising Strategy To Improve Charge Separation in Organic Photovoltaics: Installing Permanent Dipoles in PCBM Analogues.

    Science.gov (United States)

    de Gier, Hilde D; Jahani, Fatemeh; Broer, Ria; Hummelen, Jan C; Havenith, Remco W A

    2016-07-14

    A multidisciplinary approach involving organic synthesis and theoretical chemistry was applied to investigate a promising strategy to improve charge separation in organic photovoltaics: installing permanent dipoles in fullerene derivatives. First, a PCBM analogue with a permanent dipole in the side chain (PCBDN) and its reference analogue without a permanent dipole (PCBBz) were successfully synthesized and characterized. Second, a multiscale modeling approach was applied to investigate if a PCBDN environment around a central donor-acceptor complex indeed facilitates charge separation. Alignment of the embedding dipoles in response to charges present on the central donor-acceptor complex enhances charge separation. The good correspondence between experimentally and theoretically determined electronic and optical properties of PCBDN, PCBBz, and PCBM indicates that the theoretical analysis of the embedding effects of these molecules gives a reliable expectation for their influence on the charge separation process at a microscopic scale in a real device. This work suggests the following strategies to improve charge separation in organic photovoltaics: installing permanent dipoles in PCBM analogues and tuning the concentration of these molecules in an organic donor/acceptor blend. PMID:26478954

  5. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: weee@sjtu.edu.cn; Wu, Guiqing; Xu, Zhenming

    2015-01-15

    Highlights: • The cyclone charging was more effective and stable than vibrating charging. • The small particle size was better changed than large ones and was more suitable recycled by TES. • The drying pretreatment is good for improving the short-term charging effect. - Abstract: Plastic products can be found everywhere in people’s daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recycling plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (−)-PE–PS–PC–PVC–ABS–PP-(+), while the triboelectric series obtained by cyclone was (−)-PE–PS–PC–PVC–ABS–PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator.

  6. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation

    International Nuclear Information System (INIS)

    Highlights: • The cyclone charging was more effective and stable than vibrating charging. • The small particle size was better changed than large ones and was more suitable recycled by TES. • The drying pretreatment is good for improving the short-term charging effect. - Abstract: Plastic products can be found everywhere in people’s daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recycling plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (−)-PE–PS–PC–PVC–ABS–PP-(+), while the triboelectric series obtained by cyclone was (−)-PE–PS–PC–PVC–ABS–PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator

  7. Space charge effects of CSR

    International Nuclear Information System (INIS)

    Cooler Storage Ring (CSR), and upgrading program planned at the Heavy Ion Research Facility in Lanzhou (HIRFL), will supply beams with higher quality and intensity. Space charge effects should be considered due to this magnitude of intensity in CSR. The concept and some phenomena of space charge effects are discussed. Space charge intensity limit and space charge tune shift of normal CSR operation are given. It is of significance for the construction and operation of the future facility

  8. Nanoengineered field induced charge separation membranes manufacture thereof

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Kevin C.; Haslam, Jeffery J.; Bourcier, William L.; Floyd, III, William Clary

    2016-08-02

    A device according to one embodiment includes a porous membrane having a surface charge and pore configuration characterized by a double layer overlap effect being present in pores of the membrane, where the porous membrane includes functional groups that preferentially interact with either cations or anions. A device according to another embodiment includes a porous membrane having a surface charge in pores thereof sufficient to impart anion or cation selectivity in the pores. Additional devices, systems and methods are also presented.

  9. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation.

    Science.gov (United States)

    Li, Jia; Wu, Guiqing; Xu, Zhenming

    2015-01-01

    Plastic products can be found everywhere in people's daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recycling plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (-)-PE-PS-PC-PVC-ABS-PP-(+), while the triboelectric series obtained by cyclone was (-)-PE-PS-PC-PVC-ABS-PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator. PMID:25453321

  10. Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions

    CERN Document Server

    Yin, Yi

    2015-01-01

    Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction --- a phenomenon known as the Chiral Magnetic Effect (CME). The quark-gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHC for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from...

  11. Charge separation with fluctuating domains in relativistic heavy-ion collisions

    OpenAIRE

    Shou, Qi-Ye; Ma, Guo-Liang; Ma, Yu-Gang

    2014-01-01

    Charge separation induced by the chiral magnetic effect suggested that some ${\\cal P}$- or ${\\cal CP}$-odd metastable domains could be produced in a QCD vacuum in the early stage of relativistic heavy-ion collisions. Based on a multi-phase transport model, our results suggest that a domain-based scenario with final state interactions can describe the solenoidal tracker at RHIC detector (STAR) measurements of both same- and opposite-charge azimuthal angle correlations, $$, in Au+Au collisions ...

  12. Initial study of dry ultrafine coal beneficiation utilizing triboelectric charging with subsequent electrostatic separation

    Energy Technology Data Exchange (ETDEWEB)

    Link, T.A.; Killmeyer, R.P.; Elstrodt, R.H.; Haden, N.H.

    1990-10-01

    A novel, dry process using electrostatics to beneficiate ultrafine coal is being developed by the Coal Preparation Division at the Pittsburgh Energy Technology Center. The historical concept of triboelectricity and its eventual use as a means of charging coal for electrostatic separation will be discussed. Test data from a first-generation and a second-generation Tribo-Electrostatic separator are presented showing the effects of feed particle size, separator voltage, solids concentration in air, and particle velocity on separation performance. 10 refs., 10 figs., 9 tabs.

  13. A predictive theory of charge separation in organic photovoltaics interfaces

    Science.gov (United States)

    Troisi, Alessandro; Liu, Tao; Caruso, Domenico; Cheung, David L.; McMahon, David P.

    2012-09-01

    The key process in organic photovoltaics cells is the separation of an exciton, close to the donor/acceptor interface into a free hole (in the donor) and a free electron (in the acceptor). In an efficient solar cell, the majority of absorbed photons generate such hole-electron pairs but it is not clear why such a charge separation process is so efficient in some blends (for example in the blend formed by poly(3- hexylthiophene) (P3HT) and a C60 derivative (PCBM)) and how can one design better OPV materials. The electronic and geometric structure of the prototypical polymer:fullerene interface (P3HT:PCBM) is investigated theoretically using a combination of classical and quantum simulation methods. It is shown that the electronic structure of P3HT in contact with PCBM is significantly altered compared to bulk P3HT. Due to the additional free volume of the interface, P3HT chains close to PCBM are more disordered and, consequently, they are characterized by an increased band gap. Excitons and holes are therefore repelled by the interface. This provides a possible explanation of the low recombination efficiency and supports the direct formation of "quasi-free" charge separated species at the interface. This idea is further explored here by using a more general system-independent model Hamiltonian. The long range exciton dissociation rate is computed as a function of the exciton distance from the interface and the average dissociation distance is evaluated by comparing this rate with the exciton migration rate with a kinetic model. The phenomenological model shows that also in a generic interface the direct formation if quasi-free charges is extremely likely.

  14. Screening effect on nanostructure of charged gel

    DEFF Research Database (Denmark)

    Sugiyama, M; Annaka, M; Hino, M;

    2004-01-01

    Charge screening effects on nanostructures of N-isopropylacrylamide-sodium acrylate (NIPA-SA) and -acrylic acid (NIPA-AAc) gels are investigated with small-angle neutron scattering. The NIPA-SA and NIPA-AAc gels with low water content exhibit microphase separations with different dimensions. The...... dehydrated NIPA-SA gel also makes the microphase separation but the dehydrated NIPA-AAc gel does not. These results indicate that ionic circumstance around charged bases strongly affects the nanostructures both of the dehydrated gel and the gel with low water content. (C) 2004 Elsevier B. V. All rights...

  15. Coupling between pore formation and phase separation in charged lipid membranes

    Science.gov (United States)

    Himeno, Hiroki; Ito, Hiroaki; Higuchi, Yuji; Hamada, Tsutomu; Shimokawa, Naofumi; Takagi, Masahiro

    2015-12-01

    We investigated the effect of charge on the membrane morphology of giant unilamellar vesicles (GUVs) composed of various mixtures containing charged lipids. We observed the membrane morphologies by fluorescent and confocal laser microscopy in lipid mixtures consisting of a neutral unsaturated lipid [dioleoylphosphatidylcholine (DOPC)], a neutral saturated lipid [dipalmitoylphosphatidylcholine (DPPC)], a charged unsaturated lipid [dioleoylphosphatidylglycerol (DOP G(-)) ], a charged saturated lipid [dipalmitoylphosphatidylglycerol (DPP G(-)) ], and cholesterol (Chol). In binary mixtures of neutral DOPC-DPPC and charged DOPC -DPP G(-) , spherical vesicles were formed. On the other hand, pore formation was often observed with GUVs consisting of DOP G(-) and DPPC. In a DPPC-DPPG(-) -Chol ternary mixture, pore-formed vesicles were also frequently observed. The percentage of pore-formed vesicles increased with the DPP G(-) concentration. Moreover, when the head group charges of charged lipids were screened by the addition of salt, pore-formed vesicles were suppressed in both the binary and ternary charged lipid mixtures. We discuss the mechanisms of pore formation in charged lipid mixtures and the relationship between phase separation and the membrane morphology. Finally, we reproduce the results seen in experimental systems by using coarse-grained molecular dynamics simulations.

  16. Spin-charge separation and anomalous correlation functions in the edge states of quantum hall liquids

    CERN Document Server

    Lee, H C

    1998-01-01

    First, we have investigated chiral edges of a quantum Hall liquids at filling factor nu=2. The separation of spin and charge degrees of freedom becomes manifest in the presence of long- range Coulomb interaction. Due to the spin-charge separation the tunneling density of states takes the form D(omega) approx ( -lnl omega l) sup 1 sup / sup 2. Experimentally, the spin-charge separation can be revealed in the temperature and voltage dependence of the tunneling current into Fermi liquid reservoir. Second, the charge and spin correlation functions of partially spin-polarized edge electrons of a quantum Hall bar are studied using effective Hamiltonian and bosonization techniques. In the presence of the Coulomb interaction between the edges with opposite chirality we find a different crossover behavior in spin and charge correlation functions. The crossover of the spin correlation function in the Coulomb dominated regime is characterized by an anomalous exponent, which originates from the finite value of the effect...

  17. Localized charged states and phase separation near second order phase transition

    OpenAIRE

    Kabanov, V. V.; Mamin, R. F.; Shaposhnikova, T. S.

    2008-01-01

    Localized charged states and phase segregation are described in the framework of the phenomenological Ginzburg-Landau theory of phase transitions. The Coulomb interactions determines the charge distribution and the characteristic length of the phase separated states. The phase separation with charge segregation becomes possible because of the large dielectric constant and the small density of extra charge in the range of charge localization. The phase diagram is calculated and the energy gain...

  18. Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions

    Science.gov (United States)

    Yin, Yi; Liao, Jinfeng

    2016-05-01

    Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction - a phenomenon known as the Chiral Magnetic Effect (CME). The quark-gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHC for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from both CME and background effects in one and same framework. The implications for the search of CME are discussed.

  19. Origin of space-separated charges in photoexcited organic heterojunctions on ultrafast time scales

    CERN Document Server

    Janković, Veljko

    2016-01-01

    We present detailed investigation of ultrafast (sub-ps) exciton dynamics in the lattice model of a donor/acceptor heterojunction. Exciton generation by means of a photoexcitation, exciton dissociation, and further charge separation are treated on equal footing. The experimentally observed presence of space-separated charges at $\\lesssim 100$ fs after the photoexcitation is usually attributed to ultrafast transitions from excitons in the donor to charge transfer and charge separated states. Here, we show, however, that space-separated charges appearing on $\\lesssim 100$-fs time scales are predominantly directly optically generated. Our theoretical insights into the ultrafast pump-probe spectroscopy challenge usual interpretations of pump-probe spectra in terms of ultrafast population transfer from donor excitons to space-separated charges.

  20. Light-Induced Charge Separation and Transfer in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HUANG Yu-Hua; LI Qing-Guo; ZHAO You-Yuan; ZHANG Zhong-Bin; OU-YANG Xiao-Ping; GONG Qin-Gan; CHEN Ling-Bing; LI Fu-Ming; LIU Jian; DING Jian-Dong

    2000-01-01

    The photo-voltage signals in bacteriorhodopsin(bR) excited by 1064nm pulse laser are different from those by 532 or 355 nm. It shows that the positive and negative photoelectric signals are produced by the motion of the positive and negative charges, respectively, and more energy is needed for producing the positive charges than the negative. The mechanism of light-induced charge generation and charge transfer in bR was studied and analyzed by measuring the photoelectric signals with different impedance of measuring circuit and different pulse-width of 532 nm laser as pump light.

  1. Natural Limits for Currents in Charge Separated Pulsar Magnetospheres

    CERN Document Server

    Jessner, A; Kunzl, T A

    2002-01-01

    Rough estimates and upper limits on current and particle densities form the basis of most of the canonical pulsar models. Whereas the surface of the rotating neutron star is capable of supplying sufficient charges to provide a current that, given the polar cap potential, could easily fuel the observed energy loss processes, observational and theoretical constraints provide strict upper limits to the charge densities. The space charge of a current consisting solely of particles having only one sign creates a compensating potential that will make the maximum current dependent on potential and distance. In the non-relativistic case this fact is expressed in the familiar Child-Langmuir law. Its relativistic generalization and subsequent application to the inner pulsar magnetosphere provides clear limits on the strength and radial extension of charged currents originating on the polar cap. Violent Pierce-type oscillations set in, if one attempts to inject more current than the space charge limit into a given volum...

  2. Fast charge separation in a non-fullerene organic solar cell with a small driving force

    Science.gov (United States)

    Liu, Jing; Chen, Shangshang; Qian, Deping; Gautam, Bhoj; Yang, Guofang; Zhao, Jingbo; Bergqvist, Jonas; Zhang, Fengling; Ma, Wei; Ade, Harald; Inganäs, Olle; Gundogdu, Kenan; Gao, Feng; Yan, He

    2016-07-01

    Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.

  3. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  4. The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics.

    Science.gov (United States)

    Nan, Guangjun; Zhang, Xu; Lu, Gang

    2016-06-29

    Energy independent, yet higher than 90% internal quantum efficiency (IQE), has been observed in many organic photovoltaics (OPVs). However, its physical origin remains largely unknown and controversial. The hypothesis that the lowest charge-transfer (CT) state may be weakly bound at the interface has been proposed to rationalize the experimental observations. In this paper, we study the nature of the lowest-energy CT (CT1) state, and show conclusively that the CT1 state is localized in typical OPVs. The electronic couplings in the donor and acceptor are found to determine the localization of the CT1 state. We examine the geminate recombination of the CT1 state and estimate its lifetime from first principles. We identify the vibrational modes that contribute to the geminate recombination. Using material parameters determined from first principles and experiments, we carry out kinetic Monte Carlo simulations to examine the charge separation of the localized CT1 state. We find that the localized CT1 state can indeed yield efficient charge separation with IQE higher than 90%. Dynamic disorder and configuration entropy can provide the energetic and entropy driving force for charge separation. Charge separation efficiency depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than that normal to the interface. Reorganization energy is found to be the most important material parameter for charge separation, and lowering the reorganization energy of the donor should be pursued in the materials design. PMID:27306609

  5. Chiral capillary electrophoresis separations of charged helical molecules

    Czech Academy of Sciences Publication Activity Database

    Koval, Dušan; Severa, Lukáš; Teplý, Filip; Kašička, Václav

    New Orleans: -, 2014. P1309. [HPLC 2014. International Symposium on High Performance Liquid Phase Separations and Related Techniques /41./. 11.05.2014-15.05.2014, New Orleans] R&D Projects: GA ČR GA13-19213S; GA ČR GA13-32974S Grant ostatní: AV ČR(CZ) M200551208 Institutional support: RVO:61388963 Keywords : helquats * capillary electrophoresis * chiral separation Subject RIV: CB - Analytical Chemistry, Separation

  6. Frustrated phase separation in two-dimensional charged systems

    OpenAIRE

    Ortix, C.; Lorenzana, J.; Di Castro, C.

    2005-01-01

    We study phase separation frustrated by the long-range Coulomb interaction in two dimensional electronic systems with emphasys in the case of a metallic and an insulating phase. We find that two-dimensional systems are more prone to mesoscopic frustrated phase separation than the three dimensional ones.

  7. Coarse-grained molecular dynamics simulation of binary charged lipid membranes: Phase separation and morphological dynamics

    CERN Document Server

    Ito, Hiroaki; Shimokawa, Naofumi

    2016-01-01

    Biomembranes, which are mainly composed of neutral and charged lipids, exhibit a large variety of functional structures and dynamics. Here, we report a coarse-grained molecular dynamics (MD) simulation of the phase separation and morphological dynamics in charged lipid bilayer vesicles. The screened long-range electrostatic repulsion among charged head groups delays or inhibits the lateral phase separation in charged vesicles compared with neutral vesicles, suggesting the transition of the phase-separation mechanism from spinodal decomposition to nucleation or homogeneous dispersion. Moreover, the electrostatic repulsion causes morphological changes, such as pore formation, and further transformations into disk, string, and bicelle structures, which are spatiotemporally coupled to the lateral segregation of charged lipids. Based on our coarse-grained MD simulation, we propose a plausible mechanism of pore formation at the molecular level. The pore formation in a charged-lipid-rich domain is initiated by the p...

  8. Effective Topological Charge Cancelation Mechanism

    Science.gov (United States)

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-06-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy.

  9. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    Science.gov (United States)

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    morphology of nanostructured photocatalysts can reduce the migration distance of charge carriers. Improving the conductivity of photocatalysts by using graphitic materials can also improve the transport of charge carriers. Upon charge carrier migration, electrons and holes also tend to recombine. The suppression of recombination can be achieved by constructing heterojunctions that enhance charge separation in the photocatalysts. Surface states acting as recombination centers should also be removed to improve the photocatalytic efficiency. Moreover, surface reactions, which are the core chemical processes during the solar energy conversion, can be enhanced by applying cocatalysts as well as suppressing side reactions. All of these strategies have been proved to be essential for enhancing the activities of semiconductor photocatalysts. It is hoped that delicate manipulation of photogenerated charge carriers in semiconductor photocatalysts will hold the key to effective solar-to-chemical energy conversion. PMID:27075166

  10. Heterostructured magnetite-titanate nanosheets for prompt charge selective binding and magnetic separation of mixed proteins.

    Science.gov (United States)

    Zhou, Qinhua; Lu, Zhufeng; Cao, Xuebo

    2014-02-01

    We reported the prompt charge selective binding and magnetic separation of mixed proteins by utilizing heterostructured Fe3O4-Na2Ti3O7 nanosheets. Fe3O4-Na2Ti3O7 nanosheets are found to combine a variety of structure and property merits, such as the increased interlayer galleries, exposed exchange sites, flexible framework, and magnetic manipulability. Probing the dissociation dynamics of Na(+) inside the nanosheets reveals that they possess remarkably enhanced Na(+) dissociation capability and the dissociation rate of Na(+) reaches 7.9×10(-)(6)mol g(-)(1)s(-)(1), much superior to titanate nanotubes. In model protein separation experiments, we utilize mixed proteins containing albumin and hemoglobin to assess Fe3O4-Na2Ti3O7 nanosheets. It is found that, by controlling the pH of the sample at 6, positively charged hemoglobin and negatively charged albumin are immediately separated (∼5s) by the nanosheets and the saturated loading capacity of hemoglobin on the nanosheets reaches 4.7±0.61g g(-)(1). Furthermore, hemoglobin bound to the nanosheets can be readily released after buffer wash and is not damaged, while the nanosheets are recyclable and maintain their high efficiency. The outstanding performance of Fe3O4-Na2Ti3O7 nanosheets in separating mixed proteins is attributed to the ultrafast Na(+) dissociation rate, flexible titanate framework, open geometry, and aqueous-like environment to stabilize proteins. These merits, together with the recyclability and cost effectiveness, should make Fe3O4-Na2Ti3O7 nanosheets ideal candidates for biological recognition, isolation, and purification under technologically useful conditions. PMID:24267329

  11. Chiral separations of charged boranes and carboranes by CZE

    Czech Academy of Sciences Publication Activity Database

    Slavíček, Viktor; Vespalec, Radim

    Praha: Česká chemická společnost, 2001 - (Kašička, V.; Deyl, Z.), s. 51 ISBN 80-7080-437-8. [International Symposium Separations in the BioSciences /2./. Praha (CZ), 17.09.2002-20.09.2002] Institutional research plan: CEZ:AV0Z4031919 Keywords : deltahedral boranes * capillary zone electrophoresis * beta-cyclodextrin Subject RIV: CB - Analytical Chemistry, Separation

  12. On the Mechanism of the Primary Charge Separation in Bacterial Photosynthesis

    CERN Document Server

    Mak, C H; Egger, Reinhold

    1994-01-01

    We present a detailed analysis of the mechanism of the primary charge separation process in bacterial photosynthesis using real-time path integrals. Direct computer simulations as well as an approximate analytical theory have been employed to map out the dynamics of the charge separation process in many regions of the parameter space relevant to bacterial photosynthesis. Two distinct parameter regions, one characteristic of sequential transfer and the other characteristic of superexchange, have been found to yield charge separation dynamics in agreement with experiments. Nonadiabatic theory provides accurate rate estimates for low-lying and very high-lying bacteriochlorophyll state energies, but it breaks down in between these two regimes.

  13. Holographic Chiral Electric Separation Effect

    OpenAIRE

    Pu, Shi; Wu, Shang-Yu; Yang, Di-Lun

    2014-01-01

    We investigate the chiral electric separation effect, where an axial current is induced by an electric field in the presence of both vector and axial chemical potentials, in a strongly coupled plasma via the Sakai-Sugimoto model with an $U(1)_R\\times U(1)_L$ symmetry. By introducing different chemical potentials in $U(1)_R$ and $U(1)_L$ sectors, we compute the axial direct current (DC) conductivity stemming from the chiral current and the normal DC conductivity. We find that the axial conduct...

  14. Spatially separated charge densities of electrons and holes in organic-inorganic halide perovskites

    International Nuclear Information System (INIS)

    Solution-processable methylammonium lead trihalide perovskites exhibit remarkable high-absorption and low-loss properties for solar energy conversion. Calculation from density functional theory indicates the presence of non-equivalent halogen atoms in the unit cell because of the specific orientation of the organic cation. Considering the 〈100〉 orientation as an example, I1, one of the halogen atoms, differs from the other iodine atoms (I2 and I3) in terms of its interaction with the organic cation. The valance-band-maximum (VBM) and conduction-band-minimum (CBM) states are derived mainly from 5p orbital of I1 atom and 6p orbital of Pb atom, respectively. The spatially separated charge densities of the electrons and holes justify the low recombination rate of the pure iodide perovskite. Chlorine substitution further strengthens the unique position of the I1 atom, leading to more localized charge density around the I1 atom and less charge density around the other atoms at the VBM state. The less overlap of charge densities between the VBM and CBM states explains the relatively lower carrier recombination rate of the iodine-chlorine mixed perovskite. Chlorine substitution significantly reduces the effective mass at a direction perpendicular to the Pb-Cl bond and organic axis, enhancing the carrier transport property of the mixed perovskite in this direction

  15. Spatially separated charge densities of electrons and holes in organic-inorganic halide perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan; Liang, Chunjun, E-mail: chjliang@bjtu.edu.cn, E-mail: zhqhe@bjtu.edu.cn; Zhang, Huimin; You, Fangtian; He, Zhiqun, E-mail: chjliang@bjtu.edu.cn, E-mail: zhqhe@bjtu.edu.cn [Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chunxiu [Information Recording Materials Lab, Beijing Institute of Graphic Communication, Beijing 102600 (China)

    2015-02-21

    Solution-processable methylammonium lead trihalide perovskites exhibit remarkable high-absorption and low-loss properties for solar energy conversion. Calculation from density functional theory indicates the presence of non-equivalent halogen atoms in the unit cell because of the specific orientation of the organic cation. Considering the 〈100〉 orientation as an example, I{sub 1}, one of the halogen atoms, differs from the other iodine atoms (I{sub 2} and I{sub 3}) in terms of its interaction with the organic cation. The valance-band-maximum (VBM) and conduction-band-minimum (CBM) states are derived mainly from 5p orbital of I{sub 1} atom and 6p orbital of Pb atom, respectively. The spatially separated charge densities of the electrons and holes justify the low recombination rate of the pure iodide perovskite. Chlorine substitution further strengthens the unique position of the I{sub 1} atom, leading to more localized charge density around the I{sub 1} atom and less charge density around the other atoms at the VBM state. The less overlap of charge densities between the VBM and CBM states explains the relatively lower carrier recombination rate of the iodine-chlorine mixed perovskite. Chlorine substitution significantly reduces the effective mass at a direction perpendicular to the Pb-Cl bond and organic axis, enhancing the carrier transport property of the mixed perovskite in this direction.

  16. Chiral capillary electrophoresis separations of charged helical molecules

    Czech Academy of Sciences Publication Activity Database

    Koval, Dušan; Severa, Lukáš; Reyes Gutierrez, Paul Eduardo; Teplý, Filip; Kašička, Václav

    Praha: Ústav organické chemie a biochemie AV ČR, v.v.i, 2014. s. 206. ISBN 978-80-86241-52-4. [Chirality 2014. International Symposium on Chiral Discrimination /26./. 27.07.2014-30.07.2014, Praha] R&D Projects: GA ČR GA13-19213S; GA ČR GA13-32974S Grant ostatní: GA AV ČR(CZ) M200551208 Institutional support: RVO:61388963 Keywords : helquats * capillary electrophoresis * chiral separation Subject RIV: CB - Analytical Chemistry, Separation

  17. The Impact of Donor-Acceptor Phase Separation on the Charge Carrier Dynamics in pBTTT:PCBM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-04-07

    The effect of donor–acceptor phase separation, controlled by the donor–acceptor mixing ratio, on the charge generation and recombination dynamics in pBTTT-C14:PC70BM bulk heterojunction photovoltaic blends is presented. Transient absorption (TA) spectroscopy spanning the dynamic range from pico- to microseconds in the visible and near-infrared spectral regions reveals that in a 1:1 blend exciton dissociation is ultrafast; however, charges cannot entirely escape their mutual Coulomb attraction and thus predominantly recombine geminately on a sub-ns timescale. In contrast, a polymer:fullerene mixing ratio of 1:4 facilitates the formation of spatially separated, that is free, charges and reduces substantially the fraction of geminate charge recombination, in turn leading to much more efficient photovoltaic devices. This illustrates that spatially extended donor or acceptor domains are required for the separation of charges on an ultrafast timescale (<100 fs), indicating that they are not only important for efficient charge transport and extraction, but also critically influence the initial stages of free charge carrier formation.

  18. Studies on density dependence of charge separation in a direct energy converter using slanted Cusp magnetic field

    International Nuclear Information System (INIS)

    In an advanced fusion, fusion-produced charged particles must be separated from each other for efficient energy conversion to electricity. The CuspDEC performs this function of separation and direct energy conversion. Analysis of working characteristics of CuspDEC on plasma density is an important subject. This paper summarizes and discusses experimental and theoretical works for high density plasma by using a small scale experimental device employing a slanted cusp magnetic field. When the incident plasma is low-density, good separation of the charged particles can be accomplished and this is explained by the theory based on a single particle motion. In high density plasma, however, this theory cannot be always applied due to space charge effects. In the experiment, as gradient of the field line increases, separation capability of the charged particles becomes higher. As plasma density becomes higher, however, separation capability becomes lower. This can be qualitatively explained by using calculations of the modified Störmer potential including space charge potential. (author)

  19. Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels

    OpenAIRE

    Zhu, Junjie; Xuan, Xiangchun

    2011-01-01

    The separation of particles from a heterogeneous mixture is critical in chemical and biological analyses. Many methods have been developed to separate particles in microfluidic devices. However, the majority of these separations have been limited to be size based and binary. We demonstrate herein a continuous dc electric field driven separation of carboxyl-coated and noncoated 10 μm polystyrene beads by charge in a double-spiral microchannel. This method exploits the inherent electric field g...

  20. Effects of granular charge on flow and mixing

    Science.gov (United States)

    Shinbrot, T.; Herrmann, H. J.

    2008-12-01

    Sandstorms in the desert have long been reported to produce sparks and other electrical disturbances - indeed as long ago as 1850, Faraday commented on the peculiarities of granular charging during desert sandstorms. Similarly, lightning strikes within volcanic dust plumes have been repeatedly reported for over half a century, but remain unexplained. The problem of granular charging has applied, as well as natural, implications, for charged particle clouds frequently generate spectacularly devastating dust explosions in granular processing plants, and sand becomes strongly electrified by helicopters traveling in desert environments. The issue even has implications for missions to the Moon and to Mars, where charged dust degrades solar cells viability and clings to spacesuits, limiting the lifetime of their joints. Despite the wide-ranging importance of granular charging, even the simplest aspects of its causes remain elusive. To take one example, sand grains in the desert manage to charge one another despite having only similar materials to rub against over expanses of many miles - thus existing theories of charging due to material differences fail entirely to account for the observed charging of desert sands. In this talk, we describe recent progress made in identifying underlying causes of granular charging, both in desert-like environments and in industrial applications, and we examine effects of granular charging on flow, mixing and separation of common granular materials. We find that charging of identical grains can occur under simple laboratory conditions, and we make new predictions for the effects of this charging on granular behaviours.

  1. Synthetic system mimicking the energy transfer and charge separation of natural photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gust, D.; Moore, T.A.

    1985-05-01

    A synthetic molecular triad consisting of a porphyrin P linked to both a quinone Q and a carotenoid polyene C has been prepared as a mimic of natural photosynthesis for solar energy conversion purposes. Laser flash excitation of the porphyrin moiety yields a charge-separated state Csup(+.)-P-Qsup(-.) within 100 ps with a quantum yield of more than 0.25. This charge-separated state has a lifetime on the microsecond time scale in suitable solvents. The triad also models photosynthetic antenna function and photoprotection from singlet oxygen damge. The successful biomimicry of photosynthetic charge separation is in part the result of multistep electron transfers which rapidly separate the charges and leave the system at high potential, but with a considerable barrier to recombination.

  2. The direct observation of charge separation dynamics in CdSe quantum dots/cobaloxime hybrids.

    Science.gov (United States)

    Huang, J; Tang, Y; Mulfort, K L; Zhang, X

    2016-02-01

    In this work, we investigated photoinduced charge separation dynamics in a CdSe quantum dot/cobaloxime molecular catalyst hybrid using the combination of transient optical (OTA) and X-ray absorption (XTA) spectroscopy. We show that ultrafast charge separation occurs through electron transfer (ET) from CdSe QDs to cobaloxime. In addition to the enhanced 1S exciton bleach recovery in CdSe QDs due to the presence of cobaloxime, the direct evidence for ET process, i.e. the formation of the transient charge separated state, is captured by XTA. These results not only demonstrate the capability of XTA to capture the transient species during the photoinduced reactions in hybrid nanostructures but also enhance our understanding of charge separation dynamics in semiconductor nanocrystal/molecular catalyst hybrid. PMID:26805707

  3. The direct observation of charge separation dynamics in CdSe quantum dots/cobaloxime hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Tang, Y.; Mulfort, Karen L.; Zhang, Xiaoyi

    2016-02-14

    In this work, we investigated photoinduced charge separation dynamics in a CdSe quantum dot/cobaloxime molecular catalyst hybrid using the combination of transient optical (OTA) and X-ray absorption (XTA) spectroscopy. We show that ultrafast charge separation occurs through electron transfer (ET) from CdSe QDs to cobaloxime. In addition to the enhanced 1S exciton bleach recovery in CdSe QDs due to the presence of cobaloxime, the direct evidence for ET process, i.e. the formation of the transient charge separated state, is captured by XTA. These results not only demonstrate the capability of XTA to capture the transient species during the photoinduced reactions in hybrid nanostructures but also enhance our understanding of charge separation dynamics in semiconductor nanocrystal/molecular catalyst hybrid

  4. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism.

    Science.gov (United States)

    Wang, Sihong; Lin, Long; Xie, Yannan; Jing, Qingshen; Niu, Simiao; Wang, Zhong Lin

    2013-05-01

    Aiming at harvesting ambient mechanical energy for self-powered systems, triboelectric nanogenerators (TENGs) have been recently developed as a highly efficient, cost-effective and robust approach to generate electricity from mechanical movements and vibrations on the basis of the coupling between triboelectrification and electrostatic induction. However, all of the previously demonstrated TENGs are based on vertical separation of triboelectric-charged planes, which requires sophisticated device structures to ensure enough resilience for the charge separation, otherwise there is no output current. In this paper, we demonstrated a newly designed TENG based on an in-plane charge separation process using the relative sliding between two contacting surfaces. Using Polyamide 6,6 (Nylon) and polytetrafluoroethylene (PTFE) films with surface etched nanowires, the two polymers at the opposite ends of the triboelectric series, the newly invented TENG produces an open-circuit voltage up to ~1300 V and a short-circuit current density of 4.1 mA/m(2) with a peak power density of 5.3 W/m(2), which can be used as a direct power source for instantaneously driving hundreds of serially connected light-emitting diodes (LEDs). The working principle and the relationships between electrical outputs and the sliding motion are fully elaborated and systematically studied, providing a new mode of TENGs with diverse applications. Compared to the existing vertical-touching based TENGs, this planar-sliding TENG has a high efficiency, easy fabrication, and suitability for many types of mechanical triggering. Furthermore, with the relationship between the electrical output and the sliding motion being calibrated, the sliding-based TENG could potentially be used as a self-powered displacement/speed/acceleration sensor. PMID:23581714

  5. Dark fermions from the Standard Model via spin-charge separation

    CERN Document Server

    Xiong, Chi

    2016-01-01

    We study a new composite scenario of the lepton sector in the Standard Model by a de-gauging procedure called spin-charge separation and propose that leptons are bound states of some neutral fermions and Higgs bosons. Continuing this procedure we may obtain more fundamental dark fermions. They become the physical leptons by acquiring both charges and masses from some Higgs fields.

  6. Nuclear charge and isobar separation in a gas-filled enge split-pole magnetic spectrograph

    International Nuclear Information System (INIS)

    The sepration technique is based on the fact that charge-changing processes of an ion in a gas, if they occur frequently enough in a magnetic field region, lead to trajectories determined by the average charge state of the ion in the gas. The technique has been used to separate isobaric 58Ni and 58Fe ions. 7 refs., 4 figs., 1 tab

  7. Excitation energy transfer and charge separation in photosystem II membranes revisited.

    Science.gov (United States)

    Broess, Koen; Trinkunas, Gediminas; van der Weij-de Wit, Chantal D; Dekker, Jan P; van Hoek, Arie; van Amerongen, Herbert

    2006-11-15

    We have performed time-resolved fluorescence measurements on photosystem II (PSII) containing membranes (BBY particles) from spinach with open reaction centers. The decay kinetics can be fitted with two main decay components with an average decay time of 150 ps. Comparison with recent kinetic exciton annihilation data on the major light-harvesting complex of PSII (LHCII) suggests that excitation diffusion within the antenna contributes significantly to the overall charge separation time in PSII, which disagrees with previously proposed trap-limited models. To establish to which extent excitation diffusion contributes to the overall charge separation time, we propose a simple coarse-grained method, based on the supramolecular organization of PSII and LHCII in grana membranes, to model the energy migration and charge separation processes in PSII simultaneously in a transparent way. All simulations have in common that the charge separation is fast and nearly irreversible, corresponding to a significant drop in free energy upon primary charge separation, and that in PSII membranes energy migration imposes a larger kinetic barrier for the overall process than primary charge separation. PMID:16861268

  8. Numerical Simulation for Space Charge Effect Calculation

    International Nuclear Information System (INIS)

    Numerical simulation of space charge effect, analysis of three dimensional uniformly charged zero emittance ellipsoidal bunch as well as comparative analysis of numerical and analytical results are presented. (author)

  9. Physics-based preconditioners for two-fluid electrostatic and electromagnetic models with charge separation

    Science.gov (United States)

    Leibs, C.; Chacon, L.; Knoll, D. A.

    2013-10-01

    Recently, fluid acceleration of a fully implicit kinetic particle-in-cell (PIC) simulation has been successfully demonstrated. Central to these algorithms is robust preconditioning of the fluid system. In the context of kinetic simulations, the fluid system features conservation equations for both ions and electrons, plus field evolution equations, and must allow for charge separation effects. In this work, we concern ourselves with electrostatic and electromagnetic two-fluid models in multiple dimensions. Electromagnetic fields are prescribed via the Darwin approximation to project out spurious light-wave time scales. Disparate time scales remain among the abundance of supported plasma waves. The resulting nonlinear, stiff hyperbolic PDE systems are effectively preconditioned using physics-based preconditioning ideas, whereby their linearized form is transformed into parabolic PDEs that target the fast wave behavior. These elliptic systems can be efficiently inverted by multigrid methods. We will demonstrate the effectiveness of the approach via numerical experiments. Work funded by LANL LDRD program.

  10. Effects of induced charge in the kinestatic charge detector.

    Science.gov (United States)

    Wagenaar, D J; Terwilliger, R A

    1995-05-01

    The principle of the kinestatic charge detector (KCD) for digital radiography depends on the synchronization of the scan velocity of a parallel plate drift chamber with the cation drift velocity. Compared with line-beam scanners, this motion-compensated imaging technique makes better use of the x-ray tube output. A Frisch grid traditionally has been used within the KCD to minimize unwanted signal contributions from both cations and negative charge carriers during irradiation. In this work the charge induction process in a parallel plate geometry was investigated for the special case of the KCD. In the limit of infinite plates, the cathode charge density due to both cations and negative charge carriers increases quadratically in time for a kinestatically scanned narrow slit. In the KCD the cathode is segmented into an array of narrow electrodes, each aligned with the incident x-ray beam. Our conformal mapping computation determined that the shape of the induced charge signal depends critically on delta x/w, the ratio of electrode width to drift gap. Our conclusion introduces the possibility of eliminating the Frisch grid from the KCD design because the value of delta x/w required for transverse sampling in the KCD is sufficiently low as to allow "self-gridding" to take effect. PMID:7643803

  11. Effect of Zn Adsorption on Charge of Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    SUNHAN-YUAN

    1993-01-01

    The variation in appa rent carge of two typical variable charge soils resulting from Zn adsorption were studied by KCl saturation and NH4NO3 replacement methods.Results showed that zinc were adsorbed specifically to those sites with negative charge.As in different pH ranges,the percantages of specific and electrostatic adsorptions of zine and the mechanisms of specific adsorption were different,the effects of Zn adsorption on apparent charge were varied and could be characterized as:when 1 mmol Zn2+ was adsorbed,a change about 1 mmol in the apparent charge was observed in the low pH range(1),1.4 to 1.5mmol in the moderate pH range(II) and 0.55 to 0.6mmol in the high pH range (III).These experimental data,in terms of soil charge,proved once more author's conclusion in the preceding paper(Sun,1993) that in accordance with the behaviors of Zn adsorption by the variable charge soils in relation to pH,three pH ranges with different adsorption mechanisms were delineated;that is,in Range I,specific adsorption was the predominant mechanism,in Ranges II and III,specific and electrostatic adsorptions co-existed,but their specific adsorption mechanisms were not identical.

  12. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-01-01

    Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.

  13. Space charge effects: tune shifts and resonances

    International Nuclear Information System (INIS)

    The effects of space charge and beam-beam interactions on single particle motion in the transverse degree of freedom are considered. The space charge force and the resulting incoherent tune shift are described, and examples are given from the AGS and CERN's PSB. Equations of motion are given for resonances in the presence of the space charge force, and particle behavior is examined under resonance and space charge conditions. Resonance phase space structure is described with and without space charge. Uniform and bunched beams are compared. Beam-beam forces and resonances and beam-beam detuning are described. 18 refs., 15 figs

  14. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    International Nuclear Information System (INIS)

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  15. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  16. Mass Effect on Axial Charge Dynamics

    CERN Document Server

    Guo, Er-dong

    2016-01-01

    We studied effect of finite quark mass on the dynamics of axial charge using the D3/D7 model in holography. The mass term in axial anomaly equation affects both the fluctuation (generation) and dissipation of axial charge. We studied the dependence of the effect on quark mass and external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a non-monotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and magnetic field.

  17. Surface charge measurement by the Pockels effect

    CERN Document Server

    Sam, Y L

    2001-01-01

    have been observed by applying both impulse and AC voltages to a needle electrode in direct contact with the BSO. AC surface discharge behaviour of polymeric materials bonded to the BSO has also been investigated. The effect of the surrounding environment has been experimentally examined by placing the cell inside a vacuum chamber. Surface charge measurements have been made at various atmospheric pressures. The effect of an electro-negative gas (Sulphur Hexafluoride) on the surface charge distribution has also been investigated. This thesis is concerned with the design and development of a surface charge measurement system using Pockels effect. The measurement of surface charge is important in determining the electrical performance of high voltage insulation materials. The method proposed allows on-line measurement of charge and can generate two-dimensional images that represent the charge behaviour on the surface of the material under test. The measurement system is optical and uses a Pockels crystal as the ...

  18. Fluctuation charge effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel; Trueba, Jose L [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain); Baltanas, J P [Departamento de Fisica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Sevilla (Spain)

    2008-05-21

    In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster.

  19. Fracto-emission - The role of charge separation. [in particle emission during fracture

    Science.gov (United States)

    Dickinson, J. T.; Jensen, L. C.; Jahan-Latibari, A.

    1984-01-01

    Fracto-emission is the emission of particles (e.g., electrons, ions, ground state and excited neutrals, and photons) during and following fracture. It is found that during fracture in vacuum of adhesive bonds and crystalline materials involving large amounts of charge separation on the surface the emission of charged particles, excited neutrals, light, and radio waves occurs with unique and revealing time dependencies. Simultaneous fracto-emission measurements on several systems are reported. The results are interpreted in terms of a conceptual model involving the following steps: (1) charge separation due to fracture, (2) desorption of gases from the material into the crack tip, (3) a gas discharge in the crack, (4) energetic bombardment of the freshly created crack walls, and (5) thermally stimulated electron emission, accompanied by electron stimulated desorption of ions and excited neutrals. In addition to evidence from fracture experiments, results from studies of electron bombardment of a polymer surface are presented.

  20. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications.

    Science.gov (United States)

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John; Huang, Zhuangqun; Zhang, Xiaoyi; Huang, Jier

    2016-07-01

    Zeolitic imidazolate frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-vis-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge-separated (CS) state with ligand-to-metal charge-transfer character using XTA. The surprisingly long-lived CS state, together with its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion. PMID:27322216

  1. Active Vector Separation Using Induced Charge Electro-osmosis with Polarizable Obstacle Arrays

    Science.gov (United States)

    Sugioka, Hideyuki

    2016-09-01

    Vector separation using obstacle post arrays is promising for various microfluidic applications. Here, we propose a novel active sieve using induced charge electro-osmosis (ICEO). By the multi-physics simulation technique based on the boundary element method combined with a thin electric double-layer approximation, we find that the active sieve having a polarizable post array shows excellent vector separation with dynamic size selectivity owing to the hydrodynamic interactions between the polarizable post array and the target particle. We consider that our separation device is useful for realizing innovative high-throughput biomedical systems with a simple structure.

  2. On the effective charge of hydrophobic polyelectrolytes

    OpenAIRE

    Chepelianskii, Alexei; Mohammad-Rafiee, Farshid; Raphael, Elie

    2008-01-01

    In this paper we analyze the behavior of hydrophobic polyelectrolytes. It has been proposed that this system adopts a pearl-necklace structure reminiscent of the Rayleigh instability of a charged droplet. Using a Poisson-Boltzmann approach, we calculate the counterion distribution around a given pearl assuming the latter to be penetrable for the counterions. This allows us to calculate the effective electric charge of the pearl as a function of the chemical charge. Our predictions are in very...

  3. Charge separation in contact systems with CdSe quantum dot layers

    International Nuclear Information System (INIS)

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO2 and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer (∼ 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface (recombination

  4. Charge separation in contact systems with CdSe quantum dot layers

    Energy Technology Data Exchange (ETDEWEB)

    Zillner, Elisabeth Franziska

    2013-03-06

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO{sub 2} and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer ({approx} 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface

  5. Asymmetrical phase separation and gelation in binary mixtures of oppositely charged colloids

    Science.gov (United States)

    Zong, Yiwu; Yuan, Guangcui; Han, Charles C.

    2016-07-01

    Two types of colloidal particles, which are nearly the same in chemical composition but carry opposite surface charges, are mixed in water. Depending on the relative proportion of the oppositely charged particles, the process of aggregation leads to the formation of discrete clusters of various sizes in dilute dispersions, and to the development of particle gel networks in more concentrated systems. Due to the significant difference in the absolute values of surface charges (negative particle: -48 mV, positive particle: +24 mV), the phase separation and the gelation behaviors are asymmetric with respect to the mixing ratio. Mixtures with excess negative particles are more stable, while mixtures with excess positive particles are easily affected by phase separation. The hetero-aggregation triggered by the addition of microscopically large macro-ions is similar to what is often observed in a mono-component charged colloidal system, i.e., phase separation occurs through addition of small electrolyte ions. Within the concentration region investigated here, it is clear that the gel line is buried inside the phase separation region. Gelation occurs only when the number and size of the clusters are large and big enough to connect up into a space-spanning network. Our results indicate that, in this binary mixture of oppositely charged colloids, although the interaction between unlike species is attractive and that between like species is repulsive, the onset of gelation is in fact governed by the equilibrium phase separation, as in the case of purely attractive systems with short-range isotropic interaction.

  6. Charge multiplication effect in thin diamond films

    Science.gov (United States)

    Skukan, N.; Grilj, V.; Sudić, I.; Pomorski, M.; Kada, W.; Makino, T.; Kambayashi, Y.; Andoh, Y.; Onoda, S.; Sato, S.; Ohshima, T.; Kamiya, T.; Jakšić, M.

    2016-07-01

    Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanche multiplication and radiation detectors with extreme radiation hardness.

  7. Charge Screening Effect in Metallic Carbon Nanotubes

    OpenAIRE

    Sasaki, K

    2001-01-01

    Charge screening effect in metallic carbon nanotubes is investigated in a model including the one-dimensional long-range Coulomb interaction. It is pointed out that an external charge which is being fixed spatially is screened by internal electrons so that the resulting object becomes electrically neutral. We found that the screening length is given by about the diameter of a nanotube.

  8. Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO2 Nanoparticles by Hydrothermal Treatment.

    Science.gov (United States)

    Ide, Yusuke; Inami, Nozomu; Hattori, Hideya; Saito, Kanji; Sohmiya, Minoru; Tsunoji, Nao; Komaguchi, Kenji; Sano, Tsuneji; Bando, Yoshio; Golberg, Dmitri; Sugahara, Yoshiyuki

    2016-03-01

    Although tremendous effort has been directed to synthesizing advanced TiO2 , it remains difficult to obtain TiO2 exhibiting a photocatalytic efficiency higher than that of P25, a benchmark photocatalyst. P25 is composed of anatase, rutile, and amorphous TiO2 particles, and photoexcited electron transfer and subsequent charge separation at the anatase-rutile particle interfaces explain its high photocatalytic efficiency. Herein, we report on a facile and rational hydrothermal treatment of P25 to selectively convert the amorphous component into crystalline TiO2 , which is deposited between the original anatase and rutile particles to increase the particle interfaces and thus enhance charge separation. This process produces a new TiO2 exhibiting a considerably enhanced photocatalytic efficiency. This method of synthesizing this TiO2 , inspired by a recently burgeoning zeolite design, promises to make TiO2 applications more feasible and effective. PMID:26891152

  9. Effect of interfacial charge on micellar structure

    OpenAIRE

    Chevalier, Y; Belloni, L; Hayter, J.B.; Zemb, T

    1985-01-01

    We have studied the structure and effective charge of sodium octylphosphate micelles in aqueous solution as a function of concentration and pH. Such variations may be used to alter the structural charge Z0 of the polar headgroup from 0.8 to 2 without altering the surfactant molecule. Small angle neutron scattering coupled with the Hayter-Penfold analytical technique was used to measure the aggregation number N and the effective charge Z. The micelles are small and spherical for Z0 = 2, increa...

  10. Importance of separated efficiencies between positively and negatively charged particles for cumulant calculations

    CERN Document Server

    Nonaka, Toshihiro; Esumi, ShinIchi; Masui, Hiroshi; Luo, Xiaofeng

    2016-01-01

    We show the importance of separated efficiency corrections between positively and negatively charged particles for cumulant calculations by Monte Carlo toy models and analytical calculations. Our results indicate that S{\\sigma} in published net-proton results from the STAR experiment will be suppressed about 5 to 10% in central collisions, and 10 to 20% in peripheral collisions at the beam energy of \\sqrt s_{NN} = 62.4 and 200 GeV if the separated efficiencies are used to efficiency correction.

  11. Localization-dependent charge separation efficiency at an organic/inorganic hybrid interface

    Science.gov (United States)

    Foglia, Laura; Bogner, Lea; Wolf, Martin; Stähler, Julia

    2016-02-01

    By combining complementary optical techniques, photoluminescence and time-resolved excited state absorption, we achieve a comprehensive picture of the relaxation processes in the organic/inorganic hybrid system SP6/ZnO. We identify two long-lived excited states of the organic molecules of which only the lowest energy one, localized on the sexiphenyl backbone of the molecule, is found to efficiently charge separate to the ZnO conduction band or radiatively recombine. The other state, most likely localized on the spiro-linked biphenyl, relaxes only by intersystem crossing to a long-lived, probably triplet state, thus acting as a sink of the excitation and limiting the charge separation efficiency.

  12. Site-selective nanoscale-polymerization of pyrrole on gold nanoparticles via plasmon induced charge separation

    Science.gov (United States)

    Takahashi, Y.; Furukawa, Y.; Ishida, T.; Yamada, S.

    2016-04-01

    We proposed a nanoscale oxidative polymerization method which enables site-selective deposition on the surface of gold nanoparticles (AuNPs) combined with TiO2 by using plasmon induced charge separation (PICS) under visible-to-near infrared (IR) light irradiation. The method also revealed that the anodic site of PICS was located at the surface of AuNPs.We proposed a nanoscale oxidative polymerization method which enables site-selective deposition on the surface of gold nanoparticles (AuNPs) combined with TiO2 by using plasmon induced charge separation (PICS) under visible-to-near infrared (IR) light irradiation. The method also revealed that the anodic site of PICS was located at the surface of AuNPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01531j

  13. Fractional-charge and fractional-spin errors in range-separated density-functional theory

    CERN Document Server

    Mussard, Bastien

    2016-01-01

    We investigate fractional-charge and fractional-spin errors in range-separated density-functional theory. Specifically, we consider the range-separated hybrid (RSH) method which combines long-range Hartree-Fock (HF) exchange with a short-range semilocal exchange-correlation density functional, and the RSH+MP2 method which adds long-range second-order M{{\\o}}ller-Plesset (MP2) correlation. Results on atoms and molecules show that the fractional-charge errors obtained in RSH are much smaller than in the standard Kohn-Sham (KS) scheme applied with semilocal or hybrid approximations, and also generally smaller than in the standard HF method. The RSH+MP2 method tends to have smaller fractional-charge errors than standard MP2 for the most diffuse systems, but larger fractional-charge errors for the more compact systems. Even though the individual contributions to the fractional-spin errors in the H atom coming from the short-range exchange and correlation density-functional approximations are smaller than the corre...

  14. Phonon-assisted ultrafast charge separation in the PCBM band structure

    Science.gov (United States)

    Smith, Samuel L.; Chin, Alex W.

    2015-05-01

    Organic solar cells separate strongly bound electron-hole pairs into free charges at interfaces between electron donor and acceptor organic semiconductors. Recently, electron-hole separation was observed on femtosecond time scales near crystallite phases of the fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester (PCBM), which is incompatible with conventional Marcus theories of organic transport. Here we show that ultrafast charge transport in PCBM arises from its broad range of electronic eigenstates, provided by three closely spaced electronic bands near the lowest unoccupied molecular orbital. The highest band provides a charge transfer state resonant with delocalized states of the lower two bands away from the interface. This state acts as a bridge between the donor phase and the acceptor bulk, bypassing the trapped charge-transfer (CT) states below. Vibrational fluctuations enable rapid electronic transitions across this bridge, which can drive the electron more than 4 nm away from the interface within 100 fs. All this is demonstrated within a simple tight-binding Hamiltonian containing transfer integrals no larger than 8 meV.

  15. Photochemical charges separation and photoelectric properties of flexible solar cells with two types of heterostructures

    Science.gov (United States)

    Liu, Xiangyang; Wang, Shun; Zheng, Haiwu; Cheng, Xiuying; Gu, Yuzong

    2015-12-01

    Photochemical charges generation, separation, and transport at nanocrystal interfaces are central to energy conversion for solar cells. Here, Zn2SnO4 nanowires/Cu4Bi4S9 (ZTO/CBS), ZTO nanowires/CBS-reduced graphene oxide (ZTO/CBS-RGO), and bulk heterojunction (BHJ) solar cells were measured. The signals of steady state and electric field-induced surface photovoltage indicate that RGO with high electron mobility can evidently improve the photovoltaic response. Besides, ZTO/CBS and ZTO/CBS-RGO cells exhibit the excellent performance and the highest efficiencies of 1.2% and 2.8%, respectively. The internal relations of photoelectric properties to some factors, such as film thickness, direct paths, RGO conductive network, energy level matching, etc., were discussed in detail. Qualitative and quantitative analyses further verified the comprehensive effect of RGO and other factors. Importantly, the fine bendable characteristic of BHJ solar cells with excellent efficiency and facile, scalable production gives the as-made flexible solar cells device potential for practical application in future.

  16. Photochemical charges separation and photoelectric properties of flexible solar cells with two types of heterostructures

    International Nuclear Information System (INIS)

    Photochemical charges generation, separation, and transport at nanocrystal interfaces are central to energy conversion for solar cells. Here, Zn2SnO4 nanowires/Cu4Bi4S9 (ZTO/CBS), ZTO nanowires/CBS-reduced graphene oxide (ZTO/CBS-RGO), and bulk heterojunction (BHJ) solar cells were measured. The signals of steady state and electric field-induced surface photovoltage indicate that RGO with high electron mobility can evidently improve the photovoltaic response. Besides, ZTO/CBS and ZTO/CBS-RGO cells exhibit the excellent performance and the highest efficiencies of 1.2% and 2.8%, respectively. The internal relations of photoelectric properties to some factors, such as film thickness, direct paths, RGO conductive network, energy level matching, etc., were discussed in detail. Qualitative and quantitative analyses further verified the comprehensive effect of RGO and other factors. Importantly, the fine bendable characteristic of BHJ solar cells with excellent efficiency and facile, scalable production gives the as-made flexible solar cells device potential for practical application in future

  17. Photochemical charges separation and photoelectric properties of flexible solar cells with two types of heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyang, E-mail: lxy081276@126.com, E-mail: yzgu@henu.edu.cn; Wang, Shun; Zheng, Haiwu; Cheng, Xiuying; Gu, Yuzong, E-mail: lxy081276@126.com, E-mail: yzgu@henu.edu.cn [Institute of Microsystems Physics and School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2015-12-14

    Photochemical charges generation, separation, and transport at nanocrystal interfaces are central to energy conversion for solar cells. Here, Zn{sub 2}SnO{sub 4} nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} (ZTO/CBS), ZTO nanowires/CBS-reduced graphene oxide (ZTO/CBS-RGO), and bulk heterojunction (BHJ) solar cells were measured. The signals of steady state and electric field-induced surface photovoltage indicate that RGO with high electron mobility can evidently improve the photovoltaic response. Besides, ZTO/CBS and ZTO/CBS-RGO cells exhibit the excellent performance and the highest efficiencies of 1.2% and 2.8%, respectively. The internal relations of photoelectric properties to some factors, such as film thickness, direct paths, RGO conductive network, energy level matching, etc., were discussed in detail. Qualitative and quantitative analyses further verified the comprehensive effect of RGO and other factors. Importantly, the fine bendable characteristic of BHJ solar cells with excellent efficiency and facile, scalable production gives the as-made flexible solar cells device potential for practical application in future.

  18. Photochemical charge separation in closely positioned donor-boron dipyrrin-fullerene triads.

    Science.gov (United States)

    Wijesinghe, Channa A; El-Khouly, Mohamed E; Subbaiyan, Navaneetha K; Supur, Mustafa; Zandler, Melvin E; Ohkubo, Kei; Fukuzumi, Shunichi; D'Souza, Francis

    2011-03-01

    A series of molecular triads, composed of closely positioned boron dipyrrin-fullerene units, covalently linked to either an electron donor (donor(1)-acceptor(1)-acceptor(2)-type triads) or an energy donor (antenna-donor(1)-acceptor(1)-type triads) was synthesized and photoinduced energy/electron transfer leading to stabilization of the charge-separated state was demonstrated by using femtosecond and nanosecond transient spectroscopic techniques. The structures of the newly synthesized triads were visualized by DFT calculations, whereas the energies of the excited states were determined from spectral and electrochemical studies. In the case of the antenna-donor(1)-acceptor(1)-type triads, excitation of the antenna moiety results in efficient energy transfer to the boron dipyrrin entity. The singlet-excited boron dipyrrin thus generated, undergoes subsequent energy and electron transfer to fullerene to produce a boron dipyrrin radical cation and a fullerene radical anion as charge-separated species. Stabilization of the charge-separated state in these molecular triads was observed to some extent. PMID:21322069

  19. Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations.

    Science.gov (United States)

    Mandujano-Ramírez, Humberto J; González-Vázquez, José P; Oskam, Gerko; Dittrich, Thomas; Garcia-Belmonte, Germa; Mora-Seró, Iván; Bisquert, Juan; Anta, Juan A

    2014-03-01

    Many recent advances in novel solar cell technologies are based on charge separation in disordered semiconductor heterojunctions. In this work we use the Random Walk Numerical Simulation (RWNS) method to model the dynamics of electrons and holes in two disordered semiconductors in contact. Miller-Abrahams hopping rates and a tunnelling distance-dependent electron-hole annihilation mechanism are used to model transport and recombination, respectively. To test the validity of the model, three numerical "experiments" have been devised: (1) in the absence of constant illumination, charge separation has been quantified by computing surface photovoltage (SPV) transients. (2) By applying a continuous generation of electron-hole pairs, the model can be used to simulate a solar cell under steady-state conditions. This has been exploited to calculate open-circuit voltages and recombination currents for an archetypical bulk heterojunction solar cell (BHJ). (3) The calculations have been extended to nanostructured solar cells with inorganic sensitizers to study, specifically, non-ideality in the recombination rate. The RWNS model in combination with exponential disorder and an activated tunnelling mechanism for transport and recombination is shown to reproduce correctly charge separation parameters in these three "experiments". This provides a theoretical basis to study relevant features of novel solar cell technologies. PMID:24448680

  20. Removing flow backgrounds from the charge-separation observable perpendicular to the reaction plane in heavy-ion collisions

    CERN Document Server

    Wen, Fufang; Wang, Gang

    2016-01-01

    Recent charge-dependent azimuthal correlation measurements in high-energy heavy-ion collisions have observed charge-separation signals perpendicular to the reaction plane, and the observations have been related to the chiral magnetic effect (CME). However, the correlation signal is contaminated with the background contributions due to the collective motion (flow) of the collision system, and it remains elusive to effectively remove the background from the correlation. We present a method study with Monte Carlo simulations and a multi-phase transport model, and develop a scheme to reveal the true CME signal via the event-shape engineering with the flow vector, $\\overrightarrow{q}$. An alternative approach using the ensemble averages of observables is also discussed.

  1. Generalized polymer effective charge measurement by capillary isotachophoresis

    Czech Academy of Sciences Publication Activity Database

    Chamieh, J.; Koval, Dušan; Besson, A.; Kašička, Václav; Cottet, H.

    2014-01-01

    Roč. 1370, Nov 28 (2014), s. 255-262. ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA13-17224S; GA MŠk 7AMB12FR012 Grant ostatní: GA AV ČR(CZ) M200551207 Institutional support: RVO:61388963 Keywords : polymer effective charge * polyelectrolyte * isotachophoresis * counter-ion condensation * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.169, year: 2014

  2. Electrostatic interactions and aqueous two-phase separation modes of aqueous mixed oppositely charged surfactants system.

    Science.gov (United States)

    Hao, Li-Sheng; Gui, Yuan-Xiang; Chen, Yan-Mei; He, Shao-Qing; Nan, Yan-Qing; You, Yi-Lan

    2012-08-30

    Electrostatic interactions play an important role in setting the aqueous two-phase separation behaviors of mixtures of oppositely charged surfactants. The aqueous mixture of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfonate (AS) is actually a five-component system, comprised of CTAB, AS, complex salt (cetyltrimethylammonium dodecylsulfonate, abbreviated as CTA(+)AS(-)), NaBr, and water. In the three-dimensional pyramid phase diagram, the aqueous two-phase region with excess AS or with excess CTAB extends successively from the region very near to the NaBr-H2O line through the CTAB-AS-H2O conventional mixing plane to the CTA(+)AS(-)-AS-H2O side plane or to the CTA(+)AS(-)-CTAB-H2O side plane, respectively. Large or small molar ratios between the counterions and their corresponding surfactant ions for oppositely charged surfactants located in the NaBr side or the CTA(+)AS(-) side of the pyramid imply strong or weak electrostatic screening. Electrostatic screening of counterions alters the electrostatic attractions between the oppositely charged head groups or the electrostatic repulsions between the like-charged head groups in excess, and the electrostatic free energy of aggregation thus affects the aqueous two-phase separation modes. Composition analysis, rheological property investigation, and TEM images suggest that there are two kinds of aqueous two-phase systems (ATPSs). On the basis of these experimental results and Kaler's cell model, two kinds of phase separation modes were proposed. Experimental results also indicate that all of the top phases are surfactant-rich, and all of the bottom phases are surfactant-poor; the density difference between the top phase and the bottom phase in one ATPS is very small; the interfacial tension (σ) of the ATPS is ultralow. PMID:22856887

  3. Corrole-fullerene dyads: formation of long-lived charge-separated states in nonpolar solvents.

    Science.gov (United States)

    D'Souza, Francis; Chitta, Raghu; Ohkubo, Kei; Tasior, Mariusz; Subbaiyan, Navaneetha K; Zandler, Melvin E; Rogacki, Maciek K; Gryko, Daniel T; Fukuzumi, Shunichi

    2008-10-29

    The first example of covalently linked free-base corrole-fullerene dyads is reported. In the newly synthesized dyads, the free-energy calculations performed by employing the redox and singlet excited-state energy in both polar and nonpolar solvents suggested the possibility of electron transfer from the excited singlet state of corrole to the fullerene entity. Accordingly, steady-state and time-resolved emission studies revealed efficient fluorescence quenching of the corrole entity in the dyads. Further studies involving femtosecond laser flash photolysis and nanosecond transient absorption studies confirmed electron transfer to be the quenching mechanism, in which the electron-transfer product, the fullerene anion radical, was able to be spectrally characterized. The rate of charge separation, kCS, was found to be on the order of 10(10)-10(11) s(-1), suggesting an efficient photoinduced electron-transfer process. Interestingly, the rate of charge recombination, kCR, was slower by 5 orders of magnitude in nonpolar solvents, cyclohexane and toluene, resulting in a radical ion-pair lasting for several microseconds. Careful analysis of the kinetic and thermodynamic data using the Marcus approach revealed that this novel feature is due to appropriately positioning the energy level of the charge-separated state below the triplet states of either of the donor and acceptor entities in both polar and nonpolar solvents, a feature that was not evident in donor-acceptor dyads constructed using symmetric tetrapyrroles as electron donors. PMID:18837500

  4. Novel Excitonic Solar Cells in Phosphorene-TiO2 Heterostructures with Extraordinary Charge Separation Efficiency.

    Science.gov (United States)

    Zhou, Liujiang; Zhang, Jin; Zhuo, Zhiwen; Kou, Liangzhi; Ma, Wei; Shao, Bin; Du, Aijun; Meng, Sheng; Frauenheim, Thomas

    2016-05-19

    Constructing van der Waals heterostructures is an efficient approach to modulate the electronic structure, to advance the charge separation efficiency, and thus to optimize the optoelectronic property. Here, we theoretically investigated the phosphorene interfaced with TiO2(110) surface (1L-BP/TiO2) with a type-II band alignment, showing enhanced photoactivity. The 1L-BP/TiO2 excitonic solar cell (XSC) based on the 1L-BP/TiO2 exhibits large built-in potential and high power conversion efficiency (PCE), dozens of times higher than conventional solar cells, comparable to MoS2/WS2 XSC. The nonadiabatic molecular dynamics simulation shows the ultrafast electron transfer time of 6.1 fs, and slow electron-hole recombination of 0.58 ps, yielding >98% internal quantum efficiency for charge separation, further guaranteeing the practical PCE. Moreover, doping in phosphorene has a tunability on built-in potential, charge transfer, light absorbance, as well as electron dynamics, which greatly helps to optimize the optoelectronic efficiency of a XSC. PMID:27141996

  5. TITANIUM DIOXIDE TRIADS FOR IMPROVED CHARGE-SEPARATION USING CONDUCTIVE POLYMERS

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, T.M.; Gaylor, T.N.; de la Garza, L.; Rajh, T.

    2009-01-01

    Dye-sensitized solar cells are potentially one of the best solutions to solar energy conversion because of the low cost of required materials and production processes. Titanium dioxide (TiO2) nanoparticulate fi lms are the basis for one of these types of cells, providing large surface area for dye-sensitizer adsorption. Because TiO2 nanoparticulate fi lms develop defects caused by oxygen defi ciency, deep reactive electron traps are formed. With the addition of an enediol ligand, these electron traps are deliberately removed, enhancing the conduction of electrons within the fi lm. In this project, TiO2 nanoparticulate fi lms made by a layer-by-layer dip coating method were modifi ed with 3,4-dihydroxyphenylacetic acid (DOPAC). DOPAC binds to the titanium atoms on the surface of the nanoparticles, restoring their octahedral geometry. This restructuring of the surface shifts the spectral properties of the TiO2 to the visible spectrum and improves the separation of charges which is observed using photoelectrochemistry. Furthermore, DOPAC enables the electronic attachment of other molecules to the surface of TiO2 fi lms, such as the conductive polymer polyaniline base. This conductive polymer provides an extended separation of charges which increases photocurrent production by forming a triad with the TiO2 semiconductor through the 3,4-dihydroxyphenylacetic acid linker. The photocurrent increases due to the donor properties of the conductive polymer thereby decreasing charge pair recombination.

  6. Study of a single-charged ions ECR source matching of the extracted beam to an isotope separator

    International Nuclear Information System (INIS)

    A new ECR ion-source has been designed and studied for single-charged ion beams. A very stable regime has been obtained with an ion-source made of two identical stages in cascade. The RF power supplies consist of two 2.45 GHZ magnetrons. The discharge chamber is made of two coaxial Pyrex tubes. The external one ensures vacuum and HT insulation. The tubes are aligned inside the two multi-mode cavities axially limited by three magnetic coils. The ion beam is extracted at 20 kV and focused with electric lenses. For argon and xenon, 1 mA single-charged ion currents have been extracted. The influence of various parameters has been progressively achieved with a set-up including a 600 analyzing magnet and with the 1200 on-line isotope separator at SARA. From emittances and images observed it appears difficult to compensate charge space effects. Suggestions and future developments are proposed to improve qualities of the isotopic separation

  7. Efficient Z-scheme charge separation in novel vertically aligned ZnO/CdSSe nanotrees

    Science.gov (United States)

    Li, Zhengxin; Nieto-Pescador, Jesus; Carson, Alexander J.; Blake, Jolie C.; Gundlach, Lars

    2016-04-01

    A new tree-like ZnO/CdSSe nanocomposite with CdSSe branches grown on ZnO nanowires prepared via a two-step chemical vapor deposition is presented. The nanotrees (NTs) are vertically aligned on a substrate. The CdSSe branches result in strong visible light absorption and form a type-II heterojunction with the ZnO stem that facilitates efficient electron transfer. A combination of photoluminescence spectroscopy and lifetime measurements indicates that the NTs are promising materials for applications that benefit from a Z-scheme charge transfer mechanism. Vertically aligned branched ZnO nanowires can provide direct electron transport pathways to substrates and allow for efficient charge separation. These advantages of nanoscale hierarchical heterostructures make ZnO/CdSSe NTs a promising semiconductor material for solar cells, and other opto-electronic devices.

  8. Efficient Z-scheme charge separation in novel vertically aligned ZnO/CdSSe nanotrees.

    Science.gov (United States)

    Li, Zhengxin; Nieto-Pescador, Jesus; Carson, Alexander J; Blake, Jolie C; Gundlach, Lars

    2016-04-01

    A new tree-like ZnO/CdSSe nanocomposite with CdSSe branches grown on ZnO nanowires prepared via a two-step chemical vapor deposition is presented. The nanotrees (NTs) are vertically aligned on a substrate. The CdSSe branches result in strong visible light absorption and form a type-II heterojunction with the ZnO stem that facilitates efficient electron transfer. A combination of photoluminescence spectroscopy and lifetime measurements indicates that the NTs are promising materials for applications that benefit from a Z-scheme charge transfer mechanism. Vertically aligned branched ZnO nanowires can provide direct electron transport pathways to substrates and allow for efficient charge separation. These advantages of nanoscale hierarchical heterostructures make ZnO/CdSSe NTs a promising semiconductor material for solar cells, and other opto-electronic devices. PMID:26894995

  9. Macroscopic electric charge separation during hypervelocity impacts: Potential implications for planetary paleomagnetism

    Science.gov (United States)

    Crawford, D. A.; Schultz, P. H.

    1993-01-01

    The production of transient magnetic fields by hypervelocity meteoroid impact has been proposed to possibly explain the presence of paleomagnetic fields in certain lunar samples as well as across broader areas of the lunar surface. In an effort to understand the lunar magnetic record, continued experiments at the NASA Ames Vertical Gun Range allow characterizing magnetic fields produced by the 5 km/s impacts of 0.32-0.64 cm projectiles over a broad range of impact angles and projectile/target compositions. From such studies, another phenomenon has emerged, macroscopic electric charge separation, that may have importance for the magnetic state of solid-body surfaces. This phenomenon was observed during explosive cratering experiments, but the magnetic consequences of macroscopic electric charge separation (as opposed to plasma production) during explosion and impact cratering have not, to our knowledge, been explored before now. It is straightforward to show that magnetic field production due to this process may scale as a weakly increasing function of impactor kinetic energy, although more work is needed to precisely assess the scaling dependence. The original intent of our experiments was to assess the character of purely electrostatic signals for comparison with inferred electrostatic noise signals acquired by shielded magnetic sensors buried within particulate dolomite targets. The results demonstrated that electrostatic noise does affect the magnetic sensors but only at relatively short distances (less than 4 cm) from the impact point (our magnetic studies are generally performed at distances greater than approximately 5.5 cm). However, to assess models for magnetic field generation during impact, measurements are needed of the magnetic field as close to the impact point as possible; hence, work with an improved magnetic sensor design is in progress. In this paper, we focus on electric charge separation during hypervelocity impacts as a potential transient

  10. First-Principles Studies of Charge Separation in Single-Molecule Heterojunctions

    Science.gov (United States)

    Darancet, Pierre; Doak, Peter; Neaton, Jeffrey

    2010-03-01

    Single-molecule heterojunctions, consisting of donor and acceptor moieties linked by covalent bonds and coupled to metal electrodes, provide an interesting model system for understanding processes fundamental to organic solar cells, such as light absorption and charge separation. However, how the covalent contact with metallic leads influence these processes -- and metal-molecule interface electronic structure -- remains largely unknown. Using density functional theory and many-body perturbation theory, we discuss the influence of the metal contacts and binding groups on junction electronic level alignment for small asymmetric molecules containing covalently-linked moieties based on thiophene, durene and tetrafluoro-, dinitrile-, and metoxy-benzene. Implications for photocurrent and rectification are discussed.

  11. Spin-charge separation of dark-state polaritons in a Rydberg medium

    Science.gov (United States)

    Shi, Xiao-Feng; Svetlichnyy, P.; Kennedy, T. A. B.

    2016-04-01

    The propagation of light fields through a quasi one-dimensional cold atomic gas, exciting atomic Rydberg levels of large principal quantum number under conditions of electromagnetically induced transparency, can lead to a stable two-mode Luttinger liquid system. Atomic van der Waals interactions induce a coupling of bosonic field modes that display both photonic and atomic character, the Rydberg dark-state polaritons (RDPs). It is shown that by tunable control of the van der Waals coupling, the RDP may decouple into independent ‘spin’ and ‘charge’ fields which propagate at different speeds, analogous to spin-charge separation of electrons in a one-dimensional metal.

  12. Self-assembly of semiconductor organogelator nanowires for photoinduced charge separation.

    Science.gov (United States)

    Wicklein, André; Ghosh, Suhrit; Sommer, Michael; Würthner, Frank; Thelakkat, Mukundan

    2009-05-26

    We investigated an innovative concept of general validity based on an organogel/polymer system to generate donor-acceptor nanostructures suitable for charge generation and charge transport. An electron conducting (acceptor) perylene bisimide organogelator forms nanowires in suitable solvents during gelation process. This phenomenon was utilized for its self-assembly in an amorphous hole conducting (donor) polymer matrix to realize an interpenetrating donor-acceptor interface with inherent morphological stability. The self-assembly and interface generation were carried out either stepwise or in a single-step. Morphology of the donor-acceptor network in thin films obtained via both routes were studied by a combination of scanning electron microscopy and atomic force microscopy. Additionally, photoinduced charge separation and charge transport in these systems were tested in organic solar cells. Fabrication steps of multilayer organogel/polymer photovoltaic devices were optimized with respect to morphology and surface roughness by introducing additional smoothening layers and charge injection/blocking layers. An inverted cell geometry was used here in which electrons are collected at the bottom electrode and holes at the top electrode. The simultaneous preparation of the interface exhibits almost 3-fold improvement in device characteristics compared to the successive method. The device characteristics under AM1.5 spectral conditions and 100 mW/cm(2) for the simultaneous preparation route are short circuit current J(sc) = 0.28 mA cm(-2), open circuit voltage V(OC) = 390 mV, fill factor FF = 38%, and a power conversion efficiency eta = 0.041%. PMID:19408933

  13. The effect of single-particle charge limits on charge distributions in dusty plasmas

    International Nuclear Information System (INIS)

    An analytical expression for the stationary particle charge distribution in dusty plasmas is derived that accounts for the existence of single-particle charge limits. This expression is validated by comparison with the results of Monte Carlo charging simulations. The relative importance of the existence of charge limits for various values of the ratio of electron-to-ion density and ion mass is examined, and the effect of charge limits on the transient behavior of the charge distribution is considered. It is found that the time required to reach a steady-state charge distribution strongly decreases as the charge limit decreases, and that the existence of charge limits causes high-frequency charge fluctuations to become relatively more important than in the case without charge limits. (paper)

  14. Molecular Packing Determines Charge Separation in a Liquid Crystalline Bisthiophene-Perylene Diimide Donor-Acceptor Material.

    Science.gov (United States)

    Polkehn, Matthias; Tamura, Hiroyuki; Eisenbrandt, Pierre; Haacke, Stefan; Méry, Stéphane; Burghardt, Irene

    2016-04-01

    Combined electronic structure and quantum dynamical calculations are employed to investigate charge separation in a novel class of covalently bound bisthiophene-perylene diimide type donor-acceptor (DA) co-oligomer aggregates. In an earlier spectroscopic study of this DA system in a smectic liquid crystalline (LC) film, efficient and ultrafast (subpicosecond) initial charge separation was found to be followed by rapid recombination. By comparison, the same DA system in solution exhibits ultrafast resonant energy transfer followed by slower (picosecond scale) charge separation. The present first-principles study explains these contrasting observations, highlighting the role of an efficient intermolecular charge-transfer pathway that results from the molecular packing in the LC phase. Despite the efficiency of this primary charge-transfer step, long-range charge separation is impeded by a comparatively high Coulomb barrier in conjunction with small electron- and hole-transfer integrals. Quantum dynamical calculations are carried out for a fragment-based model Hamiltonian, parametrized by ab initio second-order Algebraic Diagrammatic Construction (ADC(2)) and Time-Dependent Density Functional Theory (TDDFT) electronic structure calculations. Simulations of coherent vibronic quantum dynamics for up to 156 electronic states and 48 modes are performed using the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method. Excellent agreement with experimentally determined charge separation time scales is obtained, and the spatially coherent nature of the dynamics is analyzed. PMID:26987362

  15. Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens.

    Science.gov (United States)

    Heber, Ulrich; Soni, Vineet; Strasser, Reto J

    2011-05-01

    During desiccation, fluorescence emission and stable light-dependent charge separation in the reaction centers (RCs) of photosystem II (PSII) declined strongly in three different lichens: in Parmelia sulcata with an alga as the photobiont, in Peltigera neckeri with a cyanobacterium and in the tripartite lichen Lobaria pulmonaria. Most of the decline of fluorescence was caused by a decrease in the quantum efficiency of fluorescence emission. It indicated the activation of photoprotective thermal energy dissipation. Photochemical activity of the RCs was retained even after complete desiccation. It led to light-dependent absorption changes and found expression in reversible increases in fluorescence or in fluorescence quenching. Lowering the temperature changed the direction of fluorescence responses in P. sulcata. The observations are interpreted to show that reversible light-induced increases in fluorescence emission in desiccated lichens indicate the functionality of the RCs of PSII. Photoprotection is achieved by the drainage of light energy to dissipating centers outside the RCs before stable charge separation can take place. Reversible quenching of fluorescence by strong illumination is suggested to indicate the conversion of the RCs from energy conserving to energy dissipating units. This permits them to avoid photoinactivation. On hydration, re-conversion occurs to energy-conserving RCs. PMID:21029105

  16. Harvesting Solar Energy by Means of Charge-Separating Nanocrystals and Their Solids

    Science.gov (United States)

    Diederich, Geoffrey; O'Connor, Timothy; Moroz, Pavel; Kinder, Erich; Kohn, Elena; Perera, Dimuthu; Lorek, Ryan; Lambright, Scott; Imboden, Martene; Zamkov, Mikhail

    2012-01-01

    Conjoining different semiconductor materials in a single nano-composite provides synthetic means for the development of novel optoelectronic materials offering a superior control over the spatial distribution of charge carriers across material interfaces. As this study demonstrates, a combination of donor-acceptor nanocrystal (NC) domains in a single nanoparticle can lead to the realization of efficient photocatalytic1-5 materials, while a layered assembly of donor- and acceptor-like nanocrystals films gives rise to photovoltaic materials. Initially the paper focuses on the synthesis of composite inorganic nanocrystals, comprising linearly stacked ZnSe, CdS, and Pt domains, which jointly promote photoinduced charge separation. These structures are used in aqueous solutions for the photocatalysis of water under solar radiation, resulting in the production of H2 gas. To enhance the photoinduced separation of charges, a nanorod morphology with a linear gradient originating from an intrinsic electric field is used5. The inter-domain energetics are then optimized to drive photogenerated electrons toward the Pt catalytic site while expelling the holes to the surface of ZnSe domains for sacrificial regeneration (via methanol). Here we show that the only efficient way to produce hydrogen is to use electron-donating ligands to passivate the surface states by tuning the energy level alignment at the semiconductor-ligand interface. Stable and efficient reduction of water is allowed by these ligands due to the fact that they fill vacancies in the valence band of the semiconductor domain, preventing energetic holes from degrading it. Specifically, we show that the energy of the hole is transferred to the ligand moiety, leaving the semiconductor domain functional. This enables us to return the entire nanocrystal-ligand system to a functional state, when the ligands are degraded, by simply adding fresh ligands to the system4. To promote a photovoltaic charge separation, we use a

  17. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lonergan, Mark [Univ. of Oregon, Eugene, OR (United States)

    2015-05-29

    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been the polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.

  18. Photoinduced hole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yield.

    Science.gov (United States)

    Castro, Fernando A; Benmansour, Hadjar; Moser, Jacques-E; Graeff, Carlos F O; Nüesch, Frank; Hany, Roland

    2009-10-21

    Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of approximately 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of approximately 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport. PMID:20449035

  19. Ion specific effects on charged interfaces

    OpenAIRE

    Medda, Luca

    2013-01-01

    The physico-chemical phenomena occurring at charged interfaces are specifically affected by the type and the concentration of electrolytes. This has implications both in living and in inorganic systems. The discovery of the ‘ion specific effects’ dates back to Hofmeister (1888), who observed the specific effect of salts in promoting egg white proteins precipitation. Nowadays we are aware that ion specific effects are ubiquitous in all fields of science and technology where electrolytes play a...

  20. Design and studies on supramolecular ferrocene-porphyrin-fullerene constructs for generating long-lived charge separated states.

    Science.gov (United States)

    D'Souza, Francis; Chitta, Raghu; Gadde, Suresh; Islam, D-M Shafiqul; Schumacher, Amy L; Zandler, Melvin E; Araki, Yasuyuki; Ito, Osamu

    2006-12-21

    Supramolecular ferrocene-porphyrin-fullerene constructs, in which covalently linked ferrocene-porphyrin-crown ether compounds were self-assembled with alkylammonium cation functionalized fullerenes, have been designed to achieve stepwise electron transfer and hole shift to generate long-lived charge separated states. The adopted crown ether-alkylammonium cation binding strategy resulted in stable conjugates as revealed by computational studies performed by the DFT B3LYP/3-21G(*) method in addition to the binding constants obtained from fluorescence quenching studies. The free-energy changes for charge-separation and charge-recombination were varied by the choice of different metal ions in the porphyrin cavity. Free-energy calculations suggested that the light-induced electron-transfer processes from the singlet excited state of porphyrins to be exothermic in all of the investigated supramolecular dyads and triads. Photoinduced charge-separation and charge-recombination processes have been confirmed by the combination of the time-resolved fluorescence and nanosecond transient absorption spectral measurements. In case of the triads, the charge-recombination processes of the radical anion of the fullerene moiety take place in two steps, viz., a direct charge recombination from the porphyrin cation radical and a slower step involving distant charge recombination from the ferrocene cation moiety. The rates of charge recombination for the second route were found to be an order of magnitude slower than the former route, thus fulfilling the condition for charge migration to generate long-lived charge-separated states in supramolecular systems. PMID:17165968

  1. Polymer depletion-driven cluster aggregation and initial phase separation in charged nanosized colloids.

    Science.gov (United States)

    Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K G

    2009-05-28

    We study polymer depletion-driven cluster aggregation and initial phase separation in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system separates into a gel and fluidlike phase. The experimental time-dependent state diagram is compared to the theoretical equilibrium phase diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible phase separation process in combination with irreversible aggregation at later times. PMID:19485479

  2. Infrared finite effective charge of QCD

    CERN Document Server

    Aguilar, A C; Papavassiliou, J

    2008-01-01

    We show that the gauge invariant treatment of the Schwinger-Dyson equations of QCD leads to an infrared finite gluon propagator, signaling the dynamical generation of an effective gluon mass, and a non-enhanced ghost propagator, in qualitative agreement with recent lattice data. The truncation scheme employed is based on the synergy between the pinch technique and the background field method. One of its most powerful features is that the transversality of the gluon self-energy is manifestly preserved, exactly as dictated by the BRST symmetry of the theory. We then explain, for the first time in the literature, how to construct non-perturbatively a renormalization group invariant quantity out of the conventional gluon propagator. This newly constructed quantity serves as the natural starting point for defining a non-perturbative effective charge for QCD, which constitutes, in all respects, the generalization in a non-Abelian context of the universal QED effective charge. This strong effective charge displays a...

  3. Effective dynamics of a classical point charges

    CERN Document Server

    Polonyi, Janos

    2013-01-01

    The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham-Lorentz force is recovered and its similarity to anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out.

  4. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2015-05-28

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  5. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    International Nuclear Information System (INIS)

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar

  6. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    Science.gov (United States)

    Zhao, Mingtian; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai; Li, Baohui

    2015-05-01

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar

  7. Separation analysis of macrolide antibiotics with good performance on a positively charged C18HCE column.

    Science.gov (United States)

    Wei, Jie; Shen, Aijin; Yan, Jingyu; Jin, Gaowa; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2016-03-01

    The separation of basic macrolide antibiotics suffers from peak tailing and poor efficiency on traditional silica-based reversed-phase liquid chromatography columns. In this work, a C18HCE column with positively charged surface was applied to the separation of macrolides. Compared with an Acquity BEH C18 column, the C18HCE column exhibited superior performance in the aspect of peak shape and separation efficiency. The screening of mobile phase additives including formic acid, acetic acid and ammonium formate indicated that formic acid was preferable for providing symmetrical peak shapes. Moreover, the influence of formic acid content was investigated. Analysis speed and mass spectrometry compatibility were also taken into account when optimizing the separation conditions for liquid chromatography coupled with tandem mass spectrometry. The developed method was successfully utilized for the determination of macrolide residues in a honey sample. Azithromycin was chosen as the internal standard for the quantitation of spiramycin and tilmicosin, while roxithromycin was used for erythromycin, tylosin, clarithromycin, josamycin and acetylisovaleryltylosin. Good correlation coefficients (r(2) > 0.9938) for all macrolides were obtained. The intra-day and inter-day recoveries were 73.7-134.7% and 80.7-119.7% with relative standard deviations of 2.5-8.0% and 3.9-16.1%, respectively. Outstanding sensitivity with limits of quantitation (S/N ≥ 10) of 0.02-1 μg/kg and limits of detection (S/N ≥ 3) of 0.01-0.5 μg/kg were achieved. PMID:26782089

  8. Charge Separation within Superconductors in the Presence of Tidal Gravitational Fields

    International Nuclear Information System (INIS)

    Tidal gravitational fields affect the Cooper-pair electrons and lattice ions of a type I superconductor differently. The quantum nonlocalizability of the Cooper pairs, which will remain coherent in the presence of interacting fields corresponding to frequencies less than that of the Bardeen-Cooper-Schrieffer (BCS) gap frequency, causes the superconducting electrons to undergo non-classical, non-geodesic motion, in contrast to the classical, geodesic motion of the lattice ions. The ensuing relative motion between the electrons and the ionic lattice causes a charge separation that leads to a measurable voltage potential when a macroscopic, quantum-coherent superconducting system undergoes free fall in the Earth's inhomogeneous gravitational field. Theoretical and experimental implications will be discussed.

  9. Non-thermal separation of electronic and structural orders in a persisting charge density wave

    CERN Document Server

    Porer, M; Ménard, J -M; Dachraoui, H; Mouchliadis, L; Perakis, I E; Heinzmann, U; Demsar, J; Rossnagel, K; Huber, R

    2016-01-01

    The simultaneous ordering of different degrees of freedom in complex materials undergoing spontaneous symmetry-breaking transitions often involves intricate couplings that have remained elusive in phenomena as wide ranging as stripe formation, unconventional superconductivity or colossal magnetoresistance. Ultrafast optical, x-ray and electron pulses can elucidate the microscopic interplay between these orders by probing the electronic and lattice dynamics separately, but a simultaneous direct observation of multiple orders on the femtosecond scale has been challenging. Here we show that ultrabroadband terahertz pulses can simultaneously trace the ultrafast evolution of coexisting lattice and electronic orders. For the example of a charge-density-wave (CDW) in 1T-TiSe2, we demonstrate that two components of the CDW order parameter - excitonic correlations and a periodic lattice distortion (PLD) - respond very differently to 12-fs optical excitation. Even when the excitonic order of the CDW is quenched, the PL...

  10. Long-lived charge-separated states in ligand-stabilized silver clusters

    KAUST Repository

    Pelton, Matthew

    2012-07-25

    Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting. © 2012 American Chemical Society.

  11. Absence of carrier separation in ambipolar charge and spin drift in p{sup +}-GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Cadiz, F.; Paget, D.; Rowe, A. C. H.; Martinelli, L. [Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Arscott, S. [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), Université de Lille, CNRS, Avenue Poincaré, Cité Scientifique, 59652 Villeneuve d' Ascq (France)

    2015-10-19

    The electric field-induced modifications of the spatial distribution of photoelectrons, photoholes, and electronic spins in optically pumped p{sup +} GaAs are investigated using a polarized luminescence imaging microscopy. At low pump intensity, application of an electric field reveals the tail of charge and spin density of drifting electrons. These tails disappear when the pump intensity is increased since a slight differential drift of photoelectrons and photoholes causes the buildup of a strong internal electric field. Spatial separation of photoholes and photoelectrons is very weak so that photoholes drift in the same direction as photoelectrons, thus exhibiting a negative effective mobility. In contrast, for a zero electric field, no significant ambipolar diffusive effects are found in the same sample.

  12. Optimizing multi-step B-side charge separation in photosynthetic reaction centers from Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Faries, Kaitlyn M. [Washington Univ., St. Louis, MO (United States); Kressel, Lucas L. [Argonne National Lab. (ANL), Argonne, IL (United States); Dylla, Nicholas P. [Argonne National Lab. (ANL), Argonne, IL (United States); Wander, Marc J. [Argonne National Lab. (ANL), Argonne, IL (United States); Hanson, Deborah K. [Argonne National Lab. (ANL), Argonne, IL (United States); Holten, Dewey [Washington Univ., St. Louis, MO (United States); Laible, Philip D. [Argonne National Lab. (ANL), Argonne, IL (United States); Kirmaier, Christine [Washington Univ., St. Louis, MO (United States)

    2016-02-01

    Using high-throughput methods for mutagenesis, protein isolation and charge-separation functionality, we have assayed 40 Rhodobacter capsulatus reaction center (RC) mutants for their P+ QB- yield (P is a dimer of bacteriochlorophylls and Q is a ubiquinone) as produced using the normally inactive B-side cofactors BB and HB (where B is a bacteriochlorophyll and H is a bacteriopheophytin). Two sets of mutants explore all possible residues at M131 (M polypeptide, native residue Val near HB) in tandem with either a fixed His or a fixed Asn at L181 (L polypeptide, native residue Phe near BB). A third set of mutants explores all possible residues at L181 with a fixed Glu at M131 that can form a hydrogen bond to HB. For each set of mutants, the results of a rapid millisecond screening assay that probes the yield of P+ QB- are compared among that set and to the other mutants reported here or previously. For a subset of eight mutants, the rate constants and yields of the individual B-side electron transfer processes are determined via transient absorption measurements spanning 100 fs to 50 μs. The resulting ranking of mutants for their yield of P+ QB- from ultrafast experiments is in good agreement with that obtained from the millisecond screening assay, further validating the efficient, high-throughput screen for B-side transmembrane charge separation. Results from mutants that individually show progress toward optimization of P+ HB- → P+ QB- electron transfer or initial P* → P+ HB- conversion highlight unmet challenges of optimizing both processes simultaneously.

  13. Effects of streamline curvature on separation prediction

    Science.gov (United States)

    Arolla, Sunil K.; Durbin, Paul A.

    2009-11-01

    In this study, the effects of streamline curvature on prediction of flow separation are investigated. The geometry is a circulation control airfoil, a high-lift configuration that has been under extensive research for more than two decades. A tangential jet is blown over a thick, rounded trailing edge, using the Coanda effect to delay separation. An attempt is made to understand, through numerical simulations, the dynamics of turbulent separation and reattachment on the Coanda surface. Highly curved, attached recirculation regions are seen to form. A physics based curvature correction proposed by Pettersson-Reif et al. (1999) is used in conjunction with ζ-f turbulence model. The chord-based Reynolds number is Re = 10^6. Two jet momentum coefficients of Cμ=0.03 and 0.1 are computed. In this paper, comparisons between the computed and experimental pressure distributions, velocity profiles and the position of flow detachment are presented. Comparisons with other closures such as Menter's SST model are also discussed.

  14. Improved Charge Separation in WO3/CuWO4 Composite Photoanodes for Photoelectrochemical Water Oxidation

    Directory of Open Access Journals (Sweden)

    Danping Wang

    2016-05-01

    Full Text Available Porous tungsten oxide/copper tungstate (WO3/CuWO4 composite thin films were fabricated via a facile in situ conversion method, with a polymer templating strategy. Copper nitrate (Cu(NO32 solution with the copolymer surfactant Pluronic®F-127 (Sigma-Aldrich, St. Louis, MO, USA, generic name, poloxamer 407 was loaded onto WO3 substrates by programmed dip coating, followed by heat treatment in air at 550 °C. The Cu2+ reacted with the WO3 substrate to form the CuWO4 compound. The composite WO3/CuWO4 thin films demonstrated improved photoelectrochemical (PEC performance over WO3 and CuWO4 single phase photoanodes. The factors of light absorption and charge separation efficiency of the composite and two single phase films were investigated to understand the reasons for the PEC enhancement of WO3/CuWO4 composite thin films. The photocurrent was generated from water splitting as confirmed by hydrogen and oxygen gas evolution, and Faradic efficiency was calculated based on the amount of H2 produced. This work provides a low-cost and controllable method to prepare WO3-metal tungstate composite thin films, and also helps to deepen the understanding of charge transfer in WO3/CuWO4 heterojunction.

  15. Medium effect on charge symmetry breaking

    International Nuclear Information System (INIS)

    We examine the nuclear medium effect on charge symmetry breaking (CSB) caused by isospin mixing of two neutral vector mesons interacting with nucleons in the nuclear medium. Isospin mixing is assumed to occur through the transition between isoscalar and isovector mesons. We use a quantum hadrodynamic nuclear model in the mean-field approximation for the meson fields involved. We find that (i) charge symmetry is gradually restored in nuclear matter in β equilibrium as the nucleon density increases; (ii) when the system departs from β equilibrium, CSB is much enhanced because the isospin mixing depends strongly on the nucleon isovector density; (iii) this leads to the symmetry energy coefficient of 32MeV, of which more than 50 percent arises from the mesonic mean fields; (iv) the Nolen-Schiffer anomaly regarding the masses of neighboring mirror nuclei can be resolved by considering these aspects of CSB in nuclear medium. copyright 1997 The American Physical Society

  16. Charge separation relative to the reaction plane in Pb-Pb collisions at $\\sqrt{s_{NN}}$= 2.76 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacobs, Peter; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Mimae; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Graham Richard; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selioujenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; vrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-01-01

    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range $|\\eta | < 0.8$ are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with the expectation of a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. Models incorporating effects of local parity violation in strong interactions fail to describe the observed collision energy dependence.

  17. Separate Effect Test for APR+ DVI+

    International Nuclear Information System (INIS)

    DVI and FD are our own design features adopted into APR1400. This study focuses on improving their performance for the APR+. From a preliminary study, conceptual design for DVI+ has been developed. Various separate effect tests were performed to evaluate the performance of the design concept and to develop a basic design. For DVI+ design, tests for DVI duct performance and vibration characteristics were performed. For FD+ design, sensitivity tests for major design parameters were performed. This study also includes a development of design for the reactor flow distribution test as well as FD+ overall performance test

  18. Universal Charge Diffusion and the Butterfly Effect

    CERN Document Server

    Blake, Mike

    2016-01-01

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by $D_c = C v_B^2/ (2 \\pi T)$ where $v_B$ is the velocity of the butterfly effect. The constant of proportionality, $C$, depends only on the scaling exponents of the infra-red theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos.

  19. Effect of electroconvulsive seizures on pattern separation.

    Science.gov (United States)

    Svensson, Maria; Grahm, Matilda; Ekstrand, Joakim; Movahed-Rad, Pouya; Johansson, Mikael; Tingström, Anders

    2015-11-01

    Strategies employing different techniques to inhibit or stimulate neurogenesis have implicated a role for adult-born neurons in the therapeutic effect of antidepressant drugs, as well as a role in memory formation. Electroconvulsive seizures (ECS), an animal model of electroconvulsive therapy, robustly stimulate hippocampal neurogenesis, but it is not known how this relates to either therapeutic efficacy or unwanted cognitive side effects. We hypothesized that the ECS-derived increase in adult-born neurons would manifest in improved pattern separation ability, a memory function that is believed to be both hippocampus-dependent and coupled to neurogenesis. To test this hypothesis, we stimulated neurogenesis in adult rats by treating them with a series of ECS and compared their performances in a trial-unique delayed nonmatching-to-location task (TUNL) to a control group. TUNL performance was analyzed over a 12-week period, during which newly formed neurons differentiate and become functionally integrated in the hippocampal neurocircuitry. Task difficulty was manipulated by modifying the delay between sample and choice, and by varying the spatial similarity between target and distracter location. Although animals learned the task and improved the number of correct responses over time, ECS did not influence spatial pattern separation ability. PMID:25850383

  20. Separation of charge-order and magnetic QCPs in heavy fermions and high Tc cuprates

    Science.gov (United States)

    Harrison, Neil

    2010-03-01

    The Fermi surface topology of high temperature superconductors inferred from magnetic quantum oscillation measurements provides clues for the origin of unconventional pairing thus previously not accessed by other spectroscopy techniques. While the overdoped regime of the high Tc phase diagram has a large Fermi surface consistent with bandstructure calculations, the underdoped regime of YBa2Cu2O6+x is found to be composed of small pockets. There is considerable debate as to whether the small observed ``pocket'' is hole-like or electron-like- whether the Fermi surface is best described by a t-J model or a conventional band folding picture- whether or not a Fermi liquid description applies- or- whether bilayer coupling splits the degeneracy of the observed pockets. We (myself and collaborators) have now collected an extensive body of experimental data that brings this debate to rest, but raises new questions about the nature of itinerant magnetism in underdoped high Tc cuprates. Quantum oscillation measurements are performed on multiple samples in magnetic fields extending to 85 T, temperatures between 30 mK (dilution fridge in dc fields to 45 T) and 18 K, over a range of hole dopings and with samples rotated in-situ about multiple axes with respect to the magnetic field. We perform a topographical map of the Fermi surface, enabling the in-plane shape of one of the pockets to be determined- imposing stringent constraints on the origin of the Fermi surface. While quantum oscillations measurements are consistent with a topological Fermi surface change associated with magnetism near optimal doping, they also point to a secondary instability deep within the underdoped regime beneath a high Tc superconducting sub-dome. An steep upturn in the quasiparticle effective mass is observed on underdoping, suggestive of a quantum critical point near x= 0.46 separating the metallic regime (composed of small pockets) from a more underdoped insulating charge-ordered regime (earlier

  1. Charge separation in photoredox reactions. Technical progress report, June 15, 1993--June 15, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kevan, L.

    1996-07-01

    The structural aspects controlling charge separation in molecular photoionization reactions in organized molecular assemblies involving micelles, reverse micelles and vesicles and in microporous silica gel materials are being studied by optical and electron magnetic resonance techniques including the time domain technique of deuterium electron spin echo modulation (ESEM) and matrix proton electron nuclear double resonance (ENDOR) to measure weak electron-nuclear dipolar interactions. ESEM and matrix ENDOR are particularly well adapted to the study of disordered systems as exemplified by micelles and vesicles. In addition to conventional studies by optical absorption and electron spin resonance, ESEM and matrix ENDOR complement each other and enable independent detection and analysis of extremely weak electron-nuclear dipolar interactions which give structural information often not available by other experimental techniques. The complementarity of using both these techniques greatly strengthens the conclusions reached. Since dipolar interactions are averaged out by molecular tumbling in liquid - solutions, their exploitation requires studies in rapidly frozen solutions. A variety of experiments has shown that micellar and vesicular structure is retained in these rapidly frozen solutions. Also, the conformation of x-doxylstearic acid spin probes has been studied as a function of x in cationic and anionic vesicles in liquid solution by detailed simulation of the electron spin resonance lineshapes. The conformation changes with x and with vesicle charge type are the same as independently measured in frozen solutions by variations of the deuterium electron spin echo modulation depth. This shows that embedded photoionizable molecules in frozen vesicle solutions have similar locations and conformations as in liquid vesicle solutions.

  2. Primary charge separation within P870* in wild type and heterodimer mutants in femtosecond time domain.

    Science.gov (United States)

    Khatypov, R A; Khmelnitskiy, A Yu; Khristin, A M; Fufina, T Yu; Vasilieva, L G; Shuvalov, V A

    2012-08-01

    Primary charge separation dynamics in the reaction center (RC) of purple bacterium Rhodobacter sphaeroides and its P870 heterodimer mutants have been studied using femtosecond time-resolved spectroscopy with 20 and 40fs excitation at 870nm at 293K. Absorbance increase in the 1060-1130nm region that is presumably attributed to P(A)(δ+) cation radical molecule as a part of mixed state with a charge transfer character P*(P(A)(δ+)P(B)(δ-)) was found. This state appears at 120-180fs time delay in the wild type RC and even faster in H(L173)L and H(M202)L heterodimer mutants and precedes electron transfer (ET) to B(A) bacteriochlorophyll with absorption band at 1020nm in WT. The formation of the P(A)(δ+)B(A)(δ-) state is a result of the electron transfer from P*(P(A)(δ+)P(B)(δ-)) to the primary electron acceptor B(A) (still mixed with P*) with the apparent time delay of ~1.1ps. Next step of ET is accompanied by the 3-ps appearance of bacteriopheophytin a(-) (H(A)(-)) band at 960nm. The study of the wave packet formation upon 20-fs illumination has shown that the vibration energy of the wave packet promotes reversible overcoming of an energy barrier between two potential energy surfaces P* and P*(P(A)(δ+)B(A)(δ-)) at ~500fs. For longer excitation pulses (40fs) this promotion is absent and tunneling through an energy barrier takes about 3ps. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. PMID:22209778

  3. Development and use of thin film composite based positively charged nanofiltration membranes in separation of aqueous streams and nuclear effluents

    International Nuclear Information System (INIS)

    A new, positively charged, thin film composite (TFC) type nanofiltration membrane has been developed and studied for its use in various aqueous stream separations. The membrane, containing fixed quaternary ammonium moieties, was developed by insitu interfacial polymerization of a functionalized amine (polyethyleneimine) and terephthaloyl chloride on a suitable base membrane. The nature of the charge on the membrane was established by ATR FT IR spectroscopy and was estimated by determination of its ion exchange capacity. The membrane was tested for its performance in single solute feed systems containing salts of various combinations of univalent and bivalent ions (NaCl, Na2SO4, CaCl2 and MgSO4) in test cell as well as in 2512 spiral modules. The membrane gave differential separation profile for these solutes with high rejection for CaCl2 and low rejection for Na2SO4 due to positive charge on the membrane and the type of charge constituting the salts. The membrane was also used for separation of simulated effluent solution containing uranyl nitrate in combination with ammonium nitrate which is a common effluent generated in nuclear industry. Here also the membrane gave differential separation profile for uranyl nitrate and ammonium nitrate in their mixture by concentrating the former salt and passing the later. This helped separation of these two solutes in the mixture into two different streams. (author)

  4. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    Science.gov (United States)

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion. PMID:27062543

  5. Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 nanoparticle Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yu; Pattengale, Brian A.; Ludwig, John M.; Atifi, Abderrahman; Zinovev, Alexander V.; Dong, Bin; Kong, Qingyu; Zuo, Xiaobing; Zhang, Xiaoyi; Huang, Jier

    2015-12-17

    Ni(OH)2 have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)2 nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (~60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complex to Ni(OH)2 NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (>>50 ns). These results not only suggest the possibility of developing Ni(OH)2 as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA.

  6. Survey on isotope effects and separation technologies

    International Nuclear Information System (INIS)

    This paper is a review of the main industrial processes and physical principles used for stable isotope separation on a production scale. It will be restricted to 'classical' industrial technologies. Roughly speaking, only three types of technologies have been contemplated for today's production (apart from uranium enrichment, outside the scope of this review). 1. Chemical exchange processes for the lighter isotopes (D, T, 7 Li, 10 B, 13 C, 15 N, 17 O). Operating processes such as exchange distillation and liquid-gas chemical exchange are based on isotope mass-differences in the free energy (vapour pressures, vibration frequencies) of molecular species.. Insight into statistical thermodynamics gives low enrichment factors (α ≤ 1.05), which have generally a (Δm/m2) ratio dependency. Although needing thousands of repetitive elementary operations, those low cost processes are well suited for large capacity production. Modern trends are now in solid-liquid chromatographic columns: polymer-crown complexes with large macro-cyclic rings have topological ability to pick up boron, lithium, or cesium isotopes. Detritiation (on a small scale) with palladium solid-gas interface is a special case. 2. Thermal Diffusion process for the production of light rare gases (3 He, 22 Ne, 36 Ar, 86 Kr). While having a low separation factor for each stage, this process is still of topical interest for production of the rare gases, with a high purity degree, and of 13 C H4 at the gram level of yearly production. 3. Ultra Gas Centrifuge (G.C.) for medium and heavy nuclei des. This process is based on an increase of a small mass diffusion flux by a pressure gradient. Several counter-current thermal diffusion effects are added to reach higher separation factors (α ∼ 1.5). The whole process results in a Δm dependency. That allowed low cost units to separate xenon as well as metallic isotopes. The trend at Oak-Ridge and at the Kurchatoff-Institute is to replace the electromagnetic

  7. Present status of singly charged ion ECR sources at the SARA on-line separator

    International Nuclear Information System (INIS)

    Various 2.45 GHz microwave electron cyclotron resonance (ECR) ion-sources designed with quartz tubes and without hexapole have been developed and tested for production, transport and focalization of singly-charged ions. A first on-line endeavour to separate radioactive isotopes in a He-jet coupled mode has been realized with a capillary skimmer ion-source injection system parallel to the source plasma axis. In order to improve the coupling of a ECR source with the He-jet system, a new compact metallic body ion-source with a skimmer-catcher injection arrangement perpendicular to the plasma has been designed. The layout of this new metallic ion-source is given. The ionization efficiencies have been measured as a function of gas pressure for a complete off-line regime with various support gases and for a dynamical regime induced with an He-jet injection simulating the subsequent on-line coupled mode conditions. (orig.)

  8. Temperature dependent relaxation of separated charge carriers at CdSe-QD / ITO interfaces

    International Nuclear Information System (INIS)

    One and 5 monolayers of CdSe quantum dots with fixed diameter were deposited on ITO substrates by dip coating and investigated by transient surface photovoltage (SPV) at temperatures up to 250 C. The SPV transients were excited with laser pulses (duration time 5 ns) and measured in vacuum at times up to 0.2 s. SPV transients arose within the laser pulse and could be well fitted with one (one monolayer of CdSe-QDs) or two (5 monolayers of CdSe-QDs) stretched exponentials. The parameters of the stretched exponentials changed depending on defect generation during heating as well as on thermal activation processes during heating and cooling. During cooling, the mean relaxation times of both processes were thermally activated with an activation energy of 0.9 eV. Defect generation strongly affected charge separation and relaxation within the first monolayer at the CdSe-QD/ITO interface and between the first monolayer of CdSe-QDs and following CdSe-QD layers.

  9. MAAP comparison to separate effects tests

    International Nuclear Information System (INIS)

    As part of the Modular Accident Analysis Program (MAAP) benchmarking efforts, data from several separate effects tests were identified as candidates for qualification of MAAP models. These included two critical flow tests, to check the critical flow models in MAAP, and a series of heat transfer tests, to check the heat transfer modeling in MAAP. The critical flow tests were selected because critical flow modeling was identified as important to the MAAP predictions in the phenomena identification study. The same basis was used to select fuel heat transfer tests for comparison to MAAP predictions. For these comparisons, data from two different vessel blowdown tests at General Electric and critical flow data for four different power operated relief valves from the Electric Power Research institute Valve Testing Program was used

  10. Photoinduced charge separation in wide-band capturing, multi-modular bis(donor styryl)BODIPY-fullerene systems.

    Science.gov (United States)

    Obondi, Christopher O; Lim, Gary N; Karr, Paul A; Nesterov, Vladimir N; D'Souza, Francis

    2016-07-21

    A new series of multi-modular donor-acceptor systems capable of exhibiting photoinduced charge separation have been designed, synthesized and characterized using various techniques. In this series, the electron donor was a BF2-chelated dipyrromethene (BODIPY) appended with two styryl linkers carrying two electron rich triphenylamine or phenothiazine entities. Fulleropyrrolidine linked at the meso-position of the BODIPY ring served as an electron acceptor. As a result of extended conjugation and multiple electroactive chromophore entities, the bis-styryl BODIPY revealed absorbance and emission well-into the near-infrared region covering a 300-850 nm spectral range. Using redox, computational, absorbance and emission data, an energy level diagram was constructed that helped in envisioning the different photochemical events. Spectral evidence for photoinduced charge separation in these systems was established from femtosecond and nanosecond transient absorption studies. The measured rate constants indicated fast charge separation and relatively slow charge recombination revealing their usefulness in light energy harvesting and optoelectronic device building applications. The bis(donor styryl)BODIPY-fullerene systems populated BODIPY triplet excited states during the process of charge recombination. PMID:27333163

  11. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers

    Science.gov (United States)

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-07-01

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.

  12. Photocatalytic reforming of glucose under visible light over morphology controlled Cu2O: efficient charge separation by crystal facet engineering.

    Science.gov (United States)

    Zhang, Longzhou; Shi, Jinwen; Liu, Maochang; Jing, Dengwei; Guo, Liejin

    2014-01-01

    Multifaceted Cu2O with controlled crystal facet exposure was synthesized via a facile one-step method. It was found that photogenerated electrons prefer to accumulate on high index planes, while holes tend to migrate to {100} facets of a Cu2O polyhedron, leading to efficient charge separation and enhanced photocatalytic reforming of glucose. PMID:24217641

  13. The influence of microstructure on charge separation dynamics in organic bulk heterojunction materials for solar cell applications

    KAUST Repository

    Scarongella, Mariateresa

    2014-01-01

    Light-induced charge formation is essential for the generation of photocurrent in organic solar cells. In order to gain a better understanding of this complex process, we have investigated the femtosecond dynamics of charge separation upon selective excitation of either the fullerene or the polymer in different bulk heterojunction blends with well-characterized microstructure. Blends of the pBTTT and PBDTTPD polymers with PCBM gave us access to three different scenarios: either a single intermixed phase, an intermixed phase with additional pure PCBM clusters, or a three-phase microstructure of pure polymer aggregates, pure fullerene clusters and intermixed regions. We found that ultrafast charge separation (by electron or hole transfer) occurs predominantly in intermixed regions, while charges are generated more slowly from excitons in pure domains that require diffusion to a charge generation site. The pure domains are helpful to prevent geminate charge recombination, but they must be sufficiently small not to become exciton traps. By varying the polymer packing, backbone planarity and chain length, we have shown that exciton diffusion out of small polymer aggregates in the highly efficient PBDTTPD:PCBM blend occurs within the same chain and is helped by delocalization. This journal is © the Partner Organisations 2014.

  14. Effects of charged particles on DNA

    International Nuclear Information System (INIS)

    It can be noted that it is not simple double strand breaks (dsb) but the non-reparable breaks that are associated with high biological effectiveness in the cell killing effect for high LET radiation. Here, we have examined the effectiveness of fast neutrons and low (initial energy = 12 MeV/u) or high (135 MeV/u) energy charged particles on cell death in 19 mammalian cell lines including radiosensitive mutants. Some of the radiosensitive lines were deficient in DNA dsb repair such as LX830, M10, V3, and L5178Y-S cells and showed lower values of relative biological effectiveness (RBE) for fast neutrons if compared with their parent cell lines. The other lines of human ataxia-telangiectasia fibroblasts, irs 1, irs 2, irs 3 and irs 1SF cells, which were also radiosensitive but known as proficient in dsb repair, showed moderate RBEs. Dsb repair deficient mutants showed low RBE values for heavy ions. These experimental findings suggest that the DNA repair system does not play a major role against the attack of high linear energy transfer (LET) radiations. Therefore, we hypothesize that a main cause of cell death induced by high LET radiations is due to non-reparable dsb, which are produced at a higher rate compared to low LET radiations. (author)

  15. Proceedings of photo-induced space charge effects in semiconductors

    International Nuclear Information System (INIS)

    This volume consists of the proceedings of the Symposium on Photo-Induced Space Charge Effects in Semiconductors: Photoconductivity, Spectroscopy and Electro-Optics. The symposium was held at the Spring Meeting of the Materials Research Society in San Francisco from April 29 to May 1. Our motivation for organizing this symposium was fueled by a persistent feeling that several independent research communities were following much of the same physics. However, the lines of communication among the communities were relatively tenuous. These communities include the electrooptic, photodetector, photorefractive and defect spectroscopy communities. In each of these disciplines, one of the primary concerns is the presence of photo-induced space charge. Although there are problems that are specific to each group, there are many effects that they all have in common, with identical underlying physics. Despite the strong similarities, separate approaches and nomenclature have built up in the individual communities. Jargon form one community may be meaningless to another, although the physical effects themselves are easily recognizable

  16. Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods

    International Nuclear Information System (INIS)

    charge carriers were additionally studied at high excitation energies. An efficient multi-exciton emission of the CdSe/CdS tetrapods could be observed, which is to be lead back to the exciton phase-space filling and a reduced Auger effect. The larger volume of the longer tetrapods allows a dual emission from the CdSe and the CdS with comparable intensities. The occuring Coulomb effects between a spatially separated electron-hole pair were studied in CdSe/CdTe tetrapods, which exhibit a type-II transition. A correlation between the tetrapod leg length and the binding energy of the charge-transfer exciton could be established, which is also reproduced in the theoretical simulations.

  17. Superconducting properties and phase separation effects in systems with local pairing

    International Nuclear Information System (INIS)

    We examined the phase separation effects in a class of models developed for description of superconductors with local electron pairing: (i) the extended attractive Hubbard model, (ii) the model of hard-core charged bosons on the lattice. We analyse the behaviour of various superfluid characteristics as well as the evolution of the phase diagrams with increasing external magnetic field. (author)

  18. Measurements of electric charge separated during the formation of rime by the accretion of supercooled droplets

    Directory of Open Access Journals (Sweden)

    R. A. Lighezzolo

    2010-02-01

    Full Text Available In these experiments, the electric charge carried by single particles ejected from the surface of a graupel particle growing by riming was measured. Simulated graupel pellets were grown by accretion of supercooled water drops, at temperatures ranging from −2 to −10 °C in a wind tunnel at air velocities between 5 and 10 m s−1, with the goal of studying the charging of graupel pellets under conditions of secondary ice crystal production (Hallett-Mossop mechanism. The graupel, and induction rings upstream and downstream of the graupel, were connected to electrometers and analyzing circuits of sufficient sensitivity and speed to measure, correlate and display individual charging events. The results suggest that fewer than 1% of the ejected particles carry a measurable electric charge (>2 fC. Further, it was observed that the graupel pellets acquire a positive charge and the average charge of a single splinter ejected is −14 fC. This mechanism of ejection of charged particles seems adequate to account for a positive charge of around 1 pC that individual precipitation particles of mm-size could acquire in the lower part of the cloud, which in turn could contribute to the lower positive charge region of thunderstorms.

  19. Measurements of electric charge separated during the formation of rime by the accretion of supercooled droplets

    Directory of Open Access Journals (Sweden)

    E. E. Avila

    2009-11-01

    Full Text Available In these experiments, the electric charge carried by single particles ejected from the surface of a graupel particle growing by riming was measured. Simulated graupel pellets were grown by accretion of supercooled water drops, at temperatures ranging from −2 to −10°C in a wind tunnel at air velocities between 5 and 10 m s−1, with the goal of studying the charging of graupel pellets under conditions of secondary ice crystal production (Hallett-Mossop mechanism. The graupel, and induction rings upstream and downstream of the graupel, were connected to electrometers and analyzing circuits of sufficient sensitivity and speed to measure, correlate and display individual charging events. The results suggest that fewer than 1% of the ejected particles carry a measurable electric charge (>2 fC. Further, it was observed that the graupel pellets acquire a positive charge and the average charge of a single splinter ejected is −14 fC. This mechanism of ejection of charged particles seems adequate to account for a positive charge of around 1 pC that individual precipitation particles of mm-size could acquire in the lower part of the cloud, which in turn could contribute to the lower positive charge region of thunderstorms.

  20. Liquid-liquid and liquid-solid phase separation and flocculation for a charged colloidal dispersion

    International Nuclear Information System (INIS)

    We model the intercolloidal interaction by a hard-sphere Yukawa repulsion to which is added the long-range van der Waals attraction. In comparison with the Derjaguin-Landau-Verwey-Overbeek repulsion, the Yukawa repulsion explicitly incorporates the spatial correlations between colloids and small ions. As a result, the repulsive part can be expressed analytically and has a coupling strength depending on the colloidal volume fraction. By use of this two-body potential of mean force and in conjunction with a second-order thermodynamic perturbation theory, we construct the colloidal Helmholtz free energy and use it to calculate the thermodynamic quantities, pressure and chemical potential, needed in the determination of the liquid-liquid and liquid-solid phase diagrams. We examine, in an aqueous charged colloidal dispersion, the effects of the Hamaker constant and particle size on the conformation of a stable liquid-liquid phase transition calculated with respect to the liquid-solid coexistence phases. We find that there exists a threshold Hamaker constant or particle size whose value demarcates the stable liquid-liquid coexistence phases from their metastable counterparts. Applying the same technique and using the energetic criterion, we extend our calculations to study the flocculation phenomenon in aqueous charged colloids. Here, we pay due attention to determining the loci of a stability curve stipulated for a given temperature T0, and obtain the parametric phase diagram of the Hamaker constant vs the coupling strength or, at given surface potential, the particle size. By imposing T0 to be the critical temperature Tc, i.e., setting kBT0 (=kBTc) equal to a reasonable potential barrier, we arrive at the stability curve that marks the irreversible reversible phase transition. The interesting result is that there occurs a minimum size for the colloidal particles below (above) which the colloidal dispersion is driven to an irreversible (reversible) phase transition

  1. Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: Exploring range-separation tuning

    International Nuclear Information System (INIS)

    Charge transfer excitations play a prominent role in the fields of molecular electronics and light harvesting. At the same time they have developed a reputation for being hard to predict with time-dependent density functional theory, which is the otherwise predominant method for calculating molecular structure and excitations. Recently, it has been demonstrated that range-separated hybrid functionals, in particular with an “optimally tuned” range separation parameter, describe charge-transfer excitations reliably for different molecules. Many of these studies focused on molecules in vacuum. Here we investigate the influence of solvation on the electronic excitations of thiophene oligomers, i.e., paradigm low gap systems. We take into account bulk solvation using a continuum solvation model and geometrical distortions from molecular dynamics. From our study, three main findings emerge. First, geometrical distortions increase absorption energies by about 0.5 eV for the longer thiophene oligomers. Second, combining optimal tuning of the range separation parameter with a continuum solvation method is not straightforward and has to be approached with great care. Third, optimally tuned range-separated hybrids without a short-range exchange component tend to inherit undesirable characteristics of semi-local functionals: with increasing system size the range separation parameter takes a smaller value, leading to a functional of effectively more semi-local nature and thus not accurately capturing, e.g., the saturation of the optical gap with increasing system size

  2. Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: Exploring range-separation tuning

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Thiago B. de, E-mail: thiago.branquinho-de-queiroz@uni-bayreuth.de; Kümmel, Stephan [Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth (Germany)

    2014-08-28

    Charge transfer excitations play a prominent role in the fields of molecular electronics and light harvesting. At the same time they have developed a reputation for being hard to predict with time-dependent density functional theory, which is the otherwise predominant method for calculating molecular structure and excitations. Recently, it has been demonstrated that range-separated hybrid functionals, in particular with an “optimally tuned” range separation parameter, describe charge-transfer excitations reliably for different molecules. Many of these studies focused on molecules in vacuum. Here we investigate the influence of solvation on the electronic excitations of thiophene oligomers, i.e., paradigm low gap systems. We take into account bulk solvation using a continuum solvation model and geometrical distortions from molecular dynamics. From our study, three main findings emerge. First, geometrical distortions increase absorption energies by about 0.5 eV for the longer thiophene oligomers. Second, combining optimal tuning of the range separation parameter with a continuum solvation method is not straightforward and has to be approached with great care. Third, optimally tuned range-separated hybrids without a short-range exchange component tend to inherit undesirable characteristics of semi-local functionals: with increasing system size the range separation parameter takes a smaller value, leading to a functional of effectively more semi-local nature and thus not accurately capturing, e.g., the saturation of the optical gap with increasing system size.

  3. Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: Exploring range-separation tuning

    Science.gov (United States)

    de Queiroz, Thiago B.; Kümmel, Stephan

    2014-08-01

    Charge transfer excitations play a prominent role in the fields of molecular electronics and light harvesting. At the same time they have developed a reputation for being hard to predict with time-dependent density functional theory, which is the otherwise predominant method for calculating molecular structure and excitations. Recently, it has been demonstrated that range-separated hybrid functionals, in particular with an "optimally tuned" range separation parameter, describe charge-transfer excitations reliably for different molecules. Many of these studies focused on molecules in vacuum. Here we investigate the influence of solvation on the electronic excitations of thiophene oligomers, i.e., paradigm low gap systems. We take into account bulk solvation using a continuum solvation model and geometrical distortions from molecular dynamics. From our study, three main findings emerge. First, geometrical distortions increase absorption energies by about 0.5 eV for the longer thiophene oligomers. Second, combining optimal tuning of the range separation parameter with a continuum solvation method is not straightforward and has to be approached with great care. Third, optimally tuned range-separated hybrids without a short-range exchange component tend to inherit undesirable characteristics of semi-local functionals: with increasing system size the range separation parameter takes a smaller value, leading to a functional of effectively more semi-local nature and thus not accurately capturing, e.g., the saturation of the optical gap with increasing system size.

  4. Charge carrier concentration dependence of encounter-limited bimolecular recombination in phase-separated organic semiconductor blends

    Science.gov (United States)

    Heiber, Michael C.; Nguyen, Thuc-Quyen; Deibel, Carsten

    2016-05-01

    Understanding how the complex intermolecular configurations and nanostructure present in organic semiconductor donor-acceptor blends impacts charge carrier motion, interactions, and recombination behavior is a critical fundamental issue with a particularly major impact on organic photovoltaic applications. In this study, kinetic Monte Carlo (KMC) simulations are used to numerically quantify the complex bimolecular charge carrier recombination behavior in idealized phase-separated blends. Recent KMC simulations have identified how the encounter-limited bimolecular recombination rate in these blends deviates from the often used Langevin model and have been used to construct the new power mean mobility model. Here, we make a challenging but crucial expansion to this work by determining the charge carrier concentration dependence of the encounter-limited bimolecular recombination coefficient. In doing so, we find that an accurate treatment of the long-range electrostatic interactions between charge carriers is critical, and we further argue that many previous KMC simulation studies have used a Coulomb cutoff radius that is too small, which causes a significant overestimation of the recombination rate. To shed more light on this issue, we determine the minimum cutoff radius required to reach an accuracy of less than ±10 % as a function of the domain size and the charge carrier concentration and then use this knowledge to accurately quantify the charge carrier concentration dependence of the recombination rate. Using these rigorous methods, we finally show that the parameters of the power mean mobility model are determined by a newly identified dimensionless ratio of the domain size to the average charge carrier separation distance.

  5. Controlled Growth of Well-Defined Conjugated Polymers from the Surfaces of Multiwalled Carbon Nanotubes: Photoresponse Enhancement via Charge Separation.

    Science.gov (United States)

    Hou, Wenpeng; Zhao, Ning-Jiu; Meng, Dongli; Tang, Jing; Zeng, Yi; Wu, Yu; Weng, Yangziwan; Cheng, Chungui; Xu, Xiulai; Li, Yi; Zhang, Jian-Ping; Huang, Yong; Bielawski, Christopher W; Geng, Jianxin

    2016-05-24

    The installation of heterojunctions on the surfaces of carbon nanotubes (CNTs) is an effective method for promoting the charge separation processes needed for CNT-based electronics and optoelectronics applications. Conjugated polymers are proven state-of-the-art candidates for modifying the surfaces of CNTs. However, all previous attempts to incorporate conjugated polymers to CNTs resulted in unordered interfaces. Herein we show that well-defined chains of regioregular poly(3-hexylthiophene) (P3HT) were successfully grown from the surfaces of multiwalled CNTs (MWNTs) using surface-initiated Kumada catalyst-transfer polycondensation. The polymerization was found to proceed in a controlled manner as chains of tunable lengths were prepared through variation of the initial monomer-to-initiator ratio. Moreover, it was determined that large-diameter MWNTs afforded highly ordered P3HT aggregates, which exhibited a markedly bathochromically shifted optical absorption due to a high grafting density induced planarization of the polymer chains. Using ultrafast spectroscopy, the heterojunctions formed between the MWNTs and P3HT were shown to effectively overcome the binding energy of excitons, leading to photoinduced electron transfer from P3HT to MWNTs. Finally, when used as prototype devices, the individual MWNT-g-P3HT core-shell structures exhibited excellent photoresponses under a low illumination density. PMID:27087146

  6. Charge Separation in P3HT:SWCNT Blends Studied by EPR: Spin Signature of the Photoinduced Charged State in SWCNT.

    Science.gov (United States)

    Niklas, Jens; Holt, Josh M; Mistry, Kevin; Rumbles, Garry; Blackburn, Jeffrey L; Poluektov, Oleg G

    2014-02-01

    Single-wall carbon nanotubes (SWCNTs) could be employed in organic photovoltaic (OPV) devices as a replacement or additive for currently used fullerene derivatives, but significant research remains to explain fundamental aspects of charge generation. Electron paramagnetic resonance (EPR) spectroscopy, which is sensitive only to unpaired electrons, was applied to explore charge separation in P3HT:SWCNT blends. The EPR signal of the P3HT positive polaron increases as the concentration of SWCNT acceptors in a photoexcited P3HT:SWCNT blend is increased, demonstrating long-lived charge separation induced by electron transfer from P3HT to SWCNTs. An EPR signal from reduced SWCNTs was not identified in blends due to the free and fast-relaxing nature of unpaired SWCNT electrons as well as spectral overlap of this EPR signal with the signal from positive P3HT polarons. However, a weak EPR signal was observed in chemically reduced SWNTs, and the g values of this signal are close to those of C70-PCBM anion radical. The anisotropic line shape indicates that these unpaired electrons are not free but instead localized. PMID:26276616

  7. Beam space charge effects in high-current cyclotron injector CI-5

    International Nuclear Information System (INIS)

    Separated sector cyclotron-injector CI-5 has been studied in the framework of the external injection into phasotron project. The calculations of beam dynamics characteristics of Cyclotron CI-5 for H- beam of 5 MeV energy are presented. Space charge limits (both transverse and longitudinal) have been investigated. Analytical estimations and numerical simulations of particle motion taking into account space charge effects confirm that it is possible to achieve 10 mA in a 5 MeV separated sector H- Cyclotron

  8. Counterion Condensation and Effective Charge of PAMAM Dendrimers

    Directory of Open Access Journals (Sweden)

    Ulrich Scheler

    2011-04-01

    Full Text Available PAMAM dendrimers are used as a model system to investigate the effects of counterion condensation and the effective charge for spherical polyelectrolytes. Because of their amino groups, PAMAM dendrimers are weak polyelectrolytes. Lowering the pH results in an increasing protonation of the amino groups which is monitored via the proton chemical shifts of the adjacent CH2 groups. The effective charge is determined from a combination of diffusion and electrophoresis NMR. The fraction of the charges, which are effective for the interaction with an external electric field or other charges, decreases with increasing generation (size of the dendrimers.

  9. A compact electron beam ion source with integrated Wien filter providing mass and charge state separated beams of highly charged ions

    International Nuclear Information System (INIS)

    A Wien filter was designed for and tested with a room temperature electron beam ion source (EBIS). Xenon charge state spectra up to the charge state Xe46+ were resolved as well as the isotopes of krypton using apertures of different sizes. The complete setup consisting of an EBIS and a Wien filter has a length of less than 1 m substituting a complete classical beamline setup. The Wien filter is equipped with removable permanent magnets. Hence total beam current measurements are possible via simple removal of the permanent magnets. In dependence on the needs of resolution a weak (0.2 T) or a strong (0.5 T) magnets setup can be used. In this paper the principle of operation and the design of the Wien filter meeting the requirements of an EBIS are briefly discussed. The first ion beam extraction and separation experiments with a Dresden EBIS are presented.

  10. A compact electron beam ion source with integrated Wien filter providing mass and charge state separated beams of highly charged ions.

    Science.gov (United States)

    Schmidt, M; Peng, H; Zschornack, G; Sykora, S

    2009-06-01

    A Wien filter was designed for and tested with a room temperature electron beam ion source (EBIS). Xenon charge state spectra up to the charge state Xe46+ were resolved as well as the isotopes of krypton using apertures of different sizes. The complete setup consisting of an EBIS and a Wien filter has a length of less than 1 m substituting a complete classical beamline setup. The Wien filter is equipped with removable permanent magnets. Hence total beam current measurements are possible via simple removal of the permanent magnets. In dependence on the needs of resolution a weak (0.2 T) or a strong (0.5 T) magnets setup can be used. In this paper the principle of operation and the design of the Wien filter meeting the requirements of an EBIS are briefly discussed. The first ion beam extraction and separation experiments with a Dresden EBIS are presented. PMID:19566197

  11. Intramolecular charge separation in spirobifluorene-based donor–acceptor compounds adsorbed on Au and indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, Daniel; Otero, Luis [Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Agencia Postal 3, X5804BYA (Argentina); Gervaldo, Miguel, E-mail: mgervaldo@exa.unrc.edu.ar [Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Agencia Postal 3, X5804BYA (Argentina); Fungo, Fernando [Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Agencia Postal 3, X5804BYA (Argentina); Dittrich, Thomas [Helmholtz Centre Berlin for Materials and Energy, Berlin, Hahn-Meitner-Platz 1, D-14109 (Germany); Lin, Chih-Yen; Chi, Liang-Chen; Fang, Fu-Chuan [Department of Chemistry, National Taiwan University, Taiwan, Taipei 106, Taiwan (China); Wong, Ken-Tsung, E-mail: kenwong@ntu.edu.tw [Department of Chemistry, National Taiwan University, Taiwan, Taipei 106, Taiwan (China)

    2013-01-01

    Surface photovoltage (SPV) measurements were performed with a Kelvin-probe in spirobifluorene-based donor (diphenylamine)–acceptor (dicyano or cyanoacrylic acid moieties) compounds adsorbed from highly diluted solutions onto Au and indium tin oxide electrode surfaces. Strong intramolecular charge separation (negative SPV signals up to more than 0.1 V) due to directed molecule adsorption was observed only for spirobifluorene donor–acceptor compounds with carboxylic acid moiety. SPV signals and onset energies of electronic transitions depended on ambience conditions. - Highlights: ► Fluorene donor–acceptor derivatives were adsorbed at Au and indium tin oxide. ► Surface photovoltage measurements were performed with a Kelvin-probe. ► Strong intra-molecular charge separation was observed. ► SPV signals depended on ambience conditions.

  12. Intramolecular charge separation in spirobifluorene-based donor–acceptor compounds adsorbed on Au and indium tin oxide electrodes

    International Nuclear Information System (INIS)

    Surface photovoltage (SPV) measurements were performed with a Kelvin-probe in spirobifluorene-based donor (diphenylamine)–acceptor (dicyano or cyanoacrylic acid moieties) compounds adsorbed from highly diluted solutions onto Au and indium tin oxide electrode surfaces. Strong intramolecular charge separation (negative SPV signals up to more than 0.1 V) due to directed molecule adsorption was observed only for spirobifluorene donor–acceptor compounds with carboxylic acid moiety. SPV signals and onset energies of electronic transitions depended on ambience conditions. - Highlights: ► Fluorene donor–acceptor derivatives were adsorbed at Au and indium tin oxide. ► Surface photovoltage measurements were performed with a Kelvin-probe. ► Strong intra-molecular charge separation was observed. ► SPV signals depended on ambience conditions

  13. Study on the Effect of the Separating Unit Optimization on the Economy of Stable Isotope Separation

    Directory of Open Access Journals (Sweden)

    YANG Kun

    2015-01-01

    Full Text Available An economic criterion called as yearly net profit of single separating unit (YNPSSU was presented to evaluate the influence of structure optimization on the economy. Using YNPSSU as a criterion, economic analysis was carried out for the structure optimization of separating unit in the case of separating SiF4 to obtain the 28Si and 29Si isotope. YNPSSU was calculated and compared with that before optimization. The results showed that YNPSSU was increased by 12.3% by the structure optimization. Therefore, the structure optimization could increase the economy of the stable isotope separation effectively.

  14. Medium effects on charged pion ratio in heavy ion collisions

    CERN Document Server

    Ko, Che Ming; Xu, Jun

    2010-01-01

    We have recently studied in the delta-resonance--nucleon-hole model the dependence of the pion spectral function in hot dense asymmetric nuclear matter on the charge of the pion due to the pion p-wave interaction in nuclear medium. In a thermal model, this isospin-dependent effect enhances the ratio of negatively charged to positively charged pions in neutron-rich nuclear matter, and the effect is comparable to that due to the uncertainties in the theoretically predicted stiffness of nuclear symmetry energy at high densities. This effect is, however, reversed if we also take into account the s-wave interaction of the pion in nuclear medium as given by chiral perturbation theory, resulting instead in a slightly reduced ratio of negatively charged to positively charged pions. Relevance of our results to the determination of the nuclear symmetry energy from the ratio of negatively to positively charged pions produced in heavy ion collisions is discussed.

  15. Medium effects on charged pion ratio in heavy ion collisions

    International Nuclear Information System (INIS)

    We have recently studied in the delta-resonance–nucleon-hole model the dependence of the pion spectral function in hot dense asymmetric nuclear matter on the charge of the pion due to the pion p-wave interaction in nuclear medium. In a thermal model, this isospin-dependent effect enhances the ratio of negatively charged to positively charged pions in neutron-rich nuclear matter, and the effect is comparable to that due to the uncertainties in the theoretically predicted stiffness of nuclear symmetry energy at high densities. This effect is, however, reversed if we also take into account the s-wave interaction of the pion in nuclear medium as given by chiral perturbation theory, resulting instead in a slightly reduced ratio of negatively charged to positively charged pions. Relevance of our results to the determination of the nuclear symmetry energy from the ratio of negatively to positively charged pions produced in heavy ion collisions is discussed. (author)

  16. Space-charge effects of the proportional counters in a multiple-ionization chamber

    International Nuclear Information System (INIS)

    At the ALADIN spectrometer of the GSI in october 1991 for the first time the new multiple ionization chamber was applied, in the two anode planes of which are additional multiwire-proportional counters. The proportional counters are required in order to make the detection of light fragments (Z4 gold projectiles per second by these positive space charges the homogeneous electric field of the MUSIC is disturbed. This effect is especially strong in the beam plane. As consequence of the space charge additionally electrons are focused on the proportional counter so that their amplitudes in dependence on the beam intensity increase up to the 2.5-fold. Furthermore the y coordinate is falsified, because the electrons are diverted to the medium plane. On the measurement of the x coordinate this diversion has with maximally 0.1% only a small influence. These space-charge effects can be qualitatively described by a schematic model, which assumes a stationary positive space charge. Additionally for the proportional counters, which are not in the beam plane, their resolution was determined. In these counters the space-charge effects are small, because essentially fewer particles are registrated than in the medium MWPC's. By this charges of fragments with Z<10 could be separated. The charge resolution amounted at lithium 0.8 charge units. The position resolution of the proportional counters in y direction was determined to less than 8 mm. The detection probability of the fragments amounts for lithium 90% and from boron all fragments are detected

  17. Understanding the effect of space charge on instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Chao, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Chin, Y. H. [National Lab. for High Energy Physics (KEK), Ibaraki (Japan)

    2015-05-03

    The combined effect of space charge and wall impedance on transverse instabilities is an important consideration in the design and operation of high intensity hadron machines as well as an intrinsic academic interest. This study explores the combined effects of space charge and wall impedance using various simplified models in an attempt to produce a better understanding of their interplay.

  18. The Effect of FDI on Job Separation

    OpenAIRE

    Muendler, Marc-Andreas; Sascha O. Becker

    2006-01-01

    A novel linked employer-employee data set documents that expanding multinational enterprises retain more domestic jobs than competitors without foreign expansion. In contrast to prior research, a propensity score estimator allows enterprise performance to vary with foreign direct investment (FDI) and shows that the foreign expansion itself is the dominant explanatory factor for reduced worker separation rates. Bounding, concomitant variable tests, and robustness checks rule out competing hy...

  19. Space charge effects in proton linear accelerators

    International Nuclear Information System (INIS)

    Space charge difficulties are relatively well known because of the inconveniences they cause, but the physical mechanisms by which they operate are obscure; an attempt was made to explain some of these mechanisms. The method chosen involves a numerical simulation of the beam; computer programs describing beam dynamics with space charge are presented; they are used to check results obtained elsewhere. A series of experiments was performed demonstrating that coupling phenomena produce an equalization of r. m. s. velocities in the 3 directions; new quantity (sort of hyper-emittance) is introduced: its growth between the input and output of a given linac is proportional to the beam intensity. (author)

  20. Quantum coherence controls the charge separation in a prototypical artificial light harvesting system

    Directory of Open Access Journals (Sweden)

    Schramm H.

    2013-03-01

    Full Text Available Ultrafast spectroscopy and quantum-dynamics simulations of an artificial supramolecular light-harvesting system — a supramolecular triad - provide strong evidence that the quantum-correlated wavelike motion of electrons and nuclei on a timescale of few tens of femtoseconds governs the ultrafast electronic charge transfer.

  1. Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions

    KAUST Repository

    Provencher, Françoise

    2014-07-01

    In polymeric semiconductors, charge carriers are polarons, which means that the excess charge deforms the molecular structure of the polymer chain that hosts it. This results in distinctive signatures in the vibrational modes of the polymer. Here, we probe polaron photogeneration dynamics at polymer:fullerene heterojunctions by monitoring its time-resolved resonance-Raman spectrum following ultrafast photoexcitation. We conclude that polarons emerge within 300 fs. Surprisingly, further structural evolution on ≤50-ps timescales is modest, indicating that the polymer conformation hosting nascent polarons is not significantly different from that near equilibrium. We interpret this as suggestive that charges are free from their mutual Coulomb potential because we would expect rich vibrational dynamics associated with charge-pair relaxation. We address current debates on the photocarrier generation mechanism at molecular heterojunctions, and our work is, to our knowledge, the first direct probe of molecular conformation dynamics during this fundamentally important process in these materials. © 2014 Macmillan Publishers Limited. All rights reserved.

  2. Space-charge effects of positive ions on the development of pulses in parallel-plate avalanche counters

    Energy Technology Data Exchange (ETDEWEB)

    Nakhostin, M., E-mail: Nakhostin.m@gmail.com; Baba, M.

    2015-02-11

    The effects of the space-charge of positive ions on the development of α-particle induced pulses in a parallel-plate avalanche counter (PPAC) were studied by using pulse-shape analysis techniques. The analyses were separately carried out on the electron and the positive ion components of the pulses, reflecting the space-charge effects during and after the multiplication of charges in an external uniform electric field. Some calculations of the space-charge electric field and the first Townsend coefficient were carried out to explain the experimental waveforms. The dependence of the shape of the pulses to the amount of primary ionization is particularly discussed.

  3. Space-charge effects of positive ions on the development of pulses in parallel-plate avalanche counters

    Science.gov (United States)

    Nakhostin, M.; Baba, M.

    2015-02-01

    The effects of the space-charge of positive ions on the development of α-particle induced pulses in a parallel-plate avalanche counter (PPAC) were studied by using pulse-shape analysis techniques. The analyses were separately carried out on the electron and the positive ion components of the pulses, reflecting the space-charge effects during and after the multiplication of charges in an external uniform electric field. Some calculations of the space-charge electric field and the first Townsend coefficient were carried out to explain the experimental waveforms. The dependence of the shape of the pulses to the amount of primary ionization is particularly discussed.

  4. The effect of conformal symmetry on charged wormholes

    CERN Document Server

    Kuhfittig, Peter K F

    2016-01-01

    This paper discusses the effect that conformal symmetry can have on a charged wormhole. The analysis yields a physical interpretation of the conformal factor in terms of the electric charge. The rate of change of the conformal factor determines much of the outcome, which ranges from having no solution to wormholes having either one or two throats.

  5. Charges for plastic bags : Motivational and behavioral effects

    NARCIS (Netherlands)

    Jakovcevic, Adriana; Steg, Linda; Mazzeo, Nadia; Caballero, Romina; Franco, Paul; Putrino, Natalia; Favara, Jesica

    2014-01-01

    Two field studies tested the effects of a charge for single-use plastic bags recently implemented in Buenos Aires City, Argentina. Study 1 showed a greater increase in consumers' own bag use after the charge was introduced in supermarkets where the policy was introduced, in comparison to control sup

  6. Charge-Transfer Matrix Elements by FMO-LCMO Approach: Hole Transfer in DNA with Parameter Tuned Range-Separated DFT

    CERN Document Server

    Kitoh-Nishioka, Hirotaka

    2016-01-01

    A scheme for computing charge-transfer matrix elements with the linear combination of fragment molecular orbitals and the 'nonempirically tuned range-separated' density functional is presented. It takes account of the self-consistent orbital relaxation induced by environmental Coulomb field and the exchange interaction in fragment pairs at low computational scaling along the system size. The accuracy was confirmed numerically on benchmark systems of imidazole and furane homo-dimer cations. Applications to hole transfers in DNA nucleobase pairs and in a $\\pi$-stack adenine octomer highlight the effects of orbital relaxation.

  7. Target protein separation and preparation by free-flow electrophoresis coupled with charge-to-mass ratio analysis.

    Science.gov (United States)

    Shen, Qiao-Yi; Guo, Chen-Gang; Yan, Jian; Zhang, Qiang; Xie, Hai-Yang; Jahan, Sharmin; Fan, Liu-Yin; Xiao, Hua; Cao, Cheng-Xi

    2015-06-01

    Herein, a novel strategy was developed to separate and prepare target protein from complex sample by free-flow electrophoresis (FFE), which mainly based on the charge-to-mass ratio (C/M) analysis of proteins. The C/M values of three model proteins, namely Cytochrome C (Cyt C), myoglobin (Mb) and bovine serum albumin (BSA) were analyzed under different pH and the separation of these proteins was predicted by CLC Protein Workbench software. Series of experiments were performed to validate the proposed method. The obtained data showed high accordance with our prediction. In addition, the chamber buffer (CB) of FFE system was optimized to improve the resolution of separation. Meanwhile, in order to evaluate the analytical performance of the proposed method, Cyt C was extracted from swine heart and further separated by FFE based on C/M analysis. Results showed that Cyt C was completely separated from the crude sample and a purity of 96.9% was achieved. The activity of prepared Cyt C was 98.3%, which indicate that the proposed method is promising in a wide variety of research areas where the native properties of proteins should be maintained for downstream analysis. PMID:25890440

  8. Virtual charge state separator as an advanced tool coupling measurements and simulations

    Science.gov (United States)

    Yaramyshev, S.; Vormann, H.; Adonin, A.; Barth, W.; Dahl, L.; Gerhard, P.; Groening, L.; Hollinger, R.; Maier, M.; Mickat, S.; Orzhekhovskaya, A.

    2015-05-01

    A new low energy beam transport for a multicharge uranium beam will be built at the GSI High Current Injector (HSI). All uranium charge states coming from the new ion source will be injected into GSI heavy ion high current HSI Radio Frequency Quadrupole (RFQ), but only the design ions U4 + will be accelerated to the final RFQ energy. A detailed knowledge about injected beam current and emittance for pure design U4 + ions is necessary for a proper beam line design commissioning and operation, while measurements are possible only for a full beam including all charge states. Detailed measurements of the beam current and emittance are performed behind the first quadrupole triplet of the beam line. A dedicated algorithm, based on a combination of measurements and the results of advanced beam dynamics simulations, provides for an extraction of beam current and emittance values for only the U4 + component of the beam. The proposed methods and obtained results are presented.

  9. Improved charge carrier separation in barium tantalate composites investigated by laser flash photolysis.

    Science.gov (United States)

    Schneider, Jenny; Nikitin, Konstantin; Wark, Michael; Bahnemann, Detlef W; Marschall, Roland

    2016-04-20

    Charge carrier dynamics in phase pure Ba5Ta4O15 and in a Ba5Ta4O15-Ba3Ta5O15 composite have been studied by means of diffuse reflectance laser flash photolysis spectroscopy in the presence and absence of an electron donor, in order to reveal the reason for the improved photocatalytic performance of the latter. For the first time the transient absorption of trapped electrons with a maximum at around 650 nm and of trapped holes with a transient absorption maximum at around 310 nm is reported for tantalates. The decay kinetics of the photogenerated charge carriers could be fitted by second order reaction kinetics, and the direct recombination of the trapped electrons with the trapped holes was proven. In the absence of an electron donor, no difference in the decay behavior between the phase pure material and the composite material is found. In the presence of methanol, for the pure phase Ba5Ta4O15 the recombination of the charge carriers could not be prevented and the trapped electrons also recombine with the ˙CH2OH radical formed via the methanol oxidation by the trapped holes. However, in the composite, the electron can be stored in the system, the ˙CH2OH radical injects an electron into the conduction band of the second component of the composite, i.e., Ba3Ta5O15. Thus, the electrons are available for an extended period to induce reduction reactions. PMID:26732364

  10. Is it possible to conserve electric charge without separately conserving baryonic number and leptonic number?

    International Nuclear Information System (INIS)

    Charges that are sources of fields must be universally conserved. Any quantity which is proved to be violated in certain circumstance cannot be a source of field. To account for the asymmetry of our Universe baryon number A has to be violated; thus A cannot be a charge. We postulate a new interaction, matter creation, with (A–L) as charge and Z* as messenger. Conservation of (A–L) instead of (3A–L) suggested by Sakharov is deduced on the one hand from observational facts (our Universe is both material and neutral) and on the other hand from the generalized Gell-Mann and Nishijima formula. Conservation of (A–L) forbids neutrinoless double beta decay and neutron antineutron oscillations. The union of four interactions — electromagnetism, the MC interaction, the weak interaction and the strong interaction — considered as the product U(1) × U(1) × SU(2) × SU(3) would account for available experimental and observational data. Observation of processes violating baryon number conservation would be of great interest in falsifying this suggestion. (author)

  11. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers

    OpenAIRE

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-01-01

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layers in electrolyte solutions with divalent counter-ions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three dist...

  12. Polarization Energies at Organic-Organic Interfaces: Impact on the Charge Separation Barrier at Donor-Acceptor Interfaces in Organic Solar Cells.

    Science.gov (United States)

    Ryno, Sean M; Fu, Yao-Tsung; Risko, Chad; Brédas, Jean-Luc

    2016-06-22

    We probe the energetic landscape at a model pentacene/fullerene (C60) interface to investigate the interactions between positive and negative charges, which are critical to the processes of charge separation and recombination in organic solar cells. Using a polarizable force field, we find that polarization energy, i.e., the stabilization a charge feels due to its environment, is larger at the interface than in the bulk for both a positive and a negative charge. The combination of the charge being more stabilized at the interface and the Coulomb attraction between the charges results in a barrier to charge separation at the pentacene/C60 interface that can be in excess of 0.7 eV for static configurations of the donor and acceptor locations. However, the impact of molecular motions, i.e., the dynamics, at the interface at room temperature results in a distribution of polarization energies and in charge separation barriers that can be significantly reduced. The dynamic nature of the interface is thus critical, with the polarization energy distributions indicating that sites along the interface shift in time between favorable and unfavorable configurations for charge separation. PMID:27244215

  13. Polarization Energies at Organic–Organic Interfaces: Impact on the Charge Separation Barrier at Donor–Acceptor Interfaces in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-05-31

    We probe the energetic landscape at a model pentacene/fullerene-C60 interface to investigate the interactions between positive and negative charges, which are critical to the processes of charge separation and recombination in organic solar cells. Using a polarizable force field, we find that polarization energy, i.e. the stabilization a charge feels due to its environment, is larger at the interface than in the bulk for both a positive and a negative charge. The combination of the charge being more stabilized at the interface and the Coulomb attraction between the charges, results in a barrier to charge separation at the pentacene-C60 interface that can be in excess of 0.7 eV for static configurations of the donor and acceptor locations. However, the impact of molecular motions, i.e., the dynamics, at the interface at room temperature results in a distribution of polarization energies and in charge separation barriers that can be significantly reduced. The dynamic nature of the interface is thus critical, with the polarization energy distributions indicating that sites along the interface shift in time between favorable and unfavorable configurations for charge separation.

  14. Thermal Bridge Effects in Walls Separating Rowhouses

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures.......In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures....

  15. The effective charge effect in partially stripped ion-helium collisions

    International Nuclear Information System (INIS)

    The double and single ionization cross section ratios of helium by partially stripped carbon, oxygen and fluorine ions are measured for projectile charge states ranging from +1 to +4 and impact energies from 1.5 MeV to 7.5 MeV. The effective charge effect in partially stripped ion-helium collisions is studied. It is found that the effective charge qeff increases as the impinging energy increases and qeff shows a modest dependence upon the projectile charge state in the present energy range. The projectile charge state, projectile energy, projectile and target electronic state dependences of the effective charge effect may be explained using orbital interpenetrating. (orig.)

  16. Mergers in the GB Electricity Market: effects on Retail Charges

    International Nuclear Information System (INIS)

    The opening up of the UK residential electricity sector in 1999 prompted several studies of the impact this had on both the level and structuring of retail charges, and on incumbent players' market power. Drawing on observations of regional tariffs for the month of January 2004, this paper supports previous conclusions based on simulated retail charges, looking at the response of real tariffs to distribution and transmission costs, customer density, and the length of low voltage underground circuit. We also investigate whether vertically integrated suppliers have a particular effect on charges ceteris paribus the effect of cost drivers and supplier-related factors. (author)

  17. Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn

    CERN Document Server

    Pourhassan, Behnam

    2016-01-01

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  18. Stabilising the lowest energy charge-separated state in a {metal chromophore – fullerene} assembly: a tuneable panchromatic absorbing donor–acceptor triad

    OpenAIRE

    Lebedeva, MA; Chamberlain, TW; Scattergood, PA; Delor, M; Sazanovich, IV; Davies, ES; Suyetin, M.; Besley, E; Schroder, M.; Weinstein, J; Khlobystov, AN

    2016-01-01

    Photoreduction of fullerene and the consequent stabilisation of a charge-separated state in a donor–acceptor assembly have been achieved, overcoming the common problem of a fullerene-based triplet state being an energy sink that prevents charge-separation. A route to incorporate a C60-fullerene electron acceptor moiety into a catecholate-Pt(II)-diimine photoactive dyad, which contains an unusually strong electron donor, 3,5-di-tert-butylcatecholate, has been developed. The synthetic methodolo...

  19. Effects of Permanent Separation from Mother on Infant Monkeys

    Science.gov (United States)

    Suomi, Stephen; And Others

    1973-01-01

    A study designed to investigate the effects of permanent maternal separation in infant rhesus monkeys, 60, 90, and 120 days of age, and housed individually or in Paris. Monkeys separated at 90 days and housed individually showed the highest levels of disturbance. (DP)

  20. Space Charge Effects in Rectilinear Motion Emittance

    CERN Document Server

    Chen, C

    2000-01-01

    This report summarizes the presentations and discussions over a wide range of topics in Working Group I at the Second ICFA Advanced Accelerator Workshop on Physics of High-Brightness Beams held at University of California at Los $9 Angeles (UCLA), November 9-12, 1999. Latest developments towards to a better understanding of high-brightness photoinjectors were reported. The design and commissioning of the Los Alamos National Laboratory (LANL) Low-Energy $9 Demonstration Accelerator (LEDA) Radio-Frequency Quadrupole (RFQ) were reported. The problem of beam halo formation was discussed in both beam transport systems and the SLAC 50 MW 11.4 GHz periodic permanent magnet (PPM) focusing $9 klystron amplifier. A new class of corkscrewing elliptic beam equilibria was reported, and applications of such novel beam equilibria in controlling of charge-density and velocity fluctuations, beam halo formation and emittance $9 growth were discussed. Pattern formation in proton rings was also discussed.

  1. Quantum gravity effects on charged microblack holes thermodynamics

    Science.gov (United States)

    Abbasvandi, Niloofar; Soleimani, M. J.; Radiman, Shahidan; Wan Abdullah, W. A. T.

    2016-08-01

    The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum and maximal momentum as GUP type II on thermo dynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.

  2. Quantum Gravity Effects On Charged Micro Black Holes Thermodynamics

    CERN Document Server

    Abbasvandi, N; Radiman, Shahidan; Abdullah, W A T Wan

    2016-01-01

    The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum, and maximal momentum as GUP type II on thermodynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.

  3. Effect of radiative cooling on a hot charged dusty grains with charging fluctuation

    International Nuclear Information System (INIS)

    The effect of the radiative cooling of electrons on the gravitational collapse of hot dust grains with fluctuating electric charge is investigated. Propagation of linear solitary radiation in an unmagnetized collisionless dusty plasma is studied. The standard normal-mode analysis is used to study the stability condition of linear wave

  4. Simulation of the dielectric charging-up effect in a GEM detector

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, M., E-mail: Matteo.Alfonsi@cern.ch [CERN, Geneva (Switzerland); Croci, G.; Duarte Pinto, S. [CERN, Geneva (Switzerland); Rocco, E. [INFN Torino and University of Eastern Piedmont (Italy); Ropelewski, L. [CERN, Geneva (Switzerland); Sauli, F. [TERA Foundation, Novara (Italy); Veenhof, R.; Villa, M. [CERN, Geneva (Switzerland)

    2012-04-11

    The charging up effect is well-known in detectors containing dielectric materials and it is due to electrons and ions liberated in an avalanche and collected on the dielectric surfaces. In particular in Gas Electron Multiplier (GEM) based detectors, charges can be captured by the Kapton that separates top and bottom electrodes. The collection of a substantial number of charges on the dielectric surfaces induces a modification of the field inside the GEM holes that implies important consequences on some fundamental parameters such as the electron transparency and the effective gain. The correct simulation of this effect opens new ways to the detailed study of the processes that happens in a GEM-based detector and gives the possibility to optimise the GEM geometry in order to avoid it. This paper compares results of the measurements and the simulations, with and without the introduction of the charging-up effect, of the GEM electron transparency in the case of a single GEM detector. The introduction of the charging up effect in the simulation resulted to be crucial in order to get the proper agreement with the measurements. The measurements and simulations of the GEM effective gain will be the subject of a future work.

  5. Visible-light-driven TiO2/Ag3PO4/GO heterostructure photocatalyst with dual-channel for photo-generated charges separation

    International Nuclear Information System (INIS)

    Highlights: • TiO2/Ag3PO4/GO was synthesized with a facile two-step method. • TiO2/Ag3PO4/GO exhibit superior photocatalytic activity and stability. • TiO2/Ag3PO4/GO has dual-channel for photo-generated charges separation. • TiO2/Ag3PO4/GO composite reduces the consumption of Ag. - Abstract: A novel triple-component TiO2/Ag3PO4/graphene oxide (TiO2/Ag3PO4/GO) photocatalyst with dual channels for photo-generated charges separation has been synthesized to improve the photocatalytic activity and stability of Ag3PO4 under visible light. The synthesis involved in-situ growth of Ag3PO4 nanoparticles on GO sheets to form Ag3PO4/GO, and then deposited TiO2 nanocrystals on the surface of Ag3PO4 by hydrolysis of Ti(SO4)2 at low-temperature hydrothermal condition. The TiO2/Ag3PO4/GO exhibited superior photocatalytic activity and stability to bare Ag3PO4, TiO2/Ag3PO4 and Ag3PO4/GO in degradation of Rhodamine B and phenol solutions under visible light. It is suggested that the photo-generated electrons in the conduction band of Ag3PO4 can be quickly transferred to GO, while the holes in the valence band of Ag3PO4 can be transferred to the valence band of TiO2. The dual transfer channels at the interfaces of TiO2/Ag3PO4/GO result in effective charges separation, leading to enhanced photocatalytic activity and stability. Furthermore, the content of noble metal Ag significantly reduces from 77 wt% in bare Ag3PO4 to 55 wt% in the nanocomposite. The concept of establishing dual channels for charges separation in a triple-component heterostructure provides a promising way to develop photocatalysts with high efficiency

  6. Protonated Melamine Sponge for Effective Oil/Water Separation

    Science.gov (United States)

    Wang, Chih-Feng; Huang, Hsiang-Ching; Chen, Liang-Ting

    2015-09-01

    In this study, we fabricated a superhydrophilic and underwater superoleophobic protonated melamine sponge for effective separation of water-rich immiscible oil/water mixtures with extremely high separation efficiency. This protonated melamine sponge exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 12 h without any increase in the oil content in filtrate. Moreover, our compressed protonated melamine sponge could separate both surfactant-free and -stabilized oil-in-water emulsions with high separation efficiencies. The high performance of this protonated melamine sponge and its efficient, energy- and cost-effective preparation suggest that it has great potential for use in practical applications.

  7. EuBaFe2O5+w: Valence mixing and charge ordering are two separate cooperative phenomena

    International Nuclear Information System (INIS)

    Mixed-valence EuBaFe2O5+w exhibits a robust Verwey-type transition. The trend in the volume change suggests a first-order transition up to the nonstoichiometry level of about w=0.25. 57Fe Mossbauer spectroscopy, differential scanning calorimetry and synchrotron X-ray powder diffraction are used to study the valence mixing and charge ordering in EuBaFe2O5+w as a function of the nonstoichiometry parameter w. 151Eu Mossbauer spectroscopy is used as a selective probe into the ferromagnetic valence-mixing coupling along c above the Verwey transition, and reveals that increasing w destroys this coupling in favor of a G-type magnetic order in parallel with the progressive removal of the valence-mixed iron states accounted for by 57Fe Mossbauer spectroscopy. This removal proceeds according to a probability scheme of mixing between ferromagnetically coupled divalent and trivalent neighbor iron atoms along c across the R layer. In contrast, the concentration decrease of the orbital- and charge-ordered states in EuBaFe2O5+w is found to be a linear function of w. Valence mixing and charge ordering are therefore two separate cooperative phenomena. The enthalpy of the Verwey-type transition between these two cooperative systems is a linear function of w, which suggests that it originates from the latent heat of freezing into the long-range ordered orbital- and charge-ordered state. The enthalpy becomes zero at the nonstoichiometry level of about w=0.25

  8. Effect of radiative cooling on collapsing charged grains

    Indian Academy of Sciences (India)

    B P Pandey; Vinod Krishan; M Roy

    2001-01-01

    The effect of the radiative cooling of electrons on the gravitational collapse of cold dust grains with fluctuating electric charge is investigated. We find that the radiative cooling as well as the charge fluctuations, both, enhance the growth rate of the Jeans instability. However, the Jeans length, which is zero for cold grains and nonradiative plasma, becomes finite in the presence of radiative cooling of electrons and is further enhanced due to charge fluctuations of grains resulting in an increased threshold of the spatial scale for the Jeans instability.

  9. Effect of Wall Charge on Striation in Plasma Display Cells

    Institute of Scientific and Technical Information of China (English)

    HE Feng; OUYANG Jiting; CAO Jing; FENG Shuo; MIAO Jinsong; WANG Jianqi

    2007-01-01

    Different configurations and driving voltages have been employed to investigate the effect of the wall charge on the striations in macroscopic plasma display panel (PDP) cells.The experimental results show that a discharge channel near the dielectric layer is indispensable to striation occurring in the anode area during a discharge,while the pre-accumulated charge on the dielectric layer and the surface state are not important.The origin of the striation is related only to the physical process in the cell.The dielectric layer acts as a charge collector during a PDP discharge.

  10. Charge separation relative to the reaction plane in Pb-Pb collisions at √sNN=2.76 TeV

    OpenAIRE

    Abelev, B. I.; Adam, J; S. Bjelogrlic; Chojnacki, M.; de Rooij, R. S.; Dubla, Andrea; Grelli, A; La Pointe, S. L.; Luparello, G.; Mischke, A.; Nooren, G.J.L.; Peitzmann, T.(Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands); Reicher, M.; Snellings, R. J M; D. Thomas

    2013-01-01

    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at $\\sqrt{s_{NN}} = 2.76$ TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range $|\\eta| < 0.8$ are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which ...

  11. Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn

    OpenAIRE

    Behnam Pourhassan; Mir Faizal

    2016-01-01

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. ...

  12. Effect of thermal fluctuations on a charged dilatonic black Saturn

    OpenAIRE

    Behnam Pourhassan; Mir Faizal

    2016-01-01

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. ...

  13. Effects of the Inductive Charging on the Electrification and Lightning Discharges in Thunderstorms

    Directory of Open Access Journals (Sweden)

    Zheng Shi

    2016-04-01

    Full Text Available A two-dimensional cloud model with electrification and lightning processes is used to investigate the role of inductive charge separation in thunderstorm clouds. For the same dynamic and microphysical evolution, four cases that the same non-inductive charging parameterization is combined with different inductive charging process are compared. Non-inductive charge separation alone is found to be sufficient to produce a dipolar charge structure. Intracloud (IC and positive cloud-to-ground (+CG flashes are initiated between a main negative charge region and an upper positive charge region. The inductive charging process between graupel and cloud droplets exhibits a normal tripole charge structure, consisting of a lower positive charge region under the main negative charge region. In the simulated tripole structure, negative cloud-to-ground (-CG flashes are initiated between the main negative and lower positive charge regions. In addition, inductive charge separation between the graupel and ice crystal is found to be capable of producing strong charge separation in a dipole charge structure. Tests with inductive graupel-ice crystals process produce more flashes than that in the other cases.

  14. Charge transport in dual-gate organic field-effect transistors

    OpenAIRE

    Brondijk, J. J.; Spijkman, M.; Torricelli, F Fabrizio; Blom, PWM Paul; Leeuw, van der, R.

    2012-01-01

    The charge carrier distribution in dual-gate field-effect transistors is investigated as a function of semiconductor thickness. A good agreement with 2-dimensional numerically calculated transfer curves is obtained. For semiconductor thicknesses larger than the accumulation width, two spatially separated channels are formed. The cross-over from accumulation into depletion of the two channels in combination with a carrier density dependent mobility causes a shoulder in the transfer characteris...

  15. Effect of Mono- and Multivalent Salts on Angle-dependent Attractions between Charged Rods

    OpenAIRE

    Lee, Kun-Chun; Borukhov, Itamar; Gelbart, William M.; Liu, Andrea J.; Stevens, Mark J.

    2003-01-01

    Using molecular dynamics simulations we examine the effective interactions between two like-charged rods as a function of angle and separation. In particular, we determine how the competing electrostatic repulsions and multivalent-ion-induced attractions depend upon concentrations of simple and multivalent salt. We find that with increasing multivalent salt the stable configuration of two rods evolves from isolated rods to aggregated perpendicular rods to aggregated parallel rods; at sufficie...

  16. Improved solar-driven photocatalytic performance of Ag3PO4/ZnO composites benefiting from enhanced charge separation with a typical Z-scheme mechanism

    Science.gov (United States)

    Zhong, Junbo; Li, Jianzhang; Wang, Tao; Zeng, Jun; Si, Yujun; Cheng, Chaozhu; Li, Minjiao; Wang, Pei; Ding, Jie

    2016-01-01

    In this work, efficient simulated solar-driven Ag3PO4/ZnO photocatalysts with different molar ratios of Ag/Zn have been prepared by a precipitation method and characterized by X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy and surface photovoltage (SPV) spectroscopy. Under simulated sunlight illumination, the Ag3PO4/ZnO composites exhibit enhanced photocatalytic activity compared with the pure ZnO toward the decolorization of rhodamine B (RhB) aqueous solution, and the Ag3PO4/ZnO composite with 4 % Ag/Zn molar ratio exhibits the highest activity. The quenching effects of scavengers indicate that O2•- plays the major role in RhB decolorization. Ag3PO4 deposited on the ZnO surface can promote the separation rate of photoinduced charge carriers, proven by the SPV results. Based on all the observations, the charge separation mechanism with a typical Z-scheme was proposed.

  17. Fluctuations of charge separation perpendicular to the event plane and local parity violation in sqrt(sNN)=200 GeV Au+Au collisions at RHIC

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E; Averichev, G S; Balewski, J; Banerjee, A; Barnovska, Z; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bhattarai,; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bruna, E; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, P; Chwastowski, J; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks,; Ding, F; Dion, A; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Elnimr, M; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Fatemi, R; Fazio, S; Fedorisin, J; Fersch, R G; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Gliske, S; Grebenyuk, O G; Grosnick, D; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hajkova, O; Hamed, A; Han, L-X; Haque, R; Harris, J W; Hays-Wehle, J P; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jena, C; Judd, E G; Kabana, S; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Kikola, D P; Kiryluk, J; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Korsch, W; Kotchenda, L; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lima, L M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Mioduszewski, S; Mitrovski, M K; Mohammed, Y; Mohanty, B; Mondal, M M; Munhoz, M G; Mustafa, M K; Naglis, M; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nogach, L V; Novak, J; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Oliveira, R A N; Olson, D; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Plyku, D; Poljak, N; Porter, J; Poskanzer, A M; Powell, C B; Pruneau, C; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandacz, A; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, B; Schmitz, N; Schuster, T R; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shao, M; Sharma, B; Sharma, M; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; deSouza, U G; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; de Toledo, A Szanto; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, Q; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, N; Xu, Q H; Xu, W; Xu, Y; Xu, Z; Yan,; Yang, C; Yang, Y; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2013-01-01

    Recent experimental results from the STAR collaboration suggest event-by-event charge separation fluctuations perpendicular to the event plane in non-central heavy-ion collisions. Here we present the correlator previously used split into its two component parts to reveal correlations parallel and perpendicular to the event plane. The results are from a high statistics 200 GeV Au+Au collisions data set collected by the STAR experiment at RHIC. We explicitly count units of charge separation from which we find clear evidence for more charge separation fluctuations perpendicular than parallel to the event plane. We also employ a modified correlator to study the possible P-even background in same and opposite charge correlations.

  18. A Molecular Tetrad That Generates a High-Energy Charge-Separated State by Mimicking the Photosynthetic Z-Scheme.

    Science.gov (United States)

    Favereau, Ludovic; Makhal, Abhinandan; Pellegrin, Yann; Blart, Errol; Petersson, Jonas; Göransson, Erik; Hammarström, Leif; Odobel, Fabrice

    2016-03-23

    The oxygenic photosynthesis of green plants, green algae, and cyanobacteria is the major provider of energy-rich compounds in the biosphere. The so-called "Z-scheme" is at the heart of this "engine of life". Two photosystems (photosystem I and II) work in series to build up a higher redox ability than each photosystem alone can provide, which is necessary to drive water oxidation into oxygen and NADP(+) reduction into NADPH with visible light. Here we show a mimic of the Z-scheme with a molecular tetrad. The tetrad Bodipy-NDI-TAPD-Ru is composed of two different dyes-4,4-difluoro-1,3,5,7-tetramethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene (Bodipy) and a Ru(II)(bipyridine)3 (Ru) derivative-which are connected to a naphthalene diimide (NDI) electron acceptor and tetraalkylphenyldiamine (TAPD) playing the role of electron donor. A strong laser pulse excitation of visible light where the two dye molecules (Ru and Bodipy) absorb with equal probability leads to the cooperative formation of a highly energetic charge-separated state composed of an oxidized Bodipy and a reduced Ru. The latter state cannot be reached by one single-photon absorption. The energy of the final charge-separated state (oxidized Bodipy/reduced Ru) in the tetrad lies higher than that in the reference dyads (Bodipy-NDI and TAPD-Ru), leading to the energy efficiency of the tetrad being 47% of the sum of the photon threshold energies. Its lifetime was increased by several orders of magnitude compared to that in the reference dyads Bodipy-NDI and TAPD-Ru, as it passes from about 3 ns in each dyad to 850 ns in the tetrad. The overall quantum yield formation of this extended charge-separated state is estimated to be 24%. Our proof-of-concept result demonstrates the capability to translate a crucial photosynthetic energy conversion principle into man-made molecular systems for solar fuel formation, to obtain products of higher energy content than those produced by a single photon absorption. PMID

  19. Charging effects in passivated silicon detectors

    Science.gov (United States)

    Bracken, D. S.; Kwiatkowski, K.; Morley, K. B.; Renshaw Foxford, E.; Komisarcik, K.; Rader, A. J.; Viola, V. E.

    1995-02-01

    Ion-implanted passivated silicon detectors undergo a gradual, then rapid increase in leakage current when exposed to ionizing radiation in the presence of gas between 5-200 Torr. Conditions for generating this effect are discussed and a mechanism is proposed to explain this behavior. Methods for preventing this effect and for recovering detectors damaged in this way are presented.

  20. Charging effects in passivated silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, D.S. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Kwiatkowski, K. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Morley, K.B. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Renshaw Foxford, E. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Komisarcik, K. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Rader, A.J. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Viola, V.E. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF

    1995-11-11

    Ion-implanted passivated silicon detectors undergo a gradual, then rapid increase in leakage current when exposed to ionizing radiation in the presence of gas between 5-200 Torr. Conditions for generating this effect are discussed and a mechanism is proposed to explain this behavior. Methods for preventing this effect and for recovering detectors damaged in this way are presented. (orig.).

  1. Charging effects in passivated silicon detectors

    International Nuclear Information System (INIS)

    Ion-implanted passivated silicon detectors undergo a gradual, then rapid increase in leakage current when exposed to ionizing radiation in the presence of gas between 5-200 Torr. Conditions for generating this effect are discussed and a mechanism is proposed to explain this behavior. Methods for preventing this effect and for recovering detectors damaged in this way are presented. (orig.)

  2. Effects of Solvent on the Maximum Charge State and Charge State Distribution of Protein Ions Produced by Electrospray Ionization

    OpenAIRE

    Iavarone, Anthony T.; Jurchen, John C.; Williams, Evan R.

    2000-01-01

    The effects of solvent composition on both the maximum charge states and charge state distributions of analyte ions formed by electrospray ionization were investigated using a quadrupole mass spectrometer. The charge state distributions of cytochrome c and myoglobin, formed from 47%/50%/3% water/solvent/acetic acid solutions, shift to lower charge (higher m/z) when the 50% solvent fraction is changed from water to methanol, to acetonitrile, to isopropanol. This is also the order of increasing...

  3. Charge separation dynamics at bulk heterojunctions between poly(3-hexylthiophene) and PbS quantum dots

    International Nuclear Information System (INIS)

    Photo-induced electron transfer between poly-(3-hexylthiophene) (P3HT) and small (2.4 nm) PbS quantum dots (QDs), capped by different ligands, was studied by picosecond and femtosecond time-resolved fluorescence and by photo-induced absorption (PIA) measurements. In line with previous experiments, we observed that the efficiency of the quenching of P3HT by PbS QDs increased upon decreasing the average thickness of the ligand shell. This trend was also observed in the PIA spectra and in prior work on the performance of photovoltaic devices where the active layer was a blend of P3HT with PbS QDs capped by different ligands. Combining the pico- and femtosecond fluorescence decays showed that the quenching in blend films of P3HT and PbS QDs treated with 1,4-benzenedithiol occurred over a broad time scale ranging from tens of femtoseconds to hundreds of picoseconds. This complex kinetics was attributed to exciton hopping followed by electron transfer to the conduction band of the QDs. We also compared the wavelength dependence of the internal quantum efficiency (IQE) in the hybrid photovoltaic devices to those devices where the photoactive layer consists of PbS QDs only. Although excitation in the first excitonic transition of the PbS QDs yielded a similar IQE in both devices, the IQE of the hybrid devices tripled at wavelengths where also P3HT started to absorb. This suggests that upon excitation of P3HT in the latter devices, charge generation occurs by photo-induced electron transfer from P3HT to the QDs rather than by energy transfer to the QDs followed by exciton dissociation in the QDs

  4. Charge separation dynamics at bulk heterojunctions between poly(3-hexylthiophene) and PbS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Firdaus, Yuliar; Fron, Eduard; Khetubol, Adis; Van der Auweraer, Mark, E-mail: mark.vanderauweraer@chem.kuleuven.be [Laboratory of Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, Chemistry Department, KULeuven, Celestijnenlaan 200F, B2404, 3001 Leuven (Belgium); Miranti, Rany; Borchert, Holger; Parisi, Jürgen [Department of Physics, Energy and Semiconductor Research Laboratory, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg (Germany); Vandenplas, Erwin; Cheyns, David [Imec vzw, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-08-07

    Photo-induced electron transfer between poly-(3-hexylthiophene) (P3HT) and small (2.4 nm) PbS quantum dots (QDs), capped by different ligands, was studied by picosecond and femtosecond time-resolved fluorescence and by photo-induced absorption (PIA) measurements. In line with previous experiments, we observed that the efficiency of the quenching of P3HT by PbS QDs increased upon decreasing the average thickness of the ligand shell. This trend was also observed in the PIA spectra and in prior work on the performance of photovoltaic devices where the active layer was a blend of P3HT with PbS QDs capped by different ligands. Combining the pico- and femtosecond fluorescence decays showed that the quenching in blend films of P3HT and PbS QDs treated with 1,4-benzenedithiol occurred over a broad time scale ranging from tens of femtoseconds to hundreds of picoseconds. This complex kinetics was attributed to exciton hopping followed by electron transfer to the conduction band of the QDs. We also compared the wavelength dependence of the internal quantum efficiency (IQE) in the hybrid photovoltaic devices to those devices where the photoactive layer consists of PbS QDs only. Although excitation in the first excitonic transition of the PbS QDs yielded a similar IQE in both devices, the IQE of the hybrid devices tripled at wavelengths where also P3HT started to absorb. This suggests that upon excitation of P3HT in the latter devices, charge generation occurs by photo-induced electron transfer from P3HT to the QDs rather than by energy transfer to the QDs followed by exciton dissociation in the QDs.

  5. Charge-separated atmospheric neutrino-induced muons in the MINOS far detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P.; /Fermilab /University Coll. London; Andreopoulos, Constantinos V.; /Rutherford; Arms, Kregg E.; /Minnesota U.; Armstrong, Stephen Randolph; /Indiana U.; Auty, D.J.; /Sussex U.; Avvakumov, S.; /Stanford U., Phys. Dept.; Ayres, David S.; /Argonne; Baller, Bruce R.; /Fermilab; Barish, Barry C.; /Caltech; Barnes, P.D., Jr.; /LLNL, Livermore; Barr, Giles David; /Oxford U. /Western Washington U.

    2007-01-01

    We found 140 neutrino-induced muons in 854.24 live days in the MINOS far detector, which has an acceptance for neutrino-induced muons of 6.91 x 10{sup 6} cm{sup 2} sr. We looked for evidence of neutrino disappearance in this data set by computing the ratio of the number of low momentum muons to the sum of the number of high momentum and unknown momentum muons for both data and Monte Carlo expectation in the absence of neutrino oscillations. The ratio of data and Monte Carlo ratios, R, is R = 0.65{sub 0.12}{sup +0.15}(stat) {+-} 0.09(syst), a result that is consistent with an oscillation signal. A fit to the data for the oscillation parameters sin{sup 2} 2{theta}{sub 23} and {Delta}m{sub 23}{sup 2} excludes the null oscillation hypothesis at the 94% confidence level. We separated the muons into {mu}{sup -} and {mu}{sup +} in both the data and Monte Carlo events and found the ratio of the total number of {mu}{sup -} to {mu}{sup +} in both samples. The ratio of those ratios, {cflx R}{sub CPT}, is a test of CPT conservation. The result {cflx R}{sub CPT} = 0.72{sub -0.18}{sup +0.24}(stat){sub -0.04}{sup +0.08}(syst), is consistent with CPT conservation.

  6. Charge Separation in TiO2/BDD Heterojunction Thin Film for Enhanced Photoelectrochemical Performance.

    Science.gov (United States)

    Terashima, Chiaki; Hishinuma, Ryota; Roy, Nitish; Sugiyama, Yuki; Latthe, Sanjay S; Nakata, Kazuya; Kondo, Takeshi; Yuasa, Makoto; Fujishima, Akira

    2016-01-27

    Semiconductor photocatalysis driven by electron/hole has begun a new era in the field of solar energy conversion and storage. Here we report the fabrication and optimization of TiO2/BDD p-n heterojunction photoelectrode using p-type boron doped diamond (BDD) and n-type TiO2 which shows enhanced photoelectrochemical activity. A p-type BDD was first deposited on Si substrate by microwave plasma chemical vapor deposition (MPCVD) method and then n-type TiO2 was sputter coated on top of BDD grains for different durations. The microstructural studies reveal a uniform disposition of anatase TiO2 and its thickness can be tuned by varying the sputtering time. The formation of p-n heterojunction was confirmed through I-V measurement. A remarkable rectification property of 63773 at 5 V with very small leakage current indicates achieving a superior, uniform and precise p-n junction at TiO2 sputtering time of 90 min. This suitably formed p-n heterojunction electrode is found to show 1.6 fold higher photoelectrochemical activity than bare n-type TiO2 electrode at an applied potential of +1.5 V vs SHE. The enhanced photoelectrochemical performance of this TiO2/BDD electrode is ascribed to the injection of hole from p-type BDD to n-type TiO2, which increases carrier separation and thereby enhances the photoelectrochemical performance. PMID:26756353

  7. Charge carrier coherence and Hall effect in organic semiconductors

    OpenAIRE

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experimen...

  8. Multistable Natures and Photo-Induced Charge-Separation in Hole-Doped States of Strongly Coupled Electron-Phonon Systems

    Science.gov (United States)

    Hitoshi, Nitta; Masato, Suzuki; Takeshi, Iida

    We investigate the effects of hole doping in the charge-density wave (CDW) state that has the strong electron-phonon (e-p) coupling, using the two-dimensional molecular crystal model. In calculations, we use the mean-filed theory for the interelectronic interactions and the adiabatic approximation for phonons. On the basis of this theory, we calculate e-p states of doped ground states for various values of the doping concentration of holes. From the calculated results, it is found that a multistable nature appears in the doped e-p states just before the CDW-metal phase transition. In order to see the effects of the photoexcitation in the hole-doped states, we also investigate the exciton states taking into account the electron-hole correlation. Results calculated here indicate that the separation of electron and hole occurs in the photoexcited states as a consequence of the energy relaxation of excitons.

  9. Effect of Charge, Size and Temperature on Stability of Charged Colloidal Nano Particles

    Institute of Scientific and Technical Information of China (English)

    A. Golchoobi; A. Khosravi; H. Modarress; A Ahmadzadeh

    2012-01-01

    Molecular simulation of charged colloidal suspension is performed in NVT canonical ensemble using Monte Carlo method and primitive model.The well-known Derjaguin-Landau-Verwey-Overbeek theory is applied to account for effective interactions between particles.Effect of temperature,valance of micro-ions and the size of colloidal particles on the phase stability of the solution is investigated.The results indicate that the suspension is more stable at higher temperatures.On the other hand,for a more stable suspension to exist,lower microion valance is favorable.For micro-ions of higher charge the number of aggregates and the number of particle in each of aggregate on average is higher.However for the best of our results larger colloidal particle are less stable.Comparing the results with theoretical formula considering the influence of surface curvature shows qualitative consistency.

  10. Ultrafast charge separation dynamics in opaque, operational dye-sensitized solar cells revealed by femtosecond diffuse reflectance spectroscopy

    Science.gov (United States)

    Ghadiri, Elham; Zakeeruddin, Shaik M.; Hagfeldt, Anders; Grätzel, Michael; Moser, Jacques-E.

    2016-04-01

    Efficient dye-sensitized solar cells are based on highly diffusive mesoscopic layers that render these devices opaque and unsuitable for ultrafast transient absorption spectroscopy measurements in transmission mode. We developed a novel sub-200 femtosecond time-resolved diffuse reflectance spectroscopy scheme combined with potentiostatic control to study various solar cells in fully operational condition. We studied performance optimized devices based on liquid redox electrolytes and opaque TiO2 films, as well as other morphologies, such as TiO2 fibers and nanotubes. Charge injection from the Z907 dye in all TiO2 morphologies was observed to take place in the sub-200 fs time scale. The kinetics of electron-hole back recombination has features in the picosecond to nanosecond time scale. This observation is significantly different from what was reported in the literature where the electron-hole back recombination for transparent films of small particles is generally accepted to occur on a longer time scale of microseconds. The kinetics of the ultrafast electron injection remained unchanged for voltages between +500 mV and –690 mV, where the injection yield eventually drops steeply. The primary charge separation in Y123 organic dye based devices was clearly slower occurring in two picoseconds and no kinetic component on the shorter femtosecond time scale was recorded.

  11. Resist charging effect correction function qualification for photomasks production

    Science.gov (United States)

    Sidorkin, Vadim; Finken, Michael; Wandel, Timo; Nakayamada, Noriaki; Cantrell, G. R.

    2014-10-01

    We quantitatively evaluate Nuflare's latest resist charging effect correction (CEC) model for advanced photomask production using e-beam lithography. Functionality of this CEC model includes the simulation of static and timedependent charging effects together with an improved calibration method. CEC model calibration is performed by polynomial fitting of image placement distortions induced by various beam scattering effects on a special test design with writing density variations. CEC model parameters can be fine tuned for different photomask blank materials facilitating resist charging compensation maps for different product layers. Application of this CEC model into production yields a significant reduction in photomask image placement (IP), as well as improving photomask overlay between critical neighbouring layers. The correlations between IP improvement facilitated by this CEC model and single mask parameters are presented and discussed. The layer design specifics, resist and blank materials, coupled with their required exposure parameters are observed to be the major influences on CEC model performance.

  12. Space Charge Effects in Bunch Shape Monitors

    CERN Document Server

    Feschenko, A V

    2000-01-01

    The operation and parameters of Bunch Shape Monitors using coherent transformation of time structure of an analyzed beam into a spatial one of low energy secondary electrons emitted from a wire target is influenced by the characteristics of a beam under study. The electromagnetic field of a bunch disturbs the trajectories of secondary electrons, thus resulting in a degradation of phase resolution and in errors of phase reading. Another effect is the perturbation of the target potential due to the current in the wire induced by a bunch as well as due to current compensating emission of the secondary electrons. The methods, the models and the results of simulations are presented.

  13. Space Charge Effects in Bunch Shape Monitors

    Science.gov (United States)

    Feschenko, Alexander

    The operation and parameters of Bunch Shape Monitors using coherent transformation of time structure of an analyzed beam into a spatial one of low energy secondary electrons emitted from a wire target is influenced by the characteristics of a beam under study. The electromagnetic field of a bunch disturbs the trajectories of secondary electrons, thus resulting in a degradation of phase resolution and in errors of phase reading. Another effect is the perturbation of the target potential due to the current in the wire induced by a bunch as well as due to current compensating emission of the secondary electrons. The methods, the models and the results of simulations are presented.

  14. A method for the separation and reconstructions of charged hadron and neutral hadron from their overlapped showers in an electromagnetic calorimeter

    International Nuclear Information System (INIS)

    The separation and reconstructions of charged hadron and neutral hadron from their overlapped showers in an electromagnetic calorimeter is very important for the reconstructions of some particles with hadronic decays, for example the tau reconstruction in the searches for the Standard Model and supersymmetric Higgs bosons at the LHC. In this paper, a method combining the shower cluster in an electromagnetic calorimeter and the parametric formula for hadron showers, was developed to separate the overlapped showers between charged hadron and neutral hadron. Taking the hadronic decay containing one charged pion and one neutral pion in the final status of tau for example, satisfied results of the separation of the overlapped showers, the reconstructions of the energy and positions of the hadrons were obtained. An improved result for the tau reconstruction with this decay model can be also achieved after the application of the proposed method. (authors)

  15. Charge conjugation and Lense-Thirring Effect: A new Asymmetry

    CERN Document Server

    Ahluwalia-Khalilova, D V

    2004-01-01

    This essay presents a new asymmetry that arises from the interplay of charge conjugation and Lense-Thirring effect. When applied to Majorana neutrinos, the effects predicts nu_e overline{nu}_e oscillations in gravitational environments with rotating sources. Parameters associated with astrophysical environments indicate that the presented effect is presently unobservable for solar neutrinos. But, it will play an important role in supernova explosions, and carries relevance for the observed matter-antimatter asymmetry in the universe.

  16. Competition effects in charged particle induced reactions

    International Nuclear Information System (INIS)

    Absolute cross sections have been measured for 14 reactions: 54Cr(p,γ)55Mn for 0.83 MeV less than or equal to E/sub p/ less than or equal to 3.61 MeV, 54Cr(pn,)54Mn for 2.23 MeV less than or equal to E/sub p/ less than or equal to 3.61 MeV, 51V(p,γ)52Cr for 0.93 MeV less than or equal to E/sub p/ less than or equal to 4.47 MeV, 51V(p,n)51Cr for 1.58 MeV 68Zn(p,γ)69Ga for 1.67 MeV less than or equal to E/sub p/ less than or equal to 4.97 MeV, 68Zn(p,n)68Ga for 3.77 MeV less than or equal to E/sub p/ less than or equal to 5.03 MeV, 68Zn(p,γ)65Cu for 3.36 MeV less than or equal to E/sub p/ less than or equal to 5.48 MeV, 48Ca(p,γ)49Sc for 0.58 MeV less than or equal to E/sub p/ less than or equal to 2.67 MeV, 48Ca(p,n,)48Sc for 0.96 less than or equal to E/sub p/ less than or equal to 2.67 MeV, 37Cl(α,γ)41K for 2.90 MeV less than or equal to E/sub α/ less than or equal to 5.23 MeV, 62Ni(α,γ)66Zn for 5.07 MeV less than or equal to E/sub α/ less than or equal to 8.64 MeV, 62Ni(α,n)65Zn for 6.95 MeV less than or equal to E/sub α/ less than or equal to 8.76 MeV, 64Ni(α,γ)68Zn for 4.50 MeV less than or equal to E/sub α/ less than or equal to 7.45 MeV, and 64Ni(α,n)67Zn for 5.29 less than or equal to E/sub α/ less than or equal to 7.44 MeV. Substantial drops in cross section were observed above the neutron thresholds for all the radiative capture reactions except 48Ca(p,γ). In the 48Ca(p,γ)and 68Zn(p,α) reactions significant though smaller neutron competition effects were observed. These cross sections were compared with cross sections calculated with global Hauser-Feshbach models. Criteria for isospin indexing, width fluctuation corrections, and black nuclues strength functions were established

  17. Charge transport in disordered organic field-effect transistors

    NARCIS (Netherlands)

    Tanase, C; Blom, PWM; Meijer, EJ; de Leeuw, DM; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS

    2002-01-01

    The transport properties of poly(2,5-thienylene vinylene) (PTV) field-effect transistors (FET) have been investigated as a function of temperature under controlled atmosphere. In a disordered semiconductor as PTV the charge carrier mobility, dominated by hopping between localized states, is dependen

  18. Space charge effects in a bending magnet system

    International Nuclear Information System (INIS)

    In order to examine problems and phenomena associated with space charge in a beam bending system, the beam dynamics code HICURB has been written. Its principal features include momentum variations, vertical and horizontal envelope dynamics coupled to the off-axis centroid, curvature effect on fields, and images. Preliminary results for an achromatic lattice configuration are presented

  19. Electron cloud and space charge effects in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2007-06-01

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  20. Electron cloud and space charge effects in the Fermilab Booster

    International Nuclear Information System (INIS)

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than ∼1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated

  1. The effect of microscopic charged particulates in space weather

    Energy Technology Data Exchange (ETDEWEB)

    Popel, S I; Kopnin, S I [Institute for Dynamics of Geospheres RAS, Leninsky pr. 38, bld. 1, 119334 Moscow (Russian Federation); Yu, M Y [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Ma, J X [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang Feng, E-mail: s_i_popel@mtu-net.ru, E-mail: popel@idg.chph.ras.ru [College of Science, China Agricultural University, Beijing 100083 (China)

    2011-05-04

    Space weather is a relatively new and important field of research. It is relevant to diverse topics such as radio communication, space travel, diagnostics of ionospheric and space plasmas, detection of pollutants and re-entry objects, prediction of terrestrial weather and global warming. Recently it has been shown that nano- and micrometre-sized electrically charged particulates from interplanetary space and from the Earth's atmosphere can affect the local properties as well as the diagnostics of the interplanetary, magnetospheric, ionospheric and terrestrial complex plasmas. In this report the sources of the charged dust particulates and the effects of the latter on the near-Earth space weather are examined.

  2. The effect of microscopic charged particulates in space weather

    International Nuclear Information System (INIS)

    Space weather is a relatively new and important field of research. It is relevant to diverse topics such as radio communication, space travel, diagnostics of ionospheric and space plasmas, detection of pollutants and re-entry objects, prediction of terrestrial weather and global warming. Recently it has been shown that nano- and micrometre-sized electrically charged particulates from interplanetary space and from the Earth's atmosphere can affect the local properties as well as the diagnostics of the interplanetary, magnetospheric, ionospheric and terrestrial complex plasmas. In this report the sources of the charged dust particulates and the effects of the latter on the near-Earth space weather are examined.

  3. Ion temperature effects on ion charge-state distributions of an electron cyclotron resonant ion source

    International Nuclear Information System (INIS)

    A method is described for determining ion cyclotron resonance (ICR) heating effects on multiply charged-ion energy distributions using a Monte Carlo fit to experimental time-of-flight spectrometer data. The method is general but is used here specifically to separate the effects of plasma ambipolar potential spread and ion temperature in an electron cyclotron resonance (ECR) heated magnetic mirror ion source (MIMI) [Phys. Fluids 28, 3116 (1985)]. A steady-state equilibrium model is also developed that models the relevant atomic processes occurring in MIMI plasmas. This model and the Monte Carlo analysis are used to relate the effect of midplane ICR heating on end loss ion charge state distributions to its effect on the confined ion distributions. The model allows for collisional, moderately collisional, and collisionless confinement, specific to each charge state in the distribution. Both experiment and modeling show that increased ion temperature causes a shift to lower-Z ion populations in both the confined and end loss charge-state distributions

  4. Effects of illness and disability on job separation.

    Science.gov (United States)

    Magee, William

    2004-03-01

    Effects of illness and disability on job separation result from both voluntary and involuntary processes. Voluntary processes range from the reasoned actions of workers who weigh illness and disability in their decision-making, to reactive stress-avoidance responses. Involuntary processes include employer discrimination against ill or disabled workers. Analyses of the effects of illness and disability that differentiate reasons for job separation can illuminate the processes involved. This paper reports on an evaluation of effects of illness and disability on job separation predicted by theories of reasoned action, stress, and employer discrimination against ill and disabled workers. Effects of four illness/disability conditions on the rate of job separation for 12 reasons are estimated using data from a longitudinal study of a representative sample of the Canadian population-the Survey of Labour and Income Dynamics (SLID). Two of the four effects that are statistically significant (under conservative Bayesian criteria for statistical significance) are consistent with the idea that workers weigh illness and disability as costs, and calculate the costs and benefits of continuing to work with an illness or disability: (1) disabling illness increases the hazard of leaving a job in order to engage in caregiving, and (2) work-related disability increases the hazard of leaving a job due to poor pay. The other two significant effects indicate that: (3) disabling illness decreases the hazard of layoff, and (4) non-work disability increases the hazard of leaving one job to take a different job. This last effect is consistent with a stress-interruption process. Other effects are statistically significant under conventional criteria for statistical significance, and most of these effects are also consistent with cost-benefit and stress theories. Some effects of illness and disability are sex and age-specific, and reasons for the specificity of these effects are discussed

  5. Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction.

    Science.gov (United States)

    Behara, Dilip Kumar; Ummireddi, Ashok Kumar; Aragonda, Vidyasagar; Gupta, Prashant Kumar; Pala, Raj Ganesh S; Sivakumar, Sri

    2016-03-28

    The central governing factors that influence the efficiency of photoelectrochemical (PEC) water splitting reaction are photon absorption, effective charge-carrier separation, and surface electrochemistry. Attempts to improve one of the three factors may debilitate other factors and we explore such issues in hydrogenated TiO2, wherein a significant increase in optical absorption has not resulted in a significant increase in PEC performance, which we attribute to the enhanced recombination rate due to the formation of amorphization/disorderness in the bulk during the hydrogenation process. To this end, we report a methodology to increase the charge-carrier separation with enhanced optical absorption of hydrogenated TiO2. Current methodology involves hydrogenation of non-metal (N and S) doped TiO2 which comprises (1) lowering of the band gap through shifting of the valence band via less electronegative non-metal N, S-doping, (2) lowering of the conduction band level and the band gap via formation of the Ti(3+) state and oxygen vacancies by hydrogenation, and (3) material processing to obtain a disordered surface structure which favors higher electrocatalytic (EC) activity. This design strategy yields enhanced PEC activity (%ABPE = 0.38) for the N-S co-doped TiO2 sample hydrogenated at 800 °C for 24 h over possible combinations of N-S co-doped TiO2 samples hydrogenated at 500 °C/24 h, 650 °C/24 h and 800 °C/72 h. This suggests that hydrogenation at lower temperatures does not result in much increase in optical absorption and prolonged hydrogenation results in an increase in optical absorption but a decrease in charge carrier separation by forming disorderness/oxygen vacancies in the bulk. Furthermore, the difference in double layer capacitance (C(dl)) calculated from electrochemical impedance spectroscopy (EIS) measurements of these samples reflects the change in the electrochemical surface area (ECSA) and facilitates assessing the key role of surface

  6. Effects of laminar separation bubbles and turbulent separation on airfoil stall

    Energy Technology Data Exchange (ETDEWEB)

    Dini, P. [Carleton College, Northfield, MN (United States); Coiro, D.P. [Universita di Napoli (Italy)

    1997-12-31

    An existing two-dimensional, interactive, stall prediction program is extended by improving its laminar separation bubble model. The program now accounts correctly for the effects of the bubble on airfoil performance characteristics when it forms at the mid-chord and on the leading edge. Furthermore, the model can now predict bubble bursting on very sharp leading edges at high angles of attack. The details of the model are discussed in depth. Comparisons of the predicted stall and post-stall pressure distributions show excellent agreement with experimental measurements for several different airfoils at different Reynolds numbers.

  7. Fractionally charged skyrmions in fractional quantum Hall effect

    Science.gov (United States)

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  8. Space charge effects and induced signals in resistive plate chambers

    CERN Document Server

    Lippmann, Christian; Schnizer, Bernhard

    2003-01-01

    Using special integral representations of the solution for the static electric field of a point charge in a three layer geometry with different permittivities, we calculate the effect of the space charge on the avalanche in the gas gap of an RPC. A detailed Monte Carlo simulation was developed which allows calculation of the actual charge spectrum. Results of this simulation are presented, using the example of a trigger-RPC with 2 mm gas gap, similar to the ones used by ATLAS (ATLAS TDR 10, CERN-LHCC-97-22), and a timing RPC with 300 mum gas gap (Nucl. Instr. and Meth. A 449 (2000) 295). Finally, we also present analytic solutions for the weighting field of an RPC readout strip, which allow to calculate the directly induced crosstalk and induced signals.

  9. Effective dynamics of an electrically charged string with a current

    Science.gov (United States)

    Kazinski, P. O.

    2005-08-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.

  10. Effective Dynamics of an Electrically Charged String with a Current

    International Nuclear Information System (INIS)

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparameterization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are derived. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found

  11. Effective dynamics of an electrically charged string with a current

    CERN Document Server

    Kazinski, P O

    2005-01-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations ...

  12. Electromagnetic effects on the orbital motion of a charged spacecraft

    Science.gov (United States)

    Abdel-Aziz, Yehia Ahmed; Khalil, Khalil Ibrahim

    2014-05-01

    This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to a perturbative Lorentz force. A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields. This Lorentz force can be used to modify or perturb the spacecraft's orbits. Lagrange's planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit. Our approach incorporates orbital inclination and the true anomaly. The numerical results of Lagrange's planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturbation for a certain value of charge. The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component. In addition, the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit, which is consistent with realistic physical phenomena that occur in polar orbits. The results confirm that the magnitude of the Lorentz force depends on the amount of charge. This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft.

  13. Electromagnetic effects on the orbital motion of a charged spacecraft

    International Nuclear Information System (INIS)

    This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to a perturbative Lorentz force. A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields. This Lorentz force can be used to modify or perturb the spacecraft's orbits. Lagrange's planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit. Our approach incorporates orbital inclination and the true anomaly. The numerical results of Lagrange's planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturbation for a certain value of charge. The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component. In addition, the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit, which is consistent with realistic physical phenomena that occur in polar orbits. The results confirm that the magnitude of the Lorentz force depends on the amount of charge. This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft

  14. Development of a VRLA battery with improved separators, and a charge controller, for low cost photovoltaic and wind powered installations

    Science.gov (United States)

    Fernandez, M.; Ruddell, A. J.; Vast, N.; Esteban, J.; Estela, F.

    There are many applications and uses for which it is more advantageous to use solar installations than to extend the electrical network and connect to it. This kind of applications are numerous covering from isolated houses to telephone repeaters and the like. These kind of applications share some common characteristics like being located in remote not easy accessible areas, require relatively low power for operation, and being difficult to maintain. Up to now the use of photovoltaic systems, no matter the impressive growth they are experimenting, suffer from some drawbacks, mainly related with the life expectations and reliability of such systems, and as a consequence of the cost of these systems, when calculated on a lifetime basis. To try to contribute to solve these problems, a project partially founded by the European Commission, has been carried out, with the main objective of increasing the life of these systems, and consequently to make them more attractive from the point of view of cost on a lifetime basis for consumers. Presently, the life of PV systems is limited by its weakest component, the battery. Battery failure modes in PV applications, are related with well known phenomena like corrosion, but also due to the special nature of this installations, with other factors like corrosion and growth in the upper part of the group, induced by the development of acid stratification inside the battery, with the more prone standard flooded types now in major use, and to a lesser extent the new valve regulated lead acid (VRLA) types beginning to be used. The main objectives of this project, were: to develop a new glass microfibre separator material, capable of minimizing acid stratification inside the battery. To develop a new VRLA battery, with a life duration of 800 cycles on cycling at 60% DOD and partial state of charge (PSOC) conditions. To develop a new charge regulator, that takes into account the condition of the battery in the near term, to modify its

  15. Isotope effect and isotope separation. A chemist's view

    International Nuclear Information System (INIS)

    What causes the isotope effects (IE)? This presentation will be centered around the equilibrium isotope effects due to the differences in the nuclear masses. The occurrence of the equilibrium constant, K, of isotope exchange reactions which differ from the values predicted by the classical theory of statistical mechanics, Kcl, is explored. The non-classical K corresponds to the unit-stage separation factor, α, that is different from unity and forms a basis of an isotope separation process involving the chemical exchange reaction. Here, the word 'chemical exchange' includes not only the isotope exchange chemical reactions between two or more chemical species but also the isotope exchanges involving the equilibria between liquid and vapor phases and liquid-gas, liquid solution-gas, liquid-liquid, and solid-liquid phases. In Section I, origins of the isotope effect phenomena will be explored and, in the process, various quantities used in discussions of isotope effect that have often caused confusions will be unambiguously defined. This Section will also correlate equilibrium constant with separation factor. In Section II, various forms of temperature-dependence of IE and separation factor will be discussed. (author)

  16. The Crowding-Out Effects of Garbage Fees and Voluntary Source Separation Programs on Waste Reduction: Evidence from China

    Directory of Open Access Journals (Sweden)

    Hongyun Han

    2016-07-01

    Full Text Available This paper examines how and to what degree government policies of garbage fees and voluntary source separation programs, with free indoor containers and garbage bags, can affect the effectiveness of municipal solid waste (MSW management, in the sense of achieving a desirable reduction of per capita MSW generation. Based on city-level panel data for years 1998–2012 in China, our empirical analysis indicates that per capita MSW generated is increasing with per capita disposable income, average household size, education levels of households, and the lagged per capita MSW. While both garbage fees and source separation programs have separately led to reductions in per capita waste generation, the interaction of the two policies has resulted in an increase in per capita waste generation due to the following crowding-out effects: Firstly, the positive effect of income dominates the negative effect of the garbage fee. Secondly, there are crowding-out effects of mandatory charging system and the subsidized voluntary source separation on per capita MSW generation. Thirdly, small subsidies and tax punishments have reduced the intrinsic motivation for voluntary source separation of MSW. Thus, compatible fee charging system, higher levels of subsidies, and well-designed public information and education campaigns are required to promote household waste source separation and reduction.

  17. Complete Monitoring of Coherent and Incoherent Spin Flip Domains in the Recombination of Charge-Separated States of Donor-Iridium Complex-Acceptor Triads.

    Science.gov (United States)

    Klein, Johannes H; Schmidt, David; Steiner, Ulrich E; Lambert, Christoph

    2015-09-01

    The spin chemistry of photoinduced charge-separated (CS) states of three triads comprising one or two triarylamine donors, a cyclometalated iridium complex sensitizer and a naphthalene diimide (NDI) acceptor, was investigated by transient absorption spectroscopy in the ns-μs time regime. Strong magnetic-field effects (MFE) were observed for two triads with a phenylene bridge between iridium complex sensitizer and NDI acceptor. For these triads, the lifetimes of the CS states increased from 0.6 μs at zero field to 40 μs at about 2 T. Substituting the phenylene by a biphenyl bridge causes the lifetime of the CS state at zero field to increase by more than 2 orders of magnitude (τ = 79 μs) and the MFE to disappear almost completely. The kinetic MFE was analyzed in the framework of a generalized Hayashi-Nagakura scheme describing coherent (S, T0 ↔ T±) as well as incoherent (S, T0 ⇌ T±) processes by a single rate constant k±. The magnetic-field dependence of k± of the triads with phenylene bridge spans 2 orders of magnitude and exhibits a biphasic behavior characterized by a superposition of two Lorentzians. This biphasic MFE is observed for the first time and is clearly attributable to the coherent (B accounts for the reduction of the MFE on reducing the rate constant of charge recombination in the triad with the biphenyl bridge. PMID:26091082

  18. Quantum Gravity Effects On Charged Micro Black Holes Thermodynamics

    OpenAIRE

    Abbasvandi, N.; Soleimani, M. J.; Radiman, Shahidan; Abdullah, W. A. T. Wan

    2016-01-01

    The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type...

  19. Transformation-optics insight into nonlocal effects in separated nanowires

    OpenAIRE

    Fernández-Domínguez, A. I.; Zhang, P.; Luo, Y; Maier, S. A.; García-Vidal, F. J.; Pendry, J. B.

    2012-01-01

    We present a transformation-optics approach which sheds analytical insight into the impact that spatial dispersion has on the optical response of separated dimers of metallic nanowires. We show that nonlocal effects are apparent at interparticle distances one order of magnitude larger than the longitudinal plasmon decay length, which coincides with the spatial regime where electron tunneling phenomena occur. Our method also clarifies the interplay between nonlocal and radiation effects taking...

  20. Amplified effect of surface charge on cell adhesion by nanostructures

    Science.gov (United States)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  1. The Effects of Surface Modification on Spacecraft Charging Parameters

    Science.gov (United States)

    Evans, Amberly; Dennison, J. R.

    2010-10-01

    Charging of materials by incident radiation is affected by both environmental and physical conditions. Modifying a material's physical surface will change its reflection, transmission and absorption of the incident radiation which are integrally related to the accumulation of charge and energy deposition in the material. An optical analysis of the effect of surface modification on spacecraft charging parameters on prototypical Cu samples is presented. Samples were roughened with abrasive compounds ranging from 0.5 to 10 microns in size. Using a UV/VIS/NIR light source and a diffraction grating spectrometer, measurements were performed on pristine and modified materials. The index of refraction and absorption coefficient were determined using the Fresnel Equations. The resulting absorption coefficient and Tauc plot were used to determine the energy of the band gap. The measured spectra confirmed that surface modification does induce changes in optical reflection, transmission, and absorption. The increased absorption observed results in increased photon energy deposited in the material, leading to increased charge emission through the photoelectric effect.

  2. Accelerating and separating mixed beams of ions with similar charge to mass ratio in the CERN ps complex

    International Nuclear Information System (INIS)

    This paper reports that sulphur 32 ions were accelerated by the CERN machines to a world record energy of 6.4 TeV. An Electron Cyclotron Resonance source produces sulphur ions as a 5 per cent contamination of an oxygen ion beam. As their charge-to-mass ratios differ by only 5.4 E-4, the two species are not distinguishable by the downstream accelerators (RFQ, Linac 1, PSB), though measurable in a specially equipped spectrometer line. In this way, enough current is available for controlled acceleration at low beta in the PSB. However, at phase transition energy in the PS - about 6 GeV/nucleon (GeV/u) - this synchrotron becomes an extremely fine spectrometer, with sulphur 16+ ions being driven inwards, and oxygen 8+ outwards. This can be used for separating the beams by manipulating the low-level radio-frequency system at transition, so that either oxygen or sulphur is selected. Indeed, the SPS could be fed with a fairly intense oxygen beam for setting-up, and later with some 2E7 sulphur ions per PS cycle. The required RF manipulations, the present understanding on beam dynamics at transition, as well as diagnostic techniques for determining the amount of sulphur are presented

  3. Effects of structural properties of the Stern layer on the electrophoretic migration of a highly charged spherical macroion.

    Science.gov (United States)

    Rezaei, Majid; Azimian, Ahmad Reza

    2015-12-01

    The electrophoretic migration of a highly charged spherical macroion suspended in an aqueous solution of NaCl is studied using the molecular dynamic method. The objective is to examine the effects of the colloidal surface charge density on the electrophoretic mobility (μ) of the spherical macroion. The bare charge and the size of the macroion are varied separately to induce changes in the colloidal surface charge density. Our results indicate that μ depends on colloidal surface charge density in a nonmonotonic manner, but that this relationship is independent of the way the surface charge density is varied. It is found that an increase in colloidal surface charge density may lead to the formation of new sublayers in the Stern layer. The μ profile is also found to have a local maximum for a bare charge at which a new sublayer is formed in the Stern layer, and a local minimum for a bare charge at which the outer sublayer becomes relatively dense. Finally, the electrophoretic flow caused by the migration of the spherical macroion is studied to find that one decisive factor causing the electrophoretic flow is the ability of the macroion to carry anions in the electrolyte solution. PMID:26456026

  4. Electric Double-Layer Effects Induce Separation of Aqueous Metal Ions.

    Science.gov (United States)

    Ji, Qinghua; An, Xiaoqiang; Liu, Huijuan; Guo, Lin; Qu, Jiuhui

    2015-11-24

    Metal ion separation is crucial to environmental decontamination, chromatography, and metal recovery and recycling. Theoretical studies have suggested that the ion distributions in the electric double-layer (EDL) region depend on the nature of the ions and the characteristics of the charged electrode surface. We believe that rational design of the electrode material and device structure will enable EDL-based devices to be utilized in the separation of aqueous metal ions. On the basis of this concept, we fabricate an EDL separation (EDLS) device based on sandwich-structured N-functionalized graphene sheets (CN-GS) for selective separation of aqueous toxic heavy metal ions. We demonstrate that the EDLS enables randomly distributed soluble ions to form a coordination-driven layer and electrostatic-driven layer in the interfacial region of the CN-GS/solution. Through tuning the surface potential of the CN-GS, the effective separation of heavy metal ions (coordination-driven layer) from alkali or alkaline earth metal ions (electrostatic-driven layer) can be achieved. PMID:26481603

  5. Ultrafast Charge Separation Dynamics of Twisted Intramolecular Charge Transfer State (TICT) in Coumarin Dye Sensitized TiO2 Film: A New Route to Achieve Higher Efficient Dye-Sensitized Solar Cell

    OpenAIRE

    Ghosh Hirendra N.; Verma Sandeep

    2013-01-01

    Ultrafast transient spectroscopy of 7-diethyl amino coumarin 3-carboxylic acid (D-1421) sensitized TiO2 film reveals that TICT states facilitate higher charge separation and slow recombination and proved to be new route to design higher efficient solar cell.

  6. Ultrafast Charge Separation Dynamics of Twisted Intramolecular Charge Transfer State (TICT in Coumarin Dye Sensitized TiO2 Film: A New Route to Achieve Higher Efficient Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Ghosh Hirendra N.

    2013-03-01

    Full Text Available Ultrafast transient spectroscopy of 7-diethyl amino coumarin 3-carboxylic acid (D-1421 sensitized TiO2 film reveals that TICT states facilitate higher charge separation and slow recombination and proved to be new route to design higher efficient solar cell.

  7. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model

    KAUST Repository

    Zheng, Zilong

    2016-06-24

    Density functional theory (DFT) approaches based on range-separated hybrid functionals are currently methods of choice for the description of the charge-transfer (CT) states in organic donor/acceptor solar cells. However, these calculations are usually performed on small-size donor/acceptor complexes and as result do not account for electronic polarization effects. Here, using a pentacene/C60 complex as a model system, we discuss the ability of long-range corrected (LCR) hybrid functionals in combination with the polarizable continuum model (PCM) to determine the impact of the solid-state environment on the CT states. The CT energies are found to be insensitive to the interactions with the dielectric medium when a conventional time-dependent DFT/PCM (TDDFT/PCM) approach is used. However, a decrease in the energy of the CT state in the framework of LRC functionals can be obtained by using a smaller range-separated parameter when going from an isolated donor/acceptor complex to the solid-state case.

  8. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model.

    Science.gov (United States)

    Zheng, Zilong; Brédas, Jean-Luc; Coropceanu, Veaceslav

    2016-07-01

    Density functional theory (DFT) approaches based on range-separated hybrid functionals are currently methods of choice for the description of the charge-transfer (CT) states in organic donor/acceptor solar cells. However, these calculations are usually performed on small-size donor/acceptor complexes and as result do not account for electronic polarization effects. Here, using a pentacene/C60 complex as a model system, we discuss the ability of long-range corrected (LCR) hybrid functionals in combination with the polarizable continuum model (PCM) to determine the impact of the solid-state environment on the CT states. The CT energies are found to be insensitive to the interactions with the dielectric medium when a conventional time-dependent DFT/PCM (TDDFT/PCM) approach is used. However, a decrease in the energy of the CT state in the framework of LRC functionals can be obtained by using a smaller range-separated parameter when going from an isolated donor/acceptor complex to the solid-state case. PMID:27338105

  9. Time Resolved EPR Study on the Photoinduced Long-Range Charge-Separated State in Protein: Electron Tunneling Mediated by Arginine Residue in Human Serum Albumin.

    Science.gov (United States)

    Fuki, Masaaki; Murai, Hisao; Tachikawa, Takashi; Kobori, Yasuhiro

    2016-05-19

    To elucidate how local molecular conformations play a role on electronic couplings for the long-range photoinduced charge-separated (CS) states in protein systems, we have analyzed time-resolved electron paramagnetic resonance (TREPR) spectra by polarized laser irradiations of 9,10-anthraquinone-1-sulfonate (AQ1S(-)) bound to human serum albumin (HSA). Analyses of the magnetophotoselection effects on the EPR spectra and a docking simulation clarified the molecular geometry and the electronic coupling of the long-range CS states of AQ1S(•2-)-tryptophan214 radical cation (W214(•+)) separated by 1.2 nm. The ligand of AQ1S(-) has been demonstrated to be bound to the drug site I in HSA. Molecular conformations of the binding region were estimated by the docking simulations, indicating that an arginine218 (R218(+)) residue bound to AQ1S(•2-) mediates the long-range electron-transfer. The energetics of triad states of AQ1S(•2-)-R218(+)-W214(•+) and AQ1S(-)-R218(•)-W214(•+) have been computed on the basis of the density functional molecular orbital calculations, providing the clear evidence for the long-range electronic couplings of the CS states in terms of the superexchange tunneling model through the arginine residue. PMID:27116363

  10. Dynamic Charge Carrier Trapping in Quantum Dot Field Effect Transistors.

    Science.gov (United States)

    Zhang, Yingjie; Chen, Qian; Alivisatos, A Paul; Salmeron, Miquel

    2015-07-01

    Noncrystalline semiconductor materials often exhibit hysteresis in charge transport measurements whose mechanism is largely unknown. Here we study the dynamics of charge injection and transport in PbS quantum dot (QD) monolayers in a field effect transistor (FET). Using Kelvin probe force microscopy, we measured the temporal response of the QDs as the channel material in a FET following step function changes of gate bias. The measurements reveal an exponential decay of mobile carrier density with time constants of 3-5 s for holes and ∼10 s for electrons. An Ohmic behavior, with uniform carrier density, was observed along the channel during the injection and transport processes. These slow, uniform carrier trapping processes are reversible, with time constants that depend critically on the gas environment. We propose that the underlying mechanism is some reversible electrochemical process involving dissociation and diffusion of water and/or oxygen related species. These trapping processes are dynamically activated by the injected charges, in contrast with static electronic traps whose presence is independent of the charge state. Understanding and controlling these processes is important for improving the performance of electronic, optoelectronic, and memory devices based on disordered semiconductors. PMID:26099508

  11. Charge Effects on Mechanical Properties of Elastomeric Proteins

    Science.gov (United States)

    Kappiyoor, Ravi; Balasubramanian, Ganesh; Dudek, Daniel; Puri, Ishwar

    2012-02-01

    Several biological molecules of nanoscale dimensions, such as elastin and resilin, are capable of performing diverse tasks with minimal energy loss. These molecules are efficient in that the ratio of energy output to energy consumed is very close to unity. This is in stark contrast to some of the best synthetic materials that have been created. For example, it is known that resilin found in dragonflies has a hysteresis loss of only 0.8% of the energy input while the best synthetic rubber made to date, polybutadiene, has a loss of roughly 20%.We simulate tensile tests of naturally occurring motifs found in resilin (a highly hydrophilic protein), as well as similar simulations found in reduced-polarity counterparts (i.e. the same motif with the charge on each individual atom set to half the natural value, the same motif with the charge on each individual atom set to zero, and a motif in which all the polar amino acids have been replaced with nonpolar amino acids). The results show a strong correlation between charge and extensibility. In order to further understand the effect of properties such as charge on the system, we will run simulations of elastomeric proteins such as resilin in different solvents.

  12. Plasma effect in silicon charge coupled devices (CCDs)

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, J., E-mail: estrada@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Molina, J., E-mail: jmolina@ing.una.py [Facultad de Ingenieria, Universidad Nacional de Asuncion, Laboratorio de Mecanica y Energia, Campus de la UNA, San Lorenzo 2160 (Paraguay); Blostein, J.J., E-mail: jeronimo@cab.cnea.gov.ar [CONICET (Argentina); Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Bariloche (Argentina); Fernandez, G., E-mail: fmoroni.guillermo@gmail.com [Universidad Nacional del Sur, Bahia Blanca (Argentina)

    2011-02-11

    Plasma effect is observed in CCDs exposed to heavy ionizing {alpha}-particles with energies in the range 0.5-5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agree with previous measurements in the high energy region ({>=}3.5 MeV). The measurements were extended to lower energies using {alpha}-particles produced by (n,{alpha}) reactions of neutrons in a {sup 10}B target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of {alpha} particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  13. Plasma effect in silicon charge coupled devices (CCDs)

    International Nuclear Information System (INIS)

    Plasma effect is observed in CCDs exposed to heavy ionizing α-particles with energies in the range 0.5-5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agree with previous measurements in the high energy region (≥3.5 MeV). The measurements were extended to lower energies using α-particles produced by (n,α) reactions of neutrons in a 10B target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of α particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  14. Charge carrier coherence and Hall effect in organic semiconductors.

    Science.gov (United States)

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  15. Charge carrier coherence and Hall effect in organic semiconductors

    Science.gov (United States)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  16. Aerodynamic effects in isotope separation by gaseous diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Bert, L.A. (Universita di Milano, Italy); Prosperetti, A.; Fiocchi, R.

    1978-05-01

    The turbulent flow of an isotopic mixture in a porous-walled pipe is considered in the presence of suction through the wall. A simple model is formulated for the evaluation of aerodynamic effects on the separation efficiency. The predictions of the model are found to compare very favorably with experiment. In the limit of small suction velocities results obtained by other investigators for diffusion in a turbulent stream are recovered.

  17. Aerodynamic effects in isotope separation by gaseous diffusion

    International Nuclear Information System (INIS)

    The turbulent flow of an isotopic mixture in a porous-walled pipe is considered in the presence of suction through the wall. A simple model is formulated for the evaluation of aerodynamic effects on the separation efficiency. The predictions of the model are found to compare very favourably with experiment. In the limit of small suction velocities, results obtained by other investigators for diffusion in a turbulent steam are recovered. (author)

  18. Charge separation in Rhodobacter sphaeroides mutant reaction centers with increased midpoint potential of the primary electron donor.

    Science.gov (United States)

    Khmelnitskiy, A Yu; Khatypov, R A; Khristin, A M; Leonova, M M; Vasilieva, L G; Shuvalov, V A

    2013-01-01

    Primary charge separation dynamics in four mutant reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides with increased midpoint potential of the primary electron donor P (M160LH, L131LH, M197FH, and M160LH + L131LH + M197FH) have been studied by femtosecond transient absorption spectroscopy at room temperature. The decay of the excited singlet state in the wild-type and mutant RCs is complex and has two main exponential components, which indicates heterogeneity of electron transfer rates or the presence of reverse electron transfer reactions. The radical anion band of monomeric bacteriochlorophyll B(A) at 1020 nm was first observed in transient absorbance difference spectra of single mutants. This band remains visible, although with somewhat reduced amplitude, even at delays up to tens of picoseconds when stimulated emission is absent and the reaction centers are in the P(+)H(A)(-) state. The presence of this band in this time period indicates the existence of thermodynamic equilibrium between the P(+)B(A)(-)H(A) and P(+)B(A)H(A)(-) states. The data give grounds for assuming that the value of the energy difference between the states P*, P(+)B(A)(-)H(A), and P(+)B(A)H(A)(-) at early times is of the same order of magnitude as the energy kT at room temperature. Besides, monomeric bacteriochlorophyll B(A) is found to be an immediate electron acceptor in the single mutant RCs, where electron transfer is hampered due to increased energy of the P(+)B(A)(-) state with respect to P*. PMID:23379560

  19. Non-perturbative Green's functions and the QCD effective charge

    CERN Document Server

    Aguilar, Arlene C

    2009-01-01

    Using as ingredients the non-perturbative solutions of various QCD Green's function obtained from Schwinger-Dyson equations (SDEs), we study two versions of the QCD effective charge. The first one obtained from the pinch technique gluon self-energy, and the second from the ghost-gluon vertex. Despite the distinct nature of their buildings blocks, the two effectives charges are almost identical in the entire range of momenta, due to a fundamental identity relating the ghost dressing function with the two form factors of Green's function, which is of central importance in the PT-BFM formalism. In this talk, we outline how to derive this crucial identity from the SDEs of the aforementioned Green's functions. The renormalization procedure that preserves the validity of this identity is discussed in detail. Most importantly, we show that due to the infrared finiteness of the gluon propagator, the QCD charge obtained with either definition freezes in the deep infrared, in agreement with theoretical and phenomenolog...

  20. 3D Simulations of Space Charge Effects in Particle Beams

    International Nuclear Information System (INIS)

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density (∼ 109 protons/cm3) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  1. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  2. Cost-effective electric vehicle charging infrastructure siting for Delhi

    Science.gov (United States)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6–7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ∼10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  3. Cataractogenic effects of heavy charged particles in mice

    International Nuclear Information System (INIS)

    The effects of heavy charged particles on the crystalline lens of the eye of mice are important because this tissue has proven susceptible to other forms of high-LET radiation. This report summarizes the results currently available from a prospectively designed study to explore the LET dependence of the cataractogenic process. The present results are consistent with a high cataractogenic effect at 100 keV/μm, because plateau argon 40 ions, with an LET in this range, produce higher average cataracts scores at 9, 11 and 13 months than do carbon 12 or neon 20 ions. In the electron micrographs, significant changes were observed from the controls

  4. Spatial Separation of Charge Carriers in In2O3-x(OH)y Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity.

    Science.gov (United States)

    He, Le; Wood, Thomas E; Wu, Bo; Dong, Yuchan; Hoch, Laura B; Reyes, Laura M; Wang, Di; Kübel, Christian; Qian, Chenxi; Jia, Jia; Liao, Kristine; O'Brien, Paul G; Sandhel, Amit; Loh, Joel Y Y; Szymanski, Paul; Kherani, Nazir P; Sum, Tze Chien; Mims, Charles A; Ozin, Geoffrey A

    2016-05-24

    The development of strategies for increasing the lifetime of photoexcited charge carriers in nanostructured metal oxide semiconductors is important for enhancing their photocatalytic activity. Intensive efforts have been made in tailoring the properties of the nanostructured photocatalysts through different ways, mainly including band-structure engineering, doping, catalyst-support interaction, and loading cocatalysts. In liquid-phase photocatalytic dye degradation and water splitting, it was recently found that nanocrystal superstructure based semiconductors exhibited improved spatial separation of photoexcited charge carriers and enhanced photocatalytic performance. Nevertheless, it remains unknown whether this strategy is applicable in gas-phase photocatalysis. Using porous indium oxide nanorods in catalyzing the reverse water-gas shift reaction as a model system, we demonstrate here that assembling semiconductor nanocrystals into superstructures can also promote gas-phase photocatalytic processes. Transient absorption studies prove that the improved activity is a result of prolonged photoexcited charge carrier lifetimes due to the charge transfer within the nanocrystal network comprising the nanorods. Our study reveals that the spatial charge separation within the nanocrystal networks could also benefit gas-phase photocatalysis and sheds light on the design principles of efficient nanocrystal superstructure based photocatalysts. PMID:27159793

  5. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    Energy Technology Data Exchange (ETDEWEB)

    Vanden Bout, David A. [Univ. of Texas, Austin, TX (United States)

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  6. The effect of polymer charge density and charge distribution on the formation of multilayers

    CERN Document Server

    Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V

    2003-01-01

    Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.

  7. Research on the charge weight and the sound source level of underwater separation of pyrotechnic separation device%火工分离装置水下分离噪声与装药量研究

    Institute of Scientific and Technical Information of China (English)

    陈霞; 田荣艳

    2012-01-01

    通过对火工分离装置水下分离噪声产生机理的分析和研究,在满足分离裕度的情况下,研究一种专用火工分离装置,探寻装药量与分离噪声声源级的关系,进行水下噪声对比测试,其研究结果对水中兵器水下分离降嗓设计提供依据.%Based on the analysis and study for the noise generation mechanism of pyrotechnically actuated separation devices which separate underwater, when meet the case of separated margin, study a special pyrotechnical separation device to explore the relationship between the charge weight and the sound source level,and develop the tests for underwater noise. The results provide the basis for noising-reducing of underwater weapons.

  8. Effects of Mother-Infant Separation on Maternal Attachment Behavior

    Science.gov (United States)

    Leifer, A. D.; And Others

    1972-01-01

    This project hoped to specify the role of early, mother-infant separation in determining later maternal behavior. Clinically, the results suggest that such a separation should be avoided whenever possible and should be minimized when separation is unavoidable. (Authors)

  9. Proximity effects in cold gases of multiply charged atoms (Review)

    Science.gov (United States)

    Chikina, I.; Shikin, V.

    2016-07-01

    Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) 0 and for the alkali and alkaline-earth elements Eproxi thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for

  10. Features which separate least effective from most effective science teachers

    Science.gov (United States)

    Yager, Robert E.; Hidayat, Eddy M.; Penick, John E.

    Sixty-one science supervisors identified 321 teachers, 162 most effective and 159 least effective, in their respective districts. Information was then sought concerning age, gender, teaching field(s), number of preparations, amount of preparation, time, semester hours of undergraduate science preparation, quantity of graduate science preparation, type of teacher education programs, number of weeks of NSF workshop experience, and number of workshops elected for participation. Comparisons of the information gathered between least and most effective teachers were made. There were no differences in any categories except for gender, quantity of NSF institute experiences, and elected in-service experiences in excess of a single day's duration. Many of the factors frequently used to differentiate among teachers do not provide any explanation of the differences between least and most effective teachers of science.

  11. Co(II)–grafted Ag{sub 3}PO{sub 4} photocatalysts with unexpected photocatalytic ability: Enhanced photogenerated charge separation efficiency, photocatalytic mechanism and activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuna [College of Textile Engineering, Zhejiang Industry Polytechnic College, Shaoxing 312000 (China); Zhang, Shujuan, E-mail: zhangshujuan@tust.edu.cn [College of Science, Tianjin University of Science & Technology, Tianjin 300457 (China); Song, Limin, E-mail: songlmnk@sohu.com [College of Environment and Chemical Engineering & State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387 (China)

    2015-08-15

    Highlights: • Co–Ag{sub 3}PO{sub 4} with higher photodegradation ability was synthesized. • ·OH was the main active species in the oxidation of MO. • The synergy of Co(II) and Ag{sub 3}PO{sub 4} greatly enhanced the separation efficiency. - Abstract: Since the photocatalytic capability is determined by the separation and transmission efficiency of photoinduced charges, its improvement remains a challenge for development of efficient photocatalysts. Here, we made large improvement on the surface of Ag{sub 3}PO{sub 4} using Co(II)–grafted Ag{sub 3}PO{sub 4} by a hydrothermal method. During the photocatalytic process, Co(II) was oxidized to Co(III) by the photogenerated holes under visible light radiation, which enhanced the separation efficiency of photogenerated charges. Meanwhile, the Co(III) as-formed could oxidize dye molecules, which recovered the Co(II). The synergy of Co(II) and Ag{sub 3}PO{sub 4} greatly promoted the separation and transmission efficiency of the photogenerated charges, and severely improved the photocatalytic activity of Ag{sub 3}PO{sub 4}. The surface grafted Co(II) on Ag{sub 3}PO{sub 4} is responsible for the enhancement of photocatalytic activity.

  12. Co(II)–grafted Ag3PO4 photocatalysts with unexpected photocatalytic ability: Enhanced photogenerated charge separation efficiency, photocatalytic mechanism and activity

    International Nuclear Information System (INIS)

    Highlights: • Co–Ag3PO4 with higher photodegradation ability was synthesized. • ·OH was the main active species in the oxidation of MO. • The synergy of Co(II) and Ag3PO4 greatly enhanced the separation efficiency. - Abstract: Since the photocatalytic capability is determined by the separation and transmission efficiency of photoinduced charges, its improvement remains a challenge for development of efficient photocatalysts. Here, we made large improvement on the surface of Ag3PO4 using Co(II)–grafted Ag3PO4 by a hydrothermal method. During the photocatalytic process, Co(II) was oxidized to Co(III) by the photogenerated holes under visible light radiation, which enhanced the separation efficiency of photogenerated charges. Meanwhile, the Co(III) as-formed could oxidize dye molecules, which recovered the Co(II). The synergy of Co(II) and Ag3PO4 greatly promoted the separation and transmission efficiency of the photogenerated charges, and severely improved the photocatalytic activity of Ag3PO4. The surface grafted Co(II) on Ag3PO4 is responsible for the enhancement of photocatalytic activity

  13. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    Science.gov (United States)

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system. PMID:26237431

  14. Self-deflection of bright soliton in a separate bright-dark screening soliton pair based on higher-order space charge field

    Institute of Scientific and Technical Information of China (English)

    Zhonghua Hao(郝中华); Jinsong Liu(刘劲松)

    2003-01-01

    Based on the interaction of the separate soliton pair, the self-deflection of the bright screening soliton in a bright-dark pair is studied by taking the higher order space charge field into account. Both numerical and analytical methods are adopted to obtain the result that the higher order of space charge field can enhance the deflection process of the bright soliton and varying the peak intensity of the dark soliton can influence the self-deflection strongly. The expression of the deflection distance with the dark soliton's peak intensity is derived, and some corresponding properties of the self-deflection process are figured out.

  15. Separate effects of background and illumination on lightness

    Directory of Open Access Journals (Sweden)

    Zdravković Sunčica

    2007-01-01

    Full Text Available Four experiments attempted to establish an effect of context on lightness. Lightness is one of the dimensions of color and it varies from black to white. Most of our stimuli were inspired by simultaneous lightness contrast illusion. First two experiments contrast the size of an effect produced by the change of background color vs. the change in illumination. The third experiment deals with different type of illusions, where the effect is obtained through the appearance of multiple illumination levels. The last experiment takes into account the ratio of the target and the background. The results reveal the size of effects produced separately by the background color and illumination level and suggest the prime importance of background. Also there are other factors such as reflectance range in the scene, incremental and decremental targets, and 2D vs. 3D representation.

  16. A self-consistent two-dimensional resistive fluid theory of field-aligned potential structures including charge separation and magnetic and velocity shear

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Schindler, Karl

    1990-01-01

    A self-consistent two-fluid theory that includes the magnetic field and shear patterns is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term, and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality, are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients (i.e., thermal effects in the direction of the magnetic field) and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory, simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares.

  17. The Gravitational Effects of a Celestial Body with Magnetic Charge and Moment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gravitational effects (precession of charge-less particles and deflection of light) in the gravitational field of a celestial body with magnetic charge and moment (CM)are investigated. We found that the magnetic charge always weakens the pure Schwarzschild effects, while the magnetic dipole moment deforms the effects in a more complicated way.

  18. Solvent effects on charge spatial extent in DNA and implications for transfer.

    OpenAIRE

    Mantz, Y. A.; Gervasio, F. L.; Laino, T.; Parrinello, M.

    2007-01-01

    To clarify the role played by water in facilitating long-range DNA charge transport, carefully designed, state-of-the-art, self-interaction corrected density-functional quantum mechanical and molecular mechanical (SIC-QM/MM) simulations are performed for the first time on two ionized adenine:thymine bridge models in explicit water solvent at finite temperature. For random solvent configurations, the charge is partially delocalized. However, a charge localization on different, well-separated a...

  19. Proximity effects in cold gases of multiply charged atoms (Review)

    Science.gov (United States)

    Chikina, I.; Shikin, V.

    2016-07-01

    Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) 0 and for the alkali and alkaline-earth elements Eproxi theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for

  20. Anxiety and Daycare: Effects on Mothers' and Children's Separation Behaviors.

    Science.gov (United States)

    Murphy, Molly A.; And Others

    A study examined how maternal separation anxiety contributes to the mother's departure actions and how those behaviors affect the child during separation. Subjects were 40 mothers and their toddlers, age 15 to 24 months, who were observed before and during separation. After completing the Maternal Separation Anxiety Questionnaire, mothers were…

  1. Charge correlation effects on ionization of weak polyelectrolytes

    International Nuclear Information System (INIS)

    Ionization curves of weak polyelectrolytes were obtained as a function of the charge coupling strength from Monte Carlo simulations. In contrast to many earlier studies, the present work treats counterions explicitly, thus allowing the investigation of charge correlation effects at strong couplings. For conditions representing typical weak polyelectrolytes in water near room temperature, ionization is suppressed because of interactions between nearby dissociated groups, as also seen in prior work. A novel finding here is that, for stronger couplings, relevant for non-aqueous environments in the absence of added salt, the opposite behavior is observed-ionization is enhanced relative to the behavior of the isolated groups due to ion-counterion correlation effects. The fraction of dissociated groups as a function of position along the chain also behaves non-monotonically. Dissociation is highest near the ends of the chains for aqueous polyelectrolytes and highest at the chain middle segments for non-aqueous environments. At intermediate coupling strengths, dissociable groups appear to behave in a nearly ideal fashion, even though chain dimensions still show strong expansion effects due to ionization. These findings provide physical insights on the impact of competition between acid/base chemical equilibrium and electrostatic attractions in ionizable systems.

  2. Charge correlation effects on ionization of weak polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotopoulos, A Z, E-mail: azp@princeton.ed [Department of Chemical Engineering and Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544 (United States)

    2009-10-21

    Ionization curves of weak polyelectrolytes were obtained as a function of the charge coupling strength from Monte Carlo simulations. In contrast to many earlier studies, the present work treats counterions explicitly, thus allowing the investigation of charge correlation effects at strong couplings. For conditions representing typical weak polyelectrolytes in water near room temperature, ionization is suppressed because of interactions between nearby dissociated groups, as also seen in prior work. A novel finding here is that, for stronger couplings, relevant for non-aqueous environments in the absence of added salt, the opposite behavior is observed-ionization is enhanced relative to the behavior of the isolated groups due to ion-counterion correlation effects. The fraction of dissociated groups as a function of position along the chain also behaves non-monotonically. Dissociation is highest near the ends of the chains for aqueous polyelectrolytes and highest at the chain middle segments for non-aqueous environments. At intermediate coupling strengths, dissociable groups appear to behave in a nearly ideal fashion, even though chain dimensions still show strong expansion effects due to ionization. These findings provide physical insights on the impact of competition between acid/base chemical equilibrium and electrostatic attractions in ionizable systems.

  3. Improved solar-driven photocatalytic performance of BiOI decorated TiO2 benefiting from the separation properties of photo-induced charge carriers

    Science.gov (United States)

    Li, Jianzhang; Zhong, Junbo; Si, Yujun; Huang, Shengtian; Dou, Lin; Li, Minjiao; Liu, Yinping; Ding, Jie

    2016-02-01

    In this work, BiOI decorated TiO2 photocatalysts were prepared in-situ by a facile hydrothermal method and characterized by X-ray diffraction (XRD), UV/Vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and surface photovoltage (SPV) spectroscopy. The reactive radicals during the photocatalytic reaction were detected by scavenger experiments. BiOI/TiO2 composites exhibit higher performance than the pure TiO2 towards photocatalytic decolorization of methyl orange (MO) aqueous solution, when the molar ratio of Bi/Ti is 2%, the sample has the highest photocatalytic activity. The enhanced photocatalytic performance of BiOI/TiO2 could be ascribed to the separation properties of photo-induced charge carriers and strong interaction between BiOI and TiO2. Based on the observations, a Z-scheme charge separation mechanism was proposed.

  4. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges

    Science.gov (United States)

    Wang, Rui-Feng

    2015-09-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge.

  5. Free charge localization and effective dielectric permittivity in oxides

    Science.gov (United States)

    Maglione, Mario

    2016-06-01

    This review will deal with several types of free charge localization in oxides and their consequences on the effective dielectric spectra of such materials. The first one is the polaronic localization at the unit cell scale on residual impurities in ferroelectric networks. The second one is the collective localization of free charge at macroscopic interfaces like surfaces, electrodes and grain boundaries in ceramics. Polarons have been observed in many oxide perovskites mostly when cations having several stable electronic configurations are present. In manganites, the density of such polarons is so high as to drive a net lattice of interacting polarons. On the other hand, in ferroelectric materials like BaTiO3 and LiNbO3, the density of polarons is usually very small but they can influence strongly the macroscopic conductivity. The contribution of such polarons to the dielectric spectra of ferroelectric materials is described. Even residual impurities as for example Iron can induce well-defined anomalies at very low temperatures. This is mostly resulting from the interaction between localized polarons and the highly polarizable ferroelectric network in which they are embedded. The case of such residual polarons in SrTiO3 will be described in more detail, emphasizing the quantum polaron state at liquid helium temperatures. Recently, several nonferroelectric oxides have been shown to display giant effective dielectric permittivity. It is first shown that the frequency/temperature behavior of such parameters is very similar in very different compounds (donor-doped BaTiO3, CaCu3Ti4O12, LuFe2O4, Li-doped NiO, etc.). This similarity calls for a common origin of the giant dielectric permittivity in these compounds. A space charge localization at macroscopic interfaces can be the key for such extremely high dielectric permittivity.

  6. Highly-oriented Fe2O3/ZnFe2O4 nanocolumnar heterojunction with improved charge separation for photoelectrochemical water oxidation.

    Science.gov (United States)

    Luo, Zhibin; Li, Chengcheng; Zhang, Dong; Wang, Tuo; Gong, Jinlong

    2016-07-12

    This paper describes the design and synthesis of a heterojunction photoanode composed of highly-oriented Fe2O3/ZnFe2O4 nanocolumnar arrays with a well-defined morphology by reactive ballistic deposition and atomic layer deposition. This specific structure enhances the charge separation at the Fe2O3/ZnFe2O4 interface, leading to an improved photoelectrochemical performance for water oxidation. PMID:26696447

  7. Probing the Charge Separation Process on In2S3/Pt-TiO2 Nanocomposites for Boosted Visible-light Photocatalytic Hydrogen Production

    CERN Document Server

    Wang, Fenglong; Jiang, Yijiao; Backus, Ellen H G; Bonn, Mischa; Lou, Shi Nee; Turchinovich, Dmitry; Amala, Rose

    2016-01-01

    A simple refluxing wet-chemical approach is employed for fabricating In2S3/Pt-TiO2 heterogeneous catalysts for hydrogen generation under visible light irradiation. When the mass ratio between Pt-TiO2 and cubic-phased In2S3 (denoted as In2S3/Pt-TiO2) is two, the composite catalyst shows the highest hydrogen production, which exhibits an 82-fold enhancement over in-situ deposited Pt-In2S3. UV-vis diffuse reflectance and valence band X-ray photoelectron spectra elucidate that the conduction band of In2S3 is 0.3 eV more negative compared to that of TiO2, favoring charge separation in the nanocomposites. Photoelectrochemical transient photo-current measurements and optical pump - terahertz probe spectroscopic studies further corroborate the charge separation in In2S3/Pt-TiO2. The migration of photo-induced electrons from the In2S3 conduction band to the TiO2 conduction band and subsequently into the Pt nanoparticles is found to occur within 5 picoseconds. Based on the experimental evidence, a charge separation pro...

  8. Species separation and kinetic effects in collisional plasma shocks

    Energy Technology Data Exchange (ETDEWEB)

    Bellei, C., E-mail: bellei1@llnl.gov; Wilks, S. C.; Amendt, P. A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Rinderknecht, H.; Zylstra, A.; Rosenberg, M.; Sio, H.; Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-05-15

    The properties of collisional shock waves propagating in uniform plasmas are studied with ion-kinetic calculations, in both slab and spherical geometry and for the case of one and two ion species. Despite the presence of an electric field at the shock front—and in contrast to the case where an interface is initially present [C. Bellei et al., Phys. Plasmas 20, 044702 (2013)]—essentially no ion reflection at the shock front is observed due to collisions, with a probability of reflection ≲10{sup −4} for the cases presented. A kinetic two-ion-species spherical convergent shock is studied in detail and compared against an average-species calculation, confirming effects of species separation and differential heating of the ion species at the shock front. The effect of different ion temperatures on the DT and D{sup 3}He fusion reactivity is discussed in the fluid limit and is estimated to be moderately important.

  9. Mitigate Effects of Multipath Interference at GPS Using Separate Antennas

    Directory of Open Access Journals (Sweden)

    Younis H. Karim AlJewari

    2014-07-01

    Full Text Available Multipath is one of the contributing sources of errors that effect on the accuracy and reliability of the Global Positioning System (GPS. GPS multipath is caused by the reception of signals from satellites directly and indirectly reflected from the local objects. This paper investigates multipath errors at the GPS receiver antenna and the possibility to mitigate multipath interference effect by use two separate antennas model GA 25 MCX with one GPS receiver card (GARMIN GPS 25LP Series are GPS sensor boards designed for a broad spectrum of OEM (Original Equipment Manufacturer to improve accuracy and reliability of GPS. We used a specially designed simulator platform to simulate the movement and the reflection of GPS signals from the body of platform.

  10. On the chiral separation effect in a slab

    CERN Document Server

    Sitenko, Yu A

    2016-01-01

    We study an influence of boundaries on chiral effects in hot dense relativistic spinor matter in a strong magnetic field which is transverse to bounding planes. The most general set of boundary conditions ensuring the confinement of matter within the bounding planes is considered. We find that, in thermal equilibrium, the nondissipative axial current along the magnetic field is induced, depending on chemical potential and temperature, as well as on a choice of boundary conditions. As temperature increases from zero to large values, a stepwise behaviour of the axial current density as a function of chemical potential is changed to a smooth one; the choice of a boundary condition can facilitate either amplification or diminution of the chiral separation effect. This points at a significant role of boundaries for physical systems with hot dense magnetized relativistic spinor matter, e.g., compact stars, heavy-ion collisions, novel materials known as Dirac and Weyl semimetals.

  11. Effects of polarization-charge shielding in microwave heating

    International Nuclear Information System (INIS)

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread

  12. Ultrafast photoelectron spectroscopy of solutions: space-charge effect

    Science.gov (United States)

    Al-Obaidi, R.; Wilke, M.; Borgwardt, M.; Metje, J.; Moguilevski, A.; Engel, N.; Tolksdorf, D.; Raheem, A.; Kampen, T.; Mähl, S.; Kiyan, I. Yu; Aziz, E. F.

    2015-09-01

    The method of time-resolved XUV photoelectron spectroscopy is applied in a pump-probe experiment on a liquid micro-jet. We investigate how the XUV energy spectra of photoelectrons are influenced by the space charge created due to ionization of the liquid medium by the pump laser pulse. XUV light from high-order harmonic generation is used to probe the electron population of the valence shell of iron hexacyanide in water. By exposing the sample to a short UV pump pulse of 266 nm wavelength and ˜55 fs duration, we observe an energy shift of the spectral component associated with XUV ionization from the Fe 3d(t2g) orbital as well as a shift of the water spectrum. Depending on the sequence of the pump and probe pulses, the arising energy shift of photoelectrons acquires a positive or negative value. It exhibits a sharp positive peak at small time delays, which facilitates to determine the temporal overlap between pump and probe pulses. The negative spectral shift is due to positive charge accumulated in the liquid medium during ionization. Its dissipation is found to occur on a (sub)nanosecond time scale and has a biexponential character. A simple mean-field model is provided to interpret the observations. A comparison between the intensity dependencies of the spectral shift and the UV ionization yield shows that the space-charge effect can be significantly reduced when the pump intensity is attenuated below the saturation level of water ionization. For the given experimental conditions, the saturation intensity lies at 6× {10}10 W cm-2.

  13. Measurements of Charge Sharing Effects in Pixilated CZT/CdTe Detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2007-01-01

    In this paper, charge sharing and charge loss effects in pixilated CZT/CdTe detectors are investigated by measurements. We measured charge sharing effects function of the inter-pixel gap (with same pixel pitch), the photon energy and the detector bias voltage for a large numbers of CZT and Cd...

  14. Hall effect in quantum critical charge-cluster glass.

    Science.gov (United States)

    Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan

    2016-04-19

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state. PMID:27044081

  15. Hall effect in quantum critical charge-cluster glass

    Science.gov (United States)

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-01

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ˜ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ˜ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps, Δx ˜ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.

  16. The gravitational effect on induced charge density for an obliquely rotating neutron star

    International Nuclear Information System (INIS)

    The effect om the induced charge density of the gravitational field of a rotating neutron star with its magnetic axis inclined with respect to the rotational axis is investigated. While gravitation increases the charge density the obliquity reduces it

  17. The gravitational effect on induced charge density for an obliquely rotating neutron star

    Energy Technology Data Exchange (ETDEWEB)

    De Paolis, F. [Delaware Univ., Newark (United States). Bartol Research Inst.; Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Qadir, A. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Tarman, I.H. [King Fahd University of Petroleum and Minerals, Dharan (Saudi Arabia). Dept. of Mathematical Sciences

    1999-11-01

    The effect om the induced charge density of the gravitational field of a rotating neutron star with its magnetic axis inclined with respect to the rotational axis is investigated. While gravitation increases the charge density the obliquity reduces it.

  18. Geometrical effects on the airfoil flow separation and transition

    KAUST Repository

    Zhang, Wei

    2015-04-25

    We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10 degrees incidence. The two chosen airfoils are geometrically similar except for maximum camber (respectively 4%C and 0 with C the chord length), which results in a larger projection area with respect to the incoming flow for the NACA-4412 airfoil, and a larger leeward surface curvature at the leading edge for the NACA-0012-64 airfoil. The governing equations are discretized using an energy conservative fourth-order spatial discretization scheme. An assessment on the two-point correlation indicates that a spanwise domain size of 0.8C is sufficiently large for the present simulations. We discuss flow separation at the airfoil leading edge, transition of the separated shear layer to three-dimensional flow and subsequently to turbulence. Numerical results reveal a stronger adverse pressure gradient field in the leading edge region of the NACA-0012-64 airfoil due to the rapidly varying surface curvature. As a result, the flow experiences detachment at x/C=0.08, and the separated shear layer transition via Kelvin-Helmholtz mechanism occurs at x/C=0.29 with fully developed turbulent flow around x/C=0.80. These flow development phases are delayed to occur at much downstream positions, respectively, observed around x/C=0.25, 0.71 and 1.15 for the NACA-4412 airfoil. The turbulent intensity, measured by the turbulent fluctuations and turbulent Reynolds stresses, are much larger for NACA-0012-64 from the transition onset until the airfoil trailing edge, while turbulence develops significantly downstream of the trailing edge for the NACA-4412 airfoil. For both airfoils, our DNS results indicate that the mean Reynolds stress u\\'u\\'/U02 reaches its maximum value at a distance from the surface approximately equal to the displacement

  19. Surface charging of phosphors and its effects on cathodoluminescence at low electron energies

    International Nuclear Information System (INIS)

    Measurements of the threshold for secondary electron emission and shifts of the carbon Auger line position have been used to deduce the surface potential of several common phosphors during irradiation by electrons in the 0.5--5.0 keV range. All of the insulating phosphors display similar behavior: the surface potential is within ±1 V of zero at low electron energies. However, above 2--3 kV it becomes increasingly negative, reaching hundreds of volts within 1 keV of the turn-on energy. The electron energy at which this charging begins decreases dramatically after Coulomb aging at 17 microA/cm2 for 30--60 min. Measurements using coincident electron beams at low and high electron energies to control the surface potential were made to investigate the dependence of the cathodoluminescence (CL) process on charging. Initially, the CL from the two beams is identical to the sum of the separate beam responses, but after Coulomb aging large deviations from this additivity are observed. These results indicate that charging has important, detrimental effects on CL efficiency after prolonged e-beam irradiation. Measurements of the electron energy dependence of the CL efficiency before and after Coulomb aging will also be presented, and the implications of these data on the physics of the low-voltage CL process will be discussed

  20. Effect of Ionic Advection on Electroosmosis over Charge Surfaces: Beyond the Weak Field Limit

    CERN Document Server

    Ghosh, Uddipta

    2015-01-01

    The present study deals with the effect of ionic advection on electroosmotic flow over charge modulated surfaces in a generalized paradigm when the classically restrictive "weak field" limit may be relaxed. Going beyond the commonly portrayed weak field limit (i.e, the externally applied electric field is over-weighed by the surface-induced electrical potential, towards charge distribution in an electrified wall-adhering layer) for electroosmotic transport, we numerically solve the coupled full set of Poisson-Nernst-Planck (PNP) and Navier-Stokes equations, in a semi-infinite domain, bounded at the bottom by a charged wall. Further, in an effort to obtain deeper physical insight, we solve the simplified forms of the relevant governing equations for low surface potential in two separate asymptotic limits: (i) a regular perturbation solution for Low Ionic Peclet number (Pe), where Pe is employed as the gauge function and (ii) a matched asymptotic solution for O(1) Pe in the Thin Electric Double Layer (EDL) limi...

  1. Distinguishing Field Effects from Charge Effects in the Optoelectronic Properties of Carbon Nanotube Films

    International Nuclear Information System (INIS)

    We have used charge-induced absorption to quantify the influence of injected charges on electro absorption measurements in single-wall carbon nanotube films. The interpretations of experimental measurements of X processes in nanotubes are simplified by taking into account the change in electron-electron interactions upon charge injection. Electro absorption spectra that are properly corrected for charge-induced effects show remarkable agreement with a simple Stark shift of the exciton transitions with no notable second-derivative contributions. Thus, distinguishing electric field effects from carrier density effects allows for a more rigorous calculation of exciton polarizability from electro absorption measurements, even in heterogeneous films. PACS: 78.67.Ch Nanotubes: optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures.

  2. Working Group 2 summary: Space charge effects in bending systems

    International Nuclear Information System (INIS)

    At the start of the Workshop, the authors asked the Working Group 2 participants to concentrate on three basic goals: (1) survey the status of how comprehensively the physics concerning space-charge effects in bends is understood and how complete is the available ensemble of analytic and computational tools; (2) guided by data from experiments and operational experience, identify sources of, and cures for, beam degradation; and (3) review space-charge physics in rings and the limitations it introduces. As the Workshop unfolded, the third goal naturally folded into the other two goals, and these goals, they believe, were fulfilled in that the Working Group was able to compile an end product consisting of a set of recommendations for potentially fruitful future work. This summary constitutes an overview of the deliberations of the Working Group, and it is their hope that the summary clarifies the motivation for the recommended work listed at the end. The summary is organized according to the two aforementioned goals, and the prime topics of discussion appear as subsections under these goals

  3. Effects of cytosine methylation on DNA charge transport

    Science.gov (United States)

    Hihath, Joshua; Guo, Shaoyin; Zhang, Peiming; Tao, Nongjian

    2012-04-01

    The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.

  4. PWR-blowdown heat transfer separate effects program

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.G.

    1976-01-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results are obtained from the Thermal-Hydraulic Test Facility (THTF). Supporting experiments are carried out in several additional test loops - the Forced Convection Test Facility (FCTF), an air-water loop, a transient steam-water loop, and a low-temperature water mockup of the THTF heater rod bundle. The studies to date are described.

  5. The effect of additives on charge decay in electron-beam charged polypropylene films

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbrand, J; Motz, T; Sessler, G M; Zhang, X [Institute for Communications Technology, Darmstadt University of Technology, 64283 Darmstadt (Germany); Behrendt, N; Altstaedt, V [Polymer Engineering, University of Bayreuth, 95447 Bayreuth (Germany); Von Salis-Soglio, C; Erhard, D P; Schmidt, H-W, E-mail: j.hillenbrand@nt.tu-darmstadt.d [Macromolecular Chemistry I, University of Bayreuth, 95447 Bayreuth (Germany)

    2009-03-21

    The charge decay in isotactic polypropylene (i-PP) films of 50 {mu}m thickness, containing three kinds of additives, namely a trisamide, a bisamide and a fluorinated compound, with concentrations in the range 0.004-1 wt% was studied. Compression molding was used to produce the films. The samples were either surface-charged by a corona method or volume-charged by mono-energetic electron beams of different energies, having penetration depths up to 6 {mu}m. In all cases, surface potentials of about 200 V were chosen. After charging the films, the decay of the surface potential was studied either by an isothermal discharge method at 90 deg. C or by thermally stimulated discharge measurements. The results show a dependence of the decay rate on the kind of additive used, on additive concentration and on the energy of the injected charges. In particular, for samples with fluorinated additives, the stability of the surface potential decreases markedly with increasing electron energy, while such a dependence is very weak for samples containing the bisamide additive and does not exist at all for samples with the trisamide additive. These observations are tentatively explained by the radiation-induced generation of relatively mobile negative ions originating from the bisamide and fluorinated additives.

  6. The effect of additives on charge decay in electron-beam charged polypropylene films

    Science.gov (United States)

    Hillenbrand, J; Motz, T; Sessler, G M; Zhang, X; Behrendt, N; von Salis-Soglio, C; Erhard, D P; Altstädt, V; Schmidt, H-W

    2009-03-01

    The charge decay in isotactic polypropylene (i-PP) films of 50 µm thickness, containing three kinds of additives, namely a trisamide, a bisamide and a fluorinated compound, with concentrations in the range 0.004-1 wt% was studied. Compression molding was used to produce the films. The samples were either surface-charged by a corona method or volume-charged by mono-energetic electron beams of different energies, having penetration depths up to 6 µm. In all cases, surface potentials of about 200 V were chosen. After charging the films, the decay of the surface potential was studied either by an isothermal discharge method at 90 °C or by thermally stimulated discharge measurements. The results show a dependence of the decay rate on the kind of additive used, on additive concentration and on the energy of the injected charges. In particular, for samples with fluorinated additives, the stability of the surface potential decreases markedly with increasing electron energy, while such a dependence is very weak for samples containing the bisamide additive and does not exist at all for samples with the trisamide additive. These observations are tentatively explained by the radiation-induced generation of relatively mobile negative ions originating from the bisamide and fluorinated additives.

  7. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO2. With non-stoichiometric TiO2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O2 alone, and in

  8. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    Science.gov (United States)

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ν 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength λ) far less than nucleonic mass and the electric scattering section (in direct proportion to λ2 ) far large than that of nucleon, then the net ν 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ν 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further

  9. Effects of dispersive wave modes on charged particles transport

    CERN Document Server

    Schreiner, Cedric

    2015-01-01

    The transport of charged particles in the heliosphere and the interstellar medium is governed by the interaction of particles and magnetic irregularities. For the transport of protons a rather simple model using a linear Alfv\\'en wave spectrum which follows the Kolmogorov distribution usually yields good results. Even magnetostatic spectra may be used. For the case of electron transport, particles will resonate with the high-k end of the spectrum. Here the magnetic fluctuations do not follow the linear dispersion relation, but the kinetic regime kicks in. We will discuss the interaction of fluctuations of dispersive waves in the kinetic regime using a particle-in-cell code. Especially the scattering of particles following the idea of Lange et al. (2013) and its application to PiC codes will be discussed. The effect of the dispersive regime on the electron transport will be discussed in detail.

  10. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges

    OpenAIRE

    Rui-Feng Wang

    2015-01-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced...

  11. Charge Stripper Effects on Beam Optics in 180-degree Bending Section of RISP Linac

    CERN Document Server

    Jang, Ji-Ho; Song, Jeong Seog

    2016-01-01

    The RAON, a superconducting linear accelerator for RISP (Rare Isotope Science Project), will use a charge stripper in order to increase the charge states of the heavy ions for effective acceleration in the higher energy part of the linac. The charge stripper affects the beam qualities by scattering when the heavy ions go through the charge stripper. Moreover we have to select and accelerate proper charge states between 77+ and 81+ for uranium beam case in order to satisfy the beam power requirement at an IF (Inflight Fragmentation) target. This work focuses on the beam optics affected by the charge stripper in the 180-dgree bending section.

  12. Dynamical mechanism of charge separation by photoexcited generation of proton-electron pairs in organic molecular systems. A nonadiabatic electron wavepacket dynamics study

    Science.gov (United States)

    Yamamoto, Kentaro; Takatsuka, Kazuo

    2016-08-01

    In this perspective article, we review, along with presenting new results, a series of our theoretical analyses on the excited-state mechanism of charge separation (proton-electron pair creation) relevant to the photoinduced water-splitting reaction (2H2O → 4H+ + 4e- + O2) in organic and biological systems, which quite often includes Mn clusters in various molecular configurations. The present mechanism is conceived to be universal in the triggering process of the photoexcited water splitting dynamics. In other words, any Mn-based catalytic charge separation is quite likely to be initiated according to this mechanism. As computationally tractable yet realistic models, we examine a series of systems generally expressed as X-Mn-OH2⋯A, where X = (OH, Ca(OH)3) and A = (N-methylformamidine, guanidine, imidazole or ammonia cluster) in terms of the theory of nonadiabatic electron wavepacket dynamics. We first find both an electron and a proton are simultaneously transferred to the acceptors through conical intersections upon photoexcitation. In this mechanism, the electron takes different pathways from that of the proton and reaches the densely lying Rydberg-like states of the acceptors in the end, thereby inducing charge separation. Therefore the presence of the Rydberg-like diffused unoccupied states as an electron acceptor is critical for this reaction to proceed. We also have found another crucial nonadiabatic process that deteriorates the efficiency of charge separation by rendering the created pair of proton and electron back to the originally donor site through the states of d-d band originated from Mn atom. Repetition of this process gradually annihilates the created pair of proton and electron in a way different from the usual charge recombination process. We address this dynamics by means of our proposed path-branching representation. The dynamical roles of a doped Ca atom are also uncovered, which are relevant to controlling the pathways of electron

  13. Highly-Efficient Charge Separation and Polaron Delocalization in Polymer-Fullerene Bulk-Heterojunctions: A Comparative Multi-Frequency EPR & DFT Study

    Science.gov (United States)

    Niklas, Jens; Mardis, Kristy L.; Banks, Brian P.; Grooms, Gregory M.; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G.

    2016-01-01

    The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Under illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P+, and negative, P-, polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of 1H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40 - 60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR. Strong

  14. Charge diffusion and the butterfly effect in striped holographic matter

    CERN Document Server

    Lucas, Andrew

    2016-01-01

    Recently, it has been proposed that the butterfly velocity - a speed at which quantum information propagates - may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength "hydrodynamic" disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  15. Background charges and quantum effects in quantum dots transport spectroscopy

    OpenAIRE

    Pierre M.; Hofheinz M.; Jehl X.; Sanquer M.; Molas G.; Vinet M.; Deleonibus S.

    2009-01-01

    We extend a simple model of a charge trap coupled to a single-electron box to energy ranges and parameters such that it gives new insights and predictions readily observable in many experimental systems. We show that a single background charge is enough to give lines of differential conductance in the stability diagram of the quantum dot, even within undistorted Coulomb diamonds. It also suppresses the current near degeneracy of the impurity charge, and yields negative differential lines far ...

  16. Enhanced separation efficiency of photoinduced charges for antimony-doped tin oxide (Sb-SnO2)/TiO2 heterojunction semiconductors with varied Sb doping concentration

    International Nuclear Information System (INIS)

    In this paper, antimony-doped tin oxide (Sb-SnO2) nanoparticles were synthesized with varied Sb doping concentration, and the Sb-SnO2/TiO2 heterojunction semiconductors were prepared with Sb-SnO2 and TiO2. The separation efficiency of photoinduced charges was characterized with surface photovoltage (SPV) technique. Compared with Sb-SnO2 and TiO2, Sb-SnO2/TiO2 presents an enhanced separation efficiency of photoinduced charges, and the SPV enhancements were estimated to be 1.40, 1.43, and 1.99 for Sb-SnO2/TiO2 composed of Sb-SnO2 with the Sb doping concentration of 5%, 10%, and 15%, respectively. To understand the enhancement, the band structure of Sb-SnO2 and TiO2 in the heterojunction semiconductor was determined, and the conduction band offsets (CBO) between Sb-SnO2 and TiO2 were estimated to be 0.56, 0.64, and 0.98 eV for Sb-SnO2/TiO2 composed of Sb-SnO2 with the Sb doping concentration of 5%, 10%, and 15%, respectively. These results indicate that the separation efficiency enhancement is resulting from the energy level matching, and the increase of enhancement is due to the rising of CBO

  17. Enhanced separation efficiency of photoinduced charges for antimony-doped tin oxide (Sb-SnO2)/TiO2 heterojunction semiconductors with varied Sb doping concentration

    Science.gov (United States)

    Zhang, Zhen-Long; Ma, Wen-Hai; Mao, Yan-Li

    2014-09-01

    In this paper, antimony-doped tin oxide (Sb-SnO2) nanoparticles were synthesized with varied Sb doping concentration, and the Sb-SnO2/TiO2 heterojunction semiconductors were prepared with Sb-SnO2 and TiO2. The separation efficiency of photoinduced charges was characterized with surface photovoltage (SPV) technique. Compared with Sb-SnO2 and TiO2, Sb-SnO2/TiO2 presents an enhanced separation efficiency of photoinduced charges, and the SPV enhancements were estimated to be 1.40, 1.43, and 1.99 for Sb-SnO2/TiO2 composed of Sb-SnO2 with the Sb doping concentration of 5%, 10%, and 15%, respectively. To understand the enhancement, the band structure of Sb-SnO2 and TiO2 in the heterojunction semiconductor was determined, and the conduction band offsets (CBO) between Sb-SnO2 and TiO2 were estimated to be 0.56, 0.64, and 0.98 eV for Sb-SnO2/TiO2 composed of Sb-SnO2 with the Sb doping concentration of 5%, 10%, and 15%, respectively. These results indicate that the separation efficiency enhancement is resulting from the energy level matching, and the increase of enhancement is due to the rising of CBO.

  18. Complex coacervation of hyaluronic acid and chitosan: effects of pH, ionic strength, charge density, chain length and the charge ratio.

    Science.gov (United States)

    Kayitmazer, A B; Koksal, A F; Kilic Iyilik, E

    2015-11-28

    Hyaluronic acid (HA) and chitosan (CH) can form nanoparticles, hydrogels, microspheres, sponges, and films, all with a wide range of biomedical applications. This variety of phases reflects the multiple pathways available to HA/CH complexes. Here, we use turbidimetry, dynamic light scattering, light microscopy and zeta potential measurements to show that the state of the dense phase depends on the molar ratio of HA carboxyl to CH amines, and is strongly dependent on their respective degrees of ionization, α and β. Due to the strong charge complementarity between HA and CH, electrostatic self-assembly takes place at very acidic pH, but is almost unobservable at ionic strength (I) ≥ 1.5 M NaCl. All systems display discontinuity in the I-dependence of the turbidity, corresponding to a transition from coacervates to flocculates. An increase in either polymer chain length or charge density enhances phase separation. Remarkably, non-stoichiometric coacervate suspensions form at zeta potentials far away from zero. This result is attributed to the entropic effects of chain semi-flexibility as well as to the charge mismatch between the two biopolymers. PMID:26406548

  19. Effect of Image Forces on Polyelectrolyte Adsorption at a Charged Surface

    OpenAIRE

    Messina, Rene

    2004-01-01

    The adsorption of flexible and highly charged polyelectrolytes onto oppositely charged planar surfaces is investigated by means of Monte Carlo simulations. The effect of image forces stemming from the dielectric discontinuity at the substrate interface is considered. The influence, at fixed polyelectrolyte volume fraction, of chain length and surface-charge density is also considered. A detailed structural study, including monomer and fluid charge distributions, is provided. It is demonstrate...

  20. Effect of combined density gradient centrifugation on X- and Y- sperm separation and chromatin integrity

    OpenAIRE

    Tahereh Esmaeilpour; Leila Elyasi; Soghra Bahmanpour; Alireza Ghannadi; Ahmad Monabbati; Farzaneh Dehghani; Marjaneh Kazerooni

    2012-01-01

    Background: It has been claimed that by using different washing methods, the sperms can be separated according to size, motility, density, chromosomal content and surface markings and charge. These methods also reduce sperm chromatin deficiencies and screen the sperms before applying in assisted reproduction techniques. Objective: This study compared simple density gradient methods and a combined method with albumin density gradient and PureSperm separation (alb/PureSperm) for sex preselectio...

  1. Influence of the separation of the centre-of-mass motion on the charge form factor of /sup 6/Li

    Energy Technology Data Exchange (ETDEWEB)

    Bouten, M. (Limburgs Universitair Centrum (Belgium)); Bouten, M.C. (Centre d' Etude de l' Energie Nucleaire, Mol (Belgium))

    1982-12-01

    An exact calculation is carried out for the charge form factor of /sup 6/Li using a wavefunction for the ground state which depends on the internal coordinates only and which contains a short-range correlation factor of the Jastrow type. A very good fit to the experimental data can be obtained by adjusting the parameters in the wavefunction. It is found that the optimum value of these parameters depends sensitively on the way the centre-of-mass coordinate is eliminated.

  2. Integrated analysis and consistency measurement of bremsstrahlung and charge exchange spectroscopy data for the determination of the ion effective charge

    International Nuclear Information System (INIS)

    In the context of Bayesian probability theory, we discuss a model for estimating the plasma ion effective charge Zeff, integrating data from both bremsstrahlung spectroscopy and individual impurity concentrations obtained via charge exchange spectroscopy (CXS). The validity of the model, taking into account statistical as well as systematic uncertainties, is shown via the deviance information criterion. The consistency of the continuum and CXS data regarding Zeff is improved, as measured by the symmetrized Kullback-Leibler divergence and the geodesic distance between the respective Zeff marginal posterior densities.

  3. Maternal Separation Anxiety and Child Care: Effects on Maternal Behavior.

    Science.gov (United States)

    Storm, Heidi A.; Ridley-Johnson, Robyn

    Maternal separation anxiety influences maternal behavior, attitudes about employment, and employment decisions made by mothers. This study examined the relationship between maternal separation anxiety and the number of hours a child was in substitute care. The sample consisted of 44 mothers and their children who ranged in age from 12 to 41 months…

  4. Separation and Its Effects on Female Prisoners and Their Children.

    Science.gov (United States)

    Savage, James E., Jr.

    Black female prisoners' perceptions of their separation from their children were examined. A 100-item questionnaire, using a Transactional Analytical approach, and eight cards from the Separation-Attachment Apperception Test (SAAT) were administered to female prisoners. Prisoners were residents of a Federal and a State penal institution.…

  5. Effects of charged sand on electromagnetic wave propagation and its scattering field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the Rayleigh's scattering theory, the effects of sandstorms on the propagation of electromagnetic wave with different visibilities are presented by solving the scattering field of charged sand particles. Because of the electric charges on the sand surface, the theoretical attenuation will be large enough to match the measured value under certain conditions. And the results show that the effect of sand with electric charges all over its surface on electromagnetic wave attenuation is the same as that of sand without charge, which proves that electric charges distribute on partial surface of the sand in fact.

  6. Self-deflection of a bright soliton in a separate bright-dark spatial soliton pair based on a higher-order space charge field

    Institute of Scientific and Technical Information of China (English)

    刘劲松; 郝中华

    2003-01-01

    The self-deflection of a bright solitary beam can be controlled by a dark solitary beam via a parametric coupling effect between the bright and dark solitary beams in a separate bright-dark spatial soliton pair supported by an unbiased series photorefractive crystal circuit. The spatial shift of the bright solitary beam centre as a function of the input intensity of the dark solitary beam (p) is investigated by taking into account the higher-order space charge field in the dynamics of the bright solitary beam via both numerical and perturbation methods under steady-state conditions.The deflection amount (△s0), defined as the value of the spatial shift at the output surface of the crystal, is a monotonic and nonlinear function ofp. When p is weak or strong enough, △s0 is, in fact, unchanged with ρ, whereas △s0 increases or decreases monotonically withp in a middle range of p. The corresponding variation range (δs) depends strongly on the value of the input intensity of the bright solitary beam (r). There are some peak and valley values in the curve of δs versus r under some conditions. When p increases, the bright solitary beam can scan toward both the direction same as and opposite to the crystal's c-axis. Whether the direction is the same as or opposite to the c-axis depends on the parameter values and configuration of the crystal circuit, as well as the value of r. Some potential applications are discussed.

  7. Quantum effects near a charged black hole singularity

    International Nuclear Information System (INIS)

    In this paper, the authors present an investigation of the problem of quantum fluctuations near a charged black hole singularity. The authors show that quantum fluctuations do not vanish near the singularity leading to the conclusion that charged black hole singularities are unlikely to occur in nature. This result may be obvious but we derive it here

  8. Evidence of Space-Charge Effects in Thermal Poling

    DEFF Research Database (Denmark)

    Wu, X.; Arentoft, Jesper; Wong, D.; Fleming, S.

    1999-01-01

    The in situ thermal poling processes in germanosilicate fibers for positive and negative poling voltages are significantly different. Thermal poling of silica fibers consists of two processes: the faster linear process of charge migration and the subsequent single exponential process of charge io...

  9. Charged spin-1 gluons, parton model and the Archimedes effect

    International Nuclear Information System (INIS)

    In a gauge theory of (SU(2) x U(1))sub(flavour) x SU(3)sub(colour) with unconfined integer-charged quarks and massive inter-charged gluons both quarks and gluons contribute to electro and neutrino-production. The gluon parton contribution to the lepto-production of colour is considered. (author)

  10. Separation of 3′-sialyllactose and lactose by nanofiltration: A trade-off between charge repulsion and pore swelling induced by high pH

    DEFF Research Database (Denmark)

    Nordvang, Rune Thorbjørn; Luo, Jianquan; Zeuner, Birgitte;

    2014-01-01

    a membrane was used for filtration of a mixture of lactose and SL. For the NP010 and DSS-ETNA membranes, the decline in water permeability was lower when the experiments were conducted at high pH, which is ascribed to the electrostatic repulsion of SL by the membrane. Further improvements in the ratio...... of retention of SL and lactose were achieved by changing the operational pressure. The best suited membrane was used in a final 10-rounds diafiltration, which enabled total separation of SL and lactose. The study also reveals that while charge differences between solutes can be utilized during nanofiltration...

  11. Further evaluation of the CSNI separate effect test activity

    International Nuclear Information System (INIS)

    An internationally agreed Separate Effect Test (SET) Validation Matrix for the thermalhydraulic system codes has been established by a subgroup of the Task Group on Thermalhydraulic System Behaviour as requested by OECD/NEA Committee on the Safety of Nuclear Installations (CSNI) Principal Working Group No. 2 on Coolant System Behavior. The construction of such matrix constituted an attempt to collect together in a systematic way the best sets of openly available test data to select for code validation. As a final result, 67 phenomena have been identified and characterized, roughly 200 facilities have been considered and more than 1000 experiments have been selected as useful for the validation of the codes. The objective of the present paper is to provide additional evaluation of the obtained data base and to supply an a-posteriori judgement in relation to (a) the data base adequacy, (b) the phenomenon, and (c) the need for additional experiments. This has been provided independently by each of the authors. The main conclusions are that large amount of data are available for certain popular phenomena e.g. heat transfer, but data are severely lacking in more esoteric areas e.g. for characterizing phenomena such as parallel channel instability and boron mixing and transport

  12. Further evaluation of the CSNI separate effect test activity

    Energy Technology Data Exchange (ETDEWEB)

    D`Auria, F.; Aksan, S.N.; Glaeser, H. [and others

    1995-09-01

    An internationally agreed Separate Effect Test (SET) Validation Matrix for the thermalhydraulic system codes has been established by a subgroup of the Task Group on Thermalhydraulic System Behaviour as requested by OECD/NEA Committee on the Safety of Nuclear Installations (CSNI) Principal Working Group No. 2 on Coolant System Behavior. The construction of such matrix constituted an attempt to collect together in a systematic way the best sets of openly available test data to select for code validation. As a final result, 67 phenomena have been identified and characterized, roughly 200 facilities have been considered and more than 1000 experiments have been selected as useful for the validation of the codes. The objective of the present paper is to provide additional evaluation of the obtained data base and to supply an a-posteriori judgement in relation to (a) the data base adequacy, (b) the phenomenon, and (c) the need for additional experiments. This has been provided independently by each of the authors. The main conclusions are that large amount of data are available for certain popular phenomena e.g. heat transfer, but data are severely lacking in more esoteric areas e.g. for characterizing phenomena such as parallel channel instability and boron mixing and transport.

  13. Parton Charge Symmetry Violation: Electromagnetic Effects and W Production Asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Londergan; D.P. Murdock; A.W. Thomas

    2006-04-14

    Recent phenomenological work has examined two different ways of including charge symmetry violation in parton distribution functions. First, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the magnitude of parton charge symmetry breaking. In a second approach, two groups have included the coupling of partons to photons in the QCD evolution equations. One possible experiment that could search for isospin violation in parton distributions is a measurement of the asymmetry in W production at a collider. In this work we include both of the postulated sources of parton charge symmetry violation. We show that, given charge symmetry violation of a magnitude consistent with existing high energy data, the expected W production asymmetries would be quite small, generally less than one percent.

  14. Two rods confined by positive plates: effective forces and charge distribution profiles

    International Nuclear Information System (INIS)

    The effect of confinement on the interaction force between two negatively charged rods is studied through Monte Carlo simulations. Confinement is produced by two parallel, charged or uncharged plates. The system is immersed in a 0.1 M 1-1 restricted primitive model electrolyte. The effect on the rod-rod effective force by the plate charge distribution is analysed. A strong modification of the rod-rod effective force due to confinement is found, as compared to the bulk case. In particular, rod-rod attraction was found for plates having a charge equal to that of fully charged bilipid bilayers. In spite of the simplicity of the model, these results agree with some DNA-phospholipid experimental observations. On the other hand, for a model having the plate charges fixed on a grid, very long range, oscillatory rod-rod effective forces were obtained

  15. Modeling of the charge-state separation at ITEP experimental facility for material science based on a Bernas ion source

    International Nuclear Information System (INIS)

    The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 1010 ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turn in magnetic field are presented for different initial conditions

  16. Modeling of the charge-state separation at ITEP experimental facility for material science based on a Bernas ion source

    Energy Technology Data Exchange (ETDEWEB)

    Barminova, H. Y., E-mail: barminova@bk.ru; Saratovskyh, M. S. [National Research Nuclear University MEPhI, Kashirskoye sh. 31, Moscow 115409 (Russian Federation)

    2016-02-15

    The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 10{sup 10} ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turn in magnetic field are presented for different initial conditions.

  17. Computer modeling of beam space charge effects in cyclotron injector into JINR phasotron

    CERN Document Server

    Kalinichenko, V V

    2002-01-01

    Charge particle beam dynamics including space charge by direct Coulomb particle-to-particle method was simulated. For this purpose in MATLAB a new code KASKADS was developed. Numerical simulations of the particle motion confirm that it is possible to achieve separated orbits in a 5 MeV, 30 mA separated sector cyclotron (accelerating voltage varies depending on radius from 150 kV in the centre to 240 kV in the extraction region). The aperture of the accelerator must be greater than 3 cm.

  18. Crosslinking of poly(vinylene fluoride) separators by gamma-irradiation for electrochemical high power charge applications

    International Nuclear Information System (INIS)

    Highlights: • High dose of Gamma rays (Co60) causes chain scissionof PVdF based separators. • Irradiated membranes with different cross-linkig coagents [(Triallylisocyanurate (TAIC) and a macromonomer of ethylene oxide- propylene oxide (MEP)] showed enhanced mechanical properties compared to a pristine membrane. • The utilization of coagents is limited to 2–5% per weight in order not to produce brittle membranes. • Porous structure of PVdF was not destroyed by irradiation. • This reinforcement technique allows producing thinner membranes with good mechanical properties and with low ohmic contribution to the resistivity. -- Abstract: Macroporous poly(vinylene fluoride) (PVdF) separators were prepared by phase inversion method and introduced to a gamma (γ) radiation with and without cross-linking agents. Triallyl isocyanurate (TAIC) and a macromonomer of ethylene oxide- propylene oxide (MEP) were used as a cross-linking agent. The resulting membranes were characterized in terms of thermal and mechanical properties. Ionic conductivities were determined in a molar solution of tetraethylammonium tetrafluoroborate (TEABF4) in acetonitrile (AN) and propylene carbonate (PC). Excellent mechanical properties (250 MPa at 25 °C) and conductivities (14 mS cm−1) were obtained for the cross-linked separator prepared with TAIC

  19. Modulating the generation of long-lived charge separated states exclusively from the triplet excited states in palladium porphyrin-fullerene conjugates

    Science.gov (United States)

    O. Obondi, Christopher; Lim, Gary N.; Churchill, Brittani; Poddutoori, Prashanth K.; van der Est, Art; D'Souza, Francis

    2016-04-01

    This study demonstrates molecular engineering of a series of donor-acceptor systems to allow control of the lifetime and initial spin multiplicity of the charge-separated state. By tuning the rate of intersystem crossing (ISC) and the donor-acceptor distance, electron transfer can be made to occur exclusively from the triplet excited state of the electron donor resulting in long-lived charge separation. To achieve this, three new palladium porphyrin-fullerene donor-acceptor systems were synthesized. The heavy Pd atom enhances the rate of ISC in the porphyrin and the rates of electron and energy transfer are modulated by varying the redox potential of the porphyrin and the porphyrin-fullerene distance. In the case of the meso-tris(tolyl)porphyrinato palladium(ii)-fulleropyrrolidine, the donor-acceptor distance is relatively long (13.1 Å) and the driving force for electron transfer is low. As a result, excitation of the porphyrin leads to rapid ISC followed by triplet-triplet energy transfer to fullerene. When the fullerene is bound directly to the porphyrin shortening the donor-acceptor distance to 2.6 Å electron transfer from the singlet excited palladium porphyrin leading to the generation of a short-lived charge separated state is the main process. Finally, when the palladium porphyrin is substituted with three electron rich triphenylamine entities, the lower oxidation potential of the porphyrin and appropriate donor-acceptor distance (~13 Å), lead to electron transfer exclusively from the triplet excited state of palladium porphyrin with high quantum yield. The results show that when electron transfer occurs from the triplet state, its increased lifetime allows the distance between the donor and acceptor to be increased which results in a longer lifetime for the charge separated state.This study demonstrates molecular engineering of a series of donor-acceptor systems to allow control of the lifetime and initial spin multiplicity of the charge-separated state

  20. Study of charge separation and interface formation in a single nanorod CdS–CuxS heterojunction solar cell using Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    In the present investigation, Kelvin probe force microscopy (KPFM) is used to study the charge separation, shift in Fermi level position and interfacial depletion region formation in a single cadmium sulfide (CdS)–copper sulfide (CuxS) nanorod heterojunction fabricated using hydrothermal synthesis and a topotaxial conversion reaction. A detailed analysis of KPFM images in the dark shows work function (or Fermi energy) values of CdS and CuxS regions consistent with the energy band diagram of the CdS–CuxS junction. Under illumination, Fermi energy levels of both the CuxS and CdS shift away from the vacuum level by 0.2 and 0.4 eV, respectively, which is very different from the behaviour expected in the case of a bulk p–n junction. The existence of interfacial regions topographically placed between ITO–CdS and CdS–CuxS with intermediate work function values as well as the observed narrowing of the work function spread under illumination are important for understanding the fundamental process of charge separation and junction formation in semiconductor nanorod solar cells. (paper)

  1. Saturation effects in charge-changing collisions with multiply-charged C and O ions

    International Nuclear Information System (INIS)

    The electron loss of multiply-charged dressed ions by heavy neutral atoms can have a significant contribution from collisions with small impact parameters. This can render one of the two competing mechanisms which govern the electron loss, i.e. the screening, highly non-perturbative. The other mechanism (antiscreening) is due to electron-electron interactions and its contribution can be treated perturbatively. The dependence of the total electron loss cross sections on the target atomic number, Z2, presents a strong saturation as the value of Z2 increases. Calculations based on the plane wave Born approximation present such a behavior for the antiscreening but not for the screening, since this saturation is related to a non-perturbative regime. In this work we compare data for the total electron loss cross sections of C3+ and O5+ ions by H, He, Ne, Ar, Kr and Xe targets, with energies ranging from 1.0 to 3.5 MeV, with calculations for the screening contribution based on the free-collision model. This comparison shows that, for highly-charged ions, the electron capture and direct target ionization channels play a major role in the description of experimental electron loss data. (orig.)

  2. Light-induced charging effects in microscopic ion traps

    International Nuclear Information System (INIS)

    Full text: Microfabricated ion traps are discussed as one of the most promising candidates for a quantum mechanical computer. By bringing the electrodes close to the ions a rich selection of trapping potentials can be created and many traps can, in principle, be operated in parallel. However, the proximity of the electrodes and other surfaces poses strong constraints on the materials used. In particular, near-by glass surfaces that may be used for high-finesse cavities around the ions or for light collection represent a challenge, since the dielectric surfaces may charge up and perturb the trapping potential. By bringing a glass substrate close to a surface ion trap, the charging can be studied in a controlled manner. Two distinct mechanisms of charging have been observed, both being light-induced with different wavelength dependence. The results allow an estimate of the rate of charge production and may be prove useful for the design of new integrated microscopic ion traps. (author)

  3. Coherent phenomena of charge separation in reaction centers of LL131H and LL131H/LM160H/FM197H mutants of Rhodobacter sphaeroides.

    Science.gov (United States)

    Yakovlev, A G; Vasilieva, L G; Shkuropatov, A Y; Shuvalov, V A

    2011-10-01

    Primary stage of charge separation and transfer of charges was studied in reaction centers (RCs) of point mutants LL131H and LL131H/LM160H/FM197H of the purple bacterium Rhodobacter sphaeroides by differential absorption spectroscopy with temporal resolution of 18 fsec at 90 K. Difference absorption spectra measured at 0-4 psec delays after excitation of dimer P at 870 nm with 30 fsec step were obtained in the spectral range of 935-1060 nm. It was found that a decay of P* due to charge separation is considerably slower in the mutant RCs in comparison with native RCs of Rba. sphaeroides. Coherent oscillations were found in the kinetics of stimulated emission of the P* state at 940 nm. Fourier analysis of the oscillations revealed a set of characteristic bands in the frequency range of 20-500 cm(-1). The most intense band has the frequency of ~130 cm(-1) in RCs of mutant LL131H and in native RCs and the frequency of ~100 cm(-1) in RCs of the triple mutant. It was found that an absorption band of bacteriochlorophyll anion B(A)(-) which is registered in the difference absorption spectra of native RCs at 1020 nm is absent in the analogous spectra of the mutants. The results are analyzed in terms of the participation of the B(A) molecule in the primary electron transfer in the presence of a nuclear wave packet moving along the inharmonic surface of P* potential energy. PMID:22098236

  4. Gold plasmonic effects on charge transport through single molecule junctions

    Science.gov (United States)

    Adak, Olgun; Venkataraman, Latha

    2014-03-01

    We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.

  5. Downstream Effects on Orbiter Leeside Flow Separation for Hypersonic Flows

    Science.gov (United States)

    Buck, Gregory M.; Pulsonetti, Maria V.; Weilmuenster, K. James

    2005-01-01

    Discrepancies between experiment and computation for shuttle leeside flow separation, which came to light in the Columbia accident investigation, are resolved. Tests were run in the Langley Research Center 20-Inch Hypersonic CF4 Tunnel with a baseline orbiter model and two extended trailing edge models. The extended trailing edges altered the wing leeside separation lines, moving the lines toward the fuselage, proving that wing trailing edge modeling does affect the orbiter leeside flow. Computations were then made with a wake grid. These calculations more closely matched baseline experiments. Thus, the present findings demonstrate that it is imperative to include the wake flow domain in CFD calculations in order to accurately predict leeside flow separation for hypersonic vehicles at high angles of attack.

  6. Laser beam propagation effects in atomic laser isotope separation

    International Nuclear Information System (INIS)

    The propagation of two different-color laser pulses in the resonant three-level medium is studied. The three-level Bloch-Maxwell equations are solved numerically to analyze the change of the pulse shapes and the time-varying atomic populations. The pulse delay and the pulse shape break-up are observed especially for the first excitation laser pulse. Complete separation of the two laser pulses occur from a certain critical distance. It is shown that the rapid decrease of the ionization efficiency is caused by the separation of the two laser pulses. (author)

  7. DFT Study on the Effect of Different Peripheral Chains on Charge Transport Properties of Triphenylene Derivatives

    Institute of Scientific and Technical Information of China (English)

    CHEN,Jun-Rong; CAI,Jing; XU,Bu-Yi; LI,Quan; ZHAO,Ke-Qing

    2008-01-01

    Based on the semi-classical model of the charge transport, theoretical studies on the effect of different periph-eral chains including alkynyl on charge transport properties of triphenylene have been carried out using density functional theory (DFT) at the level of B3LYP/6-31G**. The results indicate that all the title compounds are ad-vantageous to the charge transport. The introduction of amide RCONH to the discotic ring of triphenylene can raise the positive charge transport rate largely, and introduction of ester in peripheral chains is helpful to the positive charge transport and negative charge transport. The positive charge transport properties of monosubstituted triphenylene are better than those of disubstituted and trisubstituted triphenylenes obviously.

  8. Effective medium theory of the space-charge region electrostatics of arrays of nanoscale junctions

    Science.gov (United States)

    Gurugubelli, Vijaya Kumar; Karmalkar, Shreepad

    2016-01-01

    We develop an Effective Medium Theory for the electrostatics of the Space-Charge Region (SCR) of Schottky and p-n junctions in arrays of nanofilms (NFs), nanowires (NWs), and nanotubes (NTs) in a dielectric ambient. The theory captures the effects of electric fields in both the semiconductor, i.e., NF/NW/NT, and the dielectric media of the array. It shows that the depletion width and the screening length characterizing the SCR tail in the array correspond to those in a bulk junction with an effective semiconductor medium, whose permittivity and doping are their weighted averages over the cross-sectional areas of the semiconductor and dielectric; the shapes of the cross-sections are immaterial. Further, the reverse bias 1 /C2 -V behavior of junctions in NF/NW/NT arrays is linear, as in bulk junctions, and is useful to extract from measurements the built-in potential, effective doping including the semiconductor-dielectric interface charge, and NF/NW/NT length. The theory is validated with numerical simulations, is useful for the experimentalist, and yields simple formulas for nano-device design which predict the following. In the limiting case of a single sheet-like NF, the junction depletion width variation with potential drop is linear rather than square-root (as in a bulk junction). In arrays of symmetric silicon p-n junctions in oxide dielectric where NF/NW thickness and separation are 5% and 100% of the bulk depletion width, respectively, the junction depletion width and the screening length are scaled up from their bulk values by the same factor of ˜2 for NF and ˜10 for NW array.

  9. Influence of lattice strain on charge/orbital ordering and phase separation in Pr0.7(Ca0.6Sr0.4)0.3MnO3 thin films

    Science.gov (United States)

    Zhao, Y. Y.; Wang, J.; Hu, F. X.; Kuang, H.; Wu, R. R.; Zheng, X. Q.; Sun, J. R.; Shen, B. G.

    2014-05-01

    The static and dynamic lattice strain effects on the competition between ferromagnetic and charge/orbital ordering (COO) phase, phase separation (PS) and transport properties were studied in Pr0.7(Ca0.6Sr0.4)0.3MnO3 (PCSMO) films. It is found that the tensile strained films show pronounced percolative transport behaviors with increased hysteresis, indicating that the stability of the long-range COO is enhanced by the tensile strain. On the other hand, a nearly reversible insulator-metal transition was observed in the compressive strained films, suggesting a strong suppression of the long-range COO. The experiment of dynamic strain effect induced by the bias electric field further verifies the conclusion. Moreover, coactions of the ferroelectric polarization of the substrate and the dynamic strain effect on the PS were found in present PCSMO/PMN-PT film.

  10. Effect of electrical charges and fields on injury and viability of airborne bacteria.

    Science.gov (United States)

    Mainelis, Gediminas; Górny, Rafał L; Reponen, Tiina; Trunov, Mikhaylo; Grinshpun, Sergey A; Baron, Paul; Yadav, Jagjit; Willeke, Klaus

    2002-07-20

    In this study, the effects of the electric charges and fields on the viability of airborne microorganisms were investigated. The electric charges of different magnitude and polarity were imparted on airborne microbial cells by a means of induction charging. The airborne microorganisms carrying different electric charge levels were then extracted by an electric mobility analyzer and collected using a microbial sampler. It was found that the viability of Pseudomonas fluorescens bacteria, used as a model for sensitive bacteria, carrying a net charge from 4100 negative to 30 positive elementary charges ranged between 40% and 60%; the viability of the cells carrying >2700 positive charges was below 1.5%. In contrast, the viability of the stress-resistant spores of Bacillus subtilis var. niger (used as simulant of anthrax-causing Bacillus anthracis spores when testing bioaerosol sensors in various studies), was not affected by the amount of electric charges on the spores. Because bacterial cells depend on their membrane potential for basic metabolic activities, drastic changes occurring in the membrane potential during aerosolization and the local electric fields induced by the imposed charges appeared to affect the sensitive cells' viability. These findings facilitate applications of electric charging for environmental control purposes involving sterilization of bacterial cells by imposing high electric charges on them. The findings from this study can also be used in the development of new bioaerosol sampling methods based on electrostatic principles. PMID:12115440

  11. Atmosphere turbulence effect on the hot particle charge

    International Nuclear Information System (INIS)

    The charging of hot beta-active aerosol articles of the micron size range in the turbulent current has been studied experimentally . For this purpose hot particles, obtained by the neutron activation of gold placed on the surface of glass microspheres by the cathode spraying method, were introduced into the turbulent current with the Reynolds number of 104 - 105. Results of the determination of particle charges within the current velocity range from 0.5 to 3 m/s confirm the reliability of the previously obtained model of the charging of hot particles in the turbulent current of the near - ground atmospere layer which is described by the function directly proportional to the radius of particles and the half-cube of the wind velocity, and inversely proportional to the square root of the height. The scheme is suggested and specific features are described of experimental installations used in the process of studies

  12. Photoinduced charge separation in organic-inorganic hybrid system: C60-containing electropolymer / CdSe-quantum dots

    International Nuclear Information System (INIS)

    Graphical Abstract: Display Omitted -- Highlights: •Modified ethylenedioxythiophene allows the formation of an electropolymer holding C60. •Polymer decoration with CdSe QDs produces a photoactive organic-inorganic interface. •Photoinduced electron transfers were analyzed by surface photovoltage. •The interface is a potential structure for the development of optoelectronic devices. -- Abstract: A photoactive interface is formed between an electrochemical generated organic polymer film and CdSe quantum dots. The specifically designed and synthesized 3,4 ethylenedioxythiophene electroactive monomer, holding C60 buckminsterfullerene, allows the formation of thin films containing both, electron acceptor and hole transport moieties. The generation of photoinduced heterogeneous charge transfer in CdSe quantum dots-electropolymer system was characterized by time resolved and spectral dependent surface photovoltage. In films containing C60 moieties whose surface was modified with 5 nm CdSe quantum dots, the illumination generated photovoltage values around twenty times larger than those obtained without nanoparticles decoration. The results show that this organic-inorganic hybrid interface is a potential structure for the development of optoelectronic devices

  13. Dynamical image-charge effect in molecular tunnel junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun; Thygesen, Kristian Sommer

    2014-01-01

    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how the...... finite IC formation time affects charge transport through a molecule suspended between two electrodes. For a single-level model, an analytical treatment shows that the conductance is suppressed by a factor Z(2), where Z is the quasiparticle renormalization factor, compared to the static IC approximation...

  14. Experimental Evidence for Space-Charge Effects between Ions of the Same Mass-to-Charge in Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry

    OpenAIRE

    Wong, Richard L.; Amster, I. Jonathan

    2007-01-01

    It is often stated that ions of the same mass-to-charge do not induce space-charge frequency shifts among themselves in an ion cyclotron resonance mass spectrometry measurement. Here, we demonstrate space-charge induced frequency shifts for ions of a single mass-to-charge. The monoisotopic atomic ion, Cs+, was used for this study. The measured frequency is observed to decrease linearly with an increase in the number of ions, as has been reported previously for space-charge effects between ion...

  15. Effect of inner structure of centrifugal separator on particle classification performance

    OpenAIRE

    Yamamoto, Tetsuya; Watanabe, Natsuko; Fukui, Kunihiro; Yoshida, Hideto

    2009-01-01

    This study investigated the effects of the inner structure of a centrifugal separator on particle classification performance. The typical inner structure of centrifugal separators is as follows: a blade, which consists of two orthogonal plates. is inserted into the centrifugal separator to create rigid fluid and particle rotations. The results of the present study demonstrate that centrifugal separator performance was significantly improved by attachment of a cylinder to the center of a conve...

  16. A molecular propeller effect for chiral separation and analysis

    OpenAIRE

    Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas

    2015-01-01

    Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to c...

  17. Accelerating Recovery from Poverty: Prevention Effects for Recently Separated Mothers

    OpenAIRE

    Forgatch, Marion S.; DeGarmo, David S.

    2007-01-01

    This study evaluated benefits of a preventive intervention to the living standards of recently separated mothers. In the Oregon Divorce Study’s randomized experimental design, data were collected 5 times over 30 months and evaluated with Hierarchical Linear Growth Models. Relative to their no-intervention control counterparts, experimental mothers had greater improvements in gross annual income, discretionary annual income, poverty threshold, income-to-needs ratios, and financial stress. Comp...

  18. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging

    OpenAIRE

    Shocron, Amit N.; Suss, Matthew E.

    2016-01-01

    Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Thr...

  19. Effect of nuclear motion on the critical nuclear charge for two-electron atoms

    OpenAIRE

    King, Andrew W; Rhodes, Luke C; Readman, Charles A; Cox, Hazel

    2015-01-01

    A variational method for calculating the critical nuclear charge, Zc, required for the binding of a nucleus to two electrons is reported. The method is very effective and performs well compared to the traditional variational principle for calculating energy. The critical nuclear charge, which corresponds to the minimum charge required for the atomic system to have at least one bound state, has been calculated for helium-like systems both with infinite and finite nuclear masses. The value of $...

  20. Separating the chance effect from other diversity effects in the functioning of plant communities

    NARCIS (Netherlands)

    Lepš, J.; Brown, V.K.; Len, T.A.D.; Gormsen, D.; Hedlund, K.; Kailova, J.; Korthals, G.W.; Mortimer, S.R.; Rodriguez-Barrueco, C.; Roy, J.; Santa Regina, I.; Van Dijk, C.; Van der Putten, W.H.

    2001-01-01

    The effect of plant species diversity on productivity and competitive ability was studied in an experiment carried out simultaneously in five European countries: Czech Republic (CZ), the Netherlands (NL), Sweden (SE), Spain (SP), and United Kingdom (UK). The aim was to separate the 'chance' or 'samp

  1. Gate effect in charge-density wave nanowires

    NARCIS (Netherlands)

    Slot, E.; Holst, M.A.; Van der Zant, H.S.J.

    2005-01-01

    We have investigated transport characteristics of charge-density wave nanowires with a few hundred parallel chains. At temperatures below50K, these samples show power-law behavior in temperature and voltage, characteristic for one-dimensional transport. In this regime, gate dependent transport has b

  2. Space-charge effect in vacuum-evaporated phthalocyanine films

    Czech Academy of Sciences Publication Activity Database

    Jivkov, I.; Nedkov, T.; Nešpůrek, Stanislav; Danev, G.; Schauer, F.

    2000-01-01

    Roč. 58, 2-3 (2000), s. 340-343. ISSN 0042-207X R&D Projects: GA MŠk OC 518.10; GA AV ČR KSK2050602 Institutional research plan: CEZ:AV0Z4050913 Keywords : space charge * phthalocyanine Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.520, year: 2000

  3. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO2@TiO2 colloidal crystals

    International Nuclear Information System (INIS)

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO2@TiO2 core-shell particles is prepared on a TiO2-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO2 interface

  4. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO2@TiO2 colloidal crystals

    Science.gov (United States)

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO2@TiO2 core-shell particles is prepared on a TiO2-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO2 interface.

  5. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO2@TiO2 colloidal crystals

    Directory of Open Access Journals (Sweden)

    Ling Wu

    2015-10-01

    Full Text Available Photoelectrodes based on plasmonic Au semishell (or halfshell arrays are developed. A colloidal crystal consisting of SiO2@TiO2 core-shell particles is prepared on a TiO2-coated transparent electrode. A Au semishell (or halfshell array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO2 interface.

  6. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO{sub 2}@TiO{sub 2} colloidal crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu, E-mail: tatsuma@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505 (Japan)

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO{sub 2}@TiO{sub 2} core-shell particles is prepared on a TiO{sub 2}-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO{sub 2} interface.

  7. Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility Spectrometry

    International Nuclear Information System (INIS)

    Since early 1900's, when vacuum techniques and ion detectors first enabled investigations of gas-phase ions, two approaches to their separation and characterization have emerged - mass spectrometry (MS) and ion mobility spectrometry (IMS). Though both exploit that distinct charged species move in electric fields differently, MS is performed in vacuum and is based only on the ion mass/charge (m/q) ratio while IMS involves sufficiently dense buffer gases and relies on ion transport properties. The first major discovery enabled by MS was the existence of isotopes by Thomson and Aston, and isotopic analyses have since been integral to MS. In particular, the preparative separation of U isotopes using Lawrence's Calutron was the first industrial application of MS, and isotopic labeling is key to MS quantification methods. With IMS, the issue of isotopes was largely ignored as the resolving power (R) was generally too low for their separation. Here, we demonstrate that recently developed high-resolution differential IMS can separate isotopic molecular ions, including nominal isobars with different isotopic content and isotopomers. This capability may enable a new method for isotope separation in a small-scale format at ambient pressure and aid localization of labeled sites in various molecules. Perhaps most importantly, the isotopic shifts depend on the labeled atom position and thus may contain the kind of detailed structural information that is available in solution or solid state using tools such as NMR but has not generally been obtainable for gas-phase ions.

  8. Charge-Hall effect driven by spin force: reciprocal of the spin-Hall effect

    OpenAIRE

    zhang, ping; Niu, Qian

    2004-01-01

    A new kind of charge-Hall effect is shown. Unlike in the usual Hall effect, the driving force in the longitudinal direction is a spin force, which may originate from the gradient of a Zeeman field or a spin-dependent chemical potential. The transverse force is provided by a Berry curvature in a mixed position-momentum space. We can establish an Onsager relation between this effect and the spin-Hall effect provided the spin current in the latter is modified by a torque dipole contribution. Thi...

  9. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways

    Directory of Open Access Journals (Sweden)

    Jinxiang Xi

    2014-01-01

    Full Text Available Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was to quantitatively evaluate the deposition of charged aerosols in an MRI-based nasal–laryngeal airway model. Particle sizes of 5 nm–30 µm and charge levels ranging from neutralized to ten times the saturation limit were considered. A well-validated low Reynolds number (LRN k–ω turbulence model and a discrete Lagrangian tracking approach that accounted for electrostatic image force were employed to simulate the nasal airflow and aerosol dynamics. For ultrafine aerosols, electrostatic charge was observed to exert a discernible but insignificant effect. In contrast, remarkably enhanced depositions were observed for micrometer particles with charge, which could be one order of magnitude larger than no-charge depositions. The deposition hot spots shifted towards the anterior part of the upper airway as the charge level increased. Results of this study have important implications for evaluating nasal drug delivery devices and for assessing doses received from pollutants, which often carry a certain level of electric charges.

  10. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  11. Effect of glycerol on the separation of nucleosomes and bent DNA in low ionic strength polyacrylamide gel electrophoresis.

    OpenAIRE

    Pennings, S; Meersseman, G; Bradbury, E M

    1992-01-01

    We report that glycerol changes the separation characteristics of polyacrylamide nucleoprotein gels in which it is included as a stabilizing agent. Polyacrylamide gel electrophoresis fractionates DNA and nucleosomes according to net negative charge, mass and conformation. With glycerol included, fractionation seems to be largely based on particle mass and charge. The conformation factor in separation is progressively lost with increasing glycerol concentrations. Nucleosome positions on the sa...

  12. Effect of paraelectrode processes on contraction of space charge in periodic-pulse lasers

    Science.gov (United States)

    Arytyunyan, R. V.; Baranov, V. Yu.; Borisov, V. M.; Vinokhodov, A. Yu.; Kiryukhin, Yu. B.

    1986-05-01

    A characteristic feature of periodic-pulse electric-discharge CO2-lasers and excimer lasers is contraction of the space charge as the pulse repetition rate increases. The emission energy per pulse decreases as a consequence, with the average laser power first ceasing to increase linearly beyond a certain corner repetition rate and then decreasing beyond a certain critical repetition rate. A study of this phenomenon was made, for the purpose of separating the effect of paracathode processes from the effect of gas dynamics and then evaluating the effect of the former alone. Paraelectrode perturbations were simulated by focusing the radiation from the an XeCl-laser on the cathode surface in an atmosphere of nonabsorbing gases. Laser pulses of up to approximately 0.5 J energy and of approximately 50 ns duration were focused within a spot of 1 mm(2) area on a cathode inside a discharge chamber, with the power density of incident radiation regulated by means of an attenuator. A space charge within a volume of 2.5x4.5x9 cm(3) was generated between this specially shaped cathode and a mesh anode with an approximately 50% optical transmission coefficient. The space charge in helium and in neon was photographed, and the time lag of a discharge pulse behind a contracting laser pulse was measured as a function of the laser pulse energy for these two gases, as well as for a He+C12 gas mixture. The general trend was found to be the same in each case, the time lag increasing with increasing energy first at a slower rate up to a critical energy level and then faster. It has been established that plasma does not build up on the cathode before the laser pulse energy reaches 30 mJ (for a 3 mm(2) surface area), while plasma glow begins as the laser pulse energy reaches 150 mJ. A contracted channel begins to form within the laser-cathode interaction space, with an attendant fast increase of the time lag owing to evaporation of the cathode metal.

  13. Effect of dynamically charged helium on tensile properties of V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-04-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degree}C in the Dynamic Helium Charging Experiment (DHCE).

  14. Neutrino-Electron Scattering: Charge Radius and Effective Couplings

    International Nuclear Information System (INIS)

    In this work the neutral-current scattering cross-section for neutrinos on electrons is calculated assuming that a massive Dirac neutrino is characterized by a phenomenological parameters, a charge radius (r2) and the right-handed currents are present in the framework of a Left-Right symmetric model (LR). Using the CHARM II result for the charge radius of the muon-neutrino |(r2)| < 6.0 × 10−33 cm2, we place a bound on −7.9 × 10−33 cm2 ≤ (r2)LR ≤ 7.9 × 10−33 cm2. We discuss the relationship between the electron neutral couplings gveV and gveA and the LR model parameters

  15. Pressure effect on charge carrier mobility in SmS

    International Nuclear Information System (INIS)

    Dependences of the charge carrier mobility on the pressure of hydrostatic compression for samarium monosulfide minocrystals and some solid solutions on its base in the pressure range from the atmospheric to critical pressures of the semiconductor-metal phase transition at T=300K are investigated. The behaviour of the factor in SmS under pressure is calculated from the experimental data on the pressure dependence of the Hall constant and thermo-e.m.f

  16. Space-charge effects in vacuum-deposited polyimide layer

    Czech Academy of Sciences Publication Activity Database

    Zhivkov, I.; Strijkova, V.; Spassova, E.; Danev, G.; Nešpůrek, Stanislav; Iwamoto, M.

    2005-01-01

    Roč. 7, č. 1 (2005), s. 245-248. ISSN 1454-4164 R&D Projects: GA MŠk ME 558 Grant ostatní: Ministry of Education and Science(BG) X-1322 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyimide * electrical conductivity * space-charge spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.138, year: 2005

  17. Space-charge effects in Penning ion traps

    Czech Academy of Sciences Publication Activity Database

    Porobic, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Flechard, X.; Lienard, E.; Ban, G.; Zákoucký, Dalibor; Soti, G.; Van Gorp, S.; Weinheimer, C.; Wursten, E.; Severijns, N.

    2015-01-01

    Roč. 785, JUN (2015), s. 153-162. ISSN 0168-9002 R&D Projects: GA MŠk LA08015; GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Penning trap * space-charge * magnetron motion * ion trapping * buffer gas cooling * ion cyclotron resonance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.216, year: 2014

  18. Effective models for charge transport in DNA nanowires

    OpenAIRE

    Gutierrez, Rafael; Cuniberti, Gianaurelio

    2006-01-01

    The rapid progress in the field of molecular electronics has led to an increasing interest on DNA oligomers as possible components of electronic circuits at the nanoscale. For this, however, an understanding of charge transfer and transport mechanisms in this molecule is required. Experiments show that a large number of factors may influence the electronic properties of DNA. Though full first principle approaches are the ideal tool for a theoretical characterization of the structural and elec...

  19. Separation of curium and americium microquantities by chromatographic method with introduction of separating ions. 2. Effect of cadmium ion quantity and method of it introduction in the system on efficiency of curium and americium separation

    International Nuclear Information System (INIS)

    Effect of fractionating cadmium ion and a method of it introduction in the system on efficiency of separation of curium and americium with the use of NTA solutions as an eluent is investigated. It is established that in contrast to mutual sorption of curium, americium and cadmium their selective sorption contributes more complete separation of curium and americium. It is shown that growth of quantity of introduced cadmium increased efficiency of separation. Elution rate not products effect on separation process

  20. Enhancing the Charge Separation in Nanocrystalline Cu2ZnSnS4 Photocathodes for Photoelectrochemical Application: The Role of Surface Modifications.

    Science.gov (United States)

    Guijarro, Néstor; Prévot, Mathieu S; Sivula, Kevin

    2014-11-01

    Cu2ZnSnS4 (CZTS) colloidal inks were employed to prepare thin-film photocathodes that served as a model system to interrogate the effect of different surface treatments, viz. CdS, CdSe, and ZnSe buffer layers along with methylviologen (MV) adsorption, on the photoelectrochemical (PEC) performance using aqueous Eu(3+) redox electrolyte. PEC experiments revealed that ZnSe and CdSe overlayers outperform traditional CdS, and the additional surface modification with MV was found to further boost the charge extraction. By analyzing the photocurrent onset behavior and measuring the open circuit photopotentials, insights are gained into the nature of the observed improvements. While a more favorable conduction band offset rationalizes the improvement offered by CdSe, charge transfer through midgap states is invoked for ZnSe. Improvement offered by MV treatment is clearly caused by both the shifting of the flat-band potential and a charge-transfer mediation effect. Overall, this work suggests promising alternative surface treatments for CZTS photocathodes for PEC energy conversion. PMID:26278767

  1. Schwinger Effect in (A)dS and Charged Black Hole

    CERN Document Server

    Kim, Sang Pyo

    2015-01-01

    In an (Anti-) de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.

  2. Schwinger effect in (A)dS and charged black hole

    Science.gov (United States)

    Kim, Sang Pyo

    In an Anti-de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.

  3. Non-linear effects on radiation propagation around a charged compact object

    CERN Document Server

    Cuzinatto, R R; de Vasconcelos, K C; Medeiros, L G; Pompeia, P J

    2015-01-01

    The propagation of non-linear electromagnetic waves is carefully analyzed on a curved spacetime created by static spherically symmetric mass and charge distribution. We compute how the non-linear electrodynamics affects the geodesic deviation and the redshift of photons propagating near this massive charged object and, in the linear approximation, the effects of electromagnetic self-interaction can be disparted from the usual Reissner-Nordstr\\"om terms. In the particular case of Euler-Heisenberg effective Lagrangian, we find that these self-interaction effects might be important near charged white dwarfs.

  4. Spin and Charge Josephson effects between non-uniform superconductors with coexisting helimagnetic order

    OpenAIRE

    Eremin, Ilya; Nogueira, Flavio S.; Tarento, Rene-Jean

    2005-01-01

    We consider the spin and charge Josephson current between two non-uniform Fulde-Ferrel-Larkin-Ovchinnikov superconductors with helimagnetic order. We demonstrate that the presence of the helimagnetic phase generates a spin Josephson effect and leads to additional contributions to both single-particle and Josephson charge current. It is shown that for such systems the AC effect differs more radically from the DC effect than in the case of a BCS superconductor with helimagnetic order considered...

  5. Microfluidic separation process by the Soret effect in biological fluids

    Science.gov (United States)

    Martin, Alain; Bou-Ali, M. Mounir; Barrutia, Haritz; Alonso de Mezquia, David

    2011-05-01

    In this article the thermophysical and transport properties of mixtures composed of glucose and sucrose in dimethylsulfoxide (DMSO) are determined. The studied mass concentrations are 5%, 10%, 15%, 20% and 25% of glucose or sucrose in DMSO at an average temperature of 25 °C. The properties studied experimentally are the dynamic viscosity, density, mass and thermal expansion coefficient and thermodiffusion coefficient. The thermogravitational technique in flat configuration is used in order to obtain the thermodiffusion coefficients. Once these properties are known, the work is focused on the numerical study of applying a temperature gradient in microdevices in order to optimize the extraction of DMSO using the CFD Ansys Fluent software. The results show an improvement even of 35% on microfluidic separation techniques that are based on a purely diffusive regime.

  6. Effects of citric acid on separation of sillimanite from quartz

    Institute of Scientific and Technical Information of China (English)

    李晔; 雷东升; 鲁巍; 许时

    2002-01-01

    Quartz is the main gangue mineral of sillimanite. The results show that Al3+ and Fe3+ ion can activate the floatation of quartz and make the separation of quartz and sillimanite difficult when anion collector is used, and citric acid can inhibit the quartz activated by metallic ion and have slight influence on the sillimanite. X-ray photoelectronic energy spectrum analysis indicates that there are obvious electronic energy peaks on the surface of the quartz before citric acid is added into the ore pulp in presence of Al3+ and Fe3+, and after citric acid is added, the energy peak vanished. So citric acid can make Al3+ and Fe3+ on the surface of quartz solve and decrease the active points on the surface of quartz which can adsorb anion collector.

  7. High temperature thermocline TES - effect of system pre-charging on thermal stratification

    Science.gov (United States)

    Zavattoni, Simone A.; Barbato, Maurizio C.; Zanganeh, Giw; Pedretti, Andrea

    2016-05-01

    The purpose of this study is to evaluate, by means of a computational fluid dynamics approach, the effect of performing an initial charging, or pre-charging, on thermal stratification of an industrial-scale thermocline TES unit, based on a packed bed of river pebbles. The 1 GWhth TES unit under investigation is exploited to fulfill the energy requirement of a reference 80 MWe concentrating solar power plant which uses air as heat transfer fluid. Three different scenarios, characterized by 4 h, 6 h and 8 h of pre-charging, were compared with the reference case of TES system operating without pre-charging. For each of these four scenarios, a total of 30 consecutive charge/discharge cycles, of 12 h each, were simulated and the effect of TES pre-charging on thermal stratification was qualitatively evaluated, by means of a stratification efficiency, based on the second-law of thermodynamics. On the basis of the simulations results obtained, the effect of pre-charging, more pronounced during the first cycles, is not only relevant in reducing the time required by the TES to achieve a stable thermal stratification into the packed bed but also to improve the performance at startup when the system is charged for the first time.

  8. Anomalous effective charges and far-IR optical absorption of Al2Ru from first principles

    International Nuclear Information System (INIS)

    For the orthorhombic intermetallic semiconductor Al2Ru, the band structure, valence charge density, zone-center optical-phonon frequencies, and Born effective-charge and electronic dielectric tensors are calculated using variational density-functional perturbation theory with ab initio pseudopotentials and a plane-wave basis set. Good agreement is obtained with recent measurements on polycrystalline samples, which showed anomalously strong far-IR absorption by optical phonons, while analysis of the valence charge density shows that the static ionic charges of Al and Ru are negligible. Hybridization is proposed as the single origin both of the semiconducting gap and the anomalous Born effective charges. Analogous behavior is expected in related compounds such as NiSnZr, PbTe, skutterudites, and Al-transition-metal quasicrystals. copyright 1996 The American Physical Society

  9. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging

    CERN Document Server

    Shocron, Amit N

    2016-01-01

    Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Through our numerical solution to the presented models, the possible effect of surface transport on the CDI process is elucidated. While at some model conditions surface transport enhances the rate of CDI cell charging, counter-intuitively this additional transport pathway is found to slow down cell charging at other model conditions.

  10. A Cost-Effective Electric Vehicle Charging Method Designed For Residential Homes with Renewable Energy

    Science.gov (United States)

    Lie, T. T.; Liang, Xiuli; Haque, M. H.

    2015-03-01

    Most of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.

  11. Effect of Space Charge on the Propagation Path of Air Gap Discharge

    Institute of Scientific and Technical Information of China (English)

    郝丽霞; 王伟; 詹花茂; 韩筱慧; 邓丽红

    2011-01-01

    The existence of space charge may be addressed as one of the reasons that could cause shielding failure of transmission lines. In order to study the effect of space charge on discharge propagation path, a new experimental system, including mainly DC high voltage generator, impulse voltage generator as well as rod-plane electrode, has been established. The space charge was generated around the rod by means of pre-applying DC high voltage, and the air gap dis- charge experiments were conducted with and without pre-applying DC high voltage, respectively. Meanwhile, high speed cameras worked simultaneously from the front and lateral side to record the discharge propagation path so as to obtain the curvature. After statistical analysis, it is shown that the curvature increases in the middle and lower portions of the propagation path when the effect of space charge is taken into account.

  12. Radial explosion strain and its fracture effect from confined explosion with charge of cyclonite

    Institute of Scientific and Technical Information of China (English)

    徐国元; 段乐珍; 古德生; 闫长斌

    2004-01-01

    Instrumented experiments were conducted in concrete models to study the explosion-induced radial strain and fracture effect of rock-like media under confined explosion with a charge of cyclonite. As a charge was exploded,two different radial strain waves were sequentially recorded by a strain gage at a distance of 80 mm from the center of charge. Through the attenuation formula of the maximum compressive strain(εrmax ), the distribution of εrmax and its strain rate(ε) between the charge and gage were obtained. The effect of the two waves propagating outwards on the radial fracture of surrounding media was discussed. The results show that the two waves are pertinent to the loading of shock energy (Es) and bubble energy (Eb) against concrete surrounding charge, respectively. The former wave lasts for much shorter time than the latter. The peak values of εrmax and ε of the former are higher than those of the latter, respectively.

  13. Birth order effects on the separation process in young adults: an evolutionary and dynamic approach.

    Science.gov (United States)

    Ziv, Ido; Hermel, Orly

    2011-01-01

    The present study analyzes the differential contribution of a familial or social focus in imaginative ideation (the personal fable and imagined audience mental constructs) to the separation-individuation process of firstborn, middleborn, and lastborn children. A total of 160 young adults were divided into 3 groups by birth order. Participants' separation-individuation process was evaluated by the Psychological Separation Inventory, and results were cross-validated by the Pathology of Separation-Individuation Inventory. The Imaginative Ideation Inventory tested the relative dominance of the familial and social environments in participants' mental constructs. The findings showed that middleborn children had attained more advanced separation and were lower in family-focused ideation and higher in nonfamilial social ideation. However, the familial and not the social ideation explained the variance in the separation process in all the groups. The findings offer new insights into the effects of birth order on separation and individuation in adolescents and young adults. PMID:21977689

  14. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    Energy Technology Data Exchange (ETDEWEB)

    Susanto, H., E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Roihatin, A.; Aryanti, N.; Anggoro, D.D. [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Ulbricht, M. [Lehrstuhl fuer Technische Chemie, Universitaet Duisburg-Essen, Germany, Universitaetstr. 5, Essen (Germany)

    2012-10-01

    This paper compares the performance of different hydrophilization methods to prepare low fouling ultrafiltration (UF) membranes. The methods include post-modification with hydrophilic polymer and blending of hydrophilic agent during either conventional or reactive phase separation (PS). The post-modification was done by photograft copolymerization of water-soluble monomer, poly(ethylene glycol) methacrylate (PEGMA), onto a commercial polyethersulfone (PES) UF membrane. Hydrophilization via blend polymer membrane with hydrophilic additive was performed using non-solvent induced phase separation (NIPS). In reactive PS method, the cast membrane was UV-irradiated before coagulation. The resulting membrane characteristic, the performance and hydrophilization stability were systematically compared. The investigated membrane characteristics include surface hydrophilicity (by contact angle /CA/), surface chemistry (by FTIR spectroscopy), and surface morphology (by scanning electron microscopy). The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of protein or polysaccharide or humic acid. The results suggest that all methods could increase the hydrophilicity of the membrane yielding less fouling. Post-modification decreased CA from 44.8 {+-} 4.2{sup o} to 37.8 {+-} 4.2{sup o} to 42.5 {+-} 4.3{sup o} depending on the degree of grafting (DG). The hydrophilization via polymer blend decreased CA from from 65 deg. to 54 deg. for PEG concentration of 5%. Nevertheless, decreasing hydraulic permeability was observed after post-modification as well as during polymer blend modification. Stability examination showed that there was leaching out of modifier agent from the membrane matrix prepared via conventional PS after 10 days soaking in both water and NaOH. Reactive PS could increase the stability of the modifier agent in membrane matrix. Highlights: Black-Right-Pointing-Pointer We compared different methods to prepare low

  15. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    International Nuclear Information System (INIS)

    This paper compares the performance of different hydrophilization methods to prepare low fouling ultrafiltration (UF) membranes. The methods include post-modification with hydrophilic polymer and blending of hydrophilic agent during either conventional or reactive phase separation (PS). The post-modification was done by photograft copolymerization of water-soluble monomer, poly(ethylene glycol) methacrylate (PEGMA), onto a commercial polyethersulfone (PES) UF membrane. Hydrophilization via blend polymer membrane with hydrophilic additive was performed using non-solvent induced phase separation (NIPS). In reactive PS method, the cast membrane was UV-irradiated before coagulation. The resulting membrane characteristic, the performance and hydrophilization stability were systematically compared. The investigated membrane characteristics include surface hydrophilicity (by contact angle /CA/), surface chemistry (by FTIR spectroscopy), and surface morphology (by scanning electron microscopy). The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of protein or polysaccharide or humic acid. The results suggest that all methods could increase the hydrophilicity of the membrane yielding less fouling. Post-modification decreased CA from 44.8 ± 4.2o to 37.8 ± 4.2o to 42.5 ± 4.3o depending on the degree of grafting (DG). The hydrophilization via polymer blend decreased CA from from 65 deg. to 54 deg. for PEG concentration of 5%. Nevertheless, decreasing hydraulic permeability was observed after post-modification as well as during polymer blend modification. Stability examination showed that there was leaching out of modifier agent from the membrane matrix prepared via conventional PS after 10 days soaking in both water and NaOH. Reactive PS could increase the stability of the modifier agent in membrane matrix. Highlights: ► We compared different methods to prepare low fouling ultrafiltration (UF) membranes. ► We

  16. Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation

    Science.gov (United States)

    Stergiou, A.; Gobeze, H. B.; Petsalakis, I. D.; Zhao, S.; Shinohara, H.; D'Souza, F.; Tagmatarchis, N.

    2015-09-01

    Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 109 s-1 and 2.2 × 1011 s-1

  17. Attractions between charged colloids at water interfaces

    OpenAIRE

    Oettel, M.; Dominguez, A; Dietrich, S.

    2005-01-01

    The effective potential between charged colloids trapped at water interfaces is analyzed. It consists of a repulsive electrostatic and an attractive capillary part which asymptotically both show dipole--like behavior. For sufficiently large colloid charges, the capillary attraction dominates at large separations. The total effective potential exhibits a minimum at intermediate separations if the Debye screening length of water and the colloid radius are of comparable size.

  18. Effects of surface charge on the anomalous light extinction from metallic nanoparticles

    Science.gov (United States)

    Sijercic, Edin; Leung, P. T.

    2016-07-01

    The effects of extraneous surface charges on the anomalous extinction from metallic nanoparticles are studied via an application of the extended Mie theory by Bohren and Hunt. Due to the sensitivity of the higher multipolar resonance on the surface charges, it is found that quenching of the anomalous resonance can be observed with presence of only a modest amount of charges on these particles. The observed effects thus provide a rather sensitive mechanism for the monitoring of the neutrality of these nanoparticles using far field scattering approaches.

  19. Fouling control mechanisms of demineralized water backwash: Reduction of charge screening and calcium bridging effects

    KAUST Repository

    Li, Sheng

    2011-12-01

    This paper investigates the impact of the ionic environment on the charge of colloidal natural organic matter (NOM) and ultrafiltration (UF) membranes (charge screening effect) and the calcium adsorption/bridging on new and fouled membranes (calcium bridging effect) by measuring the zeta potentials of membranes and colloidal NOM. Fouling experiments were conducted with natural water to determine whether the reduction of the charge screening effect and/or calcium bridging effect by backwashing with demineralized water can explain the observed reduction in fouling. Results show that the charge of both membranes and NOM, as measured by the zeta potential, became more negative at a lower pH and a lower concentration of electrolytes, in particular, divalent electrolytes. In addition, calcium also adsorbed onto the membranes, and consequently bridged colloidal NOM and membranes via binding with functional groups. The charge screening effect could be eliminated by flushing NOM and membranes with demineralized water, since a cation-free environment was established. However, only a limited amount of the calcium bridging connection was removed with demineralized water backwashes, so the calcium bridging effect mostly could not be eliminated. As demineralized water backwash was found to be effective in fouling control, it can be concluded that the reduction of the charge screening is the dominant mechanism for this. © 2011 Elsevier Ltd.

  20. Heavy ion charge-state distribution effects on energy loss in plasmas

    Science.gov (United States)

    Barriga-Carrasco, Manuel D.

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  1. Space charge effects in axial injection line for U-400 cyclotron

    International Nuclear Information System (INIS)

    The space charge influence on the beam dynamics in transport line is studied by the method of the distribution moments. Fifteen equations describing dependence of the first and second order moments (average transverse beam sizes and velocities, cross terms) on longitudinal coordinate are solved numerically. For particular U-400 cyclotron injection line the value of current which produces significant effect on beam dynamics is defined. It is shown that space charge effects can be compensated by proper readjusting of the solenoid strengths

  2. Point Mutations Effects on Charge Transport Properties of the Tumor-Suppressor Gene p53

    OpenAIRE

    Shih, Chi-Tin; Roche, Stephan; Römer, Rudolf A.

    2007-01-01

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective single-strand or double-strand tight-binding models which simulate hole propagation along the DNA, a statistical analysis of charge transmission modulations associated with all possible point mutations is performed. We find that in contrast to non-cancerous mutations, mutation hotspots tend to result in significantly weaker {...

  3. Evaluation and simulation of the entrance gas variation effects on separation factor in nozzle aerodynamic method

    International Nuclear Information System (INIS)

    In this study the effects of entrance gas variation to the nozzle system has been evaluated. In this regard the entrance gas has been implemented in two different pressures 600 torr and 290 torr and the process of Isotopic separation of UF6 has been simulated. The results indicate that following the simulation of separation process for various light gases, in the pressure of 600 torr the amount of separation factor has been increased remarkably. (Author)

  4. Effect of Development Time on Polymer Phase Separation in a PMMA Resist

    OpenAIRE

    KHALID, Mohammad Naeem; and, Shazia YASIN

    2004-01-01

    Developer composition type and development technique are known to influence surface and edge roughness in polymethylemethacrylate (PMMA); and it is during development, we believe, that the result is most influenced by the phase separation into polymer-rich and polymer-poor regions. This polymer phase separation is more prominent in a weaker developer and low temperature. In this paper, we investigate the effect of development time on the extent of polymer phase separation in an expos...

  5. Effect of cathode separator structure on performance characteristics of free-breathing PEMFCs

    OpenAIRE

    Tabe, Yutaka; Park, Sang-Kyun; Kikuta, Kazushige; Chikahisa, Takemi; Hishinuma, Yukio

    2006-01-01

    The performance of free-breathing polymer electrolyte membrane fuel cells (PEMFCs) was studied experimentally and the effect of the cathode separator structure on the cell performance was investigated. Two types of cathode separators were used for a cell with an 18 cm2 active area: an open type with parallel rectangular open-slits and a channel type with straight vertical channels with open ends. The polarization curves, cell impedance, and contact pressure distribution of the separators were...

  6. Memory and nonlinear transport effects in charging-discharging of a supercapacitor

    Science.gov (United States)

    Uchaikin, V. V.; Ambrozevich, A. S.; Sibatov, R. T.; Ambrozevich, S. A.; Morozova, E. V.

    2016-02-01

    We report on the results of analysis of the kinetics of charge-discharge current of Panasonic supercapacitors in a wide range of time from 10-1 to 104 s. The non-Debye behavior of relaxation observed earlier by us and other authors is confirmed experimentally, and the influence of the supercapacitor charging regime on this process for various previous histories (values of applied voltage, charging time, and load resistance) is analyzed. The results are compared with available experimental data for paper-oil and electrolytic capacitors and with the results of calculations in the linear response model. It is found that in contrast to conventional capacitors, the response of the supercapacitor under investigation to variations of the charging regime does not match the linear response model. The relation of this nonlinearity to processes in the double electric layer, the morphology of the porous electrode, and the effect of charge reversal in pores is considered.

  7. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    International Nuclear Information System (INIS)

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  8. Topological effects of charge transfer in telomere G-quadruplex: Mechanism on telomerase activation and inhibition

    CERN Document Server

    Wang, Xin

    2015-01-01

    We explore charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of charge transport in TG4 DNA. The consecutive TG4(CTG4) is semiconducting with 0.2 ~ 0.3eV energy gap. Charges transfers favorably in the consecutive TG4, but are trapped in the non-consecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly ~ 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  9. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    Science.gov (United States)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  10. Modulated charge patterns and noise effect in a twisted DNA model with solvent interaction

    Science.gov (United States)

    Tabi, C. B.; Dang Koko, A.; Oumarou Doko, R.; Ekobena Fouda, H. P.; Kofané, T. C.

    2016-01-01

    We modify the Peyrard-Bishop-Holstein model and bring out the influence of the torsion and solvent interactions on charge transport in DNA. Through the linear stability analysis, we detect regions of instability and we compare the results with those of the standard Peyrard-Bishop-Holstein model. There are two regimes where modulated charge patterns can occur: the undertwisted and the overtwisted conformations. Numerical simulations are used to confirm our analytical predictions. Charge patterns are obtained and propagate more easily in an overwinded helix than in an underwinded one. The effects of dissipation and thermal fluctuations are also studied, which confirm the robustness of the obtained modulated patterns. On the one hand, we argue that in the absence of twisting, temperature can lead to the breaking of the hydrogen bonds between bases and prevent charges from propagating. On the other hand, when the molecule is overtwisted, the solvent and the temperature will rather enhance charge spreading patterns with random features.

  11. Coupling of isotropic and directional interactions and its effect on phase separation and self-assembly

    Science.gov (United States)

    Audus, Debra J.; Starr, Francis W.; Douglas, Jack F.

    2016-02-01

    The interactions of molecules and particles in solution often involve an interplay between isotropic and highly directional interactions that lead to a mutual coupling of phase separation and self-assembly. This situation arises, for example, in proteins interacting through hydrophobic and charged patch regions on their surface and in nanoparticles with grafted polymer chains, such as DNA. As a minimal model of complex fluids exhibiting this interaction coupling, we investigate spherical particles having an isotropic interaction and a constellation of five attractive patches on the particle's surface. Monte Carlo simulations and mean-field calculations of the phase boundaries of this model depend strongly on the relative strength of the isotropic and patch potentials, where we surprisingly find that analytic mean-field predictions become increasingly accurate as the directional interactions become increasingly predominant. We quantitatively account for this effect by noting that the effective interaction range increases with increasing relative directional to isotropic interaction strength. We also identify thermodynamic transition lines associated with self-assembly, extract the entropy and energy of association, and characterize the resulting cluster properties obtained from simulations using percolation scaling theory and Flory-Stockmayer mean-field theory. We find that the fractal dimension and cluster size distribution are consistent with those of lattice animals, i.e., randomly branched polymers swollen by excluded volume interactions. We also identify a universal functional form for the average molecular weight and a nearly universal functional form for a scaling parameter characterizing the cluster size distribution. Since the formation of branched clusters at equilibrium is a common phenomenon in nature, we detail how our analysis can be used in experimental characterization of such associating fluids.

  12. Charged Kaon Mass Measurement using the Cherenkov Effect

    CERN Document Server

    Graf, N; Abrams, R J; Akgun, U; Aydin, G; Baker, W; Barnes, P D; Bergfeld, T; Beverly, L; Bujak, A; Carey, D; Dukes, C; Duru, F; Feldman, G J; Godley, A; Gülmez, E; Günaydın, Y O; Gustafson, H R; Gutay, L; Hartouni, E; Hanlet, P; Hansen, S; Heffner, M; Johnstone, C; Kaplan, D; Kamaev, O; Kilmer, J; Klay, J; Kostin, M; Lange, D; Ling, J; Longo, M J; Lu, L C; Materniak, C; Messier, M D; Meyer, H; Miller, D E; Mishra, S R; Nelson, K; Nigmanov, T; Norman, A; Onel, Y; Paley, J M; Park, H K; Penzo, A; Peterson, R J; Raja, R; Rajaram, D; Ratnikov, D; Rosenfeld, C; Rubin, H; Seun, S; Solomey, N; Soltz, R; Swallow, E; Schmitt, R; Subbarao, P; Torun, Y; Tope, T E; Wilson, K; Wright, D; Wu, K

    2009-01-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 +/- 1.7 MeV/c^2, which is within 1.4 sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  13. Self-interaction effects on charge-transfer collisions

    CERN Document Server

    Quashie, Edwin E; Andrade, Xavier; Correa, Alfredo A

    2016-01-01

    In this article, we investigate the role of the self-interaction error in the simulation of collisions using time-dependent density functional theory (TDDFT) and Ehrenfest dynamics. We compare many different approximations of the exchange and correlation potential, using as a test system the collision of $\\mathrm{H^+ + CH_4}$ at $30~\\mathrm{eV}$. We find that semi-local approximations, like PBE, and even hybrid functionals, like B3LYP, produce qualitatively incorrect predictions for the scattering of the proton. This discrepancy appears because the self-interaction error allows the electrons to jump too easily to the proton, leading to radically different forces with respect to the non-self-interacting case. From our results, we conclude that using a functional that is self-interaction free is essential to properly describe charge-transfer collisions between ions and molecules in TDDFT.

  14. Charge-independence breaking effects in nucleon-deuteron scattering

    International Nuclear Information System (INIS)

    The standard non-relativistic approach to the study of few-nucleon systems is based on phenomenological pair potentials which accurately fit the N-N scattering data. As an example, the so-called AV14 and Bonn potentials reproduce the n-p data, while the RSC, TRS and Paris potentials the p-p ones. All these potentials do not include Charge Independence Breaking (CIB) terms, which seem to be required by the differences in the experimental anp, app, and ann scattering lengths. One possibility, that has been investigated in Ref. 1, is to modify the 1S0 potential so as to reproduce the experimental values. Recently [2], it has been shown that different local potentials, which accurately fit both the n-p and p-p data, give almost the same triton binding energy, Bt=7.62±0.01 MeV. copyright 1995 American Institute of Physics

  15. Primary charge separation between P* and BA: Electron-transfer pathways in native and mutant GM203L bacterial reaction centers

    International Nuclear Information System (INIS)

    Coherent components in the dynamics of decay of stimulated emission from the primary electron donor excited state P*, and of population of the product charge-separated states P+BA- and P+HA-, were studied in GM203L mutant reaction centers (RCs) of Rhodobacter (Rb.) sphaeroides by measuring oscillations in the kinetics of absorbance changes at 940nm (P* stimulated emission region), 1020nm (BA- absorption region) and 760nm (HA bleaching region). Absorbance changes were induced by excitation of P (870nm) with 18fs pulses at 90K. In the GM203L mutant, replacement of Gly M203 by Leu results in exclusion of the crystallographically defined water molecule (HOH55) located close to the oxygen of the 131-keto carbonyl group of BA and to His M202, which provides the axial ligand to the Mg of the PB bacteriochlorophyll. The results of femtosecond measurements were compared with those obtained with Rb. sphaeroides R-26 RCs containing an intact water HOH55. The main consequences of the GM203L mutation were found to be as follows: (i) a low-frequency oscillation at 32cm-1, which is characteristic of the HOH55-containing RCs, disappears from the kinetics of absorbance changes at 1020 and 760nm in the mutant RC; (ii) electron transfer from P* to BA in the wild type RC was characterized by two time constants of 1.1ps (80%) and 4.3ps (20%), but in the GM203L mutant was characterized by a single time constant of 4.3ps, demonstrating a slowing of primary charge separation. The previously postulated rotation of water HOH55 with a fundamental frequency of 32cm-1, triggered by electron transfer from P* to BA, was confirmed by observation of an isotopic shift of the 32cm-1 oscillation in the kinetics of P+BA- population in deuterated, pheophytin-modified RCs of Rb. sphaeroides R-26, by a factor of 1.6. These data are discussed in terms of the influence of water HOH55 on the energetics of the P*->P+BA- reaction, and protein dynamic events that occur on the time scale of this reaction

  16. Primary charge separation between P* and B{sub A}: Electron-transfer pathways in native and mutant GM203L bacterial reaction centers

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Andrey G. [Department of Photobiophysics, Belozersky Institute of Chemical and Physical Biology, Moscow State University, Moscow 119899 (Russian Federation); Jones, Michael R. [Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD (United Kingdom)], E-mail: m.r.jones@bristol.ac.uk; Potter, Jane A. [Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD (United Kingdom); Fyfe, Paul K. [Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD (United Kingdom); Vasilieva, Lyudmila G. [Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290 (Russian Federation); Shkuropatov, Anatoli Ya. [Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290 (Russian Federation); Shuvalov, Vladimir A. [Department of Photobiophysics, Belozersky Institute of Chemical and Physical Biology, Moscow State University, Moscow 119899 (Russian Federation); Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290 (Russian Federation)], E-mail: shuvalov@issp.serpukhov.su

    2005-12-07

    Coherent components in the dynamics of decay of stimulated emission from the primary electron donor excited state P*, and of population of the product charge-separated states P{sup +}B{sub A}{sup -} and P{sup +}H{sub A}{sup -}, were studied in GM203L mutant reaction centers (RCs) of Rhodobacter (Rb.) sphaeroides by measuring oscillations in the kinetics of absorbance changes at 940nm (P* stimulated emission region), 1020nm (B{sub A}{sup -} absorption region) and 760nm (H{sub A} bleaching region). Absorbance changes were induced by excitation of P (870nm) with 18fs pulses at 90K. In the GM203L mutant, replacement of Gly M203 by Leu results in exclusion of the crystallographically defined water molecule (HOH55) located close to the oxygen of the 13{sup 1}-keto carbonyl group of B{sub A} and to His M202, which provides the axial ligand to the Mg of the P{sub B} bacteriochlorophyll. The results of femtosecond measurements were compared with those obtained with Rb. sphaeroides R-26 RCs containing an intact water HOH55. The main consequences of the GM203L mutation were found to be as follows: (i) a low-frequency oscillation at 32cm{sup -1}, which is characteristic of the HOH55-containing RCs, disappears from the kinetics of absorbance changes at 1020 and 760nm in the mutant RC; (ii) electron transfer from P* to B{sub A} in the wild type RC was characterized by two time constants of 1.1ps (80%) and 4.3ps (20%), but in the GM203L mutant was characterized by a single time constant of 4.3ps, demonstrating a slowing of primary charge separation. The previously postulated rotation of water HOH55 with a fundamental frequency of 32cm{sup -1}, triggered by electron transfer from P* to B{sub A}, was confirmed by observation of an isotopic shift of the 32cm{sup -1} oscillation in the kinetics of P{sup +}B{sub A}{sup -} population in deuterated, pheophytin-modified RCs of Rb. sphaeroides R-26, by a factor of 1.6. These data are discussed in terms of the influence of water HOH55 on

  17. The Effect of Membrane Charge on Gold Nanoparticle Synthesis via Surfactant Membranes.

    Science.gov (United States)

    Markowitz; Dunn; Chow; Zhang

    1999-02-01

    The effect of vesicle membrane structure and charge on the synthesis of gold nanoparticles was investigated. The vesicle membranes were comprised of either negatively charged soy lipids or mixtures of charge neutral and negatively charged soy lipids. Palladium ions bound to the membranes served as the catalyst for metal particle synthesis using an electroless metallization procedure. The size range of particles synthesized using membranes comprised of only negatively charged lipids (5-15 nm) was significantly smaller than those synthesized using mixtures of negatively charged and charge-neutral lipids (2-180 nm). X-ray diffraction revealed that the average crystallite size decreased with increasing palladium ion content of the membranes. It also showed that the average crystallite size was smaller for particles synthesized using vesicles comprised of only soy phoshohydroxyethanol lipids than for particles synthesized using vesicles comprised of only soy phosphatidic acid lipids. Particles synthesized with membranes comprised of only negatively charged lipids were encapsulated within the resulting lipid membrane matrix. FT-IR of the lipid matrix indicated that the matrix was formed as the result of ionic bridging of the lipid phosphate headgroups with gold ions. Copyright 1999 Academic Press. PMID:9924109

  18. Stochastic charging of dust grains in planetary rings: Diffusion rates and their effects on Lorentz resonances

    Science.gov (United States)

    Schaffer, L.; Burns, J. A.

    1995-01-01

    Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.

  19. The non-equilibrium charge screening effects in diffusion-driven systems with pattern formation

    Science.gov (United States)

    Kuzovkov, V. N.; Kotomin, E. A.; de la Cruz, M. Olvera

    2011-07-01

    The effects of non-equilibrium charge screening in mixtures of oppositely charged interacting molecules on surfaces are analyzed in a closed system. The dynamics of charge screening and the strong deviation from the standard Debye-Hückel theory are demonstrated via a new formalism based on computing radial distribution functions suited for analyzing both short-range and long-range spacial ordering effects. At long distances the inhomogeneous molecular distribution is limited by diffusion, whereas at short distances (of the order of several coordination spheres) by a balance of short-range (Lennard-Jones) and long-range (Coulomb) interactions. The non-equilibrium charge screening effects in transient pattern formation are further quantified. It is demonstrated that the use of screened potentials, in the spirit of the Debye-Hückel theory, leads to qualitatively incorrect results.

  20. The secondary electron emission yield of muscovite mica: Charging kinetics and current density effects

    Science.gov (United States)

    Blaise, G.; Pesty, F.; Garoche, P.

    2009-02-01

    Using a dedicated scanning electron microscope, operating in the spot mode, the charging properties of muscovite mica have been studied in the energy range of 100-8000 eV. The intrinsic yield curve σ0(E), representing the variation of the yield of the uncharged material with the energy E, has been established: the maximum value of the yield is 3.92 at E =300 eV and the two crossovers corresponding to σ0(E)=1 are, respectively, at energies EIexoemission (bursts of electrons) is produced at low energy when the net stored charge is positive. The interpretation of the current density effect on σ(D ) is based on the high rate of charging, the effect relative to negative charging is due to the expansion of the electron distribution, while the exoemission effect is due to the collective relaxation process of electrons.

  1. SEPARATING THE EFFECTS OF LEAD AND SOCIAL FACTORS ON IQ

    Science.gov (United States)

    Initial evaluations of 104 low-socioeconomic status black children screened by the local community health departments in North Carolina showed significant effects of lead in the range 6-59 micrograms/dl on IQ after controlling for concomitant social factors, such as socioeconomic...

  2. THE EFFECT OF DEMULSIFIER AND DEWATERING AGENT ON SEPARATION OF PHASES FROM OILY WATER

    OpenAIRE

    Trgo, Marina; Perić, Jelena; Vukojević Medvidović, Nediljka

    2011-01-01

    Environmental pollution with crude oil and its derivates has become a growing problem due to their toxic and carcinogenic effects on live organisms. Proper collection and treatment of oily wastewaters is very important for prevention and disabling of harmful effects on the environment. The most important step in the oily wastewater treatment process is separation of oil and aqueous phase. Consequently, it is important to examine the conditions which enable the maximum separation effect and pr...

  3. Infrared optical response of strongly correlated cuprates: the effects of topological phase separation

    OpenAIRE

    Moskvin, A. S.; Zenkov, E. V.

    2003-01-01

    We examine the effects of electron inhomogeneity on IR optical conductivity of cuprates. Nanoscopic electron inhomogeneity is believed to be inherent property of doped cuprates throughout the phase diagram beginning from electron-hole droplets in insulating parent system and ending by a topological phase separation in electron-hole bose liquid (EHBL) phase. A simple model of metal-insulator composite and effective medium theory has been used to describe the static phase separation effects. Th...

  4. Linking Employment to Attachment: The Mediating Effects of Maternal Separation Anxiety and Interactive Behavior.

    Science.gov (United States)

    Stifter, Cynthia A.; And Others

    1993-01-01

    Examined the effects of maternal employment and separation anxiety on maternal interactive behavior and infant attachment in 73 mother-infant pairs. Employed mothers who reported high levels of separation anxiety were more likely than low-anxiety mothers to exhibit intrusive behaviors. Although employment was not directly related to attachment,…

  5. Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration

    DEFF Research Database (Denmark)

    Wen, Chuang; Li, Anqi; Walther, Jens Honore;

    2016-01-01

    the separation performance. When the swirling flow passes through the annular nozzle, it will damage the expansion characteristics of the annular nozzle. The blade angles and numbers are both optimized by evaluating the swirling and expansion effects for the supersonic separation....

  6. Construction Report of Separate Effect Test Facility for Passive Auxiliary Feedwater System (PASCAL)

    International Nuclear Information System (INIS)

    A separate effect test facility for PAFS(Passive Auxiliary Feedwater System, PAFS), PASCAL, was constructed to evaluate the cooling performance of PAFS and the condensation heat transfer models. This report includes the scope of the separate effect tests, the design of PASCAL facility, and measuring principles. From the design and construction of the separate effect test facility, PASCAL facility was composed of the fluid system, the auxiliary system, the measurement system, the electricity system, the control system and the data acquisition system. This report will be utilized to make the experiment procedure and perform the test

  7. Surface effects on photopolymerization induced anisotropic phase separation in liquid crystal and polymer composites

    International Nuclear Information System (INIS)

    The surface effects on the anisotropic phase separation in photopolymerization induced phase separation of liquid crystal and polymer composites have been studied. It was found that the surface interaction between the substrate and the prepolymer and/or liquid crystal plays a crucial role in anisotropic phase separation. A theoretical model is suggested to describe the surface effects by adapting a phenomenological free energy approach. The formation of polymer layer in the presence of surface effects can be understood as competition between entropic flow and surface directed flow of polymer and liquid crystal

  8. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Alan; Bazan, Guillermo; Nguyen, Thuc-Quyen; Wudl, Fred

    2015-02-27

    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetrating network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit

  9. Effect of gaseous void on bipolar charge transport in layered polymer film

    International Nuclear Information System (INIS)

    This paper describes a hybrid algorithm to study the effect of a gaseous void on bipolar charge transport in layered polymer film. This hybrid algorithm uses a source distribution technique based on an axisymmetric boundary integral equation method to solve the Poisson equation and a fourth order Runge–Kutta (RK4) method with an upwind scheme for time integration. Iterative stability is assured by satisfying the Courant–Friedrichs–Levy stability criterion. Dynamic charge mapping is achieved by allowing conducting and insulating boundaries and material interfaces to be represented by equivalent free and bound charge distributions that collectively satisfy all local and far-field conditions. This hybrid technique caters to bipolar charge injection, field-dependent mobility transport, recombination, and trapping/de-trapping in the bulk and at material and physical interfaces. The resulting charge map is the taxonomy of the different charge types and their abundance, and presents a dynamic view of the temporal and spatial distributions. The paper is motivated by images of breakdown experiments that point to the role of gaseous void in delamination growth. For the test configuration, the high field at the edge of the gaseous void act as a sink first for positive and then negative charge. The net effect is to increase delamination stress at the edge leading to further growth of the defect and increasing the potential for partial discharge within the void. (paper)

  10. Finite Element Modelling Used to Clarify Separate Effects

    International Nuclear Information System (INIS)

    1D and 1.5D fuel behaviour codes include either mechanistic or empirical models for the physical phenomena occurring in the fuel rods. Since it is in the nature of integral tests and of real-life situations (e.g. licensing) not to provide detailed, local pre-characterisation of the rods, some sort of statistical averaging is inherently included in the modelling of the processes. Often applied averaging leads to assumptions of e.g. • uniformity, • homogeneity, • axisymmetry. Finite element codes make it possible to account for 3D and local phenomena, e.g. • PCMI including the effect of cracks in the pellets, • PCI with a mixture of boded cladding areas. Moreover, the basic assumption on the homogeneity and uniformity of the cladding can be lifted and the effect of inhomogeneities and slight variation in thickness can be studied in e.g. LOCA conditions. MTA EK has started research to study such local phenomena in order to better understand and reproduce experimental data. The results are promising: the stress distribution in a cladding with bonded and unbonded areas differs significantly from the azimuthally symmetric case. The shape of the ballooned area of a fuel rod subjected to LOCA can only be reproduced if the above averaging assumptions are lifted, which leads to a new, second order approach. (author)

  11. Transverse space charge effect calculation in the Synergia accelerator modeling toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Okonechnikov, Konstantin; Amundson, James; Macridin, Alexandru; /Fermilab

    2009-09-01

    This paper describes a transverse space charge effect calculation algorithm, developed in the context of accelerator modeling toolkit Synergia. The introduction to the space charge problem and the Synergia modeling toolkit short description are given. The developed algorithm is explained and the implementation is described in detail. As a result of this work a new space charge solver was developed and integrated into the Synergia toolkit. The solver showed correct results in comparison to existing Synergia solvers and delivered better performance in the regime where it is applicable.

  12. Antiferroelectric Nature of CH3NH3PbI3‑xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells

    Science.gov (United States)

    Sewvandi, Galhenage A.; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-07-01

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3‑xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3‑xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation.

  13. Redox-Active Metal-Organic Frameworks: Highly Stable Charge-Separated States through Strut/Guest-to-Strut Electron Transfer.

    Science.gov (United States)

    Sikdar, Nivedita; Jayaramulu, Kolleboyina; Kiran, Venkayala; Rao, K Venkata; Sampath, Srinivasan; George, Subi J; Maji, Tapas Kumar

    2015-08-10

    Molecular organization of donor and acceptor chromophores in self-assembled materials is of paramount interest in the field of photovoltaics or mimicry of natural light-harvesting systems. With this in mind, a redox-active porous interpenetrated metal-organic framework (MOF), {[Cd(bpdc)(bpNDI)]⋅4.5 H2 O⋅DMF}n (1) has been constructed from a mixed chromophoric system. The μ-oxo-bridged secondary building unit, {Cd2 (μ-OCO)2 }, guides the parallel alignment of bpNDI (N,N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide) acceptor linkers, which are tethered with bpdc (bpdcH2 =4,4'-biphenyldicarboxylic acid) linkers of another entangled net in the framework, resulting in photochromic behaviour through inter-net electron transfer. Encapsulation of electron-donating aromatic molecules in the electron-deficient channels of 1 leads to a perfect donor-acceptor co-facial organization, resulting in long-lived charge-separated states of bpNDI. Furthermore, 1 and guest encapsulated species are characterised through electrochemical studies for understanding of their redox properties. PMID:26206156

  14. Antiferroelectric Nature of CH3NH3PbI3-xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells.

    Science.gov (United States)

    Sewvandi, Galhenage A; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-01-01

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3-xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3-xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation. PMID:27468802

  15. Effect of thermodiffusion on pH-regulated surface charge properties of nanoparticle.

    Science.gov (United States)

    Das, Pradipta Kr

    2016-01-01

    Surface properties of nanoparticle are of high importance in the field of biotechnology, drug delivery and micro/nanofabrication. In this article, we developed a comprehensive theoretical model and subsequently solved that numerically to study the effect of thermodiffusion of ions on surface charge properties of nanoparticle. The theoretical study has been done considering silica nanoparticle for two aqueous solutions NaCl and KCl. The effect of solution pH in conjunction with nanoparticle temperature on surface charge density has been obtained for different salt concentrations (1, 10 and 100 mM) and nanoparticle size (diameter of 2 and 100 nm). It is observed from the results that with increasing temperature of the nanoparticle, the negative surface charge density gets higher due to increasing thermodiffusion effect. It is also found out that the magnitude of surface charge density is higher for KCl solution than NaCl solution under same condition which is attributed mostly due to less thermodiffusion of counterions for KCl than NaCl. Present study also shows that magnitude of surface charge density decreases with increasing nanoparticle size until it reaches a limiting value (called critical size) above which the effect of nanoparticle size on surface charge density is insignificant. PMID:26530465

  16. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.

    Science.gov (United States)

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J

    2015-01-21

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed. PMID:25470772

  17. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    Science.gov (United States)

    González-Mozuelos, P.

    2016-02-01

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  18. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    González-Mozuelos, P. [Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Mexico, Distrito Federal, C. P. 07360 (Mexico)

    2016-02-07

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  19. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte.

    Science.gov (United States)

    González-Mozuelos, P

    2016-02-01

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  20. Staggered car-following induced by lateral separation effects in traffic flow

    International Nuclear Information System (INIS)

    This Letter develops a new staggered car-following model taking into consideration lateral separation effects. Time-to-collision, calculated using visual angle variables, is introduced to describe the lateral separation distance and improve the optimal velocity model. The analytical and numerical results show that the stability of traffic flow can gradually be enhanced with the increase of lateral separation effects. The asymmetry property of traffic flow is also investigated using the new model. The results imply that incorporating lateral separation effects into the car-following model leads to the suppression of traffic jams and greatly enhances the realism of the model. -- Highlights: ► We firstly proposed a staggered car-following model induced by lateral separation effects. ► Time-to-collision is firstly introduced to describe the lateral separation distance. ► The stability of traffic flow is enhanced with the increase of lateral separation effects. ► The asymmetry property of traffic flow is firstly investigated from the proposed model.

  1. Staggered car-following induced by lateral separation effects in traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sheng [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 (China); Wang, Dian-hai, E-mail: wangdianhai@sohu.com [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 (China); Xu, Cheng [Zhejiang Police College, Hangzhou, 310053 (China); Huang, Zhi-yi [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 (China)

    2012-01-02

    This Letter develops a new staggered car-following model taking into consideration lateral separation effects. Time-to-collision, calculated using visual angle variables, is introduced to describe the lateral separation distance and improve the optimal velocity model. The analytical and numerical results show that the stability of traffic flow can gradually be enhanced with the increase of lateral separation effects. The asymmetry property of traffic flow is also investigated using the new model. The results imply that incorporating lateral separation effects into the car-following model leads to the suppression of traffic jams and greatly enhances the realism of the model. -- Highlights: ► We firstly proposed a staggered car-following model induced by lateral separation effects. ► Time-to-collision is firstly introduced to describe the lateral separation distance. ► The stability of traffic flow is enhanced with the increase of lateral separation effects. ► The asymmetry property of traffic flow is firstly investigated from the proposed model.

  2. Projectile charge and velocity effect on UO2 sputtering in the nuclear stopping regime

    International Nuclear Information System (INIS)

    Angular distributions and yields of uranium sputtered by slow highly charged Xeq+ ions (kinetic energy 1.5 keV ≤ Ek ≤ 81 keV, charge state 1 ≤ q ≤ 25 ) from UO2 were measured by means of the catcher technique. A charge state effect on the sputtering process is observed at 8 and 81 keV. A deviation from a A*cos(θ) shape (the linear collision cascade theory) is observed in case of Xeq+ impinging a UO2 surface at Ek = 8 keV. Yields increase linearly with projectile charge state q thus clearly revealing the contribution of potential energy to the sputtering process. In addition, as the kinetic energy of a Xe10+ projectile decreases from 81 keV to 1.5 keV, a velocity effect is clearly observed on the angular distribution. (authors)

  3. Numerical Investigation of Effective Heat Conductivity of Fluid in Charging Process of Thermal Storage Tank

    OpenAIRE

    Taheri, H.; Schmidt, F.P.; Gabi, M.

    2015-01-01

    This paper presents a numerical case study of heat transfer mechanisms during the charging process of a stratified thermal storage tank applied in a specific adsorption heat pump cycle. The effective thermal conductivity of the heat transfer fluid during the charging process is analyzed through CFD simulations using Unsteady Reynolds-averaged Navier-Stokes equations (URANS). The aim of the study is to provide an equivalent thermal conductivity for a one-dimensional storage tank model to be us...

  4. Space-Charge Effects in the Super B-Factory LER

    OpenAIRE

    Venturini, Marco

    2007-01-01

    Space-charge effects in the low-energy ring of the proposed Super-B Factory are studied using a weak-strong model of dynamics as implemented in the code Marylie/Impact (MLI). The impact of space charge appears noticeable but our results suggest the existence of workable regions of the tune space where the design emittance is minimally affected. However, additional studies are recommended to fully substantiate this conclusion.

  5. Some effects of transverse space charge in the SNS/HIF test bed

    International Nuclear Information System (INIS)

    To assess the effect of transverse space charge in the proposed SNS/HIF simulation experiments the change in the SNS lattice parameters under the influence of transverse space-charge has been estimated by integrating the K-V beam envelope equations and approximating that for the dispersion. Using equations suggested by Garren (Proc. HIF Workshop, Berkeley 1979, LBL 10301, p 377 (1980)), periodic solutions were found for various currents. (U.K.)

  6. Effect of charged particle's multiplicity fluctuations on flow harmonics in even-by-event hydrodynamics

    OpenAIRE

    Chaudhuri, A. K.

    2012-01-01

    In nucleon-nucleon collisions, charged particle's multiplicity fluctuates. We have studied the effect of multiplicity fluctuation on flow harmonics in nucleus-nucleus collision in event-by-event hydrodynamics. Assuming that the charged particle's multiplicity fluctuations are governed by the negative binomial distribution, the Monte-Carlo Glauber model of initial condition is generalised to include the fluctuations. Explicit simulations with the generalised Monte-Carlo Glauber model initial c...

  7. A General Four-Fermion Effective Lagrangian for Dirac and Majorana Neutrino-Charged Matter Interactions

    CERN Document Server

    Mendy, J E B; Mendy, Jean El Bachir; Govaerts, Jan

    2002-01-01

    Given the most general Lorentz invariant four-fermion effective interaction possible for two neutrinos and two charged fermions, whether quarks or leptons, all possible 2-to-2 processes involving two neutrinos, whether Dirac or Majorana ones, and two charged fermions are considered. Explicit and convenient expressions are given for the associated differential cross-sections. Such a parametrization should help assess the sensitivity to physics beyond the Standard Model of neutrino beam experiments which are in the design stage at neutrino factories.

  8. Fuel fragmentation data review and separate effects testing

    International Nuclear Information System (INIS)

    A simple alternative test has been developed to study the fuel fragmentation process at loss of coolant accident (LOCA) temperatures. The new test heats a short section of fuel, approximately two pellets worth of material, in a tube furnace open to air. An axial slit is cut in the test sample cladding to reduce radial restraint and to simulate ballooned condition. The tube furnace allows the fuel fragmentation process be observed during the experiment. The test was developed as a simple alternative so large number of tests could be conducted quickly and efficiently to identify key variables that influence fuel fragmentation and to zeroing on the fuel fragmentation burn-up threshold. Several tests were conducted, using fuel materials from fuel rods that were used in earlier integral tests to benchmark and validate the test technique. High burn-up fuel materials known to be above the fragmentation threshold was used to evaluate the fragmentation process as a function of temperature. Even with an axial slit and both ends open, no significant fuel detachment/release was detected until above 750°C. Additional tests were conducted with fuel materials at burn-ups closer to the fuel fragmentation burn-up threshold. Results from these tests indicate a minor power history effect on the fuel fragmentation burn-up threshold. An evaluation of available literature and data generated from this work suggest a fuel fragmentation burn-up threshold between 70 and 75 GWd/MTU. (author)

  9. Separation and on-line preconcentration by stacking and sweeping of charged analytes in the plant by microemulsion electrokinetic chromatography with nonionic surfactants.

    Science.gov (United States)

    Cao, Jun; Qi, Lian-Wen; Liu, E-Hu; Zhang, Wei-Dong; Li, Ping

    2009-02-20

    A novel on-line technique for stacking and sweeping of long sample plugs with simultaneous determination of charged analytes in the plant (protocatechuic aldehyde, rosmarinic acid, danshensu, salvianolic acid B, and protocatechuic acid) by the nonionic microemulsion electrokinetic chromatography (MEEKC) is presented. The preconcentration efficiency provided about 9-28-fold for stacking and 7-14-fold for sweeping in the enhancements of LOD. The effects of oil phase, Brij-35 and buffer concentrations on stacking and sweeping efficiency were examined in order to optimize the two methods. In nonionic MEEKC, the effect of the type of oil and buffer contents on preconcentration mechanism is often sophisticated. This study had demonstrated that the oil type and buffer content in nonionic microemulsion indeed markedly altered the affinity of microemulsion with analytes. Finally, in comparison to the stacking method, the most apparent disadvantages of the sweeping method were the relatively high limits of detection and poor peak shapes. PMID:19062218

  10. Fractional charges

    International Nuclear Information System (INIS)

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  11. The use of magnetic isotope effect for the separation of uranium isotopes

    International Nuclear Information System (INIS)

    The influence of the magnetic isotope effect on the reaction of radical pairs containing radical-ion UO22+, is investigated. This can be further used in the new method of uranium isotope separation in chemical reaction

  12. The effect of financial crisis on hiring and separation rates: evidence from Tunisian labor market

    OpenAIRE

    Ilham Haouas; Mahmoud Yagoubi; Sergio Salvino Guirreri

    2014-01-01

    The goal of this paper is to investigate the effects of the global financial crisis on employment conditions in Tunisia, specifically regarding hiring and separation rates. A panel data model which utilized firm level data covering five sectors over the period of 2007- June 2010 is used to explain quarterly relationships between hiring and separation rates in Tunisia. A random effect model was also used to help understand the most significant variables that affect the variation of hiring and ...

  13. Effects of Concentration and Conformation of Surfactants on Phase Separation of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    袁银权; 邹宪武; 刘昊阳

    2004-01-01

    The effects of surfactants on the phase separation of surfactant-water-oil systems have been investigated by using discontinuous molecular dynamic simulations. The phase separation speed and equilibrium configuration are dependent on the surfactant concentration and conformation. The equilibrium concentration of surfactants at the interface remains constant. With the increasing surfactant concentration, the equilibrium configuration crosses over from the disperse phase to the bicontinuous one. The crossover concentration is estimated. The conformation of the surfactant has little effect on the equilibrium concentration of surfactants at the interface,while it affects the equilibrium configuration after phase separation.

  14. Charge independence and charge symmetry

    CERN Document Server

    Miller, G A; Miller, Gerald A; van Oers, Willem T H

    1994-01-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed.

  15. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  16. Study of the distribution of charged species between solutions separated by an ion-exchange membrane - Application to the study of complexes

    International Nuclear Information System (INIS)

    When a cation is distributed between two solutions separated by a cation-exchange membrane in the ratio predicted by the Donnan theory, the establishment of ionic equilibrium is accompanied by secondary phenomena such as abnormal osmosis associated with ion-pair diffusion. The author has shown how these phenomena modify the equilibrium conditions and that it is difficult to predict quantitatively the distributions for analytic or separation purposes, if osmosis and ion-pair diffusion effects are not known exactly. However when the membrane separates two solutions of the same electrolyte, and of very similar concentrations, these difficulties disappear. Furthermore, under these conditions, the activity coefficients of the species present in each solution are equal. The advantage of these experimental conditions become apparent in the case of a method for studying complexes which has the characteristic of requiring no prior knowledge of the membrane exchange properties; normally such a requirement often limits the field of application of methods using granular exchangers. The possibilities of extending the use of this method are illustrated by the study of copper (II) sulfosalicylate complexes. (author)

  17. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    International Nuclear Information System (INIS)

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture

  18. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, R.; Vanossi, A. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Benassi, A. [CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Tosatti, E. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste (Italy)

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  19. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    Science.gov (United States)

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952

  20. Coal and Gangue Underground Pneumatic Separation Effect Evaluation Influenced by Different Airflow Directions

    Directory of Open Access Journals (Sweden)

    Kehong Zheng

    2016-01-01

    Full Text Available Coal and gangue underground pneumatic separation is of key importance for green mining. Two kinds of arrangement schemes for high-pressure value used in pneumatic separation system are proposed in this study. Pneumatic separation effects are examined under different arrangement of high-pressure value. Here, theoretical pneumatic separation distance formulas of mineral particles affected by different airflow directions are derived and validated by a series of numerical simulations and orthogonal experiments. In the following analysis, the effects of gangue diameter (d, conveyor velocity (v0, and the height difference between conveyor belt and air nozzle (hp are mainly considered. The numerical simulation and experimental results indicate that pneumatic separation effects under the condition of u and v0 being in the opposite direction will be better than that of u and v0 being in the same direction. The pneumatic separation distance ΔS shows a decreasing trend with the increasing of the three factors. The study also shows that gangue diameter has the most significant influence on separation distance, followed by conveyor velocity v0 and height difference hp.