Central depression of nuclear charge density distribution
International Nuclear Information System (INIS)
The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of 46Ar and 44S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in 46Ar and 44S prefer to occupy the 1d3/2 state rather than the 2s1/2 state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of 46Ar and 44S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.
Device for measuring charge density distribution in charged particle beams
International Nuclear Information System (INIS)
A device to measure charge density distribution in charged particle beams has been described. The device contains a set of hollow interinsulated current-receiving electrodes, recording system, and cooling system. The invention is aimed at the increase of admissible capacity of the beams measured at the expense of cooling efficiency increase. The aim is achieved by the fact, that in the device a dynamic evaporating-condensational cooling of electrodes is realized by means of cooling agent supply in perpendicular to their planes through the tubes introduced inside special cups. Spreading in radial direction over electrode surface the cooling agent gradually and intensively washes the side surface of the cup, after that, it enters the cooling cavity in the form of vapour-liquid mixture. In the cavity the cooling agent, supplied using dispensina and receiving collectors in which vapoUr is condensed, circulates. In the device suggested the surface of electrode cooling is decreased significantly at the expense of side surface of the cups which receives the electrode heat
Distribution of charge and matter in nuclei: Charge density difference of 206Pb and 205Tl
International Nuclear Information System (INIS)
We contrast two calculations of the charge density difference of 206Pb and 205Tl. In the simplest model this difference in charge density is due to the occupation of an additional 3s/sub 1/2/ orbital in 206Pb. A standard mean-field calculation of the charge difference does not yield a satisfactory result. One may modify this result by assigning the 3s/sub 1/2/ orbital an occupation probability of seventy percent, with a corresponding increase to thirty percent of the occupation probability of a 2d/sub 3/2/ orbital. However, this modification of the mean-field analysis, while solving one problem, is seen to create a new problem in the fit to the data. In this work we present an alternative analysis: We maintain unit occupation probability for the 3s/sub 1/2/ orbital but use the medium-modified proton electromagnetic form factor we have calculated previously. Our model is able to give a better fit to the data without the introduction of free parameters into the analysis. Medium-modified form factors have recently been shown to be effective in explaining the charge distribution of 208Pb and their application to the interpretation of the 206Pb-205Tl charge density difference yields a result which is consistent with the experimental data and superior to that obtained in the adjusted mean-field analysis described above
Leherte, Laurence; Vercauteren, Daniel P
2011-10-01
To generate reduced point charge models of proteins, we developed an original approach to hierarchically locate extrema in charge density distribution functions built from the Poisson equation applied to smoothed molecular electrostatic potential (MEP) functions. A charge fitting program was used to assign charge values to the so-obtained reduced representations. In continuation to a previous work, the Amber99 force field was selected. To easily generate reduced point charge models for protein structures, a library of amino acid templates was designed. Applications to four small peptides, a set of 53 protein structures, and four KcsA ion channel models, are presented. Electrostatic potential and solvation free energy values generated by the reduced models are compared with the corresponding values obtained using the original set of atomic charges. Results are in closer agreement with the original all-atom electrostatic properties than those obtained with a previous reduced model that was directly built from the smoothed MEP functions [Leherte and Vercauteren in J Chem Theory Comput 5:3279-3298, 2009]. PMID:21915750
International Nuclear Information System (INIS)
The charge form factors of elastic electron scattering for isotones with N=20 and N=28 are calculated using the phase-shift analysis method, with corresponding charge density distributions from relativistic mean-field theory. The results show that there are sharp variations at the inner parts of charge distributions with the proton number decreasing. The corresponding charge form factors are divided into two groups because of the unique properties of the s-states wave functions, though the proton numbers change uniformly in two isotonic chains. Meanwhile, the shift regularities of the minima are also discussed, and we give a clear relation between the minima of the charge form factors and the corresponding charge radii. This relation is caused by the diffraction effect of the electron. Under this conclusion, we calculate the charge density distributions and the charge form factors of the A=44 nuclei chain. The results are also useful for studying the central depression in light exotic nuclei. (authors)
The effect of polymer charge density and charge distribution on the formation of multilayers
Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V
2003-01-01
Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.
Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics
Energy Technology Data Exchange (ETDEWEB)
Buividovich, P.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Polikarpov, M.I. [Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)
2011-11-15
We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)
Charge density distribution of transparent p-type semiconductor (LaO)CuS
Takase, Kouichi; Sato,Ken; Shoji, Osamu; Takahashi, Yumiko; Takano, Yoshiki; Sekizawa, Kazuko; Kuroiwa, Yoshihiro; GOTO, MANABU
2007-01-01
The charge density distributions of layered oxysulfide (LaO)CuS, known as a p-type transparent semiconductor, have been investigated by analyzing the synchrotron radiation powder diffraction profile with the maximum entropy method/Rietveld method. The bonding character of the Cu–S bond is revealed to be covalent. Meanwhile, the O–La bonding has both ionic and covalent characters. The number of electrons estimated by integrating the charge density around each atom gave direct evidence that eac...
Indian Academy of Sciences (India)
S Haddad
2010-09-01
The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable.
International Nuclear Information System (INIS)
The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and the central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable. (author)
Directory of Open Access Journals (Sweden)
Mokhtaria Drissi
2013-01-01
Full Text Available The molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the in-crystal molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. In this crystal, the molecules form dimers via N–HS intermolecular hydrogen bonds. The dimers are further linked by C–HO hydrogen bonds into chains along the c crystallographic axis. This study has also allowed us to determine the electrostatic potential and therefore locate the electropositive part and the electronegative part in molecular scale of the title compound.
Tian, Kai; Cao, Zhou; Xue, Yu-Xiong; Yang, Shi-Yu
2010-01-01
Heavy ions and pulsed lasers are important means to simulate the ionization damage effects on semiconductor materials. The analytic solution of high-energy heavy ion energy loss in silicon has been obtained using the Bethe-Bloch formula and the Kobetich-Katz theory, and some ionization damage parameters of Fe ions in silicon, such as the track structure and ionized charge density distribution, have been calculated and analyzed according to the theoretical calculation results. Using the Gaussian function and Beer's law, the parameters of the track structure and charge density distribution induced by a pulsed laser in silicon have also been calculated and compared with those of Fe ions in silicon, which provides a theoretical basis for ionization damage effect modeling.
Reinvestigation of the charge density distribution in arc discharge fusion system
Energy Technology Data Exchange (ETDEWEB)
Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd [Centre of Photonics and Advance Material, Universiti Tunku Abdul Rahman Kuala Lumpur (Malaysia)
2015-04-24
A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices.
Indian Academy of Sciences (India)
Fauad Rami
2003-05-01
Charged particle pseudorapidity distributions have been measured in Au + Au collisions using the BRAHMS detector at RHIC. The results are presented as a function of the collision centrality and the center of mass energy. They are compared to the predictions of different parton scattering models and the important role of hard scattering processes at RHIC energies is discussed.
International Nuclear Information System (INIS)
In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (O = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.
Regnier, D; Schunck, N; Verriere, M
2016-01-01
Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data is available is an incentive to develop a fully microscopic approach to fission dynamics. In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear energy density functional (EDF) method, where large amplitude collective motion is treated adiabatically using the time dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in tw...
X-ray derived experimental charge density distribution in GaF3 and VF3 solid systems
Sujatha, K.; Israel, S.; Anzline, C.; Niranjana Devi, R.; Sheeba, R. A. J. R.
2016-09-01
The electronic structure and bonding features of metal and transition metal fluorides in low oxidation states, GaF3 and VF3, have been studied from precise single crystal X-ray diffraction data using multipole and maximum entropy methods. The topology of the charge density is analyzed and the (3,-1) bond critical points are determined. Existences of ionic nature of bonding in low valent fluorine compounds are clearly evident. The spherical core of metal atom and aspherical or twisted core of transition metal atom reveal the fact that GaF3 is much more rigid than VF3. Aspherical cores of the polarized ligand atoms are also visible in the two-dimensional density distribution pictures. The true valence charge density surfaces with encapsulating the atomic basins maps are elucidated. An elongated saddle with mid-bond density of 0.6191 e/Å3, observed in the compound VF3, shows that its lattice is less rigid and has more ionic character than GaF3.
Liu, Wei; Zhang, Aihua; Zhang, Yan; Wang, Zhong Lin
2016-05-01
The mechanical–electrical coupling properties of piezoelectric semiconductors endow these materials with novel device applications in microelectromechanical systems, sensors, human–computer interfaces, etc. When an applied strain is exerted on a piezoelectric semiconductor, piezoelectric charges are generated at the surface or interface of the semiconductor, which can be utilized to control the electronic transport characteristics. This is the fundamental working mechanism of piezotronic devices, called the piezotronic effect. In the present report, a series of piezotronic transistors composed of different electrode metals and semiconductors is examined using density functional theory calculation. It is found that the influence of semiconductors on the piezotronic effect is larger than the impact of metals, and GaN and CdS are promising candidates for piezotronic and piezo-phototronic devices, respectively. The width of the piezoelectric charge distribution obtained in the present study can be used as a parameter in classical finite-element-method based simulations, which provide guidance on designing high-performance piezotronic devices.
Liu, Wei; Zhang, Aihua; Zhang, Yan; Wang, Zhong Lin
2016-05-20
The mechanical-electrical coupling properties of piezoelectric semiconductors endow these materials with novel device applications in microelectromechanical systems, sensors, human-computer interfaces, etc. When an applied strain is exerted on a piezoelectric semiconductor, piezoelectric charges are generated at the surface or interface of the semiconductor, which can be utilized to control the electronic transport characteristics. This is the fundamental working mechanism of piezotronic devices, called the piezotronic effect. In the present report, a series of piezotronic transistors composed of different electrode metals and semiconductors is examined using density functional theory calculation. It is found that the influence of semiconductors on the piezotronic effect is larger than the impact of metals, and GaN and CdS are promising candidates for piezotronic and piezo-phototronic devices, respectively. The width of the piezoelectric charge distribution obtained in the present study can be used as a parameter in classical finite-element-method based simulations, which provide guidance on designing high-performance piezotronic devices. PMID:27053577
Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.
2016-05-01
Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms
Charge density waves in solids
Gor'kov, LP
2012-01-01
The latest addition to this series covers a field which is commonly referred to as charge density wave dynamics.The most thoroughly investigated materials are inorganic linear chain compounds with highly anisotropic electronic properties. The volume opens with an examination of their structural properties and the essential features which allow charge density waves to develop.The behaviour of the charge density waves, where interesting phenomena are observed, is treated both from a theoretical and an experimental standpoint. The role of impurities in statics and dynamics is considered and an
Charged-Particle Pseudorapidity Density Distributions from Au+Au Collisions at (sNN) = 130 GeV
Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hołyński, R.; Holzman, B.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2001-09-01
The charged-particle pseudorapidity density dNch/dη has been measured for Au+Au collisions at (sNN) = 130 GeV at RHIC, using the PHOBOS apparatus. The total number of charged particles produced for the 3% most-central Au+Au collisions for \\|η\\|<=5.4 is found to be 4200+/-470. The evolution of dNch/dη with centrality is discussed, and compared to model calculations and to data from proton-induced collisions. The data show an enhancement in charged-particle production at midrapidity, while in the fragmentation regions, the results are consistent with expectations from pp and pA scattering.
Regnier, D.; Dubray, N.; Schunck, N.; Verriere, M.
2016-01-01
Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data is available is an incentive to develop a fully microscopic approach to fission dynamics. In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of ...
International Nuclear Information System (INIS)
Spectra in the extreme ultraviolet range from 107 to 353 A emitted from Fe ions in various ionization stages have been observed at the Heidelberg electron beam ion trap (EBIT) with a flat-field grating spectrometer. A series of transition lines and their intensities have been analyzed and compared with collisional-radiative simulations. The present collisional-radiative model reproduces well the relative line intensities and facilitates line identification of ions produced in the EBIT. The polarization effect on the line intensities resulting from nonthermal unidirectional electron impact was explored and found to be significant (up to 24%) for a few transition lines. Based upon the observed line intensities, relative charge state distributions (CSD) of ions were determined, which peaked at Fe23+ tailing toward lower charge states. Another simulation on ion charge distributions including the ionization and electron capture processes generated CSDs which are in general agreement with the measurements. By observing intensity ratios of specific lines from levels collisionally populated directly from the ground state and those starting from the metastable levels of Fe XXI, Fe X and other ionic states, the effective electron densities were extracted and found to depend on the ionic charge. Furthermore, it was found that the overlap of the ion cloud with the electron beam estimated from the effective electron densities strongly depends on the charge state of the ion considered, i.e. under the same EBIT conditions, higher charge ions show less expansion in the radial direction.
Abbas, Ehab; Adam, Jaroslav; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agocs, Andras Gabor; Agostinelli, Andrea; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Nicola; Bianchi, Livio; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carlin Filho, Nelson; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio; Colella, Domenico; Collu, Alberto; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Connors, Megan Elizabeth; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cruz Albino, Rigoberto; Cuautle, Eleazar; Cunqueiro, Leticia; Dainese, Andrea; Dalsgaard, Hans Hjersing; Dang, Ruina; Danu, Andrea; Das, Kushal; Das, Indranil; Das, Supriya; Das, Debasish; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Deloff, Andrzej; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanuel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Ramni; Gupta, Anik; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Harton, Austin; Hatzifotiadou, Despoina; Hayashi, Shinichi; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hippolyte, Boris; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Pier Giorgio; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Vladimir; Ivanov, Andrey; Ivanov, Marian; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Kamal Hussain; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Minwoo; Kim, Se Yong; Kim, Beomkyu; Kim, Taesoo; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Mimae; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kompaniets, Mikhail; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lea, Ramona; Lechman, Mateusz; Lee, Sung Chul; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Ke; Ma, Rongrong; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mizuno, Sanshiro; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Paul, Biswarup; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Sudhir; Raniwala, Rashmi; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauch, Wolfgang; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rogochaya, Elena; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Pradip Kumar; Roy, Christelle Sophie; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Santoro, Romualdo; Sarkamo, Juho Jaako; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Hans Rudolf; Schmidt, Christian Joachim; Schuchmann, Simone; Schukraft, Jurgen; Schuster, Tim; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca; Scott, Patrick Aaron; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Sharma, Rohni; Shigaki, Kenta; Shtejer, Katherin; Sibiriak, Yury; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Ter-Minasyan, Astkhik; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Trubnikov, Victor; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vande Vyvre, Pierre; Van Hoorne, Jacobus Willem; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Yury; Vinogradov, Leonid; Vinogradov, Alexander; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Volkl, Martin Andreas; Voloshin, Sergey; Voloshin, Kirill; Volpe, Giacomo; von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Yaping; Wang, Mengliang; Wang, Yifei; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Shiming; Yang, Ping; Yang, Hongyan; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Hongsheng; Zhu, Jianlin; Zhu, Xiangrong; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym
2013-01-01
We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, -5.0 < $\\eta$ < 5.5, and employing a special analysis technique based on collisions arising from LHC ' satellite' bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{ch}$ = 17165 +/- 772 for the 0-5% most central collisions). From the measured d$N_{ch}$/d$\\eta$ distribution we derive the rapidity density distribution, d$N_{ch}$/dy, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model, which reproduce data well at RHIC energies. We assess the validity of longitudinal sca...
Calleya, N. L.; Souza, S. R.; Carlson, B. V.; Donangelo, R.; Lynch, W. G.; Tsang, M. B.; Winkelbauer, J. R.
2014-11-01
The fragmentation of thermalized sources is studied using a version of the Statistical Multifragmentation Model which employs state densities that take the pairing gap in the nuclear levels into account. Attention is focused on the properties of the charge distributions observed in the breakup of the source. Since the microcanonical version of the model used in this study provides the primary fragment excitation energy distribution, one may correlate the reduction of the odd-even staggering in the charge distribution with the increasing occupation of high-energy states. Thus, in the framework of this model, such staggering tends to disappear as a function of the total excitation energy of the source, although the energy per particle may be small for large systems. We also find that, although the deexcitation of the primary fragments should, in principle, blur these odd-even effects as the fragments follow their decay chains, the consistent treatment of pairing may significantly enhance these staggering effects on the final yields. In the framework of this model, we find that odd-even effects in the charge distributions should be observed in the fragmentation of relatively light systems at very low excitation energies. Our results also suggest that the odd-even staggering may provide useful information on the nuclear state density.
Meaningful structural descriptors from charge density.
Stalke, Dietmar
2011-08-16
This paper provides a short introduction to the basics of electron density investigations. The two predominant approaches for the modelling and various interpretations of electron density distributions are presented. Their potential translations into chemical concepts are explained. The focus of the article lies on the deduction of chemical properties from charge density studies in some selected main group compounds. The relationship between the obtained numerical data and commonly accepted simple chemical concepts unfortunately is not always straightforward, and often the chemist relies on heuristic connections rather than rigorously defined ones. This article tries to demonstrate how charge density analyses can shed light on aspects of chemical bonding and reactivity resulting from the determined bonding situation. Sometimes this helps to identify misconceptions and sets the scene for new unconventional synthetic approaches. PMID:21717511
Distributed charging of electrical assets
Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun
2016-02-16
The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.
Charge densities and charge noise in mesoscopic conductors
Indian Academy of Sciences (India)
M Büttiker
2002-02-01
We introduce a hierarchy of density of states to characterize the charge distribution in a mesoscopic conductor. At the bottom of this hierarchy are the partial density of states which represent the contribution to the local density of states if both the incident and the out-going scattering channel is prescribed. The partial density of states play a prominent role in measurements with a scanning tunneling microscope on multiprobe conductors in the presence of current ﬂow. The partial density of states determine the degree of dephasing generated by a weakly coupled voltage probe. In addition the partial density of states determine the frequency-dependent response of mesoscopic conductors in the presence of slowly oscillating voltages applied to the contacts of the sample. The partial density of states permit the formulation of a Friedel sum rule which can be applied locally. We introduce the off-diagonal elements of the partial density of states matrix to describe charge ﬂuctuation processes. This generalization leads to a local Wigner–Smith life-time matrix.
Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.
2015-10-01
The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.
New approach to $^4{He}$ charge distribution
Wilets, L; Pepin, S; Stancu, F; Carlson, J; Koepf, W; Stancu, Fl.
1996-01-01
We present a study of the $^4$He charge distribution based on realistic nucleonic wave functions and incorporation of the nucleon's quark substructure. The central depression of the proton point density seen in modern four-body calculations is too small by itself to lead to a correct description of the charge distribution. We utilize six-quark structures calculated in the Chromodielectric Model for N-N interactions, and we find a swelling of the proton charge distribution as the internucleon distance decreases. These charge distributions are combined with the $^4$He wave function using the Independent Pair Approximation and two-body distributions generated from Green's Function Monte Carlo calculations. We obtain a reasonably good fit to the experimental charge distribution without including meson exchange currents.
Spherical charged fluid distributions in general relativity
International Nuclear Information System (INIS)
Formal features of Einstein--Maxwell equations for spherically symmetric distributions of a charged perfect fluid in equilibrium are discussed. An exact solution of the system of equations for a specified choice of matter density and fluid pressure, representing a charged perfect gas is presented
International Nuclear Information System (INIS)
We are developing the ultimate non-destructive monitor to measure 6D-phase space charge density distribution of electron bunches shot by shot. Our single-shot 6-D bunch monitor consists of four or six 3-D bunch charge distribution (3D-BCD) monitors based on triplet 3D-BCD elements installed in non-dispersive and dispersive sections of a beam drift transport line. We are planning to use these non-destructive triplet bunch monitor components, not only for a 3-D bunch (3D-BCD) monitor, but also as an electron energy chirping monitor in dispersive sections of the injection line for SPring-8 II from SACLA linac. In 2013, we upgraded the SPring-8 photoinjector test facility to be able to accelerate up to 85 MeV and installed a magnetic chicane to compress bunches down to 30 fs (FWHM). A 3D-BCD monitor evolved from simple encoding of EO sampling into a multiplexing technique with a single probe laser pulse for multiple EO crystal detectors in a manner of spectral decoding (demultiplexing). We realized demultiplexing as an imaging spectrograph with eight-track simultaneous detection in the area array CCD of a high-speed gated I.I. camera. Transverse detections of bunch slices are done by analyzing the higher order moments of the bunch slice charge density distributions. For achieving the upper limit of temporal resolution, we are preparing to combine high-temporal-response EO-detector organic crystals and an octave broadband probe laser pulse with a linear chirp rate of 1 fs/nm. We are developing an EO-probe laser pulse with ∼10 μJ pulse energy and bandwidth over 300 nm (FWHM; flattop spectrum). (author)
Density Distribution Sunflower Plots
Dupont, William D.; W. Dale Plummer Jr.
2003-01-01
Density distribution sunflower plots are used to display high-density bivariate data. They are useful for data where a conventional scatter plot is difficult to read due to overstriking of the plot symbol. The x-y plane is subdivided into a lattice of regular hexagonal bins of width w specified by the user. The user also specifies the values of l, d, and k that affect the plot as follows. Individual observations are plotted when there are less than l observations per bin as in a conventio...
Recovering phase density distribution from line density
International Nuclear Information System (INIS)
We present an algorithm to recover the longitudinal density distribution of the particles in a stationary bunch, from the experimentally obtained line density. This algorithm can be used as an alternative to the analytical theory
Density Distribution Sunflower Plots
Directory of Open Access Journals (Sweden)
William D. Dupont
2003-01-01
Full Text Available Density distribution sunflower plots are used to display high-density bivariate data. They are useful for data where a conventional scatter plot is difficult to read due to overstriking of the plot symbol. The x-y plane is subdivided into a lattice of regular hexagonal bins of width w specified by the user. The user also specifies the values of l, d, and k that affect the plot as follows. Individual observations are plotted when there are less than l observations per bin as in a conventional scatter plot. Each bin with from l to d observations contains a light sunflower. Other bins contain a dark sunflower. In a light sunflower each petal represents one observation. In a dark sunflower, each petal represents k observations. (A dark sunflower with p petals represents between /2-pk k and /2+pk k observations. The user can control the sizes and colors of the sunflowers. By selecting appropriate colors and sizes for the light and dark sunflowers, plots can be obtained that give both the overall sense of the data density distribution as well as the number of data points in any given region. The use of this graphic is illustrated with data from the Framingham Heart Study. A documented Stata program, called sunflower, is available to draw these graphs. It can be downloaded from the Statistical Software Components archive at http://ideas.repec.org/c/boc/bocode/s430201.html . (Journal of Statistical Software 2003; 8 (3: 1-5. Posted at http://www.jstatsoft.org/index.php?vol=8 .
About Charge Density Wave for Electromagnetic Field-Drive
Guay, B T
1999-01-01
To generate a propulsive force without propellant and external couplings, it has been shown that two confined macroscopic and time-varying charge density waves well separated in space are needed. Here, some physical conditions will be proposed to support and maintain these particular collective modes of charge distributions.
The effect of single-particle charge limits on charge distributions in dusty plasmas
International Nuclear Information System (INIS)
An analytical expression for the stationary particle charge distribution in dusty plasmas is derived that accounts for the existence of single-particle charge limits. This expression is validated by comparison with the results of Monte Carlo charging simulations. The relative importance of the existence of charge limits for various values of the ratio of electron-to-ion density and ion mass is examined, and the effect of charge limits on the transient behavior of the charge distribution is considered. It is found that the time required to reach a steady-state charge distribution strongly decreases as the charge limit decreases, and that the existence of charge limits causes high-frequency charge fluctuations to become relatively more important than in the case without charge limits. (paper)
Density distribution in Earth.
Press, F
1968-06-14
Earth models selected by a Monte Carlo procedure were tested against geophysical data; 5 million models were examined and six have passed all tests. Common features of successful models are an increased core radius and a chemically inhomogeneous core consistent with Fe-Ni alloy (20 to 50 percent Fe) for the solid portion and Fe-Si alloy (15 to 25 percent Fe) for the fluid core. The inhomogeneous mantle is consistent with an increase in the FeO:FeO + MgO ratio by a factor of 2 in the deep mantle. The transition zone is a region of not only phase change but also composition change; this condition would inhibit mantlewide convection. The upper-mantle solutions show large fluctuations in density; this state implies insufficient constraint on solutions for this region, or lateral variations in mantle composition ranging from pyrolite to eclogite. PMID:17818740
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
Energy Technology Data Exchange (ETDEWEB)
Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
2015-05-28
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
International Nuclear Information System (INIS)
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
Zhao, Mingtian; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai; Li, Baohui
2015-05-01
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar
Charge density glass from fictions to facts
International Nuclear Information System (INIS)
Thirty years ago Fukuyama [J. Phys. Soc. Jpn. 45 (1978) 1474] predicted a transition from charge density wave (CDW) state to the charge density glass (CDG) at a finite temperature as the consequence of the competition between the uniform commensurability pinning and the random impurity pinning. We present strong evidence that the CDG phase indeed exists as a generic feature of density wave systems. However, it arises from the competition of the random impurity pinning and the electrostatic intra-CDW interaction which tends to establish a uniform phase at low temperature. The glass transition occurs at the temperature at which the free carriers cannot efficiently screen the phase distortions. The characteristic length scale of the disorder, i.e. the size of the phase coherent domains, governs the glass properties
Determination of charge densities in ReO3
International Nuclear Information System (INIS)
The charge densities in ReO3 were investigated by the x-ray structural analysis. The anisotropic charge distributions were found around a Re atom, which is attributable to the π bond formed by Re 5d (tsub(2g) and O 2p electrons. The calculated difference electron density map by the DV-Xα cluster method supports qualitatively the present observation. The measured thermal vibrations of oxygen atoms were highly anisotropic. The M-mode oxygen displacements will be readily enhanced by the existence of high pressures. (author)
On stable nuclei mass charge distribution
International Nuclear Information System (INIS)
The charge distribution of mass averaged stable nuclei about trajectory that cross the points with proton and neutron numbers nearly magic is investigated. It is shown that the charge distribution of ΔM have a symmetric property on nucleus charge z=45 and mass number A=103. The distribution of ΔM is compared with charge distribution of product of 206Th fission in framework of statistic model. 4 refs.; 1 fig. (author)
Nuclear charge radii: Density functional theory meets Bayesian neural networks
Utama, Raditya; Piekarewicz, Jorge
2016-01-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. We explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonst...
The number density of a charged relic
International Nuclear Information System (INIS)
We investigate scenarios in which a charged, long-lived scalar particle decouples from the primordial plasma in the Early Universe. We compute the number density at time of freeze-out considering both the cases of abelian and non-abelian interactions and including the effect of Sommerfeld enhancement at low initial velocity. We also discuss as extreme case the maximal cross section that fulfils the unitarity bound. We then compare these number densities to the exotic nuclei searches for stable relics and to the BBN bounds on unstable relics and draw conclusions for the cases of a stau or stop NLSP in supersymmetric models with a gravitino or axino LSP. (orig.)
Density functional theory of charged colloidal systems
International Nuclear Information System (INIS)
The phase behavior of charged colloidal systems has been studied recently by the density functional theory formalism (DFT) [R. van Roij, M. Dijkstra, and J. P. Hansen, Phys. Rev. E >59, 2010 (1999)]. A key feature of this approach is the appearance of a density and temperature-dependent effective Hamiltonian between the charged colloids. Under certain approximations, the effective Hamiltonian is made up only of a sum of position-independent one-body or volume terms and two-body colloid-separation dependent terms. In the limit of low colloidal densities, the DFT results do not reduce to the familiar Debye-Huckel limiting law nor do the results agree with previous work based on an identical approach but were developed using traditional statistical-mechanical methods [B. Beresford-Smith, D. Y. C. Chan, and D. J. Mitchell J. Colloid Interface Sci. >105, 216 (1985)]. This paper provides a reconciliation of these differences and comments on the significance of the one-body volume terms in the effective Hamiltonian of a system of charged colloids in determining thermodynamics and phase behavior
Charge distribution over dust particles configured with size distribution in a complex plasma
Misra, Shikha; Mishra, Sanjay K.
2016-02-01
A theoretical kinetic model describing the distribution of charge on the dust particles configured with generalized Kappa size distribution in a complex plasma has been developed. The formulation is based on the manifestation of uniform potential theory with an analytical solution of the master differential equation for the probability density function of dust charge; the number and energy balance of the plasma constituents are utilized in writing the kinetic equations. A parametric study to determine the steady state plasma parameters and the charge distribution corresponding to a size distribution of dust grains in the complex plasma has been made; the numerical results are presented graphically. The charge distribution is seen sensitive to the population of small grains in the particle size distribution and thus in contrast to symmetrical distribution of charge around a mean value for uniform sized grains, the charge distribution in the present case peaks around lower charge.
Charge density path in cold fusion reactions
International Nuclear Information System (INIS)
Cold fusion reactions are very frequently employed to produce compound nuclei with a relatively low excitation energy, which is extremely important for a successful synthesis method, particularly in the region of superheavy nuclei. Usually the charge densities of the projectile, target, and compound nucleus are different. We present a method allowing to take into consideration this difference continuously during the fusion process. Applications are given both in the intermediate mass and the superheavy region. Different cold fusion paths are studied with respect to the change of the charge density within the overlapping region. A transition formula from separated fusion partners up to the compound nucleus is obtained as depending on the geometrical changes. Macroscopic-microscopic approach is used to compute the total deformation energy. Shell corrections are obtained with Strutinsky method, having the new deformed two-center single particle energy levels as an input. Yukawa-plus-exponential model is employed to compute the macroscopic part. Spheroidal deformations are taken into account. By changing the absolute value of semiaxes as well as their ratio, the charge densities of the partners are modified during fusion. As a result of minimization against different paths of the semiaxes ratios from projectile and target values to synthesized nucleus, charge density variation can lower the cold fusion deformation energy. This kind of influence is especially active in the last part of the fusion process, when the projectile is already at least half embedded in the target. For cold fusion of light and intermediate nuclei, the energy variation in the last part of the deformation path reaches 4 MeV for 102 Ru and 3.7 MeV for 152 Dy synthesis. For a possible superheavy production the influence of charge density changes are quantitatively more important. The energy difference in the cold fusion channel barrier of 292 116 reaches about 8 MeV in the last part of the
Central depression of the nuclear charge distribution
International Nuclear Information System (INIS)
As a systematic feature of all measured charge distributions we find a shift in the form-factor zeroes as compared to a simple folding model. To first order, this shift can be interpreted as resulting from the central depression w, caused by the Coulomb repulsion. Accounting for it leads to an increase in the surface width of nuclear charge distributions by 0.105 fm. This interpretation of the experimental findings is compared with the droplet model, which relates w with the compression modulus K and the asymmetry energy J. Accounting for w leads to an increase in the extrapolated nuclear matter density by 7.5%. However, this macroscopic model is not able to describe the experimental results in detail since w is also influenced by shell effects. HF+BCS calculations with effective Skyrme-type interactions reproduce part of the data, revealing the influence of shells on w. Here, too, there remain discrepancies in details. A level of accuracy is reached at which most probably also the skewness of the charge distribution must be taken into account. (orig.)
Electron charge densities at conduction-band edges of semiconductors
International Nuclear Information System (INIS)
We demonstrate that both the empirical pseudopotential method (EPM) and the linear combination of atomiclike orbitals (LCAO) approach are capable of producing consistent electronic charge distributions in a compound semiconductor. Since the EPM approach is known to produce total valence electron charge densities which compare well with experimental x-ray data (e.g., Si), this work serves as a further test for the LCAO method. In particular, the EPM scheme, which uses an extended plane-wave basis, and the LCAO scheme, which employs a localized Gaussian basis, are used, with the same empirical potential as input, to analyze both the total valence electron charge density and the charge density of the first conduction band at the GAMMA, L, and X k points of the Brillouin zone. These charge densities are decomposed into their s-, p-, and d-orbital contributions, and this information is used to interpret the differences in the topologies of the conduction bands at GAMMA, L, and X. Such differences are crucial for a comprehensive understanding of interstitial impurities and the response of specific band states to perturbations in compound semiconductors
Pion transverse charge density and the edge of hadrons
Energy Technology Data Exchange (ETDEWEB)
Carmignotto, Marco [Catholic University of America; Horn, Tanja [Catholic University of America; Miller, Gerald A. [University of Washington
2014-08-01
We use the world data on the pion form factor for space-like kinematics and a technique used to extract the proton transverse densities, to extract the transverse pion charge density and its uncertainty due to experimental uncertainties and incomplete knowledge of the pion form factor at large values of Q2. The pion charge density at small values of b<0.1 fm is dominated by this incompleteness error while the range between 0.1-0.3 fm is relatively well constrained. A comparison of pion and proton charge densities shows that the pion is denser than the proton for values of b<0.2 fm. The pion and proton distributions seem to be the same for values of b=0.2-0.6 fm. Future data from Jlab 12 GeV and the EIC will increase the dynamic extent of the data to higher values of Q2 and thus reduce the uncertainties in the extracted pion charge density.
Density Distributions of Cyclotrimethylenetrinitramines (RDX)
Energy Technology Data Exchange (ETDEWEB)
Hoffman, D M
2002-03-19
As part of the US Army Foreign Comparative Testing (FCT) program the density distributions of six samples of class 1 RDX were measured using the density gradient technique. This technique was used in an attempt to distinguish between RDX crystallized by a French manufacturer (designated insensitive or IRDX) from RDX manufactured at Holston Army Ammunition Plant (HAAP), the current source of RDX for Department of Defense (DoD). Two samples from different lots of French IRDX had an average density of 1.7958 {+-} 0.0008 g/cc. The theoretical density of a perfect RDX crystal is 1.806 g/cc. This yields 99.43% of the theoretical maximum density (TMD). For two HAAP RDX lots the average density was 1.786 {+-} 0.002 g/cc, only 98.89% TMD. Several other techniques were used for preliminary characterization of one lot of French IRDX and two lot of HAAP RDX. Light scattering, SEM and polarized optical microscopy (POM) showed that SNPE and Holston RDX had the appropriate particle size distribution for Class 1 RDX. High performance liquid chromatography showed quantities of HMX in HAAP RDX. French IRDX also showed a 1.1 C higher melting point compared to HAAP RDX in the differential scanning calorimetry (DSC) consistent with no melting point depression due to the HMX contaminant. A second part of the program involved characterization of Holston RDX recrystallized using the French process. After reprocessing the average density of the Holston RDX was increased to 1.7907 g/cc. Apparently HMX in RDX can act as a nucleating agent in the French RDX recrystallization process. The French IRDX contained no HMX, which is assumed to account for its higher density and narrower density distribution. Reprocessing of RDX from Holston improved the average density compared to the original Holston RDX, but the resulting HIRDX was not as dense as the original French IRDX. Recrystallized Holston IRDX crystals were much larger (3-500 {micro}m or more) then either the original class 1 HAAP RDX or
A Duality Between Unidirectional Charge Density Wave Order and Superconductivity
Lee, Dung-Hai
2001-01-01
This paper shows the existence of a duality between an unidirectional charge density wave order and a superconducting order. This duality predicts the existence of charge density wave near a superconducting vortex, and the existence of superconductivity near a charge density wave dislocation.
Charge distribution in neptunium compounds calculated from moessbauer spectroscopy data
International Nuclear Information System (INIS)
Calculations of the 5f-orbitals population density in the neptunium compounds are carried out on the basis of experimental data, obtained by the Moessbauer spectroscopy method. Charge distribution in compounds Np(3), Np(4), Np(5), Np(6) and Np(7) is presented. Approach to studying the correlation between the δ indices and orbital population densities is proposed
Density Matrix for Mesoscopic Distributed Parameter Circuits
Institute of Scientific and Technical Information of China (English)
JI Ying-Hua; WANG Qi; LUO Hai-Mei; LEI Min-Sheng
2005-01-01
Under the Born-von-Karmann periodic boundary condition, we propose a quantization scheme for nondissipative distributed parameter circuits (i.e. a uniform periodic transmission line). We find the unitary operator for diagonalizing the Hamiltonian of the uniform periodic transmission line. The unitary operator is expressed in a coordinate representation that brings convenience to deriving the density matrix p(q, q',β). The quantum fluctuations of charge and current at a definite temperature have been studied. It is shown that quantum fluctuations of distributed parameter circuits, which also have distributed properties, are related to both the circuit parameters and the positions and the mode of signals and temperature T. The higher the temperature is, the stronger quantum noise the circuit exhibits.
Nuclear spectroscopy on charge density wave systems
International Nuclear Information System (INIS)
This book is the first coherent presentation of investigations of charge density wave (CDW) systems by nuclear spectroscopic techniques. It is addressed to the graduate students and elder scientist who are interested in modern aspects of solid state physics and want to acquire a broader knowledge of nuclear spectroscopy techniques applied to CDW systems. Chapter 1 gives a short introduction to CDW's in general and to the question what can be learned about CDW's by nuclear spectroscopy techniques. Chapter 2 gives a Landau theory description of CDW formation in chain-like tetrachalcogenides. Chapter 3 treats experimental results on layered transition metal compounds. A short introduction to nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), time differential perturbed angular correlation (TDPAC), and the Moessbauer effect (ME) is included in this chapter because all three techniques have been extensively applied to Ta-dichalcogenides which are prominent members of this family of materials. Chapter 4 and 5 treat in great detail CDW dynamics and transport in chain-like like transition metal chalcogenides and molybdenum bronzes, respectively. Chapter 6 treats the one-dimensional inorganic complex salt K-2Pt(CN)4Br0.3.2H2O (KCP) studied by NMR on a variety of nuclei. Chapter 7 demonstrates the tremendous advances of high resolution NMR in yielding spin density maps of organic radical salts and is intended to stimulate the application of this powerful technique more directly to CDW phenomena
Doping-induced Charge-Density-Wave
Nomura, Atsushi; Yamaya, Kazuhiko; Takayanagi, Shigeru; Ichimura, Koichi; Matsuura, Toru; Tanda, Satoshi; Hokkaido University Team
Doping is a useful method for searching new characters in solids, as we can see in the discoveries of impurity semiconductors and high-temperature superconductors. If a Charge-Density-Wave (CDW) is induced in materials which do not exhibit a CDW, new CDW properties might be brought there. TaSe3 exhibits no CDW transition but a superconductivity transition at about 2 K while it has a quasi-one-dimensional chain structure as well as typical CDW conductors, NbSe3, TaS3, and NbS3. Therefore, TaSe3 is one of the suitable materials for the induction of a CDW by doping, and we tried to induce a CDW in TaSe3 by doping Cu. Cu concentration was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The high Cu concentration was consistent with the high value of residual resistance (R (4 . 5 K) / (R (280 K) - R (4 . 5 K))). Single-crystal X-ray diffraction pattern (XRD) showed an expansion of the c-axis in Cu-doped TaSe3. The temperature dependence of the resistivity showed the anomaly at 80-100 K in Cu-doped TaSe3, which was never observed in pure TaSe3. These results suggest that the Cu-doping induces a CDW. We will discuss the relation between the resistivity anomaly and superconductivity.
On equilibrium charge distribution above dielectric surface
Directory of Open Access Journals (Sweden)
Yu.V. Slyusarenko
2009-01-01
Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.
On the charge density and asymptotic tail of a monopole
Harland, Derek
2015-01-01
We propose a new definition for the abelian magnetic charge density of a non-abelian monopole, based on zero-modes of an associated Dirac operator. Unlike the standard definition of the charge density, this density is smooth in the core of the monopole. We show that this charge density induces a magnetic field whose expansion in powers of 1/r agrees with that of the conventional asymptotic magnetic field to all orders. We also show that the asymptotic field can be easily calculated from the spectral curve. Explicit examples are given for known monopole solutions.
Nucleon momentum and density distributions of nuclei
International Nuclear Information System (INIS)
In the framework of recently suggested density coherent fluctuations model the nucleon momentum and density distributions are examined. Nucleon momentum and density distributions are expressed in terms of the fluctuation's function, experimentally obtainable from the elastic electron-nuclei scattering. (author)
Charge distributions and coagulation of radioactive aerosols
International Nuclear Information System (INIS)
The self-charging of radioactive aerosols will be reduced by background ions, such as those produced by radioactive gases. The sources of these background ions and their production rates are specified for a reactor containment atmosphere during a possible nuclear accident. Previous theory is extended to calculate the charging of a polydisperse radioactive aerosol. Gaussian approximations to charge distributions on an aerosol of a given size, and are shown to give a good representation of the exact numerical charge distributions of a Cs aerosol at normal temperatures, and also for highly radioactive aerosol containing 131I in a containment atmosphere. Extensive calculations are performed for charged-induced modifications to Brownian coagulation rates between steady-state size distribution of these radioactive aerosols, and also between small-sized radioactive aerosol and larger (non-radioactive) aerosol. The results show considerable enhancements of the coagulation rates between large and small-sized aerosol, but also a strong suppression of coagulation between large particles. Rate modifications calculated using the Gaussian approximations are generally close to the exact values. Time-dependent calculations for a monodisperse α-decaying aerosol reveal enhancements in coagulation rates even when the average charge on the aerosol is positive. Our results are relevant to behaviour in a dusty plasma. (author)
Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor
Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.; Zhigadlo, N. D.; Kazakov, S. M.; Burghammer, M.; Zimmermann, M. V.; Sprung, M.; Ricci, A.
2015-09-01
It has recently been established that the high-transition-temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high-temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant order that provides a basis for nanoscale phase separation remains a key open question, because experiments have yet to probe the unknown spatial distribution at both the nanoscale and mesoscale (between atomic and macroscopic scale). Here we report micro X-ray diffraction imaging of the spatial distribution of both short-range charge-density-wave `puddles' (domains with only a few wavelengths) and quenched disorder in HgBa2CuO4 + y, the single-layer cuprate with the highest Tc, 95 kelvin (refs 26, 27, 28). We found that the charge-density-wave puddles, like the steam bubbles in boiling water, have a fat-tailed size distribution that is typical of self-organization near a critical point. However, the quenched disorder, which arises from oxygen interstitials, has a distribution that is contrary to the usually assumed random, uncorrelated distribution. The interstitial-oxygen-rich domains are spatially anticorrelated with the charge-density-wave domains, because higher doping does not favour the stripy charge-density-wave puddles, leading to a complex emergent geometry of the spatial landscape for superconductivity.
Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor.
Campi, G; Bianconi, A; Poccia, N; Bianconi, G; Barba, L; Arrighetti, G; Innocenti, D; Karpinski, J; Zhigadlo, N D; Kazakov, S M; Burghammer, M; Zimmermann, M v; Sprung, M; Ricci, A
2015-09-17
It has recently been established that the high-transition-temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high-temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant order that provides a basis for nanoscale phase separation remains a key open question, because experiments have yet to probe the unknown spatial distribution at both the nanoscale and mesoscale (between atomic and macroscopic scale). Here we report micro X-ray diffraction imaging of the spatial distribution of both short-range charge-density-wave 'puddles' (domains with only a few wavelengths) and quenched disorder in HgBa2CuO4 + y, the single-layer cuprate with the highest Tc, 95 kelvin (refs 26-28). We found that the charge-density-wave puddles, like the steam bubbles in boiling water, have a fat-tailed size distribution that is typical of self-organization near a critical point. However, the quenched disorder, which arises from oxygen interstitials, has a distribution that is contrary to the usually assumed random, uncorrelated distribution. The interstitial-oxygen-rich domains are spatially anticorrelated with the charge-density-wave domains, because higher doping does not favour the stripy charge-density-wave puddles, leading to a complex emergent geometry of the spatial landscape for superconductivity. PMID:26381983
The Charge Density and Electrostatic Potential of Three Dinitramide Salts
Martin, Anthony
The aim of this dissertation was to obtain information about the redistribution of electrons due to effects such as chemical bonding using X-ray diffraction. There is a great deal of current interest in the production of new energetic materials. A new class of the salts based on the dinitramide anion, N(NO _2)_sp{2}{-}, DN has attracted some interest. Three dinitramide salts (ammonium, monoprotonated and diprotonated biguanidinium) have been selected for charge density analyses on the basis of the observed variation of the dinitramide anion in the room temperature structures and the potential applications of these compounds. However, while a good deal of work has gone into the methodology of charge density studies, relatively little has been done to improve the presentation of the results. As a result the quality of presentation has remained essentially unchanged for twenty years. While this may sound like a triviality, it is visualization of data that produces information. Existing programs have been modified to produce output suitable for improved visualization, in particular using color and 3D computer graphics. From a chemist's viewpoint there were two aims for this project. The first was to see if the difference in the geometries of the dinitramide ion is reflected in the size and shape of the bonding electron density using experimental methods. The second aim was to obtain the electrostatic potential of the materials based on the experimentally determined electron density distribution in order to obtain some insight into the reactivity of the dinitramide ion. The different geometries produce observable differences in the deformation density. The electrostatic potential derived from the experimental electron density also shows variations with respect to the geometry and environment. These potentials have different minima and are also different from potentials produced from gas phase semi-empirical and ab-initio calculations. Whether the reactivity can be
Institute of Scientific and Technical Information of China (English)
穆海宝; 张冠军
2011-01-01
Surface charges greatly affect the discharge/flashover development process across an insulator. The relationship between surface charge distribution on insulating materials and measurement data based on Pockels technique is discussed, and an improved algorithm is built to calculate the real surface charge density from original data. In this algorithm, two-dimensional Fourier transform technique and Wiener filter are employed to reduce the amount of numerical calculation and improve the stability of computation, Moreover, this algorithm considers not only the influence of sample＇s thickness and permittivity, but also the impact of charges at different positions. The achievement of this calibration algorithm is demonstrated in details. Compared with traditional algorithms, the improved one supplies a better solution in the calibration of surface charge distribution on different samples with different thickness.
Possibilities of increasing coal charge density by adding fuel oil
Directory of Open Access Journals (Sweden)
M. Fröhlichová
2010-01-01
Full Text Available The requirement of all coke-making facilities is to achieve the highest possible production of high quality coke from a chamber. It can be achieved by filling the effective capacity of the chamber with the highest possible amount of coal. One of the possibilities of meeting this requirement is to increase the charge density in the coke chamber. In case of a coke battery operating on bulk coal there are many methods to increase the charge density including the use of wetting agents in the charge. This article presents the results of the laboratory experiments aiming at the increase of the charge density using fuel oil as a wetting agent. The experiments were carried out by means of the Pitin’s device using 3 coal charges with various granularity composition and moisture content of 7, 8, 9 and 10 %.
A charge-density study of crystalline beryllium
International Nuclear Information System (INIS)
The X-ray structure factors for crystalline beryllium measured by Brown [Phil. Mag. (1972), 26, 1377] have been analyzed with multipole deformation functions for charge-density information. Single exponential radial functions were used for the valence charge density. A valence monopole plus the three harmonics, P35(cos theta) sin 3phi, P6(cos theta) and P37(cos theta) sin 3phi, provide a least-squares fit to the data with Rsub(w)=0.0081. The superposition of these density functions describes a bonding charge density between Be atoms along the c axis through the tetrahedral vacancy. The results reported here are in qualitative agreement with a recent pseudo-potential calculation of metallic beryllium. The final residuals in the analysis are largest at high sin theta/lambda values. This suggests that core charge deformation is present and/or anharmonic motion of the nuclei is appreciable. (Auth.)
The density curve of F distribution
Institute of Scientific and Technical Information of China (English)
LIU Xiaopeng; LIU Kunhui
2004-01-01
Employing the properties of special function,we discuss the positional relation between two density curves with different parameters for F distribution in this paper.Some varying regularities about the position of density curve of F distribution have been obtained.
International Nuclear Information System (INIS)
In this work, we assess a full spectrum of properties (chemical bonding, charge distribution, spin ordering, optical, and elastic properties) of Cr2AC (A = Al, Ge) and their hypothetical nitride counterparts Cr2AN (A = Al, Ge) based on density functional theory calculations. The calculated total energy values indicate that a variety of spin ordering of these four compounds depending on interlayer-interactions between M-A and M-X within the sublattice, which is supported by bonding analysis. MAX phase materials are discovered to possess exotic magnetic properties which indicates that these materials could serve as promising candidates for novel layered magnetic materials for various electronic and spintronic applications. Further analysis of optical properties for two polarization vectors of Cr2AX shows that the reflectivity is high in the visible-ultraviolet region up to ∼15 eV suggesting Cr2AX as a promising candidate for use as a coating material. The elastic coefficients (Cij) and bulk mechanical properties [bulk modulus (K), shear modulus (G), Young's modulus (E), Poisson's ratio (η), and Pugh ratio (G/K)] of these four Cr2AX compounds are also calculated and analyzed, which pave the way to predict or design new MAX phases that are less brittle or tougher by having a lower G/K value or higher η
Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Park, Sang-Hee Ko; Choi, Kyung Cheol
2016-05-01
We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al2O3, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔVth) was 0 V even after a PBS time (tstress) of 3000 s under a gate voltage (VG) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔVth value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔVth values resulting from PBS quantitatively, the average oxide charge trap density (NT) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher NT resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of NT near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.
Electromagnetic form factors and charge densities from hadrons to nuclei
International Nuclear Information System (INIS)
A simple exact covariant model in which a scalar particle Ψ is modeled as a bound state of two different particles is used to elucidate relativistic aspects of electromagnetic form factors F(Q2). The model form factor is computed using an exact covariant calculation of the lowest order triangle diagram. The light-front technique of integrating over the minus component of the virtual momentum gives the same result and is the same as the one obtained originally by Gunion et al. [Phys. Rev. D 8, 287 (1973)] by using time-ordered perturbation theory in the infinite-momentum frame. The meaning of the transverse density ρ(b) is explained by providing a general derivation, using three spatial coordinates, of its relationship with the form factor. This allows us to identify a mean-square transverse size 2>=∫d2b b2ρ(b)=-4(dF/dQ2)(Q2=0). The quantity 2> is a true measure of hadronic size because of its direct relationship with the transverse density. We show that the rest-frame charge distribution is generally not observable by studying the explicit failure to uphold current conservation. Neutral systems of two charged constituents are shown to obey the conventional lore that the heavier one is generally closer to the transverse origin than the lighter one. It is argued that the negative central charge density of the neutron arises, in pion-cloud models, from pions of high longitudinal momentum that reside at the center. The nonrelativistic limit is defined precisely, and the ratio of the binding energy B to the mass M of the lightest constituent is shown to govern the influence of relativistic effects. It is shown that the exact relativistic formula for F(Q2) is the same as the familiar one of the three-dimensional Fourier transform of a square of a wave function for very small values of B/M, but this only occurs for values of B/M less than about 0.001. For masses that mimic the quark-diquark model of the nucleon we find that there are substantial relativistic
Ion distribution function in ion space-charge region
International Nuclear Information System (INIS)
Experimental results for the ion distribution functions measured into an ion space-charge region near the negatively biased grid of a multipolar confinement plasma system are presented. The ion space charge is produced in argon plasma at a pressure of about 10-4 mbar. Plasma parameters in source chamber were electron density in the range 108 to 1010 cm-3 and electron temperature in the range 0.5 to 6.0 eV. The ion distribution functions were measured using a small electrostatic analyser with two grids of about 8 mm effective diameter and 48% optical transparency. The are two regimes for ion space-charge formation: one regime is stable and another is unstable. The latter consists of large current fluctuations in external electrical circuits. The ion distribution functions for both regimes are measured and the differences between them are pointed out. In the nonstationary regime the ion distribution functions are broader than in the stationary one. This effect is more important if the distance between the grid and the electrostatic analyser is greater than the ion space-charge position. (authors)
Do plasma proteins distinguish between liposomes of varying charge density?
Capriotti, Anna Laura
2012-03-01
Cationic liposomes (CLs) are one of the most employed nonviral nanovector systems in gene therapy. However, their transfection efficiency is strongly affected by interactions with plasma components, that lead to the formation of a "protein corona" onto CL surface. The interactions between nanoparticles entering the body and biomolecules have an essential role for their biodistribution. Because the knowledge of proteins adsorbed onto vector surface could be useful in the screening of new, more efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry, and quantified with label-free spectral counting strategy. Fibrinogen displayed higher association with CLs with high membrane charge density, while apolipoproteins and C4b-binding protein with CLs with low membrane charge density. These results are discussed in terms of the different lipid compositions of CLs and may have a deep biological impact for in vivo applications. Surface charge of nanoparticles is emerging as a relevant factor determining the corona composition after interaction with plasma proteins. Remarkably, it is also shown that the charge of the protein corona formed around CLs is strongly related to their membrane charge density. © 2012 Elsevier B.V.
Indian Academy of Sciences (India)
K B Joshi; Nishant N Patel
2008-02-01
Charge density calculations and electronic band structures for GaAl1- = 1.0, 0.5 and 0.0 are presented in this work. The calculations are performed using the empirical pseudopotential method. The charge density is computed for a number of planes, i.e. = 0:0, 0.125 and 0.25 0 by generating the potential through a number of potential parameters available in the literature. The virtual crystal approximation was applied for the semiconducting alloy. The characteristics of the band structure and charge density are observed to be affected by the potential parameters. Calculated band gaps and the nature of gaps are in good agreement with the experimental data reported. The ionicity is also reasonably in good agreement with other scales proposed in the literature; however the formulation needs to be improved. The present work also demands indirect experimental band gap for the alloy.
Charge distribution and radii in clusters from nuclear pasta models
International Nuclear Information System (INIS)
We study the consistency of the description of charge distributions and radii of nuclear clusters obtained with semiclassical nuclear pasta models. These nuclei are expected to exist in the low density outer crust of neutron stars. Properties of the arising clusterized nucleon matter can be compared to realistic nuclear properties as experimentally extracted on earth. We focus on non iso-symmetric light clusters with nucleon number 8 ≤ A ≤ 30 and use Monte Carlo many-body techniques. We simulate isotopic chains for a set of selected nuclei using a model Hamiltonian consisting of the usual kinetic term, hadronic nucleon nucleon (NN), Coulomb and an effective density dependent Pauli potential. It is shown that for neutron rich (deficient) clusters neutron (proton) skins develop. Different (matter, neutron, proton, electric charge) radii are computed for this set of non iso-symmetric nuclei. Nuclear binding energies are also analyzed in the isotopic chains. (author)
Gravity dual of spin and charge density waves
Jokela, Niko; Järvinen, Matti(Crete Center for Theoretical Physics, Department of Physics, University of Crete, 71003, Heraklion, Greece); Lippert, Matthew
2014-01-01
At high enough charge density, the homogeneous state of the D3-D7’ model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.
Numerical calculation of impurity charge state distributions
Energy Technology Data Exchange (ETDEWEB)
Crume, E. C.; Arnurius, D. E.
1977-09-01
The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly.
Saeed Hatamzadeh-Varmazyar; Zahra Masouri
2014-01-01
The focus of this article is on calculation of electrostatic charge distribution induced on conducting surfaces. For this purpose, the integral equation concept is used for mathematical modeling of the problem. A special set of exponential basis functions is introduced and defined to be used in formulation of a numerical method for solving the integral equation to obtain the charge distribution. The method is numerically evaluated via calculation of charge density for some structures by which...
Branched–linear polyion complexes at variable charge densities
International Nuclear Information System (INIS)
Structural behavior of complexes formed by a charged and branched copolymer and an oppositely charged and linear polyion was examined by Monte Carlo simulations employing a coarse-grained bead–spring model. The fractional bead charge and the branching density were systematically varied; the former between 0e and 1e and the latter such that both the comb-polymer and the bottle-brush limits were included. The number of beads of the main chain of the branched copolymer and of the linear polyion was always kept constant and equal, and a single side-chain length was used. Our analysis involved characterization of the complex as well as investigation of size, shape, and flexibility of the charged moieties. An interplay between Coulomb interaction and side-chain repulsion governed the structure of the polyion complex. At strong Coulomb interaction, the complexes underwent a gradual transition from a globular structure at low branching density to an extended one at high branching density. As the electrostatic coupling was decreased, the transition was smoothened and shifted to lower branching density, and, eventually, a behavior similar to that found for neutral branched polymer was observed. Structural analogies and dissimilarities with uncharged branched polymers in poor solutions are discussed. (paper)
Pressure induced Superconductivity in the Charge Density Wave Compound Tritelluride
Energy Technology Data Exchange (ETDEWEB)
Hamlin, J.J.; Zocco, D.A.; Sayles, T.A.; Maple, M.B.; /UC, Davis; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.
2010-02-15
A series of high-pressure electrical resistivity measurements on single crystals of TbTe{sub 3} reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave order. The onset of superconductivity reaches a maximum of almost 4 K (onset) near {approx} 12.4 GPa.
Charge density wave dynamics from ultrafast XUV ARPES
Directory of Open Access Journals (Sweden)
Frassetto F.
2013-03-01
Full Text Available Ultrafast angle–resolved XUV photoemission reveals the time- and momentum-dependent electronic structure of 1T–TaS2, a hybrid Mott and charge-density-wave insulator. Both electronic orderings melt well before the lattice responds, suggesting that electronic correlations play a role not just in the Mott localization but in the CDW ordering as well.
Gate effect in charge-density wave nanowires
Slot, E.; Holst, M.A.; Van der Zant, H.S.J.
2005-01-01
We have investigated transport characteristics of charge-density wave nanowires with a few hundred parallel chains. At temperatures below50K, these samples show power-law behavior in temperature and voltage, characteristic for one-dimensional transport. In this regime, gate dependent transport has b
Beyond Poisson-Boltzmann: Numerical Sampling of Charge Density Fluctuations.
Poitevin, Frédéric; Delarue, Marc; Orland, Henri
2016-07-01
We present a method aimed at sampling charge density fluctuations in Coulomb systems. The derivation follows from a functional integral representation of the partition function in terms of charge density fluctuations. Starting from the mean-field solution given by the Poisson-Boltzmann equation, an original approach is proposed to numerically sample fluctuations around it, through the propagation of a Langevin-like stochastic partial differential equation (SPDE). The diffusion tensor of the SPDE can be chosen so as to avoid the numerical complexity linked to long-range Coulomb interactions, effectively rendering the theory completely local. A finite-volume implementation of the SPDE is described, and the approach is illustrated with preliminary results on the study of a system made of two like-charge ions immersed in a bath of counterions. PMID:27075231
Investigation of space charge in low-density polyethylene using a field probe technique
DEFF Research Database (Denmark)
Khalil, M. Salah; Hansen, Bo Svarrer
1988-01-01
A test method that uses a capacitive field probe to investigate the space charge distribution in low-density polyethylene (LDPE) is described. Specimens of 7-mm thickness were stressed under 100 kV DC at room temperature and for different time periods. The results indicate that the LDPE insulation...
Ionic strength independence of charge distributions in solvation of biomolecules.
Virtanen, J J; Sosnick, T R; Freed, K F
2014-12-14
Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other. PMID:25494774
Battery peak charge voltage monitor for dual air density satellite
Shull, T. A.
1975-01-01
A battery peak charge voltage monitor was developed for use on the dual air density satellite (DADS). This device retains a reading of the maximum voltage reached by the spacecraft battery during periods of charging, and makes it available during periods of data transmission. The monitor is connected across the battery and operates solely from the battery; it is powered continuously with quiescent input current of only 3 milliamperes. Standard integrated circuits and a thin-film resistor network are utilized. The monitor occupies approximately 40 square centimeters of a printed-circuit board within a larger electronic package.
A distributed charge storage with GeO2 nanodots
International Nuclear Information System (INIS)
In this study, a distributed charge storage with GeO2 nanodots is demonstrated. The mean size and aerial density of the nanodots embedded in SiO2 are estimated to be about 5.5 nm and 4.3x1011 cm-2, respectively. The composition of the dots is also confirmed to be GeO2 by x-ray absorption near-edge structure analyses. A significant memory effect is observed through the electrical measurements. Under the low voltage operation of 5 V, the memory window is estimated to ∼0.45 V. Also, a physical model is proposed to demonstrate the charge storage effect through the interfacial traps of GeO2 nanodots
DEFF Research Database (Denmark)
Jensen, Mogens Høgh; Lomdahl, P. S.
1982-01-01
lower and higher charge than ±2e / 3. The effect of discreteness is taken into account and gives rise to chaotic deformed solitons as the interchain coupling increases. The model may be applied to tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) under 19-kbar pressure.......We have studied the effect of interchain interaction on thermally excited solitons in a charge-density wave for a Peierls system of commensurability 3. In such a system solitons with charges ±2e / 3 are expected. It is shown that the interchain coupling in some cases will generate solitons with...
Geometric interpretation of density displacements and charge sensitivities
Indian Academy of Sciences (India)
Roman F Nalewajski
2005-09-01
The ``geometric” interpretation of the electronic density displacements in the Hilbert space is given and the associated projection-operator partitioning of the hardness and softness operators (kernels) is developed. The eigenvectors |á 〉 = \\{| 〉 \\} of the hardness operator define the complete (identity) projector $\\hat{P}$ = | 〉 〈 = 1 for general density displacements, including the charge-transfer (CT) component, while the eigenvectors | i 〉 = { | 〉} of the linear response operator determine the polarizational -projector, $\\hat{P}$ = | 〉 〈 |. Their difference thus defines the complementary CT-projector: $\\hat{P}$ = 1 - $\\hat{P}$. The complete vector space for density displacements can be also spanned by supplementing the -modes with the homogeneous CT-mode. These subspaces separate the integral (normalization) and local aspects of density shifts in molecular systems.
Fast electronic resistance switching involving hidden charge density wave states
Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.
2016-05-01
The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.
Fast electronic resistance switching involving hidden charge density wave states.
Vaskivskyi, I; Mihailovic, I A; Brazovskii, S; Gospodaric, J; Mertelj, T; Svetin, D; Sutar, P; Mihailovic, D
2016-01-01
The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states. PMID:27181483
Scattered surface charge density: A tool for surface characterization
Naydenov, Borislav
2011-11-28
We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.
Pion transverse charge density from timelike form factor data
Energy Technology Data Exchange (ETDEWEB)
Gerald Miller, Mark Strikman, Christian Weiss
2011-01-01
The transverse charge density in the pion can be represented as a dispersion integral of the imaginary part of the pion form factor in the timelike region. This formulation incorporates information from e+e- annihilation experiments and allows one to reconstruct the transverse density much more accurately than from the spacelike pion form factor data alone. We calculate the transverse density using an empirical parametrization of the timelike pion form factor and estimate that it is determined to an accuracy of ~10% at a distance b ~ 0.1 fm, and significantly better at larger distances. The density is found to be close to that obtained from a zero-width rho meson pole over a wide range and shows a pronounced rise at small distances. The resulting two-dimensional image of the fast-moving pion can be interpreted in terms of its partonic structure in QCD. We argue that the singular behavior of the charge density at the center requires a substantial presence of pointlike configurations in the pion's partonic wave function, which can be probed in other high-momentum transfer processes.
Statistical nuclear properties (level densities, spin distributions)
International Nuclear Information System (INIS)
A general overview is given on the phenomenological methods used to describe the level densities in nuclei. Two well-known two-parameter formulas of level densities, the Back-Shifted Fermi Gas (BSFG) model and the Constant Temperature (CT) model, were used. A common ingredient of both is the spin distribution function, which contains in Ericsons's parametrization the spin-cutoff parameter σ. A realistic description of the parameters of both spin distribution function and the two level density models has been obtained by fitting the experimental data of 310 nuclei between 18F and 251Cf, consisting of the complete level schemes at low excitation energies and the s-wave neutron resonance spacings at the neutron binding energy. We determine a simple formula for the spin-cutoff parameter as a function of mass number and excitation energy. Also, an even-odd spin staggering in the spin distribution of the even-even nuclei was observed, and described with a simple formula. Using this newly defined spin distribution function, an empirical set of parameters of the BSFG and CT models was determined by fitting both the low-energy levels and the neutron resonance spacings. For these parameters, simple formulas were proposed that involve only quantities available from the mass tables, and allow reasonable estimations of the level density parameters for nuclei far from stability. Both the BSFG and CT models describe equally well the level densities at energies up to at least the neutron binding energy. Finally, we discuss recent experimental evidence that the CT model is the more correct description of the nuclei in the low-excitation energy (pairing) regime.
Electric Vehicle (EV) Charging Management with Dynamic Distribution System Tariff
DEFF Research Database (Denmark)
O'Connell, Niamh; Wu, Qiuwei; Østergaard, Jacob;
2011-01-01
congestions in local distribution systems from the day-ahead planning perspective. Locational marginal pricing method was used to determine the dynamic distribution system tariff based on predicted day-ahead spot prices and predicted charging behaviors. Distribution grids of the Bornholm power system were......An electric vehicle (EV) charging schedule algorithm was proposed in this paper in order to charge EVs to meet EV users’ driving needs with the minimum EV charging cost and respect the local distribution system constraints. A day-ahead dynamic distribution system tariff scheme was proposed to avoid...
Surface Phason-Polaritons in Charge Density Wave Films
Wonneberger, W.; Lamche, R.
1997-01-01
The coupled non-radiative excitations of the electromagnetic field and phasons in films with a quasi one-dimensional charge density wave (CDW) are evaluated for P--polarization and CDW conducting axis inside the film. The prominent features are two surface phason-polariton branches extending from the CDW pinning frequency to the frequency of the longitudinal optical phason. These surface phason-polariton states are confined to a finite band of longitudinal wave numbers. Besides surface polari...
Odd parity charge density-wave scattering in cuprates
Seibold, G; Grilli, M.; Lorenzana, J.
2009-01-01
We investigate a model where superconducting electrons are coupled to a frequency dependent charge-density wave (CDW) order parameter Delta(w). Our approach can reconcile the simultaneous existence of low energy Bogoljubov quasiparticles and high energy electronic order as observed in scanning tunneling microscopy (STM) experiments. The theory accounts for the contrast reversal in the STM spectra between positive and negative bias observed above the pairing gap. An intrinsic relation between ...
X-ray spectrum of a pinned charge density wave
Rosso, Alberto; Giamarchi, Thierry
2004-01-01
We calculate the x-ray diffraction spectrum produced by a pinned charge density wave (CDW). The signature of the presence of a CDW consists of two satellite peaks, asymmetric as a consequence of disorder. The shape and the intensity of these peaks are determined in the case of a collective weak pinning using the variational method. We predict divergent asymmetric peaks, revealing the presence of a Bragg glass phase. We deal also with the long range Coulomb interactions, concluding that both p...
Non-linear conductivity of charge-density-wave systems
Werner, C. R.; Eckern, U.
1997-01-01
We consider the problem of sliding motion of a charge-density-wave subject to static disorder within an elastic medium model. Starting with a field-theoretical formulation, which allows exact disorder averaging, we propose a self-consistent approximation scheme to obtain results beyond the standard large-velocity expansion. Explicit calculations are carried out in three spatial dimensions. For the conductivity, we find a strong-coupling regime at electrical fields just above the pinning thres...
Bond charge approximation for valence electron density in elemental semiconductors
International Nuclear Information System (INIS)
The spatial valence electron distribution in silicon and diamond is calculated in adiabatic bond charge approximation at zero temperature when bond charges have the Gaussian shape and their tensor character is taken into account. An agreement between theory and experiment has been achieved. For this purpose Xia's ionic pseudopotentials and Schulze-Unger's dielectric function are used. By two additional parameters Asub(B) and Zsub(B)sup(') we describe the spatial extent of the bond charge and local-field corrections, respectively. The parameter Zsub(B)sup(') accounts for the ratio between the Coulomb and exchange correlation interactions of the valence electrons and its silicon and diamond values have different signs. (author)
Negative density-distribution relationship in butterflies
Kotiaho Janne S; Komonen Atte; Kaitala Veijo; Grapputo Alessandro; Päivinen Jussi; Saarinen Kimmo; Wahlberg Niklas
2005-01-01
Background. Because "laws of nature" do not exist in ecology, much of the foundations of community ecology rely on broad statistical generalisations. One of the strongest generalisations is the positive relationship between density and distribution within a given taxonomic assemblage; that is, locally abundant species are more widespread than locally sparse species. Several mechanisms have been proposed to create this positive relationship, and the testin...
Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction
International Nuclear Information System (INIS)
Complex hydrides, such as lithium amide (LiNH2) and lithium imide (Li2NH), have recently been noticed as one of the most promising materials for reversible hydrogen storage. In this paper, we reveal the bonding nature of hydrogen in Li2NH crystal by synchrotron powder X-ray diffraction measurement at room temperature. The crystal structure was refined by Rietveld method and the charge density distribution was analyzed by maximum entropy method (MEM). The Li2NH crystal is anti-fluorite type structure (space group Fm3-bar m) consisting of Li and NH. Hydrogen atom occupies randomly the 48h (Wyckoff notation) sites around N atom. The refined lattice constant is a=5.0742(2)A. The charge density distribution around NH anion in Li2NH is almost spherical. The number of electrons within the sphere around the Li and NH is estimated from the obtained charge density distribution. As the result, the ionic charge is expressed as [Li0.99+]2[NH]1.21-. Therefore, it is confirmed experimentally that Li2NH is ionically bonded
Charge density wave crossover at low fillings in the fractional quantum Hall regime
International Nuclear Information System (INIS)
We show that besides the Wigner Crystal, the lowest Landau level supports a state with the same crystalline symmetry but qualitatively different charge density distribution at low densities. Instead of periodic peaks the new state forms percolating ridges that may favor an energy decrease through correlated ring exchange contributions. For the case of half electron per cell a crossover is found close to filling 1/7 between this new state and the Wigner-like solid, showing that transitions may occur from one to the other as the electron density is varied. This result is consistent with recent experimental findings. (author)
Charge Distribution Dependency on Gap Thickness of CMS Endcap RPC
Park, Sung K; Lee, Kyongsei
2016-01-01
We report a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness. Prototypes of double-gap RPCs with six different gap thickness ranging from from 1.0 to 2.0 mm in 0.2-mm steps have been built with 2-mm-thick phenolic high-pressure-laminated plates. The efficiencies of the six gaps are measured as a function of the effective high voltages. We report that the strength of the electric fields of the gap is decreased as the gap thickness is increased. The distributions of charges in six gaps are measured. The space charge effect is seen in the charge distribution at the higher voltages. The logistic function is used to fit the charge distribution data. Smaller charges can be produced within smaller gas gap. But the digitization threshold should be also lowered to utilize these smaller charges.
From super-charged nuclei to massive nuclear density cores
Popov, Vladimir
2010-01-01
Due to $e^+e^-$-pair production in the field of supercritical $(Z \\gg Z_{cr}\\approx 170 $) nucleus an electron shell, created out of the vacuum, is formed. The distribution of the vacuum charge in this shell has been determined for super-charged nuclei $Ze^3 \\ga 1$ within the framework of the Thomas-Fermi equation generalized to the relativistic case. For $Ze^3 \\gg 1$ the electron shell penetrates inside the nucleus and almost completely screens its charge. Inside such nucleus the potential takes a constant value equal to $V_0=-(3\\pi^2 n_p)^{1/3} \\sim -2m_{\\pi}c^2$, and super-charged nucleus represents an electrically neutral plasma consisting of $e,p$ and $n$. Near the edge of the nucleus a transition layer exists with a width $\\lambda \\approx \\alpha^{-1/2} \\hbar/m_{\\pi} c\\sim 15$ fm, which is independent of $Z~~ (\\hbar/m_{\\pi} c \\ll \\lambda \\ll \\hbar/m_e c)$. The electric field and surface charge are concentrated in this layer. These results, obtained earlier for hypothetical superheavy nuclei with $Z \\sim ...
Boissier, Samuel; Peroux, Celine; Pettini, Max
2002-01-01
We present a comparison between the observed properties of damped Lyman alpha systems (DLAs) and the predictions of simple models for the evolution of present day disk galaxies, including both low and high surface brightness galaxies. We focus in particular on the number density, column density distribution and gas density of DLAs, which have now been measured in relatively large samples of absorbers. From the comparison we estimate the contribution of present day disk galaxies to the populat...
Charge Order Induced in an Orbital Density-Wave State
Singh, Dheeraj Kumar; Takimoto, Tetsuya
2016-04-01
Motivated by recent angle resolved photoemission measurements [D. V. Evtushinsky et al., Phys. Rev. Lett. 105, 147201 (2010)] and evidence of the density-wave state for the charge and orbital ordering [J. García et al., Phys. Rev. Lett. 109, 107202 (2012)] in La0.5Sr1.5MnO4, the issue of charge and orbital ordering in a two-orbital tight-binding model for layered manganite near half doping is revisited. We find that the charge order with the ordering wavevector 2{Q} = (π ,π ) is induced by the orbital order of d-/d+-type having B1g representation with a different ordering wavevector Q, where the orbital order as the primary order results from the strong Fermi-surface nesting. It is shown that the induced charge order parameter develops according to TCO - T by decreasing the temperature below the orbital ordering temperature TCO, in addition to the usual mean-field behavior of the orbital order parameter. Moreover, the same orbital order is found to stabilize the CE-type spin arrangement observed experimentally below TCE < TCO.
Modeling charged defects inside density functional theory band gaps
International Nuclear Information System (INIS)
Density functional theory (DFT) has emerged as an important tool to probe microscopic behavior in materials. The fundamental band gap defines the energy scale for charge transition energy levels of point defects in ionic and covalent materials. The eigenvalue gap between occupied and unoccupied states in conventional DFT, the Kohn–Sham gap, is often half or less of the experimental band gap, seemingly precluding quantitative studies of charged defects. Applying explicit and rigorous control of charge boundary conditions in supercells, we find that calculations of defect energy levels derived from total energy differences give accurate predictions of charge transition energy levels in Si and GaAs, unhampered by a band gap problem. The GaAs system provides a good theoretical laboratory for investigating band gap effects in defect level calculations: depending on the functional and pseudopotential, the Kohn–Sham gap can be as large as 1.1 eV or as small as 0.1 eV. We find that the effective defect band gap, the computed range in defect levels, is mostly insensitive to the Kohn–Sham gap, demonstrating it is often possible to use conventional DFT for quantitative studies of defect chemistry governing interesting materials behavior in semiconductors and oxides despite a band gap problem
Plasma Density Distribution Profile in Toroidal Discharge
International Nuclear Information System (INIS)
Tokamak is an electrode less toroidal plasma discharge system whichcontains and heats the plasma by using magnetic field and heating system suchas RF and neutral beams respectively. Using the system, tokamak is expectedto be a most advanced facility in fusion reactor concept. The importantparameters in tokamak are plasma current, plasma discharge voltage,temperature and density, plasma density profile and confinement time.However, the facility belonged to this center (P3TM) is very simple thatmeans a toroidal discharge without confinement magnetic filed and anadditional heating. The preceding result showed that it had been obtainedsome important parameters such as plasma current, discharge current, plasmavoltage and induced poloidal magnetic field. While plasma temperature andplasma density and its profile have not been observed. The one of somediagnostics to be used to determine this parameter is a Langmuir probe.Langmuir probe is an oldest diagnostic tool, simple and quite easy to bemade. The most advantage by using this probe is its ability to measure thecurrent locally. In this experiment, the home made Langmuir probe is atungsten wire with 0.8 mm in diameter enveloped by glass tube and inserted intorus tube. The torus is operated at 1 mbar argon gas pressure and 7.5 kVoperating voltage. The power source is a 330006 Maxwell type capacitor with15 micro farad, and charging system is a 825-100 Hipotronics model which canhold 20 kV of voltage and deliver 100 mA of current. The experiment resultshowed that the relative radial density profile has an exponential relationwith the approaching function is nrel ∝ e-0.54r, r isradial position. (author)
Charge density waves in strongly correlated electron systems
Chen, Chih-Wei; Choe, Jesse; Morosan, E.
2016-08-01
Strong electron correlations are at the heart of many physical phenomena of current interest to the condensed matter community. Here we present a survey of the mechanisms underlying such correlations in charge density wave (CDW) systems, including the current theoretical understanding and experimental evidence for CDW transitions. The focus is on emergent phenomena that result as CDWs interact with other charge or spin states, such as magnetism and superconductivity. In addition to reviewing the CDW mechanisms in 1D, 2D, and 3D systems, we pay particular attention to the prevalence of this state in two particular classes of compounds, the high temperature superconductors (cuprates) and the layered transition metal dichalcogenides. The possibilities for quantum criticality resulting from the competition between magnetic fluctuations and electronic instabilities (CDW, unconventional superconductivity) are also discussed.
Charge-density waves physics revealed by photoconduction
Energy Technology Data Exchange (ETDEWEB)
Zaitsev-Zotov, S.V., E-mail: serzz@cplire.ru [Kotel' nikov Institute of Radio-engineering and Electronics of the RAS, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Nasretdinova, V.F.; Minakova, V.E. [Kotel' nikov Institute of Radio-engineering and Electronics of the RAS, 125009 Moscow (Russian Federation)
2015-03-01
The results of photoconduction study of the Peierls conductors are reviewed. The studied materials are quasi-one-dimensional conductors with the charge-density wave: K{sub 0.3}MoO{sub 3}, both monoclinic and orthorhombic TaS{sub 3} and also a semiconducting phase of NbS{sub 3} (phase I). Experimental methods, relaxation times, effects of illumination on linear and nonlinear charge transport, the electric-field effect on photoconduction and results of the spectral studies are described. We demonstrate, in particular, that a simple model of modulated energy gap slightly smoothed by fluctuations fits the available spectral data fairly well. The level of the fluctuations is surprisingly small and does not exceed a few percent of the optical energy gap value.
Charge density waves in strongly correlated electron systems.
Chen, Chih-Wei; Choe, Jesse; Morosan, E
2016-08-01
Strong electron correlations are at the heart of many physical phenomena of current interest to the condensed matter community. Here we present a survey of the mechanisms underlying such correlations in charge density wave (CDW) systems, including the current theoretical understanding and experimental evidence for CDW transitions. The focus is on emergent phenomena that result as CDWs interact with other charge or spin states, such as magnetism and superconductivity. In addition to reviewing the CDW mechanisms in 1D, 2D, and 3D systems, we pay particular attention to the prevalence of this state in two particular classes of compounds, the high temperature superconductors (cuprates) and the layered transition metal dichalcogenides. The possibilities for quantum criticality resulting from the competition between magnetic fluctuations and electronic instabilities (CDW, unconventional superconductivity) are also discussed. PMID:27376547
Tensor Metrics and Charged Containers for 3D Q-space Sample Distribution
Knutsson, Hans; Westin, Carl-Fredrik
2013-01-01
This paper extends Jones’ popular electrostatic repulsion based algorithm for distribution of single-shell Q-space samples in two fundamental ways. The first alleviates the single-shell requirement enabling full Q-space sampling. Such an extension is not immediately obvious since it requires distributing samples evenly in 3 dimensions. The extension is as elegant as it is simple: Add a container volume of the desired shape having a constant charge density and a total charge equal to the negat...
Measuring charge density of electron beam single nanosecond pulses
International Nuclear Information System (INIS)
A description is presented of a probe design and electrometric repeater circuit and technique for measuring the charge (current) density of electron beam single pulses by integrating current at a reference capacitor with a subsequent registering of voltage across the capacitor. The probe consists of a band-type signal electrodes and two oval cross-section sleeves: external and internal with larger and smaller rectangular openings, respectively. The external sleeve has antidynatron grid located over the hole. The design employs integer nickel sleever - the cores of electron tube cathodes. The signal electrode is made of nickel band 0.15 mm thick. The probe elements are insulated from each other along the whole length with a layer of teflon band (30 μm), with rectangular openings cut in compliance with the sleeve openings. The measurement range is from 0.4x10-9 to 1x10-7 C/cm2. The rated accuracy of measurements is no worse than +-5% for the beam energy of 0.2 to 3 KeV. The ultimate parameters the charge density -6 C/cm2 and direct current density 3 mA/cm2 - are specified by the breakdown voltage (200 V) of the input capacitor and probe insulation
Blaise, G.; Pesty, F.; Garoche, P.
2009-02-01
Using a dedicated scanning electron microscope, operating in the spot mode, the charging properties of muscovite mica have been studied in the energy range of 100-8000 eV. The intrinsic yield curve σ0(E), representing the variation of the yield of the uncharged material with the energy E, has been established: the maximum value of the yield is 3.92 at E =300 eV and the two crossovers corresponding to σ0(E)=1 are, respectively, at energies EIexoemission (bursts of electrons) is produced at low energy when the net stored charge is positive. The interpretation of the current density effect on σ(D ) is based on the high rate of charging, the effect relative to negative charging is due to the expansion of the electron distribution, while the exoemission effect is due to the collective relaxation process of electrons.
Ghasemi, S. Alireza; Hofstetter, Albert; Saha, Santanu; Goedecker, Stefan
2015-07-01
Based on an analysis of the short-range chemical environment of each atom in a system, standard machine-learning-based approaches to the construction of interatomic potentials aim at determining directly the central quantity, which is the total energy. This prevents, for instance, an accurate description of the energetics of systems in which long-range charge transfer or ionization is important. We propose therefore not to target directly with machine-learning methods the total energy but an intermediate physical quantity, namely, the charge density, which then in turn allows us to determine the total energy. By allowing the electronic charge to distribute itself in an optimal way over the system, we can describe not only neutral but also ionized systems with unprecedented accuracy. We demonstrate the power of our approach for both neutral and ionized NaCl clusters where charge redistribution plays a decisive role for the energetics. We are able to obtain chemical accuracy, i.e., errors of less than a millihartree per atom compared to the reference density functional results for a huge data set of configurations with large structural variety. The introduction of physically motivated quantities which are determined by the short-range atomic environment via a neural network also leads to an increased stability of the machine-learning process and transferability of the potential.
Bardakçı, Tayyibe; Kumru, Mustafa; Altun, Ahmet
2016-07-01
The Cu(II), Zn(II), Cd(II), and Hg(II) bromide complexes of p-toluidine have been studied with B3LYP calculations by using def2-TZVP basis set at the metal atoms and using def2-TZVP and 6-311G+(d,p) basis sets at the remaining atoms. Both basis set combinations give analogous results, which validate the use of quickly converging 6-311G+(d,p) basis set in future studies. The molecular structures, atomic charge and spin distributions, and harmonic vibrational frequencies of the complexes have been calculated. The Zn, Cd and Hg complexes have been found to have distorted tetrahedral environments around the metal atoms whereas Cu complex has a square planar geometry. The NBO charge analysis have been found more accurate and less misleading compared with the Mulliken scheme. The present vibrational spectra calculations allow accurate assignment of the vibrational bands, which otherwise assigned tentatively in previous experimental-only studies.
Transverse charge and magnetization densities in the nucleon's chiral periphery
Energy Technology Data Exchange (ETDEWEB)
Granados, Carlos G. [JLAB Newport News, VA (United States); Weiss, Christian [JLAB Newport News, VA (United States)
2014-01-01
In the light-front description of nucleon structure the electromagnetic form factors are expressed in terms of frame-independent transverse densities of charge and magnetization. Recent work has studied the transverse densities at peripheral distances b = O(M{pi}{sup -1}), where they are governed by universal chiral dynamics and can be computed in a model-independent manner. Of particular interest is the comparison of the peripheral charge and magnetization densities. We summarize (a) their interpretation as spin-independent and -dependent current matrix elements; (b) the leading-order chiral effective field theory results; (c) their mechanical interpretation in the light-front formulation; (d) the large-N_c limit of QCD and the role of {Delta} intermediate states; (e) the connection with generalized parton distributions and peripheral high-energy scattering processes.
Charge-State Distributions of Accelerated ^{48}Ca Ions
Skobelev, N K; Astabatyan, R A; Vincour, J; Kulko, A A; Lobastov, S P; Lukyanov, S M; Markaryan, E R; Maslov, V A; Penionzhkevich, Yu E; Sobolev, Yu G; Ugryumov, V Yu
2003-01-01
A stepped pole broad-range magnetic analyzer has been used to measure the charge-state distributions of accelerated ^{48}Ca ions at the two incident energies 242.8 and 264.5 MeV after passing through thin carbon or gold target foils. The measured charge-state distributions and the mean equilibrium charge of the ^{48}Ca ions are compared with various calculations. It has been shown that the calculations can be used only for evaluation purposes.
Charge carrier density in Li-intercalated graphene
Kaloni, Thaneshwor P.
2012-05-01
The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.
Size dependence of the surface charge density in EDL-MF
Tourinho, F. A.; Campos, A. F. C.; Aquino, R.; Lara, M. C. F. L.; Depeyrot, J.
2002-11-01
We determine the surface charge density of electric double layered magnetic fluids based on manganese ferrite nanoparticles of two different sizes using simultaneous potentiometric-conductimetric titrations. The saturation superficial density of charge is reduced for smaller particles.
Size dependence of the surface charge density in EDL-MF
International Nuclear Information System (INIS)
We determine the surface charge density of electric double layered magnetic fluids based on manganese ferrite nanoparticles of two different sizes using simultaneous potentiometric-conductimetric titrations. The saturation superficial density of charge is reduced for smaller particles
The gravitational effect on induced charge density for an obliquely rotating neutron star
International Nuclear Information System (INIS)
The effect om the induced charge density of the gravitational field of a rotating neutron star with its magnetic axis inclined with respect to the rotational axis is investigated. While gravitation increases the charge density the obliquity reduces it
The gravitational effect on induced charge density for an obliquely rotating neutron star
Energy Technology Data Exchange (ETDEWEB)
De Paolis, F. [Delaware Univ., Newark (United States). Bartol Research Inst.; Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Qadir, A. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Tarman, I.H. [King Fahd University of Petroleum and Minerals, Dharan (Saudi Arabia). Dept. of Mathematical Sciences
1999-11-01
The effect om the induced charge density of the gravitational field of a rotating neutron star with its magnetic axis inclined with respect to the rotational axis is investigated. While gravitation increases the charge density the obliquity reduces it.
Shells of charge: a density functional theory for charged hard spheres.
Roth, Roland; Gillespie, Dirk
2016-06-22
A functional for the electrostatic excess free-energy for charged, hard sphere fluids is proposed. The functional is derived from two complementary, but equivalent, interpretations of the mean spherical approximation (MSA). The first combines fundamental measure theory (FMT) from hard-core interactions with the idea that MSA can be interpreted in terms of the interaction spherical shells of charge. This formulation gives the free-energy density as a function of weighted densities. When all the ions have the same size, the functional adopts an FMT-like form. The second in effect 'functionalizes' the derivation of MSA; that is, it generalizes the MSA as a functional-based version of MSA (fMSA). This formulation defines the free-energy density as a function of a position-dependent MSA screening parameter and the weighted densities of the FMT approach. This FMT/fMSA functional is shown to give accurate density profiles, as compared to Monte Carlo simulations, under a wide range of ion concentrations, size asymmetries, and valences. PMID:27116385
Precipitation particle charge distribution and evolution of East Asian rainbands
Takahashi, Tsutomu
2012-11-01
Numerous videosondes, balloon-borne surveyors of precipitation particle morphology and charge, have been launched into cloud systems in many, disparate locations in East Asia. Reported here are videosonde-based observations of early summer, Baiu rainbands at Tanegashima in southern Japan and of summer rainbands at Chiang Rai in northern Thailand. Precipitation particles are mapped by type and charge over the course of cloud development, allowing particle and charge evolution to be derived. The basic charge distribution as observed in Hokuriku winter thunderclouds at different cloud life stages was seen at different locations characterized by vertical velocity profiles in the cloud. The charge structure of the rainbands in both locations was a basic tripole. The major charge carriers were graupel and ice crystals. As graupel and ice crystal concentrations increased, not only did space charge increase, but per-particle charge also increased. Increased lightning activity was associated with higher particle space charge and lower cloud-top temperature. The particle charge evolution of these systems includes several fundamental features: a. active negative charging of graupel in an intense updraft, b. descent of negative graupel along the edge of an updraft column, c. merging of negative graupel with positively charged raindrops falling in the central cloud, and d. extended distribution of positive ice crystals in the stratiform cloud. The observations suggest that riming electrification was the main charge separation mechanism.
Spin and charge density waves in the Lieb lattice
Gouveia, J. D.; Dias, R. G.
2016-05-01
We study the mean-field phase diagram of the two-dimensional (2D) Hubbard model in the Lieb lattice allowing for spin and charge density waves. Previous studies of this diagram have shown that the mean-field magnetization surprisingly deviates from the value predicted by Lieb's theorem [1] as the on-site repulsive Coulomb interaction (U) becomes smaller [2]. Here, we show that in order for Lieb's theorem to be satisfied, a more complex mean-field approach should be followed in the case of bipartite lattices or other lattices whose unit cells contain more than two types of atoms. In the case of the Lieb lattice, we show that, by allowing the system to modulate the magnetization and charge density between sublattices, the difference in the absolute values of the magnetization of the sublattices, mLieb, at half-filling, saturates at the exact value 1/2 for any value of U, as predicted by Lieb. Additionally, Lieb's relation, mLieb = 1 / 2, is verified approximately for large U, in the n ∈ [ 2 / 3 , 4 / 3 ] range. This range includes not only the ferromagnetic region of the phase diagram of the Lieb lattice (see Ref. [2]), but also the adjacent spiral regions. In fact, in this lattice, below or at half-filling, mLieb is simply the filling of the quasi-flat bands in the mean-field energy dispersion both for large and small U.
The influence of density distribution on the stability of beams
International Nuclear Information System (INIS)
We examine the effect of various density distributions in four-dimensional phase space and their projections in real and velocity space on the stability of continuous beams in alternating-gradient transport lines using particle-following computer simulations. We discuss the susceptibility of three different distributions (Kapchinskii-Vladimirskii, bicylinder, and thermal) to third- and higher-order mode instabilities. These distributions are all uniform in real space, but their velocity distributions are different; they also react differently to structure resonances. Velocity distributions of high-current beams tend to evolve to a peaked Gaussian-like form. Is there a specific velocity distribution that is stable and, therefore, the preferred injection distribution for minimizing emittance growth? Forced smoothness or uniformity in real space is necessary for setting up particle simulations of high-current beams so that spurious charge-redistribution emittance growth can be avoided. Is forced smoothness also desirable in four dimensions for continuous beams and possibly in six dimensions for bunched beams? We consider these and related questions
Boson ground state fields in electroweak theory with non-zero charge densities
Syska, J.
2002-01-01
The "non-linear" self-consistent theory of classical fields in the electroweak model is proposed. Homogeneous boson ground state solutions in the GSW model at the presence of a non-zero extended fermionic charge densities are reviewed and fully reinterpreted to make the theory with non-zero charge densities fruitful. Consequences of charge density fluctuations are proposed.
The influence of oxidation on space charge formation in gamma-irradiated low-density polyethylene
Chen, G; Xie, H K; Banford, H M; Davies, A E
2003-01-01
The research presented in this paper investigates the role of oxidation in the formation of space charge in gamma-irradiated low-density polyethylene after being electrically stressed under dc voltage. Polyethylene plaques both with and without antioxidant were irradiated up to 500 kGy using a sup 6 sup 0 Co gamma source and space charge distributions were measured using the piezoelectric induced pressure wave propagation method. It has been found that a large amount of positive charge evolved adjacent to the cathode in the sample without antioxidant and was clearly associated with oxidation of the surface. The amount of charge formed for a given applied stress increased with the dose absorbed by the material. A model has been proposed to explain the formation of space charge and its profile. The charge decay after the removal of the external applied stress is dominated by a process being controlled by the cathode interfacial stress (charge injection) rather than a conventional RC circuit model. On the other ...
Matveev, Oleg; Shvaika, Andrij; Devereaux, Thomas; Freericks, James
The charge-density-wave phase of the Falicov-Kimball model displays a number of anomalous behavior including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field. Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for this nonlinear response. We examine both the current and the order parameter of the conduction electrons as the ordered system is driven by a dc electric field. Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, Ukraine.
Type A Distributions: Infinitely Divisible Distributions Related to Arcsine Density
Maejima, Makoto; Sato, Ken-iti
2010-01-01
Two transformations $\\mathcal{A}_{1}$ and $\\mathcal{A}_{2}$ of L\\'{e}vy measures on $\\mathbb{R}^{d}$ based on the arcsine density are studied and their relation to general Upsilon transformations is considered. The domains of definition of $\\mathcal{A}_{1}$ and $\\mathcal{A}_{2}$ are determined and it is shown that they have the same range. Infinitely divisible distributions on $\\mathbb{R}^{d}$ with L\\'{e}vy measures being in the common range are called type $A$ distributions and expressed as the law of a stochastic integral $\\int_0^1\\cos (2^{-1}\\pi t)dX_t$ with respect to L\\'{e}vy process $\\{X_t\\}$. \\ This new class includes as a proper subclass the Jurek class of distributions. It is shown that generalized type $G$ distributions are the image of type $A$ distributions under a mapping defined by an appropriate stochastic integral. $\\mathcal{A}_{2}$ is identified as an Upsilon transformation, while $\\mathcal{A}_{1}$ is shown to be not.
Nuclear charge distribution in the spontaneous fission of 252Cf
Wang, Taofeng; Zhu, Liping; WANG, LIMING; Men, Qinghua; Han, Hongyin; Xia, Haihong
2015-01-01
The measurement for charge distributions of fragments in 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a dE-E particle telescope. We found that the fragment mass dependency of the average width of the charge distribution shows a systematic decreased trend with the obvious odd-even effect. The variation of widths of charge distribution with kinetic energies shows an approximate V-shape curve due to the large number of neu...
International Nuclear Information System (INIS)
In this paper we discuss representations of charge particle densities in particle-in-cell (PIC) simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2d code of Bassi, designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform (TFCT); and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into Bassi's CSR code, and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
Energy Technology Data Exchange (ETDEWEB)
Balsa Terzic, Gabriele Bassi
2011-07-01
In this paper we discuss representations of charge particle densities in particle-in-cell (PIC) simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2d code of Bassi, designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform (TFCT); and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into Bassi's CSR code, and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
Mapping of charge density of ion beams produced by laser
Czech Academy of Sciences Publication Activity Database
Krása, Josef; Parys, P.; Velyhan, Andriy; Margarone, Daniele; Krouský, Eduard; Ullschmied, Jiří
Vol. 38F. Mulhouse : European Physical Society, 2014 - (Ratynskaia, S.; Mantica, P.; Benuzzi-Mounaix, A.; Dilecce, G.; Bingham, R.; Hirsch, M.; Kemnitz, B.; Klinger, T.), "P2.094-1"-"P2.094-4" ISBN 2-914771-90-8. - (Europhysics Conference Abstracts (ECA)). [EPS Conference on Plasma Physics/41./. Berlin (DE), 23.06.2014-27.06.2014] R&D Projects: GA MŠk EE2.3.20.0279; GA ČR GAP205/12/0454 Grant ostatní: LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser ion sources * map of ion charge density * ion expansion * modeling Subject RIV: BL - Plasma and Gas Discharge Physics http://ocs.ciemat.es/EPS2014PAP/pdf/P2.094.pdf
Thermodynamics of superconductors with charge-density waves
Gabovich, A M; Szymczak, H; Voitenko, A I
2003-01-01
Equations for the temperature-(T-) dependent superconducting (DELTA(T)) and dielectric (SIGMA(T)) order parameters are solved self-consistently in the partial dielectric gapping model of Bilbro and McMillan for superconductors with charge-density waves (CDWs). It is shown that for the close enough structural phase transition temperature, T sub s , and superconducting one, T sub c , with T sub s > T sub c , SIGMA below T sub c may become smaller than DELTA. The electronic heat capacity C(T) is calculated. It is shown that the discontinuity DELTA C at T = T sub c is always smaller than the Bardeen-Cooper-Schrieffer value. The effect is detectable over a wide range of the model parameters. Experimental implications for CDW superconductors, such as A15 compounds, high-T sub c cuprates, and MgB sub 2 , are suggested and discussed.
Mass and Charge Distribution in Low-Energy Fission
International Nuclear Information System (INIS)
The mass and charge distributions for thermal-neutron fission of U235 are discussed in considerable detail and compared with the corresponding distributions in other low-energy fission processes. Points discussed in connection with the mass distributions for binary fission include the positions of the peaks, valley and fine structure in a mass yield curve with respect to filled nuclear shells and the changes in the positions that occur with changing fissioning nucleus and excitation energy. The mass distribution from ternary fission is discussed also. For both binary and ternary fission comments are made concerning the mass distributions of primary fragments (before neutron evaporation) and of fission products (after neutron evaporation). Charge distribution is discussed in terms of charge dispersion among fission products with the same mass number and the variation with mass number of Zp, the ''most probable charge'' (non-integral) for a given mass number. Although direct information about charge distribution is limited to fission products, estimates are presented of charge distribution for primary fission fragments. Knowledge and estimates of mass and charge distribution for a fission process allow estimation of primary yields of all fission products or fragments. Although many estimated primary yields are quite uncertain mainly because of lack of knowledge of charge distribution, especially for fission products formed in low yield; some estimates of primary yields are presented to illustrate the need for and possible practicality of further experimentation. Fission processes other than thermal-neutron fission of U235 that are discussed include thermal-neutron fission of U233 and Pu239, spontaneous fission of Pu240 and Cf252, 14-MeV neutron fission of U235 and U238, 11-MeV proton fission of Ra226 and 22-MeV deuteron fission of Bi209. (author)
Connection between charge-density-wave order and charge transport in the cuprate superconductors
Tabis, W.; Li, Y; Tacon, M. Le; Braicovich, L.; Kreyssig, A.; Minola, M.; Dellea, G.; Weschke, E.; Veit, M. J.; Ramazanoglu, M.; Goldman, A. I.; T. Schmitt; Ghiringhelli, G.; Barišić, N.; Chan, M. K.
2014-01-01
Charge-density-wave (CDW) correlations within the quintessential CuO$_2$ planes have been argued to either cause [1] or compete with [2] the superconductivity in the cuprates, and they might furthermore drive the Fermi-surface reconstruction in high magnetic fields implied by quantum oscillation (QO) experiments for YBa$_2$Cu$_3$O$_{6+{\\delta}}$ (YBCO) [3] and HgBa$_2$CuO$_{4+{\\delta}}$ (Hg1201) [4]. Consequently, the observation of bulk CDW order in YBCO was a significant development [5,6,7]...
Charged fluid distribution in higher dimensional spheroidal space-time
Indian Academy of Sciences (India)
G P Singh; S Kotambkar
2005-07-01
A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.
The Calculation of the Electrostatic Potential of Infinite Charge Distributions
Redzic, Dragan V.
2012-01-01
We discuss some interesting aspects in the calculation of the electrostatic potential of charge distributions extending to infinity. The presentation is suitable for the advanced undergraduate level. (Contains 3 footnotes.)
Energy Technology Data Exchange (ETDEWEB)
Chung, H.M.; Nowicki, L.; Gazda, J. [Argonne National Lab., Chicago, IL (United States)] [and others
1995-04-01
The objective of this work is to determine void structure, distribution, and density changes of several promising vanadium-base alloys irradiated in the Dynamic Helium Charging Experiment (DHCE). Combined effects of dynamically charged helium and neutron damage on density change, void distribution, and microstructural evolution of V-4Cr-4Ti alloy have been determined after irradiation to 18-31 dpa at 425-600{degree}C in the DHCE, and the results compared with those from a non-DHCE in which helium generation was negligible.
Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team
Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.
Experimental Tests of Charge Symmetry Violation in Parton Distributions
Energy Technology Data Exchange (ETDEWEB)
J.T. Londergan; D.P. Murdock; A.W. Thomas
2005-07-01
Recently, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the allowed magnitude of such effects. We discuss two possible experiments that could search for isospin violation in valence parton distributions. We show that, given the magnitude of charge symmetry violation consistent with existing global data, such experiments might expect to see effects at a level of several percent. Alternatively, such experiments could significantly decrease the upper limits on isospin violation in parton distributions.
Charge and longitudinal momentum distributions in transverse coordinate space
Mondal, Chandan; Dahiya, Harleen; Chakrabarti, Dipankar
2016-01-01
We investigate the charge distributions for the $u$ and $d$ quarks in transverse coordinate space in a light-front quark-diquark model for the nucleons using the overlaps of the wave functions constructed from the soft-wall AdS/QCD prediction. We have also obtained the charge distributions for proton and neutron in transverse coordinate space and compared it with the distributions obtained in impact-parameter space. Further, we study the longitudinal momentum distributions using the wave functions in the transverse coordinate space. We have also shown the explicit fermionic and bosonic contributions for different struck $u$ and $d$ quarks.
Mass and charge distribution in heavy-ion collisions
International Nuclear Information System (INIS)
A statistical model based on the independent particle picture is used to calculate mass and charge distributions in deep inelastic heavy-ion collisions. Different assumptions on volume and charge equilibrations are compared with measured variances of charge distributions. One combination of assumptions is clearly favoured by experiment, and gives a reasonable description of the variance versus energy loss curves up to energy losses of about 200 MeV in the heavy systems Kr+Ho and Xe+Bi, and up to about 60 MeV for the light system Ar+Ca
Multiplicity distributions and charged-neutral ﬂuctuations
Indian Academy of Sciences (India)
Tapan K Nayak; M M Aggarwal; A Agnihotri; Z Ahammed; A L S Angelis; V Antonenko; V Arefiev; V Astakhov; V Avdeitchikov; T C Awes; P V K S Baba; S K Badyal; A Baldine; L Barabach; C Barlag; S Bathe; B Tatiounia; T Bernier; K B Bhalla; V S Bhatia; C Blume; R Bock; E-M Bohne; D Bucher; A Buijs; E-J Buis; H Büsching; L Carlen; V Chalyshev; S Chattopadhyay; K E Chenawi; R Cherbatchev; T Chujo; A Claussen; A C Das; M P Decowski; V Djordjadze; P Donni; I Doubovik; A K Dubey; M R Dutta Majumdar; S Eliseev; K Enosawa; H Feldmann; P Foka; S Fokin; V Frolov; M S Ganti; S Garpman; O Gavrishchuk; F J M Geurts; T K Ghosh; R Glasow; S K Gupta; B Guskov; H A Gustafsson; H H Gutbrod; R Higuchi; I Hrivnacova; M Ippolitov; H Kalechofsky; R Kamermans; K-H Kampert; K Karadjev; K Karpio; S Kato; S Kees; H Kim; B W Kolb; I Kosarev; I Koutcheryaev; A Kugler; P Kulinich; V Kumar; M Kurata; K Kurita; K Kuzmin; I Langbein; A Lebedev; Y Y Lee; H Löhner; D P Mahapatra; V Manko; M Martin; A Maximov; R Mehdiyev; G Mgebrichvili; Y Miake; D Mikhalev; G C Mishra; Y Miyamoto; B Mohanty; D Morrison; D S Mukhopadhyay; V Myalkovski; H Naef; B K Nandi; S K Nayak; T K Nayak; S Neumaier; A Nianine; V Nikitine; S Nikolaev; S Nishimura; P Nomokov; J Nystrand; F E Obenshain; A Oskarsson; I Otterlund; M Pachr; A Parfenov; S Pavliouk; T Peitzmann; V Petracek; F Plasil; M L Purschke; B Raeven; J Rak; R Raniwala; S Raniwala; V S Ramamurthy; N K Rao; F Retiere; K Reygers; G Roland; L Rosselet; I Roufanov; J M Rubio; S S Sambyal; R Santo; S Sato; H Schlagheck; H-R Schmidt; G Shabratova; I Sibiriak; T Siemiarczuk; B C Sinha; N Slavine; K Söderström; N Solomey; G Sood; S P Sørensen; P Stankus; G Stefanek; P Steinberg; E Stenlund; D Stüken; M Sumbera; T Svensson; M D Trivedi; A Tsvetkov; C Twenhöfel; L Tykarski; J Urbahn; N V Eijndhoven; W H V Heeringen; G J V Nieuwenhuizen; A Vinogradov; Y P Viyogi; A Vodopianov; S Vörös; M A Vos; B Wyslouch; K Yogi; Y Yokota; G R Young
2001-08-01
Results from the multiplicity distributions of inclusive photons and charged particles, scaling of particle multiplicities, event-by-event multiplicity ﬂuctuations, and charged-neutral ﬂuctuations in 158 GeV Pb+Pb collisions are presented and discussed. A scaling of charged particle multiplicity as $N^{1.07± 0:05}_{\\text{part}}$ and photons as $N^{1.12± 0:03}_{\\text{part}}$ have been observed, indicating violation of naive wounded nucleon model. The analysis of localized charged-neutral ﬂuctuation indicates a model-independent demonstration of non-statistical ﬂuctuations in both charged particles and photons in limited azimuthal regions. However, no correlated charged-neutral ﬂuctuations are observed.
Langevin description of fission fragment charge distribution from excited nuclei
Karpov, A V
2002-01-01
A stochastic approach to fission dynamics based on a set of three-dimensional Langevin equations was applied to calculate fission-fragment charge distribution of compound nucleus sup 2 sup 3 sup 6 U. The following collective coordinates have been chosen - elongation coordinate, neck-thickness coordinate, and charge-asymmetry coordinate. The friction coefficient of charge mode has been calculated in the framework of one-body and two-body dissipation mechanisms. Analysis of the results has shown that Langevin approach is appropriate for investigation of isobaric distribution. Moreover, the dependences of the variance of the charge distribution on excitation energy and on the two-body viscosity coefficient has been studied
Surface valence charge distributions and scanning tunneling microscopy of WTe 2
Tang, S. L.; Kasowski, R. V.; Suna, A.; Parkinson, B. A.
1990-11-01
We have studied the surface electronic structures of the van der Waals surfaces of tungsten ditelluride (WTe 2) with first principles calculations of the spatial distribution of the surface valence charge densities and compared the results to images obtained with the scanning tunneling microscope (STM). The energy- and z(distance from the surface)-dependent calculations show that the valence charge density distribution above the Te surface could be derived from the surface Te layer, as we previously calculated, but the charge density distribution close to but below the Fermi energy has a distortion that coincidentally makes it appear to have a symmetry close to the paired, zig-zag and buckled rows of the W layer. These results dramatically illustrate that in highly covalent compounds, the surface valence charge density distribution does not necessarily follow the surface atomic positions even on ideal, unreconstructed surfaces. An alternative interpretation of the STM images of this surface is proposed in light of this new surface electronic structure. Our calculated and experimental results are also discussed with reference to recent STM results on other transition metal dichalcogenides.
Charge distribution and Fermi level in bimetallic nanoparticles
Holmberg, Nico; Laasonen, Kari; Peljo, Pekka Eero
2016-01-01
Upon metal-metal contact, a transfer of electrons will occur between the metals until the Fermi levels in both phases are equal, resulting in a net charge difference across the metal-metal interface. Here, we have examined this contact electrification in bimetallic model systems composed of mixed Au-Ag nanoparticles containing ca. 600 atoms using density functional theory calculations. We present a new model to explain this charge transfer by considering the bimetallic system as a nanocapacit...
Plane density of induced vacuum charge in a supercritical Coulomb potential
Khalilov, V R
2016-01-01
An expression for the density of a planar induced vacuum charge is obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in this potential. Induced vacuum charge density is calculated and analyzed at the subcritical and supercritical Coulomb potentials for massless and massive fermions. The behavior of the obtained vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. We calculate the real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in the supercritical Coulomb potential due to the so-called real vacuum polarization. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supe...
Validity of the evidence for a central depression in the charge density of 3He
International Nuclear Information System (INIS)
The derivation of proton and neutron charge densities from experimentally obtained form factors is considered. The meson exchange current contribution to the 3He charge form factor for three models of neutron and proton charge form factors is calculated and it is shown that it is not valid to use the short range behavior of nucleon charge density to deduce information on the structure of 3He
Directory of Open Access Journals (Sweden)
M. V. Rodrigues
2006-03-01
Full Text Available This work gives sequence to the study on the measurement of the electrostatic charges in aerosols. The particle charge classifier developed for this purpose and presented in the previous paper (Marra and Coury, 2000 has been used here to measure the particle charge distribution of a number of different aerosols. The charges acquired by the particles were naturally derived from the aerosol generation procedure itself. Two types of aerosol generators were used: the vibrating orifice generator and turntable Venturi plate generator. In the vibrating orifice generator, mono-dispersed particles were generated by a solution of water/ethanol/methylene blue, while in the rotating plate generator, six different materials were utilized. The results showed no clear dependence between electric charge and particle diameter for the mono-dispersed aerosol. However, for the poly-dispersed aerosols, a linear dependence between particle size and charge could be noticed.
Heavy ion charge-state distribution effects on energy loss in plasmas
Barriga-Carrasco, Manuel D.
2013-10-01
According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.
Nuclear charge distribution in the spontaneous fission of 252Cf
Wang, Taofeng; Wang, Liming; Men, Qinghua; Han, Hongyin; Xia, Haihong
2015-01-01
The measurement for charge distributions of fragments in 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a dE-E particle telescope. We found that the fragment mass dependency of the average width of the charge distribution shows a systematic decreased trend with the obvious odd-even effect. The variation of widths of charge distribution with kinetic energies shows an approximate V-shape curve due to the large number of neutron emission for the high excitation energies and cold fragmentation with low excitation energies. As for the behavior of the average nuclear charge with respect to its deviation {\\Delta}Z from the unchanged charge distribution (UCD) as a function of the mass number of primary fragments A*, for asymmetric fission products {\\Delta}Z is negative value, while upon approaching mass symmetry {\\Delta}Z turns positive. Concerning the energy dependence of the most probable charge for given primary mass number A*, the obvious inc...
Breast density characterization using texton distributions.
Petroudi, Styliani; Brady, Michael
2011-01-01
Breast density has been shown to be one of the most significant risks for developing breast cancer, with women with dense breasts at four to six times higher risk. The Breast Imaging Reporting and Data System (BI-RADS) has a four class classification scheme that describes the different breast densities. However, there is great inter and intra observer variability among clinicians in reporting a mammogram's density class. This work presents a novel texture classification method and its application for the development of a completely automated breast density classification system. The new method represents the mammogram using textons, which can be thought of as the building blocks of texture under the operational definition of Leung and Malik as clustered filter responses. The new proposed method characterizes the mammographic appearance of the different density patterns by evaluating the texton spatial dependence matrix (TDSM) in the breast region's corresponding texton map. The TSDM is a texture model that captures both statistical and structural texture characteristics. The normalized TSDM matrices are evaluated for mammograms from the different density classes and corresponding texture models are established. Classification is achieved using a chi-square distance measure. The fully automated TSDM breast density classification method is quantitatively evaluated on mammograms from all density classes from the Oxford Mammogram Database. The incorporation of texton spatial dependencies allows for classification accuracy reaching over 82%. The breast density classification accuracy is better using texton TSDM compared to simple texton histograms. PMID:22255462
Modelling of passive charge exchange emission and neutral background density deduction in JET
International Nuclear Information System (INIS)
Passive Charge Exchange (PCX) emission induced by the interaction of neutral deuterium entering the plasma from the walls, and fully ionised light impurities in a tokamak fusion plasma have been investigated. The incentive was to improve the evaluation accuracy of active charge exchange (ACX) spectra, leading to ion temperature, impurity density and plasma rotation. The reconstruction of synthetic line-of-sight-integrated PCX emission spectra is based on a modelled neutral density profile as derived from the FRANTIC code, local emission rates for D0(1s) and D0(2s) donor states and finally local impurity ion densities (C6+, He2+) from CX analysis. As a result of the PCX modelling the experimental errors in ion temperature values can be reduced and the range of accessible PCX spectra extended from magnetic axis to separatrix. A comparison between the modelled intensity of the synthetic spectra and experimental PCX data allows also a consistency check of neutral density and its radial distribution. (author)
Charge-density matching in organic-inorganic uranyl compounds
International Nuclear Information System (INIS)
Single crystals of [C10H26N2][(UO2)(SeO4)2(H2O)](H2SeO4)0.85(H2O)2 (1), [C10H26N2][(UO2)(SeO4)2] (H2SeO4)0.50(H2O) (2), and [C8H20N]2[(UO2)(SeO4)2(H2O)] (H2O) (3) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amines. The structures of the compounds have been solved by direct methods and structural models have been obtained. The structures of the compounds 1, 2, and 3 contain U and Se atoms in pentagonal bipyramidal and tetrahedral coordinations, respectively. The UO7 and SeO4 polyhedra polymerize by sharing common O atoms to form chains (compound 1) or sheets (compounds 2 and 3). In the structure of 1, the layers consisting of hydrogen-bonded [UO2(SeO4)2(H2O)]2- chains are separated by mixed organic-inorganic layers comprising from [NH3(CH2)10NH3]2+ molecules, H2O molecules, and disordered electroneutral (H2SeO4) groups. The structure of 2 has a similar architecture but a purely inorganic layer is represented by a fully connected [UO2(SeO4)2]2- sheet. The structure of 3 does not contain disordered (H2SeO4) groups but is based upon alternating [UO2(SeO4)2(H2O)]2- sheets and 1.5-nm-thick organic blocks consisting of positively charged protonated octylamine molecules, [NH3(CH2)7CH3]+. The structures may be considered as composed of anionic inorganic sheets (2D blocks) and cationic organic blocks self-organized according to competing hydrophilic-hydrophobic interactions. Analysis of the structures allows us to conclude that the charge-density matching principle is observed in uranyl compounds. In order to satisfy some basic peculiarities of uranyl (in general, actinyl) chemistry, it requires specific additional mechanisms: (a) in long-chain-amine-templated compounds, protonated amine molecules inter-digitate; (b) in long-chain-diamine-templated compounds, incorporation of acid-water interlayers into an organic substructure is necessary; (c) the inclination angle of the amine chains may vary in order to modify
Density Dependence of Charge-4 Vortex Splitting in Bose–Einstein Condensates
Shibayama, Hitoshi; Tsukada, Akinori; Yoshihara, Takahisa; Kuwamoto, Takeshi
2016-05-01
We studied the axial-direction density dependence of the splitting of a charge-4 vortex created in 87Rb Bose–Einstein condensates. Vortices were generated by topological phase imprinting, and the axial density of the condensates was controlled by an optical potential. Linear and triangular arrangements of four single-charged vortices that emerged through the charge-4 vortex collapse were observed. The splitting of the charge-4 vortices was suppressed by maintaining the density outside the l = 2 unstable mode regions where linear arrangements were formed. In addition, we studied vortex dynamics in a high density region for which investigations have not been previously performed.
Electron deformation density distribution in α-boron
International Nuclear Information System (INIS)
The bonding features of α-boron were studied using electron density analysis procedures. Deformation density maps and valence density were calculated and the structure analysed by so-called multipole refinements, yielding R = 0.0119. The refinement model correctly describes the bonding and results in a difference density distribution free from any meaningful residual peaks
Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors
Energy Technology Data Exchange (ETDEWEB)
Poehlsen, Thomas
2010-04-15
In this work epitaxial n-type silicon diodes with a thickness of 100 {mu}m and 150 {mu}m are investigated. After neutron irradiation with fluences between 10{sup 14} cm{sup -2} and 4 x 10{sup 15} cm{sup -2} annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10{sup 14} cm{sup -2} showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time {tau}{sub eff}. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time {tau}{sub eff}(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 {mu}m thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)
Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors
International Nuclear Information System (INIS)
In this work epitaxial n-type silicon diodes with a thickness of 100 μm and 150 μm are investigated. After neutron irradiation with fluences between 1014 cm-2 and 4 x 1015 cm-2 annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 1014 cm-2 showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time τeff. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time τeff(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 μm thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)
Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu
Sadhukhan, Jhilam; Schunck, Nicolas
2016-01-01
In this letter, we outline a methodology to calculate microscopically mass and charge distributions of spontaneous fission yields. We combine the multi-dimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic characteristics.
Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu
Sadhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas
2016-01-01
We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic fission characteristics.
Flat Bunches with a Hollow Distribution for Space Charge Mitigation
Oeftiger, Adrian; Findlay, Alan James; Hancock, Steven; Rumolo, Giovanni
2016-01-01
Longitudinally hollow bunches provide one means to mitigate the impact of transverse space charge. The hollow distributions are created via dipolar parametric excitation during acceleration in CERN's Proton Synchrotron Booster. We present simulation work and beam measurements. Particular emphasis is given to the alleviation of space charge effects on the long injection plateau of the downstream Proton Synchrotron machine, which is the main goal of this study.
Probing the electron charge distribution via Kapitza-Dirac diffraction
Sancho, Pedro
2016-01-01
We analyze the diffraction of elementary systems as the electron by light gratings when they are described by charge distributions instead of the usual point-like form. The treatment of the problem is based on the introduction, in analogy with atomic polarizability, of state-dependent non-permanent multi-pole moments for the charge. The diffraction patterns can provide bounds on these moments. With this approach we can experimentally explore some aspects of the interpretation of the wave pict...
Effect of surface charge distribution on the adsorption orientation of proteins to lipid monolayers.
Tiemeyer, Sebastian; Paulus, Michael; Tolan, Metin
2010-09-01
The adsorption orientation of the proteins lysozyme and ribonuclease A (RNase A) to a neutral 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and a negatively charged stearic acid lipid film was investigated by means of X-ray reflectivity. Both proteins adsorbed to the negatively charged lipid monolayer, whereas at the neutral monolayer, no adsorption was observed. For acquiring comprehensive information on the proteins' adsorption, X-ray reflectivity data were combined with electron densities obtained from crystallographic data. With this method, it is possible to determine the orientation of adsorbed proteins in solution underneath lipid monolayers. While RNase A specifically coupled with its positively charged active site to the negatively charged lipid monolayer, lysozyme prefers an orientation with its long axis parallel to the Langmuir film. In comparison to the electrostatic maps of the proteins, our results can be explained by the discriminative surface charge distribution of lysozyme and RNase A. PMID:20707324
International Nuclear Information System (INIS)
There are problems concerned with reliability of integrated circuits due to charge trapping in the oxide such as hot carrier injection, ionizing radiation, etc. Trapped charges in the insulators change the threshold voltage of MOSFET and increase the leakage currents in IC. Generally, the density of oxide charge has been calculated by assuming that it is located near the Si-SiO2 interface. This assumption is a good approximation in many cases. However, it would introduce serious errors in cases where the oxide charge has a spatial distribution, in particular where both positive and negative charges are present. In this paper, the authors propose a method for measuring the charge distribution in the oxide layer. They will explain about the slanted etching method that they proposed and describe the results of applying this method to silicon dioxide with and without ammonia anneal and silicon dioxide-nitride films. They will investigate the charge distributions both in the oxide layer of MOS structure with and without ammonia annealing and in the insulators of MOS and MNOS structures before and after irradiation
Terzić, Balša; Bassi, Gabriele
2011-07-01
In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. [G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock, Phys. Rev. ST Accel. Beams 12, 080704 (2009); PRABFM1098-440210.1103/PhysRevSTAB.12.080704G. Bassi and B. Terzić, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), TH5PFP043], designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform; and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code [G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock, Phys. Rev. ST Accel. Beams 12, 080704 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.080704], and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
International Nuclear Information System (INIS)
In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. (G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)G. Bassi and B. Terzic, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), TH5PFP043), designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform; and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code (G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)), and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
Charged-particle inclusive distributions from hadronic Z0 decays
International Nuclear Information System (INIS)
We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were the mean charged-particle multiplicity (left-angle nch right-angle), scaled momentum (x), and momenta transverse to the sphericity axes (p perpendicular in and p perpendicular out). The distributions have been corrected for detector effects and are compared with data from e+e- annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations. 12 refs., 2 figs
Howell, L. W.
1985-01-01
An APL program which numerically evaluates the probability density function (PDF) for the energy deposited in a thin absorber by a charged particle is proposed, with application to the construction, pointing, and control of spacecraft. With this program, the PDF of the restricted energy loss distribution of Watts (1973) is derived, and Vavilov's (1957) distribution is obtained by proper parameter selection. The method is demonstrated with the example of the effect of charged particle induced radiation on the Hubble Space Telescope (HST) pointing accuracy. A Monte Carlo study simulates the photon noise caused by charged particles passing through the photomultiplier tube window, and the stochastic variation of energy loss is introduced into the simulation by generating random energy losses from a power law distribution. The program eliminates annoying loop procedures, and model parameter sensitivity can be studied using the graphical output.
Argon-ion charge distributions following near-threshold ionization
International Nuclear Information System (INIS)
When an atom is photoionized in an inner shell, there are two mechanisms by which the remaining electron cortege relaxes to fill the vacancy: x-ray emission and radiationless Auger and Coster-Kronig transitions. In the former, the inner-shell hole moves to a less tightly bound orbital without increasing the number of atomic vacancies. In Auger processes, however, the energy liberated by transfer of a less-tightly-bound electron to the inner-shell vacancy is transferred to another electron which is ejected into the continuum. In this case, the charge on the residual ion increases by one. Through a series of radiative and non-radiative processes, the initial vacancy bubbles up until all vacancies arrive at the outermost shell. Due to the many possible routes by which this may occur, there can be a broad distribution of residual ion charge states characteristic of the decay of a single inner-shell vacancy. Because so many processes can contribute to each charge state, it is difficult to determine the effect of each by examining the total ion charge distribution; the total-ion charge distribution represents an average over many effects. To overcome this limitation, the author has recently measured argon-ion production as a function of both photon energy and Auger decay channel following photoionization of K-shell electrons with highly monochromatic synchrotron radiation. When measured differential in decay channel, the ion charge distributions are greatly simplified. Analysis, in progress, of these simplified distributions will permit extraction of information about relative decay rates and shakeoff effects that is obscured in the single spectra
Directory of Open Access Journals (Sweden)
D. K. Narvilkar
1979-07-01
Full Text Available In the present paper, the equations of internal ballistics of composite charge consisting of N component charge with quadratic form are solved. Largange density approximation and hydrodynamic flow behaviour, have been assumed and the solutions are obtained for the composite charge for these assumptions.
Electronic properties and charge density of BeZn1−Te alloys
Indian Academy of Sciences (India)
C B Swarnkar; U Paliwal; N N Patel; K B Joshi
2011-06-01
Electronic band structure calculations are performed for the BeZn1−Te (0 ≤ ≤ 1 in steps of 0.2) alloys following the empirical pseudopotential method. The alloying effects are modelled through the modified virtual crystal approximation. Throughout the composition, valence band maximum resides at the point. The conduction band minimum, however, shifts from to point of symmetry when = 0.27. The observed crossover from direct to indirect bandgap is well in accordance with the experimental observations. Effect of alloying on the density of states is also discussed. The charge density distribution along a few major planes is computed and discussed. The electronic band structure related parameters like bandwidths, bandgaps and ionicity are reported and compared with experimental data wherever available. We also give estimates of cohesive energy and bulk modulus for the alloys.
Institute of Scientific and Technical Information of China (English)
LI Zhi-Bing; WANG Wei-Liang
2006-01-01
We derive the analytic solution of induced electrostatic potential along single wall carbon nanotubes. Under the hypothesis of constant density of states in the charge-neutral level, we are able to obtain the linear density of excess charge in an external Geld parallel to the tube axis.
Li, Zhibing; Wang, Weiliang
2006-01-01
We derived the analytic solution of induced electrostatic potential along single wall carbon nanotubes. Under the hypothesis of constant density of states in the charge-neutral level, we are able to obtain the linear density of excess charge in an external field parallel to the tube axis.
Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano
2012-01-01
An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…
DEFF Research Database (Denmark)
Tanner, D. B.; Cummings, K. D.; Jacobsen, Claus Schelde
1981-01-01
Detailed far-infrared measurements at temperatures from 25 to 300 K provide strong support for a charge-density-wave mechanism for the dc conductivity and microwave dielectric constant of tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ). At low temperatures the charge-density wave is pinned...
Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities
Harrison, Neil; Singleton, John; Migliori, Albert
2008-08-05
A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.
Charging Schedule for Electric Vehicles in Danish Residential Distribution Grids
DEFF Research Database (Denmark)
Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte;
2015-01-01
vehicle owner, vehicle fleet operator and other parties involved in the process could economically benefit from the process. This paper investigates an optimal EV charging plan in Danish residential distribution grids in view of supporting high volumes of wind power in electricity grids. The results of...
Connection between elastic relativistic form factors and charge distribution
International Nuclear Information System (INIS)
A scheme by means of which one can establish the connection between form factors and charge distribution (for particles of any spin) in proposed. Except for the nonrelativistic domain our results differ from previous ones. Consequences of our relations (some of them in agreement with experimental and previous theoretical results) are briefly discussed
Response of electrostatic probes to eccentric charge distributions
DEFF Research Database (Denmark)
Johansson, Torben; McAllister, Iain Wilson
2001-01-01
The response of an electrostatic probe mounted in an electrode is examined with reference to eccentric charge distributions. The study involves using the probe λ function to derive a characteristic parameter. This parameter enables the response of the probe to different degrees of eccentricity to...
Solar concentrators with adjustable power density distributions
Energy Technology Data Exchange (ETDEWEB)
Kleinwaechter, J.
1977-09-01
Solar concentrators are described which provide given power density in the absorber. According to the invention, 'semi-optical' lenses and mirrors are used to concentrate the incident solar radiation; these elements image the solar disk not as a point but as an area of constant illumination intensity on the absorber. This is achieved by a functional locus-dependecy of refraction and reflection. For mirror concentration, a differential equation is given which satisfies this functional dependency.
Charge density waves in 1T-TaS2: an angle-resolved photoemission study
Energy Technology Data Exchange (ETDEWEB)
Clerc, F. [Institut de Physique, Universite de Neuchatel, Rue A.L. Breguet 1, CH-2000 Neuchatel (Switzerland); Bovet, M. [Institut de Physique, Universite de Neuchatel, Rue A.L. Breguet 1, CH-2000 Neuchatel (Switzerland); Berger, H. [Institut de Physique Appliquee, EPFL, CH-1015 Lausanne (Switzerland); Despont, L. [Institut de Physique, Universite de Neuchatel, Rue A.L. Breguet 1, CH-2000 Neuchatel (Switzerland); Koitzsch, C. [Institut de Physique, Universite de Neuchatel, Rue A.L. Breguet 1, CH-2000 Neuchatel (Switzerland); Garnier, M.G. [Institut de Physique, Universite de Neuchatel, Rue A.L. Breguet 1, CH-2000 Neuchatel (Switzerland); Aebi, P. [Institut de Physique, Universite de Neuchatel, Rue A.L. Breguet 1, CH-2000 Neuchatel (Switzerland)]. E-mail: philipp.aebi@unine.ch
2004-09-15
The transition metal dichalcogenide 1T-TaS2 is a layered material exhibiting charge density waves. Based on angle-resolved photoemission experiments mapping spectral weight at the Fermi surface and density functional theory calculations we discuss possible mechanisms involved with the creation of charge density waves. At first the flat parts of the elliptically shaped Fermi surface appear to play an important role via Fermi surface nesting. A closer analysis of the charge density wave induced new Brillouin zones and the possible energy balance between elastic deformation energy and electronic energy points to a more complicated scenario.
Charge density waves in 1T-TaS2: an angle-resolved photoemission study
International Nuclear Information System (INIS)
The transition metal dichalcogenide 1T-TaS2 is a layered material exhibiting charge density waves. Based on angle-resolved photoemission experiments mapping spectral weight at the Fermi surface and density functional theory calculations we discuss possible mechanisms involved with the creation of charge density waves. At first the flat parts of the elliptically shaped Fermi surface appear to play an important role via Fermi surface nesting. A closer analysis of the charge density wave induced new Brillouin zones and the possible energy balance between elastic deformation energy and electronic energy points to a more complicated scenario
TOPICAL REVIEW: Detection of charge distributions in insulator surfaces
Rezende, C. A.; Gouveia, R. F.; da Silva, M. A.; Galembeck, F.
2009-07-01
Charge distribution in insulators has received considerable attention but still poses great scientific challenges, largely due to a current lack of firm knowledge about the nature and speciation of charges. Recent studies using analytical microscopies have shown that insulators contain domains with excess fixed ions forming various kinds of potential distribution patterns, which are also imaged by potential mapping using scanning electric probe microscopy. Results from the authors' laboratory show that solid insulators are seldom electroneutral, as opposed to a widespread current assumption. Excess charges can derive from a host of charging mechanisms: excess local ion concentration, radiochemical and tribochemical reactions added to the partition of hydroxonium and hydronium ions derived from atmospheric water. The last factor has been largely overlooked in the literature, but recent experimental evidence suggests that it plays a decisive role in insulator charging. Progress along this line is expected to help solve problems related to unwanted electrostatic discharges, while creating new possibilities for energy storage and handling as well as new electrostatic devices.
Papoulia, A.; Carlsson, B. G.; Ekman, J
2016-01-01
Background: Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and the shape of the nuclear charge density distribution. Purpose: To investigate how sensitive field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge distributions that can be extracted from measured field sh...
Velocity Distributions & Density Fluctuations in a 2D Granular Gas
Olafsen, J. S.; Urbach, J. S.
1999-01-01
Velocity distributions in a vibrated granular monolayer are investigated experimentally. Non-Gaussian velocity distributions are observed at low vibration amplitudes but cross over smoothly to Gaussian distributions as the amplitude is increased. Cross-correlations between fluctuations in density and temperature are present only when the velocity distributions are strongly non-Gaussian. Confining the expansion of the granular layer results in non-Gaussian velocity distributions that persist t...
Anode current density distribution in a cusped field thruster
Energy Technology Data Exchange (ETDEWEB)
Wu, Huan, E-mail: wuhuan58@qq.com; Liu, Hui, E-mail: hlying@gmail.com; Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren [Mail Box 458, Harbin Institute of Technology (HIT), Harbin 150001 (China)
2015-12-15
The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.
Space Charge Trapping and Conduction in Low-Density Polyethylene/Silica Nanocomposite
Wu; Jiandong; Yin; Yi; Lan; Li; Wang; Qiaohua; Li; Xuguang; Xiao; Dengming
2012-04-01
The high field conduction and space charge distribution were investigated in low-density polyethylene (LDPE) and LDPE/silica nanocomposites filled with various concentrations of nanosilica. The results indicate that nanosilica could effectively suppress space charge accumulation at nanofiller concentrations from 0.1 to 5.0 wt %. However, the conduction current at a high field significantly increases at low concentrations from 0.1 to 0.5 wt % and remarkably reduces at high concentrations from 0.5 to 5.0 wt %. It is shown that the trap depth corresponding to the time from 2 to 3600 s significantly decreases at low nanofiller concentrations from 0.1 to 0.5 wt %. However, the depth of deep traps corresponding to the time from 100 to 3600 s increases with the increase in nanofiller concentration from 0.5 to 5.0 wt %. Moreover, the depth of shallow traps corresponding to the time from 2 to 100 s increases at concentrations from 0.5 to 2.0 wt %, and then it decreases at concentrations from 2.0 to 5.0 wt %. In addition, the apparent mobility varies with the modification of trap depth caused by the introduction of nanofiller. The threshold field EΩ-t for remarkable charge injection and Et-c proportional to the total trap density H are significantly lower in the nanocomposite with a low nanosilica concentration, i.e., 0.1 and 0.5 wt %, while both of them increase at concentrations from 0.5 to 5.0 wt %. It is considered that the impurity effect is greater than the nanofiller effect at a low nanofiller concentration. The deep trap is speculated as the chemical trap in the interface of the nanofiller bonding strongly with the polymer chain, while the shallow trap may be related to the chemical trap in the weakly bonded interface. It is clear that the space charge behavior and conduction are significantly affected by modification of the trap depth and density distribution owing to the introduction of nanofiller.
Initial Distribution Spread: A density forecasting approach
Machete, Reason L
2012-01-01
Ensemble forecasting of nonlinear systems involves the use of a model to run forward a discrete ensemble (or set) of initial states. Data assimilation techniques tend to focus on estimating the true state of the system, even though model error limits the value of such efforts. This paper argues for choosing the initial ensemble in order to optimise forecasting performance rather than estimate the true state of the system. Density forecasting and choosing the initial ensemble are treated as one problem. Forecasting performance can be quantified by some scoring rule. In the case of the logarithmic scoring rule, theoretical arguments and empirical results are presented. It turns out that, if the underlying noise dominates model error, we can diagnose the noise spread.
A thundercloud electric field sounding - Charge distribution and lightning
Weber, M. E.; Few, A. A.; Stewart, M. F.; Christian, H. J.
1982-01-01
An instrumented free balloon measured electric fields and field changes as it rose through a thundercloud above Langmuir Laboratory, New Mexico. The variation of the electric field with altitude implied that the cloud contained negative space charge of density -0.6 to -4 nC/cu m between 5.5 and 8.0 km MSL. The environmental temperature at these levels ranged from -5 to -20 C. The measurements imply that the areal extent of this negative charge center was significantly greater than that of the cloud's intense precipitation shafts. At altitudes greater than 8 km, the instrument ascended past net positive charge. In addition, positive space charge adjacent to the earth's surface (concentration 0.6 nC/cu m and in the lowest portion of the cloud (1.0 nC/cu m) is inferred from the measurements. Electric field changes from intracloud lightning were interpreted by using a simple model for the developing streamer of the initial phase. Thunder source reconstructions provided estimates for the orientation of lightning channels. Seven 'streamers' so analyzed propagated on the average, at 50,000 m/s and carried a current of 390 A. The mean charge dissipated during a flash was 30 C.
Charge distribution and Fermi level in bimetallic nanoparticles.
Holmberg, Nico; Laasonen, Kari; Peljo, Pekka
2016-01-28
Upon metal-metal contact, a transfer of electrons will occur between the metals until the Fermi levels in both phases are equal, resulting in a net charge difference across the metal-metal interface. Here, we have examined this contact electrification in bimetallic model systems composed of mixed Au-Ag nanoparticles containing ca. 600 atoms using density functional theory calculations. We present a new model to explain this charge transfer by considering the bimetallic system as a nanocapacitor with a potential difference equal to the work function difference, and with most of the transferred charge located directly at the contact interface. Identical results were obtained by considering surface contacts as well as by employing a continuum model, confirming that this model is general and can be applied to any multimetallic structure regardless of geometry or size (going from nano- to macroscale). Furthermore, the equilibrium Fermi level was found to be strongly dependent on the surface coverage of different metals, enabling the construction of scaling relations. We believe that the charge transfer due to Fermi level equilibration has a profound effect on the catalytic, electrocatalytic and other properties of bimetallic particles. Additionally, bimetallic nanoparticles are expected to have very interesting self-assembly for large superstructures due to the surface charge anisotropy between the two metals. PMID:26788999
Charge and spin density in s-stable rare earth intermetallic compounds
International Nuclear Information System (INIS)
This thesis deals with a study of the electronic structure of rare earth intermetallic compounds, in particular the electronic charge and spin density distribution. These are closely related to the properties of the rare earth ions, which carry the partly filled 4f shell. In chapter 1 a survey of the theory of hyperfine interaction as far as it has a bearing on the Moessbauer effect of 155Gd and 151Eu is given. Also some details of the Moessbauer spectra, which have practical importance are discussed. In chapter 2 the experimental set-up is described. Special attention is paid to the gamma radiation source and gamma detection requirements. In chapter 3 the author introduces the theoretical framework which will be used to interpret the measurements. In chapter 4 the results of the 155Gd Moessbauer measurements are presented. Also it is discussed how the result can be understood in terms of the charge and spin density in rare earth intermetallic compounds. In order to lend support to the picture emerging from the previous chapter, in chapter 5 the conduction electron band structure of some representative Gd intermetallics is computed with an approximate semi-empirical LCAO method. The results are compared with those from chapter 4. Finally, in chapter 6, the 151Eu resonance is used to investigate the temperature dependence of the hyperfine field and line width in the Eu intermetallic compounds Eu2Mg17 and EuMg5. (Auth.)
Computational analysis of the influence of initial fixed charge density on pH-sensitive hydrogels
International Nuclear Information System (INIS)
In this paper, we conduct a computational analysis of the effects of initial fixed charge density on the responsive performance of pH-sensitive hydrogels to environmental change in solution pH. The analysis is based on a chemo-electro-mechanical formulation previously termed the multi-effect-coupling pH-stimulus (MECpH) model. In this work, we improve the MECpH model by incorporating the finite deformation formulation into the mechanical equilibrium equation. The present model consisting of coupled nonlinear partial differential equations is solved via a meshless numerical technique called the Hermite-cloud method with the modified Newton iteration methodology. After validation of the MECpH model by comparing the computational results with experimental data available in the literature, several computational case studies are carried out for analysis of the effects of initial fixed charge density on the distributive variations of the diffusive ion concentrations and electric potential and on the deformation of the pH-stimulus-responsive hydrogels, when they are immersed in different buffered solutions
Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram; van den Ende, Dirk; Mugele, Frieder; Siretanu, Igor
2016-02-01
Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the surface charge and ζ -potential of these surfaces. However, because of the macroscopic averaging character these techniques cannot do justice to the role of local heterogeneities on the surfaces. In this work, we use dynamic atomic force microscopy (AFM) to determine the distribution of surface charge on the two (gibbsite-like and silica-like) basal planes of kaolinite nanoparticles immersed in aqueous electrolyte with a lateral resolution of approximately 30 nm. The surface charge density is extracted from force-distance curves using DLVO theory in combination with surface complexation modeling. While the gibbsite-like and the silica-like facet display on average positive and negative surface charge values as expected, our measurements reveal lateral variations of more than a factor of two on seemingly atomically smooth terraces, even if high resolution AFM images clearly reveal the atomic lattice on the surface. These results suggest that simple surface complexation models of clays that attribute a unique surface chemistry and hence homogeneous surface charge densities to basal planes may miss important aspects of real clay surfaces.
Changes of the Nuclear Charge Distribution of Nd from Optical Isotope Shifts
Institute of Scientific and Technical Information of China (English)
马洪良; 李茂生; 杨福家
2001-01-01
The isotope shifts and hyperfine structures of seven optical transitions for all seven stable isotopes of Nd Ⅱ were measured by using collinear fast-ion-beam laser spectroscopy. The nuclear parameter λ was obtained from the measured optical isotope shifts for alI seven stable isotopes with improved accuracy. The λ values were analysed by using the Fermi distribution for the nuclear charge density. The values of δ, δ and δ were determined.
Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies
International Nuclear Information System (INIS)
Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.
Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies
Energy Technology Data Exchange (ETDEWEB)
Bu, Wei [Iowa State Univ., Ames, IA (United States)
2009-01-01
Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.
International Nuclear Information System (INIS)
We report on the investigation of magnetic field induced charge density waves and Hall coefficient sign reversal in a quasi-two-dimensional electronic system of highly oriented pyrolytic graphite under very strong magnetic field. The change of Hall sign coefficient from negative to positive occurs at low temperature and high magnetic field just after the charge density wave transition, suggesting the role of hole-like quasi-particles in this effect. Angular dependent measurements show that the charge density wave transition and Hall sign reversal fields follow the magnetic field component along the c-axis of graphite.
Iavarone, Anthony T.; Jurchen, John C.; Williams, Evan R.
2000-01-01
The effects of solvent composition on both the maximum charge states and charge state distributions of analyte ions formed by electrospray ionization were investigated using a quadrupole mass spectrometer. The charge state distributions of cytochrome c and myoglobin, formed from 47%/50%/3% water/solvent/acetic acid solutions, shift to lower charge (higher m/z) when the 50% solvent fraction is changed from water to methanol, to acetonitrile, to isopropanol. This is also the order of increasing...
Influence of electric charge and modified gravity on density irregularities
Energy Technology Data Exchange (ETDEWEB)
Bhatti, M.Z. Ul Haq; Yousaf, Z. [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2016-04-15
This work aims to identify some inhomogeneity factors for a plane symmetric topology with anisotropic and dissipative fluid under the effects of both electromagnetic field as well as Palatini f(R) gravity. We construct the modified field equations, kinematical quantities, and mass function to continue our analysis. We have explored the dynamical quantities, conservation equations and modified Ellis equations with the help of a viable f(R) model. Some particular cases are discussed with and without dissipation to investigate the corresponding inhomogeneity factors. For a non-radiating scenario, we examine such factors as dust, and isotropic and anisotropic matter in the presence of charge. For a dissipative fluid, we investigate the inhomogeneity factor with a charged dust cloud. We conclude that the electromagnetic field increases the inhomogeneity in matter while the extra curvature terms make the system more homogeneous with the evolution of time. (orig.)
Influence of Electric Charge and Modified Gravity on Density Irregularities
Bhatti, M Zaeem Ul Haq
2016-01-01
This work aims to identify some inhomogeneity factors for plane symmetric topology with anisotropic and dissipative fluid under the effects of both electromagnetic field as well as Palatini $f(R)$ gravity. We construct the modified field equations, kinematical quantities and mass function to continue our analysis. We have explored the dynamical quantities, conservation equations and modified Ellis equations with the help of a viable $f(R)$ model. Some particular cases are discussed with and without dissipation to investigate the corresponding inhomogeneity factors. For non-radiating scenario, we examine such factors with dust, isotropic and anisotropic matter in the presence of charge. For dissipative fluid, we investigate the inhomogeneity factor with charged dust cloud. We conclude that electromagnetic field increases the inhomogeneity in matter while the extra curvature terms make the system more homogeneous with the evolution of time.
Effects of charging and doping on orbital hybridizations and distributions in TiO2 clusters
Zhao, Hong Min; Wu, Miao Miao; Wang, Qian; Jena, Puru
2011-11-01
Charging and doping are two important strategies used in TiO2 quantum dots for photocatalysis and photovoltaics. Using small clusters as the prototypes for quantum dots, we have carried out density functional calculations to study the size-specific effects of charging and doping on geometry, electronic structure, frontier orbital distribution, and orbital hybridization. We find that in neutral (TiO2)n clusters the charge transfer from Ti to O is almost size independent, while for the anionic (TiO2)n clusters the corresponding charge transfer is reduced but it increases with size. When one O atom is substituted with N, the charge transfer is also reduced due to the smaller electron affinity of N. As the cluster size increases, the populations of 3d and 4s orbitals of Ti decrease with size, while the populations of the 4p orbital increase, suggesting size dependence of spd hybridizations. The present study clearly shows that charging and doping are effective ways for tailoring the energy gap, orbital distributions, and hybridizations.
Melting Point Of Metals In Relation Io Electron Charge Density
Directory of Open Access Journals (Sweden)
Boczkal G.
2015-09-01
Full Text Available The concept of spatial criterion of the electron charge concentration is applied to determine the metal melting point. Based on the model proposed for bcc metals, a model for hcp metals and general form for others has been developed. To calculate the melting point, only structural data and atomic number are required. The obtained results show good consistency with the experimental data for metals with atomic number Z < 70.
ON THE ORIGIN OF THE HIGH COLUMN DENSITY TURNOVER IN THE H I COLUMN DENSITY DISTRIBUTION
International Nuclear Information System (INIS)
We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at NHI ≈ 1021 cm–2, which is present at both z = 0 and z ≈ 3, and a lack of systems above NHI ≈ 1022 cm–2 at z = 0. Using observations of the column density distribution, we argue that the H I-H2 transition does not cause the turnover at NHI ≈ 1021 cm–2 but can plausibly explain the turnover at NHI ∼> 1022 cm–2. We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Lyα column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ∼ kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.
Ionic strength independence of charge distributions in solvation of biomolecules
Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.
2014-01-01
Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations...
Finite temperature bosonic charge and current densities in compactified cosmic string spacetime
Mohammadi, Azadeh
2015-01-01
In this paper we study the expectation values of the induced charge and current densities for a massive bosonic field with nonzero chemical potential in the geometry of a higher dimensional compactified cosmic string with magnetic fluxes, along the string core and also enclosed by the compactified direction, in thermal equilibrium at finite temperature $T$. These densities are calculated by decomposing them into the vacuum expectation values and finite temperature contributions coming from the particles and antiparticles. The only nonzero components correspond to the charge, azimuthal and axial current densities. By using the Abel-Plana formula, we decompose the components of the densities into the part induced by the cosmic string and the one by the compactification. The charge density is an odd function of the chemical potential and even periodic function of the magnetic flux with a period equal to the quantum flux. Moreover, the azimuthal (axial) current density is an even function of the chemical potentia...
The Probability Distribution Function of Column Density in Molecular Clouds
Vázquez-Semadeni, E; Vazquez-Semadeni, Enrique; Garcia, Nieves
2001-01-01
We discuss the probability distribution function (PDF) of column density resulting from density fields with lognormal PDFs, applicable to molecular clouds. For magnetic and non-magnetic numerical simulations of compressible, isothermal turbulence, we show that the density autocorrelation function (ACF) decays over short distances compared to the simulation size. The density "events" along a line of sight can be assumed to be independent over distances larger than this, and the Central Limit Theorem should be applicable. However, using random realizations of lognormal fields, we show that the convergence to a Gaussian shape is extremely slow in the high-density tail, and thus the column density PDF is not expected to exhibit a unique functional shape, but to transit instead from a lognormal to a Gaussian form as the column length increases, with decreasing variance. For intermediate path lengths, the column density PDF assumes a nearly exponential decay. For cases with density contrasts of $10^4$, comparable t...
Comparison of the charge distributions of the titanium isotopes
International Nuclear Information System (INIS)
Measurements have been made of the elastic electron scattering from the three even isotopes of titanium, Ti46, Ti48, and Ti50, with the objective of determining the differences in their ground state charge distributions. The experiment measures the ratios of the elastic cross sections of the three isotopes, thereby eliminating many of the uncertainties peculiar to an absolute cross section measurement. The experiment was done at the NBS Linac in Gaithersburg, Maryland. Theoretical calculations using a partial wave elastic scattering program, showed that the ratios of cross sections arising from scattering from two slightly different Fermi type 2 parameter charge distributions, depended strongly on the differences in the parameter describing the charge distribution, but only weakly on the actual values of these parameters. These ratio curves, considered as a function of momentum transfer, achieved their extreme values at momenta transfer near 1.0 F-1, which is near the point where the Born approximation form factor goes to zero. Therefore, ratios of cross sections were measured at momenta transfer ranging from .55 to 1.1 F-1; by holding the scattering angle fixed at 127.50 and varying the incident beam energy from 60 to 123 MeV. 43 refs., 45 figs., 9 tabs
Mining for elastic constants of intermetallics from the charge density landscape
International Nuclear Information System (INIS)
There is a significant challenge in designing new materials for targeted properties based on their electronic structure. While in principle this goal can be met using knowledge of the electron charge density, the relationships between the density and properties are largely unknown. To help overcome this problem we develop a quantitative structure–property relationship (QSPR) between the charge density and the elastic constants for B2 intermetallics. Using a combination of informatics techniques for screening all the potentially relevant charge density descriptors, we find that C11 and C44 are determined solely from the magnitude of the charge density at its critical points, while C12 is determined by the shape of the charge density at its critical points. From this reduced charge density selection space, we develop models for predicting the elastic constants of an expanded number of intermetallic systems, which we then use to predict the mechanical stability of new systems. Having reduced the descriptors necessary for modeling elastic constants, statistical learning approaches may then be used to predict the reduced knowledge-based required as a function of the constituent characteristics
Predicted angular distribution of fast charged particles with ionization
International Nuclear Information System (INIS)
Moliere theory of angular distribution for fast charged particles is improved to take into account ionization loss, by using Kamata-Nishimura formulation of the theory. Decrease of the particle energy along the passage hence increase of the screening angle brings a slight different results from those derived by Moliere-Bethe formulation for fixed energies. The present results are reduced to the same Moliere distribution with modified values of the expansion parameter and the unit of Moliere angle. Properties of the new distribution and differences from the traditional one are discussed. Angular distributions of particles penetrating through the mixed or compound substances are also investigated both under the relativistic and the nonrelativistic conditions, together with the Kamata-Nishimura constants characterizing their formulation. (author)
Electromagnetic contribution to charge symmetry violation in parton distributions
Directory of Open Access Journals (Sweden)
X.G. Wang
2016-02-01
Full Text Available We report a calculation of the combined effect of photon radiation and quark mass differences on charge symmetry violation (CSV in the parton distribution functions of the nucleon. Following a recent suggestion of Martin and Ryskin, the initial photon distribution is calculated in terms of coherent radiation from the proton as a whole, while the effect of the quark mass difference is based on a recent lattice QCD simulation. The distributions are then evolved to a scale at which they can be compared with experiment by including both QCD and QED radiation. Overall, at a scale of 5 GeV2, the total CSV effect on the phenomenologically important difference between the d and u-quark distributions is some 20% larger than the value based on quark mass differences alone. In total these sources of CSV account for approximately 40% of the NuTeV anomaly.
Charge density A probe for the nuclear interaction in microscopic transport models
Galíchet, E; Lecolley, J F; Bougault, R; Butà, A; Colin, J; Cussol, D; Durand, D; Guinet, D; Lautesse, P; Rivet, M F; Borderie, B; Auger, G; Bouriquet, B; Chbihi, A; Frankland, J D; Guiot, B; Hudan, S; Charvet, J L; Dayras, R; Lavaud, F; Neindre, N L; López, O; Manduci, L; Marie, J; Nalpas, L; Normand, J; Pârlog, M; Pawlowski, P; Plagnol, E; Rosato, E; Steckmeyer, J C; Tamain, B; Lauwe, A V; Vient, E; Volant, C; Wieleczko, J P
2003-01-01
The transport properties of the sup 3 sup 6 Ar+ sup 5 sup 8 Ni system at 95 A .MeV measured with the INDRA array, are studied within the BNV kinetic equation. A general protocol of comparison between the N-body experimental fragment information and the one-body distribution function is developed using global variables, with a special focus on charge density. This procedure avoids any definition of sources and any use of an afterburner in the simulation. We shall discuss the feasibility of such an approach and the distortions induced by the finite detection efficiency and the completeness requirements of the data selection. The sensitivity of the different global observables to the macroscopic parameters of the effective nuclear interaction will be studied in detail.
The nomogram of density distribution of lunar craters.
Pugacheva, S. G.; Bolkhovitinov, I. S.
1994-12-01
Least-square fits to the density of the distribution of lunar craters described by the approximating function are found for craters larger then 10 km in diamater. The nomogram of parameters of the approximating function is given for the estimate of density of primary, secondary and tertiary craters over an area of 104km2.
Accounting for Income Distribution Trends : A Density Function Decomposition Approach
Jenkins, Stephen P.; VAN KERM Philippe
2004-01-01
This paper develops methods for decomposing changes in the income distribution using subgroup decompositions of the income density function. Overall changes are related to changes in subgroup shares and changes in subgroup densities, where the latter are broken down further using elementary transformations of individual incomes. These density decompositions are analogous to the widely-used decompositions of inequality indices by population subgroup, except that they summarize multiple feature...
Determination of charge carrier mobility in doped low density polyethylene using DC transients
DEFF Research Database (Denmark)
Khalil, M.Salah; Henk, Peter O; Henriksen, Mogens
1989-01-01
Charge carrier mobility was determined for plain and doped low-density polyethylene (LDPE) using DC transient currents. Barium titanate was used as a strongly polar dopant and titanium dioxide as a semiconductor dopant. The values of the mobility obtained were on the order of 10-10 cm2 v-1 s-1...... a factor of five. Charge trapping and space charge formation were modified by the introduction of titanium dioxide...
Czech Academy of Sciences Publication Activity Database
Zelinka, Jiří; Oral, Martin; Radlička, Tomáš
Brno: Institute of Scientific Instruments AS CR, v. v. i, 2014. s. 91. ISBN 978-80-87441-11-4. [International Conference on Charged Parrticle Optics /9./. 31.08.2014-05.09.2014, Brno] Institutional support: RVO:68081731 Keywords : space charge * current density evaluation * self-consistent computation * remeshing * FEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Photoinduced Dynamics in the Charge Density Wave Compound 4HB-TaSe2
Directory of Open Access Journals (Sweden)
Demsar J.
2013-03-01
Full Text Available We report on ultrafast photoindued charge density wave (CDW dynamics in the transition-metal dichalcogenide 4Hb-TaSe2, studied with ultrafast electron diffraction. Fluence dependence of the lattice superstructure suppression show a phase transition from the commensurate to the incommensurate phase of 4Hb-TaSe2. Unusually long recovery times of perturbed charge density waves indicate th importance of a coupling between the two dimensional CDWs.
Chiral anomaly, Charge Density Waves, and Axion Strings from Weyl Semimetals
Wang, Zhong; Zhang, Shou-Cheng
2012-01-01
We study dynamical instability and chiral symmetry breaking in three dimensional Weyl semimetals, which turns Weyl semimetals into "axion insulators". Charge density waves (CDW) is found to be the natural consequence of the chiral symmetry breaking. The phase mode of this charge density wave state is identified as the axion, which couples to electromagnetic field in the topological $\\theta{\\bf E}\\cdot{\\bf B}$ term. One of our main results is that the "axion strings" can be realized as the (sc...
Kumar, Amit; POUMIROL, Jean-Marie; Escoffier, Walter; Goiran, Michel; Raquet, Bertrand; Pivin, Jean Claude
2010-01-01
We report on the investigation of magnetic field induced charge density wave and Hall coefficient sign reversal in a quasi-two dimensional electronic system of highly oriented pyrolytic graphite under very strong magnetic field. The change of Hall sign coefficient from negative to positive occurs at low temperature and high magnetic field just after the charge density wave transition, suggesting the role of hole-like quasi-particles in this effect. Angular dependent measurements show that the...
Distribution of Electric Charge in a System of Charged Conductors of Finite Dimensions
Czech Academy of Sciences Publication Activity Database
Doležel, Ivo; Dvořák, P.; Šolín, Pavel; Ulrych, B.
Ostrava : VŠB Technická univerzita Ostrava, 2003, s. -. ISBN 80-248-0225-2. [International Scientific Conference /5./. Beskydy - Visalaje (CZ), 28.01.2003-29.01.2003] R&D Projects: GA ČR GA102/00/0933 Institutional research plan: CEZ:AV0Z2057903 Keywords : distribution of electric charge * finite dimensions Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv
2016-06-01
Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.
Calculation of ion charge-state distribution in ECR ion sources
International Nuclear Information System (INIS)
Starting with the pioneering efforts of Y. Yongen (Louvain-la-Neuve, Belgium) a code has been developed to calculate the equilibrium ion charge-state distribution for electron-cyclotron resonance source (ECR) ion sources. Production of ions is caused by the impact ionization of the charge gas from ECR-heated electrons of a few keV. Loss of an ion of a given charge state is from charge exchange and radiative recombination. Ultimately, the ion flows out of the minimum-B containment region. The ion confinement times are calculated using an ion-trap-potential model which is based upon modeling calculations done at Lawrence Livermore National Laboratory (LLNL) for the Tandem Mirror Machine. Using this model requires the self-consistent determination of the trap potential and thermal electron density in the plasma. Code inputs are gas natural density, hot-electron temperature and density, ion temperature, cold-electron temperature, mirror ratio, physical dimensions, and atomic-physics data. Other than that there are no adjustable parameters. Results of comparison of calculations with the limited available data are reasonable
Wigner Function of Density Operator for Negative Binomial Distribution
Institute of Scientific and Technical Information of China (English)
HE Min-Hua; XU Xing-Lei; ZHANG Duan-Ming; LI Hong-Qi; PAN Gui-Jun; YIN Yan-Ping; CHEN Zhi-Yuan
2008-01-01
By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we derive the Wigner function of squeezed number state, which yields negative binomial distribution by virtue of the entangled state representation and the entangled Wigner operator.
Mohammadi, A; Saharian, A A
2014-01-01
We investigate the finite temperature expectation values of the charge and current densities for a massive fermionic field with nonzero chemical potential, $\\mu$, in the geometry of a straight cosmic string with a magnetic flux running along its axis. These densities are decomposed into the vacuum expectation values and contributions coming from the particles and antiparticles. The charge density is an even periodic function of the magnetic flux with the period equal to the quantum flux and an odd function of the chemical potential. The only nonzero component of the current density corresponds to the azimuthal current. The latter is an odd periodic function of the magnetic flux and an even function of the chemical potential. At high temperatures, the parts in the charge density and azimuthal current induced by the planar angle deficit and magnetic flux are exponentially small. The asymptotic behavior at low temperatures crucially depends whether the value $|\\mu|$ is larger or smaller than the mass of the fiel...
Directory of Open Access Journals (Sweden)
Yongjun Ahn
Full Text Available The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive
Solute location in a nanoconfined liquid depends on charge distribution
Energy Technology Data Exchange (ETDEWEB)
Harvey, Jacob A.; Thompson, Ward H., E-mail: wthompson@ku.edu [Department of Chemistry, University of Kansas, Lawrence, Kansas 66045 (United States)
2015-07-28
Nanostructured materials that can confine liquids have attracted increasing attention for their diverse properties and potential applications. Yet, significant gaps remain in our fundamental understanding of such nanoconfined liquids. Using replica exchange molecular dynamics simulations of a nanoscale, hydroxyl-terminated silica pore system, we determine how the locations explored by a coumarin 153 (C153) solute in ethanol depend on its charge distribution, which can be changed through a charge transfer electronic excitation. The solute position change is driven by the internal energy, which favors C153 at the pore surface compared to the pore interior, but less so for the more polar, excited-state molecule. This is attributed to more favorable non-specific solvation of the large dipole moment excited-state C153 by ethanol at the expense of hydrogen-bonding with the pore. It is shown that a change in molecule location resulting from shifts in the charge distribution is a general result, though how the solute position changes will depend upon the specific system. This has important implications for interpreting measurements and designing applications of mesoporous materials.
Pseudorapidity Distribution of Charged Particles in d+Au Collisions at √(sNN)=200 GeV
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.
2004-08-01
The measured pseudorapidity distribution of primary charged particles in minimum-bias d+Au collisions at √(sNN)=200 GeV is presented for the first time. This distribution falls off less rapidly in the gold direction as compared to the deuteron direction. The average value of the charged particle pseudorapidity density at midrapidity is ∣η∣≤0.6=9.4±0.7(syst) and the integrated primary charged particle multiplicity in the measured region is 82±6(syst). Estimates of the total charged particle production, based on extrapolations outside the measured pseudorapidity region, are also presented. The pseudorapidity distribution, normalized to the number of participants in d+Au collisions, is compared to those of Au+Au and p+p¯ systems at the same energy. The d+Au distribution is also compared to the predictions of the parton saturation model, as well as microscopic models.
Supergravity and the jet quenching parameter in the presence of R-charge densities
Avramis, S D; Avramis, Spyros D.; Sfetsos, Konstadinos
2007-01-01
We employ the AdS/CFT correspondence to compute the jet quenching parameter for N=4 Yang-Mills theory at nonzero R-charge densities. Using as dual supergravity backgrounds non-extremal rotating branes, we find that the presence of the R-charges generically enhances the jet quenching phenomenon. However, at fixed temperature, this enhancement might or might not be a monotonically increasing function of the R-charge density and depends on the number of independent angular momenta describing the solution. We perform our analysis for the canonical as well as for the grand canonical ensemble which give qualitatively similar results.
Charge distribution dependency on gap thickness of CMS endcap RPC
Park, Sung Keun
2016-01-01
We present a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness.Prototypes of double-gap with five different gap thickness from 1.8mm to 1.0mm in 0.2mm steps have been built with 2mm thick phenolic high-pressure-laminated (HPL) plates. The charges of cosmic-muon signals induced on the detector strips are measured as a function of time using two four-channel 400-MHz fresh ADCs. In addition, the arrival time of the muons and the strip cluster sizes are measured by digitizing the signal using a 32-channel voltage-mode front-end-electronics and a 400-MHz 64-channel multi-hit TDC. The gain and the input impedance of the front-end-electronics were 200mV/mV and 20 Ohm, respectively.
Energy Technology Data Exchange (ETDEWEB)
Stollenwerk, L [Institut fuer Plasmaforschung, Pfaffenwaldring 31, 70569 Stuttgart (Germany)], E-mail: stollenwerk@ipf.uni-stuttgart.de
2009-10-15
In a planar, laterally extended dielectric barrier discharge (DBD) system operated in glow mode, a filamentary discharge is observed. The filaments tend to move laterally and hence tend to cause collisions. Thereby, usually one collision partner becomes destroyed. In this paper, the collision process and especially the preceding time period is investigated. Beside the luminescence density of the filaments, the surface charge density accumulated between the single breakdowns of the DBD is observed via an optical measurement technique based on the linear electro-optical effect (pockels effect). A ring-like substructure of the surface charge distribution of a single filament is found, which correlates to the filament interaction behaviour. Furthermore, a preferred filament distance is found, suggesting the formation of a filamentary quasi-molecule.
Wong, YW; Leong, JCY; Yu, J.; Luk, KDK; Hu, Y.; Lu, WW
1998-01-01
Stimulation of the posterior tibial nerve is commonly used in the measurement of somatosensory evoked potential (SEP). To improve the efficiency of stimulation, the potential field and current density distributions under the surface electrodes were modeled and simulated. In our model, three layers were assumed: (1) the air environment, (2) electrode and paste (3) human body (skin and soft tissues). The mirror method was used to analyze the potential field of point charge. Integration of the f...
Charge Distributions in Transverse Coordinate Space and in Impact Parameter Space
Hwang, Dae Sung; Kim, Dong Soo; Kim, Jonghyun
2008-01-01
We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.
Revealing dressed quarks via the proton's charge distribution.
Cloët, Ian C; Roberts, Craig D; Thomas, Anthony W
2013-09-01
The proton is arguably the most fundamental of nature's readily detectable building blocks. It is at the heart of every nucleus and has never been observed to decay. It is nevertheless a composite object, defined by its valence-quark content: u+u+d--i.e., two up (u) quarks and one down (d) quark; and the manner by which they influence, inter alia, the distribution of charge and magnetization within this bound state. Much of novelty has recently been learned about these distributions; and it now appears possible that the proton's momentum-space charge distribution possesses a zero. Experiments in the coming decade should answer critical questions posed by this and related advances; we explain how such new information may assist in charting the origin and impact of key emergent phenomena within the strong interaction. Specifically, we show that the possible existence and location of a zero in the proton's electric form factor are a measure of nonperturbative features of the quark-quark interaction in the standard model, with particular sensitivity to the running of the dressed-quark mass. PMID:25166653
Finite temperature bosonic charge and current densities in compactified cosmic string spacetime
Mohammadi, A.; Bezerra de Mello, E. R.
2016-06-01
In this paper, we study the expectation values of the induced charge and current densities for a massive bosonic field with nonzero chemical potential in the geometry of a higher-dimensional compactified cosmic string with magnetic fluxes along the string core and also enclosed by the compactified direction in thermal equilibrium at finite temperature T . These densities are calculated by decomposing them into the vacuum expectation values and finite temperature contributions coming from the particles and antiparticles. The only nonzero components correspond to the charge, azimuthal, and axial current densities. By using the Abel-Plana formula, we decompose the components of the densities into the part induced by the cosmic string and the one by the compactification. The charge density is an odd function of the chemical potential and even periodic function of the magnetic flux with a period equal to the quantum flux. Moreover, the azimuthal (axial) current density is an even function of the chemical potential and an odd (even) periodic function of the magnetic flux with the same period. In this paper, our main concern is the thermal effect on the charge and current densities, including some limiting cases, the low- and high-temperature approximations. We show that in all cases, the temperature enhances the induced densities.
d-Density Wave Scenario Description of the New Hidden Charge Order in Cuprates
Makhfudz, Imam
2016-06-01
In this paper, we show that the theory of high Tc superconductivity based on a microscopic model with d-density wave (DDW) scenario in the pseudogap phase is able to reproduce some of the most important features of the recent experimentally discovered hidden charge order in several families of Cuprates. In particular, by computing and comparing energies of charge orders of different modulation directions derived from a full microscopic theory with d-density wave scenario, the axial charge order ϕX(Y) with wavevector {Q} = (Q0,0)((0,Q0)) is shown to be unambiguously energetically more favorable over the diagonal charge order ϕX±Y with wavevector {Q} = (Q0, ± Q0) at least in commensurate limit, to be expected also to hold even to more general incommensurate case, in agreement with experiment. The two types of axial charge order ϕX and ϕY are degenerate by symmetry. We find that within the superconducting background, biaxial (checkerboard) charge order is energetically more favorable than uniaxial (stripe) charge order, and therefore checkerboard axial charge order should be the one observed in experiments, assuming a single domain of charge ordered state on each CuO2 plane.
Estimation of current density distribution under electrodes for external defibrillation
Directory of Open Access Journals (Sweden)
Papazov Sava P
2002-12-01
Full Text Available Abstract Background Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. Method and Results Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. Conclusion The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.
International Nuclear Information System (INIS)
The CORSIKA simulated showers for H, C and Fe cosmic primaries in 8 energy intervals from 1016 eV to 1018 eV, taking into account the response of KASCADE-Grande detectors, have been used to reconstruct the charged particle density for KASCADE-Grande observations, based on the Linsley lateral distribution function (LDF). Extensive studies have been done to investigate features for energy estimation and mass discrimination of cosmic primaries around 1017 eV. It has been found that the charged particle density distribution of EAS exhibits interesting information for both aspects: at larger distances from shower core, around 500 m - 600 m the charge particle density could be used as energy identifier, and at shorter distances from shower core, around, 100 m - 200 m, it signals the mass of the EAS primary. (author)
Effects of High Charge Densities in Multi-GEM Detectors
Franchino, S; Hall-Wilton, R.; Muller, H.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.
2015-01-01
A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.
Papoulia, A; Ekman, J
2016-01-01
Background: Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and the shape of the nuclear charge density distribution. Purpose: To investigate how sensitive field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge distributions that can be extracted from measured field shifts. Methods: Nuclear properties are obtained from nuclear density functional theory calculations based on the Skyrme-Hartree-Fock-Bogoliubov approach. These results are combined with multiconfiguration Dirac-Hartree-Fock methods to obtain realistic field shifts. Results: Phenomena such as nuclear deformation and variations in the diffuseness of nuclear charge distributions give measurable contributions to the field shifts. Using a novel approach, we demonstrate the possibility to extract new information concerning the n...
International Nuclear Information System (INIS)
An analytical model for surrounding gate metal—oxide—semiconductor field effect transistors (MOSFETs) considering quantum effects is presented. To achieve this goal, we have used a variational approach for solving the Poissonand Schrodinger equations. This model is developed to provide an analytical expression for the inversion charge distribution function for all regions of the device operation. This expression is used to calculate the other important parameters like the inversion charge centroid, threshold voltage and inversion charge density. The calculated expressions for the above parameters are simple and accurate. The validity of this model was checked for the devices with different device dimensions and bias voltages. The calculated results are compared with the simulation results and they show good agreement. (semiconductor devices)
SUNFLOWER: Stata module to generate density distribution sunflower plots
Dupont, William D.; W. Dale Plummer Jr.
2002-01-01
sunflower draws density distribution sunflower plots. These plots are useful for displaying bivariate data whose density is too great for conventional scatter plots to be effective. A sunflower is a number of line segments of equal length, called petals, that radiate from a central point. There are two varieties of sunflowers: light and dark. Each petal of a light sunflower represents one observation. Each petal of a dark sunflower represents a specific number of observations specified by the...
Density distribution in a heavy-medium cyclone
Institute of Scientific and Technical Information of China (English)
Wang Yuling; Zhao Yuemin; Yang Jianguo
2011-01-01
Heavy-medium cyclones are widely used to upgrade run-of-mine coal. But the understanding of flow in a cyclone containing a dense medium is still incomplete. By introducing turbulent diffusion into calculations of centrifugal settling a theoretical distribution function giving the density field can be deduced. Qualitative analysis of the density field in every part of a cylindrical cyclone suggests an optimum design that has exhibited good separation effectiveness and anti-wear performance when in commercial operation.
Measurements of transient electron density distributions by femtosecond X-ray diffraction
International Nuclear Information System (INIS)
This thesis concerns measurements of transient charge density maps by femtosecond X-ray diffraction. Different X-ray diffraction methods will be considered, particularly with regard to their application in femtosecond X-ray diffraction. The rotation method is commonly used in stationary X-ray diffraction. In the work in hand an X-ray diffraction experiment is demonstrated, which combines the method with ultrafast X-ray pulses. This experiment is the first implementation which makes use of the rotation method to map transient intensities of a multitude of Bragg reflections. As a prototype material Bismuth is used, which previously was studied frequently by femtosecond X-ray diffraction by measuring Bragg reflections successively. The experimental results of the present work are compared with the literature data. In the second part a powder-diffraction experiment will be presented, which is used to study the dynamics of the electron-density distribution on ultrafast time scales. The experiment investigates a transition metal complex after photoexcitation of the metal to ligand charge transfer state. Besides expected results, i. e. the change of the bond length between the metal and the ligand and the transfer of electronic charge from the metal to the ligand, a strong contribution of the anion to the charge transfer was found. Furthermore, the charge transfer has predominantly a cooperative character. That is, the excitation of a single complex causes an alteration of the charge density of several neighboring units. The results show that more than 30 transition-metal complexes and 60 anions contribute to the charge transfer. This collective response is a consequence of the strong coulomb interactions of the densely packed ions.
Low Density Phases in a Uniformly Charged Liquid
Knüpfer, Hans; Muratov, Cyrill B.; Novaga, Matteo
2016-07-01
This paper is concerned with the macroscopic behavior of global energy minimizers in the three-dimensional sharp interface unscreened Ohta-Kawasaki model of diblock copolymer melts. This model is also referred to as the nuclear liquid drop model in the studies of the structure of highly compressed nuclear matter found in the crust of neutron stars, and, more broadly, is a paradigm for energy-driven pattern forming systems in which spatial order arises as a result of the competition of short-range attractive and long-range repulsive forces. Here we investigate the large volume behavior of minimizers in the low volume fraction regime, in which one expects the formation of a periodic lattice of small droplets of the minority phase in a sea of the majority phase. Under periodic boundary conditions, we prove that the considered energy {Γ}-converges to an energy functional of the limit "homogenized" measure associated with the minority phase consisting of a local linear term and a non-local quadratic term mediated by the Coulomb kernel. As a consequence, asymptotically the mass of the minority phase in a minimizer spreads uniformly across the domain. Similarly, the energy spreads uniformly across the domain as well, with the limit energy density minimizing the energy of a single droplet per unit volume. Finally, we prove that in the macroscopic limit the connected components of the minimizers have volumes and diameters that are bounded above and below by universal constants, and that most of them converge to the minimizers of the energy divided by volume for the whole space problem.
Energy Technology Data Exchange (ETDEWEB)
Hoeng, Fanny; Denneulin, Aurore [Université Grenoble Alpes, LGP2 (France); Neuman, Charles [Poly-Ink (France); Bras, Julien, E-mail: julien.bras@grenoble-inp.fr [Université Grenoble Alpes, LGP2 (France)
2015-06-15
Synthesis of silver nanoparticles using cellulose nanocrystals (CNC) has been found to be a great method for producing metallic particles in a sustainable way. In this work, we propose to evaluate the influence of the charge density of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-oxidized CNC on the morphology and the stability of synthetized silver nanoparticles. Silver nanoparticles were obtained by sol–gel reaction using borohydride reduction, and charge density of TEMPO-oxidized CNC was tuned by an amine grafting. The grafting was performed at room temperature and neutral pH. Crystallinity and morphology were kept intact during the peptidic reaction on CNC allowing knowing the exact impact of the charge density. Charge density has been found to have a strong impact on shape, organization, and suspension stability of resulting silver particles. Results show an easy way to tune the charge density of CNC and propose a sustainable way to control the morphology and stability of silver nanoparticles in aqueous suspension.
Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density
Chen, Guang; Das, Siddhartha
2015-05-01
"Smart" polyelectrolyte-grafted or "soft" nanochannels with pH-responsiveness have shown great promise for applications like manipulation of ion transport, ion sensing and selection, current rectification, and many more. In this paper, we develop a theory to study the electroosmotic transport in a polyelectrolyte-grafted (or soft) nanochannel with pH-dependent charge density. In one of our recent studies, we have identified that explicit consideration of hydrogen ion concentration is mandatory for appropriately describing the electrostatics of such systems and the resulting monomer concentration must obey a non-unique, cubic distribution. Here, we use this electrostatic calculation to study the corresponding electroosmotic transport. We establish that the effect of pH in the electroosmotic transport in polyelectrolyte-grafted nanochannels introduces two separate issues: first is the consideration of the hydrogen and hydroxyl ion concentrations in describing the electroosmotic body force, and second is the consideration of the appropriate drag force that bears the signature of this cubic monomeric distribution. Our results indicate that the strength of the electroosmotic velocity for the pH-dependent case is always smaller than that for the pH-independent case, with the extent of this difference being a function of the system parameters. Such nature of the electroosmotic transport will be extremely significant in suppressing the electroosmotic flow strength with implications in large number applications such as capillary electrophoresis induced separation, electric field mediated DNA elongation, electrophoretic DNA nanopore sequencing, and many more.
On the density distribution across space : a probabilistic approach
Ilenia Epifani, Ilenia; Nicolini, Rosella
2009-01-01
This paper aims at providing a Bayesian parametric framework to tackle the accessibility problem across space in urban theory. Adopting continuous variables in a probabilistic setting we are able to associate with the distribution density to the Kendall's tau index and replicate the general issues related to the role of proximity in a more general context. In addition, by referring to the Beta and Gamma distribution, we are able to introduce a differentiation feature in each spatial unit with...
On the density distribution across space: a probabilistic approach
Ilenia Epifani; Rosella Nicolini
2009-01-01
This paper aims at providing a Bayesian parametric framework to tackle the accessibility problem across space in urban theory. Adopting continuous variables in a probabilistic setting we are able to associate with the distribution density to the Kendall's tau index and replicate the general issues related to the role of proximity in a more general context. In addition, by referring to the Beta and Gamma distribution, we are able to introduce a differentiation feature in each spatial unit with...
Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma
International Nuclear Information System (INIS)
In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λL=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of Tr=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is Tr=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is inertially and
Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics
Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valledares, C.E.; Pfaff, R. F.
2012-01-01
Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian approx. 37 deg and 290 deg E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation
The self-energy of a charged particle in the presence of a topological defect distribution
De Carvalho, A M M; Furtado, C; Moraes, Fernando; Furtado, Claudio
2004-01-01
In this work we study a charged particle in the presence of both a continuous distribution of disclinations and a continuous distribution of edge dislocations in the framework of the geometrical theory of defects. We obtain the self-energy for a single charge both in the internal and external regions of either distribution. For both distributions the result outside the defect distribution is the self-energy that a single charge experiments in the presence of a single defect.
Snapshots of cooperative atomic motions in the optical suppression of charge density waves.
Eichberger, Maximilian; Schäfer, Hanjo; Krumova, Marina; Beyer, Markus; Demsar, Jure; Berger, Helmuth; Moriena, Gustavo; Sciaini, Germán; Miller, R J Dwayne
2010-12-01
Macroscopic quantum phenomena such as high-temperature superconductivity, colossal magnetoresistance, ferrimagnetism and ferromagnetism arise from a delicate balance of different interactions among electrons, phonons and spins on the nanoscale. The study of the interplay among these various degrees of freedom in strongly coupled electron-lattice systems is thus crucial to their understanding and for optimizing their properties. Charge-density-wave (CDW) materials, with their inherent modulation of the electron density and associated periodic lattice distortion, represent ideal model systems for the study of such highly cooperative phenomena. With femtosecond time-resolved techniques, it is possible to observe these interactions directly by abruptly perturbing the electronic distribution while keeping track of energy relaxation pathways and coupling strengths among the different subsystems. Numerous time-resolved experiments have been performed on CDWs, probing the dynamics of the electronic subsystem. However, the dynamics of the periodic lattice distortion have been only indirectly inferred. Here we provide direct atomic-level information on the structural dynamics by using femtosecond electron diffraction to study the quasi two-dimensional CDW system 1T-TaS(2). Effectively, we have directly observed the atomic motions that result from the optically induced change in the electronic spatial distribution. The periodic lattice distortion, which has an amplitude of ∼0.1 Å, is suppressed by about 20% on a timescale (∼250 femtoseconds) comparable to half the period of the corresponding collective mode. These highly cooperative, electronically driven atomic motions are accompanied by a rapid electron-phonon energy transfer (∼350 femtoseconds) and are followed by fast recovery of the CDW (∼4 picoseconds). The degree of cooperativity in the observed structural dynamics is remarkable and illustrates the importance of obtaining atomic-level perspectives of the
Suppression of Three-Dimensional Charge Density Wave Ordering via Thickness Control
Kim, Gideok; Neumann, Michael; Kim, Minu; Le, Manh Duc; Kang, Tae Dong; Noh, Tae Won
2015-11-01
Barium bismuth oxide (BaBiO3 ) is the end member of two families of high-Tc superconductors, i.e., BaPb1 -xBix O3 and Ba1 -xKx BiO3 . The undoped parent compound is an insulator, exhibiting a charge density wave that is strongly linked to a static breathing distortion in the oxygen sublattice of the perovskite structure. We report a comprehensive spectroscopic and x-ray diffraction study of BaBiO3 thin films, showing that the minimum film thickness required to stabilize the breathing distortion and charge density wave is ≈11 unit cells, and that both phenomena are suppressed in thinner films. Our results constitute the first experimental observation of charge density wave suppression in bismuthate compounds without intentionally introducing dopants.
Elastic anomalies at the charge density wave transition in TbTe3
Saint-Paul, M.; Guttin, C.; Lejay, P.; Remenyi, G.; Leynaud, O.; Monceau, P.
2016-05-01
The set of elastic constants of the charge density wave (CDW) rare earth tritelluride TbTe3 has been measured at 15 MHz in the temperature range 300-360 K. Large anomalies in the velocity and ultrasonic attenuation of the longitudinal C11 and C33 modes are observed at the charge density wave phase transition TCDW=333 K. Anisotropic stress dependence ∂TCDW / ∂σ is found, the components ∂TCDW / ∂σ11 and ∂TCDW / ∂σ33 in the (a,c) plane are one order of magnitude larger than the component ∂TCDW / ∂σ22 perpendicular to it. The Landau theory has been used to explain the experimental data. Critical behaviour near the charge density wave phase transition is described in terms of a phenomenological dynamic scaling theory.
Full charge-density calculation of the surface energy of metals
DEFF Research Database (Denmark)
Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt
1994-01-01
We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by means...... of a spherically symmetrized charge density, while the Coulomb and exchange-correlation contributions are calculated by means of the complete, nonspherically symmetric charge density within nonoverlapping, space-filling Wigner-Seitz cells. The functional is used to assess the convergence and the...... accuracy of the linear-muffin-tin-orbitals (LMTO) method and the ASA in surface calculations. We find that the full charge-density functional improves the agreement with recent full-potential LMTO calculations to a level where the average deviation in surface energy over the 4d series is down to 10%....
Zhou Dai Mei; Sá Ben-Hao; Li Zhong Dao
2002-01-01
Using a hadron and string cascade model, JPCIAE, and the corresponding Monte Carlo events generator, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p anti p experimental data and the PHOBOS and PHENIX Au + Au data could be reproduced fairly well without retuning the model parameters. The author shows that since is not a well defined physical variable both experimentally and theoretically, the charged particle pseudorapidity density per participant pair can increase and also can decrease with increasing of , so it may be hard to use charged particle pseudorapidity density per participant pair as a function of to distinguish various theoretical models for particle production
International Nuclear Information System (INIS)
Using a hadron and string cascade model, JPCIAE, and the corresponding Monte Carlo events generator, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p anti p experimental data and the PHOBOS and PHENIX Au + Au data could be reproduced fairly well without retuning the model parameters. The author shows that since part> is not a well defined physical variable both experimentally and theoretically, the charged particle pseudorapidity density per participant pair can increase and also can decrease with increasing of part>, so it may be hard to use charged particle pseudorapidity density per participant pair as a function of part> to distinguish various theoretical models for particle production
Charged-particle distributions in 16O induced nuclear reactions at 60 and 200 A GeV
International Nuclear Information System (INIS)
Results from 16O induced nuclear interactions with C, Cu, Ag and Au targets at 60 and 200 A GeV are presented. Multiplicity and pseudorapidity-density distributions of charged particles and their dependence on the target mass number are reported. The increase in the particle density with increasing centrality, characterized by the energy flux at zero degrees, is investigated. Comparisons with the Fritiof model reveal systematic differences. (orig.)
Trapped charge densities in Al2O3-based silicon surface passivation layers
Jordan, Paul M.; Simon, Daniel K.; Mikolajick, Thomas; Dirnstorfer, Ingo
2016-06-01
In Al2O3-based passivation layers, the formation of fixed charges and trap sites can be strongly influenced by small modifications in the stack layout. Fixed and trapped charge densities are characterized with capacitance voltage profiling and trap spectroscopy by charge injection and sensing, respectively. Al2O3 layers are grown by atomic layer deposition with very thin (˜1 nm) SiO2 or HfO2 interlayers or interface layers. In SiO2/Al2O3 and HfO2/Al2O3 stacks, both fixed charges and trap sites are reduced by at least a factor of 5 compared with the value measured in pure Al2O3. In Al2O3/SiO2/Al2O3 or Al2O3/HfO2/Al2O3 stacks, very high total charge densities of up to 9 × 1012 cm-2 are achieved. These charge densities are described as functions of electrical stress voltage, time, and the Al2O3 layer thickness between silicon and the HfO2 or the SiO2 interlayer. Despite the strong variation of trap sites, all stacks reach very good effective carrier lifetimes of up to 8 and 20 ms on p- and n-type silicon substrates, respectively. Controlling the trap sites in Al2O3 layers opens the possibility to engineer the field-effect passivation in the solar cells.
Correlation between the extent of catalytic activity and charge density of montmorillonites.
Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer
2010-09-01
The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH₃-(CH₂)(n)-NH₃](+), where n = 3-16 and 18, and then measuring d(₀₀₁), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. PMID:20854214
Miranda Carreño, Rubén; Blanco Suárez, Ángeles; Fuente González, Elena de la; Negro Álvarez, Carlos Manuel
2008-01-01
The effect of charge density of 5 cationic polyacrylamides (C-PAMs)and 3 anionic polyacrylamides (A-PAMs) in single and in dual treatments with a coagulant on the flocculation and removal of dissolved and colloidal material by dissolved air flotation (DAF) in papermaking has been studied. In single systems, good results were achieved both with low and high charge C-PAMs(1.0and 3.0–3.5 meq/g). In dual sy tems, high charge C-PAMs (3.0–3.5 meq/g)and A-PAMs (1.5 meq/g), were the most efficient. R...
X-ray diffraction studies of charge density waves in cuprate superconductors: A brief review
International Nuclear Information System (INIS)
High temperature superconductivity in the cuprates has fascinated scientists for more than 25 years, but there is still no consensus on the pairing mechanism. Soon after the discovery of high temperature superconductivity, it was suggested that the cuprates have an incipient tendency towards spatial electronic order – spin and charge order. In this paper, I will review X-ray diffraction studies of charge density waves in the cuprates. These results, by a number of different groups, indicate that short-range charge correlations exist across the cuprate family, and in many cases are clearly competing with the superconductivity
Poudel, Lokendra
Doxorubicin (trade name Adriamycin, abbreviated DOX) is a well-known an- thracyclic chemotherapeutic used in treating a variety of cancers including acute leukemia, lymphoma, multiple myeloma, and a range of stomach, lung, bladder, bone, breast, and ovarian cancers. The purpose of the present work is to study electronic structure, partial charge distribution and interaction energy of DOX under different environments. It provides a framework for better understanding of bioactivity of DOX with DNA. While in this work, we focus on DOX -- DNA interactions; the obtained knowledge could be translated to other drug -- target interactions or biomolecular interactions. The electronic structure and partial charge distribution of DOX in three dierent molecular environments: isolated, solvated, and intercalated into a DNA complex,were studied by rst principles density functional methods. It is shown that the addition of solvating water molecules to DOX and the proximity and interaction with DNA has a signicant impact on the electronic structure as well as the partial charge distribution. The calculated total partial charges for DOX in the three models are 0.0, +0.123 and -0.06 electrons for the isolated, solvated, and intercalated state, respectively. Furthermore, by using the more accurate ab initio partial charge values on every atom in the models, signicant improvement in estimating the DOX-DNA interaction energy is obtained in conjunction with the NAnoscale Molecular Dynamics (NAMD) code. The electronic structure of the DOX-DNA is further elucidated by resolving the total density of states (TDOS) into dierent functional groups of DOX, DNA, water, co-crystallized Spermine molecule, and Na ions. The surface partial charge distribution in the DOX-DNA is calculated and displayed graphically. We conclude that the presence of the solvent as well as the details of the interaction geometry matter greatly in the determination of the stability of the DOX complexion. Ab initio
Effect of ground state correlations on the charge transition densities of vibrational states
International Nuclear Information System (INIS)
The effect of ground state correlations on the charge transition densities of vibrational states in spherical nuclei is studied. The problem for the ground state correlations beyond RPA leads to a non-linear system of equations, which is solved numerically. The influence of the correlations on the pairing is taken into account too. The inclusion of ground state correlations beyond RPA results in an essential suppression of the charge transition density in the nuclear interior in comparison with the RPA calculations and enables one to reproduce the experimental data. 30 refs., 7 figs., 3 tabs
Laktionov, Andrey; Chemineau-Chalaye, Emilie; Wesolowski, Tomasz A
2016-08-21
Besides molecular electron densities obtained within the Born-Oppenheimer approximation (ρB(r)) to represent the environment, the ensemble averaged density (〈ρB〉(r)) is also admissible in frozen-density embedding theory (FDET) [Wesolowski, Phys. Rev. A, 2008, 77, 11444]. This makes it possible to introduce an approximation in the evaluation of the solvent effect on quantum mechanical observables consisting of replacing the ensemble averaged observable by the observable evaluated at ensemble averaged ρB(r). This approximation is shown to affect negligibly the solvatochromic shift in the absorption of hydrated acetone. The proposed model provides a continuum type of representation of the solvent, which reflects nevertheless its local structure, and it is to be applied as a post-simulation analysis tool in atomistic level simulations. PMID:26984532
Shaping of proton distribution for raising the space-charge of the CERN PS Booster
Delahaye, J P; Magnani, L; Nassibian, G; Pedersen, F; Reich, K H; Schindl, Karlheinz; Schönauer, H O
1980-01-01
The intensity of the PS Booster is limited by space-charge defocusing forces which create a spread in the betatron tunes of up to Delta G approximately=0.5. Shaping of the transverse and longitudinal distributions was used for accommodating more particles in a given working area and enabled the Booster to accelerate 2*10/sup 13/ protons per pulse, twice the design intensity. Modifying the RF potential well by an experimental second harmonic cavity yields beam intensities and densities well beyond the present performance. The corresponding PSB experiments and improvements are described and an outlook on future developments is given. (14 refs).
Application of carbon stripping foil to HIRFL-CSR and measurement of charge state distribution
International Nuclear Information System (INIS)
Charged ions may be injected into the CSRm by means of the charge stripping injection or the multiple multi-turn injection. The charge state distribution of the ions passing through the carbon foil has great influence on the performance of the accelerator and thus plays a key role in the charge stripping injection. It's found that the charge state distribution is dependent on the thicknesses of the carbon foil and the energy of the ions. In present work, the carbon stripper was applied to HIRFL-CSR and the best optional charge state distribution was measured. (authors)
Spatial Distribution of City Tweets and Their Densities
Jiang, Bin; Yin, Junjun; Sandberg, Mats
2016-01-01
Social media outlets such as Twitter constitute valuable data sources for understanding human activities in the virtual world from a geographic perspective. This paper examines spatial distribution of tweets and densities within cities. The cities refer to natural cities that are automatically aggregated from a country's small street blocks, so called city blocks. We adopted street blocks (rather than census tracts) as the basic geographic units and topological center (rather than geometric center) in order to assess how tweets and densities vary from the center to the peripheral border. We found that, within a city from the center to the periphery, the tweets first increase and then decrease, while the densities decrease in general. These increases and decreases fluctuate dramatically, and differ significantly from those if census tracts are used as the basic geographic units. We also found that the decrease of densities from the center to the periphery is less significant, and even disappears, if an arbitra...
Spatially separated charge densities of electrons and holes in organic-inorganic halide perovskites
International Nuclear Information System (INIS)
Solution-processable methylammonium lead trihalide perovskites exhibit remarkable high-absorption and low-loss properties for solar energy conversion. Calculation from density functional theory indicates the presence of non-equivalent halogen atoms in the unit cell because of the specific orientation of the organic cation. Considering the 〈100〉 orientation as an example, I1, one of the halogen atoms, differs from the other iodine atoms (I2 and I3) in terms of its interaction with the organic cation. The valance-band-maximum (VBM) and conduction-band-minimum (CBM) states are derived mainly from 5p orbital of I1 atom and 6p orbital of Pb atom, respectively. The spatially separated charge densities of the electrons and holes justify the low recombination rate of the pure iodide perovskite. Chlorine substitution further strengthens the unique position of the I1 atom, leading to more localized charge density around the I1 atom and less charge density around the other atoms at the VBM state. The less overlap of charge densities between the VBM and CBM states explains the relatively lower carrier recombination rate of the iodine-chlorine mixed perovskite. Chlorine substitution significantly reduces the effective mass at a direction perpendicular to the Pb-Cl bond and organic axis, enhancing the carrier transport property of the mixed perovskite in this direction
Spatially separated charge densities of electrons and holes in organic-inorganic halide perovskites
Energy Technology Data Exchange (ETDEWEB)
Li, Dan; Liang, Chunjun, E-mail: chjliang@bjtu.edu.cn, E-mail: zhqhe@bjtu.edu.cn; Zhang, Huimin; You, Fangtian; He, Zhiqun, E-mail: chjliang@bjtu.edu.cn, E-mail: zhqhe@bjtu.edu.cn [Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chunxiu [Information Recording Materials Lab, Beijing Institute of Graphic Communication, Beijing 102600 (China)
2015-02-21
Solution-processable methylammonium lead trihalide perovskites exhibit remarkable high-absorption and low-loss properties for solar energy conversion. Calculation from density functional theory indicates the presence of non-equivalent halogen atoms in the unit cell because of the specific orientation of the organic cation. Considering the 〈100〉 orientation as an example, I{sub 1}, one of the halogen atoms, differs from the other iodine atoms (I{sub 2} and I{sub 3}) in terms of its interaction with the organic cation. The valance-band-maximum (VBM) and conduction-band-minimum (CBM) states are derived mainly from 5p orbital of I{sub 1} atom and 6p orbital of Pb atom, respectively. The spatially separated charge densities of the electrons and holes justify the low recombination rate of the pure iodide perovskite. Chlorine substitution further strengthens the unique position of the I{sub 1} atom, leading to more localized charge density around the I{sub 1} atom and less charge density around the other atoms at the VBM state. The less overlap of charge densities between the VBM and CBM states explains the relatively lower carrier recombination rate of the iodine-chlorine mixed perovskite. Chlorine substitution significantly reduces the effective mass at a direction perpendicular to the Pb-Cl bond and organic axis, enhancing the carrier transport property of the mixed perovskite in this direction.
Induced fermionic charge and current densities in two-dimensional rings
Bellucci, S; Grigoryan, A Kh
2016-01-01
For a massive quantum fermionic field, we investigate the vacuum expectation values (VEVs) of the charge and current densities induced by an external magnetic flux in a two-dimensional circular ring. Both the irreducible representations of the Clifford algebra are considered. On the ring edges the bag (infinite mass) boundary conditions are imposed for the field operator. This leads to the Casimir type effect on the vacuum characteristics. The radial current vanishes. The charge and the azimuthal current are decomposed into the boundary-free and boundary-induced contributions. Both these contributions are odd periodic functions of the magnetic flux with the period equal to the flux quantum. An important feature that distinguishes the VEVs of the charge and current densities from the VEV of the energy density, is their finiteness on the ring edges. The current density is equal to the charge density for the outer edge and has the opposite sign on the inner edge. The VEVs are peaked near the inner edge and, as f...
Influence of Multiple Ionization on Charge State Distributions
Hahn, Michael; Savin, Daniel Wolf
2015-08-01
The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. For collisionally ionized plasmas, the CSD is is determined by the corresponding rates for electron-impact ionization and recombination. In astrophysics, such plasmas are formed in stars, supernova remnants, galaxies, and galaxy clusters. Current CSD calculations generally do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for astrophysics is nanoflare heating, which is a leading theory to explain the heating of the solar corona. In order to determine whether this theory can indeed explain coronal heating, spectroscopic measurements are being compared to model nanoflare spectra. Such models have attempted to predict the spectra of impulsively heated plasmas in which the CSD is time dependent. These nonequilbirium ionization calculations have so far ignored EIMI, but our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.
Dacuña, Javier
2011-11-28
We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.
Subchondral bone density distribution in the human femoral head
Energy Technology Data Exchange (ETDEWEB)
Wright, David A.; Meguid, Michael; Lubovsky, Omri; Whyne, Cari M. [Sunnybrook Research Institute, Orthopaedic Biomechanics Laboratory, Toronto, Ontario (Canada)
2012-06-15
This study aims to quantitatively characterize the distribution of subchondral bone density across the human femoral head using a computed tomography derived measurement of bone density and a common reference coordinate system. Femoral head surfaces were created bilaterally for 30 patients (14 males, 16 females, mean age 67.2 years) through semi-automatic segmentation of reconstructed CT data and used to map bone density, by shrinking them into the subchondral bone and averaging the greyscale values (linearly related to bone density) within 5 mm of the articular surface. Density maps were then oriented with the center of the head at the origin, the femoral mechanical axis (FMA) aligned with the vertical, and the posterior condylar axis (PCA) aligned with the horizontal. Twelve regions were created by dividing the density maps into three concentric rings at increments of 30 from the horizontal, then splitting into four quadrants along the anterior-posterior and medial-lateral axes. Mean values for each region were compared using repeated measures ANOVA and a Bonferroni post hoc test, and side-to-side correlations were analyzed using a Pearson's correlation. The regions representing the medial side of the femoral head's superior portion were found to have significantly higher densities compared to other regions (p < 0.05). Significant side-to-side correlations were found for all regions (r {sup 2} = 0.81 to r {sup 2} = 0.16), with strong correlations for the highest density regions. Side-to-side differences in measured bone density were seen for two regions in the anterio-lateral portion of the femoral head (p < 0.05). The high correlation found between the left and right sides indicates that this tool may be useful for understanding 'normal' density patterns in hips affected by unilateral pathologies such as avascular necrosis, fracture, developmental dysplasia of the hip, Perthes disease, and slipped capital femoral head epiphysis. (orig.)
Subchondral bone density distribution in the human femoral head
International Nuclear Information System (INIS)
This study aims to quantitatively characterize the distribution of subchondral bone density across the human femoral head using a computed tomography derived measurement of bone density and a common reference coordinate system. Femoral head surfaces were created bilaterally for 30 patients (14 males, 16 females, mean age 67.2 years) through semi-automatic segmentation of reconstructed CT data and used to map bone density, by shrinking them into the subchondral bone and averaging the greyscale values (linearly related to bone density) within 5 mm of the articular surface. Density maps were then oriented with the center of the head at the origin, the femoral mechanical axis (FMA) aligned with the vertical, and the posterior condylar axis (PCA) aligned with the horizontal. Twelve regions were created by dividing the density maps into three concentric rings at increments of 30 from the horizontal, then splitting into four quadrants along the anterior-posterior and medial-lateral axes. Mean values for each region were compared using repeated measures ANOVA and a Bonferroni post hoc test, and side-to-side correlations were analyzed using a Pearson's correlation. The regions representing the medial side of the femoral head's superior portion were found to have significantly higher densities compared to other regions (p 2 = 0.81 to r 2 = 0.16), with strong correlations for the highest density regions. Side-to-side differences in measured bone density were seen for two regions in the anterio-lateral portion of the femoral head (p < 0.05). The high correlation found between the left and right sides indicates that this tool may be useful for understanding 'normal' density patterns in hips affected by unilateral pathologies such as avascular necrosis, fracture, developmental dysplasia of the hip, Perthes disease, and slipped capital femoral head epiphysis. (orig.)
Pezeshkian, Weria; Norouzi, Davood; Mohammad-Rafiee, Farshid; Fazli, Hossein
2012-01-01
The distribution of counterions and the electrostatic interaction between two similarly charged dielectric slabs is studied in the strong coupling limit. Dielectric inhomogeneities and discreteness of charge on the slabs have been taken into account. It is found that the amount of dielectric constant difference between the slabs and the environment, and the discreteness of charge on the slabs have opposing effects on the equilibrium distribution of the counterions. At small inter-slab separations, increasing the amount of dielectric constant difference increases the tendency of the counterions toward the middle of the intersurface space between the slabs and the discreteness of charge pushes them to the surfaces of the slabs. In the limit of point charges, independent of the strength of dielectric inhomogeneity, counterions distribute near the surfaces of the slabs. The interaction between the slabs is attractive at low temperatures and its strength increases with the dielectric constant difference. At room t...
Density decrease in vanadium-base alloys irradiated in the dynamic helium charging experiment
Energy Technology Data Exchange (ETDEWEB)
Chung, H.M.; Galvin, T.M.; Smith, D.L. [Argonne National Laboratory, Chicago, IL (United States)
1996-04-01
Combined effects of dynamically charged helium and neutron damage on density decrease (swelling) of V-4Cr-4Ti, V-5Ti, V-3Ti-1Si, and V-8Cr-6Ti alloys have been determined after irradiation to 18-31 dpa at 425-600{degrees}C in the Dynamic helium Charging Experiment (DHCE). To ensure better accuracy in density measurement, broken pieces of tensile specimens {approx} 10 times heavier than a transmission electron microscopy (TEM) disk were used. Density increases of the four alloys irradiated in the DHCE were <0.5%. This small change seems to be consistent with the negligible number density of microcavities characterized by TEM. Most of the dynamically produced helium atoms seem to have been trapped in the grain matrix without significant cavity nucleation or growth.
Bellucci, S; Bragança, E; Saharian, A A
2016-01-01
We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even funct...
Energy Technology Data Exchange (ETDEWEB)
Typel, S.; Wolter, H.H. [Sektion Physik, Univ. Muenchen, Garching (Germany)
1998-06-01
Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)
Velders, G.J.M.; Feil, D.
1989-01-01
Quantum-chemical density-functional theory (DFT) calculations, using the local-density approximation (LDA), have been performed for hydrogen-bounded silicon clusters to determine the electron density distribution of the Si-Si bond. The density distribution in the bonding region is compared with calc
Extraction of density distributions and particle locations from hologram images
Energy Technology Data Exchange (ETDEWEB)
Okamoto, Koji; Ikeda, Koh; Madarame, Haruki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.
1996-10-01
In this study, the simultaneous measurement technique for three-dimensional density and three-dimensional velocity distributions was evaluated. The Holographic Particle Image Velocimetry (HPIV) was the technique to record the three-dimensional position of the tracer particle on the hologram. When there were density distributions in the interrogation region, the plane optical wave may be modulated because of the difference of the refraction indices. Then, both of the plane wave modulated by density and the spherical wave by particle scatter were interfered with the reference beam, being recorded on the hologram. With reconstructing the hologram, the both of the modulated plane wave and spherical wave were reconstructed. Since the plane wave and spherical wave had low and high frequency, respectively, the two information could be separated using low-pass and high-pass filter. In the experiment, a jet of carbon-dioxide into air with mist were measured. Both mist particle position and the fringe shift caused by the density distribution were well observed, showing the effectiveness of the proposed technique. (author)
A High Power Density Three-level Parallel Resonant Converter for Capacitor Charging
Sheng, Honggang
2009-01-01
This dissertation proposes a high-power, high-frequency and high-density three-level parallel resonant converter for capacitor charging. DC-DC pulsed power converters are widely used in military and medical systems, where the power density requirement is often stringent. The primary means for reducing the power converter size has been to reduce loss for reduced cooling systems and to increase the frequency for reduced passive components. Three-level resonant converters, which combine the mer...
Institute of Scientific and Technical Information of China (English)
张红; 张继彦; 杨向东; 杨国洪; 郑志坚
2003-01-01
A collisional radiative model based on the spin-orbit-split-arrays is used to determine the charge state distribution of gold plasmas. The ab initio atomic structure code of Cowan and the spin-orbit-split-array model were used to calculate all the emission spectra of the different gold species, and a non-local thermodynamic-equilibrium model was coupled to calculate the ion populations at a given plasma density and electron temperature. The charge state distribution and other plasma parameters were determined by comparing the experimental spectra with the theoretical simulated spectra of gold plasmas.
Density Distribution Sunflower Plots in Stata Version 8
Dupont, William D.
2004-01-01
Density distribution sunflower plots are used to display high-density bivariate data. They are useful for data where a conventional scatter plot is difficult to read due to overstriking of the plot symbol. The x-y plane is subdivided into a lattice of regular hexagonal bins of width w specified by the user. The user also specifies the values of l, d, and k that affect the plot as follows. Individual observations are plotted when there are less than l observations per bin as in a conventional ...
International Nuclear Information System (INIS)
Axial and radial variations of electric field have been measured in dielectric shielded 0.025 m diameter parallel plate electrode with 0.0065 m gap for 1.6 mA, 2260 V helium dc discharge at 1.75 Torr. The axial and radial electric field profiles have been measured from the Stark splitting of 21S→11 1P transition through collision induced fluorescence from 43D→23P. The electric field values showed a strong radial variation peaking to 500 kV/m near the cathode radial boundary, and decreasing to about 100 kV/m near the anode edge, suggesting the formation of an obstructed discharge for this low nd condition, where n is the gas density and d is the gap distance. The off-axis Stark spectra showed that the electric field vector deviates from normal to the cathode surface which permits longer path electron trajectories in the inter-electrode gap. Also, the on-axis electric field gradient was very small and off-axis electric field gradient was large indicating a radially non-uniform current density. In order to obtain information about the space charge distribution in this obstructed discharge, it was modeled using the 2-d axisymmetric Poisson solver with the COMSOL finite element modeling program. The best fit to the measured electric field distribution was obtained with a space charge variation of ρ(r) = ρ0(r/r0)3, where ρ(r) is the local space charge density, ρ0 = 6 × 10−3 Coulomb/m3, r is the local radial value, and r0 is the radius of the electrode
DEFF Research Database (Denmark)
Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim
2001-01-01
Laser induced pressure pulse space charge measurements were made on 1.5 mm thick plaques of high purity low density polyethylene equipped with vacuum-evaporated aluminium electrodes. Temperature differences up to 20 °C were maintained across the samples, which were subjected to dc fields up to 1...
Equation of state for the detonation products of hexanitrostilbene at various charge densities
Energy Technology Data Exchange (ETDEWEB)
Lee, E. L.; Walton, J. R.; Kramer, P. E.
1976-05-01
An extensive description of the detonation behavior for the unique and useful high explosive hexanitrostilbene (HNS) is presented. To accomplish this the necessary experimental results measured by detonation of the pure material at charge densities of 1.00, 1.20, 1.40, 1.60, and 1.65 (g/cm/sup 3/ = Mg/m/sup 3/) were compiled and evaluated. Estimates of the equation of state of the detonation products were made for each charge density. To confirm these estimates two-dimensional hydrodynamic (HEMP code) calculations to simulate the cylinder test experiments for two charge densities of 1.2 and 1.6 Mg/m/sup 3/ were carried out. Detailed comparisons of the calculational and experimental results were made for these two tests. Interpolation and extrapolation of the equation of state parameters provided final estimates for the other charge densities. The results are summarized in five sets of Chapman-Jouguet parameters and JWL equation of state coefficients.
Scanning tunneling microscopy in TTF-TCNQ: Phase and amplitude modulated charge density waves
DEFF Research Database (Denmark)
Wang, Z.Z.; Gorard, J.C.; Pasquier, C.; Jerome, D.; Bechgaard, K.
2003-01-01
Charge density waves (CDWs) have been studied at the surface of a cleaved tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) single crystal using a low temperature scanning tunneling microscope (STM) under ultrahigh-vacuum conditions, between 300 and 33 K with molecular resolution. All CDW...
Time-resolved Fermi surface mapping of the charge density wave material DyTe3
Directory of Open Access Journals (Sweden)
Wolf M.
2013-03-01
Full Text Available The femtosecond dynamics of the Fermi surface of DyTe3 and its band structure are investigated by time- and angle-resolved photoemission spectroscopy. We directly monitor the ultrafast collapse of the charge density wave gap within 200 fs.
Sensitivity of reaction cross sections to halo nucleus density distributions
Alkhazov, G. D.; Sarantsev, V. V.
2013-01-01
In order to clear up the sensitivity of the nucleus--nucleus reaction cross sections $\\sigma_R$ to the nuclear matter distributions in exotic halo nuclei, we have calculated the values of $\\sigma_R$ for scattering of $^6$He, $^{11}$Li, and $^{19}$C nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon. The calculations were performed in the "rigid target" approximation to the Glauber theory, different shapes of the nuclear density distributions in $^6$He, $^{11}$Li, and $^{19}$C ...
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Based on the density functional theory and the atom-bond electronegativity equalization model (ABEEM), a method is proposed to construct the softness matrix and to obtain the electron population normal modes (PNMs) for a closed system. Using this method the information about the bond charge polarization in a molecule can be obtained easily. The test calculation shows that the PNM obtained by this method includes all the modes about the bond charge polarization explicitly. And the bond charge polarization mode characterized by the biggest eigenvalue, which is the softest one of all modes related with chemical bonds, can describe the charge polarization process in a molecule as exquisitely as the corresponding ab initio method.
Time-dependent charge distributions in polymer films under electron beam irradiation
International Nuclear Information System (INIS)
The time-dependent charge distribution in polymer film under electron beam irradiation is studied by both experiment and numerical simulation. In the experiment, the distribution is measured with the piezoinduced pressure wave propagation method. In the simulation, the initial charge distribution is obtained by the Monte Carlo method of electron scattering, and the charge drift in the specimen is simulated by taking into account the Poisson equation, the charge continuity equation, Ohm's law, and the radiation-induced conductivity. The results obtained show that the negative charge deposited in the polymer film, whose top and bottom surfaces are grounded, drifts toward both grounded electrodes and that twin peaks appear in the charge distribution. The radiation-induced conductivity plays an important role in determining the charge distribution in the polymer films under electron beam irradiation
Energy Technology Data Exchange (ETDEWEB)
Kowal, Julia; Schulte, Dominik; Sauer, Dirk Uwe [Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, 52066 Aachen (Germany); Karden, Eckhard [Ford Research and Advanced Engineering Europe, Aachen (Germany)
2009-06-01
Measurements show that the dynamic charge acceptance (DCA) of flooded SLI lead-acid batteries during micro-cycling in conventional and micro-hybrid vehicles is strongly dependent on the short-term history, such as previous charge or discharge, current rate, lowest state of charge in the last 24 h and more. Factors of 10 have been reported. Inhomogeneous current distribution, especially as a result of acid stratification, has been suggested to explain the DCA variability. This hypothesis was investigated by simulation of a two-dimensional macrohomogeneous model. It provides a spatial resolution of three elements in horizontal direction in each electrode and three elements in vertical direction. For an existing set of parameters, different current profiles were analyzed with regard to the current distribution during charging and discharging. In these simulations, a strong impact of the short-term history on current, charge and acid density distribution was found as well as a strong influence of micro-cycles on both charge distribution and acid stratification. (author)
IS THE DENSITY DISTRIBUTION OF CLUSTERS NON-GAUSSIAN ?
Kolatt, Tsafrir
1995-01-01
The one-point probability distribution function (pdf) is computed for the $25\\hmpc$-smoothed density field of rich clusters of galaxies in the Abell/\\aco\\ catalogs. The observed pdf is compared to the pdf s drawn similarly from mock catalogs of clusters in cosmological simulations of Gaussian and several non-Gaussian initial conditions. Several statistics allow significant rejection of the non-Gaussian models tested here, and fail to reject the Gaussian model. A comparison with the prediction...
Ion charge state distributions of vacuum arc plasmas: The origin of species
International Nuclear Information System (INIS)
Vacuum arc plasmas are produced at micrometer-size, nonstationary cathode spots. Ion charge state distributions (CSD close-quote s) are experimentally known for 50 elements, but the theoretical understanding is unsatisfactory. In this paper, CSD close-quote s of vacuum arc plasmas are calculated under the assumption that the spot plasma experiences an instantaneous transition from equilibrium to nonequilibrium while expanding. Observable charge state distributions are the result of a freezing process at this transition. open-quotes Frozenclose quotes CSD close-quote s have been calculated using Saha equations in the Debye-Hueckel approximation of the nonideal plasma for all metals of the Periodic Table and for boron, carbon, silicon, and germanium. The results are presented in a open-quotes periodic table of CSD.close quotes The table contains also the mean ion charge state, the neutral vapor fraction, and the effective plasma temperature and density at the freezing point for each element. The validity of the concepts of open-quotes instantaneous freezingclose quotes and open-quotes effective temperature and densityclose quotes is discussed for low and high currents and for the presence of a magnetic field. Temperature fluctuations have been identified to cause broadening of CSD close-quote s. copyright 1997 The American Physical Society
Carbon density and distribution of six Chinese temperate forests.
Zhang, QuanZhi; Wang, ChuanKuan
2010-07-01
Quantifying forest carbon (C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling. Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age (42-59 years old) and growing under the same climate in northeastern China. The forests were an aspen-birch forest, a hardwood forest, a Korean pine plantation, a Dahurian larch plantation, a mixed deciduous forest, and a Mongolian oak forest. There were no significant differences in the C densities of ecosystem components (except for detritus) although the six forests had varying vegetation compositions and site conditions. However, the differences were significant when the C pools were normalized against stand basal area. The total ecosystem C density varied from 186.9 tC hm(-2) to 349.2 tC hm(-2) across the forests. The C densities of vegetation, detritus, and soil ranged from 86.3-122.7 tC hm(-2), 6.5-10.5 tC hm(-2), and 93.7-220.1 tC hm(-2), respectively, which accounted for 39.7% +/- 7.1% (mean +/- SD), 3.3% +/- 1.1%, and 57.0% +/- 7.9% of the total C densities, respectively. The overstory C pool accounted for > 99% of the total vegetation C pool. The foliage biomass, small root (diameter Mongolian oak forest, in which the small roots tended to be vertically distributed downwards. The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests. The variability of C allocation patterns in a specific forest is jointly influenced by vegetation type, management history, and local water and nutrient availability. The study provides important data for developing and validating C cycling models for temperate forests. PMID:20697872
Fabrication Flaw Density and Distribution in Weld Repairs
International Nuclear Information System (INIS)
The Pacific Northwest National Laboratory (PNNL) is developing a generalized flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in the U. S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different cancelled reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This paper describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs which are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. Construction records where available were reviewed. It is difficult to make conclusions due to the limited number of construction records reviewed. However, the records reviewed to date show a significant change in repair frequency over the years when the components in this study were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance.
Longitudinal asymmetry of craters' density distributions on the icy satellites
Leliwa-Kopystynski, Jacek; Banaszek, Marcin; Wlodarczyk, Ireneusz
2012-01-01
Crater's density distribution versus satellitographical longitude was searched for seven icy satellites: two of Jupiter (Ganymede and Callisto) and five of Saturn (Mimas, Tethys, Dione, Rhea and Iapetus). Craters were classified according to their size. Four bins of the craters' diameter were used. Density distributions were found in the longitudinal sectors of the near-equatorial stripes that circumscribe the satellites. The size distributions (R-plots) were done independently for each of the eight longitudinal sectors of the satellites. Searching for the leading/trailing (apex/antapex) and the near-side/far-side asymmetry was done. It was found that the crater density is longitudinally asymmetric for all seven satellites being studied. However, the apex-antapex asymmetry is much less pronounced than predicted by theory of Zahnle et al. (2003), for impacts on the satellites by ecliptic comets. We conclude that the impact craters observed on the considered satellites are mostly originated from planetocentric swarm of debris. In that case longitudinal asymmetry is not expected, as stated by Horedt and Neukum (1984a, b). However, cratering longitudinal asymmetry that we observe for Mimas perfectly agrees with calculations of Alvarellos et al. (2005). It is very likely that important part of craters on Mimas were formed due to impacts of ejecta originated from crater Herschel.
Chemical bonding in view of electron charge density and kinetic energy density descriptors.
Jacobsen, Heiko
2009-05-01
Stalke's dilemma, stating that different chemical interpretations are obtained when one and the same density is interpreted either by means of natural bond orbital (NBO) and subsequent natural resonance theory (NRT) application or by the quantum theory of atoms in molecules (QTAIM), is reinvestigated. It is shown that within the framework of QTAIM, the question as to whether for a given molecule two atoms are bonded or not is only meaningful in the context of a well-defined reference geometry. The localized-orbital-locator (LOL) is applied to map out patterns in covalent bonding interaction, and produces results that are consistent for a variety of reference geometries. Furthermore, LOL interpretations are in accord with NBO/NRT, and assist in an interpretation in terms of covalent bonding. PMID:19090572
International Nuclear Information System (INIS)
The utility of charge pumping to measure Si-SiO2 interface trap density in irradiated four-terminal VDMOSFETs is demonstrated. A modification of the conventional charge pumping approach is employed, where recombination of charge through interface traps in the neck region is measured in the drain. Three components of drain current resulting from the charge pumping measurement are identified. When the device is properly biased, charge pumping current can be separated from the other components of drain current and modeled over a wide range of interface trap densities using standard charge pumping theory. When sources of error are accounted for, radiation-induced interface trap densities measured with charge pumping are in good quantitative agreement with those estimated with the midgap charge separation and subthreshold hump techniques
International Nuclear Information System (INIS)
The extended Peierls-Hubbard model is used to study the competition of the spin-density-wave (SDW) and charge-density-wave (CDW) states as well as the attendant localized excitations in quasi-one-dimensional systems like MX-chains. The ground state properties are first studied as a function of the Coulomb interaction U and the on-site electron-phonon coupling λ2. The SDW state dominates in the region of large U and small λ2, while the CDW state prevails in the opposite limit. In the intermediate region these two states compete with each other, one being stable, whereas the other being metastable. The localized excitations (polarons and excitons) are studied in detail in each region using the Bogoliubov-de Gennes formalism. The self-trapped excitons (STE) in the CDW dominating regime contain locally non-vanishing SDW distortions and vice versa. As λ2 increases, the number of bound states changes from two to four for the exciton case and from two to three for the polaron case. Upon its further increase, one type of STE with a certain pattern of SDW distortion and charge transfer is transforming into another type of STE with a different pattern. The possibilities of verifying the ground state properties in optical and transport experiments and identifying these local excitations in Raman and ENDOR measurements are discussed. (author). 25 refs, 11 figs
Fractional-charge and fractional-spin errors in range-separated density-functional theory
Mussard, Bastien
2016-01-01
We investigate fractional-charge and fractional-spin errors in range-separated density-functional theory. Specifically, we consider the range-separated hybrid (RSH) method which combines long-range Hartree-Fock (HF) exchange with a short-range semilocal exchange-correlation density functional, and the RSH+MP2 method which adds long-range second-order M{{\\o}}ller-Plesset (MP2) correlation. Results on atoms and molecules show that the fractional-charge errors obtained in RSH are much smaller than in the standard Kohn-Sham (KS) scheme applied with semilocal or hybrid approximations, and also generally smaller than in the standard HF method. The RSH+MP2 method tends to have smaller fractional-charge errors than standard MP2 for the most diffuse systems, but larger fractional-charge errors for the more compact systems. Even though the individual contributions to the fractional-spin errors in the H atom coming from the short-range exchange and correlation density-functional approximations are smaller than the corre...
Three-dimensional density distributions in the Asian lithosphere
Zhang, G.; Li, C.; Wang, X.; Wang, Z.; Fang, J.; Sino-probe-cugb
2011-12-01
We have inversed the residual Bouguer gravity anomalies to study the three-dimensional density distributions of the Asian lithosphere (60°~150°E and 15°~60°N). Firstly, we have collected the free-air gravity anomalies (30'×30') and topography data of GTOP030 with 5'×5' grid spacing, and then calculated the Bougouer gravity anomalies by terrain correction and Bougouer correction. We have also collected the depth data of the Moho discontinuity (30'×30') and the discontinuity of sedimentary layer. By using the Oldenburg-Parker formula (Parker, 1972) and the forward modeling method, we calculated the theoretical gravity anomalies which mainly are caused by the Moho discontinuity and the sedimentary layer discontinuity. In our study, the average depths of Moho discontinuity and sedimentary layer discontinuity are 33 km and 4 km, and the density differences are 0.42 g/cm3 and 0.2 g/cm3, respectively. In addition, we have simulated the gravity anomalies of the spherical harmonics with the 2-6 order for the lower mantle by using the formula of Bowin (1983) which represented the relation between the depth of field source and the order of the geopotential spherical harmonics. Using all data mentioned above, we have calculated the residual Bougouer gravity anomalies, which may be caused by anomalous density bodies in the lithosphere. Secondly, we used the calculated residual Bougouer gravity anomalies to inverse the three-dimensional density differences in the Asian lithosphere by using the Algebra Reconstruction Techniques (ART). During the inversion, the densities converted from the P-wave velocity data (with grid spacing of 2°×2°) according to the Birch Law are considered as the initial density model. The grid spacing is set as 2°×2° in the horizontal direction, and it is 25 km, 55 km and 100 km in the vertical direction, respectively. Comparing the density anomalies at the three depths, we can conclude that (1) the density in the lithosphere beneath Asian
Electronic structure and momentum density distribution of titanium dioxide
International Nuclear Information System (INIS)
LCAO calculations have been performed for the electronic and structural properties of the rutile TiO2 under the periodic HF and DFT schemes. The methods have been applied to study Compton profiles and the structure factors. The experimental Compton profile based on Am241 Compton spectrometer for polycrystalline TiO2 has been compared with the calculations. The calculated Compton profile from HF-LCAO has been found to be in good agreement with the measurement compared to the ionic model and DFT-LCAO method. The published experimental X-ray structure factors support the FLAPW method more than the periodic HF-LCAO method. Signatures of charge transfer on compound formation are observed. Partial ionic as well as covalent character of bonding is observed on the basis of structure factor as well as momentum density analysis. The present work enables to examine the DFT and HF approaches in terms of structure factor and the Compton profile studies
Modeling the potential energy field caused by mass density distribution with Eton approach
Alkahtani, Badr Saad T.; Atangana, Abdon
2016-04-01
A new approach for modeling real world problems called the "Eton Approach" was presented in this paper. The "Eton approach" combines both the concept of the variable order derivative together with Atangana derivative with memory derivative. The Atangana derivative with memory is used to account for the memory and fractional derivative for its filter effect. The approach was used to describe the potential energy field that is caused by a given charge or mass density distribution.We solve the modified model numerically and present supporting numerical simulations.
Standard hydrogen electrode and potential of zero charge in density functional calculations
DEFF Research Database (Denmark)
Tripkovic, Vladimir; Björketun, Mårten; Skúlason, Egill;
2011-01-01
Methods to explicitly account for half-cell electrode potentials have recently appeared within the framework of density functional theory. The potential of the electrode relative to the standard hydrogen electrode is typically determined by subtracting the experimental value of the absolute...... functional setups. By analyzing a dozen different water structures, built up from water hexamers, in their uncharged [potential of zero charge (PZC)] states on Pt(111), we then determine three different criteria (no net dipole, no charge transfer, and high water flexibility) that a water structure should...
Jung, Ju-Hyun; Yakhshiev, Ulugbek; Kim, Hyun-Chul
2016-03-01
We investigate the medium modification of the generalized vector form factors of the nucleon, which include the electromagnetic and energy-momentum tensor form factors, based on an in-medium modified π -ρ -ω soliton model. We find that the vector form factors of the nucleon in nuclear matter fall off faster than those in free space, which implies that the charge radii of the nucleon become larger in nuclear medium than in free space. We also compute the corresponding transverse charge densities of the nucleon in nuclear matter, which clearly reveal the increasing of the nucleon size in nuclear medium.
Jung, Ju-Hyun; Kim, Hyun-Chul
2015-01-01
We investigate the medium modification of the generalized vector form factors of the nucleon, which include the electromagnetic and energy-momentum tensor form factors, based on an in-medium modified $\\pi$-$\\rho$-$\\omega$ soliton model. We find that the vector form factors of the nucleon in nuclear matter fall off faster than those in free space, which implies that the charge radii of the nucleon become larger in nuclear medium than in free space. We also compute the corresponding transverse charge densities of the nucleon in nuclear matter, which clearly reveal the increasing of the nucleon size in nuclear medium.
The intrinsic glue distribution at very small x and high densities
Jalilian-Marian, J; McLerran, L; Weigert, H; Jalilian-Marian, Jamal; Kovner, Alex; McLerran, Larry; Weigert, Heribert
1996-01-01
We compute the distribution functions for gluons at very small x and not too large values of transverse momenta. We extend the McLerran-Venugopalan model by using renormalization group methods to integrate out effects due to those gluons which generate an effective classical charge density for Weizs\\"acker-Williams fields. We argue that this model can be extended from the description of nuclei at small x to the description of hadrons at yet smaller values of x. This generates a Lipatov like enhancement for the intrinsic gluon distribution function and a non-trivial transverse momentum dependence as well. We estimate the transverse momentum dependence for the distribution functions, and show how the issue of unitarity is resolved in lepton-nucleus interactions.
Directory of Open Access Journals (Sweden)
Lampert Winfried
2005-04-01
Full Text Available Abstract Background In lakes with a deep-water algal maximum, herbivorous zooplankton are faced with a trade-off between high temperature but low food availability in the surface layers and low temperature but sufficient food in deep layers. It has been suggested that zooplankton (Daphnia faced with this trade-off distribute vertically according to an "Ideal Free Distribution (IFD with Costs". An experiment has been designed to test the density (competition dependence of the vertical distribution as this is a basic assumption of IFD theory. Results Experiments were performed in large, indoor mesocosms (Plankton Towers with a temperature gradient of 10°C and a deep-water algal maximum established below the thermocline. As expected, Daphnia aggregated at the interface between the two different habitats when their density was low. The distribution spread asymmetrically towards the algal maximum when the density increased until 80 % of the population dwelled in the cool, food-rich layers at high densities. Small individuals stayed higher in the water column than large ones, which conformed with the model for unequal competitors. Conclusion The Daphnia distribution mimics the predictions of an IFD with costs model. This concept is useful for the analysis of zooplankton distributions under a large suite of environmental conditions shaping habitat suitability. Fish predation causing diel vertical migrations can be incorporated as additional costs. This is important as the vertical location of grazing zooplankton in a lake affects phytoplankton production and species composition, i.e. ecosystem function.
Reinhard, P.-G.; Nazarewicz, W.
2016-05-01
Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations
Pushing X-ray charge densities to the limit: Comparative study of CoSb3
DEFF Research Database (Denmark)
Schmøkel, Mette Stokkebro; Larsen, Finn Krebs; Overgaard, Jacob; Bjerg, Lasse; Cenedese, Simone; Jørgensen, Mads Ry Vogel; Christensen, Mogens; Iversen, Bo Brummerstedt
CoSb3 is a highly important host-guest material for the engineering of high-performance thermoelectric materials.[1] Its crystal structure has empty cavities and when guest atoms are added to CoSb3, its thermoelectric properties are greatly enhanced due to decreased thermal conductivity.[2] In...... order to understand the origin of the thermoelectric properties of this family of materials, it is important to understand the crystal structure and chemical bonding of the un-doped host material.[3] This can be achieved through analysis of the charge density, which in principle can be obtained from...... modeling of accurate X-ray diffraction data.[4] However, considering the heavy elements, the high symmetry and the perfect crystallinity of this inorganic network structure one cannot think of a much more challenging case for experimental charge density analysis. In the present study we analyze several low...
Exploring effective interactions through transition charge density study of 70,72,74,76Ge nuclei
Indian Academy of Sciences (India)
A Shukla; P K Raina; P K Rath
2005-02-01
Transition charge densities (TCD) for $0^{+} → 2_{1}^{+}$ excitation have been calculated for 70, 72, 74, 76Ge nuclei within microscopic variational framework employing 23/2, 15/2, 21/2 and 19/2 valence space. The calculated TCDs for different monopole variants of Kuo interaction are compared with available experimental results. Other systematics like reduced transition probabilities (2) and static quadrupole moments (2) are also presented. It is observed that the transition density study acts as a sensitive probe for discriminating the response of different parts of effective interactions.
Crystal structure and charge density analysis of Ca(BH4)2
International Nuclear Information System (INIS)
Calcium borohydride Ca(BH4)2 is one of the promising new hydrogen storage materials because of its large amount of hydrogen desorption capability (9.6 mass%). The crystal structures of α-Ca(BH4)2 (space group: Fddd, lattice constants: a = 8.7782(2) A, b = 13.129(1) A, c = 7.4887(9) A) and β-Ca(BH4)2 (P42/m, a = 6.9509(5) A, c = 4.3688(3) A) were refined by synchrotron X-ray diffraction at 300 and 433 K, respectively. The unsolved structures of γ-Ca(BH4)2 (Pbca, a = 7.525(1) A, b = 13.109(2) A, c = 8.403(1) A) and Ca(BH4)2.H2O (Pnma, a = 8.200(1) A, b = 5.8366(7) A, c = 11.851(2) A) were determined. In α-, β- and γ-Ca(BH4)2 structures, six boron atoms around a calcium atom construct CaB6 octahedron. The polymorphism of Ca(BH4)2 is formed by the different connection with adjacent octahedrons sharing vertexes and edges of the CaB6 octahedron. Furthermore, the charge density distribution in α-Ca(BH4)2 was experimentally determined by maximum entropy method. It is clarified that the bonding nature in α-Ca(BH4)2 ionic crystal is constructed from Ca2+ cation and BH4- anion.
Electric field and space-charge distribution in SI GaAs: effect of high-energy proton irradiation
Castaldini, A; Polenta, L; Canali, C; Nava, F
1999-01-01
The effect of irradiation on semi-insulating gallium arsenide Schottky diodes has been investigated by means of surface potential measurements and spectroscopic techniques. Before and after irradiation the electric field exhibits a Mott barrier-like distribution, and the box-shaped space charge modifies its distribution with irradiation. The increase in density or the generation of some traps changes the compensation ratio producing a deeper active region and a more homogeneous distribution of the electric field. The latter phenomenon is also observed by EBIC images of edge-mounted diodes.
Oberhofer, H
2009-01-01
We present a plane-wave basis set implementation of charge constrained density functional molecular dynamics (CDFT-MD) for simulation of electron transfer reactions in condensed phase systems. Following earlier work of Wu et al. Phys. Rev. A 72, 024502 (2005), the density functional is minimized under the constraint that the charge difference between donor and acceptor is equal to a given value. The classical ion dynamics is propagated on the Born-Oppenheimer surface of the charge constrained state. We investigate the dependence of the constrained energy and of the energy gap on the definition of the charge, and present expressions for the constraint forces. The method is applied to the Ru2+-Ru3+ electron self-exchange reaction in aqueous solution. Sampling the vertical energy gap along CDFT-MD trajectories, and correcting for finite size effects, a reorganization free energy of 1.6 eV is obtained. This is 0.1-0.2 eV lower than a previous estimate based on a continuum model for solvation. smaller value for re...
Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip
2016-04-26
We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces. PMID:27002483
The malleability of uranium: manipulating the charge-density wave in epitaxial films
Springell, R.; Ward, R. C. C.; Bouchet, J.; Chivall, J.; Wermeille, D.; Normile, P. S.; Langridge, S.; Zochowski, S W; Lander, G. H.
2014-01-01
We report x-ray synchrotron experiments on epitaxial films of uranium, deposited on niobium and tungsten seed layers. Despite similar lattice parameters for these refractory metals, the uranium epitaxial arrangements are different and the strains propagated along the a-axis of the uranium layers are of opposite sign. At low temperatures these changes in epitaxy result in dramatic modifications to the behavior of the charge-density wave in uranium. The differences are explained with the curren...
Charge density wave in graphene: magnetic-field-induced Peierls instability
Fuchs, Jean-Noël; Lederer, Pascal
2006-01-01
We suggest that a magnetic-field-induced Peierls instability accounts for the recent experiment of Zhang et al. in which unexpected quantum Hall plateaus were observed at high magnetic fields in graphene on a substrate. This Peierls instability leads to an out-of-plane lattice distortion resulting in a charge density wave (CDW) on sublattices A and B of the graphene honeycomb lattice. We also discuss alternative microscopic scenarios proposed in the literature and leading to a similar CDW gro...
Charge density wave in graphene: magnetic-field-induced Peierls instability
Fuchs, Jean-Noël; Lederer, Pascal
2007-01-01
Proceeding of the "graphene conference" (25 September - 01 October 2006) held in Dresden. We suggest that a magnetic-field-induced Peierls instability accounts for the recent experiment of Zhang et al. in which unexpected quantum Hall plateaus were observed at high magnetic fields in graphene on a substrate. This Peierls instability leads to an out-of-plane lattice distortion resulting in a charge density wave (CDW) on sublattices A and B of the graphene honeycomb lattice. We also discuss ...
Astakhov, O.; Carius, R.; F. Finger; Petrusenko, Y.; Borysenko, V.; Barankov, D.
2009-01-01
The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparin...
Thermal ageing and its impact on charge trap density and breakdown strength in ldpe LDPE
Li, Ziyun; Chen, George; Fu, Mingli; Hou, Shuai
2015-01-01
Low-density polyethylene (LDPE) has been widely used as power cable insulation, because of its good electrical performance and stable chemical characteristics. However, in recent years, with the rise of large-capacity and long-distance HVDC transmission systems, the effect of space charge has a significant impact on the insulation selection and design. Furthermore, the change in the electrical performance of insulation after ageing is also required to be understood. It has been reported that ...
Infrared signature of the charge-density-wave gap in $ZrTe_3$
Perucchi, A.; Degiorgi, L.; Berger, H.
2005-01-01
The chain-like $ZrTe_3$ compound undergoes a charge-density-wave (CDW) transition at $T_{CDW}=63$ $K$, most strongly affecting the conductivity perpendicular to the chains. We measure the temperature ($T$) dependence of the optical reflectivity from the far infrared up to the ultraviolet with polarized light. The CDW gap $\\Delta(T)$ along the direction perpendicular to the chains is compatible for $T
Nuclear charge-exchange excitations in localized covariant density functional theory
International Nuclear Information System (INIS)
The recent progress in the studies of nuclear charge-exchange excitations with localized covariant density functional theory is briefly presented, by taking the fine structure of spin-dipole excitations in 16O as an example. It is shown that the constraints introduced by the Fock terms of the relativistic Hartree-Fock scheme into the particle-hole residual interactions are straightforward and robust. (authors)
Effect of high magnetic fields on the charge density wave properties of KMo 6O 17
Rötger, A.; Dumas, J.; Marcus, J.; Schlenker, C.; Ulmet, J. P.; Audouard, A.; Askenazy, S.
1992-03-01
The electrical resistivity of the purple bronze KMo 6O 17 has been studied between 2 and 88 K with pulsed magnetic fields up to 35 T. Several anomalies are found on the curves Δρ/ρ(B) at different temperatures. The low field results are compared with previous measurements of susceptibility and magnetization. A phase diagram which may show a field displaced charge density wave instability and field induced transitions is proposed.
Nuclear charge-exchange excitations in localized covariant density functional theory
Liang, H Z; Nakatsukasa, T; Niu, Z M; Ring, P; Roca-Maza, X; Van Giai, N; Zhao, P W
2014-01-01
The recent progress in the studies of nuclear charge-exchange excitations with localized covariant density functional theory is briefly presented, by taking the fine structure of spin-dipole excitations in 16O as an example. It is shown that the constraints introduced by the Fock terms of the relativistic Hartree-Fock scheme into the particle-hole residual interactions are straightforward and robust.
Correlation of scanning-tunneling-microscope image profiles and charge-density-wave amplitudes
International Nuclear Information System (INIS)
Scanning-tunneling-microscope (STM) studies of 4Hb-TaS2 and 4Hb-TaSe2 at 4.2 K show systematic correlation between the charge-density-wave (CDW) amplitude and the STM deflection. The 4Hb phases have both weak and strong CDW's in the trigonal prismatic and octahedral sandwiches, respectively. Scans on opposite faces of the same cleave allow a comparison of the STM response to the two types of CDW
A stepped leader model for lightning including charge distribution in branched channels
International Nuclear Information System (INIS)
The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.
International Nuclear Information System (INIS)
For an optimal design of ion sources and for some aspects of plasma diagnostics it is important to study the influence of all processes and parameters that are essential for the production and loss of multiply charged ions. Till now all existing calculations of CSD neglected charge transfer because of missing data. Now many of the very big charge transfer cross sections are measured and so we are able to include them into our calculations. (orig.)
Dielectric sample with two-layer charge distribution for space charge calibration purposes
DEFF Research Database (Denmark)
Holbøll, Joachim; Henriksen, Mogens; Rasmussen, C.
2002-01-01
In the present paper is described a dielectric test sample with two very narrow concentrations of bulk charges, achieved by two internal electrodes not affecting the acoustical properties of the sample, a fact important for optimal application of most space charge measuring systems. Space charge...... formation was investigated under different electrical conditions by means of the laser induced pressure pulse (LIPP) method and the pulsed electro-acoustic method (PEA)....
Differential distribution of Shank and GKAP at the postsynaptic density.
Directory of Open Access Journals (Sweden)
Jung-Hwa Tao-Cheng
Full Text Available Shank and GKAP are scaffold proteins and binding partners at the postsynaptic density (PSD. The distribution and dynamics of Shank and GKAP were studied in dissociated hippocampal cultures by pre-embedding immunogold electron microscopy. Antibodies against epitopes containing their respective mutual binding sites were used to verify the expected juxtapositioning of Shank and GKAP. If all Shank and GKAP molecules at the PSD were bound to each other, the distribution of label for the two proteins should coincide. However, labels for the mutual binding sites showed significant differences in distribution, with a narrow distribution for GKAP located close to the postsynaptic membrane, and a wider distribution for Shank extending deeper into the cytoplasm. Upon depolarization with high K+, neither the intensity nor distribution of label for GKAP changed, but labeling intensity for Shank at the PSD increased to ~150% of controls while the median distance of label from postsynaptic membrane increased by 7.5 nm. These results indicate a preferential recruitment of Shank to more distal parts of the PSD complex. Conversely, upon incubation in Ca2+-free medium containing EGTA, the labeling intensity of Shank at the PSD decreased to ~70% of controls and the median distance of label from postsynaptic membrane decreased by 9 nm, indicating a preferential loss of Shank molecules in more distal parts of the PSD complex. These observations identify two pools of Shank at the PSD complex, one relatively stable pool, closer to the postsynaptic membrane that can bind to GKAP, and another more dynamic pool at a location too far away to bind to GKAP.
Becker, Maik; Bredemeyer, Niels; Tenhumberg, Nils; Turek, Thomas
2016-03-01
Potential probes are applied to vanadium redox-flow batteries for determination of effective felt resistance and current density distribution. During the measurement of polarization curves in 100 cm2 cells with different carbon felt compression rates, alternating potential steps at cell voltages between 0.6 V and 2.0 V are applied. Polarization curves are recorded at different flow rates and states of charge of the battery. Increasing compression rates lead to lower effective felt resistances and a more uniform resistance distribution. Low flow rates at high or low state of charge result in non-linear current density distribution with high gradients, while high flow rates give rise to a nearly linear behavior.
Lampert Winfried
2005-01-01
Abstract Background In lakes with a deep-water algal maximum, herbivorous zooplankton are faced with a trade-off between high temperature but low food availability in the surface layers and low temperature but sufficient food in deep layers. It has been suggested that zooplankton (Daphnia) faced with this trade-off distribute vertically according to an "Ideal Free Distribution (IFD) with Costs". An experiment has been designed to test the density (competition) dependence of the vertical distr...
Evolution of column density distributions within Orion~A
Stutz, A M
2015-01-01
We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus) by Sadavoy; here we test if a similar correlation is observed in a high-mass star-forming region. We use Herschel data to derive a column density map of Orion A. We use the Herschel Orion Protostar Survey catalog for accurate identification and classification of the Orion A young stellar object (YSO) content, including the short-lived Class 0 protostars (with a $\\sim$ 0.14 Myr lifetime). We divide Orion A into eight independent 13.5 pc$^2$ regions; in each region we fit the N-PDF distribution with a power-law, and we measure the fraction of Class 0 protostars. We use a maximum likelihood method to measure the N-PDF power-law ...
International Nuclear Information System (INIS)
The mass, energy, and centrality dependence of rapidity density distributions of relativistic, charged particles, produced in heavy-ion interactions in the energy range 4A--200A GeV, are investigated. The results indicate that the rapidity density distributions show systematic variations, which are used to predict distributions for Au+Au and Pb+Pb interactions in a model-independent way
Spatial distributions of electron temperature and density in electron cyclotron resonance discharges
International Nuclear Information System (INIS)
Spatial profiles of electron density and temperature of electron cyclotron resonance discharge plasmas have been successfully measured using laser Thomson scattering. The results, thus obtained, were valuable for quantitative comparison with results of a computer simulation. Measurements were performed for two cases with different locations of the electron cyclotron resonance zones. Simulation results obtained from a hybrid code, which treats ions and neutral particles as discrete particles and electrons as a fluid, were fitted to the experimental profiles of the electron density and temperature by adjusting the microwave power deposition profiles. From these comparisons and an analysis of other simulation data, it was found that the large difference of radial electron density profiles for two discharge conditions was caused by the difference of radial space-charge electric-field distributions. The radial electron temperature distribution determined the radial electric field that drove the ions radially and also resulted in a peaked electron density profile for one case and a more uniform profile for the other case. It is also shown that Coulomb collisions of electrons with ions as well as electron endash neutral collisions are important for the analysis of electron behavior along the magnetic field lines. copyright 1997 American Institute of Physics
Evolution of column density distributions within Orion A⋆
Stutz, A. M.; Kainulainen, J.
2015-05-01
We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus); here we test whether a similar correlation is observed in a high-mass star-forming region. We used Herschel PACS and SPIRE cold dust emission observations to derive a column density map of Orion A. We used the Herschel Orion Protostar Survey catalog to accurately identify and classify the Orion A young stellar object content, including the cold and relatively short-lived Class 0 protostars (with a lifetime of ~0.14 Myr). We divided Orion A into eight independent regions of 0.25 square degrees (13.5 pc2); in each region we fit the N-PDF distribution with a power law, and we measured the fraction of Class 0 protostars. We used a maximum-likelihood method to measure the N-PDF power-law index without binning the column density data. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We tested the effects of incompleteness, extinction-driven misclassification of Class 0 sources, resolution, and adopted pixel-scales. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed, including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an evolutionary state of the gas. If universal, such a relation permits evaluating the evolutionary state from the N-PDF power-law index at much greater distances than those accessible with protostar counts. Appendices are available in
A Fully Distributed Approach for Plug-in Electric Vehicle Charging
Mohammadi, Javad; Vaya, Marina Gonzalez; Kar, Soummya; Hug, Gabriela
2016-01-01
Plug-in electric vehicles (PEVs) are considered as flexible loads since their charging schedules can be shifted over the course of a day without impacting drivers mobility. This property can be exploited to reduce charging costs and adverse network impacts. The increasing number of PEVs makes the use of distributed charging coordinating strategies preferable to centralized ones. In this paper, we propose an agent-based method which enables a fully distributed solution of the PEVs Coordinated ...
Differential Density Statistics of Galaxy Distribution and the Luminosity Function
Albani, V V L; Ribeiro, M B; Stöger, W R; Albani, Vinicius V. L.; Iribarrem, Alvaro S.; Ribeiro, Marcelo B.; Stoeger, William R.
2006-01-01
This paper uses data obtained from the galaxy luminosity function (LF) to calculate two types of radial number densities statistics of the galaxy distribution as discussed in Ribeiro (2005), namely the differential density $\\gamma$ and the integral differential density $\\gamma^\\ast$. By applying the theory advanced by Ribeiro and Stoeger (2003), which connects the relativistic cosmology number counts with the astronomically derived LF, the differential number counts $dN/dz$ are extracted from the LF and used to calculate both $\\gamma$ and $\\gamma^\\ast$ with various cosmological distance definitions, namely the area distance, luminosity distance, galaxy area distance and redshift distance. LF data are taken from the CNOC2 galaxy redshift survey and $\\gamma$ and $\\gamma^\\ast$ are calculated for two cosmological models: Einstein-de Sitter and an $\\Omega_{m_0}=0.3$, $\\Omega_{\\Lambda_0}=0.7$ standard cosmology. The results confirm the strong dependency of both statistics on the distance definition, as predicted in...
Equilibrium charge state distributions of high energy heavy ions
International Nuclear Information System (INIS)
Equilibrium charge state fractions have been measured for N, O, Ne, S, Ar and Kr ions at 1.04 MeV/nucleon after passing through various stripping materials. Further data were obtained at higher energy for S ions (4.12 MeV/nucleon) and Ar ions (4.12 and 9.6 MeV/nucleon). The mean charge fractions can be fitted to universal curves for both solid and gaseous strippers. Measurements of the equilibrium fraction of krypton ions at 1.04 MeV/nucleon passing through heavy vapours have shown that a higher average charge state is obtained than for lighter gaseous strippers. (Auth.)
International Nuclear Information System (INIS)
The HELIOS (High Energy Lepton and Ion Spectrometer) experiment, installed at the CERN Super Proton Synchrotron, proposes to examine in details the physical properties of a state of high energy created in nuclei by ultra-relativistic nucleus-nucleus collisions. It is generally believed that, at high densities or temperatures, a phase transition to a plasma of quark and gluons will occur. The dynamic of the expansion of such a plasma and its subsequent condensation into a hadron gas should markedly affect the composition and momentum distribution of the emerging particles and photons. The HELIOS experimental setup therefore combines 4π calorimetric coverage with measurements of inclusive particle spectra, two particle correlations, low and high mass lepton pairs and photons. The emphasis is placed on transverse energy flow (E/sub T/) measurements with good energy resolution, and the ability to trigger the acquisition of data in a variety of E/sub T/ ranges, thereby selecting the impact parameter or the violence of the collisions. This short note presents HELIOS results, for the most part still preliminary, on 16O-nucleus collisions at the incident energies of 60 and 200 GeV per nucleon. The E/sub T/ distributions from Al, Ag and W targets are discussed and compared to the associated charged particle multiplicities from W. Charged particle and (converted) photon spectra measured with the external magnetic spectrometer are compared for 16O + W and p + W collisions at 200 GeV per nucleon. 5 refs., 7 figs
Peitzmann, T.(Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands)
2007-01-01
Longitudinal density correlations of produced matter in Au+Au collisions at VsNN=200 GeV have been measured from the inclusive charged particle distributions as a function of pseudorapidity window sizes. The extracted αξ parameter, related to the susceptibility of the density fluctuations in the long-wavelength limit, exhibits a nonmonotonic behavior as a function of the number of participant nucleons, Npart. A local maximum is seen at Npart~90, with corresponding energy density based on the ...
International Nuclear Information System (INIS)
Overlap fermions, which preserve exact chiral symmetry on the lattice, provide a powerful tool for investigating the topological structure of the vacuum. Applying this formulation to zerotemperature quenched SU(3) configurations generated by means of the Luescher-Weisz action, we define the topological charge density with and without UV filtering and study its properties by looking at the density profile and the two-point correlation function. We observe that the density possesses global sign coherent structures, which get increasingly tangled as more and more modes are included. This change of the structure is also detected by the increasing negative tail of the two-point function. We also study the inverse participation ratio of the eigenmodes and discuss their dimensionality. (orig.)
International Nuclear Information System (INIS)
In this paper we investigate charged particle transport and acceleration in a two-dimensional system with an uniform electric field and stationary magnetic field fluctuations. The main idea of this study is to consider dependencies of transport and acceleration rates on properties of distributions of magnetic field fluctuations. We develop a simplified model of magnetic fluctuations with a regulated distribution and apply the test particle approach. System parameters are chosen to simulate conditions typical for ion dynamics in the deep Earth magnetotail. We show that for a fixed power density of magnetic field fluctuations the particle acceleration is more effective in the system where particles interact with small-amplitude (but frequent) fluctuations. In systems with large-amplitude rare fluctuations the particle scattering is less effective and the particle acceleration is weaker. - Highlights: • Ion transport/acceleration by magnetic fluctuations with different distributions. • The most effective acceleration is for non-Gaussian magnetic field fluctuations • Both Gaussian/non-Gaussian distributions give similar energy spectrum shape
Carbon density and distribution of six Chinese temperate forests
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Quantifying forest carbon(C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling.Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age(42-59 years old) and growing under the same climate in northeastern China.The forests were an aspen-birch forest,a hardwood forest,a Korean pine plantation,a Dahurian larch plantation,a mixed deciduous forest,and a Mongolian oak forest.There were no significant differences in the C densities of ecosystem components(except for detritus) although the six forests had varying vegetation compositions and site conditions.However,the differences were significant when the C pools were normalized against stand basal area.The total ecosystem C density varied from 186.9 tC hm-2 to 349.2 tC hm-2 across the forests.The C densities of vegetation,detritus,and soil ranged from 86.3-122.7 tC hm-2,6.5-10.5 tC hm-2,and 93.7-220.1 tC hm-2,respectively,which accounted for 39.7% ± 7.1%(mean ± SD),3.3% ± 1.1%,and 57.0% ± 7.9% of the total C densities,respectively.The overstory C pool accounted for > 99% of the total vegetation C pool.The foliage biomass,small root(diameter < 5mm) biomass,root-shoot ratio,and small root to foliage biomass ratio varied from 2.08-4.72 tC hm-2,0.95-3.24 tC hm-2,22.0%-28.3%,and 34.5%-122.2%,respectively.The Korean pine plantation had the lowest foliage production efficiency(total biomass/foliage biomass:22.6 g g-1) among the six forests,while the Dahurian larch plantation had the highest small root production efficiency(total biomass/small root biomass:124.7 g g-1).The small root C density decreased with soil depth for all forests except for the Mongolian oak forest,in which the small roots tended to be vertically distributed downwards.The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests.The variability
Matsushima, Hiroyuki; Okino, Hiroyuki; Mochizuki, Kazuhiro; Yamada, Renichi
2016-04-01
The distribution of positive-charge density at the SiO2/SiC interface of the termination area (Q TM) was analyzed by measuring the depletion-layer capacitance of 4H-SiC PN diodes with different termination structures. A change in Q TM induced by reverse-bias stressing (ΔQ TM) caused a change in the breakdown voltage of the diodes. By comparing the measured depletion-layer capacitance to the simulated value, the initial Q TM (Q\\text{TM}\\text{o}) and the distribution of ΔQ TM were clarified. It is concluded from these results that the distribution of ΔQ TM was not uniform but that positive charges mostly accumulated in the termination area under a high applied electric field.
Lagström, Tove; Gmür, Tobias A; Quaroni, Luca; Goel, Alok; Brown, Matthew A
2015-03-31
We show that attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy can be used to determine the surface charge density (SCD) of colloidal silica nanoparticles (NPs) in aqueous solution. We identify the Si-O stretch vibrations of neutral surface bound silanol, ≡Si-OH, and of the deprotonated group, ≡Si-O(-). The position of the Si-(OH) stretch vibration is shown to directly correlate with the NPs SCD as determined by traditional potentiometric titrations, shifting to lower wavenumber (cm(-1)) with increasing density of ≡Si-O(-). The origin of this shift is discussed in terms of inductive effects that reduce the ionic character of the Si-(OH) bond after delocalization of the negative charge left on a terminal ≡Si-O(-) group across the atoms within ∼1 nm of the charged site. Using this new methodology, we quantitatively determine the SCD of 9, 14, and 25 nm diameter colloidal silica in varying concentrations of NaCl electrolyte at different bulk pH. This novel spectroscopic approach to investigate SCDs provides several opportunities for in situ coupling, for example, in microfluidic channels or with liquid microjets, and requires only very little sample—all potential advantages over a traditional potentiometric titration. PMID:25761506
Long-range charge-density-wave proximity effect at cuprate/manganate interfaces
Frano, A.; Blanco-Canosa, S.; Schierle, E.; Lu, Y.; Wu, M.; Bluschke, M.; Minola, M.; Christiani, G.; Habermeier, H. U.; Logvenov, G.; Wang, Y.; van Aken, P. A.; Benckiser, E.; Weschke, E.; Le Tacon, M.; Keimer, B.
2016-08-01
The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ ~ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides.
Tomographic measurement of the phase space distribution of a space-charge-dominated beam
Stratakis, Diktys
Many applications of accelerators, such as free electron lasers, pulsed neutron sources, and heavy ion fusion, require a good quality beam with high intensity. In practice, the achievable intensity is often limited by the dynamics at the low-energy, space-charge dominated end of the machine. Because low-energy beams can have complex distribution functions, a good understanding of their detailed evolution is needed. To address this issue, we have developed a simple and accurate tomographic method to map the beam phase using quadrupole magnets, which includes the effects from space charge. We extend this technique to use also solenoidal magnets which are commonly used at low energies, especially in photoinjectors, thus making the diagnostic applicable to most machines. We simulate our technique using a particle in cell code (PIC), to ascertain accuracy of the reconstruction. Using this diagnostic we report a number of experiments to study and optimize injection, transport and acceleration of intense space charge dominated beams. We examine phase mixing, by studying the phase-space evolution of an intense beam with a transversely nonuniform initial density distribution. Experimental measurements, theoretical predictions and PIC simulations are in good agreement each other. Finally, we generate a parabolic beam pulse to model those beams from photoinjectors, and combine tomography with fast imaging techniques to investigate the time-sliced parameters of beam current, size, energy spread and transverse emittance. We found significant differences between the slice emittance profiles and slice orientation as the beam propagates downstream. The combined effect of longitudinal nonuniform profiles and fast imaging of the transverse phase space provided us with information about correlations between longitudinal and transverse dynamics that we report within this dissertation.
Effects of Horizontal Density Distribution on Internal Bond Strength of Flakeboard
Institute of Scientific and Technical Information of China (English)
MEIChangtong; DAIChunping; ZHOUDingguo
2005-01-01
Horizontal density variation is a structural phenomenon of non-veneer wood composites. The variation and distribution characteristics of horizontal density have impacts on the products properties. In this study, veneer strip simulated flake boards with 4 kinds of density distribution were made using a mat model. The density variation of the modeled mats was discussed, as well as the relationship between sample size and density variation. The effects of density and density distribution of non-veneer composites on the internal bond strength were analyzed. Result shows that the horizontal density of random formed particleboard follows normal distribution. Density has remarkable influence on internal bond strength (IB). Increasing density helps to improve IB at lower density stage, but has negative impacts on IB at higher density stage.Density variation between testing specimens depends on their sizes. Properly increasing specimen size can decrease the variation of the IBs.
Growth dynamics, charge density, and structure of polyamide thin-film composite membranes
Matthews, Tamlin
The main objectives of this dissertation are to characterize polyamide layers formed on polysulfone supports, without physical or chemical removal, so that it is close to its native form, which has been used in industrial reverse osmosis applications. Growth dynamics by diffuse reflectance spectroscopy was developed for the polymerization of polyamide on porous polysulfone supports using varying concentrations of m-phenylenediamine (MPD) in water of 0.1-- 100 g/L with a fixed concentration of trimesoyl chloride (TMC) in hexane of 1 g/L, and varying TMC concentrations of 0.1--10 g/L with a fixed MPD concentration of 20 g/L. A relationship was developed between diffuse reflectance and polyamide thickness. The diffuse reflectance data shows that ~50% of the polyamide thickness is produced in 2 g/L. All studied concentrations of TMC at a fixed 20 g/L MPD concentration produced a polyamide thickness of ≈120 nm. Polyamide thickness increases from ≈10 to 110 nm with increasing concentration of MPD at 1 g/L TMC. The roughness measured with AFM increases with increasing MPD concentration but decreases with increasing TMC concentration. At MPD concentrations polyamide does not grow on top of the polysulfone. The charge density of polyamide layers arises from unpolymerized free amine and carboxylic groups contributing positive and negative charges, respectively. The negative charge groups from carboxylic acid were tagged with Ag+. Using the same concentration ranges as the growth dynamics study, the charge densities were characterized in the bulk by RBS and in the near-surface by XPS. With increasing concentration of MPD, the charge density in the near-surface region is constant and ≈0.3 M, due to constant surface contact with the carboxylic acid containing TMC monomer. The charge density decreases from 0.3 M to 0.1 M in the polyamide bulk with increasing MPD concentration. TMC showed a 30x increase in charge density from 0.02 to 0.61 g/L in the bulk polyamide between 0
Changes in Surface Charge Density of Blood Cells in Fatal Accidental Hypothermia.
Szeremeta, Michał; Petelska, Aneta Dorota; Kotyńska, Joanna; Pepiński, Witold; Naumowicz, Monika; Figaszewski, Zbigniew Artur; Niemcunowicz-Janica, Anna
2015-12-01
The objective of this research was to evaluate postmortem changes concerning electric charge of human erythrocytes and thrombocytes in fatal accidental hypothermia. The surface charge density values were determined on the basis of the electrophoretic mobility measurements of the cells conducted at various pH values of electrolyte solution. The surface charge of erythrocyte membranes after fatal accidental hypothermia increased compared to the control group within whole range of experimental pH values. Moreover, a slight shift of the isoelectric point of erythrocyte membranes towards high pH values was observed. The surface charge of thrombocyte membranes in fatal accidental hypothermia decreased at low pH compared to the control group. However, at pH range 4-9, the values increased compared to the control group. The isoelectric point of thrombocyte membranes after fatal accidental hypothermia was slightly shifted towards low pH values compared to the control group. The observed changes are probably connected with the partial destruction and functional changes of the blood cell structure. PMID:26364031
Study of Interface Charge Densities for ZrO2 and HfO2 Based Metal-Oxide-Semiconductor Devices
Directory of Open Access Journals (Sweden)
N. P. Maity
2014-01-01
Full Text Available A thickness-dependent interfacial distribution of oxide charges for thin metal oxide semiconductor (MOS structures using high-k materials ZrO2 and HfO2 has been methodically investigated. The interface charge densities are analyzed using capacitance-voltage (C-V method and also conductance (G-V method. It indicates that, by reducing the effective oxide thickness (EOT, the interface charge densities (Dit increases linearly. For the same EOT, Dit has been found for the materials to be of the order of 1012 cm−2 eV−1 and it is originated to be in good agreement with published fabrication results at p-type doping level of 1×1017 cm−3. Numerical calculations and solutions are performed by MATLAB and device simulation is done by ATLAS.
Coupling of mass and charge distributions for low excited nuclear fission
International Nuclear Information System (INIS)
The simple model for calculation of charge distributions of fission fragments for low exited nuclear fission from experimental mass distributions is offered. The model contains two parameters, determining amplitude of even-odd effect of charge distributions and its dependence on excitation energy. Results for reactions 233U(nth,f), 235U(nth,f), 229Th(nth,f), 249Cf(nth,f) are spent
Angular momentum of disc galaxies with a lognormal density distribution
Marr, John Herbert
2015-01-01
Whilst most galaxy properties scale with galaxy mass, similar scaling relations for angular momentum are harder to demonstrate. A lognormal (LN) density distribution for disc mass provides a good overall fit to the observational data for disc rotation curves for a wide variety of galaxy types and luminosities. In this paper, the total angular momentum J and energy $\\vert{}$E$\\vert{}$ were computed for 38 disc galaxies from the published rotation curves and plotted against the derived disc masses, with best fit slopes of 1.683$\\pm{}$0.018 and 1.643$\\pm{}$0.038 respectively, using a theoretical model with a LN density profile. The derived mean disc spin parameter was $\\lambda{}$=0.423$\\pm{}$0.014. Using the rotation curve parameters V$_{max}$ and R$_{max}$ as surrogates for the virial velocity and radius, the virial mass estimator $M_{disc}\\propto{}R_{max}V_{max}^2$ was also generated, with a log-log slope of 1.024$\\pm{}$0.014 for the 38 galaxies, and a proportionality constant ${\\lambda{}}^*=1.47\\pm{}0.20\\time...
Equilibrium charge-state distributions of highly stripped ions in carbon foils
International Nuclear Information System (INIS)
Asymmetric equilibrium charge-state distributions observed for heavy ions (Z approx. >= 7) in carbon foils at high velocities (v > 3.6 x 108 Z0sup(.)45 cm s-1) are closely approximated by a simple statistical distribution: the reduced chi-squared model. The dependences of the mean charge and of the standard deviation of the charge on the projectile velocity are obtained by a previously-known and a newly-proposed relation, respectively. Finally charge-state fractions may be easily predicted using a simple formula depending only on the atomic number and on the velocity of the projectile. (orig.)
Energy Technology Data Exchange (ETDEWEB)
2014-09-01
Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.
Gandiwa, E.
2014-01-01
Understanding factors influencing large herbivore densities and distribution in terrestrial ecosystems is a fundamental goal of ecology. This study examined environmental factors influencing the density and distribution of wild large herbivores in Gonarezhou National Park, Zimbabwe. Vegetation and s
Space Charge Neutralization of DEMO Relevant Negative Ion Beams at Low Gas Density
International Nuclear Information System (INIS)
The application of neutral beams to future power plant devices (DEMO) is dependent on achieving significantly improved electrical efficiency and the most promising route to achieving this is by implementing a photoneutralizer in place of the traditional gas neutralizer. A corollary of this innovation would be a significant reduction in the background gas density through which the beam is transported between the accelerator and the neutralizer. This background gas is responsible for the space charge neutralization of the beam, enabling distances of several metres to be traversed without significant beam expansion. This work investigates the sensitivity of a D- beam to reduced levels of space charge compensation for energies from 100 keV to 1.5 MeV, representative of a scaled prototype experiment, commissioning and full energy operation. A beam transport code, following the evolution of the phase space ellipse, is employed to investigate the effect of space charge on the beam optics. This shows that the higher energy beams are insensitive to large degrees of under compensation, unlike the lower energies. The probable degree of compensation at low gas density is then investigated through a simple, two component beam-plasma model that allows the potential to be negative. The degree of under-compensation is dependent on the positive plasma ion energy, one source of which is dissociation of the gas by the beam. The subsequent space charge state of the beam is shown to depend upon the relative times for equilibration of the dissociation energy and ionization by the beam ions.
Basu, Sumit; Datta, Kaustuv
2016-01-01
Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged particle multiplicity and pseudorapidity ($\\eta$) distributions. We have shown that the available experimental data on beam energy and centrality dependence of \\Eta-distributions in heavy-ion (Au+Au or Pb+Pb) collisions from \\sNN=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the \\Eta-distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of \\sNN~=~5.02 TeV, we have obtained the charged particle multiplicity densities, \\Eta-distributions and energy densities for various centralities. Incident...
Distribution of Electrical Charge in a System of Finite Conductors
Czech Academy of Sciences Publication Activity Database
Doležel, Ivo; Kloucek, P.; Šolín, Pavel; Ulrych, B.
2003-01-01
Roč. 48, č. 1 (2003), s. 1-13. ISSN 0001-7043 Grant ostatní: GA €R(CZ) GP102/01/D114; NSF(US) DMS -0107539 Institutional research plan: CEZ:MSM 212300016 Keywords : electrical charge * numerical modelling * integral equations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Rapidity density distributions in Au+Au and Au+Ag interactions at 11.6 A GeV/c
International Nuclear Information System (INIS)
Pseudorapidity density distributions of charged particles in heavy-ion collisions have been studied. The results from EMU01 have been compared to the results from the experiments WA80 and E802. The recently obtained pseudorapidity distributions from Au+Au and Au+Ag interactions have been compared to a linear extrapolation from lighter systems. (orig.)
Calculation of the Nuclear Transition Charge Density in a Microscopic sdgIBM-1
Institute of Scientific and Technical Information of China (English)
ZHANG Zhan-Jun; SANG Jian-ping; LIU Yong
2000-01-01
Formulae of proton and neutron boson structure functions (BSF's) are deduced in terms of a microscopic approach of sdgIBM (namely, microscopic sdgIBM). For the nucleus 190Os, the value of BSF's is worked out. Due to the high similarity, the maximum F-spin truncation is made under the full-symmetry approximation. Thereafter, calculations of E2 and E4 transition charge densities (TCD's) are performed in the sdgIBM-1. It is found that the E2 and E4 TCD's can be reproduced quite satisfactorily in the uniform frame of microscopic sdgIBM-1.
Charge-density-wave phase slip in NbSe3
International Nuclear Information System (INIS)
We have studied the phase-slip process by which charge-density-wave (CDW) current is converted to single-particle current at electrical contacts. Transport and X-ray scattering measurements indicate that an excess voltage Vps dropped between current contacts induces a large static deformation of the CDW phase. The measured Vps- and temperature-dependent phase-slip rates are consistent with a model in which CDW dislocation loops are thermally nucleated in the presence of these deformations. The effects of impurities and contact perturbations on the phase slip process are also discussed. (orig.)
Instability and Charge Density Wave of Metallic Quantum Chains on a Silicon Surface
Energy Technology Data Exchange (ETDEWEB)
Yeom, H.W. [Research Center for Spectrochemistry, the University of Tokyo, Tokyo 113-0033 (Japan); Takeda, S.; Horikoshi, K.; Nagao, T.; Hasegawa, S. [Department of Physics, the University of Tokyo, Tokyo 113-0033 (Japan); Rotenberg, E.; Lee, C.M. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Matsuda, I.; Ohta, T. [Department of Chemistry, the University of Tokyo, Tokyo 113-0033 (Japan); Schaefer, J.; Kevan, S.D. [Department of Physics, University of Oregon, Eugene, Oregon 97403 (United States); Nagao, T.; Hasegawa, S. [CREST, the Japan Science and Technology Corporation, Saitama 332-0012 (Japan)
1999-06-01
Self-assembled indium linear chains on the Si(111) surface are found to exhibit instability of the metallic phase and 1D charge density wave (CDW). The room-temperature metallic phase of these chains undergoes a temperature-induced, reversible transition into a semiconducting phase. The 1D CDW along the chains is observed directly in real space by scanning tunneling microscopy at low temperature. The Fermi contours of the metallic phase measured by angle-resolved photoemission exhibit a perfect nesting predicting precisely the CDW periodicity. {copyright} {ital 1999} {ital The American Physical Society }
Instability and Charge Density Wave of Metallic Quantum Chains on a Silicon Surface
International Nuclear Information System (INIS)
Self-assembled indium linear chains on the Si(111) surface are found to exhibit instability of the metallic phase and 1D charge density wave (CDW). The room-temperature metallic phase of these chains undergoes a temperature-induced, reversible transition into a semiconducting phase. The 1D CDW along the chains is observed directly in real space by scanning tunneling microscopy at low temperature. The Fermi contours of the metallic phase measured by angle-resolved photoemission exhibit a perfect nesting predicting precisely the CDW periodicity. copyright 1999 The American Physical Society
Distance-of-flight spectra of charge density of ions generated with a low laser intensity
Czech Academy of Sciences Publication Activity Database
Krása, Josef; Velardi, L.; Lorusso, A.; Delle Side, D.; Nassisi, V.
Vol. 508. Bristol : IOP Publishing, 2014, "012004-1"-"012004-5". ISSN 1742-6588. [Plasma Physics by Laser and Applications 2013 Conference (PPLA2013). Lecce (IT), 02.10.2013-04.10.2013] R&D Projects: GA MŠk EE2.3.20.0279; GA ČR GAP205/12/0454 Grant ostatní: LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : laser ion sources * map of ion charge density * ion expansion * modeling Subject RIV: BL - Plasma and Gas Discharge Physics
Instanton Aharonov-Bohm effect and macroscopic quantum coherence in charge-density-wave systems
International Nuclear Information System (INIS)
It is predicted that in a charge-density-wave (CDW) ring-shaped conductor, placed in an external vector-potential field, there should appear a new Aharonov-Bohm contribution to the magnetic susceptibility and the electrical conductivity oscillating as a function of the flux with the period φ0=hc/2e. This contribution arises from instanton transitions between degenerate vacua of the CDW-condensate and is the solid-state realization of θ-vacuum in the quantum field theory. The period transforms into φ0/N in N strongly correlated parallel CDW chains. (author). 27 refs, 2 figs
Time-of-flight spectra for mapping of charge density of ionsproduced by laser
Czech Academy of Sciences Publication Activity Database
Krása, Josef; Parys, P.; Velardy, L.; Velyhan, Andriy; Ryc, L.; Delle Side, D.; Nassisi, V.
2014-01-01
Roč. 32, č. 1 (2014), s. 15-20. ISSN 0263-0346 R&D Projects: GA MŠk EE2.3.20.0279; GA ČR GAP205/12/0454 Grant ostatní: Laser Zdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : laser ion sources * map of ion charge density * ion expansion * modeling Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.295, year: 2014
Pressure dependence of the charge-density-wave gap in rare-earth tritellurides.
Sacchetti, A; Arcangeletti, E; Perucchi, A; Baldassarre, L; Postorino, P; Lupi, S; Ru, N; Fisher, I R; Degiorgi, L
2007-01-12
We investigate the pressure dependence of the optical properties of CeTe3, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the midinfrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe3. PMID:17358625
Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides
Energy Technology Data Exchange (ETDEWEB)
Sacchetti, A.; /Zurich, ETH; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.; Degiorgi, L.; /Zurich, ETH
2009-12-14
We investigate the pressure dependence of the optical properties of CeTe{sub 3}, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe{sub 3}.
Pressure dependence of the charge-density-wave gap in rare-earth tri-tellurides
A. Sacchetti; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; Ru, N.; Fisher, I. R.; Degiorgi, L.
2006-01-01
We investigate the pressure dependence of the optical properties of CeTe$_3$, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice com...
Optical properties of the Ce and La ditelluride charge density wave compounds
Energy Technology Data Exchange (ETDEWEB)
Lavagnini, M.; Sacchetti, A.; Degiorgi, L.; /Zurich, ETH; Shin, K.Y.; Fisher, I.R.; /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept.
2010-02-15
The La and Ce di-tellurides LaTe{sub 2} and CeTe{sub 2} are deep in the charge-density-wave (CDW) ground state even at 300 K. We have collected their electrodynamic response over a broad spectral range from the far infrared up to the ultraviolet. We establish the energy scale of the single particle excitation across the CDW gap. Moreover, we find that the CDW collective state gaps a very large portion of the Fermi surface. Similarly to the related rare earth tri-tellurides, we envisage that interactions and Umklapp processes play a role in the onset of the CDW broken symmetry ground state.
Nucleon to $\\Delta$ transition form factors and empirical transverse charge densities
Chakrabarti, Dipankar
2016-01-01
We investigate the nucleon to $\\Delta$ transition form factors in a soft-wall AdS/QCD model and a light-front quark-diquark model inspired by AdS/QCD. From the transition form factors we evaluate the transition charge densities which influences the nucleon to $\\Delta$ excitation. Here we consider both the unpolarized and the transversely polarized cases. The AdS/QCD predictions are compared with available experimental data and with the results of the global parameterization, MAID2007.
Calculation of the nuclear transition charge density in a microscopic adgIBM-1
International Nuclear Information System (INIS)
Formulae of proton and neutron boson structure functions (BFS's) are deduced in terms of a microscopic approach of sdgIBM (namely, microscopic sdgIBM). For the nucleus 190Os, the value of BSF's is worked out. Due to the high similarity, the maximum F-spin truncation is made under the full-symmetry approximation. Thereafter, calculations of E2 and E4 transition charge densities (TCD's) are performed in the sdgIBM-1. It is found that the E2 and E4 TCD's can be reproduced quite satisfactorily in the uniform frame of microscopic sdgIBM-1
Scanning tunneling microscopy of charge-density waves in NbSe3
International Nuclear Information System (INIS)
The charge-density wave (CDW) structure in NbSe3 due to the two independent CDW's has been imaged by scanning microscopy. As predicted by band-structure considerations, the CDW modulation is observed to be substantially localized on different chains for the separate CDW's. AT 77 K where only the high-temperature CDW exists, a relatively weak modulation with a single component along the b axis is observed. At 4.2 K the low-temperature CDW contributes a much stronger ∼4b0 x 2c0 superlattice modulation
Origin of the charge density wave in 1T-TiSe2
Zhu, Zhiyong
2012-06-27
All-electron ab initio calculations are used to study the microscopic origin of the charge density wave (CDW) in 1T-TiSe2. A purely electronic picture is ruled out as a possible scenario, indicating that the CDW transition in the present system is merely a structural phase transition. The CDW instability is the result of a symmetry lowering by electron correlations occurring with electron localization. Suppression of the CDW in pressurized and in Cu-intercalated 1T-TiSe2 is explained by a delocalization of the electrons, which weakens the correlations and counteracts the symmetry lowering.
Pseudorapidity distribution of charged hadrons in proton-proton collisions at √{ s} = 13 TeV
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; El Sawy, M.; Elgammal, S.; Ellithi Kamel, A.; Kamel, M.; Mahmoud, M. A.; Mohammed, Y.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Connor, P.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhardwaj, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Lukina, O.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Barducci, D.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Sinthuprasith, T.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2015-12-01
The pseudorapidity distribution of charged hadrons in pp collisions at √{ s} = 13 TeV is measured using a data sample obtained with the CMS detector, operated at zero magnetic field, at the CERN LHC. The yield of primary charged long-lived hadrons produced in inelastic pp collisions is determined in the central region of the CMS pixel detector (| η | < 2) using both hit pairs and reconstructed tracks. For central pseudorapidities (| η | < 0.5), the charged-hadron multiplicity density is dNch / dη | | η | < 0.5 = 5.49 ± 0.01(stat) ± 0.17(syst), a value obtained by combining the two methods. The result is compared to predictions from Monte Carlo event generators and to similar measurements made at lower collision energies.
Pseudorapidity distribution of charged hadrons in proton-proton collisions at $\\sqrt{s} =$ 13 TeV
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; El Sawy, Mai; Elgammal, Sherif; Ellithi Kamel, Ali; Kamel, Mohamed; Mahmoud, Mohammed; Mohammed, Yasser; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Mal, Prolay; Mandal, Koushik; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhardwaj, Rishika; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukherjee, Swagata; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Zanetti, Anna; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Khein, Lev; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Lukina, Olga; Myagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Duarte Campderros, Jordi; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Piparo, Danilo; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Yu, Shin-Shan; Kumar, Arun; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Demiroglu, Zuhal Seyma; Dozen, Candan; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Yetkin, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Barducci, Daniele; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Cutts, David; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Sinthuprasith, Tutanon; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova PANEVA, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; To, Wing; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Jung, Andreas Werner; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Di Giovanni, Gian Piero; Field, Richard D; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Sady, Alice; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Kotov, Khristian; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Malik, Sudhir; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Verzetti, Mauro; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Gomber, Bhawna; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel
2015-01-01
The pseudorapidity distribution of charged hadrons in pp collisions at $\\sqrt{s} =$ 13 TeV is measured using a data sample obtained with the CMS detector, operated at zero magnetic field, at the CERN LHC. The yield of primary charged long-lived hadrons produced in inelastic pp collisions is determined in the central region of the CMS pixel detector ($|\\eta|$ < 2) using both hit pairs and reconstructed tracks. For central pseudo-rapidities ($|\\eta|$ < 0.5), the charged-hadron multiplicity density ${\\rm d}N_{\\rm ch}/{\\rm d}\\eta | _{|\\eta| {\\rm\\ < 0.5}}$ = $5.49 \\pm 0.01 {\\rm\\ (stat)} \\pm 0.17 {\\rm\\ (syst)}$ , a value obtained by combining the two methods. The result is compared to predictions from Monte Carlo event generators and to similar measurements made at lower collision energie.
International Nuclear Information System (INIS)
The influence of the intermolecular interactions on the vibrational dynamics of 1-indanone has been checked by simulating the INS spectrum from molecular and DFT periodic calculations, showing that, even in the case of weak hydrogen bonds, those modes associated with lower energy transfer are affected in the solid state. The electron charge distribution of solid 1-indanone has also been studied from a DFT periodic calculation. In order to obtain some insight into the intermolecular interactions Bader's atoms in molecules theory has been used. After a careful analysis of the topological properties of the calculated electron density, bond paths, critical points and other related properties, most of the C-H...π and C-H...O weak hydrogen bonds predicted in the experimental X-ray structure are confirmed. In addition some new H?H interactions were found. Furthermore, a natural bond orbital analysis was performed describing each hydrogen bond as donor-acceptor interactions
International Nuclear Information System (INIS)
The evolution of the thermoluminescence glow curve of a natural Ca-Be rich aluminosilicate after annealing treatments at different temperatures has been studied in order to evaluate the changes in the trapped charge distribution. The glow curve consists of a single broad peak that continuously shifts toward higher temperatures when the sample is preheated up to increasing temperatures, thus indicating the presence of a continuous trap distribution. The glow curve fitting assuming different distribution functions shows how a gaussian distribution becomes a nearly exponential distribution owing to the thermal leakage of charge carriers from trapping centres. (authors)
International Nuclear Information System (INIS)
We are using time- and space-resolved visible spectroscopy to measure applied-B ion diode dynamics on the 20 TW Particle Beam Fusion Accelerator II. Doppler broadening of fast Li atoms, as viewed parallel to the anode, is used in a charge-exchange model to obtain the Li+ ion divergence within 100 μm of the anode surface. The characteristic Stark/Zeeman shifts in spectra of alkali neutrals or singly-ionized alkaline-earths are used to measure the strong electric (109 V/m) and magnetic (∼6 T) fields in the diode gap. Large Stark shifts within 0.5 mm of the anode indicate the LiF emits with a finite field threshold rather than with Child- Langmuir-type emission, and the small slope in the electric field indicates an unexpected build-up of electrons near the anode. In the diode gap, we aim to unfold fields to quantify the time-dependent ion and electron space-charge distributions that determine the ion beam properties. Observed electric field non-uniformities give local beam deflections that can be comparable to the total beam microdivergence. We are implementing active laser absorption and laser-induced fluorescence spectroscopy on low-density Na atoms injected into the diode gap prior to the power pulse. The small Doppler broadening in the Na spectra should allow simultaneous electric and magnetic field mapping with improved spatial resolution
Harris, Alexander R; Molino, Paul J; Kapsa, Robert M I; Clark, Graeme M; Paolini, Antonio G; Wallace, Gordon G
2015-01-01
Neural stimulation is used in the cochlear implant, bionic eye, and deep brain stimulation, which involves implantation of an array of electrodes into a patient's brain. The current passed through the electrodes is used to provide sensory queues or reduce symptoms associated with movement disorders and increasingly for psychological and pain therapies. Poor control of electrode properties can lead to suboptimal performance; however, there are currently no standard methods to assess them, including the electrode area and charge density. Here we demonstrate optical and electrochemical methods for measuring these electrode properties and show the charge density is dependent on electrode geometry. This technique highlights that materials can have widely different charge densities but also large variation in performance. Measurement of charge density from an electroactive area may result in new materials and electrode geometries that improve patient outcomes and reduce side effects. PMID:25495574
DEFF Research Database (Denmark)
Kordheili, Reza Ahmadi; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna;
2015-01-01
This paper proposes different smart charging algorithms for electric vehicles (EVs) to find out the maximum grid capability in dealing with these new devices. The main objective is to obtain maximum EV penetration in the distribution grid without reinforcing the grid in order to avoid any cost for...... distribution system operators (DSOs). Two smart charging algorithms are proposed in this study. The proposed algorithms are applied to a part of the Danish distribution grid as a case study. As a comparison, a dumb charging scenario, i.e. charging EVs without any specific order or algorithm, is also simulated....... Simulation results demonstrate the capability of the smart charging methods to increase the penetration of EVs up to three times, compared to the base case....
International Nuclear Information System (INIS)
The 4,4 dimethyl amino cyano biphenyl crystal (DMACB) is characterized by its nonlinear activity. The intra molecular charge transfer of this molecule results mainly from the electronic transmission of the electro-acceptor (cyano) and electro-donor (di-methyl-amino) groups. An accurate electron density distribution around the molecule has been calculated based on a high-resolution X-ray diffraction study. The data were collected at 123 K using graphite-monochromated Mo K α radiation to sin(β)/λ = 1.24 Å−1. The integrated intensities of 13796 reflections were measured and reduced to 6501 independent reflections with I ≥ 3σ(I). The crystal structure was refined using the experimental model of Hansen and Coppens (1978). The crystal structure has been validated and deposited at the Cambridge Crystallographic Data Centre with the deposition number CCDC 876507. In this article, we present the thermal motion and the structural analysis obtained from the least-square refinement based on F2 and the electron density distribution obtained from the multipolar model. (condensed matter: structural, mechanical, and thermal properties)
Naima, Boubegra; Abdelkader, Chouaih; Mokhtaria, Drissi; Fodil, Hamzaoui
2014-01-01
The 4,4 dimethyl amino cyano biphenyl crystal (DMACB) is characterized by its nonlinear activity. The intra molecular charge transfer of this molecule results mainly from the electronic transmission of the electro-acceptor (cyano) and electro-donor (di-methyl-amino) groups. An accurate electron density distribution around the molecule has been calculated based on a high-resolution X-ray diffraction study. The data were collected at 123 K using graphite-monochromated Mo K α radiation to sin(β)/λ = 1.24 Å-1. The integrated intensities of 13796 reflections were measured and reduced to 6501 independent reflections with I >= 3σ(I). The crystal structure was refined using the experimental model of Hansen and Coppens (1978). The crystal structure has been validated and deposited at the Cambridge Crystallographic Data Centre with the deposition number CCDC 876507. In this article, we present the thermal motion and the structural analysis obtained from the least-square refinement based on F2 and the electron density distribution obtained from the multipolar model.
Distribution Locational Marginal Pricing for Optimal Electric Vehicle Charging Management
DEFF Research Database (Denmark)
Li, Ruoyang; Wu, Qiuwei; Oren, Shmuel S.
2013-01-01
prices (DLMPs) by solving the social welfare optimization of the Electric distribution system which considers EV aggregators as Price takers in the local DSO market and demand price elasticity. Nonlinear optimization has been used to solve the social welfare optimization problem in order to obtain the......This paper presents an integrated distribution locational marginal pricing (DLMP) method designed to alleviate congestion induced by electric vehicle (EV) loads in future power systems. In the proposed approach, the distribution system operator (DSO) determines distribution locational marginal...
Space charge distribution measurement methods and particle loaded insulating materials
Energy Technology Data Exchange (ETDEWEB)
Hole, S [Laboratoire des Instruments et Systemes d' Ile de France, Universite Pierre et Marie Curie-Paris6, 10 rue Vauquelin, 75005 Paris (France); Sylvestre, A [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Lavallee, O Gallot [Laboratoire d' Etude Aerodynamiques, CNRS UMR6609, boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil (France); Guillermin, C [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France); Rain, P [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Rowe, S [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France)
2006-03-07
In this paper the authors discuss the effects of particles (fillers) mixed in a composite polymer on the space charge measurement techniques. The origin of particle-induced spurious signals is determined and silica filled epoxy resin is analysed using the laser-induced-pressure-pulse (LIPP) method, the pulsed-electro-acoustic (PEA) method and the laser-induced-thermal-pulse (LITP) method. A spurious signal identified as the consequence of a piezoelectric effect of some silica particles is visible for all the method. Moreover, space charges are clearly detected at the epoxy/silica interface after a 10 kV mm{sup -1} poling at room temperature for 2 h.
Equilibrium charge state distributions of 14N and 20Ne ions emerging from solids
International Nuclear Information System (INIS)
A new technique of backscattering has been developed for the measurement of equilibrium charge state distributions of ions emerging from a solid medium. By this method, equilibrium charge fractions for nitrogen in the energy range from 0.8 to 1.7 MeV and for neon from 1.5 to 4.4 MeV have been measured. The influence of inner shell vacancies produced by violent collisions on the charge state equilibrium is discussed. (Auth.)
International Nuclear Information System (INIS)
In astrophysics, 4He(12C,16O)γ reaction places an important role. At Kyushu University Tandem accelerator Laboratory (KUTL), the measurement of 4He(12C,16O)γ cross section is in progress in the energy range of astrophysical nuclear reaction. Since the charge state of product 16O ions after passing through the gas target is spread and only one charge state can be measured at terminal detector, it is necessary to know the charge state distribution of 16O ions passing through the He gas target precisely. Here, we report the charge state distribution of the 16O recoils both experimentally and theoretically. Experimentally, we measured the equilibrium charge state distribution of 16O ions in the windowless helium gas target with the beam energy of primary 16O ions at 7.2, 4.5, and 3.45 MeV at KUTL. The measured results showed a Gaussian distribution for the charge state fraction. Theoretically, we proposed a framework for the charge state distribution study. Charge state distribution was computed by solving a set of differential equations including a series of charge exchange cross sections. For the ionization cross section, plane-wave Born approximation was applied and modified by taking target atomic screening as a function of momentum transfer into account. For the capture cross section, continuum distorted wave approximation was applied and the influence of the gas target density was taken into account in the process of electron capture. Using above charge exchange cross sections, the charge state evolution was simulated. According to the equilibrium distribution, we compared the theoretical calculation to the experimental data. After taking into account the density effects in the charge exchange process, the theoretical charge state distributions shows a good agreement with the experimental data. Both experimental and theoretical results are useful to understand the charge fraction of recoil oxygen created via 4He(12C,16O)γ reaction, especially in the energy
Carnal, Fabrice; Stoll, Serge
2011-01-01
Complex formation between a weak flexible polyelectrolyte chain and one positively charged nanoparticle in presence of explicit counterions and salt particles is investigated using Monte Carlo simulations. The influence of parameters such as the nanoparticle surface charge density, salt valency, and solution property such as the pH on the chain protonation/deprotonation process and monomer adsorption at the nanoparticle surface are systematically investigated. It is shown that the nanoparticl...
Topology density correlator on dynamical domain-wall ensembles with nearly frozen topological charge
Fukaya, H; Cossu, G; Hashimoto, S; Kaneko, T; Noaki, J
2014-01-01
Global topological charge decorrelates very slowly or even freezes in fine lattice simulations. On the other hand, its local fluctuations are expected to survive and lead to the correct physical results as long as the volume is large enough. We investigate this issue on recently generated configurations including dynamical domain-wall fermions at lattice spacings a = 0.08 fm and finer. We utilize the Yang-Mills gradient flow to define the topological charge density operator and calculate its long-distance correlation, through which we propose a new method for extracting the topological susceptibility in a sub-volume. This method takes care of the finite volume correction, which reduces the bias caused by the global topological charge. Our lattice data clearly show a shorter auto-correlation time than that of the naive definition using the whole lattice, and are less sensitive to the global topological history. Numerical results show a clear sea-quark mass dependence, which agrees well with the prediction of c...
Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces
Van Regemorter, Tanguy
2012-09-15
In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.
Kazansky, P G; Smith, A. R.; Russell, P. St. J.; Yang, G.M.; Sessler, G.M.
1995-01-01
For the first time charge distributions in thermally poled silica glass are mapped by using laser induced pressure pulse technique. The experimental results may be explained through postulating the formation of both real space charge layers and inside the the depletion region
Institute of Scientific and Technical Information of China (English)
Yu-ling Chu; Zhong Yang; Zhe-feng Pan; Jing Liu; Yue-yi Han; Yong Ding; Peng Song
2012-01-01
Density functional theory and time-dependent density-functional theory have been used to investigate the photophysical properties and relaxation dynamics of dimethylaminobenzophenone (DMABP) and its hydrogen-bonded DMABP-MeOH dimer.It is found that,in nonpolar aprotic solvent,the transitions from S0 to S1 and S2 states of DMABP have both n→π* and π→π* characters,with the locally excited feature mainly located on the C=O group and the partial CT one characterized by electron transfer mainly from the dimethylaminophenyl group to the C=O group.But when the intermolecular hydrogen bond C=O…H-O is formed,the highly polar intramolecular charge transfer character switches over to the first excited state of DMABP-MeOH dimer and the energy difference between the two lowlying electronically excited states increases.To gain insight into the relaxation dynamics of DMABP and DMABP-MeOH dimer in the excited state,the potential energy curves for conformational relaxation are calculated.The formation of twisted intramolecular charge transfer state via diffusive twisting motion of the dimethylamino/dimethylaminophenyl groups is found to be the major relaxation process.In addition,the decay of the S1 state of DMABP-MeOH dimer to the ground state,through nonradiative intermolecular hydrogen bond stretching vibrations,is facilitated by the formation of the hydrogen bond between DMABP and alcohols.
International Nuclear Information System (INIS)
In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.
Conformally flat spherically symmetric charged perfect fluid distribution in general relativity
International Nuclear Information System (INIS)
A solution of Einstein's field equations representing spherically symmetric charged perfect fluid distribution, which are conformally flat, is obtained. Various physical properties of the model are also discussed. (author)
International Nuclear Information System (INIS)
The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both experimental techniques and modeling for quantifying this role. Our focus here is on further exploration of a tandem differential mobility analyzer (TDMA) technique to simultaneously measure both the size and charge (positive, negative and neutral) dependent aerosol distributions. We have generated graphite, gold, silver, and palladium nanoparticles (aerosol) using a spark generator. We measure the electrical mobility-size distributions for these aerosols using a TDMA, and from these data we deduce the full charge-size distributions. We observe asymmetry in the particle size distributions for negative and positive charges. This asymmetry could have a bearing on the dynamics of charged aerosols, indicating that the assumption of symmetry for size distributions of negatively and positively charged particles in source term simulations may not be always appropriate. Also, the experimental technique should find applications in measurements of aerosol rate processes that are affected by both particle charge and size (e.g. coagulation, deposition, resuspension), and hence in modeling and simulation of the nuclear source term.
Probabilistic Method to Assess the Impact of Charging of Electric Vehicles on Distribution Grids
David Martínez-Vicente; Andreas Sumper; Roberto Villafafila-Robles; Eduardo Valsera-Naranjo
2012-01-01
This paper describes a grid impact analysis of charging electric vehicles (EV) using charging curves with detailed battery modelling. A probabilistic method using Monte Carlo was applied to a typical Spanish distribution grid, also using mobility patterns of Barcelona. To carry out this analysis, firstly, an IEEE test system was adapted to a typical distribution grid configuration; secondly, the EV and its battery types were modeled taking into account the current vehicle market and the batte...
Measurements of charged-particle inclusive distributions in hadronic decays of the Z boson
International Nuclear Information System (INIS)
We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were charged-particle multiplicity, scaled momentum, and momenta transverse to the sphericity axes. The distributions have been corrected for detector effects and are compared with data from e+e- annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations
Energy Technology Data Exchange (ETDEWEB)
Freyer, Benjamin
2013-05-02
This thesis concerns measurements of transient charge density maps by femtosecond X-ray diffraction. Different X-ray diffraction methods will be considered, particularly with regard to their application in femtosecond X-ray diffraction. The rotation method is commonly used in stationary X-ray diffraction. In the work in hand an X-ray diffraction experiment is demonstrated, which combines the method with ultrafast X-ray pulses. This experiment is the first implementation which makes use of the rotation method to map transient intensities of a multitude of Bragg reflections. As a prototype material Bismuth is used, which previously was studied frequently by femtosecond X-ray diffraction by measuring Bragg reflections successively. The experimental results of the present work are compared with the literature data. In the second part a powder-diffraction experiment will be presented, which is used to study the dynamics of the electron-density distribution on ultrafast time scales. The experiment investigates a transition metal complex after photoexcitation of the metal to ligand charge transfer state. Besides expected results, i. e. the change of the bond length between the metal and the ligand and the transfer of electronic charge from the metal to the ligand, a strong contribution of the anion to the charge transfer was found. Furthermore, the charge transfer has predominantly a cooperative character. That is, the excitation of a single complex causes an alteration of the charge density of several neighboring units. The results show that more than 30 transition-metal complexes and 60 anions contribute to the charge transfer. This collective response is a consequence of the strong coulomb interactions of the densely packed ions.
Goiffon, Vincent; Virmontois, Cédric; Magnan, Pierre; Girard, Sylvain; Paillet, Philippe
2010-01-01
The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0,18 um CMOS image sensor process and exposed to 10 keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhanceme...
Hammer, Maria S; Rauh, Daniel; Deibel, Carsten; Dyakonov, Vladimir
2008-01-01
Charge transport properties of thin films of sol--gel processed undoped and Al-doped zinc oxide nanoparticles with variable doping level between 0.8 at% and 10 at% were investigated. The X-ray diffraction studies revealed a decrease of the average crystallite sizes in highly doped samples. We provide estimates of the conductivity and the resulting charge carrier densities with respect to the doping level. The increase of charge carrier density due to extrinsic doping were compared to the accu...
Production of Transverse Controllable Laser Density Distribution in Fermilab/NICADD Photoinjector
Li, Jianliang; Tikhoplav, Rodion
2005-01-01
The Fermilab/NICADD photoinjector laboratory consist of a photoemission electron source based on an L band rf-gun. The CsTe photocathode is illuminated by an ultrashort UV laser. The transport line from the laser to the photocathode was recently upgraded to allow imaging of an object plane located ~20 m from the photocathode. This upgrade allows the generation of transverse laser distributions with controlled nonuniformity, yielding the production of an electron beam with various transverse densities patterns. Measuring the evolution of the artificial pattern on the electron bunch provides information that can be used to benchmark numerical simulations and investigate the impact of space charge. Preliminary data on these investigations are presented in the present paper.
Energy Technology Data Exchange (ETDEWEB)
Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng, E-mail: dssu@imr.ac.cn [Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016 (China)
2015-12-07
The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.
International Nuclear Information System (INIS)
The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials
Interplay of charge density wave and multiband superconductivity in 2H-PdxTaSe2.
Bhoi, D; Khim, S; Nam, W; Lee, B S; Kim, Chanhee; Jeon, B-G; Min, B H; Park, S; Kim, Kee Hoon
2016-01-01
2H-TaSe2 has been one of unique transition metal dichalcogenides exhibiting several phase transitions due to a delicate balance among competing electronic ground states. An unusual metallic state at high-T is sequentially followed by an incommensurate charge density wave (ICDW) state at ≈122 K and a commensurate charge density wave (CCDW) state at ≈90 K, and superconductivity at TC ~ 0.14 K. Upon systematic intercalation of Pd ions into TaSe2, we find that CCDW order is destabilized more rapidly than ICDW to indicate a hidden quantum phase transition point at x ~ 0.09-0.10. Moreover, TC shows a dramatic enhancement up to 3.3 K at x = 0.08, ~24 times of TC in 2H-TaSe2, in proportional to the density of states N(EF). Investigations of upper critical fields Hc2 in single crystals reveal evidences of multiband superconductivity as temperature-dependent anisotropy factor γH = , quasi-linear increase of , and an upward, positive-curvature in near TC. Furthermore, analysis of temperature-dependent electronic specific heat corroborates the presence of multiple superconducting gaps. Based on above findings and electronic phase diagram vs x, we propose that the increase of N(EF) and effective electron-phonon coupling in the vicinity of CDW quantum phase transition should be a key to the large enhancement of TC in PdxTaSe2. PMID:27045426
International Nuclear Information System (INIS)
The correlation between molecular structure and charge distribution was investigated in organometallic compounds of the lanthanoid (4f-) and actinoid (5f-) elements. These compounds are suitable models for two reasons: a) they are soluble in nonpolar solvents and b) in both series, there is a possibility for continuous variation of the ionic size of the central ion. Detailed investigation of several compound-classes with different molecular symmetry, has given important information concerning the influence of the molecular structure on the macroscopic charge distribution in the molecule. The anisotropy of the charge distribution in the molecule increases with decreasing of the molecular symmetry. Contrary to predictions previously discussed in the literature, it has been shown, that the molecular symmetry primarily does not depend on sterical interactions, but on the Coulomb-interaction between the central ion and the ligand. Using different models which take into account the molecular geometry and the charge distribution, it was possible to calculate the partial electrical moments between ligand and central ion for several coordinating atoms of the used ligands. The contribution of the f-electrons to the total charge distribution around the central ion can be quantitatively calculated from the molecular polarizability and the total charge distribution of the investigated molecule. (orig./RB)
Determination of the charge state distribution of a highly ionized coronal Au plasma
International Nuclear Information System (INIS)
We present the first definitive measurement of the charge state distribution of a highly ionized gold plasma in coronal equilibrium. The experiment utilized the Livermore electron beam ion trap EBIT-II in a novel configuration to create a plasma with a Maxwellian temperature of 2.5 keV. The charge balance in the plasma was inferred from spectral line emission measurements which accounted for charge exchange effects. The measured average ionization state was 46.8±0.75. This differs from the predictions of two modeling codes by up to four charge states
An axisymmetric charged dust distribution with NUT rotation in general relativity
Vargas-Rodriguez, H.; Gonzalez-Silva, R. A.; Lopez Benitez, L. I.
2010-07-01
An exact solution of the Einstein-Maxwell's field equations is presented. This solution describes an axisymmetric charged dust distribution, with NUT rotation, in the presence of an electromagnetic field of the pure magnetic type. In the comoving reference frame, there is magnetic field only, the dust's electric charges do not interact with themselves, this is due to the vanishing of the Lorentz force. A naked singularity with magnetic charge is present. The solution is of the Petrov type D and possesses four Killing vectors. This is a generalization of the Lukács solution to the case when dust is charged.
DEFF Research Database (Denmark)
Marra, Francesco; Træholt, Chresten; Larsen, Esben
2012-01-01
A great interest is recently paid to Electric Vehicles (EV) and their integration into electricity grids. EV can potentially play an important role in power system operation, however, the EV charging infrastructures have been only partly defined, considering them as limited to individual charging...... points, randomly distributed into the networks. This paper addresses the planning of public central charging stations (CCS) that can be integrated in low-voltage (LV) networks for EV parallel charging. The concepts of AC and DC architectures of CCS are proposed and a comparison is given on their...
Energy Technology Data Exchange (ETDEWEB)
Dougar-Jabon, V.D. [Escuela de Fisica, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Umnov, A.M. [Russian Friendship University, 117198 Moscow (Russia); Kutner, V.B. [Joint Institute for Nuclear Research, Dubna (Russia)
1996-03-01
It is common knowledge that the electrostatic pit in a core plasma of electron cyclotron resonance sources exerts strict control over generation of ions in high charge states. This work is aimed at finding a dependence of the lifetime of ions on their charge states in the core region and to elaborate a numerical model of ion charge dispersion not only for the core plasmas but for extracted beams as well. The calculated data are in good agreement with the experimental results on charge distributions and magnitudes for currents of beams extracted from the 14 GHz DECRIS source. {copyright} {ital 1996 American Institute of Physics.}
The mapping of electronic energy distributions using experimental electron density.
Tsirelson, Vladimir G
2002-08-01
It is demonstrated that the approximate kinetic energy density calculated using the second-order gradient expansion with parameters of the multipole model fitted to experimental structure factors reproduces the main features of this quantity in a molecular or crystal position space. The use of the local virial theorem provides an appropriate derivation of approximate potential energy density and electronic energy density from the experimental (model) electron density and its derivatives. Consideration of these functions is not restricted by the critical points in the electron density and provides a comprehensive characterization of bonding in molecules and crystals. PMID:12149553
International Nuclear Information System (INIS)
The effects of a non-Maxwellian electron distribution on the charge-state populations in a plasma with the distribution characterized by the function f(v)=Fm exp[-(v/vm)m] with 2≤m≤5 are investigated. In the underdense region of a laser produced plasma, the parameter m would depend on the electron temperature, electron density, and the average ionization state of the plasma in addition to the optical laser intensity and wavelength. The ion populations are obtained by solving the rate equations in which the coefficients are evaluated by integrating the cross sections over the non-Maxwellian electron distributions. The scaling of m with column density and optical laser intensity in laser exploding foils is obtained. The effects of a non-Maxwellian electron distribution on the charge-state populations in both selenium and molybdenum foils, similar to those used to model recent x-ray laser experiments, are calculated. The effects on the dominant populations are found to be small, less than a dozen of percents
Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides
Sokalski, W. A.; Keller, D. A.; Ornstein, R. L.; Rein, R.
1993-01-01
The defects in atomic monopole models of molecular charge distribution have been analyzed for several model-blocked peptides and compared with accurate quantum chemical values. The results indicate that the angular characteristics of the molecular electrostatic potential around functional groups capable of forming hydrogen bonds can be considerably distorted within various models relying upon isotropic atomic charges only. It is shown that these defects can be corrected by augmenting the atomic point charge models by cumulative atomic multipole moments (CAMMs). Alternatively, sets of off-center atomic point charges could be automatically derived from respective multipoles, providing approximately equivalent corrections. For the first time, correlated atomic multipoles have been calculated for N-acetyl, N'-methylamide-blocked derivatives of glycine, alanine, cysteine, threonine, leucine, lysine, and serine using the MP2 method. The role of the correlation effects in the peptide molecular charge distribution are discussed.
International Nuclear Information System (INIS)
Numerical values of charged-particle thermonuclear reaction rates for nuclei in the A=14 to 40 region are tabulated. The results are obtained using a method, based on Monte Carlo techniques, that has been described in the preceding paper of this issue (Paper I). We present a low rate, median rate and high rate which correspond to the 0.16, 0.50 and 0.84 quantiles, respectively, of the cumulative reaction rate distribution. The meaning of these quantities is in general different from the commonly reported, but statistically meaningless expressions, 'lower limit', 'nominal value' and 'upper limit' of the total reaction rate. In addition, we approximate the Monte Carlo probability density function of the total reaction rate by a lognormal distribution and tabulate the lognormal parameters μ and σ at each temperature. We also provide a quantitative measure (Anderson-Darling test statistic) for the reliability of the lognormal approximation. The user can implement the approximate lognormal reaction rate probability density functions directly in a stellar model code for studies of stellar energy generation and nucleosynthesis. For each reaction, the Monte Carlo reaction rate probability density functions, together with their lognormal approximations, are displayed graphically for selected temperatures in order to provide a visual impression. Our new reaction rates are appropriate for bare nuclei in the laboratory. The nuclear physics input used to derive our reaction rates is presented in the subsequent paper of this issue (Paper III). In the fourth paper of this issue (Paper IV) we compare our new reaction rates to previous results.
Sun, Guangyu; Kurti, Jeno; Kertesz, Miklos; Baughman, Ray H.
2002-10-01
Charge-induced dimensional changes allow conducting polymers and single walled carbon nanotubes to function as electromechanical actuators. The unit cell of the prototypical conducting polymer, trans-polyacetylene, was calculated as a function of charge injection using density functional theory in combination with ultrasoft pseudopotentials using the solid-state Vienna ab initio simulation package. Test calculations on the charged pyridinium molecular ion give results in good agreement with the experimental geometry. Strain versus charge relationships are predicted from dimensional changes calculated using a uniform background charge ("jellium") for representing the counterions, which we show provides results consistent with experiment for doped polyacetylenes. These jellium calculations are consistent with further presented calculations that include specific counterions, showing that hybridization between the guest dopant ions and the host polyacetylene chains is unimportant. The lack of guest-host orbital hybridization allows a qualitative rigid band interpretation of the amount of charge transfer for both acceptor and donor doping. For polyacetylene, asymmetry of strain along the chain with respect to the sign of the charge is predicted: negative charge elongates and positive charge shortens the polymer. For charge less than 0.05e per carbon, an approximately linear dependence is obtained for the dependence of chain-direction strain on the amount of injected charge.
Directory of Open Access Journals (Sweden)
Kaihan Fakhar
Full Text Available OBJECTIVE: We aimed in this investigation to study deep brain stimulation (DBS battery drain with special attention directed toward patient symptoms prior to and following battery replacement. BACKGROUND: Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. METHODS: A cohort of 320 patients undergoing DBS battery replacement from 2002-2012 were included in an IRB approved study. Statistical analysis was performed using SPSS 20.0 (IBM, Armonk, NY. RESULTS: The mean charge density for treatment of Parkinson's disease was 7.2 µC/cm(2/phase (SD = 3.82, for dystonia was 17.5 µC/cm(2/phase (SD = 8.53, for essential tremor was 8.3 µC/cm(2/phase (SD = 4.85, and for OCD was 18.0 µC/cm(2/phase (SD = 4.35. There was a significant relationship between charge density and battery life (r = -.59, p<.001, as well as total power and battery life (r = -.64, p<.001. The UF estimator (r = .67, p<.001 and the Medtronic helpline (r = .74, p<.001 predictions of battery life were significantly positively associated with actual battery life. Battery status indicators on Soletra and Kinetra were poor predictors of battery life. In 38 cases, the symptoms improved following a battery change, suggesting that the neurostimulator was likely responsible for symptom worsening. For these cases, both the UF estimator and the Medtronic helpline were significantly correlated with battery life (r = .65 and r = .70, respectively, both p<.001. CONCLUSIONS: Battery estimations, charge density, total power and clinical symptoms were important factors. The observation of clinical worsening that was rescued following neurostimulator replacement reinforces the notion that changes in clinical symptoms can be associated with battery drain.
Two rods confined by positive plates: effective forces and charge distribution profiles
International Nuclear Information System (INIS)
The effect of confinement on the interaction force between two negatively charged rods is studied through Monte Carlo simulations. Confinement is produced by two parallel, charged or uncharged plates. The system is immersed in a 0.1 M 1-1 restricted primitive model electrolyte. The effect on the rod-rod effective force by the plate charge distribution is analysed. A strong modification of the rod-rod effective force due to confinement is found, as compared to the bulk case. In particular, rod-rod attraction was found for plates having a charge equal to that of fully charged bilipid bilayers. In spite of the simplicity of the model, these results agree with some DNA-phospholipid experimental observations. On the other hand, for a model having the plate charges fixed on a grid, very long range, oscillatory rod-rod effective forces were obtained
On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.
Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo
2015-12-30
A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices. PMID:26618751
Charge state distribution studies of the metal vapor vacuum arc ion source
International Nuclear Information System (INIS)
We have studied the charge state distribution of the ion beam produced by the MEVVA (metal vapor vacuum arc) high current metal ion source. Beams produced from a wide range of cathode materials have been examined and the charge state distributions have been measured as a function of many operational parameters. In this paper we review the charge state data we have accumulated, with particular emphasis on the time history of the distribution throughout the arc current pulse duration. We find that in general the spectra remain quite constant throughout most of the beam pulse, so long as the arc current is constant. There is an interesting early-time transient behavior when the arc is first initiated and the arc current is still rising, during which time the ion charge states produced are observed to be significantly higher than during the steady current region that follows. 12 refs., 5 figs
Spatial distribution of ion charges in fast, partially stripped clusters traversing solid targets
Miskovic, Z L; Goodman, F O; Wang, Y N
2002-01-01
Joint statistical description of the distribution of ion charge states and the spatial structure of a cluster, made of heavy ions, allows a self-consistent generalization of the Brandt-Kitagawa variational theory, including dynamically-screened inter-ionic interactions, in a form of a non-linear integral equation. Solution of such an equation for fast clusters passing very thin foils shows the familiar reduction of charge per ion, compared to the charge on an isotactic ion, which is rather non-homogeneously distributed throughout the volume of the cluster. As a consequence, the distribution of individual ion charges in the cluster exhibits large dispersion around an average value, which drops with the increasing cluster size.
Spatial distribution of ion charges in fast, partially stripped clusters traversing solid targets
International Nuclear Information System (INIS)
Joint statistical description of the distribution of ion charge states and the spatial structure of a cluster, made of heavy ions, allows a self-consistent generalization of the Brandt-Kitagawa variational theory, including dynamically-screened inter-ionic interactions, in a form of a non-linear integral equation. Solution of such an equation for fast clusters passing very thin foils shows the familiar reduction of charge per ion, compared to the charge on an isotactic ion, which is rather non-homogeneously distributed throughout the volume of the cluster. As a consequence, the distribution of individual ion charges in the cluster exhibits large dispersion around an average value, which drops with the increasing cluster size
Wilcox, Bethany R.; Caballero, Marcos D.; Pepper, Rachel E.; Pollock, Steven J.
2013-01-01
Utilizing the integral expression of Coulomb's Law to determine the electric potential from a continuous charge distribution is a canonical exercise in Electricity and Magnetism (E&M). In this study, we use both think-aloud interviews and responses to traditional exam questions to investigate student difficulties with this topic at the upper-division level. Leveraging a theoretical framework for the use of mathematics in physics, we discuss how students activate, construct, execute and reflect on the integral form of Coulomb's Law when solving problems with continuous charge distributions. We present evidence that junior-level E&M students have difficulty mapping physical systems onto the mathematical expression for the Coulomb potential. Common challenges include difficulty expressing the difference vector in appropriate coordinates as well as determining expressions for the differential charge element and limits of integration for a specific charge distribution. We discuss possible implications of these findings for future research directions and instructional strategies.
Wilcox, Bethany R; Pepper, Rachel E; Pollock, Steven J
2012-01-01
Utilizing the integral expression of Coulomb's Law to determine the electric potential from a continuous charge distribution is a canonical exercise in Electricity and Magnetism (E&M). In this study, we use both think-aloud interviews and responses to traditional exam questions to investigate student difficulties with this topic at the upper-division level. Leveraging a theoretical framework for the use of mathematics in physics, we discuss how students activate, construct, execute and reflect on the integral form of Coulomb's Law when solving problems with continuous charge distributions. We present evidence that junior-level E&M students have difficulty mapping physical systems onto the mathematical expression for the Coulomb potential. Common challenges include difficulty expressing the difference vector in appropriate coordinates as well as determining expressions for the differential charge element and limits of integration for a specific charge distribution. We discuss possible implications of t...
Electronic structure, charge distribution and X-ray emission spectra of V3Si
International Nuclear Information System (INIS)
Cluster calculations of the electronic structure and charge distribution in V3Si have been performed using two different molecular orbital methods: a semiempirical LCAO and the MS Xα model. The results are compared with X-ray emission spectra and band structure calculations. An analysis of the calculated electronic distribution reveals a charge transfer from Si-atoms to V-atoms, the additional charge on a V-atom being 0.6e (LCAO) and 0.4e (MS Xα method). The results are in good agreement with experiment, which indicates that the cluster approach is adequate for the description of charge distributions and spectra characteristics of the A-15 compounds. (author)
DEFF Research Database (Denmark)
Liu, Zhaoxi; Wu, Qiuwei; Oren, Shmuel S.;
2016-01-01
This paper presents a distribution locational marginal pricing (DLMP) method through chance constrained mixed-integer programming designed to alleviate the possible congestion in the future distribution network with high penetration of electric vehicles (EVs). In order to represent the stochastic...... characteristics of the EV driving patterns, a chance constrained optimization of the EV charging is proposed and formulated through mixed-integer programming (MIP). With the chance constraints in the optimization formulations, it guarantees that the failure probability of the EV charging plan fulfilling...... constrained MIP can successfully alleviate the congestion in the distribution network due to the EV charging while keeping the failure probability of EV charging not meeting driving needs below the predefined confidence....
Ayuel, K.; de Châtel, P. F.; Amani, Salah
2002-04-01
Charge, current and spin densities are calculated for a two-electron system, maintaining the explicit form of the wave functions, in terms of Slater determinants. The two-electron Russell-Saunders spin-orbit coupled eigenstates | L, S, J, MJ> are expressed as four-component spinors, and the operators of the above densities as 4×4 matrices. The contributions of various one-electron states to these densities are identified.
A Generalization of Abel Inversion to non axisymmetric density distribution
Tomassini, P
2001-01-01
Abel Inversion is currently used in laser-plasma studies in order to estimate the electronic density $n_e$ from the phase-shift map $\\delta \\phi$ obtained via interferometry. The main limitation of the Abel method is due to the assumption of axial symmetry of the electronic density, which is often hardly fulfilled. In this paper we present an improvement to the Abel inversion technique in which the axial symmetry condition is relaxed by means of a truncated Legendre Polinomial expansion in the azimutal angle. With the help of simulated interferograms, we will show that the generalized Abel inversion generates accurate densities maps when applied to non axisymmetric density sources.
Impurity-Mediated Early Condensation of a Charge Density Wave in an Atomic Wire Array.
Yeom, Han Woong; Oh, Deok Mahn; Wippermann, Stefan; Schmidt, Wolf Gero
2016-01-26
We directly show how impurity atoms induce the condensation of a representative electronic phase, the charge density wave (CDW) phase, in atomic scale with scanning tunneling microscopy. Oxygen impurity atoms on the self-assembled metallic atomic wire array on a silicon crystal condense the CDW locally above the pristine transition temperature. More interestingly, the CDW along the wires is induced not by a single atomic impurity but by the cooperation of multiple impurities. First-principles calculations disclose the mechanism of the cooperation as the coherent superposition of the local lattice strain induced by impurities, stressing the coupled electronic and lattice degrees of freedom for the CDW. This opens the possibility of the strain engineering over electronic phases of atomic-scale systems. PMID:26634634
International Nuclear Information System (INIS)
After having recalled that elastic electron scattering allows the determination of nucleus charge density with a high precision, and that a sufficiently high momentum transfer is required for the precision of analysis methods, this research thesis presents the results obtained by an experiment performed on 208Pb with a high momentum transfer. This nucleus meets at best the approximations required by theoretical calculations. In a first part, the author discusses the use of this nucleus, discusses the available data and outlines the lacking ones. He presents the experimental installation and aspects: the linear accelerator, the scattering angle, the solid angle, the number of incident neutrons, the target thermal toughness, and the number of elastically scattered neutrons. He reports the reduction of data: experiment-based corrections, radiative corrections, spectrum deconvolution methods, data normalisation, diaphragm aperture corrections and multiple scattering corrections. The next part proposes an analysis of data, and the last one compares the obtained results with theoretical ones
Subgap Collective Tunneling and Its Staircase Structure in Charge Density Waves
International Nuclear Information System (INIS)
Tunneling spectra of chain materials NbSe3 and TaS3 were studied in nanoscale mesa devices. Current-voltage I-V characteristics related to all charge density waves (CDWs) reveal universal spectra within the normally forbidden region of low V, below the electronic CDW gap 2Δ. The tunneling always demonstrates a threshold Vt≅0.2Δ, followed, for both CDWs in NbSe3, by a staircase fine structure. T dependencies of Vt(T) and Δ(T) scale together for each CDW, while the low T values Vt(0) correlate with the CDWs' transition temperatures Tp. Fine structures of CDWs perfectly coincide when scaled along V/Δ. The results evidence the sequential entering of CDW vortices (dislocations) in the junction area with the tunneling current concentrated in their cores. The subgap tunneling proceeds via the phase channel: coherent phase slips at neighboring chains
Non-thermal separation of electronic and structural orders in a persisting charge density wave
Porer, M; Ménard, J -M; Dachraoui, H; Mouchliadis, L; Perakis, I E; Heinzmann, U; Demsar, J; Rossnagel, K; Huber, R
2016-01-01
The simultaneous ordering of different degrees of freedom in complex materials undergoing spontaneous symmetry-breaking transitions often involves intricate couplings that have remained elusive in phenomena as wide ranging as stripe formation, unconventional superconductivity or colossal magnetoresistance. Ultrafast optical, x-ray and electron pulses can elucidate the microscopic interplay between these orders by probing the electronic and lattice dynamics separately, but a simultaneous direct observation of multiple orders on the femtosecond scale has been challenging. Here we show that ultrabroadband terahertz pulses can simultaneously trace the ultrafast evolution of coexisting lattice and electronic orders. For the example of a charge-density-wave (CDW) in 1T-TiSe2, we demonstrate that two components of the CDW order parameter - excitonic correlations and a periodic lattice distortion (PLD) - respond very differently to 12-fs optical excitation. Even when the excitonic order of the CDW is quenched, the PL...
Possibility of charge density wave transition in a SrPt2Sb2 superconductor
Ibuka, Soshi; Imai, Motoharu
2016-04-01
The first-order transition at T 0 = 270 K for the platinum-based SrPt2Sb2 superconductor was investigated using x-ray diffraction and magnetic susceptibility measurements. When polycrystalline SrPt2Sb2 was cooled down through T 0, the structure was transformed from monoclinic to a modulated orthorhombic structure, and no magnetic order was formed, which illustrates the possibility of a charge density wave (CDW) transition at T 0. SrPt2Sb2 can thus be a new example to examine the interplay of CDW and superconductivity in addition to SrPt2As2, BaPt2As2, and LaPt2Si2. It is unique that the average structure of the low-temperature phase has higher symmetry than that of the high-temperature phase.
Possibility of charge density wave transition in a SrPt2Sb2 superconductor.
Ibuka, Soshi; Imai, Motoharu
2016-04-27
The first-order transition at T 0 = 270 K for the platinum-based SrPt2Sb2 superconductor was investigated using x-ray diffraction and magnetic susceptibility measurements. When polycrystalline SrPt2Sb2 was cooled down through T 0, the structure was transformed from monoclinic to a modulated orthorhombic structure, and no magnetic order was formed, which illustrates the possibility of a charge density wave (CDW) transition at T 0. SrPt2Sb2 can thus be a new example to examine the interplay of CDW and superconductivity in addition to SrPt2As2, BaPt2As2, and LaPt2Si2. It is unique that the average structure of the low-temperature phase has higher symmetry than that of the high-temperature phase. PMID:27023674
$\\eta^\\prime$ meson mass from topological charge density correlator in QCD
Fukaya, H; Cossu, G; Hashimoto, S; Kaneko, T; Noaki, J
2015-01-01
The flavor-singlet component of the eta prime meson is related to the topological structure of the SU(3) gauge field through the chiral anomaly. We perform a 2+1-flavor lattice QCD calculation and demonstrate that the two-point function of a gluonically defined topological charge density after a short Yang-Mills gradient flow contains the propagation of the eta prime meson, by showing that its mass in the chiral and continuum limit is consistent with the experimental value. The gluonic correlator does not suffer from the contamination of the pion contribution, and the clean signal is obtained at significantly lower numerical cost compared to the conventional method with the quark bilinear operators.
Atomic displacements in the incommensurable charge-density wave in alpha-uranium
International Nuclear Information System (INIS)
A detailed examination is presented of the incommensurable charge-density wave (ICDW) in α-uranium below 43K. The q vectors have been measured as a function of temperature and the structure factors of a large number of first-order satellites with neutron diffraction. From the structure factors the atomic displacements that occur at the onset of the CDW have been determined in all three independent crystallographic directions. Uniaxial stress up to 3.5kbar has been applied along 2 directions but does not change the satellite intensities, thus leaving ambiguity whether the structure is single or multi q. The relationship between the present results and the observations of Smith et al is discussed. (author)
Nonlinear response, and homoclinic chaos of driven charge density in plasma
International Nuclear Information System (INIS)
A strongly nonlinear and driven charge density in plasma is developed using a formalism of two-fluid model. For the standard reduced model 'neglecting electron inertia effects' and assuming quasineutrality to hold, results are presented which show that self-excited ion-sound instability in a plasma behaves in a similar manner to a modified Van der Pol oscillator with Φ6 potential, both in the single mode regime (primary resonance) and, in a multi-mode regime (sub-superharmonic resonance). Also, investigation of the chaotic behavior of the model studied using a perturbation method based from the Melnikov theorem is achieved. Since the case of the three-well potential is considered, we obtain the conditions for the existence of homoclinic and heteroclinic chaos, which are complemented by the numerical simulations from which we illustrate the Melnikov threshold function and the erosion of the basin of attraction when a specific parameter varies. (author)
International Nuclear Information System (INIS)
The Scanning tunneling microscope (STM) has been used to study the effects of Fe doping on the charge-density wave (CDW) structure in NbSe3 and 1T-TaS2. In NbSe3 small amounts of Fe reduce both CDW gaps by 25--30% and change the relative CDW amplitudes of the high and low temperature CDWs. The CDW amplitudes remain strong on all three chains of the surface unit cell with no evident disorder. In 1T-Fe0.05Ta0.95S2 the Fe introduces substantial disorder in the CDW pattern, but the local CDW amplitude remains strong. The CDW energy gap is reduced by approximately 50% and the resistive anomaly at the commensurate-incommensurate transition is removed. The STM in both the image and spectroscopy modes can detect subtle changes in CDW structure due to impurities
Scanning tunneling microscopy of charge-density waves in NbSe3
International Nuclear Information System (INIS)
The charge-density wave (CDW) structure in NbSe3 due to the two independent CDWs has been imaged by scanning tunneling microscopy. As predicted by band structure considerations the CDW modulation is observed to be substantially localized on different chains for the separate CDWs. At 77K where only the high temperature CDW exists a relatively weak modulation with a single component along the /bar b/-axis is observed. At 4.2K the low temperature CDW contributes a much stronger /approximately/4/bar b/0 /times/ 2/rvec c/0 superlattice modulation. The combination of atomic resolution and CDW modulations allows an unambiguous identification of the chain structure to be made. 9 refs., 5 figs
International Nuclear Information System (INIS)
Nanometer period metallic multilayers are ideal structures to investigate electronic phenomena at interfaces between metal films since interfacial atoms comprise a large atomic fraction of the samples. The Cu/Cr binary pair is especially suited to study the interfaces in metals since these elements are mutually insoluble, thus eliminating mixing effects and compound formation and the lattice mismatch is very small. This allows the fabrication of high structural quality Cu/Cr multilayers that have a structure which can be approximated in calculations based on idealized atomic arrangements. The electronic structure of the Cu and the Cr layers in several samples of thin Cu/Cr multilayers were studied using x-ray absorption spectroscopy (XAS). Total electron yield was measured and used to study the white lines at the Cu L(sub 2) and L(sub 3) absorption edges. The white lines at the Cu absorption edges are strongly related to the unoccupied d-orbitals and are used to calculate the amount of charge transfer between the Cr and Cu atoms in interfaces. Analysis of the Cu white lines show a charge transfer of 0.026 electrons/interfacial Cu atom to the interfacial Cr atoms. In the Cu XAS spectra we also observe a van Hove singularity between the L(sub 2) and L(sub 3) absorption edges as expected from the structural analysis. The absorption spectra are compared to partial density of states obtained from a full-potential linear muffin-tin orbital calculation. The calculations support the presence of charge transfer and indicate that it is localized to the first two interfacial layers in both Cu and Cr
Surface Charge Density Determines the Efficiency of Cationic Gemini Surfactant Based Lipofection
Ryhänen, Samppa J.; Säily, Matti J.; Paukku, Tommi; Borocci, Stefano; Mancini, Giovanna; Holopainen, Juha M.; Kinnunen, Paavo K. J.
2003-01-01
The efficiencies of the binary liposomes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and cationic gemini surfactant, (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide as transfection vectors, were measured using the enhanced green fluorescent protein coding plasmid and COS-1 cells. Strong correlation between the transfection efficiency and lipid stoichiometry was observed. Accordingly, liposomes with XSR−1 ≥ 0.50 conveyed the enhanced green fluorescent protein coding plasmid effectively into cells. The condensation of DNA by liposomes with XSR−1 > 0.50 was indicated by static light scattering and ethidium bromide intercalation assay, whereas differential scanning calorimetry and fluorescence anisotropy of diphenylhexatriene revealed stoichiometry dependent reorganization in the headgroup region of the liposome bilayer, in alignment with our previous Langmuir-balance study. Surface charge density and the organization of positive charges appear to determine the mode of interaction of DNA with (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide/1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes, only resulting in DNA condensation when XSR−1 > 0.50. Condensation of DNA in turn seems to be required for efficient transfection. PMID:12524311
Central depressions in the charge density profiles of the nuclei around $^{46}$Ar
Song, Jun Ling; Long, Wen Hui
2015-01-01
The occurrence of the proton bubble-like structure has been studied within the relativistic Hartree-Fock-Bogoliubov (RHFB) and relativistic Hartree-Bogoliubov (RHB) theories by exploring the bulk properties, the charge density profiles and single proton spectra of argon isotopes and $N = 28$ isotones. It is found that the RHFB calculations with PKA1 effective interaction, which can properly reproduce the charge radii of argon isotopes and the $Z=16$ proton shell nearby, do not support the occurrence of the proton bubble-like structure in argon isotopes due to the prediction of deeper bound proton orbit $\\pi2s_{1/2}$ than $\\pi1d_{3/2}$. For $N = 28$ isotones, $^{42}$Si and $^{40}$Mg are predicted by both RHFB and RHB models to have the proton bubble-like structure, owing to the large gap between the proton $\\pi2s_{1/2}$ and $\\pi1d_{5/2}$ orbits, namely the $Z=14$ proton shell. Therefore, $^{42}$Si is proposed as the potential candidate of proton bubble nucleus, which has longer life-time than $^{40}$Mg.
Charge density waves and local states in quasi-one-dimensional mixed valence inorganic complexes
International Nuclear Information System (INIS)
The ground state structures and local states associated with chemical defects in quasi-one-dimensional halogen (X) bridged transition metal (M) mixed valence solids of MX and MMX type have been studied. An adiabatic Hartree-Fock theoretical framework is presented and representative members are classified. The MX materials provide a class whose strong electron-phonon coupling usually favors a charge-density-wave (CDW) ground state. However, the coupling strength can be chemically tuned (e.g., by extension to MMX systems) or altered by pressure, driving the ground state structures towards, e.g., a bond-order-wave (BOW) phase. Electron-phonon driven self-trapped states are expected in both the CDW or BOW regimes. Resonance Raman spectra of the MMX solid K4(Pt2(P2O5H2)4Cl)·H2O show, in addition to the homogeneous ground state modes, sharp new features with excitation profiles shifted to the red of the intervalence-charge-transfer (IVCT) band. We attribute these new bands to a local polaron state formed by oxidation of the Pt2 Cl chain by a chemical defect. The observed spectral characteristics of this local state are in good agreement with theoretical predictions. (author). 28 refs, 4 figs, 1 tab
Charge density-dependent modifications of hydration shell waters by Hofmeister ions.
Guo, Feng; Friedman, Joel M
2009-08-12
Gadolinium (Gd(3+)) vibronic sideband luminescence spectroscopy (GVSBLS) is used to probe, as a function of added Hofmeister series salts, changes in the OH stretching frequency derived from first-shell waters of aqueous Gd(3+) and of Gd(3+) coordinated to three different types of molecules: (i) a chelate (EDTA), (ii) structured peptides (mSE3/SE2) of the lanthanide-binding tags (LBTs) family with a single high-affinity binding site, and (iii) a calcium-binding protein (calmodulin) with four binding sites. The vibronic sideband (VSB) corresponding to the OH stretching mode of waters coordinated to Gd(3+), whose frequency is inversely correlated with the strength of the hydrogen bonding to neighboring waters, exhibits an increase in frequency when Gd(3+) becomes coordinated to either EDTA, calmodulin, or mSE3 peptide. In all of these cases, the addition of cation chloride or acetate salts to the solution increases the frequency of the vibronic band originating from the OH stretching mode of the coordinated waters in a cation- and concentration-dependent fashion. The cation dependence of the frequency increase scales with charge density of the cations, giving rise to an ordering consistent with the Hofmeister ordering. On the other hand, water Raman spectroscopy shows no significant change upon addition of these salts. Additionally, it is shown that the cation effect is modulated by the specific anion used. The results indicate a mechanism of action for Hofmeister series ions in which hydrogen bonding among hydration shell waters is modulated by several factors. High charge density cations sequester waters in a configuration that precludes strong hydrogen bonding to neighboring waters. Under such conditions, anion effects emerge as anions compete for hydrogen-bonding sites with the remaining free waters on the surface of the hydration shell. The magnitude of the anion effect is both cation and Gd(3+)-binding site specific. PMID:19603752
Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong
2016-08-01
We further investigate the cluster emission from heavy nuclei beyond the lead region in the framework of the preformed cluster model. The refined cluster-core potential is constructed by the double-folding integral of the density distributions of the daughter nucleus and the emitted cluster, where the radius or the diffuseness parameter in the Fermi density distribution formula is determined according to the available experimental data on the charge radii and the neutron skin thickness. The Schrödinger equation of the cluster-daughter relative motion is then solved within the outgoing Coulomb wave-function boundary conditions to obtain the decay width. It is found that the present decay width of cluster emitters is clearly enhanced as compared to that in the previous case, which involved the fixed parametrization for the density distributions of daughter nuclei and clusters. Among the whole procedure, the nuclear deformation of clusters is also introduced into the calculations, and the degree of its influence on the final decay half-life is checked to some extent. Moreover, the effect from the bubble density distribution of clusters on the final decay width is carefully discussed by using the central depressed distribution.
On the Electromagnetic Momentum of Static Charge and Steady Current Distributions
Gsponer, Andre
2007-01-01
Faraday's and Furry's formulae for the electromagnetic momentum of static charge distributions combined with steady electric current distributions are generalized in order to obtain full agreement with Poynting's formula in the case where all fields are of class C[superscript 1], i.e., continuous and continuously differentiable, and the…
Effect of Moliere theory on path length distribution of fast charged particles
International Nuclear Information System (INIS)
The path length distribution due to multiple Coulomb scattering, considering single scattering and more accurate screening potential than gaussian approximation, is discussed after Moliere theory. Solutions for restricted conditions are indicated, from which we discuss effects of Moliere cross section on the path length distribution of charged particles and the time structure of electromagnetic cascade showers. (author)
Influence of the vacuum interface on the charge distribution in V 2 O 3 thin films
Schwingenschlögl, Udo
2009-09-22
The electronic structure of V2O3 thin films is studied by means of the augmented spherical wave method as based on density functional theory and the local density approximation. We establish that the effects of charge redistribution, induced by the vacuum interface, in such films are restricted to a very narrow surface layer of ≈15 Å thickness. As a consequence, charge redistribution can be ruled out as a source of the extraordinary thickness dependence of the metal–insulator transition observed in V2O3 thin films of ~100–1000 Å thickness.
Influence of the vacuum interface on the charge distribution in V2O3 thin films
Schwingenschlögl, U.; Frésard, R.; Eyert, V.
2009-09-01
The electronic structure of V2O3 thin films is studied by means of the augmented spherical wave method as based on density functional theory and the local density approximation. We establish that the effects of charge redistribution, induced by the vacuum interface, in such films are restricted to a very narrow surface layer of ≈15 Å thickness. As a consequence, charge redistribution can be ruled out as a source of the extraordinary thickness dependence of the metal-insulator transition observed in V2O3 thin films of ~100-1000 Å thickness.
International Nuclear Information System (INIS)
The ratio of the cumulant to factorial moments of the charged-particle multiplicity distribution is known to show a quasi-oscillatory behavior when plotted versus the order of the moments. This peculiar behavior is also predicted b;y the NNLLA of perturbative QCD assuming the validity of the LPHD hypothesis. Using the subjet multiplicity distribution obtained from both Durham and Cambridge jet algorithms, instead of the charged-particle multiplicity distribution, in order to vary the dependence on the LPHD hypothesis, it was found that the oscillations appear only for non-perturbative energy scales. (author)
International Nuclear Information System (INIS)
The ratio of the cumulant factorial to factorial moments of the charged particle multiplicity distribution is known to show a quasi-oscillatory behaviour when plotted versus the order of the moments. This peculiar behaviour is also predicted by the NNLLA of perturbative QCD assuming the validity of the LPHD hypothesis. Using the subjet multiplicity distribution obtained from both Durham and Cambridge jet algorithms, instead of the charged particle multiplicity distribution, in order to vary the dependence on the LPHD hypothesis; it is shown that the oscillations appear only for non-perturbative energy scales. (author)
Flavor and Charge Symmetry in the Parton Distributions of the Nucleon
Benesh, C J
1998-01-01
Recent calculations of charge symmetry violation(CSV) in the valence quark distributions of the nucleon have revealed that the dominant symmetry breaking contribution comes from the mass associated with the spectator quark system.Assuming that the change in the spectator mass can be treated perturbatively, we derive a model independent expression for the shift in the parton distributions of the nucleon. This result is used to derive a relation between the charge and flavor asymmetric contributions to the valence quark distributions in the proton, and to calculate CSV contributions to the nucleon sea. The CSV contribution to the Gottfried sum rule is also estimated, and found to be small.
International Nuclear Information System (INIS)
In an advanced fusion, fusion-produced charged particles must be separated from each other for efficient energy conversion to electricity. The CuspDEC performs this function of separation and direct energy conversion. Analysis of working characteristics of CuspDEC on plasma density is an important subject. This paper summarizes and discusses experimental and theoretical works for high density plasma by using a small scale experimental device employing a slanted cusp magnetic field. When the incident plasma is low-density, good separation of the charged particles can be accomplished and this is explained by the theory based on a single particle motion. In high density plasma, however, this theory cannot be always applied due to space charge effects. In the experiment, as gradient of the field line increases, separation capability of the charged particles becomes higher. As plasma density becomes higher, however, separation capability becomes lower. This can be qualitatively explained by using calculations of the modified Störmer potential including space charge potential. (author)
Charged-particle pseudorapidity distributions in Au+Au collisions at sNN=62.4 GeV
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J. Van; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.
2006-08-01
The charged-particle pseudorapidity density for Au+Au collisions at sNN=62.4 GeV has been measured over a wide range of impact parameters and compared to results obtained at other energies. As a function of collision energy, the pseudorapidity distribution grows systematically both in height and width. The midrapidity density is found to grow approximately logarithmically between BNL Alternating Gradient Synchrotron (AGS) energies and the top BNL Relativistic Heavy Ion Collider (RHIC) energy. There is also an approximate factorization of the centrality and energy dependence of the midrapidity yields. The new results at sNN=62.4 GeV confirm the previously observed phenomenon of “extended longitudinal scaling” in the pseudorapidity distributions when viewed in the rest frame of one of the colliding nuclei. It is also found that the evolution of the shape of the distribution with centrality is energy independent, when viewed in this reference frame. As a function of centrality, the total charged particle multiplicity scales linearly with the number of participant pairs as it was observed at other energies.
Imaging the local density of free charge carriers in doped InAs nanowires
Energy Technology Data Exchange (ETDEWEB)
Hauer, Benedikt; Taubner, Thomas [I. Institute of Physics (1A), RWTH Aachen Univerity, Sommerfeldstrasse 14, 52074 Aachen (Germany); Sladek, Kamil; Haas, Fabian; Schaepers, Thomas; Hardtdegen, Hilde [Peter Gruenberg Institute (PGI-9), Forschungszentrum Juelich, 52425 Juelich (Germany)
2013-07-01
Semiconductor nanowires are promising candidates for future nanoelectronic devices. While the bottom-up approach for their growth could simplify the device fabrication, their quantitative characterization remains challenging. We use scattering-type scanning near-field optical microscopy (s-SNOM) to investigate the local density of free electrons in Si-doped InAs nanowires grown by selective-area metalorganic vapor phase epitaxy (SA-MOVPE). In s-SNOM the evanescent electric field at the apex of an illuminated tip is used to probe a sample at a strongly sub-wavelength resolution. This method is highly sensitive to variations in the sample permittivity around Re(ε) ∼ -2. The use of tunable mid-infrared lasers therefore allows addressing the plasma frequency of free charge carriers in highly doped nanowires. Here, we demonstrate that the sensitivity of s-SNOM is sufficient to detect a slight unintended variation in the carrier concentration during the growth process. Furthermore, using model calculations, we give an estimate of the local density of free electrons.
Superconductivity in Pd-intercalated charge-density-wave rare earth poly-tellurides RETe n
He, J. B.; Wang, P. P.; Yang, H. X.; Long, Y. J.; Zhao, L. X.; Ma, C.; Yang, M.; Wang, D. M.; Shangguan, X. C.; Xue, M. Q.; Zhang, P.; Ren, Z. A.; Li, J. Q.; Liu, W. M.; Chen, G. F.
2016-06-01
Charge density waves (CDWs) are periodic modulations of the conduction electron density in solids, which are generally considered to remove electrons from the Fermi level, and thus preclude a superconducting state. However, in a variety of CDW materials, such as the prototypical transition metal chalcogenides, superconductivity has also been observed at very low temperature (Yokoya et al 2001 Science 294 2518; Morosan et al 2006 Nat. Phys. 2 544; Kiss et al 2007 Nat. Phys. 3 720), in which, although the two electronic correlated states are believed to occur in different parts of Fermi surface sheets derived mainly from chalcogen p-states and transition metal d-states, the nature of the relationship between them has not yet been unambiguously determined. Here we report the discovery of superconductivity in Pd-intercalated RETe n (RE = rare earth; n = 2.5, 3) CDW systems, in which the chalcogen layers alone are responsible for both superconductivity and CDW instability. Our finding could provide an ideal model system for comprehensive study of the interplay between CDW and superconductivity due to the remarkable simplicity of the electronic structure of Te planes.
Institute of Scientific and Technical Information of China (English)
Li Cheng-Bin; Li Ming-Kai; Yin Dong; Liu Fu-Qing; Fan Xiang-Jun
2005-01-01
A first principles study of the electronic properties and bulk modulus (B0) of the fcc and bcc transition metals,transition metal carbides and nitrides is presented. The calculations were performed by plane-wave pseudopotential method in the framework of the density functional theory with local density approximation. The density of states and the valence charge densities of these solids are plotted. The results show that B0 does not vary monotonically when the number of the valence d electrons increases. B0 reaches a maximum and then decreases for each of the four sorts of solids. It is related to the occupation of the bonding and anti-bonding states in the solid. The value of the valence charge density at the midpoint between the two nearest metal atoms tends to be proportional to B0.
Energy Technology Data Exchange (ETDEWEB)
Guilbaud, Maxime
2013-05-02
We present the measurement of the charged-particle pseudorapidity (η) density distribution, (dN{sub ch})/(dη) , for a number of centrality bins in Pb–Pb collisions at √(s{sub NN})=2.76TeV over a wide pseudorapidity range. Using the innermost pixel layers of the ALICE tracking system and the ALICE forward detectors (VZERO and FMD), we cover the pseudorapidity range: −5<η<5.5. The analysis is performed using a dedicated technique utilizing the collisions with LHC ‘satellite’ bunches. These collisions have displaced vertices in the range −187.5
Campos, A. F. C.; Tourinho, F. A.; da Silva, G. J.; Lara, M. C. F. L.; Depeyrot, J.
2001-09-01
We analyze potentiometric and conductimetric measurements simultaneously performed on Electric Double-Layer Magnetic Fluid based on cobalt ferrite nanoparticles, in order to obtain the pH-dependence of the particle surface charge density. We propose a mechanism for the charging of the particle surface. This model considers the ferrofluid solution as a mixture of strong and weak diprotic acids. We show how an exact analytical treatment involving proton transfer between the particle surface and the bulk solution allows the construction of a speciation diagram of the charged superficial sites. The saturation value of the superficial density of charge is found to be equal to 0.326 ± 0.065 C m^{-2}.
International Nuclear Information System (INIS)
The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0.18-μm CMOS image sensor process and exposed to 10-keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhancement of interface state SRH generation current. Isochronal annealing tests show that STI interface states anneal out at temperature lower than 100 C whereas about a third of the trapped charge remains after 30 min at 300 C. (authors)
Measurements of charge distributions of the fragments in the low energy fission reaction
International Nuclear Information System (INIS)
The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ−Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au–Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2⁎ and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.
Highly transverse velocity distribution of convoy electrons emitted by highly charged ions
Seliger, M.; Tőkési, K.; Reinhold, C. O.; Burgdörfer, J.
2003-05-01
We present a theoretical study of convoy electron emission resulting from highly charged ion (HCI) transport through carbon foils. Employing a classical transport theory we analyze the angular and energy distribution formed by multiple scattering of electrons in the solid. We find that the convoy electron distribution becomes highly transverse at intermediate foil thicknesses representing an oblate spheroidal distribution due to the stepwise excitation of the HCI. The calculated convoy electron spectra are found to be in good agreement with recent measurements.
Synchrotron X-Ray Charge-Density Study of Coordination Polymer (Mn(HCOO)2(H2O)2)∞
International Nuclear Information System (INIS)
Three high-quality single-crystal X-ray diffraction data sets have been measured under very different conditions on a structurally simple, but magnetically complex, coordination polymer, (Mn(HCOO)2(H2O)2)∞ (1). The first data set is a conventional 100(2) K MoKα data set, the second is a very high resolution 100(2) K data set measured on a second-generation synchrotron source, while the third data set was measured with a tiny crystal on a high brilliance third-generation synchrotron source at 16(2) K. Furthermore, the magnetic susceptibility (χ) and the heat capacity (Cp) have been measured from 2 to 300 K on pressed powder. The charge density of 1 was determined from multipole modeling of the experimental structure factors, and overall there is good agreement between the densities obtained separately from the three data sets. When considering the fine density features, the two 100 K data sets agree well with each other, but show small differences to the 16 K data set. Comparison with ab initio theory suggests that the 16 K APS data set provides the most accurate density. Topological analysis of the metal-ligand bonding, experimental 3d orbital populations on the Mn atoms, and Bader atomic charges indicate quite ionic, high-spin metal atoms. This picture is supported by the effective moment estimated from the magnetization measurements (5.840(2)μB), but it is at variance with earlier spin density measurements from polarized neutron diffraction. The magnetic ordering originates from superexchange involving covalent interactions with the ligands, and non-ionic effects are observed in the static deformation density maps as well as in plots of the valence shell charge concentrations. Overall, the present study provides a benchmark charge density that can be used in comparison with future metal formate dihydrate charge densities.
Energy Technology Data Exchange (ETDEWEB)
Bracken, D.S.; Foxford, E.R.; Kwiatkowski, K. [and others
1995-10-01
Moving source fits have been performed for IMFs as a function of observables related to collision violence in the 1.8-4.8 GeV {sup 3}He +{sup nat}Ag, {sup l97}Au reactions. The systematic behavior of the source properties and fragment charge distributions will be reviewed. The evolution of the spectral Coulomb parameters provides evidence for nuclear expansion prior to multifragmentation, suggesting a breakup density of p/p{sub o} {approximately} 1/3. The charge distributions will be examined in terms of power-law fits and moment analyses.
Fragment charge and energy distributions in the 1.8-4.8 GeV 3He + natAg, 197Au reactions
International Nuclear Information System (INIS)
Moving source fits have been performed for IMFs as a function of observables related to collision violence in the 1.8-4.8 GeV 3He +natAg, l97Au reactions. The systematic behavior of the source properties and fragment charge distributions will be reviewed. The evolution of the spectral Coulomb parameters provides evidence for nuclear expansion prior to multifragmentation, suggesting a breakup density of p/po ∼ 1/3. The charge distributions will be examined in terms of power-law fits and moment analyses
Sikler, Ferenc
2012-01-01
The energy loss distribution of charged particles in silicon is approximated by a simple analytical parametrization. Its use is demonstrated through several examples. With the help of energy deposits in sensing elements of the detector, the position of track segments and the corresponding deposited energy are estimated with improved accuracy and less bias. The parametrization is successfully used to estimate the energy loss rate of charged particles, and it is applied to detector gain calibration tasks.
Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na
Energy Technology Data Exchange (ETDEWEB)
Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.
2003-01-03
The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.
Recoil ion charge state distribution following the beta(sup +) decay of 21Na
International Nuclear Information System (INIS)
The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions
The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid
Clement-Nyns, Kristien; Haesen, Edwin; Driesen, Johan
2010-01-01
Alternative vehicles, such as plug-in hybrid electric vehicles, are becoming more popular. The batteries of these plug-in hybrid electric vehicles are to be charged at home from a standard outlet or on a corporate car park. These extra electrical loads have an impact on the distribution grid which is analyzed in terms of power losses and voltage deviations. Without coordination of the charging, the vehicles are charged instantaneously when they are plugged in or after a fixed start delay. Thi...
Effects of charge distribution on water filling process in carbon nanotube
Institute of Scientific and Technical Information of China (English)
MENG LingYi; LI QiKai; SHUAI ZhiGang
2009-01-01
Using umbrella sampling technique with molecular dynamics simulation, we investigated the nanoflu-idic transport of water in carbon nanotube (CNT). The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process, while the negative charge modification to the carbon nanotube will, on the other hand, quicken the water column growth process. The free energy curves were obtained through the statistical process of water column growth under different charge distributions, and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.
Effects of charge distribution on water filling process in carbon nanotube
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Using umbrella sampling technique with molecular dynamics simulation,we investigated the nanoflu-idic transport of water in carbon nanotube(CNT).The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process,while the negative charge modification to the carbon nanotube will,on the other hand,quicken the water column growth process.The free energy curves were obtained through the statistical process of water column growth under different charge distributions,and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.
Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers
Himmelberger, Scott
2014-10-28
© 2014 American Chemical Society. Model semiconducting polymer blends of well-controlled molecular weight distributions are fabricated and demonstrated to be a simple method to control intermolecular disorder without affecting intramolecular order or degree of aggregation. Mobility measurements exhibit that even small amounts of low molecular weight material are detrimental to charge transport. Trends in charge carrier mobility can be reproduced by a simple analytical model which indicates that carriers have no preference for high or low molecular weight chains and that charge transport is limited by interchain hopping. These results quantify the role of long polymer tie-chains and demonstrate the need for controlled polydispersity for achieving high carrier mobilities.
Hierarchical charge distribution controls self-assembly process of silk in vitro
Zhang, Yi; Zhang, Cencen; Liu, Lijie; Kaplan, David L.; Zhu, Hesun; Lu, Qiang
2015-12-01
Silk materials with different nanostructures have been developed without the understanding of the inherent transformation mechanism. Here we attempt to reveal the conversion road of the various nanostructures and determine the critical regulating factors. The regulating conversion processes influenced by a hierarchical charge distribution were investigated, showing different transformations between molecules, nanoparticles and nanofibers. Various repulsion and compressive forces existed among silk fibroin molecules and aggregates due to the exterior and interior distribution of charge, which further controlled their aggregating and deaggregating behaviors and finally formed nanofibers with different sizes. Synergistic action derived from molecular mobility and concentrations could also tune the assembly process and final nanostructures. It is suggested that the complicated silk fibroin assembly processes comply a same rule based on charge distribution, offering a promising way to develop silk-based materials with designed nanostructures.
Reshak, A. H.; Kamarudin, H.; Alahmed, Z. A.; Auluck, S.; Chyský, Jan
2014-06-01
A comprehensive theoretical density functional investigation of the electronic crystal structure, chemical bonding, and the electron charge densities of 9-Methyl-3-Thiophen-2-YI-Thieno [3, 2-e] [1, 2, 4] Thriazolo [4,3-c] Pyrimidine-8-Carboxylic Acid Ethyl Ester (C15H12N4O2S2) is performed. The density of states at Fermi level equal to 5.50 (3.45) states/Ry cell, and the calculated bare electronic specific heat coefficient is found to be 0.95 (0.59) mJ/mole-K2 for the local density approximation (Engel-Vosko generalized gradient approximation). The electronic charge density space distribution contours in (1 0 0) and (1 1 0) planes were calculated. We find that there are two independent molecules (A and B) in the asymmetric unit exhibit intramolecular C-H…O, C-H…N interactions. This intramolecular interaction is different in molecules A and B, where A molecule show C-H…O interaction while B molecule exhibit C-H…N interaction. We should emphasis that there is π-π interaction between the pyrimidine rings of the two neighbors B molecules gives extra strengths and stabilizations to the superamolecular structure. The calculated distance between the two neighbors pyrimidine rings found to be 3.345 Å, in good agreement with the measured one (3.424(1) Å).
Strain Tuning of the Charge Density Wave in Monolayer and Bilayer 1T-TaS2
Gan, Liyong
2015-12-07
By first-principles calculations, we investigate the strain effects on the charge density wave states of monolayer and bilayer 1T-TaS2. The modified stability of the charge density wave in the monolayer is understood in terms of the strain dependent electron localization, which determines the distortion amplitude. On the other hand, in the bilayer the effect of strain on the interlayer interaction is also crucial. The rich phase diagram under strain opens new venues for applications of 1T-TaS2. We interpret the experimentally observed insulating state of bulk 1T-TaS2 as inherited from the monolayer by effective interlayer decoupling.
Microscopic theory of charges density wave instability in NbSe2
International Nuclear Information System (INIS)
The microscopic theory of Sinha and Harmon for electronically driven lattice instabilities is used to explain the ''Kohn-like'' anomalies in the Σ1 phonon branch and the observed incommensurate superlattice Bragg peak in 2H-NbSe2, characteristic of the charge density wave at low temperatures in the neutron scattering experiments of Moncton et al. In accordance with the APW and LCAO band-structure calculations of Mattheiss of 2H-NbSe2, the presence of three narrow d bands of atomic symmetry xy, x2-y2 and 3z2-r2 at the Fermi level is assumed. Thus the conduction-band wave function is represented by a linear combination of tight-binding Gaussian atomic orbitals with neglect of the variation of the radial wave function across the bands. The screened electron-ion interaction and the Coulomb energy of the charge fluctuation on the d shells of Nb atoms is represented by a pseudopotential screened by the Lindhard dielectric function. The phonon eigenvectors needed for estimating the electron-phonon interaction were calculated using a simple force constant model. In agreement with the experimental results, it was found that the phonon frequencies for the Σ1 and Σ3 branches are very strongly renormalized as one approaches the zone boundary. By introducing the electronic relaxation effects a central peak appears at the q vector of the instability and the actual phonon renormalization is partially suppressed. This explains the superlattice Bragg peaks observed at low temperatures and ''Kohn-like'' anomalies in the Σ1 phonon branch of NbSe2
Charge pumping at radio frequencies [MOSFET device interface state density measurement
Sasse, G.T.; Vries, de, P.M.; Schmitz, J
2005-01-01
In this work, for the first time, charge pump results are shown that are obtained at frequencies in the GHz range. A comparison is made with charge pump results at lower frequencies. A very good agreement is seen between the low frequency charge pump data and the RF charge pump data. Measurement results on dielectrics that suffer from a high leakage current show that a charge pump current can be measured at frequencies above 500 MHz. At lower frequencies the charge pump current is completely ...
International Nuclear Information System (INIS)
The maximum-entropy charge densities of six amino acids and peptides reveal systematic dependencies of the properties at bond critical points on bond lengths. MEM densities demonstrate that low-order multipoles (lmax = 1) and isotropic atomic displacement parameters for H atoms in the multipole model are insufficient for capturing all the features of charge densities in hydrogen bonds. Charge densities have been determined by the Maximum Entropy Method (MEM) from the high-resolution, low-temperature (T ≃ 20 K) X-ray diffraction data of six different crystals of amino acids and peptides. A comparison of dynamic deformation densities of the MEM with static and dynamic deformation densities of multipole models shows that the MEM may lead to a better description of the electron density in hydrogen bonds in cases where the multipole model has been restricted to isotropic displacement parameters and low-order multipoles (lmax = 1) for the H atoms. Topological properties at bond critical points (BCPs) are found to depend systematically on the bond length, but with different functions for covalent C—C, C—N and C—O bonds, and for hydrogen bonds together with covalent C—H and N—H bonds. Similar dependencies are known for AIM properties derived from static multipole densities. The ratio of potential and kinetic energy densities |V(BCP)|/G(BCP) is successfully used for a classification of hydrogen bonds according to their distance d(H⋯O) between the H atom and the acceptor atom. The classification based on MEM densities coincides with the usual classification of hydrogen bonds as strong, intermediate and weak [Jeffrey (1997) ▶. An Introduction to Hydrogen Bonding. Oxford University Press]. MEM and procrystal densities lead to similar values of the densities at the BCPs of hydrogen bonds, but differences are shown to prevail, such that it is found that only the true charge density, represented by MEM densities, the multipole model or some other method can lead
Hydroacoustic Estimates of Fish Density Distributions in Cougar Reservoir, 2011
Energy Technology Data Exchange (ETDEWEB)
Ploskey, Gene R.; Zimmerman, Shon A.; Hennen, Matthew J.; Batten, George W.; Mitchell, T. D.
2012-09-01
Day and night mobile hydroacoustic surveys were conducted once each month from April through December 2011 to quantify the horizontal and vertical distributions of fish throughout Cougar Reservoir, Lane County, Oregon.
International Nuclear Information System (INIS)
A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured
Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin
2015-11-01
A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.
Yu, Deyang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin
2015-01-01
A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking the advantages of high electric potential and narrow bandwidth in DC energetic charged beam measurements, current resolution better than 5 fA can be achieved. Two 128-channel Faraday cup arrays are built, and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.
Reconstruction of Model Based Electron Density Distribution from Ionosonde Data
Czech Academy of Sciences Publication Activity Database
Gok, G.; Arikan, O.; Arikan, F.; Mošna, Zbyšek
Bangkok: COSPAR/URSI IRI Working Group and Faculty of Engineering (KMITL), 2015. 38O. [International Reference Ionosphere 2015 (IRI-2015) Workshop /18./.. 02.11.2015-13.11.2015, Bangkok] Institutional support: RVO:68378289 Keywords : reconstructing electron density * ionogram scaling * ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.iri2015.kmitl.ac.th/downloads/IRI2015_TechnicalProgram.pdf
Airapetian, A; Akopov, Z; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Belostotskii, S; Bianchi, N; Blok, H P; Bttcher, H; Bonomo, C; Borisov, A; Brüll, A; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Karibian, V; Giordano, F; Gliske, S; Gregor, I M; Guler, H; Hadjidakis, C; Hasch, D; Hasegawa, T; Hesselink, W H A; Hill, G; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Imazu, Y; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Joosten, S; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lamb, R; Lapikas, L; Lehmann, I; Lenisa, P; Liebing, P; Linden-Levy, L A; Lopez Ruiz, A; Lorenzon, W; Lu, S; Lu, X R; Ma, B Q; Mahon, D; Maiheu, B; Makins, N C R; Manfr, L; Mao, Y; Marianski, B; Marukyan, H; Mexner, V; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Mussgiller, A; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Nass, A; Negodaev, M; Nowak, W D; Osborne, A; Pappalardo, L L; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rock, S E; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Schäfer, A; Schnell, G; Schüler, K P; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Streit, J; Tait, P; Taroian, S; Tchuiko, B; Terkulov, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; van Hulse, C; Varanda, M; Veretennikov, D; Vikhrov, V; Vilardi, I; Vogel, C; Wang, S; Yaschenko, S; Ye, H; Ye, Y; Ye, Z; Yen, S; Yu, W; Zeiler, D; Zihlmann, B; Zupranski, P
2008-01-01
The momentum and helicity density distributions of the strange quark sea in the nucleon are obtained in leading order from charged-kaon production in deep-inelastic scattering on the deuteron. The distributions are extracted from spin-averaged K+/- multiplicities, and from K+/- and inclusive double-spin asymmetries for scattering of polarized positrons by a polarized deuterium target. The shape of the momentum distribution is softer than that of the average of the ubar and dbar quarks. In the region of measurement, the helicity distribution is zero within experimental uncertainties.
International Nuclear Information System (INIS)
The nuclear charge distribution and nuclear charge distribution differences have been investigated by 350 MeV elastic electron scattering at the Institut fuer Kernphysik, Universitaet Mainz. Muonix x-ray measurements yield complementary information to electron scattering results. Both experimental data are analyzed in an almost model independent way. Muonic x-ray measurements have been performed for the region 40Ca up to 100Mo. Muonic x-ray transition energies allow the determination of one radial parameter R/sub k/ - the Barrett radius - with high precision. This Barrett radius combined with the charge distribution from elastic electron scattering yields the following precise radial parameters 2>/sup 1/2/, 4>/sup 1/4/ and 6>/sup 1/6/. With the abolute values of these radial moments, it is possible to determine the two optical constants: the electron density at the nucleus and the specific mass shift
Tanaka, Kiyoaki; Elkaim, E.; Li, Liang; Jue, Zhu Nai; Coppens, P.; Landrum, J.; タナカ, キヨアキ; 田中, 清明; Tanaka, K
1986-01-01
The electron density distribution in crystals of (meso‐tetraphenylporphinato)iron(II) has been analyzed using accurate x‐ray diffraction data collected at 120 K. The structural results are in agreement with those of the room temperature study. Theoretical calculations predict several different ground states for the complex and in particular support the 3A2g and the 3EgA states. The experimental electron density distribution shows large peaks above and below the iron atom which would not be pr...
International Nuclear Information System (INIS)
Longitudinal density correlations of produced matter in Au+Au collisions at √(sNN)=200 GeV have been measured from the inclusive charged particle distributions as a function of pseudorapidity window sizes. The extracted αξ parameter, related to the susceptibility of the density fluctuations in the long-wavelength limit, exhibits a nonmonotonic behavior as a function of the number of participant nucleons, Npart. A local maximum is seen at Npart∼90, with corresponding energy density based on the Bjorken picture of εBjτ∼2.4 GeV/(fm2c) with a transverse area size of 60 fm2. This behavior may suggest a critical phase boundary based on the Ginzburg-Landau framework
International Nuclear Information System (INIS)
A method is described for determining ion cyclotron resonance (ICR) heating effects on multiply charged-ion energy distributions using a Monte Carlo fit to experimental time-of-flight spectrometer data. The method is general but is used here specifically to separate the effects of plasma ambipolar potential spread and ion temperature in an electron cyclotron resonance (ECR) heated magnetic mirror ion source (MIMI) [Phys. Fluids 28, 3116 (1985)]. A steady-state equilibrium model is also developed that models the relevant atomic processes occurring in MIMI plasmas. This model and the Monte Carlo analysis are used to relate the effect of midplane ICR heating on end loss ion charge state distributions to its effect on the confined ion distributions. The model allows for collisional, moderately collisional, and collisionless confinement, specific to each charge state in the distribution. Both experiment and modeling show that increased ion temperature causes a shift to lower-Z ion populations in both the confined and end loss charge-state distributions
International Nuclear Information System (INIS)
The interplay between electron-phonon and electron-electron interactions in quasi-one-dimensional systems can give rise to competition and possible coexistence of various symmetry broken ground states like bond-order-wave (BOW), charge-density-wave (CDW) and spin-density-wave (SDW). The halogen-bridged mixed-valence transition-metal linear chain complexes (HMMC or MX chains) is a typical example of such systems. In this and a companion paper, we study the ground states and localized excitations like polarons and excitons in these competing systems using a single band Peierls-Hubbard model and the Bogoliubov-de Gennes formalism. We first focus on configurations of these excitations and number of bound states within the gap in competing BOW and CDW systems as functions of the electron-phonon coupling strength. The lattice relaxation approach to quasi-one-dimensional systems, developed by Su and Yu earlier, has been applied to study the radiative and non-radiative transitions of these excitations. A non-monotonic dependence of the relaxation rate on the coupling strength is predicted from the theory and is mainly due to the emergence of new bound states inside the gap. The possible connection of this effect with photoluminescence experiments is discussed. Similar phenomena may occur in other quasi-one-dimensional systems as well. (author). 28 refs, 13 figs, 1 tab
Dust charging processes with a Cairns-Tsallis distribution function with negative ions
International Nuclear Information System (INIS)
Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., qd = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U0) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0
Dust charging processes with a Cairns-Tsallis distribution function with negative ions
Energy Technology Data Exchange (ETDEWEB)
Abid, A. A., E-mail: abidaliabid1@hotmail.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Khan, M. Z., E-mail: mzk-qau@yahoo.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yap, S. L. [Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Terças, H., E-mail: hugo.tercas@tecnico.ul.pt [Physics of Information Group, Instituto de Telecomunicações, Av. Rovisco Pais, Lisbon 1049-001 (Portugal); Mahmood, S. [Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A2 (Canada)
2016-01-15
Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q{sub d} = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U{sub 0}) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0.
Three-dimensional charge density wave order in YBCO at high magnetic field
Lee, Wei-Sheng
Charge density wave (CDW) correlations have been shown to universally exist in cuprate superconductors. However, their nature at high magnetic fields, e . g . inferred from nuclear magnetic resonance, Hall coefficient, and sound velocity measurements, is distinct from that measured by x-ray scattering at zero and low fields. In this talk, I will discuss our recent experiment which combines a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below ~150 K, is essentially two dimensional, a three-dimensionally ordered CDW emerges at magnetic fields beyond 15 Tesla and at temperatures below the zero-field superconducting transition temperature. While the two CDW arrange differently along the c-axis, they share the same incommensurate periodicity in the CuO2plane. Our observations imply that the two forms of CDW and high-temperature superconductivity are intimately linked.
First-principles studies on the charge density wave in uranium
Qiu, Ruizhi; Lu, Haiyan; Ao, Bingyun; Tang, Tao; Chen, Piheng
2016-06-01
The charge density wave (CDW) state of α-U (called {α1} -U) was studied through a first-principles total-energy minimization using the conjugate gradient algorithm. The optimized crystal structure of {α1} -U was found to have the space group Pbnm, which was proposed in the earlier Landau-type theory and is isostructural with the α-Np structure. In particular, the changes in the lattice parameters of Pbnm-U with respect to α-U are consistent with the experimental observations. In addition, the energetic stability of Pbnm-U with respect to α-U was confirmed by enthalpy calculations, and the value of the critical pressure in the pressure-induced quantum transition from Pbnm-U to α-U is in good agreement with the experimental result. Moreover, the phonon calculation verified the dynamical instability of α-U and the stability of Pbnm-U. Finally, the calculated electronic structures exhibit features of the CDW state.
Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density
Espejel-Morales, R.; Murguía-Romero, G.; Calles, A.; Cabrera-Bravo, E.; Morán-López, J. L.
2016-07-01
We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell-like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder.