WorldWideScience

Sample records for charge coupled devices

  1. Notch Charge-Coupled Devices

    Science.gov (United States)

    Janesick, James

    1992-01-01

    Notch charge-coupled devices are imaging arrays of photodetectors designed to exhibit high charge-transfer efficiencies necessary for operation in ultra-large array, and less vulnerable to degradation by energetic protons, neutrons, and electrons. Main channel of horizontal register includes deep narrow inner channel (notch). Small packets of charge remain confined to notch. Larger packets spill into rest of channel; transferred in usual way. Degradation of charge-transfer efficiency by energetic particles reduced.

  2. Infrared response of charge-coupled devices

    NARCIS (Netherlands)

    Loch, M.; Widenhorn, R.; Bodegom, E.

    2005-01-01

    With a band gap of silicon of 1.1eV, the largest wavelength that can excite electrons from the valence to the conduction band is roughly 1100nm. As a consequence, in, for instance, a charge-coupled device, the quantum efficiency (QE) for wavelengths larger than 1100nm is assumed to be zero. We found

  3. Simulation for signal charge transfer of charge coupled devices

    Institute of Scientific and Technical Information of China (English)

    Wang Zujun; Liu Yinong; Chen Wei; Tang Benqi; Xiao Zhigang; Huang Shaoyan; Liu Minbo; Zhang Yong

    2009-01-01

    Physical device models and numerical processing methods are presented to simulate a linear buried channel charge coupled devices (CCDs). The dynamic transfer process of CCD is carried out by a three-phase clock pulse driver. By using the semiconductor device simulation software MEDICI, dynamic transfer pictures of signal charges cells, electron concentration and electrostatic potential are presented. The key parameters of CCD such as charge transfer efficiency (CTE) and dark electrons are numerically simulated. The simulation results agree with the theoretic and experimental results.

  4. Radiation damage in charge-coupled devices.

    Science.gov (United States)

    Bassler, Niels

    2010-08-01

    Due to their high sensitivity and signal-to-noise ratio, charge-coupled devices (CCDs) have been the preferred optical photon detectors of astronomers for several decades. CCDs are flown in space as the main detection instrument on several well-known missions, such as the Hubble Space Telescope, XMM-Newton or the Cassini Probe. Also, CCDs are frequently used in satellite star trackers which provide attitude information to the satellite orientation system. However, one major drawback is their extreme vulnerability to radiation, which is readily abundant in space. Here, we shall give a brief overview of the radiation effects on CCDs, and mention ways how to mitigate the effects in other ways than merely increase shielding, such as cooling and annealing. As an example, we have investigated the radiation hardness of a particular CCD, the so-called CCD47-20 from Marconi Applied Technologies (now E2V), by exposing it to radiation fields representing the radiation environment found in a highly elliptic orbit crossing the Van-Allen radiation belts. Two engineering-grade CCDs were irradiated with proton beams and photons, and effects of increased bulk dark current, surface dark current and inversion threshold voltage shifts were observed and are quantified.

  5. SEMICONDUCTOR DEVICES: Simulation for signal charge transfer of charge coupled devices

    Science.gov (United States)

    Zujun, Wang; Yinong, Liu; Wei, Chen; Benqi, Tang; Zhigang, Xiao; Shaoyan, Huang; Minbo, Liu; Yong, Zhang

    2009-12-01

    Physical device models and numerical processing methods are presented to simulate a linear buried channel charge coupled devices (CCDs). The dynamic transfer process of CCD is carried out by a three-phase clock pulse driver. By using the semiconductor device simulation software MEDICI, dynamic transfer pictures of signal charges cells, electron concentration and electrostatic potential are presented. The key parameters of CCD such as charge transfer efficiency (CTE) and dark electrons are numerically simulated. The simulation results agree with the theoretic and experimental results.

  6. Elimination of artifacts in interline charge-coupled device imagers.

    Science.gov (United States)

    Turko, B. T.; Yates, G. J.

    1991-10-01

    Charge-coupled devices (CCDs) of interline transfer design are especially useful in imaging at high frame rates. However, their sensitivity to ionization radiation and the reduced effective opacity for vertical charge transfer registers cause undesired image artifacts. Random white spots from the radiation and "ghost" images (or smear) generated in the registers may severely impair the image quality. An electronic method of eliminating these artificats is described. Special sequences of pulses clock the CCD, quickly dumping the unwanted charge. The fast readout of images, cleared of artifacts, follows immediately.

  7. Residual images in charged-coupled device detectors

    Science.gov (United States)

    Rest, Armin; Mündermann, Lars; Widenhorn, Ralf; Bodegom, Erik; McGlinn, T. C.

    2002-05-01

    We present results of a systematic study of persistent, or residual, images that occur in charged-coupled device (CCD) detectors. A phenomenological model for these residual images, also known as "ghosting," is introduced. This model relates the excess dark current in a CCD after exposure to the number of filled impurity sites which is tested for various temperatures and exposure times. We experimentally derive values for the cross section, density, and characteristic energy of the impurity sites responsible for the residual images.

  8. Surface contamination of the charge-coupled device

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An experimental method to study the influence of surface contamination of a thinned, backside illuminated charge-coupled device(CCD) upon its quantum efficiency in soft X-ray region is suggested. A transmission grating spectrometer(TGS),in which the transmission grating is coupled to a thinned, backside illuminated charge coupled device, is used to measure the continuum X-ray emission from the end of cylindrical target irradiated by laser. In the measured spectra, only the carbon K absorption edge at wavelength of 4.4nm due to condensation of the vacuum oil on the CCD surface is clearly seen. The surface contamination is considered as an effective "carbon filter" and the filter absorption to correct the quantum efficiency of the CCD camera is taken into account. The effective thickness of the carbon filter is determined by comparing the jump height of the measured spectra at 4.4nm with those of the carbon absorption coefficient curves obtained from various carbon thickness. The accuracy of this method is tested by comparing the X-ray spectrum measured by the TGS with that obtained by a soft X-ray spectrometer.

  9. Single molecule detection using charge-coupled device array technology

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  10. Imaging charge-coupled devices for deep-space surveillance

    Science.gov (United States)

    Streuber, D. W., Jr.; Bailis, E. I.

    1980-01-01

    The Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) system will employ a SIT vidicon camera to detect satellites. Imaging charge-coupled devices (CCDs) are being evaluated as a means to improve GEODSS capability. This paper presents performance models and uses them to evaluate currently available CCDs and to determine the characteristics of the ideal CCD array for GEODSS. The analysis includes an approach for determining the CCD pixel size which maximizes signal-to-noise ratio; this approach can be used in many applications. The impact of response nonuniformity and a simple compensation method are also discussed. The combination of a suitable CCD array, response nonuniformity compensation, and moving target indicator (MTI) processing is expected to substantially increase the detection and search rate capability of the GEODSS system.

  11. High speed single charge coupled device Cranz-Schardin camera

    Science.gov (United States)

    Deblock, Y.; Ducloux, O.; Derbesse, L.; Merlen, A.; Pernod, P.

    2007-03-01

    This article describes an ultrahigh speed visualization system based on a miniaturization of the Cranz-Schardin principle. It uses a set of high power light emitting diodes (LEDs) (Golden Dragon) as the light source and a highly sensitive charge coupled device (CCD) camera for reception. Each LED is fired in sequence and images the refraction index variation between two relay lenses, on a partial region of a CCD image sensor. The originality of this system consists in achieving several images on a single CCD during a frame time. The number of images is 4. The time interval between successive firings determines the speed of the imaging system. This time lies from 100nsto10μs. The light pulse duration lies from 100nsto10μs. The principle and the optical and electronic parts of such a system are described. As an example, some images of acoustic waves propagating in water are presented.

  12. An Efficient Image Compressor for Charge Coupled Devices Camera

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available Recently, the discrete wavelet transforms- (DWT- based compressor, such as JPEG2000 and CCSDS-IDC, is widely seen as the state of the art compression scheme for charge coupled devices (CCD camera. However, CCD images project on the DWT basis to produce a large number of large amplitude high-frequency coefficients because these images have a large number of complex texture and contour information, which are disadvantage for the later coding. In this paper, we proposed a low-complexity posttransform coupled with compressing sensing (PT-CS compression approach for remote sensing image. First, the DWT is applied to the remote sensing image. Then, a pair base posttransform is applied to the DWT coefficients. The pair base are DCT base and Hadamard base, which can be used on the high and low bit-rate, respectively. The best posttransform is selected by the lp-norm-based approach. The posttransform is considered as the sparse representation stage of CS. The posttransform coefficients are resampled by sensing measurement matrix. Experimental results on on-board CCD camera images show that the proposed approach significantly outperforms the CCSDS-IDC-based coder, and its performance is comparable to that of the JPEG2000 at low bit rate and it does not have the high excessive implementation complexity of JPEG2000.

  13. Radiation-induced noise in Charge-Coupled Device (CCD) and Charge-Injection Device (CID) imagers

    Science.gov (United States)

    Yates, George J.; Turko, Bojan T.

    1990-08-01

    Measurements of radiation sensitivity for interline transfer charge-coupled devices (CCDs) and charge-injection devices (CIDs) from irradiation with high-energy photons (CO-60 gammas and 3-to 5-MeV end-point Bremsstrahlung) and 14-MeV neutrons are presented to establish imager susceptibility in such environments. Results from electric clearing techniques designed for quick (approximately 300 microseconds for the CCDs and approximately 10 microseconds for CIDs) removal (or dumping) of radiation-induced charge from prompt sources are discussed. Application of the techniques coupled with long (microsecond to millisecond) persistence radiation-to-light converters for image retention is described. Typical data illustrating the effectiveness of charge clearing in removal of radiation noise are included for nanosecond duration pulsed x ray/gamma-ray doses (50 millirad to 5-rad range) and microsecond duration neutron fluences approaching 10(exp 8) n/sq cm.

  14. Plasma effect in silicon charge coupled devices (CCDs)

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, J., E-mail: estrada@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Molina, J., E-mail: jmolina@ing.una.py [Facultad de Ingenieria, Universidad Nacional de Asuncion, Laboratorio de Mecanica y Energia, Campus de la UNA, San Lorenzo 2160 (Paraguay); Blostein, J.J., E-mail: jeronimo@cab.cnea.gov.ar [CONICET (Argentina); Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Bariloche (Argentina); Fernandez, G., E-mail: fmoroni.guillermo@gmail.com [Universidad Nacional del Sur, Bahia Blanca (Argentina)

    2011-02-11

    Plasma effect is observed in CCDs exposed to heavy ionizing {alpha}-particles with energies in the range 0.5-5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agree with previous measurements in the high energy region ({>=}3.5 MeV). The measurements were extended to lower energies using {alpha}-particles produced by (n,{alpha}) reactions of neutrons in a {sup 10}B target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of {alpha} particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  15. Plasma effect in Silicon Charge Couple Devices (CCDs)

    CERN Document Server

    Estrada, Juan; Blostein, J

    2011-01-01

    Plasma effect is observed in CCDs exposed to heavy ionizing alpha-particles with energies in the range 0.5 - 5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agrees with previous measurements in the high energy region (>3.5 MeV). The measurements were extended to lower energies using alpha-particles produced by (n,alpha) reactions of neutrons in a Boron-10 target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of alpha particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  16. A Charge-Coupled Device CCD line-scan system for road luminance measurement.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1996-01-01

    The problems involved in measuring road luminance are discussed and a new measuring system described which is based on a line-scan Charge Coupled Device (CCD) configuration. It is designed for the assessment of average road surface luminance and degree of non-uniformity of road lighting. Additionall

  17. Determining the Spectral Resolution of a Charge-Coupled Device (CCD) Raman Instrument

    DEFF Research Database (Denmark)

    Liu, Chuan; Berg, Rolf W.

    2012-01-01

    A new method based on dispersion equations is described to express the spectral resolution of an applied charge-coupled device (CCD) Czerny-Turner Raman instrument entirely by means of one equation and principal factors determined by the actual setup. The factors involved are usual quantities suc...

  18. Feedback Direct Injection Current Readout For Infrared Charge-Coupled Devices

    Science.gov (United States)

    Kubo, Kazuya; Wakayama, Hiroyuki; Kajihara, Nobuyuki; Awamoto, Kenji; Miyamoto, Yoshihiro

    1990-01-01

    We are proposing current readout for infrared charge coupled devices (IRCCDs) which can operate at higher temperatures. Feedback direct injection (FDI) consists of a simple amplifier of gain, AFDI was used in a medium-wavelength IRCCD operating at a high temperature. We made a 64-element HgCdTe linear IRCCD using FDI. The device operates at 195 K with an NETD of 0.5 K.

  19. The application of charge-coupled device processors in automatic-control systems

    Science.gov (United States)

    Mcvey, E. S.; Parrish, E. A., Jr.

    1977-01-01

    The application of charge-coupled device (CCD) processors to automatic-control systems is suggested. CCD processors are a new form of semiconductor component with the unique ability to process sampled signals on an analog basis. Specific implementations of controllers are suggested for linear time-invariant, time-varying, and nonlinear systems. Typical processing time should be only a few microseconds. This form of technology may become competitive with microprocessors and minicomputers in addition to supplementing them.

  20. Fully-depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen E.; Groom, Donald E.; Palaio, Nick P.; Stover, Richard J.; Wei, Mingzhi

    2002-03-28

    Charge-coupled devices (CCD's) have been fabricated on high-resistivity silicon. The resistivity, on the order of 10,000 {Omega}-cm, allows for depletion depths of several hundred microns. Fully-depleted, back-illuminated operation is achieved by the application of a bias voltage to a ohmic contact on the wafer back side consisting of a thin in-situ doped polycrystalline silicon layer capped by indium tin oxide and silicon dioxide. This thin contact allows for good short wavelength response, while the relatively large depleted thickness results in good near-infrared response.

  1. Single molecule detection using charge-coupled device array technology. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  2. Noise analysis and measurement of time delay and integration charge coupled device

    Institute of Scientific and Technical Information of China (English)

    Wang De-Jiang; Zhang Tao

    2011-01-01

    Time delay and integration(TDI)charge coupled device(CCD)noise sets a fundamental limit on image sensor performance,especially under low illumination in remote sensing applications.After introducing the complete sources of CCD noise,we study the effects of TDI operation mode on noise,and the relationship between different types of noise and number of the TDI stage.Then we propose a new technique to identify and measure sources of TDI CCD noise employing mathematical statistics theory,where theoretical analysis shows that noise estimated formulation converges well.Finally,we establish a testing platform to carry out experiments,and a standard TDI CCD is calibrated by using the proposed method.The experimental results show that the noise analysis and measurement methods presented in this paper are useful for modeling TDI CCDs.

  3. Design and evaluation of a high-performance charge coupled device camera for astronomical imaging

    Science.gov (United States)

    Shang, Yuanyuan; Zhang, Jie; Guan, Yong; Zhang, Weigong; Pan, Wei; Liu, Hui

    2009-10-01

    The Space Solar Telescope (SST) is the first Chinese space astronomy mission. This paper introduces the design of a high-performance 2K × 2K charge coupled device (CCD) camera that is an important payload in the Space Solar Telescope. The camera is composed of an analogue system and a digital embedded system. The analogue system is first discussed in detail, including the power and bias voltage supply circuit, power protection unit, CCD clock driver circuit, 16 bit A/D converter and low-noise amplifier circuit. The digital embedded system integrated with an NIOS II soft-core processor serves as the control and data acquisition system of the camera. In addition, research on evaluation methods for CCDs was carried out to evaluate the performance of the TH7899 CCD camera in relation to the requirements of the SST project. We present the evaluation results, including readout noise, linearity, quantum efficiency, dark current, full-well capacity, charge transfer efficiency and gain. The results show that this high-performance CCD camera can satisfy the specifications of the SST project.

  4. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    Energy Technology Data Exchange (ETDEWEB)

    Plimley, Brian, E-mail: brian.plimley@gmail.com [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Coffer, Amy; Zhang, Yigong [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Vetter, Kai [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-08-11

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  5. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    Science.gov (United States)

    Plimley, Brian; Coffer, Amy; Zhang, Yigong; Vetter, Kai

    2016-08-01

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  6. An image compression method for space multispectral time delay and integration charge coupled device camera

    Institute of Scientific and Technical Information of China (English)

    Li Jin; Jin Long-Xu; Zhang Ran-Feng

    2013-01-01

    Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a lowcomplexity encoder because it is usually completed on board where the energy and memory are limited.The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware.However,it cannot reduce spectral redundancy in multispectral images.In this paper,we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands.Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient.The output of bit plane extractor will be encoded by a first order entropy coder.Low-density parity-check-based Slepian-Wolf (SW) coder is adopted to implement the DSC strategy.Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band.

  7. Charge Coupled Devices for detection of coherent neutrino-nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Moroni, Guillermo [Fermilab; Estrada, Juan [Fermilab; Paolini, Eduardo E. [Buenos Aires U.; Cancelo, Gustavo [Fermilab; Tiffenberg, Javier [Fermilab; Molina, Jorge [Asuncion Natl. U.

    2015-04-03

    In this article the feasibility of using charge coupled devices (CCD) to detect low-energy neutrinos through their coherent scattering with nuclei is analyzed. The detection of neutrinos through this standard model process has been elusive because of the small energy deposited in such interaction. Typical particle detectors have thresholds of a few keV, and most of the energy deposition expected from coherent scattering is well below this level. The CCD detectors discussed in this paper can operate at a threshold of approximately 30 eV, making them ideal for observing this signal. On a CCD array of 500 g located next to a power nuclear reactor the number of coherent scattering events expected is about 3000 events/year. Our results shows that a detection with a confidence level of 99% can be reached within 16 days of continuous operation; with the current 52 g detector prototype this time lapse extends to five months.

  8. A charge coupled device camera with electron decelerator for intermediate voltage electron microscopy.

    Science.gov (United States)

    Downing, Kenneth H; Mooney, Paul E

    2008-04-01

    Electron microscopists are increasingly turning to intermediate voltage electron microscopes (IVEMs) operating at 300-400 kV for a wide range of studies. They are also increasingly taking advantage of slow-scan charge coupled device (CCD) cameras, which have become widely used on electron microscopes. Under some conditions, CCDs provide an improvement in data quality over photographic film, as well as the many advantages of direct digital readout. However, CCD performance is seriously degraded on IVEMs compared to the more conventional 100 kV microscopes. In order to increase the efficiency and quality of data recording on IVEMs, we have developed a CCD camera system in which the electrons are decelerated to below 100 kV before impacting the camera, resulting in greatly improved performance in both signal quality and resolution compared to other CCDs used in electron microscopy. These improvements will allow high-quality image and diffraction data to be collected directly with the CCD, enabling improvements in data collection for applications including high-resolution electron crystallography, single particle reconstruction of protein structures, tomographic studies of cell ultrastructure, and remote microscope operation. This approach will enable us to use even larger format CCD chips that are being developed with smaller pixels.

  9. Charge coupled devices for detection of coherent neutrino-nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Moroni, Guillermo; Estrada, Juan; Paolini, Eduardo E.; Cancelo, Gustavo; Tiffenberg, Javier; Molina, Jorge

    2015-04-01

    In this article the feasibility of using charge coupled devices (CCD) to detect low-energy neutrinos through their coherent scattering with nuclei is analyzed. The detection of neutrinos through this standard model process has been elusive because of the small energy deposited in such interaction. Typical particle detectors have thresholds of a few keV, and most of the energy deposition expected from coherent scattering is well below this level. The CCD detectors discussed in this paper can operate at a threshold of approximately 30 eV, making them ideal for observing this signal. On a CCD array of 500 g located next to a power nuclear reactor the number of coherent scattering events expected is about 3000 events/year. Our results shows that a detection with a confidence level of 99% can be reached within 16 days of continuous operation; with the current 52 g detector prototype this time lapse extends to five months.

  10. Charge-coupled device spectrograph for direct solar irradiance and sky radiance measurements.

    Science.gov (United States)

    Kouremeti, Natalia; Bais, Alkiviadis; Kazadzis, Stelios; Blumthaler, Mario; Schmitt, Rainer

    2008-04-01

    The characterization of a charged-coupled device (CCD) spectrograph developed at the Laboratory of Atmospheric Physics, Thessaloniki is presented. The absolute sensitivity of the instrument for direct irradiance and sky radiance measurements was determined, respectively, with an uncertainty of 4.4% and 6.6% in the UV-B, and 3% and 6% in the UV-A, visible and near-infrared (NIR) wavelength ranges. The overall uncertainty associated with the direct irradiance and the sky radiance measurements is, respectively, of the order of 5% and 7% in the UV-B, increasing to 10% for low signals [e.g., at solar zenith angles (SZAs) larger than 70 degrees ], and 4% and 6% in the UV-A, visible, and NIR. Direct solar spectral irradiance measurements from an independently calibrated spectroradiometer (Bentham DTM 300) were compared with the corresponding CCD measurements. Their agreement in the wavelength range of 310-500nm is within 0.5% +/- 1.1% (for SZA between 20 degrees and 70 degrees ). Aerosol optical depth (AOD) derived by the two instruments using direct Sun spectra and by a collocated Cimel sunphotometer [Aerosol Robotic network (AERONET)] agree to within 0.02 +/- 0.02 in the range of 315-870 nm. Significant correlation coefficients with a maximum of 0.99 in the range of 340-360 nm and a minimum of 0.90 at 870 nm were found between synchronous AOD measurements with the Bentham and the Cimel instruments.

  11. Quantifying the performance of charge-coupled devices in ambient conditions - Oral presentation

    Energy Technology Data Exchange (ETDEWEB)

    Dungee, Ryan [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-22

    Telescope surveys have given us a great deal of information about our universe, but the images they capture carry with them an inherent limitation. The question then is how do we take this information to the next level? The answer: the Dark Energy Spectroscopic Instrument (DESI). DESI is an instrument that will measure the distance to tens of millions of galaxies in our night sky. This information can be combined with already existing images to construct a three dimensional map of our universe providing a great deal of new opportunities for cosmological research. The DESI guidance system consists of 10 detectors called charge-coupled devices (CCDs). Each CCD is made of silicon atoms that emit electrons when struck with light, the electrons are counted and then used to reconstruct an image. But, CCDs suffer from an issue known as ‘dark current’ which are false counts that come from thermal motions of the silicon atoms. This is particularly problematic since they contribute to the uncertainty of a measurement without contributing to our signal. This causes a drop in the signal to noise ratio, a value that needs to be maximized in order to meet DESI’s high precision requirements. This summer was spent ensuring the DESI guidance system would meet its specifications. Data was collected using a CCD of the same type that would be used on DESI and the effectiveness of dark current removal was tested. Exposures were taken for a wide range of temperatures and exposure lengths and a number of dark current removal methods were implemented. While further testing is required, the initial results are quite promising and the DESI guidance system is on track to meet its specifications

  12. Test of scintillator bars coupled to Silicon Photomultipliers for a charged particle tracking device

    Science.gov (United States)

    Cecchini, S.; D'Antone, I.; Esposti, L. Degli; Lax, I.; Mandrioli, G.; Mauri, N.; Pasqualini, L.; Patrizii, L.; Pozzato, M.; Sirri, G.; Tenti, M.

    2017-02-01

    This work is the first step in the implementation of a tracking detector for instrumenting a light spectrometer to study O(1 GeV) νμ CC interactions. A spatial resolution of O(1 mm) is required for the precise determination of momentum and charge of muons produced in such interactions. A tracking system prototype composed of planes of scintillator bars coupled to Silicon Photomultipliers in analog mode readout has been developed. The devised system provides a spatial resolution of better than 2 mm in reconstructing muon tracks. Results obtained in laboratory tests and with cosmic ray muons are discussed.

  13. Development of a novel neutron detection technique by using a boron layer coating a Charge Coupled Device

    CERN Document Server

    Blostein, Juan Jerónimo; Tartaglione, Aureliano; Haro, Miguel Sofo; Moroni, Guillermo Fernández; Cancelo, Gustavo

    2014-01-01

    This article describes the design features and the first test measurements obtained during the installation of a novel high resolution 2D neutron detection technique. The technique proposed in this work consists of a boron layer (enriched in ${^{10}}$B) placed on a scientific Charge Coupled Device (CCD). After the nuclear reaction ${^{10}}$B(n,$\\alpha$)${^{7}}$Li, the CCD detects the emitted charge particles thus obtaining information on the neutron absorption position. The above mentioned ionizing particles, with energies in the range 0.5-5.5 MeV, produce a plasma effect in the CCD which is recorded as a circular spot. This characteristic circular shape, as well as the relationship observed between the spot diameter and the charge collected, is used for the event recognition, allowing the discrimination of undesirable gamma events. We present the first results recently obtained with this technique, which has the potential to perform neutron tomography investigations with a spatial resolution better than that...

  14. Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Kevin B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, Otis R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benjamin, Russ [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlop, William H [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-29

    -of-burial until it reached a value of one at a DOB between 15m and 20m. These simulations confirm the expected result that the variation of coupling to the ground, or the air, change s much more rapidly with emplacement location for a high-energy-density (i.e., nuclear-like) explosive source than it does for relatively low - energy - density chemical explosive sources. The Energy Partitioning, Energy Coupling (EPEC) platform at LLNL utilizes laser energy from one quad (i.e. 4-laser beams) of the 192 - beam NIF Laser bank to deliver ~10kJ of energy to 1mg of silver in a hohlraum creating an effective small-explosive ‘source’ with an energy density comparable to those in low-yield nuclear devices. Such experiments have the potential to provide direct experimental confirmation of the simulation results obtained in this study, at a physical scale (and time-scale) which is a factor of 1000 smaller than the spatial- or temporal-scales typically encountered when dealing with nuclear explosions.

  15. Development of a novel neutron detection technique by using a boron layer coating a Charge Coupled Device

    Energy Technology Data Exchange (ETDEWEB)

    Blostein, Juan Jerónimo; Estrada, Juan; Tartaglione, Aureliano; Sofo haro, Miguel; Fernández Moroni, Guillermo; Cancelo, Gustavo

    2015-01-19

    This article describes the design features and the first test measurements obtained during the installation of a novel high resolution 2D neutron detection technique. The technique proposed in this work consists of a boron layer (enriched in ${^{10}}$B) placed on a scientific Charge Coupled Device (CCD). After the nuclear reaction ${^{10}}$B(n,$\\alpha$)${^{7}}$Li, the CCD detects the emitted charge particles thus obtaining information on the neutron absorption position. The above mentioned ionizing particles, with energies in the range 0.5-5.5 MeV, produce a plasma effect in the CCD which is recorded as a circular spot. This characteristic circular shape, as well as the relationship observed between the spot diameter and the charge collected, is used for the event recognition, allowing the discrimination of undesirable gamma events. We present the first results recently obtained with this technique, which has the potential to perform neutron tomography investigations with a spatial resolution better than that previously achieved. Numerical simulations indicate that the spatial resolution of this technique will be about 15 $\\mu$m, and the intrinsic detection efficiency for thermal neutrons will be about 3 %. We compare the proposed technique with other neutron detection techniques and analyze its advantages and disadvantages.

  16. MIDAS prototype Multispectral Interactive Digital Analysis System for large area earth resources surveys. Volume 2: Charge coupled device investigation

    Science.gov (United States)

    Kriegler, F.; Marshall, R.; Sternberg, S.

    1976-01-01

    MIDAS is a third-generation, fast, low cost, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from large regions with present and projected sensors. MIDAS, for example, can process a complete ERTS frame in forty seconds and provide a color map of sixteen constituent categories in a few minutes. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The need for advanced onboard spacecraft processing of remotely sensed data is stated and approaches to this problem are described which are feasible through the use of charge coupled devices. Tentative mechanizations for the required processing operations are given in large block form. These initial designs can serve as a guide to circuit/system designers.

  17. Teaching Charge Coupled Devices Using Models as Part of the Engineering Design Process at Maui Community College

    CERN Document Server

    Mostafanezhad, Isar; Rozic, Ciril; Harrington, David; Jacobs, Brad; Swindle, Ryan; Reader, Elisabeth

    2010-01-01

    The CCD Modeling Activity was designed to supplement the curriculum of the Electrical and Computing Engineering Technology program at the Maui Community College. The activity was designed to help learners understand how a Charge Coupled Device (CCD) works. A team of visiting graduate students was invited to teach an activity through the Teaching and Curriculum Collaborative (TeCC) as part of the Center for Adaptive Optics/Institute for Science and Engineer Educators Professional Development Program. One of the primary goals was to have students gain an understanding of the function of a CCD by constructing a model representing the CCD readout process. In this paper we discuss the design and implementation of the activity and the challenges we faced.

  18. Low-cost compact diffuse speckle contrast flowmeter using small laser diode and bare charge-coupled-device

    Science.gov (United States)

    Huang, Chong; Seong, Myeongsu; Morgan, Joshua Paul; Mazdeyasna, Siavash; Kim, Jae Gwan; Hastings, Jeffrey Todd; Yu, Guoqiang

    2016-08-01

    We report a low-cost compact diffuse speckle contrast flowmeter (DSCF) consisting of a small laser diode and a bare charge-coupled-device (CCD) chip, which can be used for contact measurements of blood flow variations in relatively deep tissues (up to ˜8 mm). Measurements of large flow variations by the contact DSCF probe are compared to a noncontact CCD-based diffuse speckle contrast spectroscopy and a standard contact diffuse correlation spectroscopy in tissue phantoms and a human forearm. Bland-Altman analysis shows no significant bias with good limits of agreement among these measurements: 96.5%±2.2% (94.4% to 100.0%) in phantom experiments and 92.8% in the forearm test. The relatively lower limit of agreement observed in the in vivo measurements (92.8%) is likely due to heterogeneous reactive responses of blood flow in different regions/volumes of the forearm tissues measured by different probes. The low-cost compact DSCF device holds great potential to be broadly used for continuous and longitudinal monitoring of blood flow alterations in ischemic/hypoxic tissues, which are usually associated with various vascular diseases.

  19. Design, fabrication, and evaluation of charge-coupled devices with aluminum-anodized-aluminum gates

    Science.gov (United States)

    Gassaway, J. D.; Causey, W. H., Jr.

    1977-01-01

    A 4-phase, 49 1/2 bit CCD shift register was designed and fabricated using two levels of aluminum metallization with anodic Al2O3 insulation separating the layers. Test circuitry was also designed and constructed. A numerical analysis of an MOS-RC transmission line was made and results are given to characterize performance for various conductivities. The electrical design of the CCD included a low-noise dual-gate input and a balanced floating diffusion output circuit. Metallization was accomplished both by low voltage DC sputtering and thermal evaporation. The audization was according to published procedures using a buffered tartaric acid bath. Approximately 20 wafers were processed with 50 complete chips per wafer. All devices failed by shorting between the metal levels at some point. Experimental procedures eliminated temperature effects from sintering and drying, anodic oxide thickness, edge effects, photoresist stripping procedures, and metallization techniques as the primary causes of failure. It was believed from a study of SEM images that protuberances (hillocks) grow up from the first level metal through the oxide either causing a direct short or producing a weak, highly stressed insulation point which fails at low voltage. The cause of these hillocks is unknown; however, they have been observed to grow during temperature excursions to 470 C.

  20. Suppressing the charged coupled device noise in univariate thin-layer videoscans: a comparison of several algorithms.

    Science.gov (United States)

    Komsta, Lukasz

    2009-03-20

    The digital processing of chromatographic thin-layer plate images has increasing popularity among last years. When using a camera instead of flatbed scanner, the charged coupled device (CCD) noise is a well-known problem-especially when scanning dark plates with weakly fluorescing spots. Various techniques are proposed to denoise (smooth) univariate signals in chemometric processing, but the choice could be difficult. In the current paper the classical filters (Savitzky-Golay, adaptive degree polynomial filter, Fourier denoising, Butterworth and Chebyshev infinite impulse response filters) were compared with the wavelet shrinkage (31 mother wavelets, 3 thresholding techniques and 8 decomposition levels). The signal obtained from 256 averaged videoscans was treated as the reference signal (with noise naturally suppressed, which was found to be almost white one). The best choice for denoising was the Haar mother wavelet with soft denoising and any decomposition level larger than 1. Satisfying similarity to reference signal was also observed in the case of Butterworth filter, Savitzky-Golay smoothing, ADPF filter, Fourier denoising and soft-thresholded wavelet shrinkage with any mother wavelet and middle to high decomposition level. The Chebyshev filters, Whittaker smoother and wavelet shrinkage with hard thresholding were found to be less efficient. The results obtained can be used as general recommendations for univariate denoising of such signals.

  1. Improving the spatial resolution of soft X-ray detection using an Electron-Multiplying Charge-Coupled Device

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-01-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) is an instrument at the Swiss Light Source designed for Resonant Inelastic X-ray Scattering with an energy resolution (E/ΔE) better than 12000 at 930 eV. Improvements to the instrument have been predicted that could allow the energy resolution to be improved by a factor of two. To achieve this, the spatial resolution of the detector (currently a Charge-Coupled Device, CCD) over which the energy spectrum is dispersed would have to be improved to better than 5 μm. X-ray photons with energies between a few hundred to a few thousand electron volts primarily interact within the field-free region of back-illuminated CCDs, where each photon forms an electron cloud that diffuses isotropically before reaching the depleted region close to the electrodes. Each photon's electron cloud is likely to be detected as an event with signal split across multiple pixels. Analysing these split events using centroiding techniques allows the photon's interaction position to be determined to a sub-pixel level. PolLux is a soft X-ray microspectroscopy endstation at the Swiss Light Source that can focus 200 eV to 1200 eV X-rays to a spot size of approximately 20 nm. Previous studies using data taken with a linear scan across the centre of a pixel in 3 μm steps predicted an improved resolution by applying centroiding techniques and using an Electron-Multiplying CCD (EM-CCD). In this study, a full 2D map of the centroiding accuracy in the pixel is presented, formed by rastering in two dimensions across the image plane in single micron steps. The improved spatial resolution from centroiding events in the EM-CCD in all areas of the pixel over the standard CCD is attributed to the improved signal to noise ratio provided by the multiplication register even at high pixel readout speeds (tens of MHz).

  2. Multiscale modeling of nanostructured ZnO based devices for optoelectronic applications: Dynamically-coupled structural fields, charge, and thermal transport processes

    Science.gov (United States)

    Abdullah, Abdulmuin; Alqahtani, Saad; Nishat, Md Rezaul Karim; Ahmed, Shaikh; SIU Nanoelectronics Research Group Team

    Recently, hybrid ZnO nanostructures (such as ZnO deposited on ZnO-alloys, Si, GaN, polymer, conducting oxides, and organic compounds) have attracted much attention for their possible applications in optoelectronic devices (such as solar cells, light emitting and laser diodes), as well as in spintronics (such as spin-based memory, and logic). However, efficiency and performance of these hybrid ZnO devices strongly depend on an intricate interplay of complex, nonlinear, highly stochastic and dynamically-coupled structural fields, charge, and thermal transport processes at different length and time scales, which have not yet been fully assessed experimentally. In this work, we study the effects of these coupled processes on the electronic and optical emission properties in nanostructured ZnO devices. The multiscale computational framework employs the atomistic valence force-field molecular mechanics, models for linear and non-linear polarization, the 8-band sp3s* tight-binding models, and coupling to a TCAD toolkit to determine the terminal properties of the device. A series of numerical experiments are performed (by varying different nanoscale parameters such as size, geometry, crystal cut, composition, and electrostatics) that mainly aim to improve the efficiency of these devices. Supported by the U.S. National Science Foundation Grant No. 1102192.

  3. Short and long term ionizing radiation effects on charge-coupled devices in radiation environment of high-intensity heavy ion accelerators

    Science.gov (United States)

    Belousov, A.; Mustafin, E.; Ensinger, W.

    2012-11-01

    Radiation effects on semiconductor devices is a topical issue for high-intensity accelerator projects. In particular it concerns Charge-Coupled Device (CCD) cameras, which are widely used for beam profile monitoring and surveillance in high radiation environment. One should have a clear idea of short and long term radiation effects on such devices. To study these effects, a CCD camera was placed in positions less than half meter away from beam loss point. Primary heavy ion beam of 0.95GeV/n Uranium was dumped into a thick aluminium target creating high fluences of secondary particles (e.g., gammas, neutrons, protons). Effects of these particles on CCD camera were scored with LabView based acquisition software. Monte Carlo calculations with FLUKA code were performed to obtain fluence distributions for different particles and make relevant comparisons. Long term total ionising dose effects are represented by dark current increase, which was scored throughout experiment. Instant radiation effects are represented by creation of charge in CCD cells by ionising particles. Relation of this charge to beam intensity was obtained for different camera positions and fluences within 5 orders of magnitude ranges. With high intensities this charge is so high that it may dramatically influence data obtained from CCD camera used in high radiation environment. The linearity of described above relation confirms linear response of CCD to ionizing radiation. It gives an opportunity to find a new application to CCD cameras as beam loss monitors (BLM).

  4. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kameshima, Takashi [JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ono, Shun; Kudo, Togo; Ozaki, Kyosuke; Kirihara, Yoichi; Kobayashi, Kazuo; Inubushi, Yuichi [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Yabashi, Makina; Hatsui, Takaki, E-mail: hatsui@spring8.or.jp [JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Horigome, Toshio [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); Holland, Andrew; Holland, Karen [XCam, Ltd, 2 Stone Circle Road, Round Spinney Industrial Estate, Northampton NN3 8RF (United Kingdom); Burt, David [e2v, 106 Waterhouse Lane, Chelmsford, Essex CM1 2QU (United Kingdom); Murao, Hajime [Meisei Electric Co. Ltd, Naganuma 2223, Isesaki, Gunma 372-8585 (Japan)

    2014-03-15

    This paper presents development of an X-ray pixel detector with a multi-port charge-coupled device (MPCCD) for X-ray Free-Electron laser experiments. The fabrication process of the CCD was selected based on the X-ray radiation hardness against the estimated annual dose of 1.6 × 10{sup 14} photon/mm{sup 2}. The sensor device was optimized by maximizing the full well capacity as high as 5 Me- within 50 μm square pixels while keeping the single photon detection capability for X-ray photons higher than 6 keV and a readout speed of 60 frames/s. The system development also included a detector system for the MPCCD sensor. This paper summarizes the performance, calibration methods, and operation status.

  5. An integrated enzyme-linked immunosorbent assay system with an organic light-emitting diode and a charge-coupled device for fluorescence detection.

    Science.gov (United States)

    Nakajima, Hizuru; Okuma, Yukiko; Morioka, Kazuhiro; Miyake, Mayo; Hemmi, Akihide; Tobita, Tatsuya; Yahiro, Masayuki; Yokoyama, Daisuke; Adachi, Chihaya; Soh, Nobuaki; Nakano, Koji; Xue, Shuhua; Zeng, Hulie; Uchiyama, Katsumi; Imato, Toshihiko

    2011-10-01

    A fluorescence detection system for a microfluidic device using an organic light-emitting diode (OLED) as the excitation light source and a charge-coupled device (CCD) as the photo detector was developed. The OLED was fabricated on a glass plate by photolithography and a vacuum deposition technique. The OLED produced a green luminescence with a peak emission at 512 nm and a half bandwidth of 55 nm. The maximum external quantum efficiency of the OLED was 7.2%. The emission intensity of the OLED at 10 mA/cm(2) was 13 μW (1.7 mW/cm(2)). The fluorescence detection system consisted of the OLED device, two band-pass filters, a five microchannel poly(dimethylsiloxane) (PDMS) microfluidic device and a linear CCD. The fluorescence detection system was successfully used in a flow-based enzyme-linked immunosorbent assay on a PDMS microfluidic device for the rapid determination of immunoglobulin A (IgA), a marker for human stress. The detection limit (S/N=3) for IgA was 16.5 ng/mL, and the sensitivity was sufficient for evaluating stress. Compared with the conventional 96-well microtiter plate assay, the analysis time and the amounts of reagent and sample solutions could all be reduced.

  6. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors.

    Science.gov (United States)

    Seon, C R; Choi, S H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2010-10-01

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  7. Experimental study of heavy-ion computed tomography using a scintillation screen and an electron-multiplying charged coupled device camera for human head imaging

    Science.gov (United States)

    Muraishi, Hiroshi; Hara, Hidetake; Abe, Shinji; Yokose, Mamoru; Watanabe, Takara; Takeda, Tohoru; Koba, Yusuke; Fukuda, Shigekazu

    2016-03-01

    We have developed a heavy-ion computed tomography (IonCT) system using a scintillation screen and an electron-multiplying charged coupled device (EMCCD) camera that can measure a large object such as a human head. In this study, objective with the development of the system was to investigate the possibility of applying this system to heavy-ion treatment planning from the point of view of spatial resolution in a reconstructed image. Experiments were carried out on a rotation phantom using 12C accelerated up to 430 MeV/u by the Heavy-Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS). We demonstrated that the reconstructed image of an object with a water equivalent thickness (WET) of approximately 18 cm was successfully achieved with the spatial resolution of 1 mm, which would make this IonCT system worth applying to the heavy-ion treatment planning for head and neck cancers.

  8. Shuttle and Transfer Orbit Thermal Analysis and Testing of the Chandra X-Ray Observatory Charge-Couple Device Imaging Spectrometer Radiator Shades

    Science.gov (United States)

    Sharp, John R.

    1999-01-01

    Thermal analyses of the Shuttle and Transfer Orbit of the Advanced X-Ray Astrophysics Facility Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS), one of two science instruments on the Chandra X-Ray Observatory, revealed a low-earth orbit (LEO) overheating problem on the goldized Kapton faces of two radiator shades. The shades were coated with the goldized Kapton to provide a low hemispherical emittance to minimize direct and backloaded heating from the sun and the observatory and high specularity to optimize the coupling to space on two passive radiators which cool the focal plane to -120 C +/- 1 C during on-orbit operations. Since the observatory has a highly elliptical final orbit of 10,000 kilometers by 140,000 kilometers and the ACIS radiators and shades are oriented anti-sun, the high solar absorptance to emittance ratio of the goldized Kapton was not an issue. However, during Shuttle bay-to-earth operations, the short duration solar heating occurring near the eclipse entry and exit resulted in shade temperatures in excess of the cure temperature of the adhesive used to bond the goldized Kapton and honeycomb face-sheets. The detailed thermal analysis demonstrating the LEO overheating as well as the redesign options and thermal testing of a redesigned development unit shade are presented.

  9. Design of Low-Noise Output Amplifiers for P-channel Charge-Coupled Devices Fabricated on High-Resistivity Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Haque, S; Frost, F Dion R.; Groulx, R; Holland, S E; Karcher, A; Kolbe, W F; Roe, N A; Wang, G; Yu, Y

    2011-12-22

    We describe the design and optimization of low-noise, single-stage output amplifiers for p-channel charge-coupled devices (CCDs) used for scientific applications in astronomy and other fields. The CCDs are fabricated on high-resistivity, 4000–5000 -cm, n-type silicon substrates. Single-stage amplifiers with different output structure designs and technologies have been characterized. The standard output amplifier is designed with an n{sup +} polysilicon gate that has a metal connection to the sense node. In an effort to lower the output amplifier readout noise by minimizing the capacitance seen at the sense node, buried-contact technology has been investigated. In this case, the output transistor has a p{sup +} polysilicon gate that connects directly to the p{sup +} sense node. Output structures with buried-contact areas as small as 2 μm × 2 μm are characterized. In addition, the geometry of the source-follower transistor was varied, and we report test results on the conversion gain and noise of the various amplifier structures. By use of buried-contact technology, better amplifier geometry, optimization of the amplifier biases and improvements in the test electronics design, we obtain a 45% reduction in noise, corresponding to 1.7 e{sup -} rms at 70 kpixels/sec.

  10. A new method for polychromatic X-ray μLaue diffraction on a Cu pillar using an energy-dispersive pn-junction charge-coupled device.

    Science.gov (United States)

    Abboud, A; Kirchlechner, C; Send, S; Micha, J S; Ulrich, O; Pashniak, N; Strüder, L; Keckes, J; Pietsch, U

    2014-11-01

    μLaue diffraction with a polychromatic X-ray beam can be used to measure strain fields and crystal orientations of micro crystals. The hydrostatic strain tensor can be obtained once the energy profile of the reflections is measured. However, this remains a challenge both on the time scale and reproducibility of the beam position on the sample. In this review, we present a new approach to obtain the spatial and energy profiles of Laue spots by using a pn-junction charge-coupled device, an energy-dispersive area detector providing 3D resolution of incident X-rays. The morphology and energetic structure of various Bragg peaks from a single crystalline Cu micro-cantilever used as a test system were simultaneously acquired. The method facilitates the determination of the Laue spots' energy spectra without filtering the white X-ray beam. The synchrotron experiment was performed at the BM32 beamline of ESRF using polychromatic X-rays in the energy range between 5 and 25 keV and a beam size of 0.5 μm × 0.5 μm. The feasibility test on the well known system demonstrates the capabilities of the approach and introduces the "3D detector method" as a promising tool for material investigations to separate bending and strain for technical materials.

  11. Charge Couple Device-Based System for 3-dimensional Real Time Positioning on the Assessment of Segmental Range of Motion of Lumbar Spine

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ping; CHEN Li-jun; GUAN Jing; PAN Li; DING Hui; DING Hai-shu

    2005-01-01

    Objective: To observe the tested results of the segmental range of motion (ROM) of lumbar spine by charge couple device (CCD)-based system for 3-dimensional real-time positioning (CCD system),and to analyze its clinical significance. Methods: Seven patients with lumbar joint dysfunction and 8 healthy subjects were tested twice by the CCD-based system with an interval of 10 min. Results: The ROM of the patients was obviously lesser than that of the healthy subjects. The measuring data of segmental ROM of lumbar spine by CCD system is correlated significantly to the same data checked later on the same subjects in every direction of the movements. The differences between two checks are usually less than 1 degree. Conclusion:Specially designed CCD based system for 3-dimensional real-time positioning could objectively reflect the segmental ROM of lumbar spine. The system would be of great clinical significance in the assessment of the biomechanical dysfunction of lumbar spine and the effect of the treatment applied.

  12. Coupling Electromagnetism to Global Charge

    CERN Document Server

    Guendelman, Eduardo

    2013-01-01

    It is shown that an alternative to the standard scalar QED is possible. In this new version there is only global gauge invariance as far as the charged scalar fields are concerned although local gauge invariance is kept for the electromagnetic field. The electromagnetic coupling has the form $j_\\mu (A^{\\mu} +\\partial^{\\mu}B)$ where $B$ is an auxiliary field and the current $j_\\mu$ is $A_{\\mu}$ independent so that no "sea gull terms" are introduced. In a model of this kind spontaneous breaking of symmetry does not lead to photon mass generation, instead the Goldstone boson becomes a massless source for the electromagnetic field. Infrared questions concerning the theory when spontaneous symmetry breaking takes place and generalizations to global vector QED are discussed. In this framework Q-Balls and other non topological solitons that owe their existence to a global U(1) symmetry can be coupled to electromagnetism and could represent multiply charged particles now in search in the LHC. Finally, we give an exam...

  13. Energy storage device with large charge separation

    Energy Technology Data Exchange (ETDEWEB)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  14. New Charged Particles from Higgs Couplings

    CERN Document Server

    Cohen, Andrew G

    2012-01-01

    The recently reported observation of a new particle with mass about 125 GeV and couplings generally resembling those of the Standard Model Higgs boson provides a potential probe of the physics of electroweak symmetry breaking. Although the current data only provides hints, we suggest a particular combination of Higgs couplings as an assay for new charged particles connected with electroweak symmetry breaking, and construct a simple model with charge 5/3 quarks as a demonstration of its use.

  15. Compensating strong coupling with large charge

    CERN Document Server

    Alvarez-Gaume, Luis; Orlando, Domenico; Reffert, Susanne

    2016-01-01

    We study (conformal) field theories with global symmetries in the sector where the value of the global charge $Q$ is large. We find (as expected) that the low energy excitations of this sector are described by the general form of Goldstone's theorem in the non-relativistic regime. We also derive the unexpected result, first presented in [Hellerman:2015], that the effective field theory describing such sector of fixed $Q$ contains effective couplings $\\lambda_{\\text{eff}}\\sim \\lambda^b /Q^{a}$, where $\\lambda$ is the original coupling. Hence, large charge leads to weak coupling. In the last section of the paper we present an outline of how to compute anomalous dimensions in this limit.

  16. Transverse Mode Coupling Instability with Space Charge

    CERN Document Server

    Balbekov, V

    2016-01-01

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero at higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. A comparison of the results with published articles is represented.

  17. Transverse Mode Coupling Instability with Space Charge

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermilab

    2016-03-11

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero at higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. A comparison of the results with published articles is represented.

  18. Design And Construction Of Wireless Charging System Using Inductive Coupling

    Directory of Open Access Journals (Sweden)

    Do Lam Mung

    2015-06-01

    Full Text Available Abstract Wireless charging system described by using the method of inductive coupling. In this project oscillation circuit converts DC energy to AC energytransmitter coil to transmit magnetic field by passing frequency and then induce the receiver coil. The properties of Induction coupling are wavemagnetic field-wideband rangevery shortcm efficiencyhight and operation frequencyLF-bandseveral handred kHz.The project shows as a small charging for 5V battery of phone in this method. The system bases on coupling magnetic field then designed and constructed as two parts. There are transmitter part and receiver part. The transmitter coil transmitter part transmits coupling magnetic field to receiver coil receiver part by passing frequency at about 1.67MHz. The Amperes law Biot-Savart law and Faraday law are used to calculate the inductive coupling between the transmitter coil and the receiver coil. The calculation of this law shows how many power transfer in receiver part when how many distance between the transmitter coil and the receiver coil. The system is safe for users and neighbouring electronic devices. To get more accurate wireless charging system it needs to change the design of the following keywords.

  19. Flexible Coupling With Centering Device

    Science.gov (United States)

    Kerley, James

    1987-01-01

    Misaligned machine shafts operating at low speeds coupled with cheap, simple mechanism made in part from wire rope. Wire rope bends to accommodate angular and lateral misalignments and dampens vibrations that accompany, or caused by, rotation of shafts.

  20. Quantitative analysis of an enlarged area Solid State X-ray Image Intensifier (SSXII) detector based on Electron Multiplying Charge Coupled Device (EMCCD) technology.

    Science.gov (United States)

    Swetadri, Vasan S N; Sharma, P; Singh, V; Jain, A; Ionita, Ciprian N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2013-03-06

    Present day treatment for neurovascular pathological conditions involves the use of devices with very small features such as stents, coils, and balloons; hence, these interventional procedures demand high resolution x-ray imaging under fluoroscopic conditions to provide the capability to guide the deployment of these fine endovascular devices. To address this issue, a high resolution x-ray detector based on EMCCD technology is being developed. The EMCCD field-of-view is enlarged using a fiber-optic taper so that the detector features an effective pixel size of 37 µm giving it a Nyquist frequency of 13.5 lp/mm, which is significantly higher than that of the state of the art Flat Panel Detectors (FPD). Quantitative analysis of the detector, including gain calibration, instrumentation noise equivalent exposure (INEE) and modulation transfer function (MTF) determination, are presented in this work. The gain of the detector is a function of the detector temperature; with the detector cooled to 5° C, the highest relative gain that could be achieved was calculated to be 116 times. At this gain setting, the lowest INEE was measured to be 0.6 µR/frame. The MTF, measured using the edge method, was over 2% up to 7 cycles/ mm. To evaluate the performance of the detector under clinical conditions, an aneurysm model was placed over an anthropomorphic head phantom and a coil was guided into the aneurysm under fluoroscopic guidance using the detector. Image sequences from the procedure are presented demonstrating the high resolution of this SSXII.

  1. Improving the spatial resolution of a soft X-ray Charge Coupled Device used for Resonant Inelastic X-ray Scattering

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2011-11-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Advanced Resonant Scattering (ADRESS) beamline of the Swiss Light Source is a high-resolution X-ray spectrometer used as an end station for Resonant Inelastic X-ray Scattering from 400 eV to 1600 eV. Through the dispersion of photons across a CCD, the energy of scattered photons may be determined by their detected spatial position. The limiting factor of the energy resolution is currently the spatial resolution achieved with the CCD, reported at 24 μm FWHM. For this energy range the electron clouds are formed by interactions in the `field free' region of the back-illuminated CCD. These clouds diffuse in all directions whilst being attracted to the electrodes, leading to events that are made up of signals in multiple pixels. The spreading of the charge allows centroiding techniques to be used to improve the CCD spatial resolution and therefore improve the energy resolution of SAXES. The PolLux microscopy beamline at the SLS produces an X-ray beam with a diameter of 20 nm. The images produced from scanning the narrow beam across CCD pixels (13.5 × 13.5 μm2) can aid in the production of event recognition algorithms, allowing the matching of event profiles to photon interactions in a specific region of a pixel. Through the use of this information software analysis can be refined with the aim of improving the energy resolution.

  2. Charge Redistribution from Anomalous Magnetovorticity Coupling

    Science.gov (United States)

    Hattori, Koichi; Yin, Yi

    2016-10-01

    We investigate novel transport phenomena in a chiral fluid originated from an interplay between a vorticity and strong magnetic field, which induces a redistribution of vector charges in the system and an axial current along the magnetic field. The corresponding transport coefficients are obtained from an energy-shift argument for the chiral fermions in the lowest Landau level due to a spin-vorticity coupling and also from diagrammatic computations on the basis of the linear response theory. Based on consistent results from both methods, we observe that the transport coefficients are proportional to the anomaly coefficient and are independent of temperature and chemical potential. We therefore speculate that these transport phenomena are connected to quantum anomaly.

  3. Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids

    KAUST Repository

    Zhitomirsky, David

    2013-06-25

    Colloidal quantum dots (CQDs) are attractive materials for inexpensive, room-temperature-, and solution-processed optoelectronic devices. A high carrier diffusion length is desirable for many CQD device applications. In this work we develop two new experimental methods to investigate charge carrier diffusion in coupled CQD solids under charge-neutral, i.e., undepleted, conditions. The methods take advantage of the quantum-size-effect tunability of our materials, utilizing a smaller-bandgap population of quantum dots as a reporter system. We develop analytical models of diffusion in 1D and 3D structures that allow direct extraction of diffusion length from convenient parametric plots and purely optical measurements. We measure several CQD solids fabricated using a number of distinct methods and having significantly different doping and surface ligand treatments. We find that CQD materials recently reported to achieve a certified power conversion efficiency of 7% with hybrid organic-inorganic passivation have a diffusion length of 80 ± 10 nm. The model further allows us to extract the lifetime, trap density, mobility, and diffusion coefficient independently in each material system. This work will facilitate further progress in extending the diffusion length, ultimately leading to high-quality CQD solid semiconducting materials and improved CQD optoelectronic devices, including CQD solar cells. © 2013 American Chemical Society.

  4. Simulating charge transport in organic semiconductors and devices: a review

    Science.gov (United States)

    Groves, C.

    2017-02-01

    Charge transport simulation can be a valuable tool to better understand, optimise and design organic transistors (OTFTs), photovoltaics (OPVs), and light-emitting diodes (OLEDs). This review presents an overview of common charge transport and device models; namely drift-diffusion, master equation, mesoscale kinetic Monte Carlo and quantum chemical Monte Carlo, and a discussion of the relative merits of each. This is followed by a review of the application of these models as applied to charge transport in organic semiconductors and devices, highlighting in particular the insights made possible by modelling. The review concludes with an outlook for charge transport modelling in organic electronics.

  5. No Free Charge Theorem: a Covert Channel via USB Charging Cable on Mobile Devices

    OpenAIRE

    Spolaor, Riccardo; Abudahi, Laila; Moonsamy, Veelasha; Conti, Mauro; Poovendran, Radha

    2016-01-01

    More and more people are regularly using mobile and battery-powered handsets, such as smartphones and tablets. At the same time, thanks to the technological innovation and to the high user demands, those devices are integrating extensive functionalities and developers are writing battery-draining apps, which results in a surge of energy consumption of these devices. This scenario leads many people to often look for opportunities to charge their devices at public charging stations: the presenc...

  6. Charge transfer devices. Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-04-01

    The technology, design, fabrication, and applications of charge transfer devices are presented in the cited research reports. Applications include imaging, signal processing, detectors, filters, amplifiers, and memory devices. This updated bibliography contains 107 abstracts, all of which are new entries to the previous edition.

  7. Improved solid state electron-charge-storage device

    Science.gov (United States)

    Kuper, A. B.

    1970-01-01

    Storage device is applicable in memory systems and in high-resolution arrays for light-responsive image sensing. The device offers high yield in multiple arrays and allows charge release with light striking only the edge of a metal electrode.

  8. Coupled Thermoelectric Devices: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Jaziel A. Rojas

    2016-07-01

    Full Text Available In this paper, we address theoretically and experimentally the optimization problem of the heat transfer occurring in two coupled thermoelectric devices. A simple experimental set up is used. The optimization parameters are the applied electric currents. When one thermoelectric is analysed, the temperature difference Δ T between the thermoelectric boundaries shows a parabolic profile with respect to the applied electric current. This behaviour agrees qualitatively with the corresponding experimental measurement. The global entropy generation shows a monotonous increase with the electric current. In the case of two coupled thermoelectric devices, elliptic isocontours for Δ T are obtained in applying an electric current through each of the thermoelectrics. The isocontours also fit well with measurements. Optimal figure of merit is found for a specific set of values of the applied electric currents. The entropy generation-thermal figure of merit relationship is studied. It is shown that, given a value of the thermal figure of merit, the device can be operated in a state of minimum entropy production.

  9. SEMICONDUCTOR DEVICES A novel modified charge pumping method for trapped charge characterization in nanometer-scale devices

    Science.gov (United States)

    Peng, Zhu; Liyang, Pan; Haiming, Gu; Fengying, Qiao; Ning, Deng; Jun, Xu

    2010-10-01

    A new modified method based on the charge pumping technique is proposed and adopted to extract the lateral profiles of oxide charges in an advanced MOSFET. A 0.12 μm SONOS device with 50 nm threshold voltage peak is designed and utilized to demonstrate the proposed method. The trapped charge distribution with a narrow peak can be precisely characterized with this method, which shows good consistency with the measured threshold voltage.

  10. Organic memory device with polyaniline nanoparticles embedded as charging elements

    Science.gov (United States)

    Kim, Yo-Han; Kim, Minkeun; Oh, Sewook; Jung, Hunsang; Kim, Yejin; Yoon, Tae-Sik; Kim, Yong-Sang; Ho Lee, Hyun

    2012-04-01

    Polyaniline nanoparticles (PANI NPs) were synthesized and fabricated as charging elements for organic memory devices. The PANI NPs charging layer was self-assembled by epoxy-amine bonds between 3-glycidylpropyl trimethoxysilane functionalized dielectrics and PANI NPs. A memory window of 5.8 V (ΔVFB) represented by capacitance-voltage hysteresis was obtained for metal-pentacene-insulator-silicon capacitor. In addition, program/erase operations controlled by gate bias (-/+90 V) were demonstrated in the PANI NPs embedded pentacene thin film transistor device with polyvinylalcohol dielectric on flexible polyimide substrate. These results can be extended to development of fully organic-based electronic device.

  11. Electrostatic charging and control of droplets in microfluidic devices.

    Science.gov (United States)

    Zhou, Hongbo; Yao, Shuhuai

    2013-03-07

    Precharged droplets can facilitate manipulation and control of low-volume liquids in droplet-based microfluidics. In this paper, we demonstrate non-contact electrostatic charging of droplets by polarizing a neutral droplet and splitting it into two oppositely charged daughter droplets in a T-junction microchannel. We performed numerical simulation to analyze the non-contact charging process and proposed a new design with a notch at the T-junction in aid of droplet splitting for more efficient charging. We experimentally characterized the induced charge in droplets in microfabricated devices. The experimental results agreed well with the simulation. Finally, we demonstrated highly effective droplet manipulation in a path selection unit appending to the droplet charging. We expect our work could enable precision manipulation of droplets for more complex liquid handling in microfluidics and promote electric-force based manipulation in 'lab-on-a-chip' systems.

  12. Bipolar Charge Plasma Transistor: A Novel Three Terminal Device

    OpenAIRE

    Kumar, M. Jagadesh; Nadda, Kanika

    2012-01-01

    A distinctive approach for forming a lateral Bipolar Charge Plasma Transistor (BCPT) is explored using 2-D simulations. Different metal work-function electrodes are used to induce n- and p-type charge plasma layers on undoped SOI to form the emitter, base and collector regions of a lateral NPN transistor. Electrical characteristics of the proposed device are simulated and compared with that of a conventionally doped lateral bipolar junction transistor with identical dimensions. Our simulation...

  13. A 190 by 244 charge-coupled area image sensor with interline transfer organization

    Science.gov (United States)

    Walsh, L. R.

    1975-01-01

    A 190 x 244 element charge coupled area image sensor has been designed, fabricated and tested. This sensor employs an interline transfer organization and buried n-channel technology. It features a novel on-chip charge integrator and a distributed floating gate amplifier for high and low light level applications. The X-Y element count has been chosen to establish the capability of producing an NTSC compatible video signal. The array size is also compatible with the Super 8 lens format. The first few sample devices have been successfully operated at full video bandwidth for both high and low light levels with the charge amplifier system.

  14. Multiplexed charge-locking device for large arrays of quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Puddy, R. K., E-mail: rkp27@cam.ac.uk; Smith, L. W; Chong, C. H.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Smith, C. G. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Al-Taie, H.; Kelly, M. J. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, 9 J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Pepper, M. [Department of Electronic and Electrical Engineering, University College London, WC1E 7JE (United Kingdom)

    2015-10-05

    We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.

  15. Multiplexed charge-locking device for large arrays of quantum devices

    Science.gov (United States)

    Puddy, R. K.; Smith, L. W.; Al-Taie, H.; Chong, C. H.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Kelly, M. J.; Pepper, M.; Smith, C. G.

    2015-10-01

    We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.

  16. Reduced graphene oxide based flexible organic charge trap memory devices

    Science.gov (United States)

    Rani, Adila; Song, Ji-Min; Jung Lee, Mi; Lee, Jang-Sik

    2012-12-01

    A nonvolatile organic transistor memory device was developed using layer-by-layer assembly of 3-aminopropyltriethoxysilane (APTES) and solution-processed, reduced graphene oxide (rGO) as the charge trapping layer on flexible substrates. Reduction of graphene oxide and successful adsorption of the rGO on APTES-covered substrates were confirmed. The organic memory devices based on rGO exhibited reliable programmable memory operations, confirmed by program/erase operations, data retention, and endurance properties. These methods can potentially play a significant role in the fabrication of next-generation flexible nonvolatile memory devices based on graphene materials.

  17. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface.

    Science.gov (United States)

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X

    2014-01-14

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.

  18. A benchmark of excitonic couplings derived from atomic transition charges.

    Science.gov (United States)

    Kistler, Kurt A; Spano, Francis C; Matsika, Spiridoula

    2013-02-21

    In this report we benchmark Coulombic excitonic couplings between various pairs of chromophores calculated using transition charges localized on the atoms of each monomer chromophore, as derived from a Mulliken population analysis of the monomeric transition densities. The systems studied are dimers of 1-methylthymine, 1-methylcytosine, 2-amino-9-methylpurine, all-trans-1,3,5-hexatriene, all-trans-1,3,5,7-octatetraene, trans-stilbene, naphthalene, perylenediimide, and dithia-anthracenophane. Transition densities are taken from different single-reference electronic structure excited state methods: time-dependent density functional theory (TDDFT), configuration-interaction singles (CIS), and semiempirical methods based on intermediate neglect of differential overlap. Comparisons of these results with full ab initio calculations of the electronic couplings using a supersystem are made, as are comparisons with experimental data. Results show that the transition charges do a good job of reproducing the supersystem couplings for dimers with moderate to long-range interchromophore separation. It is also found that CIS supermolecular couplings tend to overestimate the couplings, and often the transition charges approach may be better, due to fortuitous cancellation of errors.

  19. Pomeron-Quark Coupling from Charge Conjugation Invariance

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; WU Qing; MA Wei-Xing; GU Yun-Ting

    2006-01-01

    Based on the charge conjugation invariance and the vacuum property of the Pomeron, we point out that the commonly used vector vertex of the Pomeron coupling to quark is incorrect since it contradicts with the Pomeron property. We also claim that the soft Pomeron could be a tensor glueball ξ(2230) with quantum numbers IG JPC = 0+ 2++ and total decay width Γtot ≌ 100 MeV, which lies on the soft Pomeron trajectory αp = 1.08 + 0.20t. Therefore, the coupling vertex of the soft Pomeron to quark should be tensorial which is invariant under the charge conjugation and can explain why the inadequate vector coupling, γμ, of the soft Pomeron to quark is successful in dealing with Pomeron physics.

  20. An ultrasonic atomizing device using coupled-mode vibration

    Science.gov (United States)

    Toda, Kohji; Akimura, Yoshikazu

    1994-10-01

    A small, compact ultrasonic atomizing device is composed of a rectangular piezoelectric ceramic bar and a metal plate with minute holes. The resonance arising from the coupling between two vibration modes in the ceramic bar is used for the effective device operation. The best atomizing occurs when one of the coupled-mode resonant frequencies of the atomizing device is equal to that of the device without the metal vibrating plate. For an efficient power usage a self-oscillation type circuit, composed of the atomizing device as a resonant element and a power amplification transistor, is utilized.

  1. Mode-selective vibrational modulation of charge transport in organic electronic devices

    KAUST Repository

    Bakulin, Artem A.

    2015-08-06

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.

  2. Emittance coupling driven by space charge in the CSNS linac

    Institute of Scientific and Technical Information of China (English)

    YIN Xue-Jun; FU Shi-Nian; PENG Jun

    2009-01-01

    In the conventional design of RF linacs, the bunched beams are not in thermal equilibrium. The space charge forces couple the particle motions between the transverse and the longitudinal directions. Fur-thermore it will cause the equipartitioning process which leads to emittance growth and halo formation. In the design of the China Spallation Neutron Source (CSNS) linac, three cases are investigated using the Hofmann stability charts. In this paper, we present the equipartitioning beam study of the CSNS Alvarez DTL linac.

  3. Seismic isolation device having charging function by a transducer

    Science.gov (United States)

    Yamaguchi, Takashi; Miura, Nanako; Takahashi, Masaki

    2016-04-01

    In late years, many base isolated structures are planned as the seismic design, because they suppress vibration response significantly against large earthquake. To achieve greater safety, semi-active or active vibration control system is installed in the structures as earthquake countermeasures. Semi-active and active vibration control systems are more effective than passive vibration control system to large earthquake in terms of vibration reduction. However semi-active and active vibration control system cannot operate as required when external power supply is cut off. To solve the problem of energy consumption, we propose a self-powered active seismic isolation floor which achieve active control system using regenerated vibration energy. This device doesn't require external energy to produce control force. The purpose of this study is to propose the seismic isolation device having charging function and to optimize the control system and passive elements such as spring coefficients and damping coefficients using genetic algorithm. As a result, optimized model shows better performance in terms of vibration reduction and electric power regeneration than the previous model. At the end of this paper, the experimental specimen of the proposed isolation device is shown.

  4. Simulating charge transport to understand the spectral response of Swept Charge Devices

    CERN Document Server

    Athiray, P S; Narendranath, S; Gow, J P D

    2015-01-01

    Swept Charge Devices (SCD) are novel X-ray detectors optimized for improved spectral performance without any demand for active cooling. The Chandrayaan-1 X-ray Spectrometer (C1XS) experiment onboard the Chandrayaan-1 spacecraft used an array of SCDs to map the global surface elemental abundances on the Moon using the X-ray fluorescence (XRF) technique. The successful demonstration of SCDs in C1XS spurred an enhanced version of the spectrometer on Chandrayaan-2 using the next-generation SCD sensors. The objective of this paper is to demonstrate validation of a physical model developed to simulate X-ray photon interaction and charge transportation in a SCD. The model helps to understand and identify the origin of individual components that collectively contribute to the energy-dependent spectral response of the SCD. Furthermore, the model provides completeness to various calibration tasks, such as generating spectral response matrices (RMFs - redistribution matrix files), estimating efficiency, optimizing event...

  5. Charged topological black hole with a conformally coupled scalar field

    CERN Document Server

    Martínez, C; Martinez, Cristian; Staforelli, Juan Pablo

    2006-01-01

    An exact four-dimensional electrically charged topological black hole solution with a conformal coupled self-interacting scalar field is shown. We consider a negative cosmological constant and a quartic self-interaction. According to the mass different causal structures appear, including an extremal black hole. In all cases, the asymptotic region is locally an anti-de Sitter spacetime and a curvature singularity at the origin is present. The scalar field is regular on and outside the event horizon, which is a surface of negative constant curvature. We study the thermodynamical properties for the non-extremal black hole in the grand canonical ensemble. The configurations are thermodynamically stable and do not present phase transitions. The entropy value differs from that which the area law dictates. The non-minimal coupling is responsible for that difference and it can be seen as a modification of the Newton's constant.

  6. Subbanding, Charge Transport and Related Applications in Semiconductor Devices.

    Science.gov (United States)

    1977-10-01

    These devices use a p-n homo -junction to confine the free electronic charge in the semiconductor to conducting regions so narrow as to exhibit...27.172 Table 6A ~0 ENERGY IN MILLI-ELECTRON VOLTS WC IN ANGSTROMS WC EC(6) ECC 7) EC(8) EC(9) ECC 10) 1.2 3669047 432.986 499.951 566.937 633.941 1.5...VC IN ANGSTROMS (6 ECC ) ECC7) EC(s) EC(9) ECCIS) 3t 236.132 279.167 322.269 365.257 418.319 1,’ 235;907 275;922 321� 364;976 408.013 I. 235,;635

  7. Field enhanced charge carrier reconfiguration in electronic and ionic coupled dynamic polymer resistive memory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Junhui; Thomson, Douglas J; Freund, Michael S [Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB (Canada); Pilapil, Matt; Pillai, Rajesh G; Aminur Rahman, G M, E-mail: thomson@ee.umanitoba.ca, E-mail: michael_freund@umanitoba.ca [Department of Chemistry, University of Manitoba, Winnipeg, MB (Canada)

    2010-04-02

    Dynamic resistive memory devices based on a conjugated polymer composite (PPy{sup 0}DBS{sup -}Li{sup +} (PPy: polypyrrole; DBS{sup -}: dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.

  8. Decoherence dynamics of a charge qubit coupled to the noise bath

    Institute of Scientific and Technical Information of China (English)

    Yang Qin-Ying; Liang Bao-Long; Wang Ji-Suo

    2013-01-01

    By virtue of the canonical quantization method,we present a quantization scheme for a charge qubit based on the superconducting quantum interference device (SQUID),taking the self-inductance of the loop into account.Under reasonable short-time approximation,we study the effect of decoherence in the ohmic case by employing the response function and the norm.It is confirmed that the decoherence time,which depends on the parameters of the circuit components,the coupling strength,and the temperature,can be as low as several picoseconds,so there is enough time to record the information.

  9. Perturbation and coupling of microcavity plasmas through charge injected into an intervening microchannel

    Science.gov (United States)

    Wang, Y.; Ni, J. H.; Zhong, S.; Cai, S.; Zhang, X.; Liu, C.; Park, S.-J.; Eden, J. G.

    2016-11-01

    Coupling between two microcavity plasmas in a symmetric, microfabricated dielectric barrier structure has been observed by injecting charge from one of the plasmas into an intervening microchannel. Periodic modulation of the electric field strength in the injector (or electron "donor") cavity has the effect of deforming the acceptor microplasma which exhibits two distinct and stable spatiotemporal modes. Throughout the time interval in which the two microplasmas are coupled electrostatically, the acceptor plasma is elongated and displaced by 75-100 μm (˜30% of its diameter) in the direction of the microchannel. The depletion of charge in the microchannel results in an immediate transition of the second (acceptor) microplasma to an equilibrium state in which the plasma is azimuthally symmetric and centered within its microcavity. Switching between these two spatial modes requires a shift (in the plasma centroid) of ˜80 μm in <50 ns which corresponds to a velocity of 1.6 km/s. Precise control of this plasma phase transition through device fabrication, and modulation of the donor plasma electric field, suggest applications of this plasma coupling and charge transport mechanism to signal processing, photonics, and electromagnetics.

  10. Charge redistribution from anomalous magneto-vorticity coupling

    CERN Document Server

    Hattori, Koichi

    2016-01-01

    We investigate novel transport phenomena in a chiral fluid originated from an interplay between a vorticity and strong magnetic field, which induces a redistribution of vector charges in the system and an axial current along the magnetic field. The corresponding transport coefficients are obtained from an energy-shift argument for the chiral fermions in the lowest Landau level (LLL) due to a spin-vorticity coupling and also from diagrammatic computations on the basis of the linear response theory. Based on consistent results from the both methods, we observe that the transport coefficients are proportional to the anomaly coefficient and are independence of temperature and chemical potential. We therefore speculate that these transport phenomena are connected to quantum anomaly.

  11. Quasiclassical methods for spin-charge coupled dynamics in low-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Corini, Cosimo

    2009-06-12

    Spintronics is a new field of study whose broad aim is the manipulation of the spin degrees of freedom in solid state systems. One of its main goals is the realization of devices capable of exploiting, besides the charge, the carriers' - and possibly the nuclei's - spin. The presence of spin-orbit coupling in a system enables the spin and charge degrees of freedom to ''communicate'', a favorable situation if one is to realize such devices. More importantly, it offers the opportunity of doing so by relying solely on electric fields, whereas magnetic fields are otherwise required. Eminent examples of versatile systems with built-in and variously tunable spin-orbit interaction are two-dimensional electron - or hole - gases. The study of spin-charge coupled dynamics in such a context faces a large number of open questions, both of the fundamental and of the more practical type. To tackle the problem we rely on the quasiclassical formalism. This is an approximate quantum-field theoretical formulation with a solid microscopic foundation, perfectly suited for describing phenomena at the mesoscopic scale, and bearing a resemblance to standard Boltzmann theory which makes for physical transparency. Originally born to deal with transport in electron-phonon systems, we first generalize it to the case in which spin-orbit coupling is present, and then move on to apply it to specific situations and phenomena. Among these, to the description of the spin Hall effect and of voltage induced spin polarizations in two-dimensional electron gases under a variety of conditions - stationary or time-dependent, in the presence of magnetic and non-magnetic disorder, in the bulk or in confined geometries -, and to the problem of spin relaxation in narrow wires. (orig.)

  12. A Experiment Method of Wireless Power Transfer for Charging Devices

    Directory of Open Access Journals (Sweden)

    ChanKam On

    2016-11-01

    Full Text Available Wireless Power Transfer Technology would be applied in the charging devices. For example Electric Vehicles. Due to the global warming is very serious, the fossil fuels are dwindling. For this situation, it can use the battery to operate the cars, we are looking for some of the renewable energy. Therefore, the electric vehicles technology and skill are most popularity and mature. Many people have replaced to an electric vehicle, although the cost more expensive than the petrol vehicle, to reduce the use of fossil fuels are worth. Since the electric vehicle supporting is not much, especially for the electric vehicle chargers. Government and manufacture not enough information & details of the electric vehicle, it is difficult to see the charger facility which locates at the public area or parking, therefore cause inconvenient. This technology is taken widespread to use of an electric vehicle. For this project separate in two stages, the first stage to find out the relationship of frequency(f, capacitance(C and inductance(L by the much lab experiment and calculation. In stage two, develop a hardware model to deliver the wireless power transfer system can be recharged for mobile phone and model car wirelessly and find out the better combination and method through comparing a different kind of coil density and distance.

  13. Inter-Fullerene Electronic Coupling Controls the Efficiency of Photoinduced Charge Generation in Organic Bulk Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Bryon W. [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Reid, Obadiah G. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Coffey, David C. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Department of Chemistry and Physics, Warren Wilson College, Swannanoa NC 28778 USA; Avdoshenko, Stanislav M. [Liebniz Institute for Solid State and Materials Research, Dresden D01069 Germany; Popov, Alexey A. [Liebniz Institute for Solid State and Materials Research, Dresden D01069 Germany; Boltalina, Olga V. [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Strauss, Steven H. [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Kopidakis, Nikos [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Rumbles, Garry [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA

    2016-09-26

    Photoinduced charge generation (PCG) dynamics are notoriously difficult to correlate with specific molecular properties in device relevant polymer:fullerene organic photovoltaic blend films due to the highly complex nature of the solid state blend morphology. Here, this study uses six judiciously selected trifluoromethylfullerenes blended with the prototypical polymer poly(3-hexylthiophene) and measure the PCG dynamics in 50 fs-500 ns time scales with time-resolved microwave conductivity and femtosecond transient absorption spectroscopy. The isomeric purity and thorough chemical characterization of the fullerenes used in this study allow for a detailed correlation between molecular properties, driving force, local intermolecular electronic coupling and, ultimately, the efficiency of PCG yield. The findings show that the molecular design of the fullerene not only determines inter-fullerene electronic coupling, but also influences the decay dynamics of free holes in the donor phase even when the polymer microstructure remains unchanged.

  14. Conserved Charges of Minimal Massive Gravity Coupled to Scalar Field

    CERN Document Server

    Setare, M R

    2016-01-01

    Recently, the theory of Topologically massive gravity non-minimally coupled to a scalar field has been proposed which comes from Lorentz-Chern-Simons theory \\cite{1}. That theory is a torsion free one. We extend that theory by adding an extra term which makes torsion to be non-zero. The extended theory can be regarded as an extension of Minimal massive gravity such that it is non-minimally coupled to a scalar field. We obtain equations of motion of extended theory such that they are expressed in terms of usual torsion free spin-connection. We show that BTZ spacetime is a solution of this theory when scalar field is constant. We define quasi-local conserved charge by the concept of generalized off-shell ADT current which both are conserved for any asymptotically Killing vector field as well as a Killing vector field which is admitted by spacetime everywhere. Also we find general formula for entropy of stationary black hole solution in the context of considered theory. We apply the obtained formulas on BTZ blac...

  15. A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhongyu Dai

    2017-03-01

    Full Text Available In this paper, a Witricity-based high-power device is proposed for wireless charging of electric vehicles. According to the specific requirements of three-stage charging for electric vehicles, four compensation modes of the Witricity system are analyzed by the Loosely Coupled Theory among transformer coils and the Substitution Theorem in circuit theory. In addition, when combining voltage withstand levels, the current withstand capability, the switching frequency of electronic switching tubes, and the features of the resonant circuit, the series-parallel (SP compensation mode is selected as the best compensation mode for matching the capacitor of the system. The performances of coils with different ferrite core arrangements are compared by simulations and models. The feasibility of the system is verified theoretically and the system functions are evaluated by the joint simulation of Simplorer and Maxwell. Finally, a Witricity-based high-power device is proposed as designed, and the correctness of theoretical analyses and simulation results are verified.

  16. The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case Study on Titanylphthalocyanine Single Crystals.

    Science.gov (United States)

    Zhang, Zongpeng; Jiang, Lang; Cheng, Changli; Zhen, Yonggang; Zhao, Guangyao; Geng, Hua; Yi, Yuanping; Li, Liqiang; Dong, Huanli; Shuai, Zhigang; Hu, Wenping

    2016-04-18

    Traditionally, it is believed that three-dimensional transport networks are preferable to those of lower dimensions. We demonstrate that inter-layer electronic couplings may result in a drastic decrease of charge mobilities by utilizing field-effect transistors (FET) based on two phases of titanyl phthalocyanine (TiOPc) crystals. The α-phase crystals with electronic couplings along two dimensions show a maximum mobility up to 26.8 cm(2)  V(-1)  s(-1) . In sharp contrast, the β-phase crystals with extra significant inter-layer electronic couplings show a maximum mobility of only 0.1 cm(2)  V(-1)  s(-1) . Theoretical calculations on the bulk crystals and model slabs reveal that the inter-layer electronic couplings for the β-phase devices will diminish remarkably the device charge transport abilities owing to the coupling direction perpendicular to the current direction. This work provides new insights into the impact of the dimensionality and directionality of the packing arrangements on charge transport in organic semiconductors.

  17. Effects of proton and neutron irradiation on dark signal of charge-coupled device%质子与中子辐照对电荷耦合器件暗信号参数的影响及其效应分析∗

    Institute of Scientific and Technical Information of China (English)

    曾骏哲; 武大猷; 王帆; 周航; 李豫东; 文林; 何承发; 郭旗; 汪波; 玛丽娅; 魏莹; 王海娇

    2015-01-01

    The proton and neutron irradiation and annealing experiments are carried out on a domestic buried channel charge-coupled device (CCD), Monte Carlo method being applied to calculate the energy deposition of scientific CCD irradiated by proton and neutron, and the radiation damage mechanism of the device is analyzed. The displacement damage dose in N+ buried channel is simulated. During irradiation and annealing experiments, the main parameter (dark signal) is investigated. Results show that the dark signal of the buried channel CCD irradiated by 10 MeV proton and 1 MeV neutron rises obviously. With the same fluence, the increase of dark signal and the displacement damage dose in N+buried channel caused by 10 MeV proton is larger than that by 1 MeV neutron. Dark signal caused by proton irradiation is divided into surface dark signal and bulk dark signal. Oxide-trapped-charges and interface states may be caused by ionization-generated surface dark signal, and the bulk defects may be caused by displacement-generated bulk dark signal. Neutron irradiation only affects the bulk dark signal. Defects and their annealing temperature are studied. The dark signal of CCD irradiated by proton is greatly reduced after annealing, this phenomenon means that the dark signal is mainly affected by ionization. The proportion of bulk dark signals in total dark signals can be calculated by the remainder of dark signal after annealing, and it is at most about 20% or less. From the formula, the position of energy level of bulk defects has an obvious influence on the bulk dark signal. The energy level in the middle of the forbidden band can provide effective hot carriers. Combining the results of experiment and simulation, when the displacement damage doses in N+ buried channel are the same, the bulk dark signal produced by proton is nearly the same as that produced by neutron. This phenomenon means that the defect levels in the forbidden band gap caused by proton and neutron irradiation

  18. Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. D.; Lee, S. Y.; Lee, T. W.; Kim, J. S. [Suwon Science College, Suwon (Korea, Republic of); Lee, C. Y. [Korea Railroad Institute, Uiwang (Korea, Republic of)

    2016-03-15

    The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system.

  19. Charge coupled devices (CCDs) in X-ray astronomy

    Science.gov (United States)

    Lumb, D. H.; Berthiaume, G. D.; Burrows, D. N.; Garmire, G. P.; Nousek, J. A.

    1991-01-01

    The application of CCDs to X-ray imaging and spectroscopy in astronomy is discussed with special attention given to the special requirements of CCDs for X-ray astronomy (as opposed to those for traditional optical applications). The development status of CCDs for X-ray astronomy applications is described, and results of recent research in the area of optimizing the CCD X-ray response are presented. It is shown that very high quantum efficiencies and Fano noise-limited energy resolutions can be obtained using CCDs.

  20. NASA Charge Coupled Device (CCD) Spectrometer System (NCSS)

    Science.gov (United States)

    Wright, C. W.; Bailey, S. A.; Piazza, C. R.

    1988-01-01

    A small lightweight NCSS was designed, constructed, and is now being bench tested at Wallops. The unit provides 256, 2.7 nm wide channels in the visible spectrum from approximately 400 to 1100 nm. The present input slit provides a spectral impulse response of about 10 nm. Up to five NCSS sensors may be bused to one data system interface. The NCSS contains a high speed, 16 bit analog to digital converter (ADC) with an integral wide-band sample-and-hold amplifier. The NCSS was developed primarily for use with the Airbone Oceanographic Lidar (AOL). A prototype NCSS is presently interfaced to the AOL. The AOL will use two new NCSS units onboard the Goddard P-3A aircraft. They will provide the AOL with high resolution sky and ocean spectra. The up-looking NCSS will provide the AOL data system (AOLDS) with down-welling solar radiance, and the down-looking NCSS will provide ocean color spectra. The solar radiance will be used to correct various ocean color algorithms now being researched.

  1. Thermodynamic studies on charge-coupled substituted synthetic monazite

    Science.gov (United States)

    Rawat, D.; Phapale, S.; Mishra, R.; Dash, S.

    2017-04-01

    Phosphate-based monazite ceramic is considered worldwide as a potential crystalline host matrix for immobilization of long-lived tri- and tetra-valent actinides present in high-level nuclear waste. Monazite is chemically stable with respect to the leaching processes and has high radiation stability. The present paper describes the influence of charged coupled (Ca2+, Th4+) substitution in place of La3+ on thermodynamic stability of synthetic monazite ceramics. XRD-analysis of Ca, Th substituted LaPO4 viz., La1-xCax/2Thx/2PO4 (0 ≤ x ≤ 1) points to the formation of ideal solid-solution in the entire range of composition. However, thermodynamic analysis indicates deviation from ideal solid-solution with a minima at x = 0.25. The substituted La1-xCax/2Thx/2PO4 system is found to be iso-entropic and stabilized mainly by enthalpy. Enthalpies of formation as a function of Ca2+, Th4+ substitution were analysed to provide insights into the development of thermodynamically stable nuclear waste matrix.

  2. Investigation of Interface Charges at the Heterojunction Discontinuity in HBT Devices

    DEFF Research Database (Denmark)

    Fuente, Jesús Grajal de al; Krozer, Viktor

    2002-01-01

    In this paper we investigate the impact of interface charges at heterojunctions on the performance of heterostructure bipolar transistors (HBT). Interface charges can modify the limiting process for the carrier transport in a device. Therefore. intentional interface charges introduced by delta......-doped layers are basic tools for interface engineering. An accurate modelling of heterointerfaces which includes thermionic-field emission, surface charges, and surface dipoles allows to analyse the electrical performance of some modern devices based on band gap and interface engineering. It is demonstrated...... that the limiting transport process at an abrupt heterojunction can be shifted from thermionic emission towards drift-diffusion due to the presence of interface charges. We will also show that controlling the number and polarity of interface charges enables to improve HBT device performances. (C) 2002 Elsevier...

  3. SEMICONDUCTOR DEVICES Effect of trapped charge accumulation on the retention of charge trapping memory

    Science.gov (United States)

    Rui, Jin; Xiaoyan, Liu; Gang, Du; Jinfeng, Kang; Ruqi, Han

    2010-12-01

    The accumulation process of trapped charges in a TANOS cell during P/E cycling is investigated via numerical simulation. The recombination process between trapped charges is an important issue on the retention of charge trapping memory. Our results show that accumulated trapped holes during P/E cycling can have an influence on retention, and the recombination mechanism between trapped charges should be taken into account when evaluating the retention capability of TANOS.

  4. Electromechanical characterization of non-uniform charged ionic polymer-metal composites (IPMC) devices

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, B; Branco, P J C [Institute Superior Tecnico, DEEC - Energia, Lisboa 1096-001 (Portugal)], E-mail: pbranco@ist.utl.pt

    2008-08-15

    Research on electromechanical characterization of non-uniformly charged IPMCs is quasi-absent. This has limited their use to only those devices where the IPMC is completely covered with electrode surfaces (uniformly charged). In this paper, we develop a theoretical study for electromechanical characterization of non-uniformly charged IPMCs. A continuum model taking into account the gravitational forces, important for large IPMCs, is presented. Based on this approach, FEM analysis of IPMC devices using Comsol Multiphysics is introduced in a very simple way. Three devices have been studied, comparing the analytical model results with those ones obtained from a FEM analysis.

  5. Energy and Charge Transfer from Guest to Host in Doped Organic Electroluminescent Devices

    Institute of Scientific and Technical Information of China (English)

    李宏建; 彭景翠; 许雪梅; 瞿述; 罗小华; 赵楚军

    2002-01-01

    The luminescence properties of doped organic electroluminescent devices are explained by means off Hamiltonian model. The results show that there is a corresponding relation between the amount of transferred charge and the change of the energy originating from charge transfer, and the relation can be influenced by dopant concentration.As the amount of transferred charge increases, the total energy decreases and the luminescence intensity increases.Therefore, we deduce that the energy transfer from guest to host may be derived from the charge transfer. For a given organic electroluminescent device, the maximum value of the conductivity can be observed in a specific dopant concentration. The calculated results show that the greater the transferred charges, the higher the conductivities in doped organic electroluminescent devices. The results agree basically with experimental results.

  6. A device for precision neutralization of electric charge of small drops using ionized air

    Science.gov (United States)

    Fan, Sewan; Kim, Peter C.; Lee, Eric R.; Lee, Irwin T.; Perl, Martin L.; Rogers, Howard; Loomba, Dinesh

    2003-10-01

    For use in our Millikan type liquid drop searches for fractional charge elementary particles we have developed a simple ionized air device for neutralizing a narrow stream of small drops. The neutralizer has been used for drops ranging in diameter from 10 to 25 μm. The width of the produced charge distribution is given by the Boltzmann equilibrium charge distribution and the mean of the distribution is set by a bias voltage. Using the bias voltage, the mean can be set with a precision of better than e, the electron charge. The use of the neutralizer is illustrated in an application to mineral oil drops produced with charges of the order of 1000e. We also show the interesting case of silicone oil drops that are produced in our drop generator with a charge distribution narrower than the Boltzmann equilibrium charge distribution, the charge distribution being broadened by the neutralizer.

  7. A Device for Precision Neutralization of Electric Charge of Small Drops Using Ionized Air

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Sewan

    2003-03-17

    For use in our Millikan type liquid drop searches for fractional charge elementary particles we have developed a simple ionized air device for neutralizing a narrow stream of small drops. The neutralizer has been used for drops ranging in diameter from 10 to 25 {micro}m. The width of the produced charge distribution is given by the Boltzmann equilibrium charge distribution and the mean of the distribution is set by a bias voltage. Using the bias voltage, the mean can be set with a precision of better than e, the electron charge. The use of the neutralizer is illustrated in an application to mineral oil drops produced with charges of the order of 1000e. We also show the interesting case of silicone oil drops that are produced in our drop generator with a charge distribution narrower than the Boltzmann equilibrium charge distribution, the charge distribution being broadened by the neutralizer.

  8. Coupled spin, elastic and charge dynamics in magnetic nanostructures

    NARCIS (Netherlands)

    Kamra, A.

    2015-01-01

    In this Thesis, I address the interaction of magnetic degrees of freedom with charge current and elastic dynamics in hybrid systems composed of magnetic and non-magnetic materials. The objective, invariably, is to control and study spin dynamics using charge and elastic degrees of freedom. In certai

  9. Universality test of the charged Higgs boson couplings at the LHC and at B factories

    CERN Document Server

    Cornell, Alan S; Gaur, Naveen; Itoh, Hideo; Klasen, Michael; Okada, Yasuhiro

    2009-01-01

    Many extensions of the Standard Model (SM) of particle physics predict the existence of charged Higgs bosons. In the Minimal Supersymmetric SM (MSSM) the charged Higgs boson's couplings to fermions are proportional to tan(beta) and the fermionic mass factors, and these could be substantial at large tan(beta) and/or for heavy fermions. For this reason one may be able to observe the effect of a charged Higgs boson at the LHC and at B-factories. In this work we perform a study of the charged Higgs boson couplings at the LHC and at B-factories for a large range of tan(beta). We further argue that, for an illustrative parameter space, by combining four possible measurements at the LHC and at B-factories one can perform universality tests of the charged Higgs boson couplings to quarks.

  10. Phenomenology of Enhanced Light Quark Yukawa Couplings and the $W^\\pm h$ Charge Asymmetry

    CERN Document Server

    Yu, Felix

    2016-01-01

    I propose the measurement of the $W^\\pm h$ charge asymmetry as a consistency test for the Standard Model (SM) Higgs, which is sensitive to enhanced Yukawa couplings of the first and second generation quarks. I present a collider analysis for the charge asymmetry in the same-sign lepton final state, $p p \\to W^\\pm h \\to (\\ell^\\pm \

  11. Central Charge of the Parallelogram Lattice Strong Coupling Schwinger Model

    CERN Document Server

    Yee, K

    1993-01-01

    We put forth a Fierzed hopping expansion for strong coupling Wilson fermions. As an application, we show that the strong coupling Schwinger model on parallelogram lattices with nonbacktracking Wilson fermions span, as a function of the lattice skewness angle, the $\\Delta = -1$ critical line of $6$-vertex models. This Fierzed formulation also applies to backtracking Wilson fermions, which as we describe apparently correspond to richer systems. However, we have not been able to identify them with exactly solved models.

  12. Development of Pointing Device Using DC-Coupled Electrooculogram

    Science.gov (United States)

    Uchitomi, Hirotaka; Hori, Junichi

    A purpose of this study is to support communication of developmentally disabled individuals with motor paralysis, such as Guillain-Barre Syndrome, brain-stem infarction, having difficulty in conveying their intention. In the present paper, a pointing device controlled by DC-coupled electrooculograms (EOGs) has been developed. The optic angle of the subject was estimated from the amplitude of vertical and horizontal EOGs for determining the two dimensional pointing position on the PC screen in real time. The eye blinking artifact was reduced using a median filter. The displacement of electrode position was compensated by considering the potential gradient. Moreover, the position error caused by drift phenomenon was adjusted by using head movement. The accuracy and operating speed of the proposed method were evaluated in human experiments.

  13. Coupling of transit time instabilities in electrostatic confinement fusion devices

    Science.gov (United States)

    Gruenwald, J.; Fröhlich, M.

    2015-07-01

    A model of the behavior of transit time instabilities in an electrostatic confinement fusion reactor is presented in this letter. It is demonstrated that different modes are excited within the spherical cathode of a Farnsworth fusor. Each of these modes is dependent on the fusion products as well as the acceleration voltage applied between the two electrodes and they couple to a resulting oscillation showing non-linear beat phenomena. This type of instability is similar to the transit time instability of electrons between two resonant surfaces but the presence of ions and the occurring fusion reactions alter the physics of this instability considerably. The physics of this plasma instability is examined in detail for typical physical parameter ranges of electrostatic confinement fusion devices.

  14. A new physical insight of RESURF effects based on gradual charge appointment concept for bulk silicon lateral power devices

    Science.gov (United States)

    Zhang, Jun; Guo, Yu-Feng; Sun, Yabin; Yang, Kemeng; Lin, Hong; Xia, Xiaojuan; Zhang, Changchun

    2016-04-01

    A novel gradual charge appointment concept is proposed to provide a clear physical insight of RESURF effects in bulk silicon lateral power devices. Due to the expandable substrate depletion region in silicon power device, the Linearly Graded Approximation is unable to fully describe the 2-D coupling effects between vertical and lateral junction. In this paper, by defining a charge appointment line, the lateral abrupt junction behaves as an effective gradual junction, thus resulting in the wider depletion layer, lower field peak and higher breakdown voltage. Based on the hypothesis, a simple 1-D model is proposed to quantify the breakdown voltage of the bulk silicon RESURF device and formulize the surface electric field. To our knowledge, the proposed model is the first 1-D model for bulk silicon RESURF device which can accurately describe the surface field profiles under various applied voltages and structure parameters. Furthermore, we provide a new RESURF criterion to explore the sensitivity of the breakdown voltage to structure parameters. Fair agreements among the analytical, numerical and experimental results verify the availability of the proposed concept and model.

  15. Electronic coupling calculations with transition charges, dipoles, and quadrupoles derived from electrostatic potential fitting

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Kazuhiro J., E-mail: fujimoto@ruby.kobe-u.ac.jp [Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-12-07

    A transition charge, dipole, and quadrupole from electrostatic potential (TrESP-CDQ) method for electronic coupling calculations is proposed. The TrESP method is based on the classical description of electronic Coulomb interaction between transition densities for individual molecules. In the original TrESP method, only the transition charge interactions were considered as the electronic coupling. In the present study, the TrESP method is extended to include the contributions from the transition dipoles and quadrupoles as well as the transition charges. Hence, the self-consistent transition density is employed in the ESP fitting procedure. To check the accuracy of the present approach, several test calculations are performed to a helium dimer, a methane dimer, and an ethylene dimer. As a result, the TrESP-CDQ method gives a much improved description of the electronic coupling, compared with the original TrESP method. The calculated results also show that the self-consistent treatment to the transition densities contributes significantly to the accuracy of the electronic coupling calculations. Based on the successful description of the electronic coupling, the contributions to the electronic coupling are also analyzed. This analysis clearly shows a negligible contribution of the transition charge interaction to the electronic coupling. Hence, the distribution of the transition density is found to strongly influence the magnitudes of the transition charges, dipoles, and quadrupoles. The present approach is useful for analyzing and understanding the mechanism of excitation-energy transfer.

  16. Monolithic crystals for PET devices: Optical coupling optimization

    Energy Technology Data Exchange (ETDEWEB)

    González, A.J., E-mail: agonzalez@i3m.upv.es; Peiró, A.; Conde, P.; Hernández, L.; Moliner, L.; Orero, A.; Rodríguez-Álvarez, M.J.; Sánchez, F.; Soriano, A.; Vidal, L.F.; Benlloch, J.M.

    2013-12-11

    In this work we present a method to efficiently collect scintillation light when using monolithic scintillator crystals. The acceptance angle of the scintillation light has been reduced by means of optical devices reducing the border effect which typically affects continuous crystals. We have applied this procedure on gamma detectors for PET systems using both position sensitive PMTs and arrays of SiPMs. In the case of using SiPMs, this approach also helps to reduce the photosensor active area. We evaluated the method using PMTs with a variety of different crystals with thicknesses ranging from 10 to 24 mm. We found that our design allows the use of crystal blocks with a thickness of up to 18 mm without degrading the spatial resolution caused by edge effects and without a significant detriment to the energy resolution. These results were compared with simulated data. The first results of monolithic LYSO crystals coupled to an array of 256 SiPMs by means of individual optical light guides are also presented. -- Highlights: •Acceptance angle reduction decreases border effect in continuous crystals. •Experimental measurements with PMTs correlate well with simulated data. •Optical devices called faceplates serve to control the scintillation light angle. •Simulation on the light propagation for SiPMs requires exhaustive modeling.

  17. $\\rho$-Nucleon Tensor Coupling and Charge-Exchange Resonances

    CERN Document Server

    De Conti, C; Krmpotic, F

    2000-01-01

    The Gamow-Teller resonances are discussed in the context of a self-consistentRPA, based on the relativistic mean field theory. We inquire on the possibilityof substituting the phenomenological Landau-Migdal force by a microscopicnucleon-nucleon interaction, generated from the rho-nucleon tensor coupling.The effect of this coupling turns out to be very small when the short rangecorrelations are not taken into account, but too large when these correlationsare simulated by the simple extraction of the contact terms from the resultingnucleon-nucleon interaction.

  18. Charge Carrier Transport Mechanism Based on Stable Low Voltage Organic Bistable Memory Device.

    Science.gov (United States)

    Ramana, V V; Moodley, M K; Kumar, A B V Kiran; Kannan, V

    2015-05-01

    A solution processed two terminal organic bistable memory device was fabricated utilizing films of polymethyl methacrylate PMMA/ZnO/PMMA on top of ITO coated glass. Electrical characterization of the device structure showed that the two terminal device exhibited favorable switching characteristics with an ON/OFF ratio greater than 1 x 10(4) when the voltage was swept between - 2 V and +3 V. The device maintained its state after removal of the bias voltage. The device did not show degradation after a 1-h retention test at 120 degrees C. The memory functionality was consistent even after fifty cycles of operation. The charge transport switching mechanism is discussed on the basis of carrier transport mechanism and our analysis of the data shows that the charge carrier trans- port mechanism of the device during the writing process can be explained by thermionic emission (TE) and space-charge-limited-current (SCLC) mechanism models while erasing process could be explained by the FN tunneling mechanism. This demonstration provides a class of memory devices with the potential for low-cost, low-power consumption applications, such as a digital memory cell.

  19. The c-axis charge traveling wave in a coupled system of Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Hamdipour, M.

    2012-05-01

    We demonstrate a manifestation of the charge traveling wave along the c axis (TW) in current voltage characteristics of coupled Josephson junctions in high- T c superconductors. The branches related to the TW with different wavelengths are found for the stacks with different number of Josephson junctions at different values of system's parameters. Transitions between the TW branches and the outermost branch are observed. The electric charge in the superconducting layers and charge-charge correlation functions for TW and outermost branches show different behavior with bias current. We propose an experimental testing of the TW branching by microwave irradiation.

  20. Anomalous Threshold Voltage Variability of Nitride Based Charge Storage Nonvolatile Memory Devices

    Directory of Open Access Journals (Sweden)

    Meng Chuan Lee

    2013-01-01

    Full Text Available Conventional technology scaling is implemented to meet the insatiable demand of high memory density and low cost per bit of charge storage nonvolatile memory (NVM devices. In this study, effect of technology scaling to anomalous threshold voltage ( variability is investigated thoroughly on postcycled and baked nitride based charge storage NVM devices. After long annealing bake of high temperature, cell’s variability of each subsequent bake increases within stable distribution and found exacerbate by technology scaling. Apparent activation energy of this anomalous variability was derived through Arrhenius plots. Apparent activation energy (Eaa of this anomalous variability is 0.67 eV at sub-40 nm devices which is a reduction of approximately 2 times from 110 nm devices. Technology scaling clearly aggravates this anomalous variability, and this poses reliability challenges to applications that demand strict control, for example, reference cells that govern fundamental program, erase, and verify operations of NVM devices. Based on critical evidence, this anomalous variability is attributed to lateral displacement of trapped charges in nitride storage layer. Reliability implications of this study are elucidated. Moreover, potential mitigation methods are proposed to complement technology scaling to prolong the front-runner role of nitride based charge storage NVM in semiconductor flash memory market.

  1. Radiation detector device for rejecting and excluding incomplete charge collection events

    Science.gov (United States)

    Bolotnikov, Aleksey E.; De Geronimo, Gianluigi; Vernon, Emerson; Yang, Ge; Camarda, Giuseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B.

    2016-05-10

    A radiation detector device is provided that is capable of distinguishing between full charge collection (FCC) events and incomplete charge collection (ICC) events based upon a correlation value comparison algorithm that compares correlation values calculated for individually sensed radiation detection events with a calibrated FCC event correlation function. The calibrated FCC event correlation function serves as a reference curve utilized by a correlation value comparison algorithm to determine whether a sensed radiation detection event fits the profile of the FCC event correlation function within the noise tolerances of the radiation detector device. If the radiation detection event is determined to be an ICC event, then the spectrum for the ICC event is rejected and excluded from inclusion in the radiation detector device spectral analyses. The radiation detector device also can calculate a performance factor to determine the efficacy of distinguishing between FCC and ICC events.

  2. Universality test of the charged Higgs boson couplings at the LHC and at B factories

    Science.gov (United States)

    Cornell, Alan S.; Deandrea, Aldo; Gaur, Naveen; Itoh, Hideo; Klasen, Michael; Okada, Yasuhiro

    2010-06-01

    Many extensions of the standard model of particle physics predict the existence of charged Higgs bosons with substantial couplings to standard model particles, which would render them observable both directly at the LHC and indirectly at B-factories. For example, the charged Higgs boson couplings to fermions in two Higgs doublet models of type II are proportional to the ratio of the two Higgs doublet vacuum expectation values (tan⁡β) and fermionic mass factors and could thus be substantial at large tan⁡β and/or for heavy fermions. In this work we perform a model-independent study of the charged Higgs boson couplings at the LHC and at B-factories for large values of tan⁡β. We have shown that at high luminosity it is possible to measure the couplings of a charged Higgs boson to the third generation of quarks up to an accuracy of 10%. We further argue that by combining the possible measurements of the LHC and the B-factories, it is possible to perform a universality test of charged Higgs boson couplings to quarks.

  3. Three-phase inductive-coupled structures for contactless PHEV charging system

    Science.gov (United States)

    Lee, Jia-You; Shen, Hung-Yu; Li, Cheng-Bin

    2016-07-01

    In this article, a new-type three-phase inductive-coupled structure is proposed for the contactless plug-in hybrid electric vehicle (PHEV) charging system regarding with SAE J-1773. Four possible three-phase core structures are presented and subsequently investigated by the finite element analysis. To study the correlation between the core geometric parameter and the coupling coefficient, the magnetic equivalent circuit model of each structure is also established. In accordance with the simulation results, the low reluctance and the sharing of flux path in the core material are achieved by the proposed inductive-coupled structure with an arc-shape and three-phase symmetrical core material. It results in a compensation of the magnetic flux between each phase and a continuous flow of the output power in the inductive-coupled structure. Higher coupling coefficient between inductive-coupled structures is achieved. A comparison of coupling coefficient, mutual inductance, and self-inductance between theoretical and measured results is also performed to verify the proposed model. A 1 kW laboratory scale prototype of the contactless PHEV charging system with the proposed arc-shape three-phase inductive-coupled structure is implemented and tested. An overall system efficiency of 88% is measured when two series lithium iron phosphate battery packs of 25.6 V/8.4 Ah are charged.

  4. External Cooling Coupled to Reduced Extremity Pressure Device

    Science.gov (United States)

    Kuznetz, Lawrence H.

    2011-01-01

    Although suited astronauts are currently cooled with a Liquid Cooled Ventilation Garment (LCVG), which can remove up to 85 percent of body heat, their effectiveness is limited because cooling must penetrate layers of skin, muscle, fat, bone, and tissue to reach the bloodstream, where its effect is prominent. Vasoconstriction further reduces the effectiveness by limiting arterial flow when exposed to cold (the frostbite response), resulting in a time constant on the order of 20 minutes from application to maximum effect. This delay can be crucial in severe exposure to hypo- or hyper-thermic conditions, compromising homeostasis. The purpose of this innovation is to provide a lightweight, effective means of delivering heat or cold from an external source directly to the bloodstream. The effectiveness of this ECCREP (External Cooling Coupled to Reduced Extremity Pressure) device is based on not having to penetrate layers of skin, muscle, fat, and tissue, thereby avoiding the thermal lag associated with their mass and heat capacity. This is accomplished by means of an outer boot operating at a slightly reduced pressure than the rest of the body, combined with an inner boot cooled or heated by an external source via water or chemicals. Heat transfer from the external source to the foot takes place by means of circulating water or flexible heat pipes.

  5. Determination of the Ultraviolet and Visible Spectral Response of a Charge - Injection Device Array Detector.

    Science.gov (United States)

    1980-08-01

    spectroscopic systems. In contrast to these approaches the charge-injection device has several unique features. The CID * ensor consists of a discrete...Embassy University of California, San Diego APO San Francisco 96503 La Jolla, California Mr. James Kelley Dr. A. Zirino DT.R.C Code 2R03 Naval Undersea Center Annapolis, Maryland 21402 San Diego, California 92132 1

  6. Recent charge-breeding developments with EBIS/T devices (invited)

    Science.gov (United States)

    Schwarz, S.; Lapierre, A.

    2016-02-01

    Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 103 or even 104 A/cm2. These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities. Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL's ReA EBIS/T charge breeder.

  7. Recent charge-breeding developments with EBIS/T devices (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S., E-mail: schwarz@nscl.msu.edu; Lapierre, A. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, East Lansing, Michigan 48824 (United States)

    2016-02-15

    Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10{sup 3} or even 10{sup 4} A/cm{sup 2}. These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities. Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL’s ReA EBIS/T charge breeder.

  8. Charged colloids, polyelectrolytes and biomolecules viewed as strongly coupled Coulomb systems

    CERN Document Server

    Löwen, H; Likos, C N; Blaak, R; Dzubiella, J; Jusufi, A; Hoffmann, N; Harreis, H M

    2003-01-01

    A brief review is given on recent studies of charged soft matter solutions, as modelled by the 'primitive' approach of strongly coupled Coulomb systems, where the solvent just enters as a dielectric background. These include charged colloids, biological macromolecules such as proteins and DNA, polyelectrolytes and polyelectrolyte stars. Also some original results are presented on colloid-polyelectrolyte complex formation near walls and on the anomalous fluid structure of polyelectrolyte stars as a function of increasing concentration.

  9. Dust-Acoustic Waves in Strongly Coupled Dusty Plasmas Containing Variable-Charge Impurities

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song; HE Kai-Fen; M. Y. Yu

    2000-01-01

    A relatively self-consistent theory of dust-acoustic waves in the strongly coupled dusty plasmas containing variable charge impurities is given. Relevant physical processes such as dust elastic relaxation and dust charge relaxation are taken into account. It is shown that the negative dispersion of dust-acoustic waves due to the strong correlation of dusts is enhanced in the presence of dust-neutral collisions.

  10. The c-axis charge traveling wave in coupled system of Josephson junctions

    OpenAIRE

    Shukrinov, Yu M.; Hamdipour, M.

    2011-01-01

    We demonstrate a manifestation of the charge traveling wave along the c-axis (TW) in current voltage characteristics of coupled Josephson junctions in high-$T_c$ superconductors. The branches related to the TW with different wavelengths are found for the stacks with different number of Josephson junctions at different values of system's parameters. Transitions between the TW branches and the outermost branch are observed. Time dependence of the electric charge in the superconducting layers an...

  11. Isovector coupling channel and central properties of the charge density distribution in heavy spherical nuclei

    Indian Academy of Sciences (India)

    S Haddad

    2010-09-01

    The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable.

  12. Proton-Coupled Electron Transfer: Moving Together and Charging Forward

    Energy Technology Data Exchange (ETDEWEB)

    Hammes-Schiffer, Sharon

    2015-07-22

    Proton-coupled electron transfer (PCET) is ubiquitous throughout chemistry and biology. This Perspective discusses recent advances and current challenges in the field of PCET, with an emphasis on the role of theory and computation. The fundamental theoretical concepts are summarized, and expressions for rate constants and kinetic isotope effects are provided. Computational methods for calculating reduction potentials and pKa’s for molecular electrocatalysts, as well as methods for simulating the nonadiabatic dynamics of photoinduced processes, are also described. Representative applications to PCET in solution, proteins, electrochemistry, and photoinduced processes are presented, highlighting the interplay between theoretical and experimental studies. The current challenges and suggested future directions are outlined for each type of application, concluding with an overall view to the future. The work described herein was supported by National Science Foundation Grant CHE-13-61293 (theory development), National Institutes of Health Grant GM056207 (soybean lipoxygenase), Center for Chemical Innovation of the National Science Foundation Solar Fuels Grant CHE-1305124 (cobalt catalysts), Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (nickel catalysts), and Air Force Office of Scientific Research Award No. FA9550-14-1-0295 (photoinduced PCET).

  13. Effect of interjunction coupling on superconducting current and charge correlations in intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.

    2009-07-01

    Charge formations on superconducting layers and creation of the longitudinal plasma wave in the stack of intrinsic Josephson junctions change crucially the superconducting current through the stack. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers allows us to predict the additional features in the current-voltage characteristics. The charge autocorrelation functions clearly demonstrate the difference between harmonic and chaotic behavior in the breakpoint region. Use of the correlation functions gives us a powerful method for the analysis of the current-voltage characteristics of coupled Josephson junctions.

  14. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    Science.gov (United States)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  15. Ultra-thin fully-depleted SOI MOSFETs: Special charge properties and coupling effects

    Science.gov (United States)

    Eminente, S.; Cristoloveanu, S.; Clerc, R.; Ohata, A.; Ghibaudo, G.

    2007-02-01

    A standard characterization method in fully depleted SOI devices consists in biasing the back interface in the accumulation regime, and measuring the front-channel properties. In ultra thin body device however, it is sometimes no longer possible to achieve such an accumulation regime at the back interface. This unusual effect is investigated by detailed simulations and analytical modelling of the potential and electron/hole concentrations. The enhancement of the interface coupling effect in ultra thin body devices, called super-coupling, can explain previously published experimental data [Pretet J, Ohata A, Dieudonne F, Allibert F, Bresson N, Matsumoto T, et al. Scaling issues for advanced SOI devices: gate oxide tunneling, thin buried oxide, and ultra-thin films. In: 7th International symposium silicon nitride and silicon dioxide thin insulating films, Paris, France, 2003. Electrochemical Society Proceedings, vol. 2003-02, Pennington (USA); 2003. p. 476-87], and reveals new challenges in the characterization of advanced SOI devices.

  16. InAs quantum dots as charge storing elements for applications in flash memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Sk Masiul; Biswas, Pranab [Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Banerji, P., E-mail: pallab@matsc.iitkgp.ernet.in [Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Chakraborty, S. [Applied Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Sector-I, Kolkata 700 064 (India)

    2015-08-15

    Graphical abstract: - Highlights: • Catalyst-free growth of InAs quantum dots was carried out on high-k ZrO{sub 2}. • Memory device with InAs quantum dots as charge storage nodes are fabricated. • Superior memory window, low leakage and reasonably good retention were observed. • Carrier transport phenomena are explained in both program and erase operations. - Abstract: InAs quantum dots (QDs) were grown by metal organic chemical vapor deposition technique to use them as charge storage nodes. Uniform QDs were formed with average diameter 5 nm and height 5–10 nm with a density of 2 × 10{sup 11} cm{sup −2}. The QDs were grown on high-k dielectric layer (ZrO{sub 2}), which was deposited onto ultra-thin GaP passivated p-GaAs (1 0 0) substrate. A charge storage device with the structure Metal/ZrO{sub 2}/InAs QDs/ZrO{sub 2}/(GaP)GaAs/Metal was fabricated. The devices containing InAs QDs exhibit superior memory window, low leakage current density along with reasonably good charge retention. A suitable electronic band diagram corresponding to programming and erasing operations was proposed to explain the operation.

  17. Charging of Superconducting Layers and Novel Type of Hysteresis in Coupled Josephson Junctions

    OpenAIRE

    Shukrinov, Yu M.; Gaafar, Ma. A.

    2011-01-01

    A manifestation of a novel type of hysteresis related to the parametric resonance in the system of coupled Josephson junctions is demonstrated. Opposite to McCumber and Steward hysteresis, we find that the width of this hysteresis is inversely proportional to the McCumber parameter and depends also on coupling between junctions and the boundary conditions. An investigation of time dependence of the electric charge in superconducting layers allow us to explain the origin of this hysteresis by ...

  18. Charging effect in Au nanoparticle memory device with biomolecule binding mechanism.

    Science.gov (United States)

    Jung, Sung Mok; Kim, Hyung-Jun; Kim, Bong-Jin; Yoon, Tae-Sik; Kim, Yong-Sang; Lee, Hyun Ho

    2011-07-01

    Organic memory device having gold nanoparticle (Au NPs) has been introduced in the structure of metal-pentacene-insulator-silicon (MPIS) capacitor device, where the Au NPs layer was formed by a new bonding method. Biomolecule binding mechanism between streptavidin and biotin was used as a strong binding method for the formation of monolayered Au NPs on polymeric dielectric of poly vinyl alcohol (PVA). The self-assembled Au NPs was functioned to show storages of charge in the MPIS device. The binding by streptavidin and biotin was confirmed by AFM and UV-VIS. The UV-VIS absorption of the Au NPs was varied at 515 nm and 525 nm depending on the coating of streptavidin. The AFM image showed no formation of multi-stacked layers of the streptavidin-capped Au NPs on biotin-NHS layer. Capacitance-voltage (C-V) performance of the memory device was measured to investigate the charging effect from Au NPs. In addition, charge retention by the Au NPs storage was tested to show 10,000 s in the C-V curve.

  19. An Electrically Programmable Split-Electrode Charge-Coupled Transversal Filter (EPSEF)

    NARCIS (Netherlands)

    Wallinga, Hans; Pelgrom, Marcel J.M.

    1979-01-01

    A CCD split-electrode transversal filter (EPSEF) with analog controlled tap weights is described. The programmable tap weighting utilizes a novel analog multiplier for sampled data, based on charge profiling underneath a resistive gate structure. The EPSEF device concept and the performance data of

  20. Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism

    Science.gov (United States)

    Zhou, Ye; Han, Su-Ting; Sonar, Prashant; Roy, V. A. L.

    2013-07-01

    The capability of storing multi-bit information is one of the most important challenges in memory technologies. An ambipolar polymer which intrinsically has the ability to transport electrons and holes as a semiconducting layer provides an opportunity for the charge trapping layer to trap both electrons and holes efficiently. Here, we achieved large memory window and distinct multilevel data storage by utilizing the phenomena of ambipolar charge trapping mechanism. As fabricated flexible memory devices display five well-defined data levels with good endurance and retention properties showing potential application in printed electronics.

  1. Mode coupling control in a resonant device: application to solid-state ring lasers

    OpenAIRE

    Schwartz, Sylvain; Feugnet, Gilles; Bouyer, Philippe; Lariontsev, Evguenii; Aspect, Alain; Pocholle, Jean-Paul

    2006-01-01

    International audience; A theoretical and experimental investigation of the effects of mode coupling in a resonant macro- scopic quantum device is achieved in the case of a ring laser. In particular, we show both analytically and experimentally that such a device can be used as a rotation sensor provided the effects of mode coupling are controlled, for example through the use of an additional coupling. A possible general- ization of this example to the case of another resonant macroscopic qua...

  2. Precise Determination of Charge Dependent Pion-Nucleon-Nucleon Coupling Constants

    CERN Document Server

    Perez, R Navarro; Arriola, E Ruiz

    2016-01-01

    We undertake a covariance error analysis of the pion-nucleon-nucleon coupling constants from the Granada-2013 np and pp database comprising a total of 6713 scattering data. Assuming a unique pion-nucleon coupling constant we obtain $f^2=0.0761(3)$. The effects of charge symmetry breaking on the $^3P_0$, $^3P_1$ and $^3P_2$ partial waves are analyzed and we find $f_{p}^2 = 0.0759(4)$, $f_{0}^2 = 0.079(1)$ and $f_{c}^2 = 0.0763(6)$ with minor correlations among the coupling constants. We successfully test normality for the residuals of the fit.

  3. Charge creation and nucleation of the longitudinal plasma wave in coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Hamdipour, M.

    2010-11-01

    We study the phase dynamics in coupled Josephson junctions described by a system of nonlinear differential equations. Results of detailed numerical simulations of charge creation in the superconducting layers and the longitudinal plasma wave (LPW) nucleation are presented. We demonstrate the different time stages in the development of the LPW and present the results of FFT analysis at different values of bias current. The correspondence between the breakpoint position on the outermost branch of current voltage characteristics (CVC) and the growing region in time dependence of the electric charge in the superconducting layer is established. The effects of noise in the bias current and the external microwave radiation on the charge dynamics of the coupled Josephson junctions are found. These effects introduce a way to regulate the process of LPW nucleation in the stack of IJJ.

  4. Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi-Sua; XIONG Shi-Jie

    2008-01-01

    We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin-orbit coupling and connected asymmetrically to two external leads spanned with angle (φ)0.Because of the asymmetry of the structure and the spin-reflection,the persistent charge and spin currents can be induced.The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov-Casher (AC) phase due to the spin-orbit coupling and the angle spanned by two leads (φ)0.The general dependence of the charge and spin persistent currents on these parameters is obtained.This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and (φ)0,without the electromagnetic flux though the ring.

  5. EBQ code: transport of space-charge beams in axially symmetric devices

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A.C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WOLF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.

  6. Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics.

    Science.gov (United States)

    Son, Donghee; Koo, Ja Hoon; Song, Jun-Kyul; Kim, Jaemin; Lee, Mincheol; Shim, Hyung Joon; Park, Minjoon; Lee, Minbaek; Kim, Ji Hoon; Kim, Dae-Hyeong

    2015-05-26

    Electronics for wearable applications require soft, flexible, and stretchable materials and designs to overcome the mechanical mismatch between the human body and devices. A key requirement for such wearable electronics is reliable operation with high performance and robustness during various deformations induced by motions. Here, we present materials and device design strategies for the core elements of wearable electronics, such as transistors, charge-trap floating-gate memory units, and various logic gates, with stretchable form factors. The use of semiconducting carbon nanotube networks designed for integration with charge traps and ultrathin dielectric layers meets the performance requirements as well as reliability, proven by detailed material and electrical characterizations using statistics. Serpentine interconnections and neutral mechanical plane layouts further enhance the deformability required for skin-based systems. Repetitive stretching tests and studies in mechanics corroborate the validity of the current approaches.

  7. Charged Rotating AdS Black Holes with Chern-Simons coupling

    CERN Document Server

    Mir, Mozhgan

    2016-01-01

    We obtain a perturbative solution for rotating charged black holes in 5-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. We start from a small undeformed Kerr-AdS solution and use the electric charge as a perturbative parameter to build up black holes with equal-magnitude angular momenta up to forth order. These black hole solutions are described by three parameters, the charge, horizon radius and horizon angular velocity. We determine the physical quantities of these black holes and study their dependence on the parameters of black holes and arbitrary Chern-Simons coefficient. In particular, for values of CS coupling constant beyond its supergravity amount, due to a rotational instability, counterrotating black holes arise. Also the rotating solutions appear to have vanishing angular momenta and do not manifest uniquely by their global charges.

  8. Charged cosmological dust solutions of the coupled Einstein and Maxwell equations

    CERN Document Server

    Spruck, Joel

    2010-01-01

    It is well known through the work of Majumdar, Papapetrou, Hartle, and Hawking that the coupled Einstein and Maxwell equations admit a static multiple blackhole solution representing a balanced equilibrium state of finitely many point charges. This is a result of the exact cancellation of gravitational attraction and electric repulsion under an explicit condition on the mass and charge ratio. The resulting system of particles, known as an extremely charged dust, gives rise to examples of spacetimes with naked singularities. In this paper, we consider the continuous limit of the Majumdar--Papapetrou--Hartle--Hawking solution modeling a space occupied by an extended distribution of extremely charged dust. We show that for a given smooth distribution of matter of finite ADM mass there is a continuous family of smooth solutions realizing asymptotically flat space metrics.

  9. An Accurate and Linear Scaling Method to Calculate Charge-Transfer Excitation Energies and Diabatic Couplings

    CERN Document Server

    Pavanello, Michele; Visscher, Lucas; Neugebauer, Johannes

    2012-01-01

    Quantum--Mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the Frozen Density Embedding formulation of subsystem Density-Functional Theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against Coupled-Cluster calculations and achieves chemical accuracy for the systems considered...

  10. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  11. Performance of a compact position-sensitive photon counting detector with image charge coupling to an air-side anode

    Science.gov (United States)

    Jagutzki, O.; Czasch, A.; Schössler, S.

    2013-05-01

    We discuss a novel micro-channel plate (MCP) photomultiplier with resistive screen (RS-PMT) as a detection device for space- and time-correlated single photon counting, illustrated by several applications. The photomultiplier tube resembles a standard image intensifier device. However, the rear phosphor screen is replaced by a ceramic "window" with resistive coating. The MCP output is transferred through the ceramic plate to the read-out electrode (on the air side) via capacity-coupling of the image charge. This design allows for an easy reconfiguration of the read-out electrode (e.g. pixel, charge-sharing, cross-strip, delay-line) without breaking the vacuum for optimizing the detector performance towards a certain task. It also eases the design and manufacturing process of such a multi-purpose photomultiplier tube. Temporal and spatial resolutions well below 100 ps and 100 microns, respectively, have been reported at event rates as high as 1 MHz, for up to 40 mm effective detection diameter. In this paper we will discuss several applications like wide-field fluorescence microscopy and dual γ/fast-neutron radiography for air cargo screening and conclude with an outlook on large-area detectors for thermal neutrons based on MCPs.

  12. Charge Effect on the Quantum Dots-Peptide Self-Assembly Using Fluorescence Coupled Capillary Electrophoresis.

    Science.gov (United States)

    Wang, Jianhao; Li, Jingyan; Teng, Yiwan; Bi, Yanhua; Hu, Wei; Li, Jinchen; Wang, Cheli; Qiu, Lin; Jiang, Pengju

    2016-04-01

    We present a molecular characterization of metal-affinity driven self-assembly between CdSe-ZnS quantum dots and a series of hexahistidine peptides with different charges. In particular, we uti- lized fluorescence coupled capillary electrophoresis to test the self-assembly process of quantum dots with peptides in solution. Four peptides with different charges can be efficiently separated by fluorescence coupled capillary electrophoresis. The migration time appeared to be influenced by the charges of the peptide. In addition, the kinetics of self-assembly process of quantum dots with one of the peptides manifested a bi-phasic kinetics followed by a saturating stage. This work revealed that there exist two types of binding sites on the surface of quantum dots for peptide 1: one type termed "high priority" binding site and a "low priority" site which is occupied after the first binding sites are fully occupied. The total self-assembly process finishes in solution within 80 s. Our work represents the systematic investigation of the details of self-assembly kinetics utilizing high-resolution fluorescence coupled capillary electrophoresis. The charge effect of peptide coating quantum dots provides a new way of preparing bioprobes.

  13. Organic photovoltaic devices with concurrent solar energy harvesting and charge storage capability

    Science.gov (United States)

    Takshi, Arash; Tevi, Tete; Rahimi, Fatemeh

    2015-09-01

    Due to large variation of the solar energy availability in a day, energy storage is required in many applications when solar cells are used. However, application of external energy storage devices, such as batteries and supercapacitors, increases the cost of solar energy systems and requires additional charging circuitry. This combination is bulky and relatively expensive, which is not ideal for many applications. In this work, a novel idea is presented for making electrochemical devices with dual properties of solar energy harvesting and internal charge storage. The device is essentially a supercapacitor with a photoactive electrode. Energy harvesting occurs through light absorption at one of the electrodes made of a composite of a conducting polymer (i.e. PEDOT:PSS) and a Porphyrin dye. The energy storage takes place in the both photoactive and counter electrode (CE). We have studied the effect of the CE material on the device characteristics. Using Y-Carbon (a commercial available electrode), an open circuit voltage of 0.49 V was achieved in light across the cell with ~1 mF capacitance. The other two choices for CE were activated carbon and carbon nanotube based electrodes. The cyclic voltammetry and impedance spectroscopy demonstrated that the Y Carbon electrode was a better match.

  14. Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model

    Science.gov (United States)

    Liu, Kailong; Li, Kang; Zhang, Cheng

    2017-04-01

    Battery temperature is a primary factor affecting the battery performance, and suitable battery temperature control in particular internal temperature control can not only guarantee battery safety but also improve its efficiency. This is however challenging as current controller designs for battery charging have no mechanisms to incorporate such information. This paper proposes a novel battery charging control strategy which applies the constrained generalized predictive control (GPC) to charge a LiFePO4 battery based on a newly developed coupled thermoelectric model. The control target primarily aims to maintain the battery cell internal temperature within a desirable range while delivering fast charging. To achieve this, the coupled thermoelectric model is firstly introduced to capture the battery behaviours in particular SOC and internal temperature which are not directly measurable in practice. Then a controlled auto-regressive integrated moving average (CARIMA) model whose parameters are identified by the recursive least squares (RLS) algorithm is developed as an online self-tuning predictive model for a GPC controller. Then the constrained generalized predictive controller is developed to control the charging current. Experiment results confirm the effectiveness of the proposed control strategy. Further, the best region of heat dissipation rate and proper internal temperature set-points are also investigated and analysed.

  15. Mismatch of dielectric constants at the interface of nanometer metal-oxide-semiconductor devices with high- gate dielectric impacts on the inversion charge density

    Indian Academy of Sciences (India)

    Ling-Feng Mao

    2011-04-01

    The comparison of the inversion electron density between a nanometer metal-oxidesemiconductor (MOS) device with high- gate dielectric and a SiO2 MOS device with the same equivalent oxide thickness has been discussed. A fully self-consistent solution of the coupled Schrödinger–Poisson equations demonstrates that a larger dielectric-constant mismatch between the gate dielectric and silicon substrate can reduce electron density in the channel of a MOS device under inversion bias. Such a reduction in inversion electron density of the channel will increase with increase in gate voltage. A reduction in the charge density implies a reduction in the inversion electron density in the channel of a MOS device. It also implies that a larger dielectric constant of the gate dielectric might result in a reduction in the source–drain current and the gate leakage current.

  16. Spectral and structural stability properties of charged particle dynamics in coupled lattices

    CERN Document Server

    Qin, Hong; Davidson, Ronald C; Burby, J W

    2015-01-01

    It has been realized in recent years that coupled focusing lattices in accelerators and storage rings have significant advantages over conventional uncoupled focusing lattices, especially for high-intensity charged particle beams. A theoretical framework and associated tools for analyzing the spectral and structural stability properties of coupled lattices are formulated in this paper, based on the recently developed generalized Courant-Snyder theory for coupled lattices. It is shown that for periodic coupled lattices that are spectrally and structurally stable, the matrix envelope equation must admit matched solutions. Using the technique of normal form and pre-Iwasawa decomposition, a new method is developed to replace the (inefficient) shooting method for finding matched solutions for the matrix envelope equation. Stability properties of a continuously rotating quadrupole lattice are investigated. The Krein collision process for destabilization of the lattice is demonstrated.

  17. Electroelastic coupling between membrane surface fluctuations and membrane-embedded charges: Continuum multidielectric treatment

    Energy Technology Data Exchange (ETDEWEB)

    Miloshevsky, Gennady V., E-mail: gennady@purdue.edu; Hassanein, Ahmed, E-mail: hassanein@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Partenskii, Michael B., E-mail: partensky@gmail.com; Jordan, Peter C., E-mail: jordan@brandeis.edu [Department of Chemistry, MS-015, Brandeis University, P.O. Box 549110, Waltham, Massachusetts 02454-9110 (United States)

    2010-06-21

    The coupling of electric fields and charges with membrane-water interfacial fluctuations affects membrane electroporation, ionic conductance, and voltage gating. A modified continuum model is introduced to study charge interaction with membrane-water interfacial fluctuations in multidielectric environments. By surrounding a point charge with a low dielectric sphere, the linear Poisson–Boltzmann equation is directly solved by calculating the reaction field potential via a method that eliminates singularity contributions. This allows treatment of charges located at dielectric boundaries. Two complementary mechanisms governing charge-fluctuation interactions are considered: (1) electroelastic deformation (EED), treating the membrane as an elastic slab (smectic bilayer model), and (2) electrohydrophobic solvation (EHS), accounting for water penetration into the membrane’s hydrophobic core. EED often leads to large membrane thickness perturbations, far larger than those consistent with elastic model descriptions [M. B. Partenskii, G. V. Miloshevsky, and P. C. Jordan, Isr. J. Chem. 47, 385 (2007)]. We argue that a switch from EED to EHS can be energetically advantageous at intermediate perturbation amplitudes. Both perturbation mechanisms are simulated by introducing adjustable shapes optimized by the kinetic Monte Carlo reaction path following approach [G. V. Miloshevsky and P. C. Jordan, J. Chem. Phys. 122, 214901 (2005)]. The resulting energy profiles agree with those of recent atomistic molecular dynamics studies on translating a charged residue across a lipid bilayer [S. Dorairaj and T. W. Allen, Proc. Natl. Acad. Sci. U.S.A. 104, 4943 (2007)].

  18. Spin Polarized Photons from Axially Charged Plasma at Weak Coupling: Complete Leading Order

    CERN Document Server

    Mamo, Kiminad A

    2015-01-01

    In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin-aligned, which is a unique P- and CP-odd signature of axial charge in the photon emission observables. We compute this "P-odd photon emission rate" in weak coupling regime at high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P-even total emission rate in the literature, the computation of P-odd emission rate at leading order consists of three parts: 1) Compton and Pair Annihilation processes with hard momentum exchange, 2) soft t- and u-channel contributions with Hard Thermal Loop re-summation, 3) Landau-Pomeranchuk-Migdal (LPM) re-summation of collinear Bremstrahlung and Pair Annihilation. We present analytical and numerical evaluations of these contributions to our P-odd photon emission rate observable.

  19. Highly charged ions in a dilute plasma: an exact asymptotic solution involving strong coupling.

    Science.gov (United States)

    Brown, Lowell S; Dooling, David C; Preston, Dean L

    2006-05-01

    The ion sphere model introduced long ago by Salpeter is placed in a rigorous theoretical setting. The leading corrections to this model for very highly charged but dilute ions in thermal equilibrium with a weakly coupled, one-component background plasma are explicitly computed, and the subleading corrections shown to be negligibly small. This is done using the effective field theory methods advocated by Brown and Yaffe. Thus, corrections to nuclear reaction rates that such highly charged ions may undergo can be computed precisely. Moreover, their contribution to the equation of state can also be computed with precision. Such analytic results for very strong coupling are rarely available, and they can serve as benchmarks for testing computer models in this limit.

  20. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization.

    Science.gov (United States)

    Demchenko, Alexander P; Tang, Kuo-Chun; Chou, Pi-Tai

    2013-02-01

    Charge and proton transfer reactions in the excited states of organic dyes can be coupled in many different ways. Despite the complementarity of charges, they can occur on different time scales and in different directions of the molecular framework. In certain cases, excited-state equilibrium can be established between the charge-transfer and proton-transfer species. The interplay of these reactions can be modulated and even reversed by variations in dye molecular structures and changes of the surrounding media. With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed. These features have found versatile applications in a number of cutting-edge technological areas, particularly in fluorescence sensing and imaging.

  1. Charge creation and nucleation of longitudinal plasma wave in coupled Josephson junctions

    OpenAIRE

    Shukrinov, Yu M.; Hamdipour, M.

    2009-01-01

    We study the phase dynamics in coupled Josephson junctions describing by system of nonlinear differential equations. Results of detailed numerical simulations of charge creation in the superconducting layers and the longitudinal plasma wave (LPW) nucleation are presented. We demonstrate the different time stages in the development of the LPW and present results of FFT analysis at different values of bias current. The correspondence between the breakpoint position on the outermost branch of cu...

  2. ACCELERATORS: Emittance coupling driven by space charge in the CSNS linac

    Science.gov (United States)

    Yin, Xue-Jun; Fu, Shi-Nian; Peng, Jun

    2009-09-01

    In the conventional design of RF linacs, the bunched beams are not in thermal equilibrium. The space charge forces couple the particle motions between the transverse and the longitudinal directions. Furthermore it will cause the equipartitioning process which leads to emittance growth and halo formation. In the design of the China Spallation Neutron Source (CSNS) linac, three cases are investigated using the Hofmann stability charts. In this paper, we present the equipartitioning beam study of the CSNS Alvarez DTL linac.

  3. Electron-phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors.

    Science.gov (United States)

    Reznik, D; Pintschovius, L; Ito, M; Iikubo, S; Sato, M; Goka, H; Fujita, M; Yamada, K; Gu, G D; Tranquada, J M

    2006-04-27

    The attempt to understand copper oxide superconductors is complicated by the presence of multiple strong interactions in these systems. Many believe that antiferromagnetism is important for superconductivity, but there has been renewed interest in the possible role of electron-lattice coupling. The conventional superconductor MgB2 has a very strong electron-lattice coupling, involving a particular vibrational mode (phonon) that was predicted by standard theory and confirmed quantitatively by experiment. Here we present inelastic scattering measurements that show a similarly strong anomaly in the Cu-O bond-stretching phonon in the copper oxide superconductors La(2-x)Sr(x)CuO4 (with x = 0.07, 0.15). Conventional theory does not predict such behaviour. The anomaly is strongest in La(1.875)Ba(0.125)CuO4 and La(1.48)Nd(0.4)Sr(0.12)CuO4, compounds that exhibit spatially modulated charge and magnetic order, often called stripe order; it occurs at a wave vector corresponding to the charge order. These results suggest that this giant electron-phonon anomaly, which is absent in undoped and over-doped non-superconductors, is associated with charge inhomogeneity. It follows that electron-phonon coupling may be important to our understanding of superconductivity, although its contribution is likely to be indirect.

  4. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    Science.gov (United States)

    Vawter, G. Allen

    2008-02-26

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  5. Atomistic simulation of charge effects: From tunable thin film growth to isolation of surface states with spin-orbit coupling

    Science.gov (United States)

    Ming, Wenmei

    This dissertation revitalizes the importance of surface charge effects in semiconductor nanostructures, in particular in the context of thin film growth and exotic electronic structures under delicate spin-orbit coupling. A combination of simulation techniques, including density functional theory calculation, kinetic Monte Carlo method, nonequilibrium Green's function method, and tight binding method, were employed to reveal the underlying physical mechanisms of four topics: (1) Effects of Li doping on H-diffusion in MgH 2 for hydrogen storage. It addresses both the effect of Fermi level tuning by charged dopant and the effect of dopant-defect interaction, and the latter was largely neglected in previous works; (2) Tuning nucleation density of the metal island with charge doping of the graphene substrate. It is the first time that the surface charge doping effect is proposed and studied as an effective approach to tune the kinetics of island nucleation at the early stage of thin film growth; (3) Complete isolation of Rashba surface states on the saturated semiconductor surface. It shows that the naturally saturated semiconductor surface of InSe(0001) with Au single layer film provides a mechanism for the formation of Rashba states with large spin splitting; it opens up an innovative route to obtaining ideal Rashba states without the overwhelming bulk spin-degenerate carriers in spin-dependent transport; (4) Formation of large band gap quantum spin Hall state on Si surface. This study reveals the importance of atomic orbital composition in the formation of a topological insulator, and shows promisingly the possible integration of topological insulator technology into Si-based modern electronic devices.

  6. Electrical models of excitation-contraction coupling and charge movement in skeletal muscle.

    Science.gov (United States)

    Mathias, R T; Levis, R A; Eisenberg, R S

    1980-07-01

    The consequences of ionic current flow from the T system to the sarcoplasmic reticulum (SR) of skeletal muscle are examined. The Appendix analyzes a simple model in which the conductance gx, linking T system and SR, is in series with a parallel resistor and capacitor having fixed values. The conductance gx is supposed to increase rapidly with depolarization and to decrease slowly with repolarization. Nonlinear transient currents computed from this model have some of the properties of gating currents produced by intramembrane charge movement. In particular, the integral of the transient current upon depolarization approximates that upon repolarization. Thus, equality of nonlinear charge movement can occur without intramembrane charge movement. A more complicated model is used in the text to fit the structure of skeletal muscle and other properties of its charge movement. Rectification is introduced into gx and the membrane conductance of the terminal cisternae to give asymmetry in the time-course of the transient currents and saturation in the curve relating charge movement to depolarization, respectively. The more complex model fits experimental data quite well if the longitudinal tubules of the sarcoplasmic reticulum are isolated from the terminal cisternae by a substantial resistance and if calcium release from the terminal cisternae is, for the most part, electrically silent. Specific experimental tests of the model are proposed, and the implications for excitation-contraction coupling are discussed.

  7. NUT-charged black holes in matter-coupled N=2, D=4 gauged supergravity

    Science.gov (United States)

    Colleoni, Marta; Klemm, Dietmar

    2012-06-01

    Using the results of Cacciatori, Klemm, Mansi, and Zorzan [J. High Energy Phys.JHEPFG1029-8479 05 (2008) 09710.1088/1126-6708/2008/05/097], where all timelike supersymmetric backgrounds of N=2, D=4 matter-coupled supergravity with Fayet-Iliopoulos gauging were classified, we construct genuine NUT-charged BPS black holes in anti-deSitter4 with nonconstant moduli. The calculations are exemplified for the SU(1,1)/U(1) model with prepotential F=-iX0X1. The resulting supersymmetric black holes have a hyperbolic horizon and carry two electric, two magnetic, and one NUT charge, which are however not all independent, but are given in terms of three free parameters. We find that turning on a NUT charge lifts the flat directions in the effective black hole potential, such that the horizon values of the scalars are completely fixed by the charges. We also oxidize the solutions to 11 dimensions, and find that they generalize the geometry found in the work of Gauntlett, Kim, Pakis, and Waldram [Phys. Rev. DPRVDAQ0556-2821 65, 026003 (2001)10.1103/PhysRevD.65.026003] corresponding to membranes wrapping holomorphic curves in a Calabi-Yau fivefold. Finally, a class of NUT-charged Nernst branes is constructed as well, but these have curvature singularities at the horizon.

  8. Charge generation layers for solution processed tandem organic light emitting diodes with regular device architecture.

    Science.gov (United States)

    Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander

    2015-04-22

    Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED.

  9. Fourth-order master equation for a charged harmonic oscillator coupled to an electromagnetic field

    Science.gov (United States)

    Kurt, Arzu; Eryigit, Resul

    Using Krylov averaging method, we have derived a fourth-order master equation for a charged harmonic oscillator weakly coupled to an electromagnetic field. Interaction is assumed to be of velocity coupling type which also takes into account the diagmagnetic term. Exact analytical expressions have been obtained for the second, the third and the fourth-order corrections to the diffusion and the drift terms of the master equation. We examined the validity range of the second order master equation in terms of the coupling constant and the bath cutoff frequency and found that for the most values of those parameters, the contribution from the third and the fourth order terms have opposite signs and cancel each other. Inclusion of the third and the fourth-order terms is found to not change the structure of the master equation. Bolu, Turkey.

  10. Efficient single-mode photon-coupling device utilizing a nanofiber tip.

    Science.gov (United States)

    Chonan, Sho; Kato, Shinya; Aoki, Takao

    2014-04-24

    Single-photon sources are important elements in quantum optics and quantum information science. It is crucial that such sources be able to couple photons emitted from a single quantum emitter to a single propagating mode, preferably to the guided mode of a single-mode optical fiber, with high efficiency. Various photonic devices have been successfully demonstrated to efficiently couple photons from an emitter to a single mode of a cavity or a waveguide. However, efficient coupling of these devices to optical fibers is sometimes challenging. Here we show that up to 38% of photons from an emitter can be directly coupled to a single-mode optical fiber by utilizing the flat tip of a silica nanofiber. With the aid of a metallic mirror, the efficiency can be increased to 76%. The use of a silicon waveguide further increases the efficiency to 87%. This simple device can be applied to various quantum emitters.

  11. Identification procedures for the charge-controlled nonlinear noise model of microwave electron devices

    Science.gov (United States)

    Filicori, Fabio; Traverso, Pier Andrea; Florian, Corrado; Borgarino, Mattia

    2004-05-01

    The basic features of the recently proposed Charge-Controlled Non-linear Noise (CCNN) model for the prediction of low-to-high-frequency noise up-conversion in electron devices under large-signal RF operation are synthetically presented. It is shown that the different noise generation phenomena within the device can be described by four equivalent noise sources, which are connected at the ports of a "noiseless" device model and are non-linearly controlled by the time-varying instantaneous values of the intrinsic device voltages. For the empirical identification of the voltage-controlled equivalent noise sources, different possible characterization procedures, based not only on conventional low-frequency noise data, but also on different types of noise measurements carried out under large-signal RF operating conditions are discussed. As an example of application, the measurement-based identification of the CCNN model for a GaInP heterojunction bipolar microwave transistor is presented. Preliminary validation results show that the proposed model can describe with adequate accuracy not only the low-frequency noise of the HBT, but also its phase-noise performance in a prototype VCO implemented by using the same monolithic GaAs technology.

  12. Controlling charge carrier injection in organic electroluminescent devices via ITO substrate modification

    CERN Document Server

    Day, S

    2001-01-01

    and the ITO substrate was found to shift the work function of the electrode, and so modify the barrier to hole injection. Scanning Kelvin probe measurements show that the ITO work function is increased by 0.25 eV with a film of TNAP, while a C sub 6 sub 0 film is found to reduce the work function by a comparable amount. The former has been attributed to a charge-transfer effect resulting in Fermi level alignment between the ITO and the TNAP layer, however the latter is believed to result from both charge transfer and a covalent interaction between C sub 6 sub 0 and ITO. The performance of devices incorporating these modified ITO electrode are rationalised in terms of the work function modification, film thicknesses and the hole transport properties of the two films. Competition between the induced work function change and the increasingly significant tunnelling barrier with thickness means that device performance is not as good as that provided by the SAMs. Direct processing of the ITO substrate has also been...

  13. Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices

    Science.gov (United States)

    Yu, Jie; Chen, Kun-ji; Ma, Zhong-yuan; Zhang, Xin-xin; Jiang, Xiao-fan; Wu, Yang-qing; Huang, Xin-fan; Oda, Shunri

    2016-09-01

    Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8 × 1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).

  14. Study and Test of Cold Storage Heat Recovery Heat Pump Coupled Solar Drying Device

    Directory of Open Access Journals (Sweden)

    Min Li

    2013-05-01

    Full Text Available In this study, we design the recovery of a heat pump combined solar drying device. Then, with this device, drying experiments of aquatic product, tilapia, were conducted, indicating that the newly designed device functions are well in temperature adjusting and controlling performance and showing that drying time is closely related to energy consumption and drying conditions. Heat recovery heat pump combined solar energy drier can improve the drying quality of aquatic products, but also can greatly reduce the drying energy consumption, which provides theoretical support to the design and processing of heat recovery heat pump of refrigeration system coupled solar drying device.

  15. Gutzwiller charge phase diagram of cuprates, including electron-phonon coupling effects

    Science.gov (United States)

    Markiewicz, R. S.; Seibold, G.; Lorenzana, J.; Bansil, A.

    2015-02-01

    Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-Tc compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active at a fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-(π ,π ) order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave order in YBa2Cu3O7-δ including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting.

  16. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device.

    Science.gov (United States)

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-31

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction's perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule's magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs' electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ∼50% of the interatomic exchange coupling for the FM electrodes.

  17. Coupling of Laser-Generated Electrons with Conventional Accelerator Devices

    CERN Document Server

    Antici, P; Benedetti, C; Chiadroni, E; Ferrario, M; Lancia, L; Migliorati, M; Mostacci, A; Palumbo, L; Rossi, A R; Serafini, L

    2011-01-01

    Laser-based electron acceleration is attracting strong interest from the conventional accelerator community due to its outstanding characteristics in terms of high initial energy, low emittance and high beam current. Unfortunately, such beams are currently not comparable to those of conventional accelerators, limiting their use for the manifold applications that a traditional accelerator can have. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both, a versatile electron source and a controllable beam. In this paper we show that some parameters commonly used by the particle accelerator community must be reconsidered when dealing with laser-plasma beams. Starting from the parameters of laser-generated electrons which can be obtained nowadays by conventional multi hundred TW laser systems, we compare different conventional magnetic lattices able to capture and transport those GeV...

  18. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vittone, E., E-mail: ettore.vittone@unito.it [Department of Physics, NIS Research Centre and CNISM, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Pastuovic, Z. [Centre for Accelerator Science (ANSTO), Locked bag 2001, Kirrawee DC, NSW 2234 (Australia); Breese, M.B.H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Garcia Lopez, J. [Centro Nacional de Aceleradores (CNA), Sevilla University, J. Andalucia, CSIC, Av. Thomas A. Edison 7, 41092 Sevilla (Spain); Jaksic, M. [Department for Experimental Physics, Ruder Boškovic Institute (RBI), P.O. Box 180, 10002 Zagreb (Croatia); Raisanen, J. [Department of Physics, University of Helsinki, Helsinki 00014 (Finland); Siegele, R. [Centre for Accelerator Science (ANSTO), Locked bag 2001, Kirrawee DC, NSW 2234 (Australia); Simon, A. [International Atomic Energy Agency (IAEA), Vienna International Centre, P.O. Box 100, 1400 Vienna (Austria); Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Vizkelethy, G. [Sandia National Laboratories (SNL), PO Box 5800, Albuquerque, NM (United States)

    2016-04-01

    Highlights: • We study the electronic degradation of semiconductors induced by ion irradiation. • The experimental protocol is based on MeV ion microbeam irradiation. • The radiation induced damage is measured by IBIC. • The general model fits the experimental data in the low level damage regime. • Key parameters relevant to the intrinsic radiation hardness are extracted. - Abstract: This paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

  19. Quantum entanglement transition in vertically coupled two single-electron quantum dots with charged impurity

    Institute of Scientific and Technical Information of China (English)

    MAN Zhong-xiao; ZHANG Zhan-jun

    2004-01-01

    Effects of a charged impurity on the ground state of two vertically coupled identical single-electron quantum dots with and without applied magnetic field are investigated. In the absence of the magnetic field, the investigations of the charged impurity effect on the quantum entanglement (QE) in some low-lying states are carried out. It is found that, both the positive charged impurity (PCI) and the negative charged impurity (NCI)reduce the QE in the low-lying states under consideration except that the QE in the ground state is enhanced by the NCI. Additionally, in the domain of B from 0 Tesla to 15 Tesla, the ground state energy E, the ground state angular momentum L and the ground state QE entropy S are worked out. As far as the ground state are concerned, the PCI (NCI) blocks (induces) the angular momentum phase transition and the QE phase transition besides the known fact (i. e., the PCI/NCI decreases/increases the energy) in the magnetic field.

  20. Halo Coupling and Cleaning by a Space Charge Resonance in High Intensity Beams

    CERN Document Server

    Hofmann, Ingo

    2013-01-01

    We show that the difference resonance driven by the space charge pseudo-octupole of high-intensity beams not only couples the beam core emittances; it can also lead to emittance exchange in the beam halo, which is of relevance for beam loss in high intensity accelerators. With reference to linear accelerators the "main resonance" kz/kxy =1 (corresponding to the Montague resonance 2Qx-2Qy=0 in circular accelerators) may lead to such a coupling and transfer of halo between planes. Coupling of transverse halo into the longitudinal plane - or vice versa - can occur even if the core (rms) emittances are exactly or nearly equal. This halo argument justifies additional caution in linac design including consideration of avoiding an equipartitioned design. At the same time, however, this mechanism may also qualify as active dynamical halo cleaning scheme by coupling a halo from the longitudinal plane into the transverse plane, where local scraping is accessible. We present semi-analytical emittance coupling rates and ...

  1. Forces in EDO-TTF: Theoretical study of isotope and charge effects on vibronic coupling

    Science.gov (United States)

    Tokunaga, Ken

    Isotope and charge effects on vibronic coupling constant (V) and energy gradient (g) of ethylenedioxy-tetrathiafulvalen (EDO-TTF) upon the electron injection into cation and electron removal from neutral molecule are investigated. It is found that normal modes which include C = C stretching motion generally have large V and g. For electron removal, three normal modes (v460, v470, and v480) have large Vi+ and gi+, and deuteration results in decrease of V46+ and increase of V47+. For electron injection, five normal modes (ν+42, ν+44, ν+45, ν+47, and ν+48) have large vi0 and gi0 deuteration results in increase of V045 and V048 and decrease of V047. From the analysis of vibronic coupling constants using vibronic coupling density (VCD), regional vibronic coupling constant (RVCC), and atomic vibronic coupling constant (AVCC), it is revealed that the change in normal mode vectors (d) due to the deuteration and electron removal (or injection) leads to the change in V.

  2. Detection of charged particles and X-rays by scintillator layers coupled to amorphous silicon photodiode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jing, T.; Drewery, J.; Hong, W.S.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V. [Lawrence Berkeley Lab., CA (United States); Goodman, C.A.; Wildermuth, D. [Air Techniques, Inc. Hicksville, NY (United States)

    1995-04-01

    Hydrogenated amorphous silicon (a-Si:H) p-i-n diodes with transparent metallic contacts are shown to be suitable for detecting charged particles, electrons, and X-rays. When coupled to a suitable scintillator using CsI(Tl) as the scintillator we show a capability to detect minimum ionizing particles with S/N {approximately}20. We demonstrate such an arrangement by operating a p-i-n diode in photovoltaic mode (reverse bias). Moreover, we show that a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3-8 higher light sensitivity for shaping times of 1 {mu}s. n-i-n devices have similar optical gain as the p-i-n photoconductor for short integrating times ( < 10{mu}s). However, n-i-n devices exhibit much higher gain for a long term integration (10ms) than the p-i-n ones. High sensitivity photosensors are very desirable for X-ray medical imaging because radiation exposure dose can be reduced significantly. The scintillator CsI layers we made have higher spatial resolution than the Kodak commercial scintillator screens due to their internal columnar structure which can collimate the scintillation light. Evaporated CsI layers are shown to be more resistant to radiation damage than the crystalline bulk CsI(Tl).

  3. Spin and charge distribution in iron porphyrin models: a coupled cluster and density-functional study.

    Science.gov (United States)

    Johansson, Mikael P; Sundholm, Dage

    2004-02-15

    We recently performed detailed analyses of the electronic structure of low-spin iron porphyrins using density-functional theory (DFT). Both the spin-density distributions of the oxidized, ferric forms, as well as the changes in total charge density upon reduction to the ferrous forms have been explored. Here, we compare the DFT results with wave-function theory, more specifically, with the approximate singles and doubles coupled-cluster method (CC2). Different spin states are considered by studying representative models of low spin, intermediate spin, and high spin species. The CC2 calculations corroborate the DFT results; the spin density exhibits the same amount of molecular spin polarization, and the charge delocalization is of comparable magnitude. Slight differences in the descriptions are noted and discussed.

  4. Coupling between bulk- and surface chemistry in suspensions of charged colloids

    Science.gov (United States)

    Heinen, M.; Palberg, T.; Löwen, H.

    2014-03-01

    The ionic composition and pair correlations in fluid phases of realistically salt-free charged colloidal sphere suspensions are calculated in the primitive model. We obtain the number densities of all ionic species in suspension, including low-molecular weight microions, and colloidal macroions with acidic surface groups, from a self-consistent solution of a coupled physicochemical set of nonlinear algebraic equations and non-mean-field liquid integral equations. Here, we study suspensions of colloidal spheres with sulfonate or silanol surface groups, suspended in demineralized water that is saturated with carbon dioxide under standard atmosphere. The only input required for our theoretical scheme are the acidic dissociation constants pKa, and effective sphere diameters of all involved ions. Our method allows for an ab initio calculation of colloidal bare and effective charges, at high numerical efficiency.

  5. Flexible pipe crawling device having articulated two axis coupling

    Science.gov (United States)

    Zollinger, William T.

    1994-01-01

    An apparatus for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in "inchworm" fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend.

  6. The effect of protons on the performance of swept-charge devices

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David R. [Imaging for Space and Terrestrial Applications Group, School of Engineering and Design, Brunel University, Uxbridge Middlesex UB8 3PH (United Kingdom)], E-mail: david.smith@brunel.ac.uk; Gow, Jason [Imaging for Space and Terrestrial Applications Group, School of Engineering and Design, Brunel University, Uxbridge Middlesex UB8 3PH (United Kingdom)

    2009-06-01

    The e2v technologies CCD54, or swept-charge device (SCD) has been extensively radiation tested for use in the Chandrayaan-1 X-ray Spectrometer (C1XS) instrument, to be launched as a part of the Indian Space Research Organisation (ISRO) Chandrayaan-1 payload in 2008. The principle use of the SCD is in X-ray fluorescence (XRF) applications, the device providing a relatively large collecting area of 1.1 cm{sup 2}, and achieving near Fano-limited spectroscopy at -15 deg. C, a temperature that is easily obtained using a thermoelectric cooler (TEC). This paper describes the structure and operation of the SCD and details the methodology and results obtained from two proton irradiation studies carried out in 2006 and 2008, respectively to quantify the effects of proton irradiation on the operational characteristics of the device. The analysis concentrates on the degradation of the measured FWHM of various elemental lines and quantifies the effects of proton fluence on the observed X-ray fluorescence spectra from mineralogical target samples.

  7. Microscopic studies of the fate of charges in organic semiconductors: Scanning Kelvin probe measurements of charge trapping, transport, and electric fields in p- and n-type devices

    Science.gov (United States)

    Smieska, Louisa Marion

    Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field

  8. Battery Coupling Impact on the Antenna Efficiency in a Small Wearable Device

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2015-01-01

    Wearable electronics is often challenged by the extremely reduced space available to the antenna design. This study assesses the impact that the coupling to a large battery has on a small antenna for wearable devices. The coupling mechanism and its potential risks for the Electromagnetic...... Compatibility (EMC) performance are discussed in detail. Once the battery is placed within an electronic device, it is seen that one of the main performance parameters, i.e., the antenna radiation efficiency, may drop up to 1.2 dB depending on the battery size....

  9. Double-notch-shaped microdisk resonator devices with gapless coupling on a silicon chip Invited Paper

    Institute of Scientific and Technical Information of China (English)

    Xianshu Luo; Andrew W. Poon

    2009-01-01

    We propose novel double-notch-shaped microdisk resonator-based devices with gapless waveguide-to- microdisk and inter-cavity coupling via the two notches of the microdisk. Both finite-difference time- domain simulations and experimental demonstrations reveal the high-quality-factor multimode resonances in such microdisks. Using such double-notch microdisk resonators, we experimentally demonstrate the many-element linearly cascaded-microdisk resonator devices with up to 50 elements on a silicon chip.

  10. Chemical-Vapor-Deposited Graphene as Charge Storage Layer in Flash Memory Device

    Directory of Open Access Journals (Sweden)

    W. J. Liu

    2016-01-01

    Full Text Available We demonstrated a flash memory device with chemical-vapor-deposited graphene as a charge trapping layer. It was found that the average RMS roughness of block oxide on graphene storage layer can be significantly reduced from 5.9 nm to 0.5 nm by inserting a seed metal layer, which was verified by AFM measurements. The memory window is 5.6 V for a dual sweep of ±12 V at room temperature. Moreover, a reduced hysteresis at the low temperature was observed, indicative of water molecules or −OH groups between graphene and dielectric playing an important role in memory windows.

  11. The effect of protons on the performance of second generation Swept Charge Devices

    Energy Technology Data Exchange (ETDEWEB)

    Gow, Jason P.D., E-mail: j.p.d.gow@open.ac.uk [e2v Centre for Electronic Imaging, Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Holland, Andrew D. [e2v Centre for Electronic Imaging, Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Pool, Peter J. [e2v Technologies PLC, 106 Waterhouse Lance, Chelmsford, Essex CM1 2QU (United Kingdom); Smith, David R. [Centre for Sensors and Instrumentation, School of Engineering and Design, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)

    2012-07-11

    The e2v technologies Swept Charge Device (SCD) was developed as a large area detector for X-ray Fluorescence (XRF) analysis, achieving near Fano-limited spectroscopy at -15 Degree-Sign C. The SCD was flown in the XRF instruments onboard the European Space Agency's SMART-1 and the Indian Space Research Organisation's Chandrayaan-1 lunar missions. The second generation SCD, proposed for use in the soft X-ray Spectrometer on the Chandrayaan-2 lunar orbiter and the soft X-ray imager on China's HXMT mission, was developed, in part, using the findings of the radiation damage studies performed for the Chandrayaan-1 X-ray Spectrometer. This paper discusses the factor of two improvements in radiation tolerance achieved in the second generation SCD, the different SCD sizes produced and their advantages for future XRF instruments, for example through reduced shielding mass or higher operating temperatures.

  12. Extreme ultraviolet spectroscopy and atomic models of highly charged heavy ions in the Large Helical Device

    Science.gov (United States)

    Suzuki, C.; Murakami, I.; Koike, F.; Tamura, N.; Sakaue, H. A.; Morita, S.; Goto, M.; Kato, D.; Ohashi, H.; Higashiguchi, T.; Sudo, S.; O'Sullivan, G.

    2017-01-01

    We report recent results of extreme ultraviolet (EUV) spectroscopy of highly charged heavy ions in plasmas produced in the Large Helical Device (LHD). The LHD is an ideal source of experimental databases of EUV spectra because of high brightness and low opacity, combined with the availability of pellet injection systems and reliable diagnostic tools. The measured heavy elements include tungsten, tin, lanthanides and bismuth, which are motivated by ITER as well as a variety of plasma applications such as EUV lithography and biological microscopy. The observed spectral features drastically change between quasicontinuum and discrete depending on the plasma temperature, which leads to some new experimental identifications of spectral lines. We have developed collisional-radiative models for some of these ions based on the measurements. The atomic number dependence of the spectral feature is also discussed.

  13. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jan-Mou [ORNL; Jones, Perry T [ORNL; Onar, Omer C [ORNL; Starke, Michael R [ORNL

    2014-01-01

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  14. Device and morphological engineering of organic solar cells for enhanced charge transport and photovoltaic performance

    Science.gov (United States)

    Adhikari, Nirmal; Khatiwada, Devendra; Dubey, Ashish; Qiao, Qiquan

    2015-01-01

    Conjugated polymers are potential materials for photovoltaic applications due to their high absorption coefficient, mechanical flexibility, and solution-based processing for low-cost solar cells. A bulk heterojunction (BHJ) structure made of donor-acceptor composite can lead to high charge transfer and power conversion efficiency. Active layer morphology is a key factor for device performance. Film formation processes (e.g., spray-coating, spin-coating, and dip-coating), post-treatment (e.g., annealing and UV ozone treatment), and use of additives are typically used to engineer the morphology, which optimizes physical properties, such as molecular configuration, miscibility, lateral and vertical phase separation. We will review electronic donor-acceptor interactions in conjugated polymer composites, the effect of processing parameters and morphology on solar cell performance, and charge carrier transport in polymer solar cells. This review provides the basis for selection of different processing conditions for optimized nanomorphology of active layers and reduced bimolecular recombination to enhance open-circuit voltage, short-circuit current density, and fill factor of BHJ solar cells.

  15. Spin-charge coupled dynamics driven by a time-dependent magnetization

    Science.gov (United States)

    Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo

    2017-03-01

    The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.

  16. Analysis of Interface Charge Densities for High-k Dielectric Materials based Metal Oxide Semiconductor Devices

    Science.gov (United States)

    Maity, N. P.; Thakur, R. R.; Maity, Reshmi; Thapa, R. K.; Baishya, S.

    2016-10-01

    In this paper, the interface charge densities (Dit) are studied and analyzed for ultra thin dielectric metal oxide semiconductor (MOS) devices using different high-k dielectric materials such as Al2O3, ZrO2 and HfO2. The Dit have been calculated by a new approach using conductance method and it indicates that by reducing the thickness of the oxide, the Dit increases and similar increase is also found by replacing SiO2 with high-k. For the same oxide thickness, SiO2 has the lowest Dit and found to be the order of 1011cm-2eV-1. Linear increase in Dit has been observed as the dielectric constant of the oxide increases. The Dit is found to be in good agreement with published fabrication results at p-type doping level of 1×1017cm-3. Numerical calculations and solutions are performed by MATLAB and device simulation is done by ATLAS.

  17. Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot

    Science.gov (United States)

    Cao, Jin; Xie, Jing-Wei; Wei, Xiang; Zhou, Jie; Chen, Chao-Ping; Wang, Zi-Xing; Jhun, Chulgyu

    2016-12-01

    A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs as a bilayer emitter is fabricated. The optimized white-QLED exhibits a turn-on voltage of 3.2 V and a maximum brightness of 3660 cd/m2@8 V with the Commission Internationale de l’Eclairage (CIE) chromaticity in the region of white light. The ultra-thin layer of QDs is proved to be critical for the white light generation in the devices. Excitation mechanism in the white-QLEDs is investigated by the detailed analyses of electroluminescence (EL) spectral and the fluorescence lifetime of QDs. The results show that charge injection is a dominant mechanism of excitation in the white-QLED. Project supported by the National Natural Science Foundation of China (Grant No. 21302122) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 13ZR1416600).

  18. Charge transfer rates in organic semiconductors beyond first-order perturbation: from weak to strong coupling regimes.

    Science.gov (United States)

    Nan, Guangjun; Wang, Linjun; Yang, Xiaodi; Shuai, Zhigang; Zhao, Yi

    2009-01-14

    Semiclassical Marcus electron transfer theory is often employed to investigate the charge transport properties of organic semiconductors. However, quite often the electronic couplings vary several orders of magnitude in organic crystals, which goes beyond the application scope of semiclassical Marcus theory with the first-order perturbative nature. In this work, we employ a generalized nonadiabatic transition state theory (GNTST) [Zhao et al., J. Phys. Chem. A 110, 8204 (2004)], which can evaluate the charge transfer rates from weak to strong couplings, to study charge transport properties in prototypical organic semiconductors: quaterthiophene and sexithiophene single crystals. By comparing with GNTST results, we find that the semiclassical Marcus theory is valid for the case of the coupling semiconductors with general electronic coupling terms. Taking oligothiophenes as examples, we find that our GNTST-calculated hole mobility is about three times as large as that from the semiclassical Marcus theory. The difference arises from the quantum nuclear tunneling and the nonperturbative effects.

  19. Coupling of bias-induced crystallographic shear planes with charged domain walls in ferroelectric oxide thin films

    Science.gov (United States)

    Han, Myung-Geun; Garlow, Joseph A.; Bugnet, Matthieu; Divilov, Simon; Marshall, Matthew S. J.; Wu, Lijun; Dawber, Matthew; Fernandez-Serra, Marivi; Botton, Gianluigi A.; Cheong, Sang-Wook; Walker, Frederick J.; Ahn, Charles H.; Zhu, Yimei

    2016-09-01

    Polar discontinuity at interfaces plays deterministic roles in charge transport, magnetism, and even superconductivity of functional oxides. To date, most polar discontinuity problems have been explored in heterointerfaces between two dissimilar materials. Here, we show that charged domain walls (CDWs) in epitaxial thin films of ferroelectric PbZ r0.2T i0.8O3 are strongly coupled to polar interfaces through the formation of 1/2 {h 0 l } - type crystallographic shear planes (CSPs). Using atomic resolution imaging and spectroscopy we illustrate that the CSPs consist of both conservative and nonconservative segments when coupled to the CDWs where necessary compensating charges for stabilizing the CDWs are associated with vacancies at the CSPs. The CDW/CSP coupling yields an atomically narrow domain wall, consisting of a single atomic layer of oxygen. This study shows that the CDW/CSP coupling is a fascinating venue to develop emergent material properties.

  20. The charge-exchange induced coupling between plasma-gas counterflows in the heliosheath

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    Full Text Available Many hydrodynamic models have been presented which give similar views of the interaction of the solar wind plasma bubble with the counterstreaming partially ionized interstellar medium. In the more recent of these models it is taken into account that the solar and interstellar hydrodynamic flows of neutral atoms and protons are coupled by mass-, momentum-, and energy-exchange terms due to charge exchange processes. We shall reinvestigate the theoretical basis of this coupling here by use of a simplified description of the heliospheric interface and describe the main physics of the H-atom penetration through the more or less standing well-known plasma wall ahead of the heliopause. Thereby we can show that the type of charge exchange coupling terms used in up-to-now hydrodynamic treatments unavoidably leads to an O-type critical point at the sonic point of the H-atom flow, thus not allowing for a continuation of the integration of the hydrodynamic set of differential equations. The remedy for this problem is given by a more accurate formulation of the momentum exchange term for quasi-and sub-sonic H-atom flows. With a refined momentum exchange term derived from basic kinetic Boltzmann principles, we instead arrive at a characteristic equation with an X-type critical point, allowing for a continuous solution from supersonic to subsonic flow conditions. This necessitates that the often treated problem of the propagation of inter-stellar H-atoms through the heliosheath has to be solved using these newly derived, differently effective plasma – gas friction forces. Substantially different results are to be expected from this context for the filtration efficiency of the heliospheric interface.

    Key words. Interplanetary physics (heliopause and solar wind termination; interstellar gas – Ionosphere (plasma temperature and density

  1. Charge Carrier Processes in Photovoltaic Materials and Devices: Lead Sulfide Quantum Dots and Cadmium Telluride

    Science.gov (United States)

    Roland, Paul

    Charge separation, transport, and recombination represent fundamental processes for electrons and holes in semiconductor photovoltaic devices. Here, two distinct materials systems, based on lead sulfide quantum dots and on polycrystalline cadmium telluride, are investigated to advance the understanding of their fundamental nature for insights into the material science necessary to improve the technologies. Lead sulfide quantum dots QDs have been of growing interest in photovoltaics, having recently produced devices exceeding 10% conversion efficiency. Carrier transport via hopping through the quantum dot thin films is not only a function of inter-QD distance, but of the QD size and dielectric media of the surrounding materials. By conducting temperature dependent transmission, photoluminescence, and time resolved photoluminescence measurements, we gain insight into photoluminescence quenching and size-dependent carrier transport through QD ensembles. Turning to commercially relevant cadmium telluride (CdTe), we explore the high concentrations of self-compensating defects (donors and acceptors) in polycrystalline thin films via photoluminescence from recombination at defect sites. Low temperature (25 K) photoluminescence measurements of CdTe reveal numerous radiative transitions due to exciton, trap assisted, and donor-acceptor pair recombination events linked with various defect states. Here we explore the difference between films deposited via close space sublimation (CSS) and radio frequency magnetron sputtering, both as-grown and following a cadmium chloride treatment. The as-grown CSS films exhibited a strong donor-acceptor pair transition associated with deep defect states. Constructing photoluminescence spectra as a function of time from time-resolved photoluminescence data, we report on the temporal evolution of this donor-acceptor transition. Having gained insight into the cadmium telluride film quality from low temperature photoluminescence measurements

  2. Strong Ferromagnetically-Coupled Spin Valve Sensor Devices for Droplet Magnetofluidics

    Directory of Open Access Journals (Sweden)

    Gungun Lin

    2015-05-01

    Full Text Available We report a magnetofluidic device with integrated strong ferromagnetically-coupled and hysteresis-free spin valve sensors for dynamic monitoring of ferrofluid droplets in microfluidics. The strong ferromagnetic coupling between the free layer and the pinned layer of spin valve sensors is achieved by reducing the spacer thickness, while the hysteresis of the free layer is eliminated by the interplay between shape anisotropy and the strength of coupling. The increased ferromagnetic coupling field up to the remarkable 70 Oe, which is five-times larger than conventional solutions, brings key advantages for dynamic sensing, e.g., a larger biasing field giving rise to larger detection signals, facilitating the operation of devices without saturation of the sensors. Studies on the fundamental effects of an external magnetic field on the evolution of the shape of droplets, as enabled by the non-visual monitoring capability of the device, provides crucial information for future development of a magnetofluidic device for multiplexed assays.

  3. The self-force on a non-minimally coupled static scalar charge outside a Schwarzschild black hole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Demian H J; Tsokaros, Antonios A; Wiseman, Alan G [Department of Physics, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201 (United States)

    2007-03-07

    The finite part of the self-force on a static, non-minimally coupled scalar test charge outside a Schwarzschild black hole is zero. This result is determined from the work required to slowly raise or lower the charge through an infinitesimal distance. Unlike similar force calculations for minimally-coupled scalar charges or electric charges, we find that we must account for a flux of field energy that passes through the horizon and changes the mass and area of the black hole when the charge is displaced. This occurs even for an arbitrarily slow displacement of the non-minimally coupled scalar charge. For a positive coupling constant, the area of the hole increases when the charge is lowered and decreases when the charge is raised. The fact that the self-force vanishes for a static, non-minimally coupled scalar charge in Schwarzschild spacetime agrees with a simple prediction of the Quinn-Wald axioms. However, Zel'nikov and Frolov computed a non-vanishing self-force for a non-minimally coupled charge. Our method of calculation closely parallels the derivation of Zel'nikov and Frolov, and we show that their omission of this unusual flux is responsible for their (incorrect) result. When the flux is accounted for, the self-force vanishes. This correction eliminates a potential counter example to the Quinn-Wald axioms. The fact that the area of the black hole changes when the charge is displaced brings up two interesting questions that did not arise in similar calculations for static electric charges and minimally coupled scalar charges. (1) How can we reconcile a decrease in the area of the black hole horizon with the area theorem which concludes that {delta}Area{sub horizon} {>=} 0? The key hypothesis of the area theorem is that the stress-energy tensor must satisfy a null-energy condition T{sup {alpha}}{sup {beta}}l{sub {alpha}}l{sub {beta}} {>=} 0 for any null vector l{sub {alpha}}. We explicitly show that the stress-energy associated with a non

  4. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Energy Technology Data Exchange (ETDEWEB)

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  5. Spin dynamics and magneto-optical response in charge-neutral tunnel-coupled quantum dots

    Science.gov (United States)

    Gawełczyk, Michał; Machnikowski, Paweł

    2017-04-01

    We model the electron and hole spin dynamics in an undoped double quantum dot structure, considering the carrier tunneling between quantum dots. Taking the presence of an additional in-plane or tilted magnetic field into account, we enable the simulation of magneto-optical experiments, like the time-resolved Kerr rotation measurement, which are currently performed on such structures to probe the temporal spin dynamics. With our model, we reproduce the experimentally observed effect of the extension of the spin polarization lifetime caused by spatial charge separation, which may occur in structures of this type. Moreover, we provide a number of qualitative predictions concerning the necessary conditions for observation of this effect as well as about possible channels of its suppression, including the spin–orbit coupling, which leads to tunneling of carriers accompanied by a spin flip. We also consider the impact of the magnetic field tilting, which results in an interesting spin polarization dynamics.

  6. Entropy Squeezing in Coupled Field-Superconducting Charge Qubit with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    YAN Xue-Qun; SHAO Bin; ZOU Jian

    2007-01-01

    We investigate the entropy squeezing in the system of a superconducting charge qubit coupled to a single mode field. We find an exact solution of the Milburn equation for the system and discuss the influence of intrinsic decoherence on entropy squeezing. As a comparison, we also consider the variance squeezing. Our results show that in the absence of the intrinsic decoherence both entropy and variance squeezings have the same periodic properties of time,and occur at the same range of time. However, when the intrinsic decoherence is considered, we find that as the time going on the entropy squeezing disappears fast than the variance squeezing, there exists a range of time where entropy squeezing can occur but variance squeezing cannot.

  7. Penrose process in a charged axion-dilaton coupled black hole

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Chandrima [University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Cambridge (United Kingdom); SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2016-04-15

    Using the Newman-Janis method to construct the axion-dilaton coupled charged rotating black holes, we show that the energy extraction from such black holes via the Penrose process takes place from the axion/Kalb-Ramond field energy responsible for rendering the angular momentum to the black hole. Determining the explicit form for the Kalb-Ramond field strength, which is argued to be equivalent to spacetime torsion, we demonstrate that at the end of the energy extraction process, the spacetime becomes torsion free with a spherically symmetric non-rotating black hole remnant. In this context, applications to physical phenomena, such as the emission of neutral particles in astrophysical jets, are also discussed. It is seen that the infalling matter gains energy from the rotation of the black hole, or equivalently from the axion field, and that it is ejected as a highly collimated astrophysical jet. (orig.)

  8. Variable-charge method applied to study coupled grain boundary migration in the presence of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, A. [Paul Scherrer Institute, Villigen, PSI-Villigen CH-5232 (Switzerland); Politano, O. [Institut Carnot de Bourgogne, UMR 5209 CNRS-Universite de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex (France); Derlet, P.M. [Paul Scherrer Institute, Villigen, PSI-Villigen CH-5232 (Switzerland); Van Swygenhoven, H. [Paul Scherrer Institute, Villigen, PSI-Villigen CH-5232 (Switzerland)], E-mail: helena.vs@psi.ch

    2009-04-15

    One of the important differences between simulation and experiments in grain boundary (GB)-dominated metallic structures is the lack of impurities such as oxygen in computational samples. A modified variable-charge method [Elsener A, Politano O, Derlet PM, Van Swygenhoven H. Modell Simul Mater Sci Eng 2008;16:025006] based on the Streitz and Mintmire approach [Streitz FH, Mintmire JW. Phys Rev B 1994;50:11996] is used to study coupled GB motion in an Al bicrystal with a [1 1 2] symmetrical tilt GB in the presence of substitutional O, and compared with the stick-slip process identified by Cahn and Mishin [Cahn JW, Mishin Y, Suzuki A. Acta Mater 2006;54:4953]. It is found that the critical shear stress for migration of the GB increases linearly with the number of O atoms. These observations are then rationalized in terms of the internal stress signature of the O atoms in the vicinity of the boundary.

  9. Molecular (Feshbach) treatment of charge exchange Li/sup 3 +/+He collisions. I. Energies and couplings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Riera, A.; Yanez, M.

    1986-05-15

    We point out a fundamental difference between the molecular treatment of charge exchange X/sup n/++H(1s) and X/sup n/++He(1s/sup 2/) collisions, which is that the latter process involves molecular states that are formally autoionizing. Then standard ab initio methods do not, in general, yield the relevant wave functions that are needed in the collision treatment, irrespective of whether quasimolecular autoionization be significant or not during the collision. We implement a particularly simple and useful form of the Feshbach formalism to calculate the energies of those two electron systems, and a method to evaluate the corresponding dynamical couplings is presented for the first time. Our implementation of this formalism together with the new computational techniques involved are presented in detail.

  10. Precision determination of the $\\pi N$ scattering lengths and the charged $\\pi NN$ coupling constant

    CERN Document Server

    Ericson, Torleif Eric Oskar; Thomas, A W

    2000-01-01

    We critically evaluate the isovector GMO sumrule for the charged $\\pi N N$ coupling constant using recent precision data from $\\pi ^-$p and $\\pi^-$d atoms and with careful attention to systematic errors. From the $\\pi ^-$d scattering length we deduce the pion-proton scattering lengths ${1/2}(a_{\\pi ^-p}+a_{\\pi ^-n})=(-20\\pm 6$(statistic)$ \\pm 10$ (systematic))~$\\cdot 10^{-4}m_{\\pi_c}^{-1}$ and ${1/2}(a_{\\pi ^-p}-a_{\\pi ^-n})=(903 \\pm 14)\\cdot 10^{-4}m_{\\pi_c}^{-1}$. From this a direct evaluation gives $g^2_c(GMO) =14.20\\pm 0.07$(statistic)$\\pm 0.13$(systematic) or $f^2_c= 0.0786\\pm 0.0008$.

  11. Electron-phonon coupling associated with charge-stripe order in cuprate superconductors

    Science.gov (United States)

    Tranquada, John; Reznik, D.; Pintschovius, L.; Ito, M.; Iikubo, S.; Sato, M.; Fujita, M.; Yamada, K.; Gu, G. D.

    2006-03-01

    We have used inelastic neutron scattering to study the Cu-O bond-stretching phonon in La1.875Ba0.125CuO4 and La1.48Nd0.4Sr0.12CuO4, two cuprate compounds that exhibit charge-stripe order. This is the phonon mode that one expects to be most sensitive to spatial inhomogeneity in the electronic structure of the CuO2 planes. Besides the cosine-like downward dispersion of the mode from zone center to zone boundary, we observe a dip in the dispersion and a very large energy width (> 10 meV) at q = a*/4. The dip and width gradually become smaller with increasing temperature. These evidences of a strong electron-phonon coupling (the dispersion dip and large energy width) have not been predicted by any conventional calculations. The nature of the connection with charge-stripe order will be discussed.

  12. Charging of superconducting layers and resonance-related hysteresis in the current-voltage characteristics of coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Gaafar, M. A.

    2011-09-01

    A manifestation of a resonance-type hysteresis related to the parametric resonance in the system of coupled Josephson junctions is demonstrated. In contrast with the McCumber and Steward hysteresis, we find that the width of this hysteresis is inversely proportional to the McCumber parameter and it also depends on the coupling between junctions and the boundary conditions. Investigation of the time dependence of the electric charge in superconducting layers allows us to explain the origin of this hysteresis by different charge dynamics for increasing and decreasing bias current processes. The effect of the wavelength of the longitudinal plasma wave created at the resonance on the charging of superconducting layers is demonstrated. We find a strong effect of the dissipation in the system on the amplitude of the charge oscillations at the resonance.

  13. Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram.

    Science.gov (United States)

    Srinivasan, S J; Hoffman, A J; Gambetta, J M; Houck, A A

    2011-02-25

    We introduce a new type of superconducting charge qubit that has a V-shaped energy spectrum and uses quantum interference to provide independently tunable qubit energy and coherent coupling to a superconducting cavity. Dynamic access to the strong coupling regime is demonstrated by tuning the coupling strength from less than 200 kHz to greater than 40 MHz. This tunable coupling can be used to protect the qubit from cavity-induced relaxation and avoid unwanted qubit-qubit interactions in a multiqubit system.

  14. Stability Analysis of DC Distribution Systems with Droop-Based Charge Sharing on Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Despoina I. Makrygiorgou

    2017-03-01

    Full Text Available Direct current (DC distribution systems and DC microgrids are becoming a reliable and efficient alternative energy system, compatible with the DC nature of most of the distributed energy resources (DERs, storage devices and loads. The challenging problem of redesigning an autonomous DC-grid system in view of using energy storage devices to balance the power produced and absorbed, by applying simple decentralized controllers on the electronic power interfaces, is investigated in this paper. To this end, a complete nonlinear DC-grid model has been deployed that includes different DC-DERs, two controlled parallel battery branches, and different varying DC loads. Since many loads in modern distribution systems are connected through power converters, both constant power loads and simple resistive loads are considered in parallel. Within this system, suitable cascaded controllers on the DC/DC power converter interfaces to the battery branches are proposed, in a manner that ensures stability and charge sharing between the two branches at the desired ratio. To achieve this task, inner-loop current controllers are combined with outer-loop voltage, droop-based controllers. The proportional-integral (PI inner-loop current controllers include damping terms and are fully independent from the system parameters. The controller scheme is incorporated into the system model and a globally valid nonlinear stability analysis is conducted; this differs from small-signal linear methods that are valid only for specific systems, usually via eigenvalue investigations. In the present study, under the virtual cost of applying advanced Lyapunov techniques on the entire nonlinear system, a rigorous analysis is formulated to prove stability and convergence to the desired operation, regardless of the particular system characteristics. The theoretical results are evaluated by detailed simulations, with the system performance being very satisfactory.

  15. Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States.

    Science.gov (United States)

    Liu, Junzi; Zhang, Yong; Bao, Peng; Yi, Yuanping

    2017-02-14

    Electronic couplings of charge-transfer states with the ground state and localized excited states at the donor/acceptor interface are crucial parameters for controlling the dynamics of exciton dissociation and charge recombination processes in organic solar cells. Here we propose a quasi-adiabatic state approach to evaluate electronic couplings through combining maximum occupation method (mom)-ΔSCF and state diabatization schemes. Compared with time-dependent density functional theory (TDDFT) using global hybrid functional, mom-ΔSCF is superior to estimate the excitation energies of charge-transfer states; moreover it can also provide good excited electronic state for property calculation. Our approach is hence reliable to evaluate electronic couplings for excited state electron transfer processes, which is demonstrated by calculations on a typical organic photovoltaic system, oligothiophene/perylenediimide complex.

  16. Excited-state charge coupled proton transfer reaction in dipole-functionalized salicylideneaniline

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kew-Yu, E-mail: kyuchen@fcu.edu.tw; Hu, Jiun-Wei

    2015-03-15

    Based on design and synthesis of salicylideneaniline derivatives 1–4, we demonstrate an exceedingly useful system to investigate the excited-state intramolecular charge transfer (ESICT) coupled with excited-state intramolecular proton transfer (ESIPT) reaction via the dipolar functionality of Schiff base salicylideneaniline. In solid and aprotic solvents 1–4 exist mainly as E conformers that possess a strong intramolecular six-membered-ring hydrogen bond. Compounds 2–4 exhibit solely a long-wavelength proton-transfer tautomer emission, while dipole-functionalized Schiff base 1 exhibits remarkable dual emission due to the different solvent-polarity environments between ESICT and ESIPT states. Moreover, the geometric structures, frontier molecular orbitals (MOs) and the potential energy curves for 1–4 in the ground and the first singlet excited state were fully rationalized by density functional theory (DFT) and time-dependent DFT calculations. - Highlights: • A dipole-functionalized salicylideneaniline derivative was synthesized. • The Schiff base exhibits remarkable dual emission. • A novel ESICT/ESIPT coupled system was created.

  17. Off-diagonal Yukawa Couplings in the s-channel Charged Higgs Production at LHC

    CERN Document Server

    Hashemi, Majid

    2015-01-01

    The search for the heavy charged Higgs (mH+ > mtop) has been mainly based on the o?ff-shell top pair production process. However, resonance production in s-channel single top events is an important channel to search for this particle. In a previous work, it was shown that this process, i.e., qq' -> H+ -> tb + h.c., can lead to comparable results to what is already obtained from LHC searches through gb -> tH- process. What was obtained was, however, based on diagonal Yukawa couplings between incoming quarks assuming cs as the main incoming pair due to the CKM matrix element being close to unity. The aim of this paper is to show that off-diagonal couplings, like cb, may lead to substantial contributions to the cross section, even if the corresponding CKM matrix element is two orders of magnitude smaller. For this reason, the cross section is calculated for each initial state including all diagonal and off-diagonal terms, and all is finally added together to get the total cross section which is observed to be ~ ...

  18. Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes

    Science.gov (United States)

    Li, Peng-Bo; Xiang, Ze-Liang; Rabl, Peter; Nori, Franco

    2016-07-01

    We show that nitrogen-vacancy (NV) centers in diamond interfaced with a suspended carbon nanotube carrying a dc current can facilitate a spin-nanomechanical hybrid device. We demonstrate that strong magnetomechanical interactions between a single NV spin and the vibrational mode of the suspended nanotube can be engineered and dynamically tuned by external control over the system parameters. This spin-nanomechanical setup with strong, intrinsic, and tunable magnetomechanical couplings allows for the construction of hybrid quantum devices with NV centers and carbon-based nanostructures, as well as phonon-mediated quantum information processing with spin qubits.

  19. Extreme Contrast Ratio Imaging of Sirius with a Charge Injection Device

    CERN Document Server

    Batcheldor, D; Bahr, C; Jenne, J; Ninkov, Z; Bhaskaran, S; Chapman, T

    2015-01-01

    The next fundamental steps forward in understanding our place in the universe could be a result of advances in extreme contrast ratio (ECR) imaging and point spread function (PSF) suppression. For example, blinded by quasar light we have yet to fully understand the processes of galaxy formation and evolution, and there is an ongoing race to obtain a direct image of an exoearth lost in the glare of its host star. To fully explore the features of these systems we must perform observations in which contrast ratios of at least one billion can be regularly achieved with sub 0.1" inner working angles. Here we present the details of a latest generation 32-bit charge injection device (CID) that could conceivably achieve contrast ratios on the order of one billion. We also demonstrate some of its ECR imaging abilities for astronomical imaging. At a separation of two arc minutes, we report a direct contrast ratio of Delta(m_v)=18.3, log(CR)=7.3, or 1 part in 20 million, from observations of the Sirius field. The atmosp...

  20. Non-reciprocal few-photon devices based on chiral waveguide-emitter couplings

    CERN Document Server

    Gonzalez-Ballestero, C; Vidal, F J Garcia; Gonzalez-Tudela, A

    2016-01-01

    We demonstrate the possibility of designing efficient, non reciprocal few-photon devices by exploiting the chiral coupling between two waveguide modes and a single quantum emitter. We show how this system can induce non-reciprocal photon transport at the single-photon level and act as an optical diode. Afterwards, we also show how the same system shows a transistor-like behaviour for a two-photon input. The efficiency in both cases is shown to be large for feasible experimental implementations. Our results illustrate the potential of chiral waveguide-emitter couplings for applications in quantum circuitry.

  1. Cooperative coupling of the Li cation and groups to amplify the charge transfer between C60 and corannulene

    Science.gov (United States)

    Sun, Gang; Xu, Jing; Chen, Zhi-Yuan; Lei, E.; Liu, Xiang-Shuai; Liu, Chun-Guang

    2017-02-01

    In present work, four complexes have been designed to investigate the effect of Li+ cation and substituent on the geometric structures and a series of electronic properties using density functional theory. The calculated results indicate that the charge decomposition (CDA) analysis and extend charge decomposition analysis (ECDA) of four complexes have the same sequence. The average d values defined the distances between C60 and corannulene display the inverse sequence. Consequently, the cooperative coupling of the Li+ cation and appropriate substituent is predicted to be an effective way to enhance the charge transfer between the C60 and corannulene derivatives.

  2. Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge.

    Science.gov (United States)

    Tandon, Vishal; Bhagavatula, Sharath K; Nelson, Wyatt C; Kirby, Brian J

    2008-03-01

    This paper combines new experimental data for electrokinetic characterization of hydrophobic polymers with a detailed discussion of the putative origins of charge at water-hydrophobe interfaces. Complexities in determining the origin of charge are discussed in the context of design and modeling challenges for electrokinetic actuation in hydrophobic microfluidic devices with aqueous working fluids. Measurements of interfacial charge are complicated by slip and interfacial water structuring phenomena (see Part 2, this issue). Despite these complexities, it is shown that (i) several hydrophobic materials, such as Teflon and Zeonor, have predictable electrokinetic properties and (ii) electrokinetic data for hydrophobic microfluidic systems is most consistent with the postulate that hydroxyl ion adsorption is the origin of charge.

  3. Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene- alt -thienothiophene) [PBTTT

    KAUST Repository

    Poelking, Carl

    2013-01-31

    We establish a link between the microscopic ordering and the charge-transport parameters for a highly crystalline polymeric organic semiconductor, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). We find that the nematic and dynamic order parameters of the conjugated backbones, as well as their separation, evolve linearly with temperature, while the side-chain dynamic order parameter and backbone paracrystallinity change abruptly upon the (also experimentally observed) melting of the side chains around 400 K. The distribution of site energies follows the behavior of the backbone paracrystallinity and can be treated as static on the time scale of a single-charge transfer reaction. On the contrary, the electronic couplings between adjacent backbones are insensitive to side-chain melting and vary on a much faster time scale. The hole mobility, calculated after time-averaging of the electronic couplings, reproduces well the value measured in a short-channel thin-film transistor. The results underline that to secure efficient charge transport in lamellar arrangements of conjugated polymers: (i) the electronic couplings should present high average values and fast dynamics, and (ii) the energetic disorder (paracrystallinity) should be small. © 2013 American Chemical Society.

  4. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors

    Science.gov (United States)

    Wu, Guodong; Feng, Ping; Wan, Xiang; Zhu, Liqiang; Shi, Yi; Wan, Qing

    2016-03-01

    Recent progress in using biomaterials to fabricate functional electronics has got growing attention for the new generation of environmentally friendly and biocompatible electronic devices. As a kind of biological material with rich source, proteins are essential natural component of all organisms. At the same time, artificial synaptic devices are of great significance for neuromorphic systems because they can emulate the signal process and memory behaviors of biological synapses. In this report, natural chicken albumen with high proton conductivity was used as the coupling electrolyte film for organic/inorganic hybrid synaptic devices fabrication. Some important synaptic functions including paired-pulse facilitation, dynamic filtering, short-term to long-term memory transition and spatial summation and shunting inhibition were successfully mimicked. Our results are very interesting for biological friendly artificial neuron networks and neuromorphic systems.

  5. Coupling Resistive Switching Devices with Neurons: State of the Art and Perspectives

    Science.gov (United States)

    Chiolerio, Alessandro; Chiappalone, Michela; Ariano, Paolo; Bocchini, Sergio

    2017-01-01

    Here we provide the state-of-the-art of bioelectronic interfacing between biological neuronal systems and artificial components, focusing the attention on the potentiality offered by intrinsically neuromorphic synthetic devices based on Resistive Switching (RS). Neuromorphic engineering is outside the scopes of this Perspective. Instead, our focus is on those materials and devices featuring genuine physical effects that could be sought as non-linearity, plasticity, excitation, and extinction which could be directly and more naturally coupled with living biological systems. In view of important applications, such as prosthetics and future life augmentation, a cybernetic parallelism is traced, between biological and artificial systems. We will discuss how such intrinsic features could reduce the complexity of conditioning networks for a more natural direct connection between biological and synthetic worlds. Putting together living systems with RS devices could represent a feasible though innovative perspective for the future of bionics. PMID:28261048

  6. Distributed and coupled 2D electro-thermal model of power semiconductor devices

    Science.gov (United States)

    Belkacem, Ghania; Lefebvre, Stéphane; Joubert, Pierre-Yves; Bouarroudj-Berkani, Mounira; Labrousse, Denis; Rostaing, Gilles

    2014-05-01

    The development of power electronics in the field of transportations (automotive, aeronautics) requires the use of power semiconductor devices providing protection and diagnostic functions. In the case of series protections power semiconductor devices which provide protection may operate in shortcircuit and act as a current limiting device. This mode of operations is very constraining due to the large dissipation of power. In these particular conditions of operation, electro-thermal models of power semiconductor devices are of key importance in order to optimize their thermal design and increase their reliability. The development of such an electro-thermal model for power MOSFET transistors based on the coupling between two computation softwares (Matlab and Cast3M) is described in this paper. The 2D electro-thermal model is able to predict (i) the temperature distribution on chip surface well as in the volume under short-circuit operations, (ii) the effect of the temperature on the distribution of the current flowing within the die and (iii) the effects of the ageing of the metallization layer on the current density and the temperature. In this paper, the electrical and thermal models are described as well as the implemented coupling scheme.

  7. Relativistic coupled-cluster calculations of transition properties in highly charged inert-gas ions

    Science.gov (United States)

    Nandy, D. K.

    2016-11-01

    We have carried out an extensive investigation of various spectroscopic properties of highly charged inert-gas ions using a relativistic coupled-cluster method through a one-electron detachment procedure. In particular, we have calculated the atomic states 2 s22 p53/2 2P, 2 s22 p51/2 2P, and 2 s 2 p61/2 2S in F-like inert-gas ions; 3 s23 p53/2 2P, 3 s23 p51/2 2P, and 3 s 3 p61/2 2S states in Cl-like Kr, Xe, and Rn; and 4 s24 p53/2 2P, 4 s24 p51/2 2P, and 4 s 4 p61/2 2S states in Br-like Xe and Rn. Starting from a single-reference Dirac-Hartree-Fock wave function, we construct our exact atomic states by including the dynamic correlation effects in an all-order perturbative fashion. Employing this method, we estimate the ionization potential energies of three low-lying orbitals present in their respective closed-shell configurations. Since the considered highly charged inert-gas ions exhibit huge relativistic effects, we have taken into account the corrections due to Breit interaction as well as from the dominant quantum electrodynamic correction such as vacuum polarization and self-energy effects in these systems. Using our calculated relativistic atomic wave functions and energies, we accurately determine various transition properties such as wavelengths, line strengths, oscillator strengths, transition probabilities, and lifetimes of the excited states.

  8. Extreme Contrast Ratio Imaging of Sirius with a Charge Injection Device

    Science.gov (United States)

    Batcheldor, D.; Foadi, R.; Bahr, C.; Jenne, J.; Ninkov, Z.; Bhaskaran, S.; Chapman, T.

    2016-02-01

    The next fundamental steps forward in understanding our place in the universe could be a result of advances in extreme contrast ratio (ECR) imaging and point-spread function (PSF) suppression. For example, blinded by quasar light we have yet to fully understand the processes of galaxy and star formation and evolution, and there is an ongoing race to obtain a direct image of an exo-Earth lost in the glare of its host star. To fully explore the features of these systems, we must perform observations in which contrast ratios (CRs) of at least one billion can be regularly achieved with sub 0.″1 inner working angles. Here, we present the details of a latest-generation 32-bit charge injection device (CID) that could conceivably achieve CRs on the order of one billion. We also demonstrate some of its ECR imaging abilities for astronomical imaging. At a separation of two arcminutes, we report a direct CR of {{Δ }}{m}v=18.3,{log}({CR})=7.3, or 1 part in 20 million, from observations of the Sirius field. The atmospheric conditions present during the collection of this data prevented less modest results, and we expect to be able to achieve higher CRs, with improved inner working angles, simply by operating a CID at a world-class observing site. However, CIDs do not directly provide any PSF suppression. Therefore, combining CID imaging with a simple PSF suppression technique like angular differential imaging could provide a cheap and easy alternative to the complex ECR techniques currently being employed.

  9. On the dual equivalence of the Born-Infeld-Chern-Simons model coupled to dynamical U(1) charged matter

    CERN Document Server

    Bazeia, D; Nascimento, J R S; Ribeiro, R F; Wotzasek, C

    2001-01-01

    We study the equivalence between a nonlinear self-dual model (NSD) with the Born-Infeld-Chern-Simons (BICS) models using an iterative gauge embedding procedure that produces the duality mapping, including the case where the NSD model is minimally coupled to dynamical, U(1) charged fermionic matter. The duality mapping introduces a current-current interaction term while at the same time the minimal coupling of the original nonlinear self-dual model is replaced by a non-minimal magnetic like coupling in the BICS side.

  10. Conversion efficiency of spin power to charge power in a normal metal with spin-orbit coupling

    Science.gov (United States)

    Yan, Yonghong; Wu, Haifei; Jiang, Feng

    2016-12-01

    We theoretically investigate the conversion efficiency of spin power to charge power in a normal metal with spin-orbit coupling based on the Green's function method. The normal metal is connected with three leads. A spin current injected in one lead can induce a charge current between another two leads. We find that the conversion efficiency of spin power to charge power is roughly proportional to tSO4 when the spin-orbit coupling tSO is weak, suggesting that the efficiency is limited. Moreover, an increase of temperature may reduce the efficiency. The results may be useful in determining the overall efficiency of a thermoelectric setup based on the longitudinal spin Seebeck effect.

  11. Analytic Couple Modeling Introducing Device Design Factor, Fin Factor, Thermal Diffusivity Factor, and Inductance Factor

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    A set of convenient thermoelectric device solutions have been derived in order to capture a number of factors which are previously only resolved with numerical techniques. The concise conversion efficiency equations derived from governing equations provide intuitive and straight-forward design guidelines. These guidelines allow for better device design without requiring detailed numerical modeling. The analytical modeling accounts for factors such as i) variable temperature boundary conditions, ii) lateral heat transfer, iii) temperature variable material properties, and iv) transient operation. New dimensionless parameters, similar to the figure of merit, are introduced including the device design factor, fin factor, thermal diffusivity factor, and inductance factor. These new device factors allow for the straight-forward description of phenomenon generally only captured with numerical work otherwise. As an example a device design factor of 0.38, which accounts for thermal resistance of the hot and cold shoes, can be used to calculate a conversion efficiency of 2.28 while the ideal conversion efficiency based on figure of merit alone would be 6.15. Likewise an ideal couple with efficiency of 6.15 will be reduced to 5.33 when lateral heat is accounted for with a fin factor of 1.0.

  12. Magnon-phonon coupling and implications for charge-density wave states and superconductivity in cuprates

    Science.gov (United States)

    Struzhkin, Viktor V.; Chen, Xiao-Jia

    2016-10-01

    The mechanism of high-temperature superconductivity of copper oxides (cuprates) remains unsolved puzzle in condensed matter physics. The cuprates represent extremely complicated system, showing fascinating variety of quantum phenomena and rich phase diagram as a function of doping. In the suggested "superconducting glue" mechanisms, phonon and spin excitations are invoked most frequently, and it appears that only spin excitations cover the energy scale required to justify very high transition temperature Tc ˜ 165 K (as in mercury-based triple layer cuprates compressed to 30 GPa). It appears that pressure is quite important variable helping to boost the Tc record by almost 30°. Pressure may be also considered as a clean tuning parameter, helping to understand the underlying balance of various energy scales and ordered states in cuprates. In this paper, a review of mostly our work on cuprates under pressure will be given, with the emphasis on the interactions between phonon and spin excitations. It appears that there is a strong coupling between superexchange interaction and stretching in-plane oxygen vibrations, which may give rise to a variety of complex phenomena, including the charge-density wave state intertwined with superconductivity and attracting a lot of interest recently.

  13. Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x

    Science.gov (United States)

    Chang, J.; Blackburn, E.; Ivashko, O.; Holmes, A. T.; Christensen, N. B.; Hücker, M.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Rütt, U.; Zimmermann, M. V.; Forgan, E. M.; Hayden, S. M.

    2016-05-01

    The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings ~0.123, we find that a field (B~10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction at B~15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi surface reconstruction, as recently suggested.

  14. Electronic coupling effects and charge transfer between organic molecules and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Forker, Roman

    2010-07-01

    We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. (orig.)

  15. Simulations and measurements of coupling impedance for modern particle accelerator devices

    CERN Document Server

    AUTHOR|(CDS)2158523; Biancacci, Nicolò; Mostacci, Andrea

    In this document it has been treated the study of the coupling impedance in modern devices, already installed or not, in different particle accelerators. In the specific case: • For a device in-phase of project, several simulations for impedance calculation have been done. • For a component already realized and used, measurements of coupling impedance value have been done. Simulations are used to determine the impact of the interconnect between to magnets, designed for the future particle accelerator FCC, on the overall impedance of the machine which is about 100 km long. In particular has been done a check between theory, simulations and measurements of components already built, allowing a better and deeper study of the component we have analysed. Controls that probably will be helpful to have a clear guideline in future works. The measurements instead concern in an existing component that was already used in LHC, the longest particle accelerator ever realised on the planet, 27 km long. The coupling impe...

  16. Direct coupling between charge current and spin polarization by extrinsic mechanisms in graphene

    Science.gov (United States)

    Huang, Chunli; Chong, Y. D.; Cazalilla, Miguel A.

    2016-08-01

    Spintronics—the all-electrical control of the electron spin for quantum or classical information storage and processing—is one of the most promising applications of the two-dimensional material graphene. Although pristine graphene has negligible spin-orbit coupling (SOC), both theory and experiment suggest that SOC in graphene can be enhanced by extrinsic means, such as functionalization by adatom impurities. We present a theory of transport in graphene that accounts for the spin-coherent dynamics of the carriers, including hitherto-neglected spin precession processes taking place during resonant scattering in the dilute impurity limit. We uncover an "anisotropic spin precession" (ASP) scattering process in graphene, which contributes a large current-induced spin polarization and modifies the standard spin Hall effect. ASP scattering arises from two dimensionality and extrinsic SOC, and apart from graphene, it can be present in other 2D materials or in the surface states of 3D materials with a fluctuating SOC. Our theory also yields a comprehensive description of the spin relaxation mechanisms present in adatom-decorated graphene, including Elliot-Yafet and D'yakonov-Perel relaxation rates, the latter of which can become an amplification process in a certain parameter regime of the SOC disorder potential. Our work provides theoretical foundations for designing future graphene-based integrated spintronic devices.

  17. Thermal and Magnetic Field Sensors Based on Injection-coupled Devices

    Directory of Open Access Journals (Sweden)

    V.N. Murashev

    2014-07-01

    Full Text Available Operation principle and possible applications of a novel type of silicon integrated circuit (IC device –injection-coupled device (ICD – are addressed. Examples of possible ICD electrical and physical designs are examined in detail. These are based on the existing CMOS and use bipolar technologies. It is shown that in active mode only one cell of ICD-based sensor chain consumes power. This circumstance enables one to achieve an extraordinarily low power consumption compared to the CMOS ICs. This is because the power consumption of an ICD as a whole is not different of that of a single cell in its IC matrix. These advantages make ICDs highly attractive for a number of important applications, such as, e.g., radiation detectors or magnetic and thermal field detectors.

  18. Two-loop top-Yukawa-coupling corrections to the charged Higgs-boson mass in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Hollik, Wolfgang [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany); Passehr, Sebastian [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2015-07-15

    The top-Yukawa-coupling enhanced two-loop corrections to the charged Higgs-boson mass in the real MSSM are presented. The contributing two-loop self-energies are calculated in the Feynman-diagrammatic approach in the gaugeless limit with vanishing external momentum and bottom mass, within a renormalization scheme comprising on-shell and DR conditions. Numerical results illustrate the effect of the O(α{sub t}{sup 2}) contributions and the importance of the two-loop corrections to the mass of the charged Higgs bosons. (orig.)

  19. Charge generation layers for all-solution processed organic tandem light emitting diodes with regular device architecture

    Science.gov (United States)

    Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Colsmann, Alexander

    2015-10-01

    We present multi-photon OLEDs where enhanced light emission was achieved by stacking two OLEDs utilizing a regular device architecture (top cathode) and an intermediate charge carrier generation layer (CGL) for monolithic device interconnection. With respect to future printing processes for organic optoelectronic devices, all functional layers were deposited from solution. The CGL comprises a low-work function zinc oxide layer that was applied from solution under ambient conditions and at moderate processing temperatures and a high-work function interlayer that was realized from various solution processable precursor-based metal oxides, like molybdenum-, vanadium- and tungsten-oxide. Since every injected electron-hole pair generates two photons, the luminance and the current efficiency of the tandem OLED at a given device current are doubled while the power efficiency remains constant. At a given luminance, the lower operating current in the tandem device reduces electrical stress and improves the device life-time. ToF-SIMS, TEM/FIB and EDX analyses provided evidence of a distinct layer sequence without intermixing upon solution deposition.

  20. SEMICONDUCTOR DEVICES Novel multi-bit non-uniform channel charge trapping memory device with virtual-source NAND flash array

    Science.gov (United States)

    Haiming, Gu; Liyang, Pan; Peng, Zhu; Dong, Wu; Zhigang, Zhang; Jun, Xu

    2010-10-01

    In order to overcome the bit-to-bit interference of the traditional multi-level NAND type device, this paper firstly proposes a novel multi-bit non-uniform channel charge trapping memory (NUC-CTM) device with virtual-source NAND-type array architecture, which can effectively restrain the second-bit effect (SBE) and provide 3-bit per cell capability. Owing to the n- buffer region, the SBE induced threshold voltage window shift can be reduced to less than 400 mV and the minimum threshold voltage window between neighboring levels is larger than 750 mV for reliable 3-bit operation. A silicon-rich SiON is also investigated as a trapping layer to improve the retention reliability of the NUC-CTM.

  1. Electron-impact excitation of He 31D: channel-coupling effects on the orientation, charge cloud, and cross section

    Science.gov (United States)

    Bartschat, K.; Andersen, N.

    2003-01-01

    A violation of the propensity rule for positive angular-momentum transfer at small scattering angles in He 1 1S rightarrow 3 1D electron-impact excitation (Cvejanovic D, McLaughlin D T and Crowe A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 3013) has been investigated. The analysis of results from numerical models with an increasing number of coupled states in a close-coupling expansion shows that only the most sophisticated 'convergent close-coupling' and 'R-matrix with pseudo-states' models can reproduce the experimental data. This points to channel-coupling effects as the principal reason for violation of the propensity rule, a conclusion supported by comparing predictions for the angle-integrated cross section from these models. Finally, the component of the charge cloud located along the direction perpendicular to the scattering plane becomes increasingly important with increasing energy. This can also be seen in the accompanying QuickTime movies.

  2. Measurements of Ion Selective Containment on the RF Charge Breeder Device BRIC

    CERN Document Server

    Variale, Vincenzo; Batazova, Marina; Boggia, Antonio; Clauser, Tarcisio; Kuznetsov, Gennady I; Rainò, Antonio; Shiyankov, Sergey; Skarbo, Boris A; Valentino, Vincenzo; Verrone, Grazia

    2005-01-01

    The "charge state breeder" BRIC (BReeding Ion Charge) is based on an EBIS source and it is designed to accept Radioactive Ion Beam (RIB) with charge +1, in a slow injection mode, to increase their charge state up to +n. BRIC has been developed at the INFN section of Bari (Italy) during these last 3 years with very limited funds. Now, it has been assembled at the LNL (Italy) where are in progress the first tests as stand alone source. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion drift chamber, of a Radio Frequency (RF) Quadrupole aiming to filtering the unwanted elements and then making a more efficient containment of the wanted ions. In this contribution, the measurements of the selective effect on the ion charge state containement of the RF quadrupole field, applied on the ion chamber, will be reported and discussed. The ion charge state analisys of the ions trapped in BRIC seem confirm, as foreseen by simulation results carried out previously, that the s...

  3. Target-charge dependence of the breakup coupling effects in the elastic scattering of {sup 8}B

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, Y. [University of Padova, Department of Physics and Astronomy ' ' G. Galilei' ' (Italy); Akdeniz University, Department of Physics, Antalya (Turkey); INFN, Padova (Italy); Aciksoz, E. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Akdeniz University, Department of Physics, Antalya (Turkey)

    2016-04-15

    We perform continuum discretized coupled-channels calculations for the elastic scattering of {sup 8}B on different targets to trace where the Coulomb-nuclear breakup coupling effects start to be dominant in the interaction of the proton halo nuclei. We observe a qualitative difference in angular distributions when the charge of the target increases as seen in the case of neutron halos, but the Coulomb-nuclear interference peak begins to disappear clearly at a relatively smaller value of Z{sub T} for the proton halos. (orig.)

  4. A Charge-Coupled Device (CCD) Memory for Navy C3 Systems

    Science.gov (United States)

    1976-07-30

    kcy A1is al)oed inl soice ronCilites to allow tilc user to rely pie th Lilst cha~r.,. oer . Ini I1)11 M( )lDl-, a user is, allowed to cdit the data oin...paitxF’ oer - flte eiiire 22 bits Is Odd! .? tb 1iuinlwe od Ivs ,I o 111inst1kCt, It Al thet daita bits were /erIo. Code bits, CO. C I. (2 m *idu ( 4...ionpe tIide I- "Vr ()bIqen rc t () i ons gm w i be pe tr i u tkIli sttil u lve acn dr wIcll ot c bang dOt Im eg tcc e. i arl g clea e bIM th Il-,asI tr

  5. First Analysis of the Space Charge Effects on a Third Order Coupled Resonance Proc. HB2016 Malmo, Sweden

    CERN Document Server

    Franchetti, Giuliano; Huschauer, Alexander; Schmidt, Frank; Wasef, Raymond

    2017-01-01

    The effect of space charge on bunches stored for long term in a nonlinear lattice can be severe for beam survival. This may be the case in projects as SIS100 at GSI or LIU at CERN. In 2012, for the first time, the effect of space charge on a normal third order coupled resonance was investigated at the CERN-PS. The experimental results have highlighted an unprecedented asymmetric beam response: in the vertical plane the beam exhibits a thick halo, while the horizontal profile has only core growth. The quest for explaining these results requires a journey through the 4 dimensional dynamics of the coupled resonance investigating the fixed-lines, and requires a detailed code-experiment benchmarking also including beam profile benchmarking. This proceeding gives a short summary of the experimental results of the 2012 PS measurements, and address an interpretation based on the dynamics the fixed-lines.

  6. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration

    Science.gov (United States)

    Lee, Seung-Hoon; Lee, Seung Woo; Jang, Jaw-Won

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). The photocurrent density is remarkably improved, up to 25.3 times, by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ~Vm) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation. Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2013K1A3A1A32035429 and 2015R1A1A1A05027681).

  7. An Optimal Design of Multiple Antenna Positions on Mobile Devices Based on Mutual Coupling Analysis

    Directory of Open Access Journals (Sweden)

    Peerapong Uthansakul

    2011-01-01

    Full Text Available The topic of practical implementation of multiple antenna systems for mobile communications has recently gained a lot of attention. Due to the area constraint on a mobile device, the problem of how to design such a system in order to achieve the best benefit is still a huge challenge. In this paper, genetic algorithm (GA is used to find the optimal antenna positions on a mobile device. Two cases of 3×3 and 4×4 MIMO systems are undertaken. The effect of mutual coupling based on Z-parameter is the main factor to determine the MIMO capacity concerning the objective function of GA search. The results confirm the success of the proposed method to design MIMO antenna positions on a mobile device. Moreover, this paper introduces the method to design the antenna positions for the condition of nondeterministic channel. The concern of channel variation has been included in the process of finding optimal MIMO antenna positions. The results suggest that the averaging position from all GA solutions according to all channel conditions provides the most acceptable benefit.

  8. Charge and spin coupling in magnetoresistive oxygen-vacancy strontium ferrate SrFeO3-δ

    Science.gov (United States)

    Lee, S. H.; Frawley, T. W.; Yao, C. H.; Lai, Y. C.; Du, Chao-Hung; Hatton, P. D.; Wang, M. J.; Chou, F. C.; Huang, D. J.

    2016-09-01

    Using magnetization, conductivity and x-ray scattering measurements, we demonstrate that the giant magnetoresistance of the oxygen-deficient ferrite SrFeO2.875±0.02 is a consequence of the coupling between the charge and spin order parameters and the tetragonal to monoclinic structural distortion. Upon cooling the sample at T ≃ 120 K we find a shoulder in both field-cool and zero field cool magnetization data and the simultaneous appearance of incommensurate structural satellites observed using x-ray diffraction. These satellites are shown to be due to incommensurate charge ordering with the high temperature delocalized Fe{}3.5+ ions becoming localized with a charge disproportion forming an incommensurate charge-ordered phase. Strong resonant enhancement of these satellites at the Fe L III absorption edge confirms that this charge ordering is occurring at the Fe(2) sites. Further cooling increases the charge order correlation until T ≃ 62 K where there is a full structural transition from the tetragonal phase to a mononclinic phase. This causes a jump in the charge order wavevector from an incommensurate value of 0.610 to a commensurate ground state position of 5/8. This first-order structural transition displays considerable hysteresis as well as dramatic reductions in the magnetization, resistivity and magnetoresistance. The transition also causes an antiferromagnetic spin-ordering with a doubled unit cell along the c-axis. Well as observing new commensurate magnetic reflections at the FeIII edge we also observed resonant enhancement at the oxygen K-edge showing considerable hybridization between the Fe 3d and oxygen 2p states at low temperatures. Our results show that the formation of a magnetic long-rage ordered ground state drives the charge ordering from an incommensurate ordering to a commensurate ground state. This is evidence of a strong coupling between the magnetic and charge order parameters which is the basis for the unusual magnetoresistive

  9. Phases of R-charged Black Holes, Spinning Branes and Strongly Coupled Gauge Theories

    CERN Document Server

    Cvetic, M; Cvetic, Mirjam; Gubser, Steven S.

    1999-01-01

    We study the thermodynamic stability of charged black holes in gauged supergravity theories in D=5, D=4 and D=7. We find explicitly the location of the Hawking-Page phase transition between charged black holes and the pure anti-de Sitter space-time, both in the grand-canonical ensemble, where electric potentials are held fixed, and in the canonical ensemble, where total charges are held fixed. We also find the explicit local thermodynamic stability constraints for black holes with one non-zero charge. In the grand-canonical ensemble, there is in general a region of phase space where neither the anti-de Sitter space-time is dynamically preferred, nor are the charged black holes thermodynamically stable. But in the canonical ensemble, anti-de Sitter space-time is always dynamically preferred in the domain where black holes are unstable. We demonstrate the equivalence of large R-charged black holes in D=5, D=4 and D=7 with spinning near-extreme D3-, M2- and M5-branes, respectively. The mass, the charges and the ...

  10. Universality and scaling in a charge two-channel Kondo device

    NARCIS (Netherlands)

    Mitchell, Andrew K.; Landau, L. A.; Fritz, L.; Sela, E.

    2016-01-01

    We study a charge two-channel Kondo model, demonstrating that recent experiments [Iftikhar et al, Nature 526, 233 (2015)] realize an essentially perfect quantum simulation -- not just of its universal physics, but also nonuniversal effects away from the scaling limit. Numerical renormalization group

  11. Dual equivalence between Self-Dual and Maxwell-Chern-Simons models coupled to dynamical U(1) charged matter

    CERN Document Server

    Anacleto, M A; Nascimento, J R S; Ribeiro, R F; Wotzasek, C

    2001-01-01

    We study the equivalence between the self-dual and the Maxwell-Chern-Simons (MCS) models coupled to dynamical, U(1) charged matter, both fermionic and bosonic. This is done through an iterative procedure of gauge embedding that produces the dual mapping of the self-dual vector field theory into a Maxwell-Chern-Simons version. In both cases, to establish this equivalence a current-current interaction term is needed to render the matter sector unchanged. Moreover, the minimal coupling of the original self-dual model is replaced by a non-minimal magnetic like coupling in the MCS side. Unlike the fermionic instance however, in the bosonic example the dual mapping proposed here leads to a Maxwell-Chern-Simons theory immersed in a field dependent medium.

  12. SIMULATION STUDY OF LONGITUDINAL FORCES IN THE COUPLING DEVICE OF HEAVY FREIGHT TRAINS

    Directory of Open Access Journals (Sweden)

    Józef Stokłosa

    2014-03-01

    Full Text Available On the LHS line (Broad-gauge Metallurgical Line, far out West of the railway line with a gauge of 1520 mm, heavy goods trains for a gross weight 5500 tons and a length of 850 m are operated. The article presents the results of a simulation study of the forces that occur in the automatic coupling device of SA-3 type of Russian production train consisting of 60 coal wagons of Russian construction of gross mass 91 tons each. The train moves on the 1520 mm gauge tracks curve S type (the radius of curvature of curves 300 m. Simulation studies were conducted using the Train Module of program to dynamic study multi-elements systems of Universal Mechanism UM 6.0.

  13. Nonlinear Dynamics of an Ambient Noise Driven Array of Coupled Graphene Nanostructured Devices for Energy Harvesting

    Directory of Open Access Journals (Sweden)

    El Aroudi A.

    2014-01-01

    Full Text Available Nonlinearities have been shown to play an important role in increasing the extracted energy of energy harvesting devices at the macro and micro scales. Vibration-based energy harvesting on the nano scale has also received attention. In this paper, we characterize the nonlinear dynamical behavior of an array of three coupled strained nanostructured graphene for its potential use in energy harvesting applications. The array is formed by three compressed vibrating membrane graphene sheet subject to external vibrational noise excitation. We present the continuous time dynamical model of the system in the form of a double-well three degree of freedom system. Random vibrations are considered as the main ambient energy source for the system and its performances in terms of the probability density function, RMS or amplitude value of the position, FFT spectra and state plane trajectories are presented in the steady state non-equilibrium regime when the noise level is considered as a control parameter.

  14. Enhancement of effective electromechanical coupling factor by mass loading in layered surface acoustic wave device structures

    Science.gov (United States)

    Tang, Gongbin; Han, Tao; Teshigahara, Akihiko; Iwaki, Takao; Hashimoto, Ken-ya

    2016-07-01

    This paper describes a drastic enhancement of the effective coupling factor K\\text{e}2 by mass loading in layered surface acoustic wave (SAW) device structures such as the ScAlN film/Si substrate structure. This phenomenon occurs when the piezoelectric layer exhibits a high acoustic wave velocity. The mass loading decreases the SAW velocity and causes SAW energy confinement close to the top surface where an interdigital transducer is placed. It is shown that this phenomenon is obvious even when an amorphous SiO2 film is deposited on the top surface for temperature compensation. This K\\text{e}2 enhancement was also found in various combinations of electrode, piezoelectric layer, and/or substrate materials. The existence of this phenomenon was verified experimentally using the ScAlN film/Si substrate structure.

  15. Non-linear behaviour of a Superconducting Quantum Interference Device coupled to a radio frequency oscillator

    CERN Document Server

    Murrell, J K J

    2001-01-01

    previously unexplored regions of parameter space. We show that these calculations predict a range of previously unreported dynamical I-V characterises for SQUID rings in the strongly hysteretic regime. Finally, we present the successful realisation of a novel experimental technique that permits the weak link of a SQUID to be probed independently of the associated ring structure by mechanically opening and closing the ring. We demonstrate that this process can be completed during the same experimental run without the need for warming and re-cooling of the sample. This thesis is concerned with the investigation of the non-linear behaviour of a Superconducting Quantum Interference Device (SQUID) coupled to a RF tank circuit. We consider two regimes, one where the underlying SQUID behaviour is non-hysteretic with respect to an externally applied magnetic flux, and the other where hysteretic (dissipative) behaviour is observed. We show that, by following non-linearities induced in the tank circuit response, the un...

  16. Device and Method for Continuously Equalizing the Charge State of Lithium Ion Battery Cells

    Science.gov (United States)

    Schwartz, Paul D. (Inventor); Martin, Mark N. (Inventor); Roufberg, Lewis M. (Inventor)

    2015-01-01

    A method of equalizing charge states of individual cells in a battery includes measuring a previous cell voltage for each cell, measuring a previous shunt current for each cell, calculating, based on the previous cell voltage and the previous shunt current, an adjusted cell voltage for each cell, determining a lowest adjusted cell voltage from among the calculated adjusted cell voltages, and calculating a new shunt current for each cell.

  17. Kelvin Force Microscopy and corona charging for semiconductor material and device characterization

    Science.gov (United States)

    Marinskiy, Dmitriy; Edelman, Piotr; Lagowski, Jacek; Loy, Thye Chong; Almeida, Carlos; Savtchouk, Alexandre

    2016-11-01

    Novel developments in this review relate to μcorona-Kelvin, realized by miniaturization of corona charging spot and adaptation of Kelvin Force Microscopy, KFM. Resolution improvement has opened possibilities of non-contact characterization of miniature scribe line test sites on processed semiconductor wafers. Surface diffusion of corona ions can be quantified with μcorona-KFM leading to the development of the kinetic C-V method. The quantified decrease of charge due to diffusion creates a "charge-bias sweep". Application examples illustrate the determination of dielectric capacitance; flatband voltage; and effective gate metal work function indicators. Applications to SiC demonstrate doping density determination with kinetic CV. Non-Visible Defect, NVD, inspection benefits from micro-resolution characterization in two ways: 1) defects revealed by whole wafer mapping can now be examined in high resolution; illustrated using an example of Na contamination; and 2) detailed characterization can be performed within small defective areas providing a means for better understanding of a specific NVD.

  18. Understanding the relationship between molecular order and charge transport properties in conjugated polymer based organic blend photovoltaic devices.

    Science.gov (United States)

    Wood, Sebastian; Kim, Jong Soo; James, David T; Tsoi, Wing C; Murphy, Craig E; Kim, Ji-Seon

    2013-08-14

    We report a detailed characterization of the thin film morphology of all-polymer blend devices by applying a combined analysis of physical, chemical, optical, and charge transport properties. This is exemplified by considering a model system comprising poly(3-hexylthiophene) (P3HT) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT). We show that the interactions between the two conjugated polymer components can be controlled by pre-forming the P3HT into highly ordered nanowire structures prior to blending with F8BT, and by varying the molecular weight of the F8BT. As a result, it is possible to produce films containing highly ordered P3HT with hole mobilities enhanced by three orders of magnitude over the pristine blends. Raman spectroscopy under resonant excitation conditions is used to probe the molecular order of both P3HT and F8BT phases within the blend films and these morphological studies are complemented by measurements of photocurrent generation. The resultant increase in photocurrent is associated with the enhanced charge carrier mobilities. The complementary analytical method demonstrated here is applicable to a wide range of polymer blend systems for all applications where the relationships between morphology and device performance are of interest.

  19. No-driving LNG Vehicle Fuel Charge Device%无动力LNG汽车加注装置

    Institute of Scientific and Technical Information of China (English)

    杨文刚; 陈杰

    2013-01-01

    In our country, the LNG filling station is used to supply the vehicle fuel, and LNG is transferred by the LNG pump. In this paper, it introduces a new no-driving LNG vehicle fuel charge device, which is based on the LNG self-vaporizing principle. This device is the solution for the difficult problem of the LNG vehicle filling for the no power area, for example the long road and mine field. It is the means for the development the new LNG vehicle charge market, and it is also used to the emergency filling for the LNG vehicle .%  目前,国内LNG加注站主要用于汽车燃料的LNG加注,常规LNG加注站采用低温泵进行LNG汽车加注。本文主要介绍一种无需LNG泵输送,利用LNG自增压原理,开发了新型的无动力LNG加注装置。新型无动力 LNG 加注装置解决了高速公路、矿场等电力供应匮乏地区的 LNG 汽车加注难题,是LNG汽车加注市场前期开拓的一种有效手段。同时,还可以用作LNG汽车的应急救援车。

  20. Device based on the coupling of an organic light-emitting diode with a photoconductive material

    Energy Technology Data Exchange (ETDEWEB)

    El Amrani, A. [Universite de Limoges, Faculte des Sciences et Techniques, CNRS, UMR 6172, Institut de Recherche XLIM, Departement MINACOM, 123 Av Albert Thomas, 87060 Limoges (France); Lucas, B. [Universite de Limoges, Faculte des Sciences et Techniques, CNRS, UMR 6172, Institut de Recherche XLIM, Departement MINACOM, 123 Av Albert Thomas, 87060 Limoges (France)], E-mail: bruno.lucas@unilim.fr; Moliton, A. [Universite de Limoges, Faculte des Sciences et Techniques, CNRS, UMR 6172, Institut de Recherche XLIM, Departement MINACOM, 123 Av Albert Thomas, 87060 Limoges (France)

    2008-02-15

    We have realized a device based on the coupling of an organic light-emitting diode (with tri(8-hydroxyquinoline)aluminium for light emission) as an input unit with a photoconductive material as an output unit. Various photoconductive materials like pentacene, Cu-phtalocyanine and fullerene were investigated under green light illumination with an emission peak at 550 nm. Photocurrent measurements versus light intensity and bias voltage (applied between two 50 {mu}m distant indium-tin oxide bottom electrodes for the current to flow through the materials) were realized at room temperature a photocurrent gain around 4 is obtained when the materials are subjected to a luminance of about 5000 cd/m{sup 2} and for bias voltage of - 50 V. Besides, it was shown that to obtain a device with a fast photocurrent response by switching the light off and on, it is necessary to apply a bias voltage higher than - 200 V in these conditions, the gain is multiplied by a factor of 3.

  1. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.

    Science.gov (United States)

    Radziemski, Leon; Makin, Inder Raj S

    2016-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10-15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5h of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants.

  2. Spin-charge-family theory is explaining appearance of families of quarks and leptons, of Higgs and Yukawa couplings

    CERN Document Server

    Borstnik, Norma Susana Mankoc

    2013-01-01

    The so far observed three families of quarks and leptons, the vector gauge fields of the fermions charges and the scalar Higgs responsible for masses of fermions and weak bosons, all these confirming the standard model, make most of physicists to declare that the Higgs was the last missing particle to be confirmed. But can this at all be true? Is it not self evident that there must be additional scalar fields which manifest effectively the appearance of the Yukawa couplings and that the Yukawa couplings can only be understood if we understand the origin of families? The spin-charge-family theory is offering a possible explanation for the origin of families and also for several scalar fields, which are responsible for masses of fermions and weak vector boson fields. The theory is offering the explanation also for other assumptions of the standard model. The theory predicts at the observable regime two decoupled groups of four families. The fourth family, coupled to the measured three, will be observed at the L...

  3. Evidence for spin-to-charge conversion by Rashba coupling in metallic states at the Fe/Ge(111) interface

    Science.gov (United States)

    Oyarzún, S.; Nandy, A. K.; Rortais, F.; Rojas-Sánchez, J.-C.; Dau, M.-T.; Noël, P.; Laczkowski, P.; Pouget, S.; Okuno, H.; Vila, L.; Vergnaud, C.; Beigné, C.; Marty, A.; Attané, J.-P.; Gambarelli, S.; George, J.-M.; Jaffrès, H.; Blügel, S.; Jamet, M.

    2016-12-01

    The spin-orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect transistor. However, the spin Hall effect in bulk germanium is too weak to produce spin currents, whereas large Rashba effect at Ge(111) surfaces covered with heavy metals could generate spin-polarized currents. The Rashba spin splitting can actually be as large as hundreds of meV. Here we show a giant spin-to-charge conversion in metallic states at the Fe/Ge(111) interface due to the Rashba coupling. We generate very large charge currents by direct spin pumping into the interface states from 20 K to room temperature. The presence of these metallic states at the Fe/Ge(111) interface is demonstrated by first-principles electronic structure calculations. By this, we demonstrate how to take advantage of the spin-orbit coupling for the development of the spin field-effect transistor.

  4. Scalar field as an intrinsic time measure in coupled dynamical matter-geometry systems. II. Electrically charged gravitational collapse

    CERN Document Server

    Nakonieczna, Anna

    2016-01-01

    Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which meas...

  5. Probing Charged Higgs Boson Couplings at the FCC-hh Collider

    CERN Document Server

    Cakir, I T; Saygin, H; Senol, A; Cakir, O

    2015-01-01

    Many of the new physics models predicts a light Higgs boson similar to the Higgs boson of the Standard Model (SM) and also extra scalar bosons. Beyond the search channels for a SM Higgs boson, the future collider experiments will explore additional channels that are specific to extended Higgs sectors. We study the charged Higgs boson production within the framework of two Higgs doublet models (THDM) in the proton-proton collisions at the FCC-hh collider. With an integrated luminosity of 500 fb$^{-1}$ at very high energy frontier, we obtain a significant coverage of the parameter space and distinguish the charged Higgs-top-bottom interaction within the THDM or other new physics models with charged Higgs boson mass up to 1 TeV.

  6. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    CERN Document Server

    Miskovic, Olivera

    2010-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/Conformal Field Theory (AdS/CFT) correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by a nonlinear electrodynamics (NED) are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary NED Lagrangian, in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Fall-off conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass...

  7. Precision matched solution of the coupled beam envelope equations for a periodic quadrupole lattice with space charge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Edward P.

    2002-02-01

    The coupled Kapchinskij-Vladimirskij (K-V) envelope equations for a charged particle beam transported by a periodic system of quadrupoles with self-consistent space charge force have previously been solved by various approximate methods, with accuracy ranging from 1% to 10%. A new method of solution is introduced here, which is based on a double expansion of the beam envelope functions in powers of the focal strength and either the beam's emittance or its dimensionless perveance. This method results in accuracy better than 0.1% for typical lattice and beam parameters when carried through one consistent level of approximation higher than employed in previous work. Several useful quantities, such as the values of the undepressed tune and the beam's perveance in the limit of vanishing emittance, are represented by very rapidly converging power series in the focal strength, with accuracy of .01% or better.

  8. Linear, third- and fifth-order nonlinear spectroscopy of a charge transfer system coupled to an underdamped vibration

    CERN Document Server

    Dijkstra, Arend G

    2015-01-01

    We study hole, electron and exciton transport in a charge transfer system in the presence of underdamped vibrational motion. We analyze the signature of these processes in the linear and third-, and fifth-order nonlinear electronic spectra. Calculations are performed with a numerically exact hierarchical equations of motion method for an underdamped Brownian oscillator spectral density. We find that combining electron, hole and exciton transfer can lead to non-trivial spectra with more structure than with excitonic coupling alone. Traces taken during the waiting time of a two-dimensional spectrum are dominated by vibrational motion and do not reflect the electron, hole, and exciton dynamics directly. We find that the fifth-order nonlinear response is particularly sensitive to the charge transfer process. While third-order 2D spectroscopy detects the correlation between two coherences, fifth-order 2D spectroscopy (2D population spectroscopy) is here designed to detect correlations between the excited states du...

  9. Spin-charge coupling in quantum wires at zero magnetic field

    OpenAIRE

    Pereira, Rodrigo G.; Sela, Eran

    2009-01-01

    We discuss an approximation for the dynamic charge response of nonlinear spin-1/2 Luttinger liquids in the limit of small momentum. Besides accounting for the broadening of the charge peak due to two-holon excitations, the nonlinearity of the dispersion gives rise to a two-spinon peak, which at zero temperature has an asymmetric line shape. At finite temperature the spin peak is broadened by diffusion. As an application, we discuss the density and temperature dependence of the Coulomb drag re...

  10. Charge and spin transport in nanoscopic structures with spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, A. [Instituto Balseiro and Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 San Carlos de Bariloche (Argentina); Gonzalo Usaj [Instituto Balseiro and Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 San Carlos de Bariloche (Argentina); Balseiro, C.A. [Instituto Balseiro and Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 San Carlos de Bariloche (Argentina)]. E-mail: balseiro@cab.cnea.gov.ar

    2006-10-01

    During the last years there has been much interest, and theoretical discussion, about the possibility to use spin-orbit coupling to control the carriers spins in two-dimensional semiconducting heterostructures. Spin polarization at the sample edges may occur as the response of systems with strong SO-coupling to an external transport current, an effect known as spin Hall effect. Here, we show that in a 2DEG with Rashba SO-coupling, spin polarization near the sample edge can develop kinematically for low electron densities. We also discuss the effect in quantum wires where lateral confinement plays an important role.

  11. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  12. Charge-exchange Coupling between Pickup Ions across the Heliopause and its Effect on Energetic Neutral Hydrogen Flux

    Science.gov (United States)

    Zirnstein, E. J.; Heerikhuisen, J.; Zank, G. P.; Pogorelov, N. V.; McComas, D. J.; Desai, M. I.

    2014-03-01

    Pickup ions (PUIs) appear to play an integral role in the multi-component nature of the plasma in the interaction between the solar wind (SW) and local interstellar medium (LISM). Three-dimensional (3D) MHD simulations with a kinetic treatment for neutrals and PUIs are currently still not viable. In light of recent energetic neutral atom (ENA) observations by the Interstellar Boundary EXplorer, the purpose of this paper is to illustrate the complex coupling between PUIs across the heliopause (HP) as facilitated by ENAs using estimates of PUI properties extracted from a 3D MHD simulation of the SW-LISM interaction with kinetic neutrals. First, we improve upon the multi-component treatment of the inner heliosheath (IHS) plasma from Zank et al. by including the extinction of PUIs through charge-exchange. We find a significant amount of energy is transferred away from hot, termination shock-processed PUIs into a colder, "freshly injected" PUI population. Second, we extend the multi-component approach to estimate ENA flux from the outer heliosheath (OHS), formed from charge-exchange between interstellar hydrogen atoms and energetic PUIs. These PUIs are formed from ENAs in the IHS that crossed the HP and experienced charge-exchange. Our estimates, based on plasma-neutral simulations of the SW-LISM interaction and a post-processing analysis of ENAs and PUIs, suggest the majority of flux visible at 1 AU from the front of the heliosphere, between ~0.02 and 10 keV, originates from OHS PUIs, indicating strong coupling between the IHS and OHS plasmas through charge-exchange.

  13. Communication: CDFT-CI couplings can be unreliable when there is fractional charge transfer.

    Science.gov (United States)

    Mavros, Michael G; Van Voorhis, Troy

    2015-12-21

    Constrained density functional theory with configuration interaction (CDFT-CI) is a useful, low-cost tool for the computational prediction of electronic couplings between pseudo-diabatic constrained electronic states. Such couplings are of paramount importance in electron transfer theory and transition state theory, among other areas of chemistry. Unfortunately, CDFT-CI occasionally fails significantly, predicting a coupling that does not decay exponentially with distance and/or overestimating the expected coupling by an order of magnitude or more. In this communication, we show that the eigenvalues of the difference density matrix between the two constrained states can be used as an a priori metric to determine when CDFT-CI are likely to be reliable: when the eigenvalues are near 0 or ±1, transfer of a whole electron is occurring, and CDFT-CI can be trusted. We demonstrate the utility of this metric with several illustrative examples.

  14. Infrared spectroscopic study of phonons coupled to charge excitations in FeSi

    NARCIS (Netherlands)

    Damascelli, A.; Schulte, K. Van der; Marel, D. van der; Menovsky, A. A.

    1997-01-01

    From an investigation of the optical conductivity of FeSi single crystals using Fourier-transform infrared spectroscopy in the frequency range from 30 to 20 000 cm-l we conclude that the transverse effective charge of the Fe and Si ions is approximately 4e. Of the five optical phonons that are allow

  15. NUMERICAL SIMULATION FOR DYNAMIC INITIAL SHOCK PARAMETERS OF COUPLING CHARGE ON BOREHOLE WALL UNDER THE ACTION OF HIGH EXPLOSIVES

    Institute of Scientific and Technical Information of China (English)

    倪芝芳; 李玉民

    1996-01-01

    According to detonation theory and hydrodynamic principle, a physical model has been set up in this paper. Based on the model a methodology for calculating dynamic initial shock parameters such as shock pressure p,,, shock wave velosity Dm etc. of coupling charge on borehole wall has ben developed. The shock parameters have been calculated when high explosives works on granite, limestone and marble respectively. The magnitude of every parameter on borehole wall has been obtained from ignited dot to the end of borehole along axial direction. Some important conclusions are also gained.

  16. Charge transport in light emitting devices based on colloidal quantum dots and a solution-processed nickel oxide layer.

    Science.gov (United States)

    Nguyen, Huu Tuan; Jeong, Huiseong; Park, Ji-Yong; Ahn, Y H; Lee, Soonil

    2014-05-28

    We fabricated hybrid light emitting devices based on colloidal CdSe/ZnS core/shell quantum dots and a solution-processed NiO layer. The use of a sol-gel NiO layer as a hole injection layer (HIL) resulted in overall improvement in device operation compared to a control device with a more conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) HIL. In particular, luminous efficiency increased substantially because of the suppression of excessive currents and became as large as 2.45 cd/A. To manifest the origin of current reduction, temperature- and electric field-dependent variations of currents with respect to bias voltages were investigated. In a low bias voltage range below the threshold for luminance turn-on, the Poole-Frenkel (PF) emission mechanism was responsible for the current-density variation. However, the space-charge-limited current modified with PF-type mobility ruled the current-density variation in high bias voltage range above the threshold.

  17. The Consequence of Donor-acceptor Miscibility on Charge Transport and Photovoltaic Device Performance

    Science.gov (United States)

    Vakhshouri, Kiarash; Kozub, Derek; Wang, Chenchen; Salleo, Alberto; Gomez, Enrique

    2013-03-01

    Recent energy-filtered transmission electron microscopy studies revealed that amorphous mixed phases are ubiquitous within mesostructured polythiophene/fullerene mixtures. The role of mixing within nanophases on charge transport of organic semiconductor mixtures, however, is not fully understood. Through the combination of Flory-Huggins theory and energy-filtered transmission electron microscopy, we have estimated the miscibility limit of polythiophene/fullerene blends. We have also demonstrated the interplay between miscibility and percolation to describe field-effect mobilities as a measure of the conductive pathways present in a model organic semiconductor mixture (amorphous polythiophene/fullerene blends). Our studies reveal that the miscibility of the components strongly affects electron transport within amorphous blends. Immiscibility promotes efficient electron transport by promoting percolating pathways within organic semiconductor mixtures. However, strongly immiscible systems would readily phase separate into large domains, preventing efficient charge separation in organic photovoltaics. Consequently, an optimum degree of miscibility between donor/acceptor mixtures exists for the application of such mixtures to organic solar cells.

  18. Mass-charge-heat coupled transfers in a single cell of a proton exchange membrane fuel cell; Transferts couples masse-charge-chaleur dans une cellule de pile a combustible a membrane polymere

    Energy Technology Data Exchange (ETDEWEB)

    Ramousse, J.

    2005-11-15

    Understanding and modelling of coupled mass, charges and heat transfers phenomena are fundamental to analyze the electrical behaviour of the system. The aim of the present model is to describe electrical performances of a PEFMC according to the fluidic and thermal operating conditions. The water content of the membrane and the water distribution in the single cell are estimated according to the coupled simulations of mass transport in the thickness of the single cell and in the feeding channels of the bipolar plates. A microscopic model of a Gas Diffusion Electrode is built up to describe charges transfer phenomena occurring at the electrodes. Completed by a study of heat transfer in the Membrane Electrode Assembly, conditions and preferential sites of water vapor condensation can be highlighted. A set of measurements of the effective thermal conductivity of carbon felts used in fuel cells as porous backing layers have also been performed. Although the value of this parameter is essential for the study of heat transfer, it is still under investigation because of the strong thermal anisotropy of the medium. (author)

  19. Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kubas, Adam; Blumberger, Jochen, E-mail: j.blumberger@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hoffmann, Felix [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum (Germany); Heck, Alexander; Elstner, Marcus [Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Oberhofer, Harald [Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching (Germany)

    2014-03-14

    We introduce a database (HAB11) of electronic coupling matrix elements (H{sub ab}) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute H{sub ab} values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.

  20. Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO3/SrTiO3 devices.

    Science.gov (United States)

    Hurand, S; Jouan, A; Feuillet-Palma, C; Singh, G; Biscaras, J; Lesne, E; Reyren, N; Barthélémy, A; Bibes, M; Villegas, J E; Ulysse, C; Lafosse, X; Pannetier-Lecoeur, M; Caprara, S; Grilli, M; Lesueur, J; Bergeal, N

    2015-08-05

    The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LaAlO3/SrTiO3 interfaces, which exhibit both superconductivity and strong Rashba spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on the realisation of a field-effect LaAlO3/SrTiO3 device, whose physical properties, including superconductivity and SOC, can be tuned over a wide range by a top-gate voltage. We derive a phase diagram, which emphasises a field-effect-induced superconductor-to-insulator quantum phase transition. Magneto-transport measurements show that the Rashba coupling constant increases linearly with the interfacial electric field. Our results pave the way for the realisation of mesoscopic devices, where these two properties can be manipulated on a local scale by means of top-gates.

  1. Electrochromic devices based on wide band-gap nanocrystalline semiconductors functionalized with mononuclear charge transfer compounds

    DEFF Research Database (Denmark)

    Biancardo, M.; Argazzi, R.; Bignozzi, C.A.

    2006-01-01

    A series of ruthenium and iron mononuclear complexes were prepared and their spectroeletrochemical behavior characterized oil Optically Transparent Thin Layer Electrodes (OTTLE) and on Fluorine Doped SnO2 (FTO) conductive glasses coated with Sb-doped nanocrystalline SnO2. These systems display...... a reversible electrochemical response and offer potential application in electrochromic devices. On SnO2 films distinct spectral changes are observed in a narrow potential range (-0.5/0.9 V vs SCE) with switching times of the order of 0.8 s. (c) 2005 Elsevier B.V. All rights reserved....

  2. Quantum Langevin equation of a charged oscillator in a magnetic field and coupled to a heat bath through momentum variables.

    Science.gov (United States)

    Gupta, Shamik; Bandyopadhyay, Malay

    2011-10-01

    We obtain the quantum Langevin equation (QLE) of a charged quantum particle moving in a harmonic potential in the presence of a uniform external magnetic field and linearly coupled to a quantum heat bath through momentum variables. The bath is modeled as a collection of independent quantum harmonic oscillators. The QLE involves a random force which does not depend on the magnetic field, and a quantum-generalized classical Lorentz force. These features are also present in the QLE for the case of particle-bath coupling through coordinate variables. However, significant differences are also observed. For example, the mean force in the QLE is characterized by a memory function that depends explicitly on the magnetic field. The random force has a modified form with correlation and commutator different from those in the case of coordinate-coordinate coupling. Moreover, the coupling constants, in addition to appearing in the random force and in the mean force, also renormalize the inertial term and the harmonic potential term in the QLE.

  3. Low temperature characterization of mobility in 14 nm FD-SOI CMOS devices under interface coupling conditions

    Science.gov (United States)

    Shin, Minju; Shi, Ming; Mouis, Mireille; Cros, Antoine; Josse, Emmanuel; Kim, Gyu-Tae; Ghibaudo, Gérard

    2015-06-01

    In this work, we demonstrate the powerful methodology of electronic transport characterization in highly scaled (down to 14 nm-node) FDSOI CMOS devices using cryogenic operation under interface coupling measurement condition. Thanks to this approach, the underlying scattering mechanisms were revealed in terms of their origin and diffusion center location. At first we study quantitatively transport behavior induced by the high-k/metal gate stack in long channel case, and then we investigate the transport properties evolution in highly scaled devices. Mobility degradation in short devices is shown to stem from additional scattering mechanisms, unlike long channel devices, which are attributed to process-induced defects near source and drain region. Especially in PMOS devices, channel-material related defects which could be denser close to front interface also induce mobility degradation.

  4. Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, F., E-mail: tmfiwat@ipc.shizuoka.ac.jp [Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Ohashi, Y.; Ishisaki, I. [Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Picco, L.M. [H Will Physics Laboratory and IRC in Nanotechnology, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Ushiki, T. [Graduate School of Medical and Dental Sciences, Niigata University, Asahimachidori, Niigata, 951-8122 (Japan)

    2013-10-15

    The atomic force microscope (AFM) has been widely used for surface fabrication and manipulation. However, nanomanipulation using a conventional AFM is inefficient because of the sequential nature of the scan-manipulation scan cycle, which makes it difficult for the operator to observe the region of interest and perform the manipulation simultaneously. In this paper, a nanomanipulation technique using a high-speed atomic force microscope (HS-AFM) is described. During manipulation using the AFM probe, the operation is periodically interrupted for a fraction of a second for high-speed imaging that allows the topographical image of the manipulated surface to be periodically updated. With the use of high-speed imaging, the interrupting time for imaging can be greatly reduced, and as a result, the operator almost does not notice the blink time of the interruption for imaging during the manipulation. This creates a more intuitive interface with greater feedback and finesse to the operator. Nanofabrication under real-time monitoring was performed to demonstrate the utility of this arrangement for real-time nanomanipulation of sample surfaces under ambient conditions. Furthermore, the HS-AFM is coupled with a haptic device for the human interface, enabling the operator to move the HS-AFM probe to any position on the surface while feeling the response from the surface during the manipulation. - Highlights: • A nanomanipulater based on a high-speed atomic force microscope was developped. • High-speed imaging provides a valuable feedback during the manipulation operation. • Operator can feel the response from the surface via a haptic device during manipulation. • Nanofabrications under real-time monitoring were successfully performed.

  5. Virtual charge state separator as an advanced tool coupling measurements and simulations

    Science.gov (United States)

    Yaramyshev, S.; Vormann, H.; Adonin, A.; Barth, W.; Dahl, L.; Gerhard, P.; Groening, L.; Hollinger, R.; Maier, M.; Mickat, S.; Orzhekhovskaya, A.

    2015-05-01

    A new low energy beam transport for a multicharge uranium beam will be built at the GSI High Current Injector (HSI). All uranium charge states coming from the new ion source will be injected into GSI heavy ion high current HSI Radio Frequency Quadrupole (RFQ), but only the design ions U4 + will be accelerated to the final RFQ energy. A detailed knowledge about injected beam current and emittance for pure design U4 + ions is necessary for a proper beam line design commissioning and operation, while measurements are possible only for a full beam including all charge states. Detailed measurements of the beam current and emittance are performed behind the first quadrupole triplet of the beam line. A dedicated algorithm, based on a combination of measurements and the results of advanced beam dynamics simulations, provides for an extraction of beam current and emittance values for only the U4 + component of the beam. The proposed methods and obtained results are presented.

  6. Conformally coupled scalar black holes admit a flat horizon due to axionic charge

    CERN Document Server

    Bardoux, Yannis; Charmousis, Christos

    2012-01-01

    Static, charged black holes in the presence of a negative cosmological constant and with a planar horizon are found in four dimensions. The solutions have scalar secondary hair. We claim that these constitute the planar version of the Martinez-Troncoso-Zanelli black holes, only known up to now for a curved event horizon in four dimensions. Their planar version is rendered possible due to the presence of two, equal and homogeneously distributed, axionic charges dressing the flat horizon. The solutions are presented in the conformal and minimal frame and their basic properties and thermodynamics analysed. Entertaining recent applications to holographic superconductors, we expose two branches of solutions: the undressed axionic Reissner-Nordstrom-AdS black hole, and the novel black hole carrying secondary hair. We show that there is a critical temperature at which the (bald) axionic Reissner-Nordstrom-AdS black hole undergoes a second order phase transition to the hairy black hole spontaneously acquiring scalar ...

  7. Study of charge-phase diagrams for coupled system of Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hamdipour, M; Shukrinov, Y U M, E-mail: hamdipur@theor.jinr.r

    2010-11-01

    Dynamics of stacked intrinsic Josephson junctions (IJJ) in the high-Tc superconductors is theoretically investigated. We calculate the current-voltage characteristics (CVC) of IJJ and study the breakpoint region on the outermost branch of the CVC for the stacks with 9 IJJ. A method for investigation of the fine structure in CVC of IJJ based on the recording the 'phase-charge' diagrams is suggested. It is demonstrated that this method reflects the main features of the breakpoint region.

  8. Study of charge-phase diagrams for coupled system of Josephson junctions

    Science.gov (United States)

    Hamdipour, M.; Shukrinov, Y. U. M.

    2010-11-01

    Dynamics of stacked intrinsic Josephson junctions (IJJ) in the high-Tc superconductors is theoretically investigated. We calculate the current-voltage characteristics (CVC) of IJJ and study the breakpoint region on the outermost branch of the CVC for the stacks with 9 IJJ. A method for investigation of the fine structure in CVC of IJJ based on the recording the "phase-charge" diagrams is suggested. It is demonstrated that this method reflects the main features of the breakpoint region.

  9. Study of charge-phase diagrams for coupled system of Josephson junctions

    OpenAIRE

    Hamdipour, M.; Shukrinov, Yu M.

    2010-01-01

    Dynamics of stacked intrinsic Josephson junctions (IJJ) in the high-Tc superconductors is theoretically investigated. We calculate the current-voltage characteristics (CVC) of IJJ and study the breakpoint region on the outermost branch of the CVC for the stacks with 9 IJJ. A method for investigation of the fine structure in CVC of IJJ based on the recording the "phase-charge" diagrams is suggested. It is demonstrated that this method reflects the main features of the breakpoint region.

  10. A Generalized Boltzmann Fokker-Planck Method for Coupled Charged Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, Anil K

    2012-01-09

    The goal of this project was to develop and investigate the performance of reduced-physics formulations of high energy charged particle (electrons, protons and heavier ions) transport that are computationally more efficient than not only analog Monte Carlo methods but also the established condensed history Monte Carlo technique. Charged particles interact with matter by Coulomb collisions with target nuclei and electrons, by bremsstrahlung radiation loss and by nuclear reactions such as spallation and fission. Of these, inelastic electronic collisions and elastic nuclear collisions are the dominant cause of energy-loss straggling and angular deflection or range straggling of a primary particle. These collisions are characterized by extremely short mean free paths (sub-microns) and highly peaked, near-singular differential cross sections about forward directions and zero energy loss, with the situation for protons and heavier ions more extreme than for electrons. For this reason, analog or truephysics single-event Monte Carlo simulation, while possible in principle, is computationally prohibitive for routine calculation of charged particle interaction phenomena.

  11. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experiments.

    Science.gov (United States)

    Marshall, F J; DeHaas, T; Glebov, V Yu

    2010-10-01

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (∼10(14) DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from ∼10(7) to ∼10(9) neutrons/cm(2) and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ∼10(15), depending on distance and shielding.

  12. Microelectronic image sensors: A report from the Charge Transfer Device (CTD) team at FOA 3

    Science.gov (United States)

    Engstroem, O.; Persson, S. T.; Pettersson, H.; Ryden, K. H.

    1985-05-01

    Three concepts of microelectronic image sensors where the photo effects are based on the properties of interfaces between silicon and metal silicides or insulators were investigated. An infrared sensitive image sensor for the 3 to 5 micron wavelength range was prepared. The photosensitive elements, patterned as a 4 x 4 matrix, consist of palladium silicide Schottky-diodes. Addressing of the different picture elements is made from shift registers placed on the same silicon chip. A concept for the storage of optical information was created. The basic principle relies on the possibilities to store electrons in deep lying energy levels in an insulator layer grown on silicon. A metal-insulator-semiconductor device, where the possibility of interaction between two images at the insulator-semiconductor interface is utilized for image recognition, was derived.

  13. Thin-Film Ferro Electric-Coupled Microstripline Phase Shifters With Reduced Device Hysteresis

    Science.gov (United States)

    Miranda, Felix A.; Romanofsky, Robert; Mueller, Carl H.; VanKeuls, Frederick

    2010-01-01

    This work deals with the performance of coupled microstripline phase shifters (CMPS) fabricated using BaxSr 1 -xTiO 3 (BST) ferroelectric thin films. The CMPS were fabricated using commercially available pulsed laser deposition BST films with Ba:Sr ratios of 30:70 and 20:80. Microwave characterization of these CMPS was performed at upper Kuband frequencies, particularly at frequencies near 16 and 18 GHz. X-ray diffraction studies indicate that the 30:70 films exhibit almost a 1:1 ratio between the in-plane and out-of-plane lattice parameters, suggesting that their cubics create strain -free films suitable for producing CMPS devices with reduced hysteresis in the paraelectric state. The quality of performance of the CMPS was studied based on their relative phase shift and insertion loss within the DC bias range of 0 to 400 V (i.e., E-field ranges within 0 to 53 V/micron). The performance of the CMPS was tested as a function of temperature to investigate their operation in the paraelectric, as well as in the ferroelectric, state (i.e., above and below the Curie temperature, respectively). The novel behavior discussed here is based on the experimental observation of the CMPS. This behavior, observed for the aforementioned cation ratio, highlights the relevance of good crystalline structure for high-quality CMPS.

  14. Charge transfer and triplet states in OPV materials and devices (Presentation Recording)

    Science.gov (United States)

    Dyakonov, Vladimir

    2015-10-01

    Electron back transfer (EBT), potentially occurring after electron transfer from donor to acceptor may populate the lower lying donor or acceptor triplet state and serve as recombination channel.[1] Here we report on studies of charge transfer and triplet states in blends of highly efficient benzodithiophene PTB7 polymer in combination with the fullerene-derivative PC71BM using the spin sensitive optically detected magnetic resonance (ODMR) technique and compare the results with those obtained in P3HT (poly(3- hexylthiophene):PC61BM blends. Although PTB7:PC71BM absorbers yield much higher power conversion efficiencies in solar cells exceeding 7%, we found a significant increase of triplet exciton generation, which was absent in the P3HT based blends. We discuss this observation within the EBT scenario with the emphasis on the influence of morphology, fullerene load, HOMO/LUMO energy and presence of additives (DIO). Suppressing the EBT process by morphology and/or energetics of polymer and molecules is important to achieve the full potential of highly efficient OPV materials. [1] M. Liedtke, et al., JACS 133, 9088 (2011).

  15. 一种无线充电装置的设计与制作%The Design and Manufacture of a Wireless Charging Device

    Institute of Scientific and Technical Information of China (English)

    孔德琛; 胡海宁; 王莹

    2015-01-01

    It designed and manufactured a set of wireless charging device of mobile phone by oneself. The de-vice can carry out wireless charging for mobile phone,and it can also be used to give mobile power,tablet PC and other mobile devices for wireless charging.%设计并制作了一套手机用的无线充电装置,通过该装置可以对手机进行无线充电,该装置也可以用来给移动电源、平板电脑等移动设备进行无线充电。

  16. A Microscopic Capacitor Model of Voltage Coupling in Membrane Proteins: Gating Charge Fluctuations in Ci-VSD.

    Science.gov (United States)

    Kim, Ilsoo; Warshel, Arieh

    2016-01-28

    The voltage sensitivity of membrane proteins is reflected in the response of the voltage sensing domains (VSDs) to the changes in membrane potential. This response is implicated in the displacement of positively charged residues, associated with the conformational changes of VSDs. The displaced charges generate nonlinear (i.e., voltage-dependent) capacitance current called the gating current (and its corresponding gating charge), which is a key experimental quantity that characterizes voltage activation in VSMP. However, the relevant theoretical/computational approaches, aimed to correlate the structural information on VSMP to electrophysiological measurements, have been rather limited, posing a broad challenge in computer simulations of VSMP. Concomitant with the development of our coarse-graining (CG) model of voltage coupling, we apply our theoretical framework for the treatments of voltage effects in membrane proteins to modeling the VSMP activation, taking the VSDs (Ci-VSD) derived from the Ciona intestinalis voltage sensitive phosphatase (Ci-VSP) as a model system. Our CG model reproduces the observed gating charge of Ci-VSD activation in several different perspectives. In particular, a new closed-form expression of the gating charge is evaluated in both nonequilibrium and equilibrium ways, while considering the fluctuation-dissipation relation that connects a nonequilibrium measurement of the gating charge to an equilibrium measurement of charge fluctuations (i.e., the voltage-independent linear component of membrane capacitance). In turn, the expression uncovers a novel link that connects an equilibrium measurement of the voltage-independent linear capacitance to a nonequilibrium measurement of the voltage-dependent nonlinear capacitance (whose integral over voltage is equal to the gating charge). In addition, our CG model yields capacitor-like voltage dependent free energy parabolas, resulting in the free energy difference and the free energy barrier for

  17. Entropy Exchange in Coupled Field-Superconducting Charge Qubit System with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; ZHANG Jian; ZOU Jian

    2006-01-01

    Based on the intrinsic decoherence effect, partial entropy properties of a super conducting charge qubitinside a single-mode cavity field is investigated, and entropy exchange which is recently regarded as a kind of anti-correlated behavior of the entropy between subsystems is explored. Our results show that although the intrinsic decoherenceleads to an effective irreversible evolution of the interacting system due to a suppression of coherent quantum features through the decay of off-diagonal matrix elements of the density operator and has an apparently influence on the partial entropy of two individual subsystems, it does not effect the entropy exchange between the two subsystems.

  18. Design of Static Wireless Charging System for Electric Vehicles with Focus on Magnetic Coupling and Emissions

    DEFF Research Database (Denmark)

    Batra, Tushar

    -parallel are compared in term of the emissions for similar power rating. Series-parallel topology has slight advantage over its series-series counterpart on account of additional inductive secondary current component as advised by the results. At the end, a wireless charging system has been designed and constructed...... as part of the project. The setup delivers output power of approximately 2 kW and 1.2 kW for vertical distance of 10 cm and 20 cm respectively. Measured resonant circuit efficiencies (primary inverter AC terminals to secondary rectifier AC terminals) for the two cases are 89% and 82% respectively...

  19. Superradiance of a charged scalar field coupled to the Einstein-Maxwell equations

    CERN Document Server

    Baake, Olaf

    2016-01-01

    We consider the Einstein-Maxwell-Klein-Gordon equations for a spherically symmetric scalar field scattering off a Reissner-Nordstr\\"om black hole in asymptotically flat spacetime. The equations are solved numerically using a hyperboloidal evolution scheme. For suitable frequencies of the initial data, superradiance is observed, leading to a substantial decrease of mass and charge of the black hole. We also derive a Bondi mass loss formula using the Kodama vector field and investigate the late-time decay of the scalar field.

  20. Solid-state charge-based device for control of catalytic carbon monoxide oxidation on platinum nanofilms using external bias and light.

    Science.gov (United States)

    Baker, L Robert; Hervier, Antoine; Kennedy, Griffin; Somorjai, Gabor A

    2012-05-09

    Using a Pt/Si catalytic nanodiode, we externally control the rate of CO oxidation on a Pt nanofilm. The catalytic reaction can be turned on and off by alternating between bias states of the device. Additionally, the reaction rate is sensitive to photocurrent induced by visible light. The effects of both bias and light show that negative charge on the Pt increases catalytic activity, while positive charge on the Pt decreases catalytic activity for CO oxidation.

  1. Variable Charge State Impurities in Coupled Kinetic Plasma-Kinetic Neutral Transport Simulations

    Science.gov (United States)

    Stotler, D. P.; Hager, R.; Kim, K.; Koskela, T.; Park, G.

    2015-11-01

    A previous version of the XGC0 neoclassical particle transport code with two fully stripped impurity species was used to study kinetic neoclassical transport in the DIII-D H-mode pedestal. To properly simulate impurities in the scrape-off layer and divertor and to account for radiative cooling, however, the impurity charge state distributions must evolve as the particles are transported into regions of different electron temperatures and densities. To do this, the charge state of each particle in XGC0 is included as a parameter in the list that represents the particle's location in phase space. Impurity ionizations and recombinations are handled with a dedicated collision routine. The associated radiative cooling is accumulated during the process and applied to the electron population later in the time step. The density profiles of the neutral impurities are simulated with the DEGAS 2 neutral transport code and then used as a background for electron impact ionization in XGC0 via a test particle Monte Carlo method analogous to that used for deuterium. This work supported by US DOE contracts DE-AC02-09CH11466.

  2. Pixelated VLC-Backscattering for Self-Charging Indoor IoT Devices

    Science.gov (United States)

    Shao, Sihua; Khreishah, Abdallah; Elgala, Hany

    2017-01-01

    Visible light communication (VLC) backscatter has been proposed as a wireless access option for Internet of Things (IoT). However, the throughput of the state-of-the-art VLC backscatter is limited by simple single-carrier pulsed modulation scheme, such as on-off keying (OOK). In this paper, a novel pixelated VLC backscatter is proposed and implemented to overcome the channel capacity limitation. In particular, multiple smaller VLC backscatters, switching on or off, are integrated to generate multi-level signals, which enables the usage of more advanced modulation schemes than OOK. Based on experimental results, rate adaptation at different communication distances can be employed to enhance the achievable data rate. Compared to OOK, the data rate can be tripled when 8-PAM is used at 2 meters. In general, $n$-fold throughput enhancement is realized by utilizing $n$ smaller VLC backscatters while incurring negligible additional energy using the same device space as that of a single large backscatter.

  3. Coupling of electric charge and magnetic field via electronic phase separation in (La,Pr,Ca)MnO3/Pb(Mg1/3Nb2/3)O3-PbTiO3 multiferroic heterostructures

    Science.gov (United States)

    Zheng, Ming; Wang, Wei

    2016-04-01

    The electric-field-tunable non-volatile resistivity and ferromagnetism switching in the (La0.5Pr0.5)0.67Ca0.33MnO3 films grown on (111)-oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ferroelectric single-crystal substrates have been investigated. By combining the 180° ferroelectric domain switching and in situ X-ray diffraction and resistivity measurements, we identify that this voltage control of order parameters stems from the domain switching-induced accumulation/depletion of charge carriers at the interface rather than induced lattice strain effect. In particular, the polarization-induced charge effect (i.e., ferroelectric field effect) is strongly dependent on the magnetic field. This, together with the charge-modulated magnetoresistance and magnetization, reveals the strong correlation between the electric charge and the magnetic field. Further, we found that this coupling is essentially driven by the electronic phase separation, the relative strength of which could be determined by recording charge-tunability of resistivity [ (Δρ/ρ)c h arg e ] under various magnetic fields. These findings present a potential strategy for elucidating essential physics of perovskite manganites and delivering prototype electronic devices for non-volatile information storage.

  4. Analysis of the magnetic coupling in binuclear systems. III. The role of the ligand to metal charge transfer excitations revisited

    Science.gov (United States)

    Calzado, Carmen J.; Angeli, Celestino; Taratiel, David; Caballol, Rosa; Malrieu, Jean-Paul

    2009-07-01

    In magnetic coordination compounds and solids the magnetic orbitals are essentially located on metallic centers but present some delocalization tails on adjacent ligands. Mean field variational calculations optimize this mixing and validate a single band modelization of the intersite magnetic exchange. In this approach, due to the Brillouin's theorem, the ligand to metal charge transfer (LMCT) excitations play a minor role. On the other hand the extensive configuration interaction calculations show that the determinants obtained by a single excitation on the top of the LMCT configurations bring an important antiferromagnetic contribution to the magnetic coupling. Perturbative and truncated variational calculations show that contrary to the interpretation given in a previous article [C. J. Calzado et al., J. Chem. Phys. 116, 2728 (2002)] the contribution of these determinants to the magnetic coupling constant is not a second-order one. An analytic development enables one to establish that they contribute at higher order as a correlation induced increase in the LMCT components of the wave function, i.e., of the mixing between the ligand and the magnetic orbitals. This larger delocalization of the magnetic orbitals results in an increase in both the ferro- and antiferromagnetic contributions to the coupling constant.

  5. Charge storage properties of InP quantum dots in GaAs metal-oxide-semiconductor based nonvolatile flash memory devices

    Science.gov (United States)

    Kundu, Souvik; Halder, Nripendra N.; Biswas, Pranab; Biswas, D.; Banerji, P.; Mukherjee, Rabibrata; Chakraborty, S.

    2012-11-01

    Metal organic vapor phase epitaxially grown 5 nm InP quantum dots (QDs) were embedded as charge storage elements between high-k control and tunneling dielectric layers in GaAs metal-oxide-semiconductor based nonvolatile memory devices. The QDs trap more electrons resulting in a large memory window (6.3 V) along with low leakage due to Coulomb blockade effect. 16.5% charge loss was found even after 105 s indicating its good charge storing potential. The programming and erasing operations were discussed with proposed band diagram.

  6. Reproducible preparation of nanospray tips for capillary electrophoresis coupled to mass spectrometry using 3D printed grinding device.

    Science.gov (United States)

    Tycova, Anna; Prikryl, Jan; Foret, Frantisek

    2016-04-01

    The use of high quality fused silica capillary nanospray tips is critical for obtaining reliable and reproducible electrospray/MS data; however, reproducible laboratory preparation of such tips is a challenging task. In this work, we report on the design and construction of low-cost grinding device assembled from 3D printed and commercially easily available components. Detailed description and characterization of the grinding device is complemented by freely accessible files in stl and skp format allowing easy laboratory replication of the device. The process of sharpening is aimed at achieving maximal symmetricity, surface smoothness and repeatability of the conus shape. Moreover, the presented grinding device brings possibility to fabricate the nanospray tips of desired dimensions regardless of the commercial availability. On several samples of biological nature (reserpine, rabbit plasma, and the mixture of three aminoacids), performance of fabricated tips is shown on CE coupled to MS analysis. The special interest is paid to the effect of tip sharpness.

  7. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    Science.gov (United States)

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  8. Late-time decay of coupled electromagnetic and gravitational perturbations outside extremal charged black hole

    CERN Document Server

    Sela, Orr

    2016-01-01

    In this paper we employ the results of a previous paper on the late-time decay of scalar-field perturbations of an extreme Reissner-Nordstrom black hole, in order to find the late-time decay of coupled electromagnetic and gravitational perturbations of this black hole. We explicitly write the late-time tails of Moncrief's gauge invariant variables and of the perturbations of the metric tensor and the electromagnetic field tensor in the Regge-Wheeler gauge. We discuss some of the consequences of the results and relations to previous works.

  9. Late-time decay of coupled electromagnetic and gravitational perturbations outside an extremal charged black hole

    Science.gov (United States)

    Sela, Orr

    2016-10-01

    In this paper, we employ the results of a previous paper on the late-time decay of scalar-field perturbations of an extreme Reissner-Nordstrom black hole, in order to find the late-time decay of coupled electromagnetic and gravitational perturbations of this black hole. We explicitly write the late-time tails of Moncrief's gauge invariant variables and of the perturbations of the metric tensor and the electromagnetic field tensor in the Regge-Wheeler gauge. We discuss some of the consequences of the results and relations to previous works.

  10. Perpendicular diffusion of a dilute beam of charged dust particles in a strongly coupled dusty plasma

    Science.gov (United States)

    Liu, Bin; Goree, J.

    2014-06-01

    The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.

  11. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.

    Science.gov (United States)

    Jing, Dalei; Bhushan, Bharat

    2015-09-15

    Fluid drag of micro/nano fluidic systems has inspired wide scientific interest. Surface charge and boundary slip at the solid-liquid interface are believed to affect fluid drag. This review summarizes the recent studies on the coupling of surface charge and slip, and their combined effect on fluid drag at micro/nano scale. The effect of pH on surface charge of borosilicate glass and silica surfaces in deionized (DI) water and saline solution is discussed using a method based on colloidal probe atomic force microscopy (AFM). The boundary slip of various oil-solid interfaces are discussed for samples with different degrees of oleophobicity prepared by nanoparticle-binder system. By changing the pH of solution or applying an electric field, effect of surface charge on slip of a smooth hydrophobic octadecyltrichlorosilane (OTS) in DI water and saline solution is studied. A theoretical model incorporating the coupling relationship between surface charge and slip is used to discuss the combined effect of surface charge-induced electric double layer (EDL) and slip on fluid drag of pressure-driven flow in a one-dimensional parallel-plates microchannel. A theoretical method is used to reduce the fluid drag. The studies show that the increasing magnitude of surface charge density leads to a decrease in slip length. The surface charge results in a larger fluid drag, and the coupling of surface charge and slip can further increase the fluid drag. Surface charge-induced EDLs with asymmetric zeta potentials can effectively reduce the fluid drag.

  12. A microscopic approach based on particle-vibration coupling: application to charge-exchange transitions and multiplets in odd nuclei

    Directory of Open Access Journals (Sweden)

    Colò Gianluca

    2016-01-01

    Full Text Available In this contribution, we shall describe a formalism that goes beyond the simple time-dependent mean field and is based on particle-vibration coupling (PVC. Such a formalism has been developed with the idea of being self-consistent. It makes use of Skyrme effective forces, and has been used for several applications. We will focus on charge-exchange transitions, namely we will show that our model describes well both the Gamow-Teller giant resonance width, and the low-lying transitions associated with β-decay. In this latter case, including PVC produces a significant improvement of the half-lives obtained at mean-field level, and leads to a good agreement with experimental data. We will end by discussing particle-phonon multiplets in odd nuclei.

  13. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S.; Wolter, H.H. [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  14. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    Science.gov (United States)

    Mišković, Olivera; Olea, Rodrigo

    2011-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  15. Design and characteristic investigations of superconducting wireless power transfer for electric vehicle charging system via resonance coupling method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. D. [Suwon Science College, Suwon (Korea, Republic of); Yim, Seung Woo [Dept. of Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of)

    2014-09-15

    As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUWPT4EV) system. As the HTS coil has an enough current density, it can deliver a mass amount of electric energy in spite of a small scale antenna. The SUCPT4EV system has been expected as a noble option to improve the transfer efficiency of large electric power. Such a system consists of two resonator coils; HTS transmitting antenna (Tx) coil and normal conducting receiver (Rx) coil. Especially, the impedance matching for each resonator is a sensitive and plays an important role to improve transfer efficiency as well as delivery distance. In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, within 45 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 15% compared with copper antenna. In addition, we achieved effective impedance matching conditions between HTS antenna and copper receiver at radio frequency (RF) power of 370 kHz.

  16. Spin-orbit-coupling induced torque in ballistic domain walls: Equivalence of charge-pumping and nonequilibrium magnetization formalisms

    Science.gov (United States)

    Yuan, Zhe; Kelly, Paul J.

    2016-06-01

    To study the effect of spin-orbit coupling (SOC) on spin-transfer torque in magnetic materials, we have implemented two theoretical formalisms that can accommodate SOC. Using the "charge-pumping" formalism, we find two contributions to the out-of-plane spin-transfer torque parameter β in ballistic Ni domain walls (DWs). For short DWs, the nonadiabatic reflection of conduction electrons caused by the rapid spatial variation of the exchange potential results in an out-of-plane torque that increases rapidly with decreasing DW length. For long DWs, the Fermi level conduction channel anisotropy that gives rise to an intrinsic DW resistance in the presence of SOC leads to a linear dependence of β on the DW length. To understand this counterintuitive divergence of β in the long DW limit, we use the "nonequilibrium magnetization" formalism to examine the spatially resolved spin-transfer torque. The SOC-induced out-of-plane torque in ballistic DWs is found to be quantitatively consistent with the values obtained using the charge-pumping calculations, indicating the equivalence of the two theoretical methods.

  17. Linear and third- and fifth-order nonlinear spectroscopies of a charge transfer system coupled to an underdamped vibration

    Energy Technology Data Exchange (ETDEWEB)

    Dijkstra, Arend G., E-mail: arend.dijkstra@mpsd.mpg.de, E-mail: tanimura@kuchem.kyoto-u.ac.jp [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); Tanimura, Yoshitaka, E-mail: arend.dijkstra@mpsd.mpg.de, E-mail: tanimura@kuchem.kyoto-u.ac.jp [Department of Chemistry, Kyoto University, Kyoto (Japan)

    2015-06-07

    We study hole, electron, and exciton transports in a charge transfer system in the presence of underdamped vibrational motion. We analyze the signature of these processes in the linear and third-, and fifth-order nonlinear electronic spectra. Calculations are performed with a numerically exact hierarchical equations of motion method for an underdamped Brownian oscillator spectral density. We find that combining electron, hole, and exciton transfers can lead to non-trivial spectra with more structure than with excitonic coupling alone. Traces taken during the waiting time of a two-dimensional (2D) spectrum are dominated by vibrational motion and do not reflect the electron, hole, and exciton dynamics directly. We find that the fifth-order nonlinear response is particularly sensitive to the charge transfer process. While third-order 2D spectroscopy detects the correlation between two coherences, fifth-order 2D spectroscopy (2D population spectroscopy) is here designed to detect correlations between the excited states during two different time periods.

  18. Linear and third- and fifth-order nonlinear spectroscopies of a charge transfer system coupled to an underdamped vibration.

    Science.gov (United States)

    Dijkstra, Arend G; Tanimura, Yoshitaka

    2015-06-01

    We study hole, electron, and exciton transports in a charge transfer system in the presence of underdamped vibrational motion. We analyze the signature of these processes in the linear and third-, and fifth-order nonlinear electronic spectra. Calculations are performed with a numerically exact hierarchical equations of motion method for an underdamped Brownian oscillator spectral density. We find that combining electron, hole, and exciton transfers can lead to non-trivial spectra with more structure than with excitonic coupling alone. Traces taken during the waiting time of a two-dimensional (2D) spectrum are dominated by vibrational motion and do not reflect the electron, hole, and exciton dynamics directly. We find that the fifth-order nonlinear response is particularly sensitive to the charge transfer process. While third-order 2D spectroscopy detects the correlation between two coherences, fifth-order 2D spectroscopy (2D population spectroscopy) is here designed to detect correlations between the excited states during two different time periods.

  19. Low-energy effects of charged Higgs bosons with general Yukawa couplings

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Cruz, J.L. [Departamento de Fisica, CINVESTAV-IPN, Ap. Postal 14-740, 07000 Mexico D.F. (Mexico)]|[Instituto de Fisica, U de Puebla, Puebla, Pue. (Mexico); Godina Nava, J.J.; Lopez Castro, G. [Departamento de Fisica, CINVESTAV-IPN, Ap. Postal 14-740, 07000 Mexico D.F. (Mexico)

    1995-05-01

    We study a model with two Higgs doublets where FCNC`s are allowed at the tree level. In this model, the interactions of charged Higgs bosons with fermions ({ital H}{sup {plus_minus}}{ital f{bar f}}{prime}) include a term that is not proportional to the fermion masses, which we constrain using the following low-energy processes: (i) {tau} decays ({tau}{r_arrow}{nu}{sub {tau}}{ital e}{nu}{sub {ital e}},{nu}{sub {tau}}{mu}{nu}{sub {mu}},{nu}{sub {tau}}{pi}), (ii) leptonic decays of pseudoscalar mesons ({pi},{ital K}{r_arrow}{ital l}{nu}{sub {ital l}}), and (iii) semileptonic {ital b} decays. With these constraints it is possible to make predictions; we illustrate this by presenting the rates for the (FCNC) decay {ital c}{r_arrow}{ital u}+{gamma}, the (second class-current) decay {tau}{r_arrow}{nu}{sub {tau}}+{eta}{pi}, and also the theoretical value of the neutron lifetime.

  20. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Anh Tuan, E-mail: tuanna@hus.edu.vn [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Science and Technology Department, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan); Nguyen, Van Thanh; Nguyen, Huy Sinh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Pham, Thi Tuan Anh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, College of Hai Duong, Nguyen Thi Due, Hai Duong (Viet Nam); Do, Viet Thang [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, Haiphong University, 171 Phan Dang Luu, Kien An, Hai Phong (Viet Nam); Dam, Hieu Chi [Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan)

    2015-10-15

    Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  1. Thermodynamics of charged rotating dilaton black branes coupled to logarithmic nonlinear electrodynamics

    CERN Document Server

    Sheykhi, A; Zangeneh, M Kord

    2016-01-01

    We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes are flat, while, due to the presence of the dilaton field the asymptotic behaviour of them are neither flat nor (anti)-de Sitter [(A)dS]. We investigate the physical properties of the solutions. The mass and angular momentum of the spacetime are obtained by using the counterterm method inspired by AdS/CFT correspondence. We derive temperature, electric potential and entropy associated with the horizon and check the validity of the first law of thermodynamics on the black brane horizon. We study thermal stability of the solutions in both canonical and grand canonical ensemble and disclose the effects of the rotation parameter, nonlinearity of electrodynamics and dilaton field on the thermal stability conditions. We find the solutions are thermally stable for $\\a...

  2. A NEW STRUCTURE AND ITS ANALYTICAL BREAKDOWN MODEL OF HIGH VOLTAGE SOI DEVICE WITH STEP UNMOVABLE SURFACE CHARGES OF BURIED OXIDE LAYER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new SOI (Silicon On Insulator) high voltage device with Step Unmovable Surface Charges(SUSC) of buried oxide layer and its analytical breakdown model are proposed in the paper. The unmovable charges are implemented into the upper surface of buried oxide layer to increase the vertical electric field and uniform the lateral one. The 2-D Poisson's equation is solved to demonstrate the modulation effect of the immobile interface charges and analyze the electric field and breakdown voltage with the various geometric parameters and step numbers. A new RESURF (REduce SURface Field) condition of the SOI device considering the interface charges and buried oxide is derived to maximize breakdown voltage. The analytical results are in good agreement with the numerical analysis obtained by the 2-D semiconductor devices simulator MEDICI. As a result, an 1200V breakdown voltage is firstly obtained in 3μm-thick top Si layer, 2μm-thick buried oxide layer and 70μm-length drift region using a linear doping profile of unmovable buried oxide charges.

  3. Multilevel charging and discharging mechanisms of nonvolatile memory devices based on nanocomposites consisting of monolayered Au nanoparticles embedded in a polystyrene layer

    Science.gov (United States)

    Yeol Yun, Dong; Hyun Lee, Nam; Seong Kim, Hak; Wook Lee, Sang; Whan Kim, Tae

    2014-01-01

    Capacitance-voltage (C-V) curves for Al/Au nanoparticles embedded in a polystyrene (PS) layer/p-Si devices at 300 K showed a metal-insulator-semiconductor behavior with flat-band voltage shifts of the C-V curves due to the existence of charge trapping. Memory windows between 2.6 and 9.9 V were observed at different sweep voltages, indicative of multilevel behavior. Capacitance-time measurements demonstrated that the charge-trapping capability of Au nanoparticles embedded in a PS layer was maintained for retention times larger than 1 × 104 s without significant degradation. The multilevel charging and discharging mechanisms of the memory devices are described on the basis of the experimental results.

  4. A naive matrix-model approach to two-dimensional quantum gravity coupled to matter of arbitrary central charge

    CERN Document Server

    Brézin, E

    1992-01-01

    In the usual matrix-model approach to random discretized two-dimensional manifolds, one introduces n Ising spins on each cell, i.e. a discrete version of 2D quantum gravity coupled to matter with a central charge n/2. The matrix-model consists then of an integral over $2^{n}$ matrices, which we are unable to solve for $n>1$. However for a fixed genus we can expand in the cosmological constant g for arbitrary values of n, and a simple minded analysis of the series yields for n=0,1 and 2 the expected results for the exponent $\\gamma_{string}$ with an amazing precision given the small number of terms that we considered. We then proceed to larger values of n. Simple tests of universality are successfully applied; for instance we obtain the same exponents for n=3 or for one Ising model coupled to a one dimensional target space. The calculations are easily extended to states Potts models, through an integration over $q^{n}$ matrices. We see no sign of the tachyonic instability of the theory, but we have only consid...

  5. Study and Test of Cold Storage Heat Recovery Heat Pump Coupled Solar Drying Device

    OpenAIRE

    Min Li; Xiao-Qiang Jiang; Bao-Chuan Wu

    2013-01-01

    In this study, we design the recovery of a heat pump combined solar drying device. Then, with this device, drying experiments of aquatic product, tilapia, were conducted, indicating that the newly designed device functions are well in temperature adjusting and controlling performance and showing that drying time is closely related to energy consumption and drying conditions. Heat recovery heat pump combined solar energy drier can improve the drying quality of aquatic products, but also can gr...

  6. Analysis of the top-quark charged-current coupling at the LHeC

    CERN Document Server

    Sarmiento-Alvarado, I A; Larios, F

    2014-01-01

    In the context of $SU(2)_L\\times U(1)$ dimension six operators we study the potential of the LHeC to provide information on top quark effective interactions. We focus on single antitop production and how it is affected not only by the effective $tbW$ coupling but also by four-fermion operators. Compared to the LHC, the LHeC provides a cleaner environment to make a precise measurement of the top quark production cross section. Therefore, this machine would give a much better assesment of $V_{tb}$ in the context of the SM or $V_L$ in the context of higher dimension operators. The LHeC could also give a slightly better measurement for $V_R$. For $g_R$ the HL-LHC precise measurements of $F_L$ and $F_R$ (the $W$-boson helicity decay ratios of top) would yield better constraints than those obtained by the LHeC. Lepton-quark contact interactions would also be significantly better probed by the LHeC, since the only way of measuring them at the LHC would be through leptonic top decay which is hardly sensitive to these...

  7. On chip complex signal processing devices using coupled phononic crystal slab resonators and waveguides

    Directory of Open Access Journals (Sweden)

    Saeed Mohammadi

    2011-12-01

    Full Text Available In this paper, we report the evidence for the possibility of achieving complex signal processing functionalities such as multiplexing/demultiplexing at high frequencies using phononic crystal (PnC slabs. It is shown that such functionalities can be obtained by appropriate cross-coupling of PnC resonators and waveguides. PnC waveguides and waveguide-based resonators are realized and cross-coupled through two different methods of mechanical coupling (i.e., direct coupling and side coupling. Waveguide-based PnC resonators are employed because of their high-Q, compactness, large spurious-free spectral ranges, and the possibility of better control over coupling to PnC waveguides. It is shown that by modifying the defects in the formation of the resonators, the frequency of the resonance can be tuned.

  8. Understanding the charge transport and polarities in organic donor-acceptor mixed-stack crystals: molecular insights from the super-exchange couplings.

    Science.gov (United States)

    Geng, Hua; Zheng, Xiaoyan; Shuai, Zhigang; Zhu, Lingyun; Yi, Yuanping

    2015-02-25

    Charge transport and polarity in organic D-A mixed-stack crystals are examined in terms of super-exchange electronic couplings. When the super-exchange coupling is dominated by the interaction between donor HOMO and acceptor LUMO, ambipolar transport is achieved. Otherwise, involvement of other bridge orbitals can lead to unbalanced, even to unipolar transport in a special case that the HOMO-LUMO interaction vanishes.

  9. GaAs metal-oxide-semiconductor based non-volatile flash memory devices with InAs quantum dots as charge storage nodes

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Sk Masiul, E-mail: masiulelt@gmail.com; Chowdhury, Sisir; Sarkar, Krishnendu; Nagabhushan, B.; Banerji, P. [Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Chakraborty, S. [Applied Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Sector-I, Kolkata 700 064 (India); Mukherjee, Rabibrata [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-06-24

    Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO{sub 2} and ZrO{sub 2}, which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10{sup 11} cm{sup −2}, respectively. The device with a structure Metal/ZrO{sub 2}/InAs QDs/HfO{sub 2}/GaAs/Metal shows maximum memory window equivalent to 6.87 V. The device also exhibits low leakage current density of the order of 10{sup −6} A/cm{sup 2} and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO{sub 2} deposition.

  10. Engineering the magnetic coupling and anisotropy at the molecule-magnetic surface interface in molecular spintronic devices

    Science.gov (United States)

    Campbell, Victoria E.; Tonelli, Monica; Cimatti, Irene; Moussy, Jean-Baptiste; Tortech, Ludovic; Dappe, Yannick J.; Rivière, Eric; Guillot, Régis; Delprat, Sophie; Mattana, Richard; Seneor, Pierre; Ohresser, Philippe; Choueikani, Fadi; Otero, Edwige; Koprowiak, Florian; Chilkuri, Vijay Gopal; Suaud, Nicolas; Guihéry, Nathalie; Galtayries, Anouk; Miserque, Frederic; Arrio, Marie-Anne; Sainctavit, Philippe; Mallah, Talal

    2016-12-01

    A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule-electrode interface.

  11. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    Science.gov (United States)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  12. Ferroic ordering and charge-spin-lattice order coupling in Gd doped Fe3O4 nanoparticles

    Science.gov (United States)

    Laha, Suvra; Abdelhamid, Ehab; Palihawadana Arachchige, Maheshika; Dixit, Ambesh; Lawes, Gavin; Naik, Vaman; Naik, Ratna

    Rare earth doped spinels have been extensively studied for their potential applications in magneto-optical recording and as MRI contrast agents. In the present study, we have investigated the effect of gadolinium doping (1-5 at.%) on the magnetic and dielectric properties of Fe3O4nanoparticles synthesized by the chemical co-precipitation method. The structure and morphology of the as-synthesized gadolinium doped Fe3O4(Gd-Fe3O4) nanoparticles were characterized by XRD, SEM and TEM, and the magnetic properties were measured by a Quantum Design physical property measurement system. We find that the penetration of excess Gd3+ ions into Fe3O4 spinel matrix significantly influences the average crystallite size and saturation magnetization in Gd-Fe3O4. The average crystallite size, estimated from XRD using Scherrer equation, increases with increasing Gd doping percentage and the saturation magnetization drops monotonically with excess Gd3+ ions. Interestingly, Gd- Fe3O4develops enhanced ferroelectric ordering at low temperatures. The details of the temperature dependent dielectric, ferroelectric and magnetocapacitance measurements to understand the onset of charge-spin-lattice coupling in Gd-Fe3O4 system will be presented.

  13. Charge and color breaking constraints in the Minimal Supersymmetric Standard Model associated with the bottom Yukawa coupling

    Directory of Open Access Journals (Sweden)

    Wolfgang Gregor Hollik

    2016-01-01

    Full Text Available Testing the stability of the electroweak vacuum in any extension of the Standard Model Higgs sector is of great importance to verify the consistency of the theory. Multi-scalar extensions as the Minimal Supersymmetric Standard Model generically lead to unstable configurations in certain regions of parameter space. An exact minimization of the scalar potential is rather an impossible analytic task. To give handy analytic constraints, a specific direction in field space has to be considered which is a simplification that tends to miss excluded regions, however good to quickly check parameter points. We describe a yet undescribed class of charge and color breaking minima as they appear in the Minimal Supersymmetric Standard Model, exemplarily for the case of non-vanishing bottom squark vacuum expectation values constraining the combination μYb in a non-trivial way. Contrary to famous A-parameter bounds, we relate the bottom Yukawa coupling with the supersymmetry breaking masses. Another bound can be found relating soft breaking masses and μ only. The exclusions follow from the tree-level minimization and can change dramatically using the one-loop potential. Estimates of the lifetime of unstable configurations show that they are either extremely short- or long-lived.

  14. Efficient charge transfer and field-induced tunneling transport in hybrid composite device of organic semiconductor and cadmium telluride quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Varade, Vaibhav, E-mail: vaibhav.tvarade@gmail.com; Jagtap, Amardeep M.; Koteswara Rao, K. S. R.; Ramesh, K. P.; Menon, R. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Anjaneyulu, P. [Department of Physics, Gitam University, Hyderabad 502329 (India)

    2015-06-07

    Temperature and photo-dependent current–voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT:PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler–Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (∼ 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Φ{sub B} ≈ 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed.

  15. Highly efficient and inverted tandem organic light-emitting devices using a MoO3/Al/MoO3 charge generation layer

    Science.gov (United States)

    Li, Ya-Ze; Lee, Chih-Chien; Li, Yan-De; Yeh, Tzu-Hung; Chang, Po-Chien; Biring, Sajal; Huang, Kuan-Chieh; Su, Chia-Hung; Liu, Shun-Wei

    2017-03-01

    We present bottom-emission, inverted, tandem phosphorescent organic light-emitting devices (PHOLEDs) using a multilayer charge generation layer (CGL) of MoO3/Al/MoO3 (MAM), which exhibits a maximum external quantum efficiency of 40% and current efficiency of 120 cd/A. In this inverted tandem structure, the feature of MAM shows a high optical transmittance (approximately 90%) in visible light, an efficient charge generation property, and a relatively smooth morphology (root mean square of ∼0.336 nm) providing an efficient CGL to connect the bottom and top display units. In addition, the device structure of ITO/LiF/TAPC/MAM/BPhen:CS2CO3/BPhen/LiF/Al was proposed to capacitance characterization, and the results demonstrated that using the ultrathin Al of ∼2 nm in a MAM structure exhibited a more efficient CGL for high performance inverted tandem PHOLEDs.

  16. Introduction of several positioning devices for accessory heads coupling%介绍几种附件头联结盘定位装置

    Institute of Scientific and Technical Information of China (English)

    王伟; 韩铁柱

    2012-01-01

    Several kinds of positioning devices for accessory heads coupling are briefly introduced in this paper. By means of the positioning device, accurate positioning of coupling can be carried out, thereupon auto changing of accessory heads is performed.%简要介绍了几种附件头联结盘的定位装置,通过定位装置可将联结盘准确定位,从而实现附件头的自动更换.

  17. Localized plasmon-coupled semiconductor nanocrystal emitters for innovative device applications

    OpenAIRE

    Soğancı, İbrahim Murat

    2007-01-01

    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2007. Thesis (Master's) -- Bilkent University, 2007. Includes bibliographical references leaves 74-83 Quantum confinement allows for the development of novel luminescent materials such as colloidal semiconductor quantum dots for a variety of photonic applications spanning from biomedical labeling to white light generation. However, such devic...

  18. Study of the Pion-Nucleon Coupling Constant Charge Dependence on the Basis of the Low-Energy Data on Nucleon-Nucleon Interaction

    CERN Document Server

    Babenko, V A

    2016-01-01

    We study relationship between the physical quantities that characterize pion-nucleon and nucleon-nucleon interaction on the basis of the fact that nuclear forces in the nucleon-nucleon system at low energies are mainly determined by the one-pion exchange mechanism. By making use of the recommended proton-proton low-energy scattering parameters, we obtain the following value for the charged pion-nucleon coupling constant g$_{\\pi ^{\\pm }}^{2}/4\\pi =14.55(13)$. Calculated value of this quantity is in excellent agreement with the experimental result g$_{\\pi ^{\\pm }}^{2}/4\\pi =14.52(26)$ of the Uppsala Neutron Research Group. At the same time, the obtained value of the charged pion-nucleon coupling constant differs markedly from the value of the neutral pion-nucleon coupling constant g$_{\\pi ^{0}}^{2}/4\\pi =13.55(13)$. Thus, our results show considerable charge splitting of the pion-nucleon coupling constant.

  19. Charge transport studies in donor-acceptor block copolymer PDPP-TNT and PC71BM based inverted organic photovoltaic devices processed in room conditions

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Shashi B.; Singh, Samarendra P., E-mail: samarendra.singh@snu.edu.in [Department of Physics, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India-201307 (India); Sonar, Prashant [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia-4001 (Australia)

    2015-07-15

    Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C{sub 71} butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO{sub 3}/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10{sup −3} cm{sup 2}V{sup −1}s{sup −1}, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10{sup −5} cm{sup 2}V{sup −1}s{sup −1}, and electron mobility of 8.7 × 10{sup −4} cm{sup 2}V{sup −1}s{sup −1}.

  20. Low Damage, High Anisotropy Inductively Coupled Plasma for Gallium Nitride based Devices

    KAUST Repository

    Ibrahim, Youssef H.

    2013-05-27

    Group III-nitride semiconductors possess unique properties, which make them versatile materials for suiting many applications. Structuring vertical and exceptionally smooth GaN profiles is crucial for efficient optical device operation. The processing requirements for laser devices and ridge waveguides are stringent as compared to LEDs and other electronic devices. Due to the strong bonding and chemically inert nature of GaN, dry etching becomes a critical fabrication step. The surface morphology and facet etch angle are analyzed using SEM and AFM measurements. The influence of different mask materials is also studied including Ni as well as a SiO2 and resist bilayer. The high selectivity Ni Mask is found to produce high sidewall angles ~79°. Processing parameters are optimized for both the mask material and GaN in order to achieve a highly anisotropic, smooth profile, without resorting to additional surface treatment steps. An optimizing a SF6/O2 plasma etch process resulted in smooth SiO2 mask sidewalls. The etch rate and GaN surface roughness dependence on the RF power was also examined. Under a low 2mTorr pressure, the RF and ICP power were optimized to 150W and 300W respectively, such that a smooth GaN morphology and sidewalls was achieved with reduced ion damage. The The AFM measurements of the etched GaN surface indicate a low RMS roughness ranging from 4.75 nm to 7.66 nm.

  1. Coupling element antenna with slot tuning for handheld devices at LTE frequencies

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2012-01-01

    Tunable antennas are a promising way to overcome bandwidth limitations for the new communication standards. Since it is the chassis that resonates in the low frequencies, its tuning is pertinent and allows for more compact size designs. This paper proposes a coupling element based antenna....... A reconfigurable slot is inserted in the ground plane in order to lower its resonance frequency. The tuning is done by a capacitor across the slot. It is shown that covering all frequencies between the 900-GSM band and the 700-LTE band can be achieved. The radiating structure also presents a resonance in the high...

  2. A concept for a magnetic field detector underpinned by the nonlinear dynamics of coupled multiferroic devices

    Science.gov (United States)

    Beninato, A.; Emery, T.; Baglio, S.; Andò, B.; Bulsara, A. R.; Jenkins, C.; Palkar, V.

    2013-12-01

    Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi0.7Dy0.3FeO3 shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi0.7Dy0.3FeO3, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a "blueprint" for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or "target" B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.

  3. Simulation of self-organized waveguides for self-aligned coupling between micro- and nano-scale devices

    Science.gov (United States)

    Yoshimura, Tetsuzo

    2015-05-01

    We propose an optical coupling technique based on the reflective self-organized lightwave network (R-SOLNET), where optical devices with different core sizes are connected, for nano-scale-waveguide-based optical interconnects. Growth of R-SOLNET between a 3-μm-wide waveguide and a 600-nm-wide waveguide, on the core edge of which a luminescent target has been deposited, is simulated by the finite-difference time-domain method. The two waveguides are placed with gap distances ranging from 16 to 64 μm in a photopolymer with a refractive index that increases upon exposure to a write beam and luminescence. When a 400 nm wavelength write beam is introduced from the micro-scale waveguide, 470 nm luminescence is generated from the target. In the area where the write beam and the luminescence overlap, the refractive index increases rapidly. The write beam and the luminescence thus attract each other to merge into one through the self-focusing, forming a self-aligned coupling waveguide of R-SOLNET with a coupling loss of 1.5-1.8 dB, even when a lateral misalignment of 600 nm exists between them. This indicates that the R-SOLNET can be used as an optical solder to connect a micro-scale waveguide to a nano-scale waveguide. The optimum writing time required to attain the minimum coupling loss increases with increasing lateral misalignment. The dependence of the optimum writing time on the misalignment is reduced with increasing gap distance, and it almost vanishes when the distance is 64 μm, enabling unmonitored optical solder formation. R-SOLNET utilizing the two-photon photochemistry is briefly described as the next-generation SOLNET.

  4. Optimization of light out-coupling in optoelectronic devices using nanostructured surface

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini;

    the overall efficiency of the LEDs. In this paper we have developed various methods for two important semiconductors: silicon carbide (SiC) and gallium nitride (GaN), and demonstrated enormous extraction efficiency enhancement. SiC is an important su bstrate for LED devices. It has refractive index of 2.......6, and only a few percent of light could escape from it. We have developed periodic nanocone structures by using electron - beam lithography, periodic nanodome structures by using nanosphere lithography, random nanostructures by using self - assembled metal nanoparticles, and random nanostructures by directly...... using the self - masking effect of thin Al films, as shown in Fig.1. All these nanostructures have shown increased transmittance or reduced reflectance c ompared to the bare surface. Fluorescent SiC samples show tremendous photoluminescence enhancement (up to 210%) after the surface nanostructuring...

  5. Three-dimensional antenna coupling to core plasma in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.D.; Jaeger, E.F.; Stallings, D.C.; Galambos, J.D.; Batchelor, D.B.; Wang, C.Y.

    1995-09-01

    A complete understanding of the RF physics from the launcher to the plasma core is required to fully analyze RF experiments and to evaluate the performance of RF antenna designs in ITER. This understanding requires a consistent model for the RF power launching system, propagation and absorption through the edge region, and the response of the core plasma to the RF power. As a first step toward such a model, the three-dimensional (3D) antenna modeling code, RANT3D, has been coupled with the reduced order full wave code, PICES. Preliminary results from this model are presented in this paper for parameters similar to those found in the DIII-D experiment.

  6. Plasmonic band-pass filter device using coupled asymmetric cross-shaped cavity

    Science.gov (United States)

    Geng, Xiao-Meng; Mi, Si-Chen; Wang, Tie-Jun; He, Lin-Yan; Wang, Chuan

    2017-01-01

    In this paper, a novel plasmonic band-pass filter by using the system consisting four waveguides and an asymmetric cross-shaped resonator is proposed. The plasmonic system is based on the metal-insulator-metal (MIM) structure which could overcome the diffraction limit and exhibit various promising applications. Here, we investigate the transmission spectra of the cross-shaped resonator by using finite-different-time-domain (FDTD) method and we find that the peak-wavelength on different ports show redshift or blueshift behaviors which are linearly changed with the length of cavity or the coupling distance. Moreover, the wavelength filter could be achieved and further applied in optical signal integrated circuits.

  7. Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.Y.

    1991-07-01

    Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of the thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system ({rho},{xi}) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number {alpha} as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions.

  8. Performance of the NIST goniocolorimeter with a broad-band source and multichannel charged coupled device based spectrometer

    Science.gov (United States)

    Podobedov, V. B.; Miller, C. C.; Nadal, M. E.

    2012-09-01

    The authors describe the NIST high-efficiency instrument for measurements of bidirectional reflectance distribution function of colored materials, including gonioapparent materials such as metallic and pearlescent coatings. The five-axis goniospectrometer measures the spectral reflectance of samples over a wide range of illumination and viewing angles. The implementation of a broad-band source and a multichannel CCD spectrometer corrected for stray light significantly increased the efficiency of the goniometer. In the extended range of 380 nm to 1050 nm, a reduction of measurement time from a few hours to a few minutes was obtained. Shorter measurement time reduces the load on the precise mechanical assembly ensuring high angular accuracy over time. We describe the application of matrix-based correction of stray light and the extension of effective dynamic range of measured fluxes to the values of 106 to 107 needed for the absolute characterization of samples. The measurement uncertainty was determined to be 0.7% (k = 2), which is comparable with similar instruments operating in a single channel configuration. Several examples of reflectance data obtained with the improved instrument indicate a 0.3% agreement compared to data collected with the single channel configuration.

  9. Unconventional Geometric Phase-Shift Gates Based on Superconducting Quantum Interference Devices Coupled to a Single-Mode Cavity

    Institute of Scientific and Technical Information of China (English)

    SONG Ke-Hui; ZHOU Zheng-Wei; GUO Guang-Can

    2006-01-01

    We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum logic in SQUID-system.

  10. DC Charging Device Based on Distributed PV and Wind Energy Complementary Power Source%基于分布式风光互补电源直流充电装置设计

    Institute of Scientific and Technical Information of China (English)

    刘春亮; 朴在林; 孙凤强

    2012-01-01

    The distributed wind-light complementary system was used as the charging power supply to research the electric vehicle battery quick charging problem. The design adopted three-stage charging mode, the charging early use of small current charge and pulse charging the combination of fast charging method, and in the later charge period using a trickle charging method to DC charging device for electric vehicle battery fast charging, to contact the Union Pay card as the medium charge. Through the MATLAB simulation results showed that the design of three-phase charging method of DC charging device for electric vehicle battery fast charging, and can automatically charge.%采用分布式风光互补发电系统作为充电电源,研究电动汽车蓄电池的快速充电问题.设计采用三阶段充电模式,即充电前期采用小电流预充电和脉冲充电相结合的快速充电方法,而在充电后期采用涓流补足充电法的直流充电装置对电动汽车蓄电池快速充电,以接触式银联卡作为介质收费.通过MATLAB仿真结果表明,设计的三阶段充电法的直流充电装置能对电动汽车蓄电池快速充电,并能自动收费.

  11. Thiophene-Functionalized Hybrid Perovskite Microrods and their Application in Photodetector Devices for Investigating Charge Transport Through Interfaces in Particle-Based Materials.

    Science.gov (United States)

    Kollek, Tom; Wurmbrand, Daniel; Birkhold, Susanne T; Zimmermann, Eugen; Kalb, Julian; Schmidt-Mende, Lukas; Polarz, Sebastian

    2017-01-11

    Particle-based semiconductor materials are promising constituents of future technologies. They are described by unique features resulting from the combination of discrete nanoparticle characteristics and the emergence of cooperative phenomena based on long-range interaction within their superstructure. (Nano)particles of outstanding quality with regards to size and shape can be prepared via colloidal synthesis using appropriate capping agents. The classical capping agents are electrically insulating, which impedes particle-particle electronic communication. Consequently, there exists a high demand for realizing charge transport through interfaces especially for semiconductors of relevance like hybrid perovskites (HYPEs), for example, CH3NH3PbI3 (MAPI) as one of the most prominent representatives. Of particular interest are crystals in the micrometer range, as they possess synergistic advantages of single crystalline bulk properties, shape control as well as the possibility of being functionalized. Here we provide a synthetic strategy toward thiophene-functionalized single crystalline MAPI microrods originating from the single source precursor CH3NH3PbI3TEG2 (TEG = triethylene glycol). In the dark, the microrods show enhanced charge transport characteristics of holes over 2 orders of magnitude compared to microscale cuboids with insulating alkyl surface modifiers and nonfunctionalized random sized particles. In large-area prototype photodetector devices (2.21 cm(2)), the thiophene functionalization improves the response times because of the interparticle charge transport (tON = 190 ms, tOFF = 430 ms) compared to alkyl-functionalized particles (tON = 1055 ms, tOFF = 60 ms), at similar responsivities of 0.65 and 0.71 mA W(-1), respectively. Further, the surface functionalization and crystal grains on the micrometer scale improve the device stability. Therefore, this study provides clear evidence for the interplay and importance of crystal size, shape and surface

  12. 1D versus 3D quantum confinement in 1-5 nm ZnO nanoparticle agglomerations for application in charge-trapping memory devices

    Science.gov (United States)

    El-Atab, Nazek; Nayfeh, Ammar

    2016-07-01

    ZnO nanoparticles (NPs) have attracted considerable interest from industry and researchers due to their excellent properties with applications in optoelectronic devices, sunscreens, photocatalysts, sensors, biomedical sciences, etc. However, the agglomeration of NPs is considered to be a limiting factor since it can affect the desirable physical and electronic properties of the NPs. In this work, 1-5 nm ZnO NPs deposited by spin- and dip-coating techniques are studied. The electronic and physical properties of the resulting agglomerations of NPs are studied using UV-vis-NIR spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM), and their application in metal-oxide-semiconductor (MOS) memory devices is analyzed. The results show that both dip- and spin-coating techniques lead to agglomerations of the NPs mostly in the horizontal direction. However, the width of the ZnO clusters is larger with dip-coating which leads to 1D quantum confinement, while the smaller ZnO clusters obtained by spin-coating enable 3D quantum confinement in ZnO. The ZnO NPs are used as the charge-trapping layer of a MOS-memory structure and the analysis of the high-frequency C-V measurements allow further understanding of the electronic properties of the ZnO agglomerations. A large memory window is achieved in both devices which confirms that ZnO NPs provide large charge-trapping density. In addition, ZnO confined in 3D allows for a larger memory window at lower operating voltages due to the Poole-Frenkel charge-emission mechanism.

  13. Spin dependent disorder in a junction device with spin orbit couplings

    Science.gov (United States)

    Ganguly, Sudin; Basu, Saurabh

    2016-10-01

    Using the multi-probe Landauer-BUttiker formula and Green's function approach, we calculate the longitudinal conductance (LC) and spin Hall conductance (SHC) numerically in a two-dimensional junction system with the Rashba and Dresselhaus spin orbit coupling (SOC) and spin dependent disorder (SDD) in presence of both random onsite and hopping disorder strengths. It has been found that when the strengths of the RSOC and DSOC are same, the SHC vanishes. Further in presence of random onsite or hopping disorder, the SHC is still zero when the strengths of the two types of SOC, that is Rashba and Dressselhaus are the same. This indicates that the cancellation of SHC is robust even in the presence of random disorder. Only with the inclusion of SDD (onsite or hopping), a non-zero SHC is found and it increases as the strength of SDD increases. The physical implication of the existence of a non-zero SHC has been explored in this work. Finally, we have compared the effect of onsite SDD and hopping SDD on both longitudinal and spin Hall conductances.

  14. Enhancing Optical Out-Coupling of Organic Light-Emitting Devices with Nanostructured Composite Electrodes Consisting of Indium Tin Oxide Nanomesh and Conducting Polymer.

    Science.gov (United States)

    Chen, Chien-Yu; Lee, Wei-Kai; Chen, Yi-Jiun; Lu, Chun-Yang; Lin, Hoang Yan; Wu, Chung-Chih

    2015-09-02

    A nanostructured composite electrode consisting of a high-index indium-tin-oxide nanomesh and low-index high-conductivity conducting polymer effectively enhances coupling of internal radiation of organic light-emitting devices into their substrates. When combining this internal extraction structure and the external extraction scheme, a very high external quantum efficiency of nearly 62% is achieved with a green phosphorescent device.

  15. Battery charging system

    Energy Technology Data Exchange (ETDEWEB)

    Carollo, J.A.; Kalinsky, W.A.

    1984-02-21

    A battery charger utilizes three basic modes of operation that includes a maintenance mode, a rapid charge mode and time controlled limited charging mode. The device utilizes feedback from the battery being charged of voltage, current and temperature to determine the mode of operation and the time period during which the battery is being charged.

  16. Wave-vector-dependent electron-phonon coupling and the charge-density-wave transition in TbT e3

    Science.gov (United States)

    Maschek, M.; Rosenkranz, S.; Heid, R.; Said, A. H.; Giraldo-Gallo, P.; Fisher, I. R.; Weber, F.

    2015-06-01

    We present a high-energy-resolution inelastic x-ray scattering investigation of the soft phonon mode in the charge-density-wave (CDW) system TbT e3 . We analyze our data based on lattice dynamical calculations using density-functional-perturbation theory and find clear evidence that strongly momentum-dependent electron-phonon coupling defines the periodicity of the CDW superstructure: Our experiment reveals strong phonon softening and increased phonon linewidths over a large part in reciprocal space adjacent to the CDW ordering vector qCDW=(0 ,0 ,0.3 ) . Further, qCDW is clearly offset from the wave vector of (weak) Fermi surface nesting qFS=(0 ,0 ,0.25 ) , and our detailed analysis indicates that electron-phonon coupling is responsible for this shift. Hence, we can add TbT e3 , which was previously considered as a canonical CDW compound following the Peierls scenario, to the list of distinct charge-density-wave materials characterized by momentum-dependent electron-phonon coupling.

  17. Role of Contact and Contact Mo dification on Photo-resp onse in a Charge Transfer Complex Single Nanowire Device

    Institute of Scientific and Technical Information of China (English)

    Rabaya Basori∗; A. K. Raychaudhuri

    2014-01-01

    We investigated the feasibility of obtaining large photoresponse in metal-semiconductor-metal (MSM) type single nanowire device where one contact can be blocking type. We showed that suitable modifi-cation of the blocking contact by deposition of a capping metal using focused electron beam (FEB) can lead to considerable enhancement of the photoresponse. The work was done in a single Cu:TCNQ nanowire device fabricated by direct growth of nanowires (NW) from pre-patterned Cu electrode which makes the contact ohmic with the other contact made from Au. Analysis of the data shows that the large photoresponse of the devices arises predominantly due to reduction of the barriers at the Au/NW blocking contact on illumination. This is caused by the diffusion of the photo generated carriers from the nanowires to the contact region. When the barrier height is further reduced by treating the contact with FEB deposited Pt, this results in a large enhancement in the device photoresponse.

  18. Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field

    CERN Document Server

    Fuini, John F

    2015-01-01

    Using holography, we study the evolution of a spatially homogeneous, far from equilibrium, strongly coupled N=4 supersymmetric Yang-Mills plasma with a non-zero charge density or a background magnetic field. This gauge theory problem corresponds, in the dual gravity description, to an initial value problem in Einstein-Maxwell theory with homogeneous but anisotropic initial conditions. We explore the dependence of the equilibration process on different aspects of the initial departure from equilibrium and, while controlling for these dependencies, examine how the equilibration dynamics are affected by the presence of a non-vanishing charge density or an external magnetic field. The equilibration dynamics are remarkably insensitive to the addition of even large chemical potentials or magnetic fields; the equilibration time is set primarily by the form of the initial departure from equilibrium. For initial deviations from equilibrium which are well localized in scale, we formulate a simple model for equilibratio...

  19. Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field

    Science.gov (United States)

    Fuini, John F.; Yaffe, Laurence G.

    2015-07-01

    Using holography, we study the evolution of a spatially homogeneous, far from equilibrium, strongly coupled supersymmetric Yang-Mills plasma with a non-zero charge density or a background magnetic field. This gauge theory problem corresponds, in the dual gravity description, to an initial value problem in Einstein-Maxwell theory with homogeneous but anisotropic initial conditions. We explore the dependence of the equilibration process on different aspects of the initial departure from equilibrium and, while controlling for these dependencies, examine how the equilibration dynamics are affected by the presence of a non-vanishing charge density or an external magnetic field. The equilibration dynamics are remarkably insensitive to the addition of even large chemical potentials or magnetic fields; the equilibration time is set primarily by the form of the initial departure from equilibrium. For initial deviations from equilibrium which are well localized in scale, we formulate a simple model for equilibration times which agrees quite well with our results.

  20. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex

    2015-07-15

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λ{sub L}=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of T{sub r}=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is T{sub r}=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is

  1. Research on Magnetically Coupled Resonant Wireless Charging System%磁耦合谐振式无线充电系统研究

    Institute of Scientific and Technical Information of China (English)

    徐杰; 沈锦飞

    2014-01-01

    Wireless charging technology is a new power transmission technology.This paper designs a magnetically coupled resonant battery charger,achieves wireless charging battery.Using two coupled resonant circuit to capture the re-duced electromagnetic field with the reduced distance,when the transmission circuit and the receiving circuit are in the reso-nant state,the energy exchange between the resonators can achieve high efficiency.Using a transformer mutual model anal-ysis magnetically coupled resonant wireless power transmission.Designed power 4 kW,magnetically coupled resonant fre-quency of 75 kHz experimental circuit,the experimental results indicate that the transmission distance of 0.3 m,the effi-ciency approaches 90%.%无线充电技术是一种新型的电能传输技术。文中设计了一种磁耦合谐振式蓄电池充电器,能够实现蓄电池无线充电。利用两个发生谐振耦合的电路来捕捉随距离缩减的电磁场,当发射回路和接受回路处于谐振状态时,谐振体之间能量交换可以达到很高的效率。利用变压器互感模型对磁耦合谐振无线电能传送进行了分析,设计了功率为4 kW的磁耦合谐振频率75 kHz的试验电路,实验结果表明,当传输距离为0.3 m时,效率接近90%。

  2. Dimerization of emission centers in Eu-doped GaN red light-emitting diode: cooperative charge capturing using valence states coupling

    Science.gov (United States)

    Ishii, Masashi; Koizumi, Atsushi; Fujiwara, Yasufumi

    2017-01-01

    Despite the recent progress in red light-emitting diodes (LED) made of gallium nitride doped with europium (GaN:Eu) having sharp emission lines due to the 5D0  →  7F2 transition of Eu3+, unexpected subsidiary Eu emission centers radiate several satellite lines. We investigated these subsidiary emission centers by analyzing the harmonic contents through electronic means, and observed the originally forbidden even harmonics in a specific frequency region of 23-45 MHz. The even-harmonic generation was formulized with a binary response caused by the electronic coupling of emission centers in valence states, i.e. dimerization. The coupling was consistent with the results of the optical analyses of former studies. The binary response was experimentally quantified by using a parameter such as the phase difference between the responses of coupled centers, and a significant phase difference of 63° was observed at 36 MHz. The injection charges were cooperatively captured by the coupled emission centers and were branched into the constituent centers for recombination, resulting in undesired satellite emission lines.

  3. Preparation of Schrödinger cat states of a cavity field via coupling to a superconducting charge qubit

    Science.gov (United States)

    Freitas, Dagoberto S.; Nemes, M. C.

    2014-05-01

    We extend the approach in Ref. 5 [Y.-X. Liu, L. F. Wei and F. Nori, Phys. Rev. A 71 (2005) 063820] for preparing superposition states of a cavity field interacting with a superconducting charge qubit. We study effects of the nonlinearity on the creation of such states. We show that the main contribution of nonlinear effects is to shorten the time necessary to build the superposition.

  4. A quantum mechanical investigation of positively charged defects in SiO{sub 2} thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, A.M.; Karna, S.P.; Brothers, C.P. [and others

    1996-12-31

    Ab initio Hartree-Fock and second-order Moeller-Plesset theory calculations have been performed to investigate the stability of triply-coordinated O{sup +} centers in the Si-O-Si network of amorphous SiO{sub 2}. The calculations reveal that the H{sup +} ion binds with a bridging O center to form a very stable (D{sub e} > 6 eV) trivalent O complex. Capture of an electron by the positively charged protonated complex, however, is predicted to immediately lead to the dissociation of the O-H bond. A relatively weaker, but stable bond is also formed between the bridging O atom and a {sup +}SiH{sub 3} ion.

  5. Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs

    Science.gov (United States)

    Canola, Sofia; Pecoraro, Claudia; Negri, Fabrizia

    2016-10-01

    Hole transport properties are modeled for two polymorphs of pentacene: the single crystal polymorph and the thin film polymorph relevant for organic thin-film transistor applications. Electronic couplings are evaluated in the standard dimer approach but also considering a cluster approach in which the central molecule is surrounded by a large number of molecules quantum-chemically described. The effective electronic couplings suitable for the parametrization of a tight-binding model are derived either from the orthogonalization scheme limited to HOMO orbitals and from the orthogonalization of the full basis of molecular orbitals. The angular dependent mobilities estimated for the two polymorphs using the predicted pattern of couplings display different anisotropy characteristics as suggested from experimental investigations.

  6. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set

    Science.gov (United States)

    Oberhofer, Harald; Blumberger, Jochen

    2010-12-01

    We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( { } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.

  7. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    Science.gov (United States)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5 s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  8. Characterization of CdTe Sensors with Schottky Contacts Coupled to Charge-Integrating Pixel Array Detectors for X-Ray Science

    CERN Document Server

    Becker, Julian; Shanks, Katherine S; Philipp, Hugh T; Weiss, Joel T; Purohit, Prafull; Chamberlain, Darol; Ruff, Jacob P C; Gruner, Sol M

    2016-01-01

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we present characterizations of CdTe sensors hybridized with two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods $<$150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/...

  9. Characterization of CdTe sensors with Schottky contacts coupled to charge-integrating pixel array detectors for X-ray science

    Science.gov (United States)

    Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Ruff, J. P. C.; Gruner, S. M.

    2016-12-01

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we present characterizations of CdTe sensors hybridized with two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128 × 128 pixel array with (150 μm)2 pixels.

  10. Oxide Charge Engineering of Atomic Layer Deposited AlOxNy/Al2O3 Gate Dielectrics: A Path to Enhancement Mode GaN Devices.

    Science.gov (United States)

    Negara, M A; Kitano, M; Long, R D; McIntyre, P C

    2016-08-17

    Nitrogen incorporation to produce negative fixed charge in Al2O3 gate insulator layers is investigated as a path to achieve enhancement mode GaN device operation. A uniform distribution of nitrogen across the resulting AlOxNy films is obtained using N2 plasma enhanced atomic layer deposition (ALD). The flat band voltage (Vfb) increases to a significantly more positive value with increasing nitrogen concentration. Insertion of a 2 nm thick Al2O3 interlayer greatly decreases the trap density of the insulator/GaN interface, and reduces the voltage hysteresis and frequency dispersion of gate capacitance compared to single-layer AlOxNy gate insulators in GaN MOSCAPs.

  11. 可带电在线更换标示牌装置的研制%Development of charged replaced online sign device

    Institute of Scientific and Technical Information of China (English)

    陈发培

    2015-01-01

    The 10kV overhead line pole frame variable high-pressure side drop switch, isolating switch signs need to be replaced,the need for power.The author through the investigation and analysis,to develop a new type of charged replaced online sign device.The device can realize the online replacement of signs can be charged,without power cut and climbing pole,the program is simple,very safe,saving time and saving labor saving,effectively improve thepower supply reliability,convenient popularization,replication,effectively promote thedistribution network project management level and the level of construction on a new step.%现时10kV架空线路杆上台架变高压侧的跌落式开关、隔离开关等标示牌需要更换时,需要进行停电。作者通过调查分析,研制出一种可带电在线更换标示牌装置。该装置能实现可带电在线更换标示牌,无需停电和爬杆,程序简单,非常安全,且省时省力省钱,有效提高供电可靠性,便于推广、复制,有效推动配网工程管理水平和建设水平上新台阶。

  12. Assessment of Electromagnetic Interference with Active Cardiovascular Implantable Electronic Devices (CIEDs Caused by the Qi A13 Design Wireless Charging Board

    Directory of Open Access Journals (Sweden)

    Tobias Seckler

    2015-05-01

    Full Text Available Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs. The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine‑bursts or by using a Qi A13 design wireless charging board (Qi‑A13‑Board in two operating modes “power transfer” and “pinging”. With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi‑A13‑Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi‑A13‑Board exceed the performance limits.

  13. A new numerical description of the interaction of an ion beam with a magnetized plasma in an ECR-based charge breeding device

    Science.gov (United States)

    Galatà, A.; Mascali, D.; Neri, L.; Celona, L.

    2016-08-01

    The ion beam-plasma interaction is a relevant topic in several fields of plasma physics, from fusion devices to modern ion sources. This paper discusses the numerical modelling of the whole beam-plus-plasma-target system in case of 1+  ions entering an ECR-based charge breeder (ECR-CB). The model is able to reproduce the ion capture and the creation of the first charge states in the selected physics case, i.e. the interaction of a 85Rb1+ ions with the plasma of the 14.5 GHz PHOENIX ECR-CB installed at the Laboratoire de Physique Subatomique et de Cosmologie (LPSC) of Grenoble. The results show that a very narrow window of physical parameters for both the beam (energy and energy spread especially) and plasma (ion temperature, density, density structural distribution, self-generated ambipolar fields) exists which is able to reproduce very well the experimental results, providing an exhaustive picture of the involved phenomena. Possible non-linear interactions and the role played by the eventual onset of instabilities are also discussed.

  14. Measuring the state of charge of the electrolyte solution in a vanadium redox flow battery using a four-pole cell device

    Science.gov (United States)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-12-01

    The decrease in the efficiency and capacity of a vanadium redox flow battery (VRB) caused by an electrolyte imbalance is an important impediment to its long-term operation. Knowing the state of charge (SOC) of an electrolyte solution can quantify the level of the electrolyte imbalance in the VRB. In this study, a four-pole cell device is devised and employed to predict the SOC. The proposed method directly measures the ionic resistance of the electrolyte solution and is sufficiently precise to be applied in real-time mode. Experimental studies on the effects of the operating current on the four-pole cell and the concentrations of vanadium and sulfuric acid in the electrolyte solution are carried out. The results show that the four-pole cell method can be utilized to measure the electrolyte SOC. The concentrations of vanadium and sulfuric acid in the electrolyte solution affect the ionic resistance of the solution. Regarding the capacity and efficiency of the VRB system, the results indicate that the electrical charge is determined from the concentration of vanadium and that the cell voltage depends on the concentration of sulfuric acid in the electrolyte solution. The decreased vanadium concentration and increased sulfuric acid concentration improves the cell voltage efficiency.

  15. Effect of NO annealing on charge traps in oxide insulator and transition layer for 4H-SiC metal-oxide-semiconductor devices

    Science.gov (United States)

    Jia, Yifan; Lv, Hongliang; Niu, Yingxi; Li, Ling; Song, Qingwen; Tang, Xiaoyan; Li, Chengzhan; Zhao, Yanli; Xiao, Li; Wang, Liangyong; Tang, Guangming; Zhang, Yimen; Zhang, Yuming

    2016-09-01

    The effect of nitric oxide (NO) annealing on charge traps in the oxide insulator and transition layer in n-type 4H-SiC metal-oxide-semiconductor (MOS) devices has been investigated using the time-dependent bias stress (TDBS), capacitance-voltage (C-V), and secondary ion mass spectroscopy (SIMS). It is revealed that two main categories of charge traps, near interface oxide traps (Nniot) and oxide traps (Not), have different responses to the TDBS and C-V characteristics in NO-annealed and Ar-annealed samples. The Nniot are mainly responsible for the hysteresis occurring in the bidirectional C-V characteristics, which are very close to the semiconductor interface and can readily exchange charges with the inner semiconductor. However, Not is mainly responsible for the TDBS induced C-V shifts. Electrons tunneling into the Not are hardly released quickly when suffering TDBS, resulting in the problem of the threshold voltage stability. Compared with the Ar-annealed sample, Nniot can be significantly suppressed by the NO annealing, but there is little improvement of Not. SIMS results demonstrate that the Nniot are distributed within the transition layer, which correlated with the existence of the excess silicon. During the NO annealing process, the excess Si atoms incorporate into nitrogen in the transition layer, allowing better relaxation of the interface strain and effectively reducing the width of the transition layer and the density of Nniot. Project supported by the National Natural Science Foundation of China (Grant Nos. 61404098 and 61274079), the Doctoral Fund of Ministry of Education of China (Grant No. 20130203120017), the National Key Basic Research Program of China (Grant No. 2015CB759600), the National Grid Science & Technology Project, China (Grant No. SGRI-WD-71-14-018), and the Key Specific Project in the National Science & Technology Program, China (Grant Nos. 2013ZX02305002-002 and 2015CB759600).

  16. The time-dependent coupled oscillator model for the motion of a charged particle in the presence of a time-varying magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Menouar, Salah; Maamache, Mustapha [Laboratoire de Physique Quantique et Systemes Dynamiques, Departement de Physique, Faculte des Sciences, Universite Ferhat Abbas de Setif, Setif 19000 (Algeria); Choi, Jeong Ryeol, E-mail: menouar_salah@yahoo.f, E-mail: choiardor@hanmail.ne [Department of Radiologic Technology, Daegu Health College, Taejeon 1-dong, Buk-gu, Daegu 702-722 (Korea, Republic of)

    2010-12-15

    The dynamics of the time-dependent coupled oscillator model for the motion of a charged particle subjected to a time-dependent external magnetic field is investigated. We use the canonical transformation approach for the classical treatment of the system, whereas the unitary transformation approach is used in managing the system in the framework of quantum mechanics. For both approaches, the original system is transformed into a much more simple system that is the sum of two independent harmonic oscillators with time-dependent frequencies. We therefore easily identify the wavefunctions in the transformed system with the help of an invariant operator of the system. The full wavefunctions in the original system are derived from the inverse unitary transformation of the wavefunctions associated with the transformed system.

  17. Silicon Carbide (SiC) Device and Module Reliability, Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field

    Science.gov (United States)

    2016-05-01

    coolant loop supplied coolant to the cold plate heat sink mounted to the LHP condenser. A Tek Temp cool bath, consisting of a pump , reservoir, and...AFRL-RQ-WP-TR-2016-0108 SILICON CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled... Heat Input to an Acceleration Field Kirk L. Yerkes (AFRL/RQQI) and James D. Scofield (AFRL/RQQE) Flight Systems Integration Branch (AFRL/RQQI

  18. Electroweak-Higgs unification in the two Higgs doublet model: masses and couplings of the neutral and charged Higgs bosons

    Energy Technology Data Exchange (ETDEWEB)

    Diaz C, J.L. [Facultad de Ciencias Fisico-Matematicas, BUAP, A.P. 1364, 72000 Puebla (Mexico); Rosado, A. [Instituto de Fisica, BUAP, A.P. J-48, 72570 Puebla (Mexico)

    2007-07-01

    We obtain the mass spectrum and the Higgs self-couplings of the two Higgs doublet model (THDM) in an alternative unification scenario where the parameters of the Higgs potential {lambda} (i = 1, 2, 3, 4, 5) are determined by imposing their unification on the electroweak gauge couplings. An attractive feature of this scenario is the possibility of determining the Higgs boson masses by evolving the {lambda}{sub i} from the electroweak-Higgs unification scale M{sub GH} down to the electroweak scale. The unification condition for the gauge (g{sub 1}, g{sub 2}) and Higgs couplings is written as g{sub 1} g{sub 2} = f ({lambda}{sub i}), where g{sub 1} = k{sub Y}{sup 1/2}g{sub Y}, and k{sub Y} is the normalization constant. Two variants for the unification condition are discussed: Scenario l is defined through the linear relation: g{sub 1} = g{sub 2} = k{sub H} (i){lambda}{sub i} (M{sub GH}), while Scenario ll assumes a quadratic relation g{sub 1}{sup 2} = g{sub 2}{sup 2} k{sub H} (i) {lambda}{sub i}(M{sub GH}) In Scenario l, by setting ad hoc - k{sub H}(5) = 1/2k{sub H}(4) 3/2k{sub H}(3) = k{sub H}(2) = k{sub H}(I) = 1, taking tan {beta} = 1 and using the standard normalization (k{sub Y} = 5/3), we obtain the following spectrum for the Higgs boson masses: m{sub h}{sup 0} = 109.1 GeV, m{sub H}{sup 0} = 123.2 GeV, m{sub A}{sup 0} = 115.5 GeV, and m{sub H}{sup +-} = 80.3 GeV, with similar results for other normalizations such as k{sub Y} = 3/2 and k{sub Y} = 7/4. (Author)

  19. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex

    2015-07-15

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λ{sub L}=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of T{sub r}=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is T{sub r}=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is

  20. Magnetodielectric effects and spin-charge coupling in the spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3

    Science.gov (United States)

    Poirier, Mario; Parent, Samuel; Côté, Alex; Miyagawa, Kazuya; Kanoda, Kazushi; Shimizu, Yasuhiro

    2012-04-01

    Microwave measurements of the in-plane dielectric function of the spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3 revealed anomalies below 300 K that indicate that charge and spin degrees of freedom are correlated down to 1.8 K. If the first anomaly around 100 K can be explained partly by a Debye relaxation model, it signals also the approach of an inhomogeneous high-temperature quantum critical phase (QCH) extending down to 6 K, where a second anomaly is observed at the crossover to the intermediate quantum critical phase (QCM) within which a third anomaly is detected near 3-4 K. The low-temperature anomalies are not only dependent on microwave frequency and power, but they are also strongly modified in a highly anisotropic way by a magnetic field. These dielectric results confirm that a scenario of coupled spin and charge degrees of freedom is indeed valid in this material at low temperatures, as suggested by several theoretical approaches.

  1. Charge transport in molecular electronic junctions: compression of the molecular tunnel barrier in the strong coupling regime.

    Science.gov (United States)

    Sayed, Sayed Y; Fereiro, Jerry A; Yan, Haijun; McCreery, Richard L; Bergren, Adam Johan

    2012-07-17

    Molecular junctions are essentially modified electrodes familiar to electrochemists where the electrolyte is replaced by a conducting "contact." It is generally hypothesized that changing molecular structure will alter system energy levels leading to a change in the transport barrier. Here, we show the conductance of seven different aromatic molecules covalently bonded to carbon implies a modest range ( 2 eV range). These results are explained by considering the effect of bonding the molecule to the substrate. Upon bonding, electronic inductive effects modulate the energy levels of the system resulting in compression of the tunneling barrier. Modification of the molecule with donating or withdrawing groups modulate the molecular orbital energies and the contact energy level resulting in a leveling effect that compresses the tunneling barrier into a range much smaller than expected. Whereas the value of the tunneling barrier can be varied by using a different class of molecules (alkanes), using only aromatic structures results in a similar equilibrium value for the tunnel barrier for different structures resulting from partial charge transfer between the molecular layer and the substrate. Thus, the system does not obey the Schottky-Mott limit, and the interaction between the molecular layer and the substrate acts to influence the energy level alignment. These results indicate that the entire system must be considered to determine the impact of a variety of electronic factors that act to determine the tunnel barrier.

  2. Research of charging-discharging device for accumulator of electric locomotive based on SVPWM technology%电力机车用蓄电池充放电装置SVPWM技术的研究

    Institute of Scientific and Technical Information of China (English)

    邓木生; 瞿遂春; 肖强晖

    2011-01-01

    According to the shortcomings of the charging and discharging device of 15 kVA accumulator of electric locomotive, such as low power factor and high AC harmonic, the voltage vector pulse width modulation inverting and commuting technology was adopted in accumulator charging-discharging device. The device might be used as charging source and the loads of battery discharging back to electric net with flexible power adjusting, and possessed the performance of double-way transformation of energy. The experiment and test results demonstrate that the device can achieve the goal of sinusoidal current waveform, high input power factor, the lower AC harmonic and the power of charging and discharging controlled flexibly.%针对电力机车用15 kVA蓄电池传统充放电装置功率因数低、高谐波污染等不足,将电压型矢量PWM整流逆变技术应用到蓄电池充放电装置中.装置既可用作充电电源,也可用作蓄电池放电时的负载,实现能量的双向流动.实验及检测结果表明SVPWM控制方式可实现网侧电流正弦化、高功率因数、谐波污染小以及充放电功率灵活调控的特点.

  3. Design of a 4D Emittance Measurement Device for High Charge State ECR Ion Sources%高电荷态ECR离子源引出束流4D发射度测量仪设计

    Institute of Scientific and Technical Information of China (English)

    赵阳阳; 赵红卫; 孙良亭; 杨尧; 王云; 曹云

    2013-01-01

    For the purpose of on-line beam quality diagnostics and transverse emittance coupling investigation of the ion beams delivered by an Electron Cyclotron Resonance (ECR) ion source, a real-time 4D Pepper Pot type emittance scanner is under development at IMP(Institute of Moden Physics, Chinese Academy of Sciences). The high charge state ECR ion source at IMP could produce CW or pulsed heavy ion beam intensities in the range of 1 eµA∼1 emA with the kinetic energy of 10∼35 keV/q, which needs the design of the Pepper Pot scanner to be optimized accordingly. The Pepper Pot scanner has many features, such as very short response time and wide dynamic working range that the device could be applied. Since intense heavy ion beam bombardment is expected for this device, the structure and the material selection for the device is specially considered during the design, and a feasible solution to analyze the pictures acquired after the data acquisition is also made.%为了进一步探究高电荷态电子回旋共振(ECR)离子源引出束流品质和横向相空间耦合情况,根据中国科学院近代物理研究所高电荷态离子源引出束流发射度测量需求,针对束流流强为1 eµA∼1 emA,能量范围为10∼35 keV/q的直流或脉冲高电荷态重离子束,设计了一台实时四维Pepper-pot发射度测量仪。该Pepper-pot型发射度测量仪具有响应时间快和工作范围宽等特点。针对强流重离子束诊断的特点,在结构与材料选择上做了设计与优化,并对获得图像的处理方法提出了具体的解决办法。

  4. Remarkable charge-trapping performance based in Zr0.5Hf0.5O2 with nanocrystal Ba0.6Sr0.4TiO3 blocking layer for nonvolatile memory device

    Science.gov (United States)

    Yan, X. B.; Jia, X. L.; Yang, T.; Zhao, J. H.; Li, Y. C.; Zhou, Z. Y.; Zhang, Y. Y.

    2016-10-01

    Two kinds of charge trapping memory device with Au/Zr0.5Hf0.5O2(ZHO)/SiO2/p-Si and Au/Ba0.6Sr0.4TiO3(BST)/Zr0.5Hf0.5O2/SiO2/p-Si structure were fabricated and investigated. The double BST/ZHO films exhibit a larger memory window of 7.36 V under ±14 V sweeping voltages in its C-V curve and the device has good charge retention properties with only small charge loss of ∼ 5% after more than 104 s. The good characteristics are attributed to the inter-diffusion between BST and ZHO where more deep defect sites were created after RTA treatment, which provides high potential barriers for the trapped charges to tunnel back to the silicon substrate. Furthermore, the nanocrystal in the BST layer increases the tunneling barrier of tunneling current into the gate and effectively restrains the leakage of storage charge from blocking layer, which improves the charge retention characteristic.

  5. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Praphairaksit, Narong [Iowa State Univ., Ames, IA (United States)

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at ~70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of ~4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression of signal for even the most

  6. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Praphairaksit, N.

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at {approximately}70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of {approximately}4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression

  7. The effect of the thickness of tunneling layer on the memory properties of (Cu2O)0.5(Al2O3)0.5 high-k composite charge-trapping memory devices

    Science.gov (United States)

    Liu, Jinqiu; Lu, Jianxin; Yin, Jiang; Xu, Bo; Xia, Yidong; Liu, Zhiguo

    2016-06-01

    The charge-trapping memory devices namely Pt/Al2O3/(Al2O3)0.5(Cu2O)0.5/SiO2/p-Si with 2, 3 and 4 nm SiO2 tunneling layers were fabricated by using RF magnetron sputtering and atomic layer deposition techniques. At an applied voltage of ±11 V, the memory windows in the C-V curves of the memory devices with 2, 3 and 4 nm SiO2 tunneling layers were about 4.18, 9.91 and 11.33 V, respectively. The anomaly in memory properties among the three memory devices was ascribed to the different back tunneling probabilities of trapped electrons in the charge-trapping dielectric (Al2O3)0.5(Cu2O)0.5 due to the different thicknesses of SiO2 tunneling layer.

  8. Conceptual design of a device for charging PIG's batteries, using the hydraulic energy from the flow in pipe

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ricardo E.; Dutra, Max S. [Alberto Luiz Coimbra Institute for Graduate and Research Studies (COPPE-UFRJ), Rio de Janeiro, RJ (Brazil). Mechanical Engineering Program], e-mail: rramirez@ufrj.br, e-mail: max@mecanica.coppe.ufrj.br

    2009-07-01

    Some actual projects deal with development of PIGs with speed control for liquid pipelines, with the possibility of controlled displacement including counter flow locomotion, in order to inspect and service in 'unpiggable lines' and flexible lines. In this case, it is normal to carry energy consumption greater than the energy disposable in the batteries. This work proposes a device composed by a turbine and an electric generator; presents a preliminary mechanical design of the turbine for the specific requirements of the application like internal pressure inside the line, a range of relative velocities between the PIG and the pipeline and adequate material for the environmental conditions. One of the priority requirements is that the geometric form of the turbine and generator mate with a proposed form of the PIG minimizing the pressure drop in the line for the different work conditions. The electric design defines the magnets characteristics, geometric forms, dimensions and number of turns to obtain the required voltage and power for charging a nominal pack of batteries. (author)

  9. Localized charge carriers in graphene nanodevices

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, D., E-mail: dominikb@phys.ethz.ch; Varlet, A.; Simonet, P.; Eich, M.; Overweg, H. C.; Ihn, T.; Ensslin, K. [Solid State Physics Laboratory, ETH Zurich, 8093 Zurich (Switzerland)

    2015-09-15

    Graphene—two-dimensional carbon—is a material with unique mechanical, optical, chemical, and electronic properties. Its use in a wide range of applications was therefore suggested. From an electronic point of view, nanostructured graphene is of great interest due to the potential opening of a band gap, applications in quantum devices, and investigations of physical phenomena. Narrow graphene stripes called “nanoribbons” show clearly different electronical transport properties than micron-sized graphene devices. The conductivity is generally reduced and around the charge neutrality point, the conductance is nearly completely suppressed. While various mechanisms can lead to this observed suppression of conductance, disordered edges resulting in localized charge carriers are likely the main cause in a large number of experiments. Localized charge carriers manifest themselves in transport experiments by the appearance of Coulomb blockade diamonds. This review focuses on the mechanisms responsible for this charge localization, on interpreting the transport details, and on discussing the consequences for physics and applications. Effects such as multiple coupled sites of localized charge, cotunneling processes, and excited states are discussed. Also, different geometries of quantum devices are compared. Finally, an outlook is provided, where open questions are addressed.

  10. High dynamic range charge measurements

    Energy Technology Data Exchange (ETDEWEB)

    De Geronimo, Gianluigi

    2012-09-04

    A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

  11. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kozue; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2015-06-01

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d{sup 6}4p (3d{sup 5}4s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of

  12. 微声聚能穿孔装置优化设计及IED安全销毁实验%Optimization design of micro-acoustic shaped charge device and research on its safe destruction of IED

    Institute of Scientific and Technical Information of China (English)

    徐全军; 白帆; 李裕春; 龚自正; 张庆明

    2012-01-01

    Based on the Held initiation theory, and the fact that shaped charge jet against the charge can produce low velocity explosion, this paper presents a new design of micro-acoustic shaped charge device. The orthogonal analysis methods were applied to optimize the charge structure. The experiments indicate that the noise elimination ability and the anti-detonation ability of the device are fine. The simulator charge boxes were destroyed with low velocity detonation, which helps reduce the explosive harm and allows for destroying IED safely.%根据Held引爆理论,利用聚能射流使炸药只燃烧或发生不完全爆轰的特点,设计了微声聚能穿孔装置,并对装药结构进行了正交优化.实验结果表明,装置的消声能力良好,用于销毁模拟爆炸药盒时,装药仅发生低速爆轰,达到了安全销毁简易爆炸装置的目的.

  13. Particle Catcher Using Induced-Charge Electroosmosis

    Science.gov (United States)

    Sugioka, Hideyuki

    2017-01-01

    Finding an innovative separation mechanism is a central task in future microfluidic systems. We propose a size-controllable microfluidic catching device that has a face-to-face structure consisting of elastic beams that change the acceptable particle size dynamically by hydrodynamic force due to induced charge electroosmosis (ICEO) in water and numerically examine the novel separation mechanism consisting of catching and releasing motions with size selectivity. By an implicit strongly coupled simulation technique between a fluid and an elastic structure based on the boundary element method, along with the thin double-layer approximation, we find that the catching device works effectively at low applied voltages in a realistic microfluidic channel and shows a wide range dynamic size selectivity. Furthermore, by modeling the ICEO phenomena with elastic motion, we successfully explain the acceptable particle size of the catching device. We believe that our proposed device will contribute to realizing innovative microfluidic systems in the future.

  14. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films

    KAUST Repository

    Hu, Weijin

    2014-11-12

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.

  15. Inducing Strong Nonlinearities in a High-$Q$ System: Coupling of a Bulk Acoustic Wave Quartz Resonator to a Superconducting Quantum Interference Device

    CERN Document Server

    Goryachev, Maxim; Galliou, Serge; Tobar, Michael E

    2015-01-01

    A system consisting of a SQUID amplifier coupled to a Bulk Acoustic Wave resonator is investigated experimentally from the small to large signal regimes. Both parallel and series connection topologies of the system are verified. The study reveals significant non-Duffing response that is associated with the nonlinear characteristics of Josephson junctions. The nonlinearity provides quasi-periodic structure of the spectrum in both incident power and frequency. The result gives an insight into the open loop behaviour of a future Cryogenic Quartz Oscillator operating with a SQUID amplifier as the active device.

  16. Coupled experimetal and theoretical study of photon absorption and charge transport in BiVO4 photoanodes for solar water splitting

    Science.gov (United States)

    Ping, Yuan; Kim, Tae Woo; Galli, Giulia; Choi, Kyoung-Shin

    Bismuth vanadate (BiVO4) has been identified as one of the most promising photoanode materials for water-splitting photoelectrochemical cells. The major limitations of BiVO4 are its relatively wide bandgap (2.5 eV) and low electron mobility (0.2 cm-2V-2S-1), which limit its solar-to-hydrogen conversion efficiency. In this talk we will present the results of a coupled experimental and ab initio theoretical study showing that nitrogen doping together with extra oxygen vacancies lead to both a reduction of BiVO4 band gap and to an increase of the majority carrier density and mobility. In turn these improvements lead to the applied bias photon-to-current efficiency over 2%, a record for a single oxide photon absorber, to the best of our knowledge. The ``codoping'' method adopted in our work could also be applied to simultaneously enhance photon absorption and charge transport in other oxides, providing new possibilities for photocatalytic materials. This work was supported by the National Science Foundation (NSF) under the NSF Center (CHE-1305124). Computer time was provided by NERSC.

  17. Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Chang, J.; Blackburn, E.; Ivashko, O.;

    2016-01-01

    The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures...... remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings ∼ 0.123, we find that a field (B∼10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction...... at B∼15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry...

  18. Development and validation of a hydrophilic interaction chromatography method coupled with a charged aerosol detector for quantitative analysis of nonchromophoric α-hydroxyamines, organic impurities of metoprolol.

    Science.gov (United States)

    Xu, Qun; Tan, Shane; Petrova, Katya

    2016-01-25

    The European Pharmacopeia (EP) metoprolol impurities M and N are polar, nonchromophoric α-hydroxyamines, which are poorly retained in a conventional reversed-phase chromatographic system and are invisible for UV detection. Impurities M and N are currently analyzed by TLC methods in the EP as specified impurities and in the United States Pharmacopeia-National Formulary (USP-NF) as unspecified impurities. In order to modernize the USP monographs of metoprolol drug substances and related drug products, a hydrophilic interaction chromatography (HILIC) method coupled with a charged aerosol detector (CAD) was explored for the analysis of the two impurities. A comprehensive column screening that covers a variety of HILIC stationary phases (underivatized silica, amide, diol, amino, zwitterionic, polysuccinimide, cyclodextrin, and mixed-mode) and optimization of HPLC conditions led to the identification of a Halo Penta HILIC column (4.6 × 150 mm, 5 μm) and a mobile phase comprising 85% acetonitrile and 15% ammonium formate buffer (100 mM, pH 3.2). Efficient separations of metoprolol, succinic acid, and EP metoprolol impurities M and N were achieved within a short time frame (metoprolol drug substance (metoprolol succinate) and drug products (metoprolol tartrate injection and metoprolol succinate extended release tablets).

  19. Charge-transport simulations in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    May, Falk

    2012-07-06

    a polarization-induced stabilization of a molecule in its charged and neutral states can lead to large shifts, broadening, and traps in the distribution of charge energies. These results are especially important for multi-component systems (the emission layer of an OLED or the donor-acceptor interface of an organic solar cell), if the change in polarizability upon charging (or excitation in case of energy transport) is different for the components. Thus, the polarizability change upon charging or excitation should be added to the set of molecular parameters essential for understanding charge and energy transport in organic semiconductors. We also studied charge transport in self-assembled systems, where intermolecular packing motives induced by side chains can increase electronic couplings between molecules. This leads to larger charge mobility, which is essential for devices such as organic field effect transistors. However, it is not sufficient to match the average local molecular order induced by the side chains with maxima of the electronic couplings. It is also important to make the corresponding distributions, e.g. of the pitch angle between consecutive molecules, as narrow as possible compared to the window determined by the closest minima of the electronic couplings. The immediate implication for compound design is that the side chains should assist the self-assembling process not only via ''soft'' entropic interactions, but also via stronger specific interactions, such as hydrogen bonding.

  20. High-rate production of functional nanostructured films and devices by coupling flame spray pyrolysis with supersonic expansion.

    Science.gov (United States)

    Wegner, K; Vinati, S; Piseri, P; Antonini, A; Zelioli, A; Barborini, E; Ducati, C; Milani, P

    2012-05-11

    The fabrication of functional thin films and devices by direct deposition of nanoparticles from the gas phase is a promising approach enabling, for instance, the integration of complex analytical and sensing capabilities on microfabricated platforms. Aerosol-based techniques ensure large-scale nanoparticle production and they are potentially suited for this goal. However, they are not adequate in terms of fine control over the lateral resolution of the coatings, mild processing conditions (avoiding high temperature and aggressive chemicals), low contamination and compatibility with microfabrication processes. Here we report the high-rate and efficient production of functional nanostructured films by nanoparticle assembling obtained by the combination of flame spray pyrolysis and supersonic expansion. Our approach merges the advantages of flame spray pyrolysis for bulk nanopowders such as process stability and wide material library availability with those of supersonic cluster beam deposition in terms of lateral resolution and of direct integration of nanomaterials on devices. We efficiently produced nanostructured films and devices (such as gas sensors) using metal oxide, pure noble metal and oxide-supported noble metal nanoparticles.

  1. Nonlocal thermoelectric effects and nonlocal Onsager relations in a three-terminal proximity-coupled superconductor-ferromagnet device

    Energy Technology Data Exchange (ETDEWEB)

    Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [SEPnet and Hubbard Theory Consortium, Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom)

    2013-07-01

    We study thermal and charge transport in a three-terminal setup consisting of a superconducting and two ferromagnetic contacts. We predict that the simultaneous presence of spin-filtering and of spin-dependent scattering phase shifts at each of the two interfaces will lead to very large nonlocal thermoelectric effects both in clean and in disordered systems. The symmetries of thermal and electric transport coefficients are related to fundamental thermodynamic principles by the Onsager reciprocity. Our results show that a nonlocal version of the Onsager relations for thermoelectric currents holds in a three terminal quantum coherent ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and coherent electron transfer processes.

  2. Improved design of differential coupling device in HEV%混合动力汽车差速耦合装置的改进设计

    Institute of Scientific and Technical Information of China (English)

    李风; 田磊; 杨超; 李双; 王继新

    2012-01-01

    阐述了借鉴差速器设计混合动力汽车(HEV)动力耦合装置(PSD)的方法.由于HEV中的PSD与传统差速器不同,经常处于高转速工况工作,为此,分析了对差速齿轮进行改进设计的必要性,在Advisor软件中建立了仿真模型,得到了车辆在NEDC( New European Driving Cycle)工况行驶时PSD各齿轮的转速与扭矩曲线,对PSD齿轮进行了改进设计.建立了基于精确球面渐开线直齿锥齿轮三维模型,并进行了接触有限元分析,验证了此种方法建立PSD齿轮分析模型的可行性.%To applying conventional automotive differential as Power-Split Device(PSD)make it into a new kind of device. But it is different from a conventional automotive differential, the bevel gears in the PSD works under high rotational speed and low torque condition, that means it need to be redesigned. The working principle of the differential coupling device is introduced. The working condition of the gears is obtained by simulation on New European Driving Cycle (NEDC). After that, the gears of the new device are redesigned. A pair of 3D bevel gear model based on spherical involute curve are established,the finite element analysis result shows the method of building PSD analytical model is feasible.

  3. A novel paper-based device coupled with a silver nanoparticle-modified boron-doped diamond electrode for cholesterol detection

    Energy Technology Data Exchange (ETDEWEB)

    Nantaphol, Siriwan [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Chailapakul, Orawon, E-mail: corawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Siangproh, Weena, E-mail: weenasi@hotmail.com [Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattanna, Bangkok 10110 (Thailand)

    2015-09-03

    A novel paper-based analytical device (PAD) coupled with a silver nanoparticle-modified boron-doped diamond (AgNP/BDD) electrode was first developed as a cholesterol sensor. The AgNP/BDD electrode was used as working electrode after modification by AgNPs using an electrodeposition method. Wax printing was used to define the hydrophilic and hydrophobic areas on filter paper, and then counter and reference electrodes were fabricated on the hydrophilic area by screen-printing in house. For the amperometric detection, cholesterol and cholesterol oxidase (ChOx) were directly drop-cast onto the hydrophilic area, and H{sub 2}O{sub 2} produced from the enzymatic reaction was monitored. The fabricated device demonstrated a good linearity (0.39 mg dL{sup −1} to 270.69 mg dL{sup −1}), low detection limit (0.25 mg dL{sup −1}), and high sensitivity (49.61 μA mM{sup −1} cm{sup −2}). The precision value for ten replicates was 3.76% RSD for 1 mM H{sub 2}O{sub 2}. In addition, this biosensor exhibited very high selectivity for cholesterol detection and excellent recoveries for bovine serum analysis (in the range of 99.6–100.8%). The results showed that this new sensing platform will be an alternative tool for cholesterol detection in routine diagnosis and offers the advantages of low sample/reagent consumption, low cost, portability, and short analysis time. - Highlights: • Novel PAD coupled with AgNP/BDDE for cholesterol determination was developed. • Wide linear range, low detection limit and high selectivity were achieved. • This sensor was successfully applied for cholesterol determination in bovine serum. • This platform offers the advantages of low sample/reagent consumption and low cost.

  4. Research and development on power coupling device of hybrid electric tractor%混合动力拖拉机动力耦合装置的研制

    Institute of Scientific and Technical Information of China (English)

    邓晓亭; 朱思洪; 钱忠祥; 张莹

    2012-01-01

    近年来,农用车辆特别是拖拉机对环境和资源造成的压力逐年增大,开展节能环保拖拉机特别是混合动力拖拉机的研发已成为迫在眉睫的重要课题,而动力耦合装置是混合动力拖拉机的核心.该文根据拖拉机工作特性和传动特性要求,对混合动力拖拉机动力耦合装置传动比、特征参数和齿数匹配等进行了设计.根据传动载荷需求和制造工艺要求进行了结构设计和强度校核,研制了适用于并联式混合动力拖拉机的动力耦合装置.在自行搭建的混合动力拖拉机试验台上对该耦合装置进行了测试.试验结果表明,该装置能够满足拖拉机工作状态下的工作特性要求,输出端转速对动力源的转速变化很敏感,实时变化性能优,而输出端转矩对动力源转速变化不敏感.该耦合装置的研制为混合动力拖拉机的研发提供了基础.%In recent years, effects of agricultural vehicles, especially tractors on the environment and resources are increasing year by year, so carrying out the research and development of energy-conservation and environmental protection tractors, especially hybrid electric tractors has become the imminent important subject. And the power coupling is the core of hybrid electric drive system. According to the requirements of working properties and transmission characteristics of tractors, the transmission ratio, characteristic parameters and matching number of gear teeth of power coupling device for hybrid electric tractor were designed. Based on the requirement of transmission load and manufacturing technology, the structure design and strength check were processed. Then a new power coupling for parallel hybrid electric tractor was developed, which was also tested on self-developed hybrid electric tractor test-bed. The results showed that the power coupling device can meet the needs of working characteristic under working condition. In addition, the output speeds were

  5. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells

    KAUST Repository

    Yi, Yuanping

    2011-01-01

    The exciton-dissociation and charge-recombination processes in donor-acceptor complexes found in α-sexithienyl/C60 and α-sexithienyl/perylenetetracarboxydiimide (PDI) solar cells are investigated by means of quantum-chemical methods. The electronic couplings and exciton-dissociation and charge-recombination rates have been evaluated for various configurations of the complexes. The results suggest that the decay of the lowest charge-transfer state to the ground state in the PDI-based devices: (i) is faster than that in the fullerene-based devices and (ii) in most cases, can compete with the dissociation of the charge-transfer state into mobile charge carriers. This faster charge-recombination process is consistent with the lower performance observed experimentally for the devices using PDI derivatives as the acceptor. © 2011 The Royal Society of Chemistry.

  6. On-site analysis of volatile nitrosamines in food model systems by solid-phase microextraction coupled to a direct extraction device.

    Science.gov (United States)

    Ventanas, S; Ruiz, J

    2006-12-15

    Analysis of nitrosamine (NA) standards in a model system was carried out by extraction using SPME coupled to a direct extraction device (DED) and subsequent GC/MS in selected ion monitoring mode. Gelatine (20%, w/v) systems of a NA standard (10mugL(-1)) were prepared, in order to mimic food protein matrix systems such as meat and meat products, fish and so on. Different SPME fibre coatings were tested Both divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) and carboxen/polydimethylsiloxane (CAR/PDMS) fibres coupled to DED satisfactorily extracted all nine NA included in the studied standard (EPA 8270 nitrosamines mix, Sigma-Aldrich) from the gelatine system at 25 degrees C without any sample manipulation. Values of reproducibility, linearity and limit of detection for each type of fibre are reported. SPME-DED appears as a rapid, non-destructive technique for preliminary screening of the presence of toxic substances such as NA in solid foods.

  7. Nanofabrication of Hybrid Optoelectronic Devices

    Science.gov (United States)

    Dibos, Alan Michael

    The material requirements for optoelectronic devices can vary dramatically depending on the application. Often disparate material systems need to be combined to allow for full device functionality. At the nanometer scale, this can often be challenging because of the inherent chemical and structural incompatibilities of nanofabrication. This dissertation concerns the integration of seemingly dissimilar materials into hybrid optoelectronic devices for photovoltaic, plasmonic, and photonic applications. First, we show that combining a single strip of conjugated polymer and inorganic nanowire can yield a nanoscale solar cell, and modeling of optical absorption and exciton diffusion in this device can provide insight into the efficiency of charge separation. Second, we use an on-chip nanowire light emitting diode to pump a colloidal quantum dot coupled to a silver waveguide. The resulting device is an electro-optic single plasmon source. Finally, we transfer diamond waveguides onto near-field avalanche photodiodes fabricated from GaAs. Embedded in the diamond waveguides are nitrogen vacancy color centers, and the mapping of emission from these single-photon sources is demonstrated using our on-chip detectors, eliminating the need for external photodetectors on an optical table. These studies show the promise of hybrid optoelectronic devices at the nanoscale with applications in alternative energy, optical communication, and quantum optics.

  8. Separating device

    NARCIS (Netherlands)

    De Jong, T.P.R.

    2001-01-01

    A sorting device (1) suitable for sorting wire from a waste stream, comprising a body (2) that moves when in use, and provided with spikes or similar projections. The body is embodied as a rotatable roll (2), which oscillates axially during its rotation. The roll is coupled to an oscillation engine

  9. Determination of Noncovalent Binding Using a Continuous Stirred Tank Reactor as a Flow Injection Device Coupled to Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Santos, Inês C.; Waybright, Veronica B.; Fan, Hui; Ramirez, Sabra; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Fryčák, Petr; Schug, Kevin A.

    2015-07-01

    Described is a new method based on the concept of controlled band dispersion, achieved by hyphenating flow injection analysis with ESI-MS for noncovalent binding determinations. A continuous stirred tank reactor (CSTR) was used as a FIA device for exponential dilution of an equimolar host-guest solution over time. The data obtained was treated for the noncovalent binding determination using an equimolar binding model. Dissociation constants between vancomycin and Ac-Lys(Ac)-Ala-Ala-OH peptide stereoisomers were determined using both the positive and negative ionization modes. The results obtained for Ac- L-Lys(Ac)- D-Ala- D-Ala (a model for a Gram-positive bacterial cell wall) binding were in reasonable agreement with literature values made by other mass spectrometry binding determination techniques. Also, the developed method allowed the determination of dissociation constants for vancomycin with Ac- L-Lys(Ac)- D-Ala- L-Ala, Ac- L-Lys(Ac)- L-Ala- D-Ala, and Ac- L-Lys(Ac)- L-Ala- L-Ala. Although some differences in measured binding affinities were noted using different ionization modes, the results of each determination were generally consistent. Differences are likely attributable to the influence of a pseudo-physiological ammonium acetate buffer solution on the formation of positively- and negatively-charged ionic complexes.

  10. Biased low differential input impedance current receiver/converter device and method for low noise readout from voltage-controlled detectors

    Science.gov (United States)

    Degtiarenko, Pavel V.; Popov, Vladimir E.

    2011-03-22

    A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.

  11. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  12. Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera.

    Science.gov (United States)

    Meng, Zhaokai; Yakovlev, Vladislav V

    2016-08-01

    Brillouin spectroscopy is an emerging tool for microscopic optical imaging as it allows noninvasive assessment of viscoelastic properties of materials. The use of atomic-molecular absorption cells as ultra-narrow notch filters allows acquisition of Brillouin spectra from turbid samples despite their strong elastic scattering. However, such systems alter the shapes of the Brillouin lines, making the precise determination of the Brillouin shift difficult. In this report, we propose a simple method for analyzing the Brillouin spectrum using a customized least-square fitting algorithm. The absorption spectrum induced by the atomic-molecular cell was taken into consideration. The capability of the method is confirmed by processing experimental spectroscopic data from the pure water at different temperatures. The accuracy of the measurements of ±1 MHz spectral line shift is experimentally demonstrated.

  13. Investigation of noise and contrast sensitivity of an electron multiplying charge-coupled device (EMCCD) based cone beam micro-CT system

    Science.gov (United States)

    Bysani Krishnakumar, Sumukh; Podgorsak, Alexander R.; Setlur Nagesh, S. V.; Jain, Amit; Rudin, Stephen; Bednarek, Daniel R.; Ionita, Ciprian N.

    2016-03-01

    A small animal micro-CT system was built using an EMCCD detectors having complex pre-digitization amplification technology, high-resolution, high-sensitivity and low-noise. Noise in CBCT reconstructed images when using predigitization amplification behaves differently than commonly used detectors and warrants a detailed investigation. In this study, noise power and contrast sensitivity were estimated for the newly built system. Noise analysis was performed by scanning a water phantom. Tube voltage was lowered to minimum delivered by the tube (20 kVp and 0.5 mA) and detector gain was varied. Contrast sensitivity was analyzed by using a phantom containing different iodine contrast solutions (20% to 70%) filled in six different tubes. First, we scanned the phantom using various x-ray exposures at 40 kVp while changing the gain to maintain the background air value of the projection images constant. Next, the exposure was varied while the detector gain was maintained constant. Radial NPS plots show that noise power level increases as gain increases. Contrast sensitivity was analyzed by calculating ratio of signal-to-noise ratios (SNR) for increased gain with those of low constant gain at each exposure. The SNR value at low constant gain was always lower than SNR of high detector gain at all x-ray settings and iodine contrast. The largest increase of SNR approached 1.3 for low contrast feature for an iodine concentration of 20%. Despite an increase in noise level as gain increases, the SNR improvement shows that signal level also increases because of the unique on-chip gain of the detector.

  14. Modulation Transfer Function Measurement of Charge Coupled Devices with Michelson Interferometer%利用Michelson干涉仪测量CCD的调制传递函数

    Institute of Scientific and Technical Information of China (English)

    宋敏; 郑亚茹; 王玉新

    2005-01-01

    介绍了利用Michelson干涉仪测量CCD 调制传递函数的方法,与其他方法相比,该方法具有测量装置简单、将正弦图样投射到待测CCD阵列上无需借助光学系统等特点.给出了典型的线阵和面阵CCD的调制传递函数曲线的测量结果.

  15. Improving the spatial resolution of a soft X-ray Charge Coupled Device used for Resonant Inelastic X-ray Scattering

    OpenAIRE

    Soman, M. R.; Hall, D. J. (David John); Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2011-01-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Advanced Resonant Scattering (ADRESS) beamline of the Swiss Light Source is a high-resolution X-ray spectrometer used as an end station for Resonant Inelastic X-ray Scattering from 400 eV to 1600 eV. Through the dispersion of photons across a CCD, the energy of scattered photons may be determined by their detected spatial position. The limiting factor of the energy resolution is currently the spatial resolution achieved with the CC...

  16. SEMICONDUCTOR DEVICES: Analytical charge control model for AlGaN/GaN MIS-HFETs including an undepleted barrier layer

    Science.gov (United States)

    Shenghui, Lu; Jiangfeng, Du; Qian, Luo; Qi, Yu; Wei, Zhou; Jianxin, Xia; Mohua, Yang

    2010-09-01

    An analytical charge control model considering the insulator/AlGaN interface charge and undepleted Al-GaN barrier layer is presented for AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors (MIS-HFETs) over the entire operation range of gate voltage. The whole process of charge control is analyzed in detail and partitioned into four regions: I—full depletion, II—partial depletion, III—neutral region and IV—electron accumulation at the insulator/AlGaN interface. The results show that two-dimensional electron gas (2DEG) saturates at the boundary of region II/III and the gate voltage should not exceed the 2DEG saturation voltage in order to keep the channel in control. In addition, the span of region II accounts for about 50% of the range of gate voltage before 2DEG saturates. The good agreement of the calculated transfer characteristic with the measured data confirms the validity of the proposed model.

  17. 电池梯次利用储能装置在电动汽车充换电站中的应用%Application of Battery Cascade Utilization Device in EV Battery Charging and Swapping Station

    Institute of Scientific and Technical Information of China (English)

    王泽众; 李家辉

    2012-01-01

    针对电动汽车充换电站中动力电池的梯次利用问题,设计了电池梯次利用储能站,将充换电站中即将报废的电池用于储能放电,以降低电动汽车动力电池的使用成本.介绍了电池梯次利用储能站结构、电能控制系统以及储能控制策略,可以实现电动汽车充换电站动力电池的梯次利用、对电网负荷进行峰谷调节并作为充换电站的应急和后备电源.%Aiming at the application of battery cascade utilization in EV ( electric vehicle) battery charging and swapping station, this paper design battery cascade utilization storage station. In order to decreasing the battery cost, it utilizes the reject battery of battery charging and swapping station to storage and discharge electric energy. This paper introduces the battery cascade utilization device construction, control system and electric storage control strategy. It can implement the battery cascade utilization, regulate power grid peak and valley and be emergency power of the battery charging and swapping station.

  18. Metal imaging on surface of micro- and nanoelectronic devices by laser ablation inductively coupled plasma mass spectrometry and possibility to measure at nanometer range.

    Science.gov (United States)

    Zoriy, Myroslav V; Mayer, Dirk; Becker, J Sabine

    2009-05-01

    An analytical mass spectrometric method for the elemental analysis of nano-bioelectronic devices involved in bioengineering research was developed and applied for measurements of selected metals (Au, Ti, Pt, Cr, etc.) on interdigitated electrode array chips (IDA-chip). An imaging laser ablation inductively coupled plasma mass spectrometric (LA-ICP-MS) procedure was used to map the elements of interest on the surface of the analyzed sample. The obtained images of metals were in a good agreement and corresponded to the micro- and nanofabricated metal electrode pattern. For the analysis at nanometer resolution scale a NF-LA-ICP-MS (NF-near-field) procedure was applied, which utilize thin Ag needle to enhance laser beam energy and improve spatial resolution of the method. The results show a approximately 100x enhancement of analyte signal, when the needle was positioned in the "near-field region" to the sample surface and the laser shot was performed. In addition, mass spectrometric studies of reproducibly for five separated NF-LA shots in different places of analyzed sample yielded an RSD of the measurement of 16%.

  19. A simple analytical platform based on thin-layer chromatography coupled with paper-based analytical device for determination of total capsaicinoids in chilli samples.

    Science.gov (United States)

    Dawan, Phanphruk; Satarpai, Thiphol; Tuchinda, Patoomratana; Shiowatana, Juwadee; Siripinyanond, Atitaya

    2017-01-01

    A new analytical platform based on the use of thin-layer chromatography (TLC) coupled with paper-based analytical device (PAD) was developed for the determination of total capsaicinoids in chilli samples. This newly developed TLC-PAD is simple and low-cost without any requirement of special instrument or skillful person. The analysis consisted of two steps, i.e., extraction of capsaicinoids from chilli samples by using ethanol as solvent and separation of capsaicinoids by thin-layer chromatography (TLC) and elution of capsaicinoids from the TLC plate with in situ colorimetric detection of capsaicinoids on the PAD. For colorimetric detection, Folin-Ciocalteu reagent was used to detect phenolic functional group of capsaicinoids yielding the blue color. The blue color on the PAD was imaged by a scanner followed by evaluation of its grayscale intensity value by ImageJ program. This newly developed TLC-PAD method provided a linear range from 50 to 1000mgL(-1) capsaicinoids with the limit of detection as low as 50mgL(-1) capsaicinoids. The proposed method was applied to determine capsaicinoids in dried chilli and seasoning powder samples and the results were in good agreement with those obtained by HPLC method.

  20. Study of coupled heat and mass transfer during absorption of hydrogen in MmNi4·6Al0·4 based hydrogen storage device

    Indian Academy of Sciences (India)

    P Muthukumar; Manvendra M Umekar

    2009-04-01

    A two-dimensional numerical analysis of coupled heat and mass transfer processes in a cylindrical metal hydride reactor containing MmNi4·6Al0·4 is presented. To understand the hydrogen absorption mechanism the governing equations for energy, momentum and mass conservation and reaction kinetic equations are solved simultaneously using the finite volume method (FVM). Performance studies on MmNi4·6Al0·4 based hydrogen storage device are carried out by varying the hydrogen supply pressure, absorption (cooling fluid) temperature, overall heat transfer coefficient and hydride bed thickness. Effect of convection terms in the energy equation on hydrogen storage performance is found to be negligible. The results obtained from the computer simulation showed good agreement with the available experimental data. At the supply conditions of 30 bar and 298 K, MmNi4·6Al0·4 stores about 1·28 wt%, which is very close to the experimental value of 1·3 wt%. Overall high heat transfer coefficients are found to reduce the absorption time significantly.

  1. Holographic charge density waves

    CERN Document Server

    Donos, Aristomenis

    2013-01-01

    We show that strongly coupled holographic matter at finite charge density can exhibit charge density wave phases which spontaneously break translation invariance while preserving time-reversal and parity invariance. We show that such phases are possible within Einstein-Maxwell-dilaton theory in general spacetime dimensions. We also discuss related spatially modulated phases when there is an additional coupling to a second vector field, possibly with non-zero mass. We discuss how these constructions, and others, should be associated with novel spatially modulated ground states.

  2. Holographic charge density waves

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2013-06-01

    We show that strongly coupled holographic matter at finite charge density can exhibit charge density wave phases which spontaneously break translation invariance while preserving time-reversal and parity invariance. We show that such phases are possible within Einstein-Maxwell-dilaton theory in general spacetime dimensions. We also discuss related spatially modulated phases when there is an additional coupling to a second vector field, possibly with nonzero mass. We discuss how these constructions, and others, should be associated with novel spatially modulated ground states.

  3. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Samuel M.; Singh, Vivek [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Noh, Hyunwoo [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering Program and Department of Nanoengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093 (United States); Cha, Jennifer N. [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering Program and Department of Nanoengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Nagpal, Prashant, E-mail: pnagpal@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Renewable and Sustainable Energy Institute, University of Colorado Boulder, 2445 Kittredge Loop, Boulder, Colorado 80309 (United States)

    2015-02-23

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  4. Modified SQUID Operator Equation for a Single-Qubit Structure Coupled to a Quantum Resonator

    Institute of Scientific and Technical Information of China (English)

    LIANG Bao-Long; WANG Ji-Suo; FAN Hong-Yi; MENG Xiang-Guo

    2008-01-01

    Role of self-inductance in superconducting quantum interference device (SQUID) charge qubit is considered. It is found that when an SQUID charge qubit is coupled to a quantum LC resonator, the SQUID voltage operator equation is modified in accompanying with the modification of operator Faraday equation describing the inductance. It is shown that when the extra energy is applied to the junction, the mean phase will be squeezed according to a damping factor.

  5. Game Analysis on Coupling Effects of Private Car License Plate Auction and Congestion Charge%私车牌照拍卖与拥挤收费的政策联动效果研究

    Institute of Scientific and Technical Information of China (English)

    冯苏苇

    2012-01-01

    As the unique city to conduct private car license plate auction in China, Shanghai gains rich experiences and great demonstration effects in regulation practice. After this policy has run for decades, the auction price climbs extremely high and more people tend to use non-local plates, which results in a decline policy performance. This paper first points out the reason for efficiency loss lies in the wide gap between relative travel rights and relative owning cost relating to local and non-local licenses. Second, with game analysis, it analyzes the coupling effects of congestion charge as a comprehensive and supplementary policy to plate auction. The result indicates that if the congestion charge objects focus on those using non-local licenses, people with high time value usually commute earlier to avoid the charge, while those with low time value remain on the road. Finally, sequential game analysis shows that under such policy coupling background of plate auction and congestion charging, the choices of local licenses will finally increase and new congestion will appear. A feasible measure should be setting up different charge rates to local and non-local licenses.%作为中国唯一实施私车牌照拍卖的城市,上海的先行实践和示范效应十分巨大.政策实施二十余年来,随着本地牌照拍卖价格不断走高,选择外地牌照的人数逐渐增加,政策绩效面临衰减的局面.本文以博弈论为工具,分析了牌照拍卖政策绩效流失的根源,研究了拥挤收费作为综合配套政策的可能效果,研究发现,如果对外地牌照拥车者征收拥挤费,高时间价值者会提前出行以规避收费,而低时间价值者留在道路上.进一步,在序贯博弈下,更多的人会选择本地牌照,道路拥挤仍旧不可避免.因此,一个可行的拥挤收费方案是,通过设置不同费率对不同牌照实施差别化收费,以弥补当前政策下相对通行权不对等问题.

  6. Variational multiscale models for charge transport.

    Science.gov (United States)

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  7. Experiment and analysis for cold charging process of new energy storage device%一种新型储能装置充冷过程的实验及分析

    Institute of Scientific and Technical Information of China (English)

    迟蓬涛; 谢永奇; 余建祖; 杨宪宁

    2011-01-01

    The heat transfer enhancement ches. In order to test the cold charging effect, effect of the metal foam has been verified by dozens of researa new type of high-efficiency energy storage devices was made up by composite phase change material(PCM), which was consisted of copper foam (the heat transfer enhancement) and water. Via experimental study, the heat preservation effect of the devices in the refrigeration equipments was simulated. The model was set up and calculated through quasi-stable state method, and the results meet the test results very well. The cold charging process of the new type energy storage devices was approved to be faster and more adequate compared to the traditional energy storage devices. The entire heat transfer velocity and energy storage efficiency are obviously improved, which promises a good prospect in the refrigerated transportation.%近年来,泡沫金属作为填充材料在强化传热方面的功效已被越来越多的研究证实.采用泡沫铜和水构成新型复合相变材料,制成一种高效储能装置,通过模拟实验研究,测试了这种储能装置在冷藏装备上的保温效果.进而采用准稳态法建立了复合相变材料的数学模型并进行了数值仿真计算,计算结果与实验测试结果相符.实验和数值仿真结果都表明,相对传统储能装置,新型储能装置充冷迅速而充分,整体的传热速率和储能效率得到了显著提高,在冷藏运输中有非常好的应用前景.

  8. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    Energy Technology Data Exchange (ETDEWEB)

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurelien; Blumberger, Jochen; Elstner, Marcus

    2016-10-11

    In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.

  9. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level.

    Science.gov (United States)

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus

    2016-10-11

    In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.

  10. Charge transport in amorphous oligothiophenes

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Manuel; Baumeier, Bjoern; Andrienko, Denis [Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Elschner, Chris; Riede, Moritz; Leo, Karl [TU Dresden, Institute of Applied Photophysics, Mommsenstr. 13, 01062 Dresden (Germany)

    2011-07-01

    Organic semiconducting materials are needed for emerging devices such as photovoltaic solar cells. In this work we combine first principle calculations, molecular dynamics and kinetic Monte Carlo simulations to study charge transport in dicyanovinyl oligothiophenes of different lengths. Poole-Frenkel behavior of the charge carrier mobility is rationalized based on electrostatic and conformational disorder.

  11. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine

    KAUST Repository

    Baumgardner, Marc E.

    2013-12-19

    In this study, the autoignition behavior of primary reference fuels (PRF) and blends of n-heptane/n-butanol were examined in a Waukesha Fuel Ignition Tester (FIT) and a Homogeneous Charge Compression Engine (HCCI). Fourteen different blends of iso-octane, n-heptane, and n-butanol were tested in the FIT - 28 test runs with 25 ignition measurements for each test run, totaling 350 individual tests in all. These experimental results supported previous findings that fuel blends with high alcohol content can exhibit very different ignition delay periods than similarly blended reference fuels. The experiments further showed that n-butanol blends behaved unlike PRF blends when comparing the autoignition behavior as a function of the percentage of low reactivity component. The HCCI and FIT experimental results favorably compared against single and multizone models with detailed chemical kinetic mechanisms - both an existing mechanism as well as one developed during this study were used. The experimental and modeling results suggest that that the FIT instrument is a valuable tool for analysis of high pressure, low temperature chemistry, and autoignition for future fuels in advanced combustion engines. Additionally, in both the FIT and engine experiments the fraction of low temperature heat release (fLTHR) was found to correlate very well with the crank angle of maximum heat release and shows promise as a useful metric for fuel reactivity in advanced combustion applications. © 2013 American Chemical Society.

  12. Network based management for multiplexed electric vehicle charging

    Energy Technology Data Exchange (ETDEWEB)

    Gadh, Rajit; Chung, Ching Yen; Qui, Li

    2017-04-11

    A system for multiplexing charging of electric vehicles, comprising a server coupled to a plurality of charging control modules over a network. Each of said charging modules being connected to a voltage source such that each charging control module is configured to regulate distribution of voltage from the voltage source to an electric vehicle coupled to the charging control module. Data collection and control software is provided on the server for identifying a plurality of electric vehicles coupled to the plurality of charging control modules and selectively distributing charging of the plurality of charging control modules to multiplex distribution of voltage to the plurality of electric vehicles.

  13. Search for Heavy Top Quark Partners with Charge 5/3 and Anomalous Higgs $(→b\\overline{b})$ Couplings to Vector Bosons

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00425797

    In this thesis, we present two searches for new physics performed using the data collected by the CMS experiment at the LHC at two different center of mass energies. In the first part, we present a search for anomalous Higgs couplings. In 2012, the ATLAS and CMS experiments at the LHC discovered a new boson. This discovery completed a long search for the final missing piece of the standard model (SM). The measurements so far confirm that the new boson is consistent with the Higgs boson predicted by the SM. However, there are decay channels that are yet to be confirmed experimentally; e.g., the decay to a pair of bottom quarks. In addition, precision measurements of the Higgs couplings to all SM particles need to be performed in order to make sure there is no deviation from the predictions of the SM. We present the first search at the LHC for anomalous couplings of the Higgs boson H to vector bosons V (= W or Z) using associated Higgs production with the Higgs boson decaying to a pair of bottom quarks. We use...

  14. Wireless Power for Mobile Devices

    NARCIS (Netherlands)

    Waffenschmidt, E.

    2011-01-01

    Wireless power transfer allows a convenient, easy to use battery charging of mobile phones and other mobile devices. No hassle with cables and plugs, just place the device on a pad and that’s it. Such asystem even has the potential to become a standard charging solution. Where are the limits for suc

  15. Structural, electrical, band alignment and charge trapping analysis of nitrogen-annealed Pt/HfO2/p-Si (100) MIS devices

    Science.gov (United States)

    Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara

    2016-12-01

    Low leakage current density and high relative permittivity (dielectric constant) are the key factor in order to replace the SiO2 from Si-based technology toward its further downscaling. HfO2 thin films received significant attention due to its excellent optoelectronic properties. In this work, ultra-thin (17 nm) HfO2 films on Si substrate are fabricated by RF sputtering. As deposited films are amorphous in nature and in order to get the reasonable high dielectric constant, the films are annealed (700 °C, 30 min) in nitrogen environment. A high refractive index (2.08) and small grain size ( 10) nm were extracted from ellipsometry and XRD, respectively. The AFM study revealed a small RMS surface roughness 9 Å. For electrical characterization, films are integrated in metal-insulator-semiconductor capacitors structure. The oxide capacitance ( C ox), flat band capacitance ( C FB), flat band voltage ( V FB), and oxide-trapped charges ( Q ot) calculated from high-frequency (1 MHz) C- V curve are 490, 241 pF, 1.21 V and 1.8 × 1012 cm-2, respectively. The dielectric constant calculated from accumulation capacitance is 17. The films show a low leakage current density 6.8 × 10-9 A/cm2 at +1 V, and this is due to the reduction in oxygen vacancies concentration as we performed annealing in N2 environment. The band gap of the films is estimated from O 1 s loss spectra and found 5.7 eV. The electron affinity ( χ) and HfO2/Si barrier height (conduction band offset) extracted from UPS spectra are 1.88 and 2.17 eV, respectively. A trap state with 0.99 eV activation energy below the conduction band edge is found and assigned to the fourfold coordinated oxygen vacancy in m-HfO2.

  16. Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis.

    Science.gov (United States)

    Nolan, Michael

    2011-10-28

    In recent experiments Tada et al. have shown that TiO(2) surfaces modified with iron oxide display visible light photocatalytic activity. This paper presents first principles simulations of iron oxide clusters adsorbed at the rutile TiO(2) (110) surface to elucidate the origin of the visible light photocatalytic activity of iron oxide modified TiO(2). Small iron oxide clusters adsorb at rutile (110) surface and their presence shifts the valence band so that the band gap of the composite is narrowed towards the visible, thus confirming the origin of the visible light activity of this composite material. The presence of iron oxide at the TiO(2) surface leads to charge separation, which is the origin of enhanced photocatalytic efficiency, consistent with experimental photoluminesence and photocurrent data. Surface modification of a metal oxide is thus an interesting route in the development of visible light photocatalytic materials.

  17. Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: Implications of the interfacial charge transfer (IFCT)

    Energy Technology Data Exchange (ETDEWEB)

    Rtimi, S., E-mail: sami.rtimi@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Station 6, CH-1015 Lausanne (Switzerland); UR Catalyse/Matériaux pour l‘Environnement et les Procédés (URCMEP), Faculté des Sciences de Gabès, Université de Gabès, 6072 Gabès (Tunisia); Sanjines, R. [Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-IPMC-LNNME, Bat PH, Station 3, CH1015 Lausanne (Switzerland); Pulgarin, C., E-mail: cesar.pulgarin@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Station 6, CH-1015 Lausanne (Switzerland); Houas, A. [UR Catalyse/Matériaux pour l‘Environnement et les Procédés (URCMEP), Faculté des Sciences de Gabès, Université de Gabès, 6072 Gabès (Tunisia); Lavanchy, J.-C. [Université de Lausanne, IMG, Centre d’Analyse Minérale, Bat Anthropole, CH-1015 Lausanne (Switzerland); Kiwi, J. [Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LPI, Bat Chimie, Station 6, CH1015 Lausanne (Switzerland)

    2013-09-15

    Highlights: • Design, preparation, testing and characterization of uniform sputtered films. • Interfacial charge transfer from the Ag{sub 2}O (cb) to the lower laying Ta{sub 2}O{sub 5} (cb). • The optical absorption of TaON and TaON/Ag was proportional to E. coli inactivation. • Self-cleaning of the TaON/Ag polyester enables repetitive E. coli inactivation. -- Abstract: This study reports the design, preparation, testing and surface characterization of uniform films deposited by sputtering Ag and Ta on non-heat resistant polyester to evaluate the Escherichia coli inactivation by TaON, TaN/Ag, Ag and TaON/Ag polyester. Co-sputtering for 120 s Ta and Ag in the presence of N{sub 2} and O{sub 2} led to the faster E. coli inactivation by a TaON/Ag sample within ∼40 min under visible light irradiation. The deconvolution of TaON/Ag peaks obtained by X-ray photoelectron spectroscopy (XPS) allowed the assignment of the Ta{sub 2}O{sub 5} and Ag-species. The shifts observed for the XPS peaks have been assigned to AgO to Ag{sub 2}O and Ag{sup 0}, and are a function of the applied sputtering times. The mechanism of interfacial charge transfer (IFCT) from the Ag{sub 2}O conduction band (cb) to the lower laying Ta{sub 2}O{sub 5} (cb) is discussed suggesting a reaction mechanism. The optical absorption of the TaON and TaON/Ag samples found by diffuse reflectance spectroscopy (DRS) correlated well with the kinetics of E. coli inactivation. The TaON/Ag sample microstructure was characterized by contact angle (CA) and by atomic force microscopy (AFM). Self-cleaning of the TaON/Ag polyester after each disinfection cycle enabled repetitive E. coli inactivation.

  18. Electron spin polarization transfer to the charge-separated state from locally excited triplet configuration: theory and its application to characterization of geometry and electronic coupling in the electron donor-acceptor system.

    Science.gov (United States)

    Kobori, Yasuhiro; Fuki, Masaaki; Murai, Hisao

    2010-11-18

    We present a theoretical model of analysis of the time-resolved electron paramagnetic resonance (TREPR) spectrum of the charge-separated (CS) state generated by the photoinduced electron transfer (ET) reaction via the locally excited triplet state in an electron donor-acceptor (D-A) system with a fixed molecular orientation. We show, by the stochastic-Liouville equation, that chemically induced dynamic electron polarization (CIDEP) of the triplet mechanism is explained by lack of transfer of quantum coherence terms in the primary triplet spin state, resulting in net emissive or absorptive electron spin polarization (ESP) which is dependent on anisotropy of the singlet-triplet intersystem crossing in the precursor excited state. This disappearance of the coherence is clearly shown to occur when the photoinduced ET rate is smaller than the angular frequency of the Zeeman splitting: the transferred coherence terms are averaged to be zero due to effective quantum oscillations during the time that the chemical reaction proceeds. The above theory has been applied to elucidate the molecular geometries and spin-spin exchange interactions (2J) of the CS states for both folded and extended conformers by computer simulations of TREPR spectra of the zinc porphyrin-fullerene dyad (ZnP-C(60)) bridged by diphenyldisilane. On the extended conformation, the electronic coupling is estimated from the 2J value. It has been revealed that the coupling term is smaller than the reported electronic interactions of the porphyrin-C(60) systems bridged by diphenylamide spacers. The difference in the electronic couplings has been explained by the difference in the LUMO levels of the bridge moieties that mediate the superexchange coupling for the long-range ET reaction.

  19. Direct charge sharing observation in single-photon-counting pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, G. [Centro Nacional de Microelectronica, IMB-CNM (CSIC), Barcelona 08193 (Spain)]. E-mail: Giulio.Pellegrini@cnm.es; Maiorino, M. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Blanchot, G. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Chmeissani, M. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Garcia, J. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Lozano, M. [Centro Nacional de Microelectronica, IMB-CNM (CSIC), Barcelona 08193 (Spain); Martinez, R. [Centro Nacional de Microelectronica, IMB-CNM (CSIC), Barcelona 08193 (Spain); Puigdengoles, C. [IFAE - Institut de Fisica d' Altes Energies, UAB Campus, 08193 Bellaterra (Spain); Ullan, M. [Centro Nacional de Microelectronica, IMB-CNM (CSIC), Barcelona 08193 (Spain)

    2007-04-01

    In photon-counting imaging devices, charge sharing can limit the detector spatial resolution and contrast, as multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, the importance of charge sharing in pixellated CdTe and silicon detectors is studied by exposing imaging devices to different low activity sources. These devices are made of Si and CdTe pixel detector bump-bonded to Medipix2 single-photon-counting chips with a 55 {mu}m pixel pitch. We will show how charge sharing affects the spatial detector resolution depending on incident particle type (alpha, beta and gamma), detector bias voltage and read-out chip threshold. This study will give an insight on the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  20. Direct charge sharing observation in single-photon-counting pixel detector

    Science.gov (United States)

    Pellegrini, G.; Maiorino, M.; Blanchot, G.; Chmeissani, M.; Garcia, J.; Lozano, M.; Martinez, R.; Puigdengoles, C.; Ullan, M.

    2007-04-01

    In photon-counting imaging devices, charge sharing can limit the detector spatial resolution and contrast, as multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, the importance of charge sharing in pixellated CdTe and silicon detectors is studied by exposing imaging devices to different low activity sources. These devices are made of Si and CdTe pixel detector bump-bonded to Medipix2 single-photon-counting chips with a 55 μm pixel pitch. We will show how charge sharing affects the spatial detector resolution depending on incident particle type (alpha, beta and gamma), detector bias voltage and read-out chip threshold. This study will give an insight on the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  1. Charge-coupled Substituted Garnets (Y3-xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): Structure and Stability as Crystalline Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Anthony; Newville, Mathew; Engelhard, Mark H.; Sutton , Steven R.; Navrotsky, Alexandra

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce), and thorium (Th), incorporated by a charge-coupled substitution with calci-um (Ca) for yttrium (Y) in YIG, namely 2Y3+ = Ca2+ + M4+, where M4+ = Ce4+ or Th4+. Single phase garnets Y3-xCa0.5xM0.5xFe5O12, synthesized by the citrate-nitrate combustion method, were obtained up to x = 0.7. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and 57Fe-Mössbauer spectroscopy indicated that the samples are single phase, M4+ and Ca2+ cations are restricted to the c-site, the nature of M4+ has only a minor effect on the structure, and the local environments of both the tetrahedral and octahedral Fe3+ are systematically affected by the extent of substitution, especially on the tetrahedral sublattice. The charge coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases, compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature. These structural and thermodynamic findings shed light on possible incorporation of U in this garnet system.

  2. Charge-coupled substituted garnets (Y3-xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): structure and stability as crystalline nuclear waste forms.

    Science.gov (United States)

    Guo, Xiaofeng; Kukkadapu, Ravi K; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H; Sutton, Stephen R; Navrotsky, Alexandra

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y(3+) = Ca(2+) + M(4+), where M(4+) = Ce(4+) or Th(4+). Single-phase garnets Y3-xCa0.5xM0.5xFe5O12 (x = 0.1-0.7) were synthesized by the citrate-nitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and (57)Fe-Mössbauer spectroscopy indicated that M(4+) and Ca(2+) cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe(3+) are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature.

  3. Long Range Coupling between Metallic Nanocavities

    CERN Document Server

    Salomon, Adi; Fedoruk, Michael; Feldmann, Jochen; Kolkowski, Radoslaw; Zyss, Joseph

    2014-01-01

    When two or more metallic nanoparticles are in close proximity, their plasmonic modes may interact through the near field, leading to additional resonances of the coupled system or to shifts of their resonant frequencies. This process is analogous to atom-hybridization, as had been proposed by Gersten and Nitzan and modeled by Nordlander et al. The coupling between plasmonic modes can be in-phase (symmetric) or out-of-phase (anti-symmetric), reflecting correspondingly, the "bonding" and "anti-bonding" nature of such configurations. Since the incoming light redistributes the charge distribution around the metallic nanoparticles, its polarization features play a major role in the nonlinear optical probing of the energy-level landscape upon hybridization. Thus, controlling the nature of coupling between metallic nanostructures is of a great importance as it enables tuning their spectral responses leading to novel devices which may surpass the diffraction limit.

  4. R (D(*)) and B r (B →τ ντ) in a flipped 2HDM with anomalously enhanced charged Higgs coupling to τ

    Science.gov (United States)

    Dhargyal, Lobsang

    2016-06-01

    BABAR, Belle, and recently LHCb have reported an excess in the measurements of R (D*) , R (D ) , and B r (B →τ ντ) than expected from the standard model (SM), a possible signature of lepton flavor universality violating New Physics (NP). In this work we analyze the phenomenological implications for these decay modes in a flipped two-Higg-doublet model with anomalously enhanced Yukawa coupling of H± to τ lepton. When experimental and theoretical errors are added in quadrature, we conclude that this phenomenological extension of the SM can give results in agreement within 1 σ deviation for the combination of R (D(*)) and B r (B →τ ντ) compared to about 4 σ deviation from the SM from the latest combined (BABAR, Belle, and LHCb) experimental data for these observables.

  5. Nuclear quadrupole coupling constants in complexes B...X2: Sternheimer-type properties of free X2 from experimental intramolecular charge shifts

    Science.gov (United States)

    Fowler, P. W.

    In complexes belonging to the series B...X2(X = halogen), the measured nuclear quadrupole coupling constants show a consistent trend: after allowing for zero-point angular oscillation of X2, chi(X) for the inner nucleus is larger in magnitude than in free X2 while for the outer nucleus it is smaller by approximately the same amount. These observations are consistent with supermolecule calculations reported here and with two simple models. The Townes-Dailey model gives the (small) fraction delta of an electron shifted from the inner to the outer atom on formation B...X2. The long-range model of intermolecular forces allows deduction of a Sternheimer-like response property gzz,z of free X2 from the observed variation of delta with B. For Cl2, the value deduced for gzz,z is 65 au, in reasonable agreement with a previous ab initio result of 45.3 au.

  6. First-principles study of Sr2Ir1-xRhxO4: charge transfer, spin-orbit coupling change, and the metal-insulator transition

    Science.gov (United States)

    Sim, Jae-Hoon; Kim, Heung-Sik; Han, Myung Joon

    2015-03-01

    Using first-principles density functional theory (DFT) calculations, we investigated the electronic structure of Rh-doped iridate, Sr2Ir1-xRhxO4 for which the doping (x) dependent metal-insulator transition (MIT) has been reported experimentally and the controversial discussion developed regarding the origin of this transition. Our DFT+U calculation shows that the value of remains largely intact over the entire doping range considered here (x = 0 . 0 , 0 . 125 , 0 . 25 , 0 . 50 , 0 . 75 , and 1 . 0) in good agreement with the branching ratio measured by x-ray absorption spectroscopy. Also contrary to a previous picture to explain MIT based on the charge transfer between the transition-metal sites, our calculation clearly shows that those sites remain basically isoelectronic while the impurity bands of predominantly rhodium character are introduced near the Fermi level. As the doping increases, this impurity band overlaps with lower Hubbard band of iridium, leading to metal-insulator transition. The results will be discussed with comparison to the case of Ru doping. Computational resources were suported by The National Institute of Supercomputing and Networking/Korea Institute of Science and Technology Information with supercomputing resources including technical spport (Grant No. KSC-2013-C2-23).

  7. Can Like Charges Attract Each Other?

    Science.gov (United States)

    Balta, Nuri

    2012-01-01

    Electroscopes are sensitive instruments useful for investigations of static electricity. They are devices that are used for detecting whether an object is charged or uncharged. They also determine the type of charge. Their operation is based on the principle of like sign charge repulsion.

  8. 40 CFR 89.327 - Charge cooling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Charge cooling. 89.327 Section 89.327....327 Charge cooling. For engines with an air-to-air intercooler (or any other low temperature charge air cooling device) between the turbocharger compressor and the intake manifold, follow SAE...

  9. Direct measurements of Ab and Ac using vertex and kaon charge tags at the SLAC detector.

    Science.gov (United States)

    Abe, Koya; Abe, Kenji; Abe, T; Adam, I; Akimoto, H; Aston, D; Baird, K G; Baltay, C; Band, H R; Barklow, T L; Bauer, J M; Bellodi, G; Berger, R; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Calcaterra, A; Cassell, R; Chou, A; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Crawford, G; Damerell, C J S; Daoudi, M; Dasu, S; de Groot, N; de Sangro, R; Dong, D N; Doser, M; Dubois, R; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fernandez, J P; Flood, K; Frey, R; Hart, E L; Hasuko, K; Hertzbach, S S; Huffer, M E; Huynh, X; Iwasaki, M; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Kajikawa, R; Kalelkar, M; Kang, H J; Kofler, R R; Kroeger, R S; Langston, M; Leith, D W G; Lia, V; Lin, C; Mancinelli, G; Manly, S; Mantovani, G; Markiewicz, T W; Maruyama, T; McKemey, A K; Messner, R; Moffeit, K C; Moore, T B; Morii, M; Muller, D; Murzin, V; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Oishi, N; Onoprienko, D; Osborne, L S; Panvini, R S; Park, C H; Peruzzi, I; Piccolo, M; Piemontese, L; Plano, R J; Prepost, R; Prescott, C Y; Ratcliff, B N; Reidy, J; Reinertsen, P L; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T; Schumm, B A; Schwiening, J; Serbo, V V; Shapiro, G; Sinev, N B; Snyder, J A; Staengle, H; Stahl, A; Stamer, P; Steiner, H; Su, D; Suekane, F; Sugiyama, A; Suzuki, A; Swartz, M; Taylor, F E; Thom, J; Torrence, E; Usher, T; Va'vra, J; Verdier, R; Wagner, D L; Waite, A P; Walston, S; Weidemann, A W; Weiss, E R; Whitaker, J S; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Wright, T R; Yamamoto, R K; Yashima, J; Yellin, S J; Young, C C; Yuta, H

    2005-03-11

    Exploiting the manipulation of the SLAC Linear Collider electron-beam polarization, we present precise direct measurements of the parity-violation parameters A(c) and A(b) in the Z-boson-c-quark and Z-boson-b-quark coupling. Quark-antiquark discrimination is accomplished via a unique algorithm that takes advantage of the precise SLAC Large Detector charge coupled device vertex detector, employing the net charge of displaced vertices as well as the charge of kaons that emanate from those vertices. From the 1996-1998 sample of 400 000 Z decays, produced with an average beam polarization of 73.4%, we find A(c)=0.673+/-0.029(stat)+/-0.023(syst) and A(b)=0.919+/-0.018(stat)+/-0.017(syst).

  10. Resolution enhancement using simultaneous couple illumination

    Science.gov (United States)

    Hussain, Anwar; Martínez Fuentes, José Luis

    2016-10-01

    A super-resolution technique based on structured illumination created by a liquid crystal on silicon spatial light modulator (LCOS-SLM) is presented. Single and simultaneous pairs of tilted beams are generated to illuminate a target object. Resolution enhancement of an optical 4f system is demonstrated by using numerical simulations. The resulting intensity images are recorded at a charged couple device (CCD) and stored in the computer memory for further processing. One dimension enhancement can be performed with only 15 images. Two dimensional complete improvement requires 153 different images. The resolution of the optical system is extended three times compared to the band limited system.

  11. Self compensation of classical non abelian charge

    OpenAIRE

    Bartnik, E. A.

    2009-01-01

    A new classical, non singular solution with arbitrarily low energy is found for SU(2) non abelian fields in the presence of a static charge. Physically it means that a classical charge coupled to any SU(N) non abelian gauge field will develop a pure gauge field, carrying no energy, that will completely screen it - there are no visible classical non abelian charges.

  12. Charge Transport in Conjugated Block Copolymers

    Science.gov (United States)

    Smith, Brandon; Le, Thinh; Lee, Youngmin; Gomez, Enrique

    Interest in conjugated block copolymers for high performance organic photovoltaic applications has increased considerably in recent years. Polymer/fullerene mixtures for conventional bulk heterojunction devices, such as P3HT:PCBM, are severely limited in control over interfaces and domain length scales. In contrast, microphase separated block copolymers self-assemble to form lamellar morphologies with alternating electron donor and acceptor domains, thereby maximizing electronic coupling and local order at interfaces. Efficiencies as high as 3% have been reported in solar cells for one block copolymer, P3HT-PFTBT, but the details concerning charge transport within copolymers have not been explored. To fill this gap, we probed the transport characteristics with thin-film transistors. Excellent charge mobility values for electron transport have been observed on aluminum source and drain contacts in a bottom gate, bottom contact transistor configuration. Evidence of high mobility in ordered PFTBT phases has also been obtained following thermal annealing. The insights gleaned from our investigation serve as useful guideposts, revealing the significance of the interplay between charge mobility, interfacial order, and optimal domain size in organic block copolymer semiconductors.

  13. Direct solar energy conversion and storage through coupling between photoelectrochemical and ferroelectric effects

    Directory of Open Access Journals (Sweden)

    Chi-Wei Lo

    2011-12-01

    Full Text Available Harvesting and storing solar energy has become more and more important. Current solid-state photovoltaic cells and conventional photoelectrochemical cells are not capable of directly storing the converted energy, which has to be facilitated by connecting to external storing devices. We demonstrate a device architecture that can convert and store solar energy in the electrical form within an intrinsically single structure. Mobile charge is internally stored, based on the coupling between photoelectrochemical and ferroelectric effects. The tested device architecture can be photo-charged under 1000 W/m2 of white light to an open-circuit voltage of 0.47V with a capacity of 37.62 mC/cm2. After removal of the light source, the mobile charge stored lasts more than 8 hours, and the open-circuit output voltage lasts more than 24 hours.

  14. Charge Transport in Hybrid Halide Perovskite Field-Effect Transistors

    Science.gov (United States)

    Jurchescu, Oana

    Hybrid organic-inorganic trihalide perovskite (HTP) materials exhibit a strong optical absorption, tunable band gap, long carrier lifetimes and fast charge carrier transport. These remarkable properties, coupled with their reduced complexity processing, make the HTPs promising contenders for large scale, low-cost thin film optoelectronic applications. But in spite of the remarkable demonstrations of high performance solar cells, light-emitting diodes and field-effect transistor devices, all of which took place in a very short time period, numerous questions related to the nature and dynamics of the charge carriers and their relation to device performance, stability and reliability still remain. This presentation describes the electrical properties of HTPs evaluated from field-effect transistor measurements. The electrostatic gating of provides an unique platform for the study of intrinsic charge transport in these materials, and, at the same time, expand the use of HTPs towards switching electronic devices, which have not been explored previously. We fabricated FETs on SiO2 and polymer dielectrics from spin coating, thermal evaporation and spray deposition and compare their properties. CH3NH3PbI3-xClx can reach balanced electron and hole mobilities of 10 cm2/Vs upon tuning the thin-film microstructure, injection and the defect density at the semiconductor/dielectric interface. The work was performed in collaboration with Yaochuan Mei (Wake Forest University), Chuang Zhang, and Z. Valy Vardeny (University of Utah). The work is supported by ONR Grant N00014-15-1-2943.

  15. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  16. CHARGE syndrome

    Directory of Open Access Journals (Sweden)

    Prasad Chitra

    2006-09-01

    Full Text Available Abstract CHARGE syndrome was initially defined as a non-random association of anomalies (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness. In 1998, an expert group defined the major (the classical 4C's: Choanal atresia, Coloboma, Characteristic ears and Cranial nerve anomalies and minor criteria of CHARGE syndrome. Individuals with all four major characteristics or three major and three minor characteristics are highly likely to have CHARGE syndrome. However, there have been individuals genetically identified with CHARGE syndrome without the classical choanal atresia and coloboma. The reported incidence of CHARGE syndrome ranges from 0.1–1.2/10,000 and depends on professional recognition. Coloboma mainly affects the retina. Major and minor congenital heart defects (the commonest cyanotic heart defect is tetralogy of Fallot occur in 75–80% of patients. Choanal atresia may be membranous or bony; bilateral or unilateral. Mental retardation is variable with intelligence quotients (IQ ranging from normal to profound retardation. Under-development of the external genitalia is a common finding in males but it is less apparent in females. Ear abnormalities include a classical finding of unusually shaped ears and hearing loss (conductive and/or nerve deafness that ranges from mild to severe deafness. Multiple cranial nerve dysfunctions are common. A behavioral phenotype for CHARGE syndrome is emerging. Mutations in the CHD7 gene (member of the chromodomain helicase DNA protein family are detected in over 75% of patients with CHARGE syndrome. Children with CHARGE syndrome require intensive medical management as well as numerous surgical interventions. They also need multidisciplinary follow up. Some of the hidden issues of CHARGE syndrome are often forgotten, one being the feeding adaptation of these children, which needs an early aggressive approach from a feeding team. As the child

  17. Proton irradiation effects in silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Simoen, E.; Vanhellemont, J.; Alaerts, A. [IMEC, Leuven (Belgium)] [and others

    1997-03-01

    Proton irradiation effects in silicon devices are studied for components fabricated in various substrates in order to reveal possible hardening effects. The degradation of p-n junction diodes increases in first order proportionally with the fluence, when submitted to 10 MeV proton irradiations in the range 5x10{sup 9} cm{sup -2} to 5x10{sup 11} cm{sup -2}. The damage coefficients for both p- and n-type Czochralski, Float-Zone and epitaxial wafers are reported. Charge-Coupled Devices fabricated in a 1.2 {mu}m CCD-CMOS technology are shown to be quite resistant to 59 MeV H{sup +} irradiations, irrespective of the substrate type. (author)

  18. XY displacement device

    NARCIS (Netherlands)

    Heerens, W.C.; Laham, C.D.; Holman, A.E.

    1997-01-01

    An XY-displacement device (1) with a four-fold symmetry comprises a reference frame (10); an object mount (20) for holding an object (22) to be displaced; an X-manipulator (100) coupled between the reference frame (10) and the object mount (20), which provides a rigid coupling between the object mou

  19. Charged Leptons

    CERN Document Server

    Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P

    2013-01-01

    This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.

  20. Near Room-Temperature Memory Devices Based on Hybrid Spin-Crossover@SiO2 Nanoparticles Coupled to Single-Layer Graphene Nanoelectrodes.

    Science.gov (United States)

    Holovchenko, Anastasia; Dugay, Julien; Giménez-Marqués, Mónica; Torres-Cavanillas, Ramón; Coronado, Eugenio; van der Zant, Herre S J

    2016-09-01

    The charge transport properties of SCO [Fe(Htrz)2 (trz)](BF4 ) NPs covered with a silica shell placed in between single-layer graphene electrodes are reported. A reproducible thermal hysteresis loop in the conductance above room-temperature is evidenced. This bistability combined with the versatility of graphene represents a promising scenario for a variety of technological applications but also for future sophisticated fundamental studies.

  1. Electronic device for measuring the polarization parameter in the {pi}{sup -}p {yields} {pi}{sup 0}n charge exchange reaction on a polarized proton target; Un appareillage electronique destine a la mesure du parametre de polarisation dans la reaction d'echange de charge {pi}{sup -}p {yields} {pi}{sup 0}n sur cible de protons polarises

    Energy Technology Data Exchange (ETDEWEB)

    Brehin, S. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-12-15

    An electronic apparatus has been constructed to measure the polarization parameter P{sub 0}(t) in {pi}{sup -}p {yields} {pi}{sup 0}n charge exchange scattering at 5.9 GeV/c and 11,2 GeV/c on polarized proton target. This device insures triggering of a heavy plate spark chamber, allowing visualisation of {gamma} rays from the {pi}{sup 0} decays when the associated neutron offers suitable characteristics in direction and energy. The neutron is detected by an array of 32 counters and his energy is measured by a time of flight method. Electronic circuits of this apparatus are described as test and calibration methods used. (author) [French] Un appareillage electronique a ete realise pour mesurer le parametre de polarisation P{sub 0}(t) dans la reaction d'echange de charge {pi}{sup -}p {yields} {pi}{sup 0}n a 5,9 GeV/c et 11,2 GeV/c sur une cible de protons polarises. Ce dispositif assure le declenchement d'une chambre a etincelles a plaques lourdes, permettant de visualiser les {gamma} de desitegration du {pi}{sup 0}, lorsque le neutron associe presente les caracteristiques convenables en direction et en energie. Le neutron est detecte par un ensemble de 32 compteurs et son energie est mesuree par une methode de temps de vol. Les circuits composant cet appareillage sont decrits ainsi que les methodes d'etalonnage et de verification utilisees. (auteur)

  2. Charge Breeding of Radioactive Ions

    CERN Document Server

    Wenander, F J C

    2013-01-01

    Charge breeding is a technique to increase the charge state of ions, in many cases radioactive ions. The singly charged radioactive ions, produced in an isotope separator on-line facility, and extracted with a low kinetic energy of some tens of keV, are injected into a charge breeder, where the charge state is increased to Q. The transformed ions are either directed towards a dedicated experiment requiring highly charged ions, or post-accelerated to higher beam energies. In this paper the physics processes involved in the production of highly charged ions will be introduced, and the injection and extraction beam parameters of the charge breeder defined. A description of the three main charge-breeding methods is given, namely: electron stripping in gas jet or foil; external ion injection into an electron-beam ion source/trap (EBIS/T); and external ion injection into an electron cyclotron resonance ion source (ECRIS). In addition, some preparatory devices for charge breeding and practical beam delivery aspects ...

  3. History and latest development of ferro electric-semiconductor coupled photovoltaic devices%铁电半导体耦合光伏器件的历史与最新进展∗

    Institute of Scientific and Technical Information of China (English)

    杨彪; 刘向鑫; 李辉

    2015-01-01

    本文介绍了新型铁电-半导体耦合光伏器件的发展历史和现状,阐述了所观察到的非经典行为,即开路电压在直流偏置电场控制下的迟滞的现象。将之与含有光诱导偶极子场的有机光伏器件和量子点电池、压电光电子器件、铁电光伏器件、钙钛矿电池等进行比较,发现偶极子极化电场在多种光伏器件中均存在,甚至可能起到主导作用。因此,提出了偶极子场半导体器件的概念,期望从更广义的范围涵盖结场型器件和非结场型偶极子器件,为促进光伏发电领域更多的创新提供思路。%This paper introduces the history and current research status of the novel ferroelectric-semiconductor coupled photovoltaic devices, in which a ferroelectric field of polarized dipoles from nanoparticles separates the photogenerated carriers. Fabrication of such devices by combining a CdS nanodipole and a CdTe absorber via a feasible method is described, which involves a phase segregation process of CdS from a CdS–CdTe pseudobinary system. An irregular behavior is observed on this type of devices, i.e. the hysteresis of open circuit voltage due to external bias of direct-current (DC) electric field. Other macroscopic and microscopic evidences of the dipole field photovoltaic effect are also described. Meanwhile, similar photovoltaic mechanism observed in other types of solar cells are also discussed, such as organic photovoltaic devices and quantum dot devices with photo-induced dipole polarization field, piezo-phototronic devices, ferroelectric photovoltaic devices, as well as perovskite solar cells. It is apparent that the polarization field of dipoles not only exists in the various types of photovoltaic devices, but also may dominate the behavior of devices. Therefore, we propose that a new concept of dipole field semiconductor devices could be properly used to explain the photovoltaic behavior of both junctional and un

  4. Charge and spin transport in graphene devices

    OpenAIRE

    Pietrobon, Luca

    2015-01-01

    170 p. El grafeno es una capa bidimensional (2D) de átomos de carbono conectadospor enlaces ¿¿¿¿2. Electrónicamente el grafeno es un semi-metal sin bandaprohibida con una relación de dispersión lineal para bajas densidades deportadores de carga, y ha mostrado un rendimiento excepcional en una granvariedad de medidas físicas, entre las que destacan la movilidad eléctrica(2.5 � 105 cm2V-1s-1) [1], fuerza intrínseca (130 GPa) [2], impermeabilidad alos gases [3] y conductividad térmica (~ 2000...

  5. DNA charge transport: Moving beyond 1D

    Science.gov (United States)

    Zhang, Yuqi; Zhang, William B.; Liu, Chaoren; Zhang, Peng; Balaeff, Alexander; Beratan, David N.

    2016-10-01

    Charge transport across novel DNA junctions has been studied for several decades. From early attempts to move charge across DNA double crossover junctions to recent studies on DNA three-way junctions and G4 motifs, it is becoming clear that efficient cross-junction charge migration requires strong base-to-base electronic coupling at the junction, facilitated by favorable pi-stacking. We review recent progress toward the goal of manipulating and controlling charge transport through DNA junctions.

  6. Improved search for elementary particles with fractional electric charge

    Energy Technology Data Exchange (ETDEWEB)

    Mar, N.M.; Lee, E.R.; Fleming, G.R.; Casey, B.C.; Perl, M.L.; Garwin, E.L. [Stanford Linear Accelerator Center, Stanford, California 94309 (United States); Hendricks, C.D. [W. J. Schafer Associates, Livermore, California 94550 (United States); Lackner, K.S. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Shaw, G.L. [Department of Physics, University of California, Irvine, California 92717 (United States)

    1996-06-01

    We have devised and demonstrated the successful operation of a low-cost, high-mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a charge coupled device video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, we have looked at 5974941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95{percent} confidence, the concentration of isolated quarks with {plus_minus}1/3{ital e} or {plus_minus}2/3{ital e} in silicone oil is less than one per 2.14{times}10{sup 20} nucleons. {copyright} {ital 1996 The American Physical Society.}

  7. Improved search for elementary particles with fractional electric charge

    Science.gov (United States)

    Mar, Nancy M.; Lee, Eric R.; Fleming, George R.; Casey, Brendan C. K.; Perl, Martin L.; Garwin, Edward L.; Hendricks, Charles D.; Lackner, Klaus S.; Shaw, Gordon L.

    1996-06-01

    We have devised and demonstrated the successful operation of a low-cost, high-mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a charge coupled device video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, we have looked at 5 974 941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95% confidence, the concentration of isolated quarks with +/-1/3e or +/-2/3e in silicone oil is less than one per 2.14×1020 nucleons.

  8. Temperature-Dependent Charge Transport through Individually Contacted DNA Origami-Based Au Nanowires.

    Science.gov (United States)

    Teschome, Bezu; Facsko, Stefan; Schönherr, Tommy; Kerbusch, Jochen; Keller, Adrian; Erbe, Artur

    2016-10-11

    DNA origami nanostructures have been used extensively as scaffolds for numerous applications such as for organizing both organic and inorganic nanomaterials, studying single molecule reactions, and fabricating photonic devices. Yet, little has been done toward the integration of DNA origami nanostructures into nanoelectronic devices. Among other challenges, the technical difficulties in producing well-defined electrical contacts between macroscopic electrodes and individual DNA origami-based nanodevices represent a serious bottleneck that hinders the thorough characterization of such devices. Therefore, in this work, we have developed a method to electrically contact individual DNA origami-based metallic nanowires using electron beam lithography. We then characterize the charge transport of such nanowires in the temperature range from room temperature down to 4.2 K. The room temperature charge transport measurements exhibit ohmic behavior, whereas at lower temperatures, multiple charge transport mechanisms such as tunneling and thermally assisted transport start to dominate. Our results confirm that charge transport along metallized DNA origami nanostructures may deviate from pure metallic behavior due to several factors including partial metallization, seed inhomogeneities, impurities, and weak electronic coupling among AuNPs. Besides, this study further elucidates the importance of variable temperature measurements for determining the dominant charge transport mechanisms for conductive nanostructures made by self-assembly approaches.

  9. Environment-protected solid-state-based distributed charge qubit

    Science.gov (United States)

    Tayebi, Amin; Hoatson, Tanya Nicole; Wang, Joie; Zelevinsky, Vladimir

    2016-12-01

    A solid-state-based charge qubit is presented. The system consists of a one-dimensional wire with a pair of qubits embedded at its center. It is shown that the system supports collective states localized in the left and right sides of the wire and therefore, as a whole, performs as a single qubit. The couplings between the ground and excited states of the two central qubits are inversely proportional making them fully asynchronized and allowing for coherent manipulation and gate operations. Initialization and measurement devices, such as leads and charge detectors, connected to the edges of the wire are modeled by a continuum of energy states. The coupling to the continuum is discussed using the effective non-Hermitian Hamiltonian. At weak continuum coupling, all internal states uniformly acquire small decay widths. This changes dramatically as the coupling strength increases: the width distribution undergoes a sharp restructuring and is no longer uniformly divided among the eigenstates. Two broad resonances localized at the ends of the wire are formed. These superradiant states (analogous to Dicke states in quantum optics) effectively protect the remaining internal states from decaying into the continuum and hence increase the lifetime of the qubit. Environmental noise is introduced by considering random Gaussian fluctuations of electronic energies. The interplay between decoherence and superradiance is studied by solving the stochastic Liouville equation. In addition to increasing the lifetime, the emergence of the superradiant states increases the qubit coherence.

  10. Long-distance coherent coupling in a quantum dot array.

    Science.gov (United States)

    Braakman, F R; Barthelemy, P; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2013-06-01

    Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau-Zener-Stückelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices.

  11. Metal oxide charge transport material doped with organic molecules

    Science.gov (United States)

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  12. Charge transport in nanoscale junctions.

    Science.gov (United States)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-03

    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at

  13. Magnetoelectric Coupling in Composite Multiferroic Heterostructures

    Science.gov (United States)

    Hoffman, Jason

    In this work, we demonstrate a large charge-mediated magnetoelectric coupling in a PbZr0.2Ti0.8O3 / La0.8 Sr0.2MnO3 (PZT/LSMO) composite structure resulting from direct control of magnetism via charge carrier density. This approach has the advantage that its physical mechanism is transparent and the size of the effect can be quantified and understood qualitatively within the double-exchange model. Direct quantification of the charge-driven magnetic changes based on electronic, magnetic, and spectroscopic measurements show that both the spin state and spin configuration of LSMO are modulated. Using a combination of advanced physical vapor deposition techniques, we have grown epitaxial PZT/LSMO bilayer heterostructures on (001) SrTiO 3 substrates with excellent crystallinity, atomically smooth surfaces, low leakage current density, and abrupt interfaces. Magneto-optic Kerr effect (MOKE) magnetometry was used to directly interrogate the local magnetic state of the LSMO as a function of the PZT polarization state. We show direct control of magnetism via applied electric fields, including modulation of the magnetotransport behavior and magnetic-ordering temperature, on/off switching of magnetism, and hysteretic magnetization versus electric field (M-E) characteristics. The magnetoelectric coupling strength, which relates the change in magnetization to the applied electric field, is found to vary strongly with temperature, reaching a low temperature saturation value of +6 Oe cm / kV, much larger than observed in single-phase magnetoelectrics and too large to be explained by a simple band-filling model. To clarify the origin of the magnetoelectric coupling, we carried out near edge x-ray absorption measurements that revealed a well defined change in the position of the Mn absorption edge with the ferroelectric polarization, giving a direct measure of the change in Mn valency in LSMO. We explain these results in terms of an interfacial magnetic reconstruction, whereby the

  14. Advanced Semiconductor Devices

    Science.gov (United States)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    I. Wide band gap devices. Wide-Bandgap Semiconductor devices for automotive applications / M. Sugimoto ... [et al.]. A GaN on SiC HFET device technology for wireless infrastructure applications / B. Green ... [et al.]. Drift velocity limitation in GaN HEMT channels / A. Matulionis. Simulations of field-plated and recessed gate gallium nitride-based heterojunction field-effect transistors / V. O. Turin, M. S. Shur and D. B. Veksler. Low temperature electroluminescence of green and deep green GaInN/GaN light emitting diodes / Y. Li ... [et al.]. Spatial spectral analysis in high brightness GaInN/GaN light emitting diodes / T. Detchprohm ... [et al.]. Self-induced surface texturing of Al2O3 by means of inductively coupled plasma reactive ion etching in Cl2 chemistry / P. Batoni ... [et al.]. Field and termionic field transport in aluminium gallium arsenide heterojunction barriers / D. V. Morgan and A. Porch. Electrical characteristics and carrier lifetime measurements in high voltage 4H-SiC PiN diodes / P. A. Losee ... [et al.]. Geometry and short channel effects on enhancement-mode n-Channel GaN MOSFETs on p and n- GaN/sapphire substrates / W. Huang, T. Khan and T. P. Chow. 4H-SiC Vertical RESURF Schottky Rectifiers and MOSFETs / Y. Wang, P. A. Losee and T. P. Chow. Present status and future Directions of SiGe HBT technology / M. H. Khater ... [et al.]Optical properties of GaInN/GaN multi-quantum Wells structure and light emitting diode grown by metalorganic chemical vapor phase epitaxy / J. Senawiratne ... [et al.]. Electrical comparison of Ta/Ti/Al/Mo/Au and Ti/Al/Mo/Au Ohmic contacts on undoped GaN HEMTs structure with AlN interlayer / Y. Sun and L. F. Eastman. Above 2 A/mm drain current density of GaN HEMTs grown on sapphire / F. Medjdoub ... [et al.]. Focused thermal beam direct patterning on InGaN during molecular beam epitaxy / X. Chen, W. J. Schaff and L. F. Eastman -- II. Terahertz and millimeter wave devices. Temperature-dependent microwave performance of

  15. Grain charging in protoplanetary discs

    CERN Document Server

    Ilgner, Martin

    2011-01-01

    Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as MHD (magnetohydrodynamic) turbulence and grain growth which are coupled in a two-way process. We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains and aggregates with fractal dimension D_f = 2. Applying a simple chemical network that accounts for collisional charging of grains, we provide a semi-analytical solution. This allowed us to calculate the equilibrium population of grain charges and the ionisation fraction efficiently. The grain charging was evaluated for different dynamical environments ranging from static to non-stationary disc configurations. The results show that the adsorption/desorption of neutral gas-phase heavy metals, such as magnesium, effects the ...

  16. A modified potential probe for induction charging risk assessment

    Science.gov (United States)

    Fast, Lars; Paasi, Jaakko

    2008-12-01

    Practical assessment of risks for Electrostatic Discharge (ESD) failures of semiconductor devices, due to charges induced on devices in a manufacturing or repair environment of electronics has been difficult, because easily measurable parameters such as the electrostatic field and the potential of a charged surface do not directly quantify the risk. In this paper a new method of assessing the risks with induction charging of a sensitive device is presented by introducing a well-defined dummy device, which is a simple modification of the probe of DC type non-contacting electrostatic voltmeter. By placing the modified potential probe (mimicking large sensitive device) in front of charged surface, risks of ESD failure for a device due to induction charging can be assessed. The electrostatic response of the probe at different distances between charged surface and the probe has been verified by numerical model calculations.

  17. Three-terminal energy harvester with coupled quantum dots.

    Science.gov (United States)

    Thierschmann, Holger; Sánchez, Rafael; Sothmann, Björn; Arnold, Fabian; Heyn, Christian; Hansen, Wolfgang; Buhmann, Hartmut; Molenkamp, Laurens W

    2015-10-01

    Rectification of thermal fluctuations in mesoscopic conductors is the key idea behind recent attempts to build nanoscale thermoelectric energy harvesters to convert heat into useful electric power. So far, most concepts have made use of the Seebeck effect in a two-terminal geometry, where heat and charge are both carried by the same particles. Here, we experimentally demonstrate the working principle of a new kind of energy harvester, proposed recently, using two capacitively coupled quantum dots. We show that, due to the novel three-terminal design of our device, which spatially separates the heat reservoir from the conductor circuit, the directions of charge and heat flow become decoupled. This enables us to manipulate the direction of the generated charge current by means of external gate voltages while leaving the direction of heat flow unaffected. Our results pave the way for a new generation of multi-terminal nanoscale heat engines.

  18. Microwave Coupling to ECR and Alternative Heating Methods

    CERN Document Server

    Celona, L

    2013-01-01

    The Electron Cyclotron Resonance Ion Source (ECRIS) is nowadays the most effective device that can feed particle accelerators in a continuous and reliable way, providing high-current beams of low- and medium-charge-state ions and relatively intense currents for highly charged ions. The ECRIS is an important tool for research with ion beams (in surface, atomic, and nuclear science) while, on the other hand, it implies plasma under extreme conditions and thus constitutes an object of scientific interest in itself. The fundamental aspect of the coupling between the electromagnetic wave and the plasma is hereinafter treated together with some variations to the classical ECR heating mechanism, with particular attention being paid to the frequency tuning effect and two-frequency heating. Considerations of electron and ion dynamics will be presented together with some recent observations connecting the beam shape with the frequency of the electromagnetic wave feeding the cavity. The future challenges of higher-charg...

  19. Electromagnetic clutches and couplings

    CERN Document Server

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W

    2013-01-01

    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  20. Charged Galileon black holes

    Science.gov (United States)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar

    2015-05-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.

  1. Charged Galileon black holes

    CERN Document Server

    Babichev, Eugeny; Hassaine, Mokhtar

    2015-01-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...

  2. Effect of trapped charge accumulation on the retention of charge trapping memory

    Energy Technology Data Exchange (ETDEWEB)

    Jin Rui; Liu Xiaoyan; Du Gang; Kang Jinfeng; Han Ruqi, E-mail: xyliu@ime.pku.edu.cn [Institute of Microelectronics, Peking University, Beijing, 100871 (China)

    2010-12-15

    The accumulation process of trapped charges in a TANOS cell during P/E cycling is investigated via numerical simulation. The recombination process between trapped charges is an important issue on the retention of charge trapping memory. Our results show that accumulated trapped holes during P/E cycling can have an influence on retention, and the recombination mechanism between trapped charges should be taken into account when evaluating the retention capability of TANOS. (semiconductor devices)

  3. Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to a mass spectrometer.

    Science.gov (United States)

    Gao, Dan; Li, Haifang; Wang, Niejun; Lin, Jin-Ming

    2012-11-06

    An integrated microfluidic device was developed for high-throughput drug screening with an online electrospray ionization quadrupole time-of-flight mass spectrometer (ESI-Q-TOF MS). The multiple gradient generator followed by an array of microscale cell culture chambers and on-chip solid-phase extraction (SPE) columns for sample pretreatment prior to mass analysis was integrated in the device which was fabricated in one single step. By using the combination system, the process for characterization of drug absorption and evaluation of cytotoxicity could be simultaneously realized. To validate the feasibility, the absorption of methotrexate and its effects on HepG2 and Caco-2 cells were investigated. With the increasing concentration of drugs, the percentage of apoptotic cells appeared in a dose-dependent fashion. By comparison with the results obtained from ESI-Q-TOF MS analysis and cytotoxicity assay, we found that higher intracellular drug concentration resulted in increased cell cytotoxicity. The technique presented herein provides an easy protocol to screen drugs rapidly with low drug consumption, high throughput, and high sensitivity.

  4. Energy and charge transfer in nanoscale hybrid materials.

    Science.gov (United States)

    Basché, Thomas; Bottin, Anne; Li, Chen; Müllen, Klaus; Kim, Jeong-Hee; Sohn, Byeong-Hyeok; Prabhakaran, Prem; Lee, Kwang-Sup

    2015-06-01

    Hybrid materials composed of colloidal semiconductor quantum dots and π-conjugated organic molecules and polymers have attracted continuous interest in recent years, because they may find applications in bio-sensing, photodetection, and photovoltaics. Fundamental processes occurring in these nanohybrids are light absorption and emission as well as energy and/or charge transfer between the components. For future applications it is mandatory to understand, control, and optimize the wide parameter space with respect to chemical assembly and the desired photophysical properties. Accordingly, different approaches to tackle this issue are described here. Simple organic dye molecules (Dye)/quantum dot (QD) conjugates are studied with stationary and time-resolved spectroscopy to address the dynamics of energy and ultra-fast charge transfer. Micellar as well as lamellar nanostructures derived from diblock copolymers are employed to fine-tune the energy transfer efficiency of QD donor/dye acceptor couples. Finally, the transport of charges through organic components coupled to the quantum dot surface is discussed with an emphasis on functional devices.

  5. Electrically charged curvaton

    CERN Document Server

    D'Onofrio, Michela; Rajantie, Arttu

    2012-01-01

    We consider the possibility that the primordial curvature perturbation was generated through the curvaton mechanism from a scalar field with an electric charge, or precisely the Standard Model U(1) weak hypercharge. This links the dynamics of the very early universe concretely to the Standard Model of particle physics, and because the coupling strength is known, it reduces the number of free parameters in the curvaton model. We show that the model is compatible with CMB observations for Hubble rate $H_* > 10^8 GeV$ and curvaton mass $m > 10^{-2}H_*$. Charge fluctuations generated during inflation are screened by electron-positron pairs, and therefore do not violate observational constraints. The interaction with the gauge field leads to interesting dynamics after inflation, including resonant preheating, with potentially highly non-trivial observational consequences, which should be studied more carefully using numerical field theory simulations.

  6. Simplified charge transfer inefficiency correction in CCDs by trap-pumping

    Science.gov (United States)

    Gow, Jason P. D.; Murray, Neil J.

    2016-08-01

    A major concern when using Charge-Coupled Devices in hostile radiation environments is radiation induced Charge Transfer Inefficiency. The displacement damage from non-ionising radiation incident on the detector creates defects within the silicon lattice, these defects can capture and hold charge for a period of time dependent on the operating temperature and the type of defect, or "trap species". The location and type of defect can be determined to a high degree of precision using the trap-pumping technique, whereby background charges are input and then shuffled forwards and backwards between pixels many times and repeated using different transfer timings to promote resonant charge-pumping at particular defect sites. Where the charge transfer timings used in the trap-pumping process are equivalent to the nominal CCD readout modes, a simple "trap-map" of the defects that will most likely contribute to charge transfer inefficiency in the CCD array can be quickly generated. This paper describes a concept for how such a "trap-map" can be used to correct images subject to non-ionising radiation damage and provides initial results from an analytical algorithm and our recommendations for future developments.

  7. Development and characterization of "push-pull" sampling device with fast reaction quenching coupled to high-performance liquid chromatography for pharmaceutical process analytical technologies.

    Science.gov (United States)

    Chisolm, Claire N; Evans, Charles R; Jennings, Colin; Black, Will A; Antosz, Frederick J; Qiang, Yangqiao; Diaz, Angel R; Kennedy, Robert T

    2010-11-26

    A push-pull sampling system interfaced on-line to high-performance liquid chromatography (HPLC) was developed for micro-volume real-time monitoring of reaction mixtures. The device consists of concentric tubes wherein sample was continuously withdrawn through the outer tube and reaction quenchant continuously delivered through a recessed inner tube. The device allowed sampling rates of 0.1-6.0 μL/min from a reaction vessel and stopped the reaction by passive mixing with quenchant to preserve the conditions observed in the reaction vessel. A finite element model of the system showed that reaction mixtures could be completely mixed with quenchant within 4.3s at a flow rate of 1.0 μL/min. The model also showed that an offset distance of 1mm between the push capillary and sample capillary tips is sufficient to avoid leakage of quenchant/diluent into the bulk sample for push flow rates up to 95% of the pull flow rate. The maximum relative push flow rate was determined to be 90% of the pull flow rate experimentally. Delay between sampling and delivery to the HPLC was from 111±3s to 317±9s for pull flow rates from 1.0 to 3.0 μL/min in agreement with expected delays based on tubing volume. Response times were from 27±1s to 52±6s over the same flow rate range. The sampler was tested to determine the effects of sample viscosity. The sampler was also used to demonstrate periodic sampling capabilities. As a test of the system, it was used to monitor the base-catalyzed hydrolysis of aspirin for 1.5h, demonstrating its utility for monitoring an ongoing reaction.

  8. Parameters of atmospheric plasmas produced by electrosurgical devices

    Science.gov (United States)

    Keidar, Michael; Shashurin, Alexey; Canady, Jerome

    2013-10-01

    Electrosurgical systems are extensively utilized in general surgery, surgical oncology, plastic and reconstructive surgery etc. In this work we study plasma parameters created by electrosurgical system SS-200E/Argon 2 of US Medical Innovations. The maximal length of the discharge plasma column at which the discharge can be sustained was determined as function of discharge power and argon flow rate. Electrical parameters including discharge current and voltage were measured. Recently proposed Rayleigh microwave scattering method for temporally resolved density measurements of small-size atmospheric plasmas was utilized. Simultaneously, evolution of plasma column was observed using intensified charge-coupled device (ICCD) camera.

  9. Coupling between chirality and pseudospin of Dirac fermions: Non-analytical particle-hole asymmetry and a proposal for a tunneling device

    Science.gov (United States)

    Tkachov, Grigory; Hentschel, Martina

    2009-05-01

    Extended defects in graphene, such as linear edges, break the translational invariance and can also have an impact on the symmetries specific to massless Dirac-type quasiparticles in this material. The paper examines the consequences of a broken Dirac fermion parity in the framework of the effective boundary conditions varying from the Berry-Mondragon mass confinement to a zigzag edge. The parity breaking reflects the structural sublattice asymmetry of zigzag-type edges and is closely related to the previously predicted time-reversal symmetric edge states. We calculate the local and global densities of the edge states and show that they carry a specific polarization resembling to some extent that of spin-polarized materials. The lack of the parity leads to a non-analytical particle-hole asymmetry in the edge-state properties. We use our findings to interpret recently observed tunneling spectra in zigzag-terminated graphene. We also propose a graphene-based tunneling device where the particle-hole asymmetric edge states result in strongly nonlinear conductance-voltage characteristics, which could be used to manipulate the tunneling transport.

  10. The design of magnetically coupled resonant wireless power transmission device%谐振式无线电能传输装置的设计

    Institute of Scientific and Technical Information of China (English)

    姚占伟; 何金保; 吴杰; 李俊

    2014-01-01

    无线电能传输是一种新型的电能传输技术,文章设计了一种实用的无线电能传输装置,通过线圈将电能以无线方式传输。系统包括高频振荡电路、高频功率放大电路、发射和接收线圈、高频整流滤波电路,经过实验控制变量法优化后,确定发射端和接收端相应参数,实现了无线电能传输系统的设计优化。%Wireless power transmission is a new power transmission technology. In this paper, a practical wireless power transfer device was designed by the coil power transmission in a wireless method. The system circuits were designed, including a high frequency oscillating circuit, a high frequency power amplifier circuit, transmitting and receiving coil, the high-frequency rectifying filter circuit. Through the actual system testing and optimization, the parameters of the transmitting end and the receiving end were determined, which realized the optimization design of wireless power transmission.

  11. Particular boundary condition ensures that a fermion in d=1+5, compactified on a finite disk, manifests in d=1+3 as massless spinor with a charge 1/2, mass protected and chirally coupled to the gauge field

    CERN Document Server

    Borstnik, Norma Susana Mankoc

    2008-01-01

    The genuine Kaluza-Klein-like theories--with no fields in addition to gravity--have difficulties with the existence of massless spinors after the compactification of some space dimensions \\cite{witten}. We proposed in previous paper a boundary condition for spinors in d=(1+5) compactified on a flat disk that ensures masslessness of spinors (with all positive half integer charges) in d=(1+3) as well as their chiral coupling to the corresponding background gauge gravitational field. In this paper we study the same toy model, proposing a boundary condition allowing a massless spinor of one handedness and only one charge (1/2) and infinitely many massive spinors of the same charge, allowing disc to be curved. We define the operator of momentum to be Hermitean on the vector space of spinor states--the solutions on a disc with the boundary.

  12. A Coupled Analysis of the Carrier Mooring System of the Floating Marine Device Based on the AQWA%基于AQWA 的漂浮式海洋装置载体锚泊系统耦合分析

    Institute of Scientific and Technical Information of China (English)

    王世明; 邹伟

    2016-01-01

    Based on the kinetic theory of wave forces frequency domain,using anchor angle conver-sion method,the paper obtained a good anchoring program by specific study object of dual pon-toon floating wave power generation device of the flow,through simulation coupling ways by hy-drodynamic analysis software AQWA.A similar design of floating marine device carrier mooring system solutions were also explored.%文章基于波浪力时域频域的运动理论,采用变换锚链夹角的方法,通过水动力软件AQWA进行仿真耦合分析的方式,得出针对特定研究对象即双浮筒漂浮式浪流发电装置的最佳锚泊方案,进而探讨类似的漂浮式海洋装置载体锚泊系统方案的设计。

  13. Graphene device and method of using graphene device

    Science.gov (United States)

    Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.

    2015-08-11

    An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.

  14. A Radio Frequency Charge Parity Meter

    OpenAIRE

    Schroer, M. D.; Jung, M.; Petersson, K. D.; Petta, J. R.

    2012-01-01

    We demonstrate a total charge parity measurement by detecting the radio frequency signal that is reflected by a lumped element resonator coupled to a single InAs nanowire double quantum dot. The high frequency response of the circuit is used to probe the effects of the Pauli exclusion principle at interdot charge transitions. Even parity charge transitions show a striking magnetic field dependence that is due to a singlet-triplet transition, while odd parity transitions are relatively insensi...

  15. Spin and charge necklaces at commensurate filling

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, K [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Kiselev, M N, E-mail: konstk@post.tau.ac.i [The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy)

    2009-03-01

    The charge and spin properties of spin chains decorated with dimers and closed trimers (equilateral triangles) with commensurate partial filling (1/4 and 1/3, respectively) are considered. It is shown that due to the charge separation both systems prefer the ground state with even occupation per elementary cell, where the spin spectrum possesses the Haldane gap for negative spin exchange and magnon-like for positive coupling. The charge spectrum is always gapped.

  16. Screening Effect in Charge Qubit

    Institute of Scientific and Technical Information of China (English)

    HUA Ming; XIAO Xiao; GAO Yi-Bo

    2011-01-01

    We study the influence of screening effect on quantum decoherence for charge qubit and the process of quantum information storage. When the flux produced by the circulating current in SQUID loop is considered, screening effect is formally characterized by a LC resonator. Using large-detuning condition and Fr(o)hlich transformation in the qubit-cavity-resonator system, we calculate the decoherence factor for charge qubit and the effective qubit-cavity Hamiltonian. The decoherence factor owns a factorized structure, it shows that screening effect is a resource of decoherence for charge qubit. The effective Hamiltonian shows that the screening effect results in a frequency shift for charge qubit and a modified qubit-cavity coupling constant induced by a LC resonator.

  17. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  18. Control Algorithms Charge Batteries Faster

    Science.gov (United States)

    2012-01-01

    On March 29, 2011, NASA s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth. "Typically, there isn't one particular power source that can support the entire mission," says Linda Taylor, electrical engineer in Glenn Research Center s Power Systems Analysis Branch. "If you have solar arrays and you are in orbit, at some point you re going to be in eclipse." Because of this, Taylor explains, spacecraft like MESSENGER feature hybrid power systems. MESSENGER is powered by a two-panel solar array coupled with a nickel hydrogen battery. The solar arrays provide energy to the probe and charge the battery; when the spacecraft s orbit carries it behind Mercury and out of the Sun s light, the spacecraft switches to battery power to continue operations. Typically, hybrid systems with multiple power inputs and a battery acting alternately as storage and a power source require multiple converters to handle the power flow between the devices, Taylor says. (Power converters change the qualities of electrical energy, such as from alternating current to direct current, or between different levels of voltage or frequency.) This contributes to a pair of major concerns for spacecraft design. "Weight and size are big drivers for any space application," Taylor says, noting that every pound added to a space vehicle incurs significant costs. For an innovative solution to managing power flows in a lightweight, cost-effective manner, NASA turned to a private industry partner.

  19. Dielectric Effects at Organic/Inorganic Interfaces in Nanostructured Devices

    NARCIS (Netherlands)

    Sherkar, Tejas; Koster, L. Jan Anton

    2015-01-01

    Dielectric interfaces are important in organic electronic devices, as they dominate charge generation and recombination dynamics and set the tone for efficiency of the device. In a charge separation scenario across the interface, we calculate the binding energy of a charge carrier for variations in

  20. Simulation of charge transport in organic semiconductors

    NARCIS (Netherlands)

    van der Kaap, Niels

    2016-01-01

    Plastic electronic devices can be used to emit light, or can convert sunlight into electricity. Charge transport in plastic electronic devices is described by thermally activated hopping of electrons between sites with varying energy levels. Since the hopping mechanism is hard to describe analytical