WorldWideScience

Sample records for characterizing effusive-flow properties

  1. Simulation Studies of Diffusion-Release and Effusive-Flow of Short-Lived Radioactive Isotopes

    CERN Document Server

    Zhang, Yan; Kawai, Yoko

    2005-01-01

    Delay times associated with diffusion release from targets and effusive-flow transport of radioactive isotopes to ion sources are principal intensity limiters at ISOL-based radioactive ion beam facilities, and simulation studies with computer models are cost effective methods for designing targets and vapor transport systems with minimum delay times to avoid excessive decay losses of short lived ion species. A finite difference code, Diffuse II, was recently developed at the Oak Ridge National Laboratory to study diffusion-release of short-lived species from three principal target geometries. Simulation results are in close agreement with analytical solutions to Fick’s second equation. Complementary to the development of Diffuse II, the Monte-Carlo code, Effusion, was developed to address issues related to the design of fast vapor transport systems. Results, derived by using Effusion, are also found to closely agree with experimental measurements. In this presentation, the codes will be used in conc...

  2. Accelerated Characterization of Polymer Properties

    Energy Technology Data Exchange (ETDEWEB)

    R. Wroczynski; l. Brewer; D. Buckley; M. Burrell; R. Potyrailo

    2003-07-30

    This report describes the efforts to develop a suite of microanalysis techniques that can rapidly measure a variety of polymer properties of industrial importance, including thermal, photo-oxidative, and color stability; as well as ductility, viscosity, and mechanical and antistatic properties. Additional goals of the project were to direct the development of these techniques toward simultaneous measurements of multiple polymer samples of small size in real time using non-destructive and/or parallel or rapid sequential measurements, to develop microcompounding techniques for preparing polymers with additives, and to demonstrate that samples prepared in the microcompounder could be analyzed directly or used in rapid off-line measurements. These enabling technologies are the crucial precursors to the development of high-throughput screening (HTS) methodologies for the polymer additives industry whereby the rate of development of new additives and polymer formulations can be greatly accelerated.

  3. Seismic characterization of fracture properties

    International Nuclear Information System (INIS)

    The purpose of this paper is to show that there is a relationship, both empirical and theoretical, between the measured seismic response, the mechanical stiffness (also referred to as specific stiffness) of fractures and their hydraulic conductivity. Laboratory measurements of the mechanical stiffness, hydraulic conductivity and seismic properties of natural fractures are summarized. A theoretical model for the amplitude and group time delay for compressional and shear waves transmitted across a single fracture is presented. Predictions based on this model are compared with laboratory measurements. Finally, the results for a single fracture are extended to multiple parallel fractures. 13 refs., 6 figs

  4. Characterization of transport properties of wasteform mixtures

    International Nuclear Information System (INIS)

    This study investigates the transport properties of different wasteform mixtures. The objective is to collect data to model the long-term service-life of a cement barrier/wasteform system and see how the wasteform affect the durability of the storage structure, which is expected to last many thousand years. Two different wasteform mixtures incorporating different slag and fly ash contents were tested. The materials were characterized using different experimental tests in order to estimate tortuosity, porosity, permeability and pore size distribution. The tests showed that despite a very high porosity, the wasteform mixtures exhibit very low transport properties values. Immersion tests in NaCl solution showed very slow chloride ingress in accordance with the transport properties. Furthermore, the two formulations showed a significant improvement in properties when slag content was increased. (authors)

  5. NMR CHARACTERIZATIONS OF PROPERTIES OF HETEROGENEOUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    C.T. Philip Chang; Changho Choi; Jeromy T. Hollenshead; Rudi Michalak; Jack Phan; Ramon Saavedra; John C. Slattery; Jinsoo Uh; Randi Valestrand; A. Ted Watson; Song Xue

    2005-01-01

    A critical and long-standing need within the petroleum industry is the specification of suitable petrophysical properties for mathematical simulation of fluid flow in petroleum reservoirs (i.e., reservoir characterization). The development of accurate reservoir characterizations is extremely challenging. Property variations may be described on many scales, and the information available from measurements reflect different scales. In fact, experiments on laboratory core samples, well-log data, well-test data, and reservoir-production data all represent information potentially valuable to reservoir characterization, yet they all reflect information about spatial variations of properties at different scales. Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide enormous potential for developing new descriptions and understandings of heterogeneous media. NMR has the rare capability to probe permeable media non-invasively, with spatial resolution, and it provides unique information about molecular motions and interactions that are sensitive to morphology. NMR well-logging provides the best opportunity ever to resolve permeability distributions within petroleum reservoirs. We develop MRI methods to determine, for the first time, spatially resolved distributions of porosity and permeability within permeable media samples that approach the intrinsic scale: the finest resolution of these macroscopic properties possible. To our knowledge, this is the first time that the permeability is actually resolved at a scale smaller than the sample. In order to do this, we have developed a robust method to determine of relaxation distributions from NMR experiments and a novel implementation and analysis of MRI experiments to determine the amount of fluid corresponding to imaging regions, which are in turn used to determine porosity and saturation distributions. We have developed a novel MRI experiment to determine velocity distributions within flowing experiments, and

  6. Graphene optoelectronics synthesis, characterization, properties, and applications

    CERN Document Server

    bin M Yusoff, Abdul Rashid

    2014-01-01

    This first book on emerging applications for this innovative material gives an up-to-date account of the many opportunities graphene offers high-end optoelectronics.The text focuses on potential as well as already realized applications, discussing metallic and passive components, such as transparent conductors and smart windows, as well as high-frequency devices, spintronics, photonics, and terahertz devices. Also included are sections on the fundamental properties, synthesis, and characterization of graphene. With its unique coverage, this book will be welcomed by materials scientists, solid-

  7. Structural characterization and pharmaceutical properties of porphyran

    Directory of Open Access Journals (Sweden)

    Saurabh Bhatia

    2015-01-01

    Full Text Available Marine polysaccharides remain an untapped reservoir for development of novel biomaterials. Algae derived sulfated polysaccharides (SPs have their interesting pharmaceutical and biological properties. Degree and pattern of sulfation of such biopolymers favors their binding property with tissues when compared with non-SPs. Due to the gel formation potential, hydrocolloids such as agar, carrageenan, fucoidan, and alginate are extensively studied food and nonfood applications. Degree of sulfation and favorable physical properties are essentially required for tissue engineering applications. Therefore, our investigation explores the structural and gelling properties of novel polysaccharide porphyran (POR isolated from Porphyra vietnamensis by alkali hydrolysis. Percentage yield of POR was found to be 19.7%. The sulfate content of the polysaccharide was 11.1% and the main sugars present were D-galactose (16.1%, 3, 6-anhydro galactose (3, 6-AG (10.1% and 6-O-methyl D-galactose (7.81%. After hydrolysis D-galactose was again confirmed by paper chromatography (Rf: 0.8 and phenol-sulfuric acid method. Gelling properties, including gelling strength (241 g/cm 2 , gelling temperature (35.8°C, melting temperature (70.7 ± 0.4 and apparent viscosity (56.2 η were also explored. Differential scanning calorimeter analysis showed purified fraction has gel melt between 70°C and 80°C and show glass transition between 35°C and 38°C. Viscometric analysis was examined to analyze the different behavior of SPs fraction under the influence of cationic and anionic salts and polysaccharides. Molecular mass of POR was determined (16,280. SPs were characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy, which showed the presence of linear backbone structure called as POR. The rheological behavior of POR exhibits a gel-like behavior close to the one observed in commercial agar.

  8. Novel metallomesogenic polyurethanes: Synthesis, characterization and properties

    International Nuclear Information System (INIS)

    A series of tetradentate Schiff base metallomesogenic diols were synthesized from two simple dihydroxy benzenes. The metallomesogenic diol was constructed from three ring containing mesogen linked through ester and azomethine with terminal hydroxy group. This upon complexation with copper(II) formed metallomesogenic diol with varying terminal chain length. A series of metallomesogenic polyurethanes were synthesized using these metallomesogenic diols as chain extenders for the prepolymers based on polytetramethylene glycol (PTMG) of varying molecular weight (Mn = 650, 2000) and 2,4-toluene diisocyanate (TDI), or 4,4′-methylene bis(phenyl isocyanate) (MDI). The molar ratio of metallomesogenic diol and PTMG were varied in the polyurethane to find their role in liquid crystalline and mechanical properties. Extensive characterization of all metallomesogenic compounds and intermediates were carried out by FT-IR, 1H and 13C NMR, EPR, VSM, Mass (EI and FAB) and UV–visible spectroscopy. Hot stage polarizing microscope and differential scanning calorimetry were used to ensure the phase characteristics such as nature of phase, melting and clearing temperatures and phase range. The appearance of enantiotropic smectic A phases indicated high molecular polarizability of the core due to the metal ion. - Highlights: ► Design and synthesis of metallomesogenic diols. ► Metallomesogenic polyurethanes were prepared using these diols as chain extenders. ► Liquid crystalline and mechanical properties were studied. ► A square pyramidal structure for the copper(II) complexes have been proposed. ► Polyurethanes exhibited enantiotropic smectic A phases.

  9. Novel metallomesogenic polyurethanes: Synthesis, characterization and properties

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, Natarajan, E-mail: nskumar77@yahoo.com [Production Technology Research Center, Samsung Cheil Industries, 62 Pyeongyeo-dong, Yeosu-si, JeonNam 555-210 (Korea, Republic of); Narasimhaswamy, Tanneru [Polymer Laboratory, Central Leather Research Institute, Chennai 600 020 (India); Kim, Il-Jin [Production Technology Research Center, Samsung Cheil Industries, 62 Pyeongyeo-dong, Yeosu-si, JeonNam 555-210 (Korea, Republic of)

    2012-12-01

    A series of tetradentate Schiff base metallomesogenic diols were synthesized from two simple dihydroxy benzenes. The metallomesogenic diol was constructed from three ring containing mesogen linked through ester and azomethine with terminal hydroxy group. This upon complexation with copper(II) formed metallomesogenic diol with varying terminal chain length. A series of metallomesogenic polyurethanes were synthesized using these metallomesogenic diols as chain extenders for the prepolymers based on polytetramethylene glycol (PTMG) of varying molecular weight (M{sub n} = 650, 2000) and 2,4-toluene diisocyanate (TDI), or 4,4 Prime -methylene bis(phenyl isocyanate) (MDI). The molar ratio of metallomesogenic diol and PTMG were varied in the polyurethane to find their role in liquid crystalline and mechanical properties. Extensive characterization of all metallomesogenic compounds and intermediates were carried out by FT-IR, {sup 1}H and {sup 13}C NMR, EPR, VSM, Mass (EI and FAB) and UV-visible spectroscopy. Hot stage polarizing microscope and differential scanning calorimetry were used to ensure the phase characteristics such as nature of phase, melting and clearing temperatures and phase range. The appearance of enantiotropic smectic A phases indicated high molecular polarizability of the core due to the metal ion. - Highlights: Black-Right-Pointing-Pointer Design and synthesis of metallomesogenic diols. Black-Right-Pointing-Pointer Metallomesogenic polyurethanes were prepared using these diols as chain extenders. Black-Right-Pointing-Pointer Liquid crystalline and mechanical properties were studied. Black-Right-Pointing-Pointer A square pyramidal structure for the copper(II) complexes have been proposed. Black-Right-Pointing-Pointer Polyurethanes exhibited enantiotropic smectic A phases.

  10. Characterization And Dissolution Properties Of Ruthenium Oxides

    Science.gov (United States)

    Ruthenium oxides (RuO2•1.10H2O and RuO2) have been synthesized by forced hydrolysis and oxidation of ruthenium chloride. The resulting materials were extensively characterized to determine the crystallinity, surface area, and ruthenium oxidation ...

  11. Characterizing the Hydrological Properties of Wildfire Ash

    Science.gov (United States)

    Woods, S.; Balfour, V.

    2010-12-01

    Wildfires are extreme disturbance events that can increase runoff and erosion rates by 2-3 orders of magnitude. Fire related sediment presents a significant geomorphic hazard in terms of debris flows and other catastrophic erosion events, but ultimately plays a key role in landscape evolution in fire prone regions. The hyper-dessicated ash and soil layers making up the near surface profile in recently burned areas respond very differently to rainfall than the litter and unburned soil that existed prior to the fire. Limited knowledge regarding the hydrological properties of the ash-soil profile, and the ash layer in particular, currently limits efforts to model the infiltration process in burned areas and hence predict the location and magnitude of post fire runoff and erosion events. In our ongoing research we are investigating and quantifying the hydrologic properties of wildfire ash. Wherever possible we use conventional laboratory techniques from soil hydrology but in some cases we have had to adapt these techniques to account for the distinct physical and chemical properties of ash, such as the variability in particle density and the partial solubility of many of the mineral components. Some of the hydrologic properties of ash, such as the hydraulic conductivity, are similar to those of a mineral soil with a comparable particle size distribution. For example, ash from Spain with a silty loam texture had a hydraulic conductivity of 7 x 10-4 cm s-1, which is within the range reported for mineral soils with the same texture. However, other properties such as the porosity are considerably different; an undisturbed ash sample with a sandy loam texture had a porosity of 93 percent compared to the typical range of 30 to 50 percent for mineral soils with this texture. Scanning electron microscopy analysis indicates that the contrasting hydrologic properties of ash and soil are due to differences in the particle shape, particle packing and pore structure. Using examples

  12. Broadband optical characterization of material properties

    DEFF Research Database (Denmark)

    Nielsen, Otto Højager Attermann

    Optical inspection of material properties is of great interest to industry because it can perform objective and non-invasive characterisation of large sample quantities. This may be used in various ways to lower production costs and improve product quality. In this thesis the objective has been...

  13. Materials thermal and thermoradiative properties/characterization technology

    Science.gov (United States)

    Dewitt, D. P.; Ho, C. Y.

    1989-01-01

    Reliable properties data on well characterized materials are necessary for design of experiments and interpretation of experimental results. The activities of CINDAS to provide data bases and predict properties are discussed. An understanding of emissivity behavior is important in order to select appropriate methods for non-contact temperature determination. Related technical issues are identified and recommendations are offered.

  14. Fabrication, characterization, and thermal property evaluation of silver nanofluids

    OpenAIRE

    Noroozi, Monir; Radiman, Shahidan; Zakaria, Azmi; Soltaninejad, Sepideh

    2014-01-01

    Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyro...

  15. Characterization of Chemical and Mechanical Properties of Polymer Based Nanocomposites

    OpenAIRE

    Wafy, Tamer

    2013-01-01

    Characterization of Chemical and Mechanical Properties of Polymer Based NanocompositesThe University of ManchesterTamer Wafy Doctor of Philosophy17 January, 2013One of the most significant issues in nanocomposite performance is improving the dispersion of carbon nanotubes (CNTs) in thermosetting or thermoplastic polymers in order to gain good mechanical properties. Several studies have investigated the fabrication of nanocomposites based on carbon nanotubes and analysed properties, but there ...

  16. Microstructural characterization and mechanical property evaluation of microalloyed steel

    OpenAIRE

    Om Prakash Tenduwe; Pawan Kumar Sahu

    2015-01-01

    Experimental evaluation of microstructural and mechanical property of any material is very important for knowing their serviceability, various properties and behavior in different operational conditions. These parametric properties can be used to predict their proper utilization, life prediction, service reliability and operational safety in various condition. The material used in this investigation is a micro alloyed steel. The micro structural characterizations have been done th...

  17. Characterization and dissolution properties of ruthenium oxides.

    Science.gov (United States)

    Luxton, Todd P; Eick, Matthew J; Scheckel, Kirk G

    2011-07-01

    Ruthenium oxides (RuO(2)·1·10H(2)O and RuO(2)) have been synthesized by forced hydrolysis and oxidation of ruthenium chloride. The resulting materials were extensively characterized to determine the crystallinity, surface area, and ruthenium oxidation state. Surface charging experiments indicate a large quantity of reactive functional groups for both materials and a decrease in the acidity of the surface functional groups with crystallization of the hydrous oxide. Dissolution studies conducted in acidic and basic pH environments indicate Ru-oxides are insoluble in 0.1 M HCl and slightly soluble in 0.1 M NaOH. Oxalate and ascorbate (5 mM) promoted dissolution of RuO(2)·1·10H(2)O demonstrated an increase in dissolution rates with decreasing pH and increasing ligand surface coverage. XPS analysis of the RuO(2)·1·10H(2)O surface after ligand promoted dissolution revealed the reduction of Ru(IV) to Ru(III) indicating that both ascorbate and oxalate reductively dissolve RuO(2)·1·10H(2)O. Dissolution experiments with RuO(2) resulted in dissolution only for 5 mM oxalate at pH 3. Dissolution rates calculated for RuO(2)·1·10H(2)O and RuO(2) are compared with previously published dissolution rates for iron oxides, demonstrating an order of magnitude decrease in the oxalate and ascorbate promoted dissolution. PMID:21511266

  18. Computational characterization and prediction of metal-organic framework properties

    OpenAIRE

    Coudert, François-Xavier; Fuchs, Alain H

    2015-01-01

    In this introductory review, we give an overview of the computational chemistry methods commonly used in the field of metal-organic frameworks (MOFs), to describe or predict the structures themselves and characterize their various properties, either at the quantum chemical level or through classical molecular simulation. We discuss the methods for the prediction of crystal structures, geometrical properties and large-scale screening of hypothetical MOFs, as well as their thermal and mechanica...

  19. Synthesis,Characterization,and Electrochemical Property of Nanometer Porphyrin Dimer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A nanometer porphyrin dimer was synthesized with fumaryl chloride as a bridge-linked reagent. The characterization was carried out with elemental analyses, 1H NMR, UV-Vis, and IR spectrometries, and then the electrochemical properties of the porphyrins were studied. The authors found that there was moderate electronic communication between the two porphyrin rings in the nanometer porphyrin dimer.

  20. Microstructural characterization and mechanical property evaluation of microalloyed steel

    Directory of Open Access Journals (Sweden)

    Om Prakash Tenduwe

    2015-04-01

    Full Text Available Experimental evaluation of microstructural and mechanical property of any material is very important for knowing their serviceability, various properties and behavior in different operational conditions. These parametric properties can be used to predict their proper utilization, life prediction, service reliability and operational safety in various condition. The material used in this investigation is a micro alloyed steel. The micro structural characterizations have been done through optical microscopy as well as SEM and various mechanical property evaluation were done through tensile test, hardness test and Charpy impact toughness tests in different orientations. The results have been used to predict the serviceability, and it is observed from this study that this steel contains good amount of ferrite-pearlite combination, and this material show the high tensile strength and better mechanical property for utilizing in the field of automotive and piping industry.

  1. Comprehensive characterization of thermophysical properties in solids using thermal impedance

    Science.gov (United States)

    Martínez-Flores, J. J.; Licea-Jiménez, L.; Pérez García, S. A.; Rodríguez-Viejo, J.; Alvarez-Quintana, J.

    2012-11-01

    Thermal impedance Zth(iω) is a way of defining the thermophysical characteristics and behavior of thermal systems. Existing photoacoustic and photothermal approaches based on thermal impedance formalism merely allows a partial thermal characterization of the materials (generally, either thermal diffusivity or thermal effusivity). In this work, a new approach based on the thermal impedance concept in terms of its characteristic thermal time constant is developed from thermal quadrupoles formalism. The approach outlined in this contribution presents a set of analytical equations in which through a single measurement of thermal impedance is sufficient to obtain a comprehensive characterization of the thermophysical properties of solid materials in a simple way.

  2. Two-dimensional carbon fundamental properties, synthesis, characterization, and applications

    CERN Document Server

    Yihong, Wu; Ting, Yu

    2013-01-01

    After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a

  3. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    Science.gov (United States)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear

  4. Characterization of aluminum/RP-1 gel propellant properties

    Science.gov (United States)

    Rapp, Douglas C.; Zurawski, Robert L.

    1988-01-01

    Research efforts are being conducted by the NASA Lewis Research Center to formulate and characterize the properties of Al/RP-1 and RP-1 gelled propellants for rocket propulsion systems. Twenty four different compositions of gelled fuels were formualted with 5 and 16 micron, atomized aluminum powder in RP-1. The total solids concentration in the propellant varied from 5 to 60 wt percent. Tests were conducted to evaluate the stability and rheological characteristics of the fuels. Physical separation of the solids occurred in fuels with less than 50 wt percent solids concentration. The rheological characteristics of the Al/RP-1 fuels varied with solids concentration. Both thixotropic and rheopectic gel behavior were observed. The unmetallized RP-1 gels, which were formulated by a different technique than the Al/RP-1 gels, were highly viscoelastic. A history of research efforts which were conducted to formulate and characterize the properties of metallized propellants for various applications is also given.

  5. Synthesis, characterization and thermal properties of thiosalicylate ionic liquids

    Indian Academy of Sciences (India)

    Cecilia Devi Wilfred; Fadwa Babiker Mustafa

    2013-11-01

    In an attempt to produce new functionalized ionic liquids, a series of thiosalicylate ionic liquids based on imidazolium, ammonium, phosphonium, choline and pyrrolidinium cations were synthesized. The compounds were characterized by Infra Red (IR), Nuclear Magnetic Resonance (NMR) and mass spectra (ESI-MS). Their glass-transition temperatures, melting points and decomposition temperatures have been measured. Physicochemical properties of ionic liquids are influenced by alkyl chain length and nature of the cation of ionic liquids.

  6. Characterization of mechanical properties of materials using ultrasound broadband spectroscopy.

    Science.gov (United States)

    Agrawal, Megha; Prasad, Abhinav; Bellare, Jayesh R; Seshia, Ashwin A

    2016-01-01

    This article explores the characterization of homogenous materials (metals, alloys, glass and polymers) by a simple broadband ultrasonic interrogation method. The novelty lies in the use of ultrasound in a continuous way with very low input power (0 dBm or less) and analysis of the transmitted acoustic wave spectrum for material property characterization like speed of sound, density and dimensions of a material. Measurements were conducted on various thicknesses of samples immersed in liquid where continuous-wave, frequency swept ultrasonic energy was incident normal to the sample surface. The electro-acoustic transmission response is analyzed in the frequency domain with respect to a specifically constructed multi-layered analytical model. From the acoustic signature of the sample materials, material properties such as speed of sound and acoustic impedance can be calculated with experimentally derived values found to be in general agreement with the literature and with pulse-echo technique establishing the basis for a non-contact and non-destructive technique for material characterization. Further, by looking at the frequency spacing of the peaks of water when the sample is immersed, the thickness of the sample can be calculated independently from the acoustic response. This technique can prove to be an effective non-contact, non-destructive and fast material characterization technique for a wide variety of materials.

  7. Robotic palpation and mechanical property characterization for abnormal tissue localization.

    Science.gov (United States)

    Ahn, Bummo; Kim, Yeongjin; Oh, Cheol Kyu; Kim, Jung

    2012-09-01

    Palpation is an intuitive examination procedure in which the kinesthetic and tactile sensations of the physician are used. Although it has been widely used to detect and localize diseased tissues in many clinical fields, the procedure is subjective and dependent on the experience of the individual physician. Palpation results and biomechanics-based mechanical property characterization are possible solutions that can enable the acquisition of objective and quantitative information on abnormal tissue localization during diagnosis and surgery. This paper presents an integrated approach for robotic palpation combined with biomechanical soft tissue characterization. In particular, we propose a new palpation method that is inspired by the actual finger motions that occur during palpation procedures. To validate the proposed method, robotic palpation experiments on silicone soft tissue phantoms with embedded hard inclusions were performed and the force responses of the phantoms were measured using a robotic palpation system. Furthermore, we carried out a numerical analysis, simulating the experiments and estimating the objective and quantitative properties of the tissues. The results indicate that the proposed approach can differentiate diseased tissue from normal tissue and can characterize the mechanical information of diseased tissue, which means that this method can be applied as a means of abnormality localization to diagnose prostate cancers. PMID:22772733

  8. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    International Nuclear Information System (INIS)

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer’s sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10−8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample

  9. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W. [Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-900 (Brazil)

    2015-10-15

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer’s sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10{sup −8} Am{sup 2} was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  10. Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films

    Science.gov (United States)

    Rami, Soukaina

    Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic medium by studying their electrochemical properties. These films were fabricated using two deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization of these films was done using techniques such as Fourier Transform Infrared Spectroscopy (FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films. However, for the dye incorporated films, since there was an addition in the synthesis of the material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1 layer PANI showed compact film morphology, comparing to other PANI films, which displayed a fiber-like structure. Finally, the electrochemical properties of these thin films were studied using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in

  11. Synthesis, Properties Characterization and Applications of Various Organobismuth Compounds

    Directory of Open Access Journals (Sweden)

    Jingfei Luan

    2011-05-01

    Full Text Available Organobismuth chemistry was emphasized in this review article due to the low price, low toxicity and low radioactivity characteristics of bismuth. As an environmentally-friendly class of organometallic compounds, different types of organobismuth compounds have been used in organic synthesis, catalysis, materials, etc. The synthesis and property characterization of many organobismuth compounds had been summarized. This review article also presented a survey of various applications of organobismuth compounds in organic transformations, as reagents or catalysts. The reactivity, reaction pathways and mechanisms of reactions with organobismuths were discussed. Less common and limiting aspects of organobismuth compounds were also briefly mentioned.

  12. Characterization of electrical properties of resistance welding machines

    Institute of Scientific and Technical Information of China (English)

    Wu Pei; Shao Yingli; Wenqi Zhang; Niels Bay

    2008-01-01

    Due to the individual electrical and mechanical characteristics of resistance welding machines, choice of the right machine and welding parameters for an optimized production is often difficult. This is especially the case in projection welding of complex joints. In this paper, a new approach of characterizing the electrical properties of AC resistance welding machines is presented, involving testing and mathematical modelling of the weld current, the firing angle and the conduction angle of silicon controlled rectifiers with the aid of a series of proof resistances. The model predicts the weld current and the conduction angle (or heat setting) at each set current, when the workpiece resistance is given.

  13. Petroleum electrical properties characterization; Caracterizaco de propriedades eletricas de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Ueti, Edson; Sens, Marcio Antonio [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], e-mail: ueti@cepel.br

    2006-07-01

    Presently, petroleum wells consist predominantly of heavy type petroleum, that is submitted to decantation and separation of water, through desalinisation process. If this process is not efficient, the metallic piping will be severely corroded during refining. Hence, the knowledge of petroleum electric properties is essential for optimizing the separation of water from petroleum, by indicating its humidity in laboratory testing conditions. The present work shows an experimental procedure based on disposable cells for electric characterization of liquid polymeric materials. The use of standard cells is unfeasible, due to the petroleum physical characteristics. The procedures for the evaluation of electric properties shown in this work are applied for dielectric constant values up to 200 kHz, as well as for the electric conductivity in direct current and the electrical strength in industrial frequency. (author)

  14. CHARACTERIZATION AND PROPERTIES OF A LIGNOSULFONATE-BASED PHENOLIC FOAM

    Directory of Open Access Journals (Sweden)

    Lihong Hu,

    2011-11-01

    Full Text Available Phenolated lignosulfonate was introduced into the synthesis of phenolic resol with phenol and formaldehyde in an alkaline condition. The modified resol was successfully applied to prepare phenolic foam using appropriate combinations of flowing agents. N-pentane was found to be suitable as the foaming agent. Sulphuric acid (50% aqueous solution, w/w and Tween-80 were used as catalyst and surfactant, respectively. The obtained foams were characterized by thermogravimetric analysis (TGA, scanning electron microscopy (SEM, friability, and mechanical property tests. The experimental results showed the foam to have lower density, better toughness, and excellent thermal insulation compared to those of foams obtained from conventional resol resin. The properties of phenolated lignosulfonate modified phenolic foam can comply with the required specifications for its practical utilization.

  15. Analytical model for nanoscale viscoelastic properties characterization using dynamic nanoindentation

    Science.gov (United States)

    Yuya, Philip A.; Patel, Nimitt G.

    2014-08-01

    In the last few decades, nanoindentation has gained widespread acceptance as a technique for materials properties characterization at micron and submicron length scales. Accurate and precise characterization of material properties with a nanoindenter is critically dependent on the ability to correctly model the response of the test equipment in contact with the material. In dynamic nanoindention analysis, a simple Kelvin-Voigt model is commonly used to capture the viscoelastic response. However, this model oversimplifies the response of real viscoelastic materials such as polymers. A model is developed that captures the dynamic nanoindentation response of a viscoelastic material. Indenter tip-sample contact forces are modelled using a generalized Maxwell model. The results on a silicon elastomer were analysed using conventional two element Kelvin-Voigt model and contrasted to analysis done using the Maxwell model. The results show that conventional Kelvin-Voigt model overestimates the storage modulus of the silicone elastomer by ~30%. Maxwell model represents a significant improvement in capturing the viscoelastic material behaviour over the Voigt model.

  16. Electrical Property Characterization of Neural Stem Cells in Differentiation.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane and cytoplasm conductivity (σcytoplasm for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1 in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2 during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label

  17. Electrical Property Characterization of Neural Stem Cells in Differentiation

    Science.gov (United States)

    Sun, He; Chen, Deyong; Li, Zhaohui; Fan, Beiyuan; George, Julian; Xue, Chengcheng; Cui, Zhanfeng; Wang, Junbo

    2016-01-01

    Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP) of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1) in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2) during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label-free biophysical markers

  18. Fabrication, characterization, and thermal property evaluation of silver nanofluids

    Science.gov (United States)

    Noroozi, Monir; Radiman, Shahidan; Zakaria, Azmi; Soltaninejad, Sepideh

    2014-11-01

    Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively.

  19. Characterization of ion-exchange membrane materials: properties vs structure.

    Science.gov (United States)

    Berezina, N P; Kononenko, N A; Dyomina, O A; Gnusin, N P

    2008-06-22

    This review focuses on the preparation, structure and applications of ion-exchange membranes formed from various materials and exhibiting various functions (electrodialytic, perfluorinated sulphocation-exchange and novel laboratory-tested membranes). A number of experimental techniques for measuring electrotransport properties as well as the general procedure for membrane testing are also described. The review emphasizes the relationships between membrane structures, physical and chemical properties and mechanisms of electrochemical processes that occur in charged membrane materials. The water content in membranes is considered to be a key factor in the ion and water transfer and in polarization processes in electromembrane systems. We suggest the theoretical approach, which makes it possible to model and characterize the electrochemical properties of heterogeneous membranes using several transport-structural parameters. These parameters are extracted from the experimental dependences of specific electroconductivity and diffusion permeability on concentration. The review covers the most significant experimental and theoretical research on ion-exchange membranes that have been carried out in the Membrane Materials Laboratory of the Kuban State University. These results have been discussed at the conferences "Membrane Electrochemistry", Krasnodar, Russia for many years and were published mainly in Russian scientific sources.

  20. Characterization of positronium properties in doped liquid scintillators

    CERN Document Server

    Consolati, G; Hans, S; Jollet, C; Meregaglia, A; Perasso, S; Tonazzo, A; Yeh, M

    2013-01-01

    Ortho-positronium (o-Ps) formation and decay can replace the annihilation process, when positron interacts in liquid scintillator media. The delay induced by the positronium decay represents either a potential signature for anti-neutrino detection, via inverse beta decay, or to identify and suppress positron background, as recently demonstrated by the Borexino experiment. The formation probability and decay time of o-Ps depend strongly on the surrounding material. In this paper, we characterize the o-Ps properties in liquid scintillators as function of concentrations of gadolinium, lithium, neodymium, and tellurium, dopers used by present and future neutrino experiments. In particular, gadolinium and lithium are high neutron cross section isotopes, widely used in reactor anti-neutrino experiments, while neodymium and tellurium are double beta decay emitters, employed to investigates the Majorana neutrino nature. Future neutrino experiments may profit from the performed measurements to tune the preparation of ...

  1. Characterization of structure and thermophysical properties of three ESR slags

    Science.gov (United States)

    Plotkowski, A.; deBarbadillo, J.; Krane, Matthew J. M.

    2016-07-01

    The structure and properties of electroslag remelting (ESR) slags were characterized. Slags samples of three compositions were obtained from industrial remelting processes at Special Metals Corporation and from casting in a laboratory vacuum induction melter. The structure of the slag samples was observed using optical and electron microscopy, and phases were identified and their relative amounts quantified using X-ray diffraction. Laser flash thermal diffusivity, density, and differential scanning calorimetry measurements for specific heat were performed to determine the bulk thermal conductivity of the samples. Sample porosity was measured as a function of depth using a serial sectioning technique, and a onedimensional computational model was developed to estimate the thermal conductivity of the fully dense slags. These results are discussed in context with previous studies, and opportunities for future research are identified. AFRL Case Number: 88ABW-2015-1871.

  2. Preparation, Characterization and Dielectric Properties of Epoxy and Polyethylene Nanocomposites

    Science.gov (United States)

    Zhang, Chao; Mason, Ralf; Stevens, Gary

    Two very different kinds of polymer nanocomposites have been prepared, characterized and investigated by dielectric spectroscopy to investigate the effects of polymer-nanofiller matrix difference on the dielectric response of nanodielectric composites. Linear low density polyethylene (LLDPE) is a non-polar thermoplastic which has a high viscosity even in the melt phase and bisphenol-A epoxy resin with an anhydride hardener is a polar low viscosity thermosetting resin. Nanometric sized aluminium oxide filler was chosen as the common inorganic phase for both nanodielectrics. Generally, nanoparticles aggregate easily and are difficult to separate due to strong surface interactions. In this study various mixing methods were employed from ultrasonic liquid processing to controlled shear flow mixing to investigate the dispersion of the nanofillers. The resultant epoxy and polyethylene nanocomposites were characterized with SEM, TEM, and DSC. The dielectric properties and frequency response of the nanocomposites were measured in the frequency domain from 10-2 Hz to 106 Hz at different temperatures. In polyethylene nanocomposites, significant interfacial polarization is clearly seen. However, in epoxy nanocomposites, no obvious interfacial polarization is found. The results are discussed in terms of the difference in the electrical characteristics of the interfacial region between the polymers and the nano-alumina.

  3. Thermomechanical Property Characterization of Ultra Low-k Materials

    Science.gov (United States)

    Zhao, Jie-Hua; Gupta, Vikas; Mortensen, Clay D.; Lu, Kuan-Hsun; Edwards, Darvin R.; Johnson, David C.; Ho, Paul S.

    2009-06-01

    To meet electrical performance requirements, the industry is implementing ultra-low dielectric constant (ULK) materials in the back end of line interconnect structure. ULK dielectrics are inherently weak compared to traditional dielectrics and pose significant challenges to electronic packaging processes and reliability. Accurate mechanical properties are a pre-requisite for upfront risk assessments associated with low-k integration using numerical simulations. In this paper, techniques used to characterize ULK dielectric elastic modulus and in-plane/out-of-plane coefficient of thermal expansion will be presented and the data for a candidate ULK dielectric will be summarized. Nanoindentation of ULK films on substrate was used to determine the plane strain modulus. In the direction normal to the film, the temperature gradient of the thermal expansion strain along the film thickness was measured by x-ray reflectivity. In the plane of the film, the temperature gradient of the biaxial thermal stress was obtained by the substrate curvature measurements. A method to deduce Poisson's ratio of the thin ULK film is proposed using the data from the afore-mentioned characterization techniques.

  4. Combustion synthesis, characterization and luminescence properties of barium aluminate phosphor

    Institute of Scientific and Technical Information of China (English)

    AH Wako; FB Dejene; HC Swart

    2014-01-01

    The blue-green emitting Eu2+and Nd3+ doped polycrystalline barium aluminate (BaAl2O4:Eu2+,Nd3+) phosphor, was pre-pared by a solution-combustion method at 500 ºC without a post-annealing process. The characteristic variation in the structural and luminescence properties of the as-prepared samples was evaluated with regards to a change in the Ba/Al molar ratio from 0.1:1 to 1.4:1. The morphologies and the phase structures of the products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the optical properties were investigated using ultra-violet (UV) and photoluminescence (PL) spectroscopy, respectively. The XRD and TEM results revealed that the average crystallite size of the BaAl2O4:Eu2+,Nd3+ phosphor was about 70 nm. The broad-band UV-excited luminescence of the phosphors was observed atλmax=500 nm due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. The PL results indi-cated that the main peaks in the emission and excitation spectrum of phosphor particles slightly shifted to the short wavelength due to the changes in the crystal field due to the structure changes caused by the variation in the quantity of the Ba ions in the host lattice.

  5. Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Lin Yingguang; Yang Zhuoru; Cheng Jiang

    2007-01-01

    Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[Ca+Ce] (xCe) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with xCe below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g·ml-1, however, the CeHAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when xCe was above 0.08, and the antibacterial ability gets better with the increase of xCe, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.

  6. Multiscale characterization of porous media properties for hydrocarbon reservoir simulation

    Science.gov (United States)

    Neeman, Henry; Lao, Hio-Wai; Simpson, Dale; Papavassiliou, Dimitrios V.

    2001-07-01

    Fluid flow through porous materials is critical for understanding and predicting the behavior of systems as diverse in function and scale as hydrocarbon reservoirs, aquifers, filters, membrane separators and even catalytic converters. Recently, there have been calls to incorporate more physics in oil reservoir simulations, as well as to enhance computational capability through the use of High Performance Computing (HPC), in order to improve reservoir management. Accurate prediction of reservoir behavior depends on the physical properties of not only the fluid but also the underlying rock formation. Contemporary approaches to solving these flows involve simulation of only a single physical scale. We are currently developing HiMuST (Hierarchical Multiscale Simulator Technology), an integrated multiscale simulation system for flow through heterogeneous porous materials. HiMuST uses a hierarchy of simulation codes to address the issue of rock property characterization at the pore scale and can self-adjust according to available input data. At the microscopic scale, HiMuST employs the Lattice Boltzmann Method, based on magnetic resonance digitizations of actual rock samples. At the mesoscopic scale, a stochastic model represents a pore network as a randomly generated skeleton of cylindrical pipes, based on physical characteristics determined by the microscopic simulation. We present computational and computer science issues involved in the HPC implementation of the codes and in integrating them into a seamless simulation system. Issues such as portability, scalability, efficiency and extensibility of the final product are also discussed, as well as the numerical methods implemented at each scale. Example simulation results are presented.

  7. The role of structure-to-property-relationships in materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Morgner, W.

    2000-07-01

    The paper deals with questions concerning the material characterization for steels in the field of engineering and metallurgy. Based on the structure-to-property-relationships, a procedure is proposed to strengthen the systematical development of methods for nondestructive characterization of materials. The state of the nondestructive characterization of metals is reviewed and applications are described in which adequate macroscopic physical properties are measured in order to characterize the materials state and properties nondestructively. The materials characterization of ball bearing steel and cast iron using multiparametrical approaches is discussed in detail.

  8. Transition metal borides. Synthesis, characterization and superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Kayhan, Mehmet

    2013-07-12

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M{sub 2}B, MB, M{sub 3}B{sub 2}, MB{sub 2}, and M{sub 2}B{sub 4}. The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W{sub 2}B{sub 4} to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W{sub 2}B{sub 4} was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB{sub 2} (T{sub C} = 3.5 K), β-MoB (T{sub C} = 2.4 K), β-WB (T{sub C} = 2.0 K), α-WB (T{sub C} = 4.3 K), W{sub 2}B{sub 4} (T{sub C} = 5.4 K), Re{sub 7}B{sub 3} (T{sub C} = 2.4 K). A relationship between the superconducting properties

  9. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches

    Science.gov (United States)

    Zhang, Xi-Feng; Liu, Zhi-Guo; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs. PMID:27649147

  10. Properties and Characterization of Modified HZSM-5 Zeolites

    Institute of Scientific and Technical Information of China (English)

    Renqing Lü; Hejin Tangbo; Qiuying Wang; Shouhe Xiang

    2003-01-01

    Physicochemical and catalytic properties of phosphorus and boron modified HZSM-5 zeolitestreated with 100% steam at 673 K were investigated. The acidity and distribution of acidic sites were stud-ied by infrared spectroscopy using pyridine as probe molecule and temperature programmed desorption(TPD) of ammonia. The structure of the samples was characterized by XRD, and the textural propertiesof the catalysts were determined by nitrogen isothermal adsorption-desorption measurements and scanningelectron microscopy (SEM). The XRD results show that the modified samples have no novel crystallinephase, indicating a high dispersion of phosphorus and boron species. After treatment, the microporousvolume and surface area of the samples markedly decrease, implying the blockage of the channel. The nitro-gen adsorption-desorption measurements suggest that the isothermal type of all samples is a combinationof isothermal type Ⅰ and Ⅳ, and all hysteresis loops resemble the H4-type in the IUPAC classification.The total acidity of the modified samples, determined by pyridine adsorption IR and TPD of ammonia,decreases in contrast to that of the parent HZSM-5. The conversion of n-heptane over P and B steam-modified HZSM-5 is higher than that of P and B-modified HZSM-5 zeolites but lower than that of theparent HZSM-5.

  11. Synthesis, characterization, and electrical properties studies of cadmium selenide nanoparticle

    Science.gov (United States)

    Seoudi, R.; Elokr, M. M.; Shabaka, A. A.; Sobhi, A.

    2008-01-01

    A new solvothermal route was used for the preparation of CdSe nanoparticles at 160 °C for 10 h using ethylenediamine as a solvent. X-ray powder diffraction and transmission electron microscope were employed to characterize the size, morphology, and crystalline structure of the as-prepared sample. The formation process was discussed and it revealed a uniform hexagonal shape of CdSe nanoparticle with good dispersion, with an average size of 35 nm. Fourier transform infrared and ultraviolet-visible spectroscopies were used to follow the reaction and to determine the optical band gap. DC and AC electrical conductivities were studied and the activation energies were determined as well as the conduction mechanism. The results indicated that CdSe behaves as a semiconducting material. The dielectric properties were measured as a function of temperature at different frequencies ranging from 100 Hz to 100 kHz. The increase of the dielectric constant with increasing temperature was discussed on the basis of increasing polarizability, while its decrease with increasing frequency is attributed to the dielectric dispersion.

  12. Synthesis, characterization, and electrical properties studies of cadmium selenide nanoparticle

    International Nuclear Information System (INIS)

    A new solvothermal route was used for the preparation of CdSe nanoparticles at 160 deg. C for 10 h using ethylenediamine as a solvent. X-ray powder diffraction and transmission electron microscope were employed to characterize the size, morphology, and crystalline structure of the as-prepared sample. The formation process was discussed and it revealed a uniform hexagonal shape of CdSe nanoparticle with good dispersion, with an average size of 35 nm. Fourier transform infrared and ultraviolet-visible spectroscopies were used to follow the reaction and to determine the optical band gap. DC and AC electrical conductivities were studied and the activation energies were determined as well as the conduction mechanism. The results indicated that CdSe behaves as a semiconducting material. The dielectric properties were measured as a function of temperature at different frequencies ranging from 100 Hz to 100 kHz. The increase of the dielectric constant with increasing temperature was discussed on the basis of increasing polarizability, while its decrease with increasing frequency is attributed to the dielectric dispersion

  13. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches.

    Science.gov (United States)

    Zhang, Xi-Feng; Liu, Zhi-Guo; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs. PMID:27649147

  14. Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz-Bonilla

    2013-04-01

    Full Text Available Nanocomposites obtained from the incorporation of synthesized TiO2 nanoparticles (≈10 nm average primary particle size in different amounts, ranging from 0.5 to 5 wt.%, into a biodegradable polycaprolactone matrix are achieved via a straightforward and commercial melting processing. The resulting nanocomposites have been structurally and thermally characterized by transmission electron microscopy (TEM, wide/small angle X-ray diffraction (WAXS/SAXS, respectively and differential scanning calorimetry (DSC. TEM evaluation provides evidence of an excellent nanometric dispersion of the oxide component in the polymeric matrix, with aggregates having an average size well below 100 nm. Presence of these TiO2 nanoparticles induces a nucleant effect during polymer crystallization. Moreover, the antimicrobial activity of nanocomposites has been tested using both UV and visible light against Gram-negative Escherichia coli bacteria and Gram-positive Staphylococcus aureus. The bactericidal behavior has been explained through the analysis of the material optical properties, with a key role played by the creation of new electronic states within the polymer-based nanocomposites.

  15. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic

    Indian Academy of Sciences (India)

    M P Mahabole; R C Aiyer; C V Ramakrishna; B Sreedhar; R S Khairnar

    2005-10-01

    Hydroxyapatite (HAp) biomaterial ceramic was synthesized by three different processing routes viz. wet chemical process, microwave irradiation process, and hydrothermal technique. The synthesized ceramic powders were characterized by SEM, XRD, FTIR and XPS techniques. The dielectric measurements were carried out as a function of frequency at room temperature and the preliminary study on CO gas sensing property of hydroxyapatite was investigated. The XRD pattern of the hydroxyapatite biomaterial revealed that hydroxyapatite ceramic has hexagonal structure. The average crystallite size was found to be in the range 31–54 nm. Absorption bands corresponding to phosphate and hydroxyl functional groups, which are characteristic of hydroxyapatite, were confirmed by FTIR. The dielectric constant was found to vary in the range 9–13 at room temperature. Hydroxyapatite can be used as CO gas sensor at an optimum temperature near 125°C. X-ray photoelectron spectroscopic studies showed the Ca/P ratio of 1.63 for the HAp sample prepared by chemical process. The microwave irradiation technique yielded calcium rich HAp whereas calcium deficient HAp was obtained by hydrothermal method.

  16. Physical property characterization of a damage zone in granitic rock - Implications for geothermal reservoir properties

    Science.gov (United States)

    Wenning, Quinn; Madonna, Claudio; Amann, Florian; Gischig, Valentin; Burg, Jean-Pierre

    2016-04-01

    Geothermal energy offers a viable alternative to mitigate greenhouse gas emitting energy production. A tradeoff between less expensive drilling costs and increased permeability at shallow depths versus increased heat production at deeper depths stipulates the economic energy potential of a given reservoir. From a geological perspective, successful retrieval of geothermal energy from the subsurface requires sufficient knowledge of the structural and stratigraphic relationship of the target formations, which govern the thermal conditions, physical properties, and fluid flow properties of reservoir rocks. In Switzerland, deep basement rocks (~5 km) with fluid conducting damage zones and enhanced fractured systems stimulated by hydraulic shearing are seen as a potential geothermal reservoir system. Damage zones, both natural and induced, provide permeability enhancement that is especially important for creating fluid conductivity where the matrix permeability is low. This study concentrates on characterizing the elastic and transport properties entering into a natural damage zone penetrated by a borehole at the Grimsel underground research laboratory. The borehole drilled from a cavern at 480 m below ground surface penetrates approximately 20 m of mostly intact Grimsel granodiorite before entering the first phyllosilicate-rich shear zone (~0.2 m thick). The borehole intersects a second shear zone at approximately 23.8m. Between the two shear zones the Grimsel granodiorite is heavily fractured. The minimum principle stress magnitude from in-situ measurements decreases along the borehole into the first shear zone. Two mutually perpendicular core samples of Grimsel granodiorite were taken every 0.1 m from 19.5 to 20.1 m to characterize the physical properties and anisotropy changes as a gradient away from the damage zone. Measurements of ultrasonic compressional (Vp) and shear (Vs) velocities at 1 MHz frequency are conducted at room temperature and hydrostatic pressures

  17. Vanadium oxide based materials: Synthesis, characterization and gas sensing properties

    Science.gov (United States)

    Ayesh, Samar I.

    In recent years, the demand for gas sensors based on safety and process control requirements has been expanding. The reason for such demand sterns from environmental and safety concerns since the toxic gases released from automobile exhausts and chemical plants can directly or indirectly pollute our environment and affect our health. Among the chemicals studied, nitrogen oxide (NOx) gases are among the most dangerous air pollutants. Transition metal oxide clusters (or polyoxometalates) provide an exciting opportunity for the design and synthesis of a new generation of materials for efficient NOx sensing. Polyoxometalates are an important and fast emerging class of compounds that exhibit many remarkable properties. Chapter 1 provides introduction and background of chemical sensors. It describes the need for gas sensors and the current status of research in the area of NOx gas sensors in particular. A description of polyoxmetalates and their relevance as potential novel gas sensor materials is also given. Chapter 2 describes the synthesis and characterization by FTIR spectroscopy, elemental analysis, thermogravimetric analysis, manganometric titration, bond valence sum calculation, temperature dependent magnetic properties studies, electron paramagnetic resonance, and complete single crystal X-ray diffraction analysis of newly prepared vanadium oxide based-systems that have been discovered during the course of this work. First, the system containing arrays of decavanadates networked by extensive hydrogen bonding with cyclic nitrogen bases are described. This is followed by the mixed-valence vanadium oxide cluster, [VV 13VIV3O42(Cl)]-7, containing a hitherto unknown vanadium oxide framework structure. Finally the synthesis of 3D-framework materials is described. These compounds have highly symmetrical closely related three-dimensional framework structures consisting vanadium oxide shells {V18O42(XO4)} linked via heterometallic atoms {M' = Cd, Zn} into three

  18. Optical characterization of OLED emitter properties by radiation pattern analyses

    Energy Technology Data Exchange (ETDEWEB)

    Flaemmich, Michael

    2011-09-08

    Researches in both, academia and industry are investigating optical loss channels in OLED layered systems by means of optical simulation tools in order to derive promising concepts for a further enhancement of the overall device performance. Besides other factors, the prospects of success of such optimization strategies rely severely on the credibility of the optical input data. The present thesis provides a guideline to measure the active optical properties of OLED emitter materials in situ by radiation pattern analyses. Reliable and widely applicable methods are introduced to determine the internal electroluminescence spectrum, the profile of the emission zone, the dipole emitter orientation, and the internal luminescence quantum efficiency of emissive materials from the optical far field emission of OLEDs in electrical operation. The proposed characterization procedures are applied to sets of OLEDs containing both, fluorescent polymeric materials as well as phosphorescent small-molecular emitters, respectively. On the one hand, quite expected results are obtained. On the other hand, several novel and truly surprising results are found. Most importantly, this thesis contains the first report of a non-isotropic, mainly parallel emitter orientation in a phosphorescent small-molecular guest-host system (Ir(MDQ)2(acac) in a-NPD). Due to the latter result, emitter orientation based optimization of phosphorescent OLEDs seems to be within reach. Since parallel dipoles emit preferably into air, the utilization of smart emissive materials with advantageous molecular orientation is capable to boost the efficiency of phosphorescent OLEDs by 50%. Materials design, the influence of the matrix material and the substrate, as well as film deposition conditions are just a few parameters that need to be studied further in order to exploit the huge potential of the dipole emitter orientation in phosphorescent OLEDs.

  19. Characterization and electrical properties of chitosan for waste water treatment

    Science.gov (United States)

    Saengkaew, Phannee; Chantanachai, Kanittha; Cheewajaroen, Kulthawat; Nimsiri, Woraporn

    2016-05-01

    Chitosan extracted from shrimp shell waste was characterized in order to use for the industrial wastewater treatment. By XRF technique, the qualitative and semi-quantitative analyses of pure chitosan were performed with the relative compositions of Ca, Mg, Si, Fe, Al, and Na of 0.321%, 0.738%, 0.713%, 0.363%, 0.338%, and 3.858%, respectively. In the case of two types of the contaminated chitosan from the wastewater treatment before and after a process of a primary H2O2-treatment, the relative compositions of Ca, Mg, Si and Fe were obtained with an increasing of 0.356%, 1.321%, 1.536%, 0.451% and 0.406%, 1.105%, 1.178%, 0.591%, respectively. This shows that the suspended materials in the wastewater were absorbed by chitosan. By I-V Measurements, the across-through voltage of the pure chitosan disc was 0.245V±0.053 at the applied voltage of 17V, and resistance of 53.9MΩ ±10.3 at the applied voltage of 590V. After the utilization for the wastewater treatment, the across voltage of chitosan discs from two cases were 0.133V±0.047 and 0.223V±0.063, and the resistance of 122.8MΩ ±16.1 and 24.8MΩ ±5.1. The used chitosan has a lower conductivity because of a decreasing in the chitosan's electrical dipoles by combining with the suspended ions in the wastewater. Moreover, the adsorption efficiencies of chitosan for formaldehyde in the wastewater of two cases were 31.08% and 25.40%. In summary, chitosan is efficiently utilized in the wastewater treatment by absorption of the suspended materials and formaldehyde due to its molecular structure providing a good electrical property.

  20. Characterization of Different Parts of Oil Palm Fronds (Elaeis Guineensis) and Its Properties

    OpenAIRE

    Noor Afeefah Nordin; Othman Sulaiman; Rokiah Hashim; Mohamad Haafiz Mohamad Kassim

    2016-01-01

    The study was conducted on characterizing the properties of oil palm fronds (Elaeis guineensis) from different parts. The fronds were cut to three parts which were the top, middle and bottom. The samples were chipped, dried in the oven of 50 °C and ground before they were characterized. The properties of the fronds were characterized using thermal gravimetric analyser (TGA), fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). The results from TGA showed that the bottom...

  1. The Characterization of the Magnetic Properties of Soft Magnetic Materials

    DEFF Research Database (Denmark)

    Larsen, Raino Michael

    1996-01-01

    The hysteresis curve and magnetic properties such as permeability, saturation induction, residual induction, coercive force and hysteresis losses are presented. The design and construction of equipment making it possible to measure true DC-values as well as AC-properties of toroid rings...

  2. Working with the NCL - Intellectual Property - Nanotechnology Characterization Laboratory

    Science.gov (United States)

    To share and safeguard Research Material, intellectual property and proprietary information, the NCL's interaction with extramural researchers and vendors will normally be conducted under a Material Transfer Agreement (MTA).

  3. Microstructure characterization and magnetic properties of nano structured materials

    International Nuclear Information System (INIS)

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe78Si9B13 ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy (Eds.); selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  4. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  5. Synthesis, characterization and photophysical properties of ESIPT reactive triazine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Kuplich, Marcelo D.; Grasel, Fabio S.; Campo, Leandra F.; Rodembusch, Fabiano S.; Stefani, Valter, E-mail: vstefani@iq.ufrgs.br [Laboratorio de Novos Materiais Organicos. Instituto de Quimica. Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2012-07-01

    Four new reactive fluorescent triazine derivatives were obtained from nucleophilic aromatic substitution of cyanuric chloride. The compounds were characterized by infrared spectroscopy (IR), nuclear magnetic resonance ({sup 13}C and {sup 1}H NMR) and high resolution mass spectrometry (HRMS MALDI). UV-Vis and steady-state fluorescence (in solution and in solid state) spectroscopies were also applied to characterize the photophysical behavior. The dyes are fluorescent by an intramolecular proton transfer mechanism (ESIPT) in the blue-orange region, with a large Stokes shift between 6365-10290 cm-1. The fluorescent cyanuric derivatives could successfully react with cellulose fibers to give new fluorescent cellulosic materials. (author)

  6. Synthesis, characterization and photophysical properties of ESIPT reactive triazine derivatives

    International Nuclear Information System (INIS)

    Four new reactive fluorescent triazine derivatives were obtained from nucleophilic aromatic substitution of cyanuric chloride. The compounds were characterized by infrared spectroscopy (IR), nuclear magnetic resonance (13C and 1H NMR) and high resolution mass spectrometry (HRMS MALDI). UV-Vis and steady-state fluorescence (in solution and in solid state) spectroscopies were also applied to characterize the photophysical behavior. The dyes are fluorescent by an intramolecular proton transfer mechanism (ESIPT) in the blue-orange region, with a large Stokes shift between 6365-10290 cm-1. The fluorescent cyanuric derivatives could successfully react with cellulose fibers to give new fluorescent cellulosic materials. (author)

  7. Szeged Matrix Property Indices as Descriptors to Characterize Fullerenes

    Directory of Open Access Journals (Sweden)

    Jäntschi Lorentz

    2016-12-01

    Full Text Available Fullerenes are class of allotropes of carbon organized as closed cages or tubes of carbon atoms. The fullerenes with small number of atoms were not frequently investigated. This paper presents a detailed treatment of total strain energy as function of structural feature extracted from isomers of C40 fullerene using Szeged Matrix Property Indices (SMPI. The paper has a two-fold structure. First, the total strain energy of C40 fullerene isomers (40 structures was linked with SMPI descriptors under two scenarios, one which incorporate just the SMPI descriptors and the other one which contains also five calculated properties (dipole moment, scf-binding-energy, scf-core-energy, scf-electronic-energy, and heat of formation. Second, the performing models identified on C40 fullerene family or the descriptors of these models were used to predict the total strain energy on C42 fullerene isomers. The obtained results show that the inclusion of properties in the pool of descriptors led to the reduction of accurate linear models. One property, namely scf-binding-energy proved a significant contribution to total strain energy of C40 fullerene isomers. However, the top-three most performing models contain just SMPI descriptors. A model with four descriptors proved most accurate model and show fair abilities in prediction of the same property on C42 fullerene isomers when the approach considered the descriptors identified on C40 as the predicting descriptors for C42 fullerene isomers.

  8. Measurements and Characterizations of Mechanical Properties of Human Skins

    Science.gov (United States)

    Song, Han Wook; Park, Yon Kyu

    A skin is an indispensible organ for humans because it contributes to metabolism using its own biochemical functions and protects the human body from external stimuli. Recently, mechanical properties such as a thickness, a friction and an elastic coefficient have been used as a decision index in the skin physiology and in the skin care market due to the increased awareness of wellbeing issues. In addition, the use of mechanical properties is known to have good discrimination ability in the classification of human constitutions, which are used in the field of an alternative medicine. In this study, a system that measures mechanical properties such as a friction and an elastic coefficient is designed. The equipment consists of a load cell type (manufactured by the authors) for the measurements of a friction coefficient, a decompression tube for the measurement of an elastic coefficient. Using the proposed system, the mechanical properties of human skins from different constitutions were compared, and the relative repeatability error for measurements of mechanical properties was determined to be less than 2%. Combining the inspection results of medical doctors in the field of an alternative medicine, we could conclude that the proposed system might be applicable to a quantitative constitutional diagnosis between human constitutions within an acceptable level of uncertainty.

  9. Classification of analysis methods for characterization of magnetic nanoparticle properties

    DEFF Research Database (Denmark)

    Posth, O.; Hansen, Mikkel Fougt; Steinhoff, U.;

    2015-01-01

    The aim of this paper is to provide a roadmap for the standardization of magnetic nanoparticle (MNP) characterization. We have assessed common MNP analysis techniques under various criteria in order to define the methods that can be used as either standard techniques for magnetic particle charact...

  10. Satellite retrieved aerosol properties for battlespace characterization and sensor performance

    NARCIS (Netherlands)

    Schoemaker, R.M.

    2007-01-01

    Sea basing operations in coastal environments require a rapid and accurate description of the physical conditions in the region. Battlespace characterization and sensor performance assist in optimizing the efficiency and safety of operations, of which the detection of targets at low level above the

  11. Physicochemical characterization of fish protein adlayers with bacteria repelling properties.

    Science.gov (United States)

    Meyer, R L; Arpanaei, A; Pillai, S; Bernbom, N; Enghild, J J; Ng, Y Y; Gram, L; Besenbacher, F; Kingshott, P

    2013-02-01

    Materials coated with aqueous fish protein extracts can reduce bacterial adhesion, but the mechanism behind the observed effect is not fully understood. In this study we explore the physicochemical properties of fish muscle protein adlayers on four substrates: gold, stainless steel, polystyrene and silicon dioxide. The aims were (i) to determine if the anti-adhesive effect is independent of the underlying substrate chemistry, (ii) to link the physicochemical properties of the adlayer to its ability to repel bacteria, and (iii) to elucidate the mechanism behind this effect. The main proteins on all surfaces were the muscle proteins troponin, tropomyosin, and myosin, and the lipid binding protein apolipoprotein. The quantity, viscoelasticity, and hydration of the protein adlayers varied greatly on the different substrates, but this variation did not affect the bacterial repelling properties. Our results imply that these proteins adsorb to all substrates and provide a steric barrier towards bacterial adhesion, potentially providing a universal antifouling solution. PMID:23104021

  12. Modeling Based Characterization of Thermorheological Properties of Polyurethane ESTANE™

    Directory of Open Access Journals (Sweden)

    Ehsan Ghobadi

    2016-01-01

    Full Text Available Shape-Memory Polymers (SMPs have the ability to be deformed and memorize this deformation until an external activation stimulus (e.g., heat is applied. Therefore, they have attracted great interest in many areas, especially for applications where reconfigurable structures are required (e.g., Shape-Memory (SM stents or micro air vehicles. Nevertheless, prior to technical application, the effective thermomechanical behavior of SMPs must be thoroughly understood. In the current contribution, an assessment of thermorheological properties of the commercially available polyurethane system ESTANE is presented. Thermorheological properties were investigated using Dynamic Mechanical Thermal Analysis (DMTA and complementary uniaxial stress relaxation experiments. Upon material parameter optimization, a finite viscoelastic and incompressible material model was used to model experimentally observed viscoelastic properties.

  13. Material Property Characterization of AS4/VRM-34 Textile Laminates

    Science.gov (United States)

    Grenoble, Ray W.; Johnston, William M

    2013-01-01

    Several material properties (modulus, strengths, and fracture toughness) of a textile composite have been evaluated to provide input data to analytical models of Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS). The material system is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. Tensile, compressive, shear, and fracture toughness properties have been measured at ambient and elevated temperatures. All specimens were tested in as-fabricated (dry) condition. Specimens were tested with and without through-thickness stitching.

  14. Physicochemical characterization of fish protein adlayers with bacteria repelling properties

    DEFF Research Database (Denmark)

    Meyer, R. L.; Arpanaei, A.; Pillai, S.;

    2013-01-01

    Materials coated with aqueous fish protein extracts can reduce bacterial adhesion, but the mechanism behind the observed effect is not fully understood. In this study we explore the physicochemical properties of fish muscle protein adlayers on four substrates: gold, stainless steel, polystyrene...

  15. Synthesis, characterization and properties of polyaniline/expanded vermiculite intercalated nanocomposite

    OpenAIRE

    Jianming Lin, Qunwei Tang, Jihuai Wu and Hui Sun

    2008-01-01

    The synthesis characterization and conductivities of polyaniline/expanded vermiculite intercalated nanocomposite are presented in this paper. The conductive emeraldine salt form of polyaniline is inserted into the interlayer of expanded vermiculite to produce the nanocomposite with high conductivity. The structures and properties are characterized by transmission electron microscopy x-ray diffraction spectroscopy fourier transform infrared spectroscopy thermogravimetry analysis and by the mea...

  16. Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties

    OpenAIRE

    Alexandra Muñoz-Bonilla; Cerrada, María L.; Marta Fernández-García; Anna Kubacka; Manuel Ferrer; Marcos Fernández-García

    2013-01-01

    Nanocomposites obtained from the incorporation of synthesized TiO2 nanoparticles (≈10 nm average primary particle size) in different amounts, ranging from 0.5 to 5 wt.%, into a biodegradable polycaprolactone matrix are achieved via a straightforward and commercial melting processing. The resulting nanocomposites have been structurally and thermally characterized by transmission electron microscopy (TEM), wide/small angle X-ray diffraction (WAXS/SAXS, respectively) and differential scanning ca...

  17. Characterization and antibacterial properties of porous fibers containing silver ions

    Science.gov (United States)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao; Xu, Lan

    2016-11-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  18. Tensile-property characterization of thermally aged cast stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K. [Argonne National Lab., IL (United States)

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  19. Characterization-Based Molecular Design of Bio-Fuel Additives Using Chemometric and Property Clustering Techniques

    OpenAIRE

    Subin eHada; Charles Conrad Solvason; Mario Richard Eden

    2014-01-01

    In this work, multivariate characterization data such as infrared spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis allowed capturing important features of the molecular architecture from enormous amount of complex data to build appropriate latent variable models. Combining the property clusterin...

  20. Transition Metal Borides: Synthesis, Characterization and Superconducting Properties

    OpenAIRE

    Kayhan, Mehmet

    2013-01-01

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M2B, MB, M3B2, MB2, and M2B4. The reactions were carried out in three different furnaces with different sample co...

  1. Characterization of Photon Statistical Properties with Normalized Mandel Parameter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-Zheng; WANG Zhen-Hua; LI Hui; WU Qiang; TANG Bai-Quan; GAO Feng; XU Jing-Jun

    2008-01-01

    Normalized Mandel Parameter is introduced as a new measurement of photon statistics. Dependences of Mandel parameter Q and corresponding normalized Mandel parameter on photon-counting time interval are experimentally investigated for pseudo-thermal light. We demonstrate that is more appropriate than Q to measure the statistical deviation from Poisson distribution, because presents dearly both the intrinsic statistical properties and measuring effects. The advantages of in charactering nonclassical emissions are also discussed.

  2. Mechanical properties and material characterization of polysialate structural composites

    Science.gov (United States)

    Foden, Andrew James

    One of the major concerns in using Fiber Reinforced Composites in applications that are subjected to fire is their resistance to high temperature. Some of the fabrics used in FRC, such as carbon, are fire resistant. However, almost all the resins used cannot withstand temperatures higher than 200°C. This dissertation deals with the development and use of a potassium aluminosilicate (GEOPOLYMER) resin that is inorganic and can sustain more than 1000°C. The results presented include the mechanical properties of the unreinforced polysialate matrix in tension, flexure, and compression as well as the strain capacities and surface energy. The mechanical properties of the matrix reinforced with several different fabrics were obtained in flexure, tension, compression and shear. The strength and stiffness of the composite was evaluated for each loading condition. Tests were conducted on unexposed samples as well as samples exposed to temperatures from 200 to 1000°C. Fatigue properties were determined using flexural loading. A study of the effect of several processing variables on the properties of the composite was undertaken to determine the optimum procedure for manufacturing composite plates. The processing variables studied were the curing temperature and pressure, and the post cure drying time required to remove any residual water. The optimum manufacturing conditions were determined using the void content, density, fiber volume fraction, and flexural strength. Analytical models are presented based on both micro and macro mechanical analysis of the composite. Classic laminate theory is used to evaluate the state of the composite as it is being loaded to determine the failure mechanisms. Several failure criteria theories are considered. The analysis is then used to explain the mechanical behavior of the composite that was observed during the experimental study.

  3. Characterization of the adherence properties of Streptococcus salivarius.

    OpenAIRE

    Weerkamp, A H; McBride, B C

    1980-01-01

    The adherence and aggregation properties of 46 human oral Streptococcus salivarius isolates were examined. A total of 41% of the isolates aggregated with whole human saliva, 50% aggregated with human erythrocytes, and 85% adhered to human buccal epithelial cells. Strains that aggregated with saliva and erythrocytes usually reacted with Streptococcus group K typing serum whereas the non-hemagglutinating strains did not. K+ strains also adhered more strongly to human buccal epithelial cells tha...

  4. Characterization of Mechanical Properties of Porcelain Tile Using Ultrasonics

    OpenAIRE

    KURAMA, Semra; Eren, Elif

    2012-01-01

    Ultrasound affords a very useful and versatile non-destructive method, using a large application area, for evaluating the microstructure and mechanical properties of materials. In this study, porcelain tiles were sintered at different temperatures to change their porosity. Following this, the time of flight of both longitudinal and shear waves was measured through the tile. The time of flight of ultrasonic waves was measured using a contact ultrasonic transducer operating on a pulse-echo mode...

  5. Synthesis, characterization and field emission properties of nanotubes and nanowires

    Science.gov (United States)

    Dong, Lifeng

    2005-11-01

    In this study, we investigated several novel methods to synthesize carbon nanotubes and nanowires of various compositions with controlled properties, utilized electron microscopy and microanalysis techniques to study their growth mechanisms and effects of growth parameters on their internal structures and morphologies, and set up a field emission microscope and a field emission probe system to study field emission properties of single nanotube/nanowires and thin films of nanostructures. The introduction of H2 during catalyst activation and nanotube growth periods thermodynamically and kinetically facilitates the formation of high quality nanotubes. With the inclusion of H2, the nanotube diameter decreased from 300 nm to 15 nm and growth rate increased from 78 nm/s to 145 nm/s. The growth location and orientation of carbon nanotubes to substrates can be controlled by the position and density of catalysts, respectively. Focused Ion Beam (FIB) techniques were utilized to confine catalyst locations and to directly deposit patterned catalyst precursors. Nanotube internal structures including graphitization and number of graphite layers can be tailored using different hydrocarbon gases (CH4 or C2H2) as carbon sources or by varying catalyst elements (Fe, Ni, or Co). Besides effects of nanoscale radius and high aspect ratio, the internal structures of carbon nanotubes greatly affects their field mission properties including turn-on field, threshold field and enhancement factor. Carbon nanotubes from Fe or Co demonstrate better field emission properties than those from Ni. At high electric fields, nanotube emission deviates from the Fowler-Nordheim (F-N) theory due to space charge and field emission-induced temperature effects. Also, an abnormal noise power spectral density (PSD) peak was observed at the space charge regime and PSD decreases with the increase of emission current due to Joule self-heating. In order to investigate field emission properties of nanostructures

  6. Synthesis and characterization of lamellar aragonite with hydrophobic property

    International Nuclear Information System (INIS)

    A novel and simple synthetic method for the preparation of hydrophobic lamellar aragonite has been developed. The crystallization of aragonite was conducted by the reaction of sodium carbonate with calcium chloride in the presence of sodium stearate. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the contact angle. The results revealed that sodium stearate plays an important role in determining the structure and morphology of the sample. Besides, we have succeeded in surface modification of particles in situ at the same time. The contact angle of the modified aragonite reached 108.59 deg.

  7. Characterization and properties of sepiolite/polyurethane nanocomposites

    International Nuclear Information System (INIS)

    In situ polymerization method is employed to prepare sepiolite/polyurethane nanocomposite. The morphology and the dispersion of sepiolite in polyurethane have been characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope and Fourier transform infrared spectroscopy. The results show the sepiolite is dispersed homogeneously in the polyurethane matrix at a nanometer scale. The tensile test shows that the tensile strength and elongation at break for the nanocomposites increase with the addition of sepiolite as compared to those of the pure polyurethane. The TGA analysis reveals that the addition of nanofillers results in the higher thermal stability

  8. Anomalies in quantum field theory: Properties and characterization

    OpenAIRE

    Kraus, Elisabeth

    2002-01-01

    We consider the Adler-Bardeen anomaly of the U(1) axial current in abelian and non-abelian gauge theories and present its algebraic characterization as well as an explicit evaluation proving regularization scheme independence of the anomaly. By extending the gauge coupling to an external space-time dependent field we get a unique definition for the quantum corrections of the topological term. It also implies a simple proof of the non-renormalization theorem of the Adler-Bardeen anomaly. We co...

  9. Synthesis and characterization of lamellar aragonite with hydrophobic property

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chengyu, E-mail: wangcy@nefu.edu.cn [College of Materials Science and Engineering, Northeast Forestry University, 150040 (China); Xu Yang [China Nation Center for Quality Supervision and Test of Woodworking Machinery, Northeast Forestry University, 150040 (China); Liu Yalan; Li Jian [College of Materials Science and Engineering, Northeast Forestry University, 150040 (China)

    2009-04-30

    A novel and simple synthetic method for the preparation of hydrophobic lamellar aragonite has been developed. The crystallization of aragonite was conducted by the reaction of sodium carbonate with calcium chloride in the presence of sodium stearate. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the contact angle. The results revealed that sodium stearate plays an important role in determining the structure and morphology of the sample. Besides, we have succeeded in surface modification of particles in situ at the same time. The contact angle of the modified aragonite reached 108.59 deg.

  10. Characterization of optical polarization properties for liquid crystal-based retarders.

    Science.gov (United States)

    López-Téllez, Juan M; Bruce, Neil C; Rodríguez-Herrera, Oscar G

    2016-08-01

    We present the analysis and implementation of a set of experimental procedures to characterize optical polarization properties as a function of the applied voltage for liquid-crystal variable retarders (LCVRs) in the transmission mode. The studied properties are those involved in the operation of the LCVRs and, generally, are the most significant for optical applications: retardance, diattenuation, optical axes position, and output depolarization effects. The correct characterization of these polarization properties can be useful to improve results or estimate errors in applications using these devices. The results obtained show good accuracy and good agreement with the expected results. PMID:27505384

  11. Characterization and luminescent properties of thermally annealed olivines

    International Nuclear Information System (INIS)

    Olivine is an iron-magnesium solid solution silicate (Mg,Fe)2SiO4 and it is probably one of the most abundant mineral phase in the Solar System, it is present in the primitive carbonaceous meteorites (i.e Allende), and in ordinary chondritic meteorite, comets or terrestrial planets. The olivine grains in those bodies have been exposed to different radiation sources like UV, electrons, cosmic radiation, etc. Here, we explore the effect of ionizing and non ionizing radiation on the luminescence emission of the two well-characterised olivine samples from Mexico and Spain by means of cathodoluminescence and thermoluminescence. The analyses by X-ray dispersive energies in the scanning electron microscopy show differences between the samples in the amount of iron and magnesium and also show traces of rare elements. Olivine exhibits spectral cathodoluminescence emissions of low intensity, explained for the quenching of the luminescence of the iron, and sharp signals assigned as impurities. Cathodoluminescence and thermoluminescence glow curves of the natural, and UV induced olivine samples were obtained. Our results show that thermal treatments at 1100 °C change the mineral molecular structure and the luminescence properties of this mineral phase. These results confirm an active participation of physical factors influencing the luminescent properties of olivine. -- Highlights: ► Luminescent properties of two olivines samples (Mexican and Spanish) were explored. ► EDS show different iron and magnesium content and traces of rare elements on both. ► Olivine exhibits spectral CL emissions of low intensity due to the quenching of iron. ► Treatments at 1100 °C change the mineral structure and its response to UV radiation

  12. CHARACTERIZATION AND ADSORPTION PROPERTIES OF POROUS CARBON NANOFIBER GRANULES

    Institute of Scientific and Technical Information of China (English)

    Jiuling Chen; Qinghai Chen; Yongdan Li

    2006-01-01

    The properties of the porous granules produced by agglomeration of catalytically grown carbon nanofibers were investigated in this work. The single pellet crushing strength of the granules is high, e.g., 1.6-2.5 MPa. They have adsorption at 298 K of benzene or phenol on the granules is much lower than that on activated carbon and depends not only on the specific surface area of the carbon material but also on the sewing structure of the granules and the morphology of the carbon nanofibers. Treatment in dilute nitric acid appreciably reduces such adsorption.

  13. Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics

    KAUST Repository

    Li, Yangyang

    2013-05-01

    The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid

  14. Characterization of the DNA binding properties of polyomavirus capsid protein

    Science.gov (United States)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  15. Simultaneous spectrophotometric and mechanical property characterization of skin

    Science.gov (United States)

    Bunegin, Leonid; Moore, Jeffery B.

    2006-02-01

    Both reflectance spectroscopy and the determination Young's Modulus of skin have shown promise for identifying skin pathology. At present, these determinations are carried out using separate methodologies. This study demonstrates a new technology combining digital UV/VIS reflectance spectroscopy and vacuum aspiration for simultaneously determining the reflectance spectrum and mechanical properties of human skin tissue. A small hand held prototype device incorporating fiber-optic light guides into a vacuum channel was calibrated using various elastic materials subjected to increments of stress by vacuum from 0 to 25 in Hg. The intensity of a UV/VIS light beam reflected from the material at each vacuum increment was compared to the resulting material strain. The reflected beam was also spectrophotometrically analyzed. Skin types were similarly evaluated comparing normal and scar tissue and skin of various ages and coloration. An exponential relationship between reflected beam intensity and the amount of strain resulting from vacuum increments was observed. Young's Modulus (calculated from Aoki et. al equation) and spectra from normal skin and scar tissue were in agreement with previously published observations. Age related decreases in skin elasticity were also demonstrated. In the reflectance spectra, oxy and deoxy-hemoglobin absorbance bands were detected, becoming significantly enhanced at increased levels of vacuum. Melanin absorbance was also easily detected and appeared to correlate with skin coloration. Since superficial skin pathologies have characteristic spectroscopic and mechanical properties, this technique may provide a promising new approach for rapid, non-invasive method for the evaluation of skin lesions.

  16. Synthesis, characterization, and properties of reduced europium molybdates and tungstates

    Energy Technology Data Exchange (ETDEWEB)

    Abeysinghe, Dileka [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Gerke, Birgit [Institut für Anorganische und Analytische Chemie, Universität Münster , Corrensstrasse 30, Münster D-48149 (Germany); Morrison, Gregory; Hsieh, Chun H.; Smith, Mark D. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Pöttgen, Rainer [Institut für Anorganische und Analytische Chemie, Universität Münster , Corrensstrasse 30, Münster D-48149 (Germany); Makris, Thomas M. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Loye, Hans-Conrad zur, E-mail: zurloye@mailbox.sc.edu [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)

    2015-09-15

    Single crystals of K{sub 0.094}Eu{sub 0.906}MoO{sub 4}, K{sub 0.097}Eu{sub 0.903}WO{sub 4}, EuWO{sub 4}, and EuMoO{sub 4} were grown from molten chloride fluxes contained in vacuum-sealed fused silica and structurally characterized via single crystal X-ray diffraction. The in situ reduction of Eu{sup 3+} to Eu{sup 2+} was carried out using Mo, W, and Zn as metal reducing agents. All four compounds crystallize in the tetragonal space group of I4{sub 1}/a and adopt the scheelite (CaWO{sub 4}) structure type. The magnetic susceptibility of the reported compounds shows paramagnetic behavior down to 2 K. {sup 151}Eu Mössbauer spectroscopy was used to analyze the relative Eu{sup 2+} and Eu{sup 3+} content of the samples. All the compounds were further characterized by EPR, and UV-vis spectroscopy. - Graphical abstract: TOC Caption Two new reduced europium containing quaternary oxides, K{sub 0.094}Eu{sub 0.906}MoO{sub 4} and K{sub 0.097}Eu{sub 0.903}WO{sub 4}, and two previously reported ternary reduced oxides, EuWO{sub 4} and EuMoO{sub 4}, were synthesized via an in situ reduction of Eu{sup 3+} to Eu{sup 2+} under flux method using Mo, W, and Zn as metal reducing agents. {sup 151}Eu Mössbauer spectroscopy was used to analyze the relative Eu{sup 2+} and Eu{sup 3+} content of the samples. - Highlights: • K{sub 0.094}Eu{sub 0.906}MoO{sub 4}, K{sub 0.097}Eu{sub 0.903}WO{sub 4}, EuWO{sub 4}, and EuMoO{sub 4} have been synthesized and characterized. • The in situ reduction of Eu{sup 3+} to Eu{sup 2+} was carried out using Mo, W, and Zn as metal reducing agents. • Magnetic susceptibility data were collected. • {sup 151}Eu Mössbauer spectroscopy was used to analyze Eu{sup 2+} and Eu{sup 3+} content.

  17. Synthesis, characterization and properties of hollow nickel phosphide nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ni Yonghong; Tao Ali; Hu Guangzhi; Cao Xiaofeng; Wei Xianwen; Yang Zhousheng [College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000 (China)

    2006-10-14

    Nickel phosphide (Ni{sub 12}P{sub 5}) hollow nanospheres with a mean diameter of 100 nm and a shell thickness of 15-20 nm have been successfully prepared by a hydrothermal-microemulsion route, using NaH{sub 2}PO{sub 2} as a phosphorus source. XRD, EDS (HR)TEM, SEM and the SAED pattern were used to characterize the final product. Experiments showed that the as-prepared nickel phosphide hollow nanospheres could selectively catalytically degrade some organic dyes such as methyl red and Safranine T under 254 nm UV light irradiation. At the same time, the nickel phosphide hollow nanospheres showed a stronger ability to promote electron transfer between the glass-carbon electrode and adrenalin than nickel phosphide honeycomb-like particles prepared by a simple hydrothermal route. A possible formation process for nickel phosphide hollow nanospheres was suggested based on the experimental results.

  18. Thermal property of biological tissues characterized by piezoelectric photoacoustic technique

    Institute of Scientific and Technical Information of China (English)

    GAO Chunming; ZHANG Shuyi; CHEN Yan; SHUI Xiuji; YANG Yuetao

    2004-01-01

    A photoacoustic piezoelectric method based on a simplified thermoelastic theory is employed to determine thermal diffusivities of biological tissues. The thermal diffusivities of porcine tissues with different preparation conditions, including fresh, dry and specially prepared conditions, are characterized. Comparing the experimental evaluated diffusivities of the tissues in three conditions with each other, it can be seen that the diffusivities of the fresh tissues are the biggest and the diffusivities of the specially prepared tissues are bigger than that of the dry ones generally. The results show that the piezoelectric photoacoustic method is especially effective for determining macro-effective (average) thermal diffusivities of biological materials with micro- inhomogeneity and easy to be performed, which can provide useful information for researching thermal characters of biological tissues.

  19. Physical characterization of functionalized spider silk: electronic and sensing properties

    Directory of Open Access Journals (Sweden)

    Eden Steven, Jin Gyu Park, Anant Paravastu, Elsa Branco Lopes, James S Brooks, Ongi Englander, Theo Siegrist, Papatya Kaner and Rufina G Alamo

    2011-01-01

    Full Text Available This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline and amorphous (helical structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size, on the process of pyrolization (suppressing mass loss rates and on the resulting carbonized fiber structure (that becomes more robust against bending and strain. The effects of iodine doping and other functional parameters (vacuum and thin film coating motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  20. Physical characterization of functionalized spider silk: electronic and sensing properties

    International Nuclear Information System (INIS)

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 deg. C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of

  1. Characterization of the adherence properties of Streptococcus salivarius.

    Science.gov (United States)

    Weerkamp, A H; McBride, B C

    1980-01-01

    The adherence and aggregation properties of 46 human oral Streptococcus salivarius isolates were examined. A total of 41% of the isolates aggregated with whole human saliva, 50% aggregated with human erythrocytes, and 85% adhered to human buccal epithelial cells. Strains that aggregated with saliva and erythrocytes usually reacted with Streptococcus group K typing serum whereas the non-hemagglutinating strains did not. K+ strains also adhered more strongly to human buccal epithelial cells than K- strains. All isolates coaggregated with Fusobacterium nucleatum LF and Bacteroides asaccharolyticus 2D, 91% coaggregated with Veillonella alcalescens V1, and 50% coaggregated with Veillonella parvula V4. S. salivarius HB aggregated with saliva from 15 different human donors and aggregated with human erythrocytes irrespective of the blood group. This strain only weakly aggregated with rat saliva or rat erythrocytes. We isolated mutants which concomitantly lost the ability to agglutinate erythrocytes, aggregate with saliva, and bind to buccal epithelial cells, but retained their interbacterial aggregation properties. A second class of mutants lost the ability to coaggregate with Veillonella, but these mutants retained all of the other aggregation properties. Treatment of S. salivarius HB cells with pronase or subtilisin destroyed their ability to aggregate with saliva and erythrocytes and to bind to buccal epithelial cells. The unique characteristics of the aggregation and adherence reactions were suggested by differences in the rate of loss of activity during protease treatment and in the response to chemical modification. The presence of saliva did not affect hemagglutination and adherence to buccal epithelial cells. Binding of the salivary aggregating factor to the bacteria could be distinguished from aggregation on the basis that the latter required divalent cations. The factor involved in coaggregation with F. nucleatum LF was physicochemically different from the other

  2. Preparation, Characterization and Properties of Graphene-silver Sulphide Hybrid

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-yi; WEI Zhi-yong; LIANG Ce; WANG De-jin; LIANG Ji-cai; ZHANG Wan-xi

    2012-01-01

    A facile and efficient strategy was reported for the preparation of graphene nanosheets-Ag2S hybrid by a simple hydrothermal process.First,Ag2S particles deposited on the surface of graphene oxide(GO) sheet.GO was then reduced by hydrazine hydrate to graphcne.The results of X-ray diffraction(XRD) and Fourier transform infrared(FTIR) demonstrated the efficient reduction of GO to graphene.Transmission electron microscopy(TEM) image of the sample reveals the morphology of the architecture of graphene-Ag2S hybrid.Ultraviolet-visible spectroscopy(UV-Vis) and photoluminescence(PL) measurement were further employed to study the optical properties of the obtained nanocomposite.This work can be extended to design other graphene-based hybrid nanomaterials,and the as-grown architectures may hold promise for many applications.

  3. Characterization of electrical and optical properties of silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Guobin

    2009-12-04

    In this work, the electrical and luminescence properties of a series of silicon based materials used for photovoltaics, microelectronics and nanoelectronics have been investigated by means of electron beam induced current (EBIC), cathodoluminescence (CL), photoluminescence (PL) and electroluminescence (EL) methods. Photovoltaic materials produced by block casting have been investigated by EBIC on wafers sliced from different parts of the ingot. Various solar cell processings have been compared in parallel wafers by means of EBIC collection efficiency measurements and contrast-temperature C(T) behaviors of the extended defects, i. e. dislocations and grain boundaries (GBs). It was found that the solar cell processing with phosphorus diffusion gettering (PDG) followed with a SiN firing greatly reduces the recombination activity of extended defects at room temperature, and improves the bulk property simultaneously. A remaining activity of the dislocations indicates the limitation of the PDG at extended defects. Abnormal behavior of the dislocation activity after certain solar cell processes was also observed in the region with high dislocation density, the dislocations are activated after certain solar cell processings. In order to evaluate the properties of a thin polycrystalline silicon layer prepared by Al-induced layer exchange (Alile) technique, epitaxially layer grown on silicon substrate with different orientations was used as a model system to investigate the impact by the process temperature and the substrates. EBIC energy dependent collection efficiency measurements reveal an improvement of the epilayer quality with increasing substrate temperature during the growth from 450 C to 650 C, and a decrease of epilayer quality at 700 C. PL measurements on the epitaxially grown Si layer on silicon substrates revealed no characteristic dislocation-related luminescence (DRL) lines at room temperature and 77 K, while in the samples prepared by Alile process, intense

  4. Characterization and modelling of the mechanical properties of mineral wool

    DEFF Research Database (Denmark)

    Chapelle, Lucie

    2016-01-01

    the comparison of individual characteristics of different mineral wool materials and provide simple descriptors of the 3D structure. All the methods described here are applied to glass wool and stone wool. By developing a FEM model including the real characteristic of the mineral wool fibre structure, the effect...... the reorientation of the fibres. A numerical model of the cyclic compression of mineral wool is developed and reproduces successfully the hysteresis observed experimentally. The results of the modelling indicate that the size of the hysteresis is linked to the friction coefficient between the fibres. Elastic...... and compressive properties of mineral wool products can now be predicted and optimized with respect to the fibre structure, binder and fibre content using the micromechanical FEM model developed in this PhD study....

  5. Quantitative microstructure characterization and elastic properties upscaling of carbonate rocks

    Science.gov (United States)

    Vialle, Stephanie; Lebedev, Maxim

    2016-04-01

    Most Rock Physics models commonly used to predict elastic properties rely on a very simplified representation of the pore and grains geometry. Initially developed for siliclastic rocks, they do not apply easily and/or with as much success, to rocks with more complicated microstructure such as carbonates, which exhibit complex relationships between geophysical attributes and rock properties, such as P-wave velocity versus porosity. Furthermore, until recently, most microstructure imaging techniques such as optical microscopy, SEM, X-ray micro-CT, etc., only give a qualitative description of the pore and grain arrangement. Nano-indentation technique is a method that gives quantitative information by mean of local (micrometer size) measurements of elastic moduli. We used this technique to obtain 300 μm * 300 μm maps of Young's moduli (around 1000 data points) of two microporous carbonates of same mineralogy but of two different microstructures. As the size of the indenter tip is much smaller than the characteristic length of the heterogeneities in microstructure, the distribution of the Young's moduli can be deconvolved into its component parts (i.e. phases). SEM imaging of the same areas than the ones mapped by nano-indentation shows correlations between type of micrite and phases of different mean Young's modulus: tight micrites exhibiting a higher Young's modulus (up to 64 GPa) than microporous micrites (as low as 9 GPa). We then investigate different ways to upscale the measurements in order to get the effective bulk and shear moduli, from simply using volume fractions of the different phases, classical Hashin-Shrikman bounds, and Hill average; to using micro-CT imaging and analysis combined with rock physics models. Though more work is still needed to render nano-indentation technique a robust method for rock physics, both on the theory behind and on the upscaling of the measurements, these results that use nano-indentation method in a statistical way are very

  6. Characterization of physicochemical properties of ivy nanoparticles for cosmetic application

    Directory of Open Access Journals (Sweden)

    Huang Yujian

    2013-02-01

    Full Text Available Abstract Background Naturally occurring nanoparticles isolated from English ivy (Hedera helix have previously been proposed as an alternative to metallic nanoparticles as sunscreen fillers due to their effective UV extinction property, low toxicity and potential biodegradability. Methods This study focused on analyzing the physicochemical properties of the ivy nanoparticles, specifically, those parameters which are crucial for use as sunscreen fillers, such as pH, temperature, and UV irradiation. The visual transparency and cytotoxicity of ivy nanoparticles were also investigated comparing them with other metal oxide nanoparticles. Results Results from this study demonstrated that, after treatment at 100°C, there was a clear increase in the UV extinction spectra of the ivy nanoparticles caused by the partial decomposition. In addition, the UVA extinction spectra of the ivy nanoparticles gradually reduced slightly with the decrease of pH values in solvents. Prolonged UV irradiation indicated that the influence of UV light on the stability of the ivy nanoparticle was limited and time-independent. Compared to TiO2 and ZnO nanoparticles, ivy nanoparticles showed better visual transparency. Methylthiazol tetrazolium assay demonstrated that ivy nanoparticles exhibited lower cytotoxicity than the other two types of nanoparticles. Results also suggested that protein played an important role in modulating the three-dimensional structure of the ivy nanoparticles. Conclusions Based on the results from this study it can be concluded that the ivy nanoparticles are able to maintain their UV protective capability at wide range of temperature and pH values, further demonstrating their potential as an alternative to replace currently available metal oxide nanoparticles in sunscreen applications.

  7. Processing, characterization, and properties of some novel thermal barrier coatings

    Science.gov (United States)

    Jadhav, Amol D.

    The efficacy of ceramic thermal barrier coatings (TBCs) used to protect and to insulate metal components in engines increases with the thickness of the TBCs. However, the durabilities of thick TBCs deposited using conventional ceramic-coating deposition methods have not been adequate. Here the feasibility of depositing highly durable thick TBCs (1.5 to 4 mm thickness) of ZrO 2-7 wt.% Y2O3 (7YSZ) on bond-coated superalloy substrates using the solution-precursor plasma spray (SPPS) method has been demonstrated. Thermal cyclic durabilities of the thick SPPS TBCs have been shown to be much superior compared to TBCs deposited using the conventional air-plasma-spray (APS) process. To evaluate the performance of thick APS and SPPS TBCs, mechanical properties of free-standing coatings and coating/substrate interfaces have been determined experimentally. Additional evaluation of TBC performance has been obtained from studies of damage and development of thermally grown oxide (TGO) at the interface as a result of thermal cycling. The later results are used to suggest mechanisms of chemical failure of TGO in thick plasma-sprayed TBCs. Based on the experimental results and numerical analysis of the TBC residual stresses, the dramatic improvement in the thermal cycling life in the SPPS TBCs is attributed to superior mechanical properties of SPPS coatings. The presence of the strain tolerant vertical cracks in SPPS TBCs reduces the driving force for TBC spallation under mode-II loading. Additionally, high in-plane fracture toughness in the SPPS TBCs under mode-I loading delays the TBC spallation significantly. Finally, thermal conductivity of the SPPS TBCs has been reduced by microstructural tailoring. Analytical and object-oriented finite element (OOF) models have been used to analyze the experimental thermal conductivity data, and to predict thermal conductivities of engineered TBCs.

  8. Rock mass mechanical property estimations for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Rock mass mechanical properties are important in the design of drifts and ramps. These properties are used in evaluations of the impacts of thermomechanical loading of potential host rock within the Yucca Mountain Site Characterization Project. Representative intact rock and joint mechanical properties were selected for welded and nonwelded tuffs from the currently available data sources. Rock mass qualities were then estimated using both the Norwegian Geotechnical Institute (Q) and Geomechanics Rating (RMR) systems. Rock mass mechanical properties were developed based on estimates of rock mass quality, the current knowledge of intact properties, and fracture/joint characteristics. Empirical relationships developed to correlate the rock mass quality indices and the rock mass mechanical properties were then used to estimate the range of rock mass mechanical properties

  9. New polymer target-shell properties and characterizations

    International Nuclear Information System (INIS)

    A method for characterizing ICF target shells is presented, based on measurement of the gas released from a single shell into a small volume. It utilizes cryogenic permeation systems developed in connection with our work on ICF targets containing nuclear spin-polarized deuterium. Permeation rates for polystyrene and parylene-coated-polystyrene shells are measured at temperatures from 350K down to 180K. Burst or implosion pressure can be determined over a full temperature range down to 20K. Shell temperature is calculated from its gas leakage rate, calibrated by permeation measurements over the temperature range. Lag of shell temperature compared with sample-chamber temperature during warming of the latter is attributed to the weakness of the thermal link provided by both radiative heat transfer and free molecular conduction with small accommodation coefficients for helium and deuterium gas at the structure to which the shell is conductively linked, or at the surface of a conductively isolated shell. Quantification of this lag can provide a measure of atomic scale roughness of the shell outer surface. Also presented are reversible pre-rupture leakage phenomena for polystyrene and parylene-coated-polystyrene shells

  10. Characterization by spectroscopic Ellipsometry, the physical properties of silver nanoparticles.

    Science.gov (United States)

    Coanga, Jean-Maurice

    2013-04-01

    Physicists are able to change their minds through their experiments. I think it is time to go kick the curse and go further in research if we want a human future. I work in the Nano-Optics and Plasmonics research. I defined with ellipsomètrie the structure of new type of Nano particles of silver. It's same be act quickly to replace the old dirty leaded electronic-connexion chip and by the other hand to find a new way for the heath care of cancer disease by nanoparticles the next killers of bad cells. Silver nanoparticle layers are obtained by Spark Plasma Sintering are investigated as an alternative to lead alloy based material for solder joint in power mechatronics modules. These layers are characterized by mean of conventional techniques that is the dilatometry technique, the resistivity measurement through the van der Pauw method, and the flash laser technique. Furthermore, the nanoparticles of silver layer are deeply studied by UV-Visible spectroscopic ellipsometry. Spectroscopic angles parameters are determined in function of temperature and dielectric constants are deduced and analyzed through an optical model which takes into account a Drude and a Lorentz component within the Bruggeman effective medium approximation (EMA). The relaxation times and the electrical conductivity are plot in function of temperature. The obtained electrical conductivity give significant result in good agreement to those reported by four points electrical measurement method.

  11. Microwave Synthesis, Characterization, and Photoluminescence Properties of Nanocrystalline Zirconia

    Directory of Open Access Journals (Sweden)

    A. K. Singh

    2014-01-01

    Full Text Available We report synthesis of ZrO2 nanoparticles (NPs using microwave assisted chemical method at 80°C temperature. Synthesized ZrO2 NPs were calcinated at 400°C under air atmosphere and characterized using FTIR, XRD, SEM, TEM, BET, and EDS for their formation, structure, morphology, size, and elemental composition. XRD results revealed the formation of mixed phase monoclinic and tetragonal ZrO2 phases having crystallite size of the order 8.8 nm from most intense XRD peak as obtained using Scherrer formula. Electron microscope analysis shows that the NPs were less than 10 nm and highly uniform in size having spherical morphology. BET surface area of ZrO2 NPs was found to be 65.85 m2/g with corresponding particle size of 16 nm. The band gap of synthesized NPs was found to be 2.49 eV and PL spectra of ZrO2 synthesized NPs showed strong peak at 414 nm, which corresponds to near band edge emission (UV emission and a relatively weak peak at 475 and 562 nm.

  12. Aromatic polyesters with photosensitive side chains: Synthesis, characterization and properties

    Directory of Open Access Journals (Sweden)

    Nechifor Marioara

    2016-01-01

    Full Text Available New aromatic polyesters with photosensitive groups in their pendant chains were prepared from a diphenol carrying as substituent a cinnamoyl group extended with a flexible oxyethyleneoxy spacer and different aromatic dicarboxylic acids via direct polyesterification reaction in the presence of tosyl chloride/pyridine/dimethylformamide system as condensing agent. The resulting polyesters were characterized using Fourier-transform IR, proton and carbon nuclear magnetic resonance and ultraviolet spectroscopy, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffractometry, gel permeation chromatography, viscosity measurement and solubility test. These polyarylates had moderate inherent viscosities ranging from 0.37 to 0.54 dL g-1, good solubility in polar aprotic solvents, and afforded transparent, colorless and apparently tough films by casting from their solutions. Their glass-transition temperatures ranged from 136 to 154°C. All of them did not show significant decomposition below 320°C and retained 38-47 % weight at 700°C in nitrogen atmosphere. The presence of cinnamoyl chromophore endowed these polymers with the ability to react to ultraviolet light which resulted in photodimerization between cinnamoyl side groups upon irradiation at l = 365 nm and cross-linking the polymers chains in the absence of photo-initiators or photo-sensitizers. As a consequence, the polymer films became insoluble in organic solvents.

  13. Advanced optical measurements for characterizing photophysical properties of single nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Ronen; Davis, Ryan W.; Arango, Dulce C.; Brozik, Susan Marie; Wheeler, David Roger

    2009-09-01

    Formation of complex nanomaterials would ideally involve single-pot reaction conditions with one reactive site per nanoparticle, resulting in a high yield of incrementally modified or oriented structures. Many studies in nanoparticle functionalization have sought to generate highly uniform nanoparticles with tailorable surface chemistry necessary to produce such conjugates, with limited success. In order to overcome these limitations, we have modified commercially available nanoparticles with multiple potential reaction sites for conjugation with single ssDNAs, proteins, and small unilamellar vesicles. These approaches combined heterobifunctional and biochemical template chemistries with single molecule optical methods for improved control of nanomaterial functionalization. Several interesting analytical results have been achieved by leveraging techniques unique to SNL, and provide multiple paths for future improvements for multiplex nanoparticle synthesis and characterization. Hyperspectral imaging has proven especially useful for assaying substrate immobilized fluorescent particles. In dynamic environments, temporal correlation spectroscopies have been employed for tracking changes in diffusion/hydrodynamic radii, particle size distributions, and identifying mobile versus immobile sample fractions at unbounded dilution. Finally, Raman fingerprinting of biological conjugates has been enabled by resonant signal enhancement provided by intimate interactions with nanoparticles and composite nanoshells.

  14. Characterization of the variation of the material properties in a freestanding inhomogeneous thin film

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xiaoshan [School of Mechanical Systems Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Jin Feng [MOE Key Laboratory for Strength and Vibration, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Jeon, Insu, E-mail: i_jeon@chonnam.ac.k [School of Mechanical Systems Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of)

    2010-12-01

    This Letter presents a new technique for measuring the variation of the material properties along the thickness in a freestanding inhomogeneous thin film. The analytical results reveal a simple relation between the material properties and the set of cut-off frequencies of Lamb waves. The influence of the graded properties on the variation of cut-off frequencies in three different kinds of models, including artificial FGM model, sub-surface damage model, and nano-porous thin film model, is discussed. These results provide theoretical guidance for characterizing the material property variations of MEMS/NEMS.

  15. Characterization of adhesion associated surface properties of uropathogenic Escherichia coli.

    Science.gov (United States)

    Bartková, G; Ciznár, I; Lehotská, V; Kernová, T

    1994-01-01

    Escherichia coli was isolated from the urine of patients with pyelonephritis, with urinary tract infections other than pyelonephritis and with asymptomatic bacteriuria. Surface properties of the strains were analyzed by the salting-out aggregation test (SAT), hydrophobic interaction chromatography (HIC), Congo red binding (Crb), agglutination of erythrocytes (MRHA) and latex particles covered by digalactoside (PF) and by adherence to tissue culture cells. In addition, a DNA probe for the pap gene was used. The DNA probe detected the highest proportion of strains with pap gene in the group of patients with pyelonephritis, lower in the urinary tract infections other than pyelonephritis and the lowest in the group with asymptomatic bacteriuria. Tests for P-fimbriae (PF, MRHA) showed a similar distribution. Hydrophobicity measured by SAT and by HIC did not show differences among the tested groups of strains. The results suggest that factors other than the P-fimbriae and hydrophobicity may contribute to the persistence of E. coli in the urinary tract.

  16. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Directory of Open Access Journals (Sweden)

    Otanicar Todd

    2011-01-01

    Full Text Available Abstract Suspensions of nanoparticles (i.e., particles with diameters < 100 nm in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm. A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power increase.

  17. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States)

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  18. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation

    Science.gov (United States)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.

    2009-01-01

    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  19. Synthesis, characterization and optical properties of nanocrystalline lead molybdate

    Energy Technology Data Exchange (ETDEWEB)

    Anandakumar, V.M. [Department of Physics University of Kerala, Thiruvananthapuram (India); Department of Physics, Mahatma Gandhi College, Thiruvananthapuram (India); Khadar, M.A. [Department of Physics University of Kerala, Thiruvananthapuram (India); Centre for Nanosciences and Nanotechnology, University of Kerala, Thiruvananthapuram (India)

    2008-11-15

    Lead molybdate (PbMoO{sub 4}) finds wide practical application due to its acousto-optic and luminescent properties. In the present study, nanoparticles of PbMoO{sub 4} of different grain sizes were synthesized through chemical precipitation technique. Precipitation reactions carried out in non-aqueous media below room temperature were used for the synthesis of samples of two lower grain sizes. The crystal structure and grain size of the samples were determined using X-ray diffraction and transmission electron microscopy. UV-Visible absorption spectra showed a broad absorption peak for the sample with average grain size of 52 nm which is blue shifted considerably as the average grain size was reduced to 14 nm. The fundamental absorption follows an exponential edge indicating Urbach-like behaviour. The temperature dependence of Urbach parameter is also determined. The micro-Raman spectra and FT Raman spectra of the samples were recorded and the features in the Raman spectra are discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Structural properties and hyperfine characterization of Sn-substituted goethites

    Energy Technology Data Exchange (ETDEWEB)

    Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin

  1. Isolation and Characterization of Neutrophils with Anti-Tumor Properties.

    Science.gov (United States)

    Sionov, Ronit Vogt; Assi, Simaan; Gershkovitz, Maya; Sagiv, Jitka Y; Polyansky, Lola; Mishalian, Inbal; Fridlender, Zvi G; Granot, Zvi

    2015-01-01

    Neutrophils, the most abundant of all white blood cells in the human circulation, play an important role in the host defense against invading microorganisms. In addition, neutrophils play a central role in the immune surveillance of tumor cells. They have the ability to recognize tumor cells and induce tumor cell death either through a cell contact-dependent mechanism involving hydrogen peroxide or through antibody-dependent cell-mediated cytotoxicity (ADCC). Neutrophils with anti-tumor activity can be isolated from peripheral blood of cancer patients and of tumor-bearing mice. These neutrophils are termed tumor-entrained neutrophils (TEN) to distinguish them from neutrophils of healthy subjects or naïve mice that show no significant tumor cytotoxic activity. Compared with other white blood cells, neutrophils show different buoyancy making it feasible to obtain a > 98% pure neutrophil population when subjected to a density gradient. However, in addition to the normal high-density neutrophil population (HDN), in cancer patients, in tumor-bearing mice, as well as under chronic inflammatory conditions, distinct low-density neutrophil populations (LDN) appear in the circulation. LDN co-purify with the mononuclear fraction and can be separated from mononuclear cells using either positive or negative selection strategies. Once the purity of the isolated neutrophils is determined by flow cytometry, they can be used for in vitro and in vivo functional assays. We describe techniques for monitoring the anti-tumor activity of neutrophils, their ability to migrate and to produce reactive oxygen species, as well as monitoring their phagocytic capacity ex vivo. We further describe techniques to label the neutrophils for in vivo tracking, and to determine their anti-metastatic capacity in vivo. All these techniques are essential for understanding how to obtain and characterize neutrophils with anti-tumor function. PMID:26132785

  2. Role of the advanced microstructures characterization in modeling of mechanical properties of AHSS steels

    Energy Technology Data Exchange (ETDEWEB)

    Radwański, Krzysztof, E-mail: kradwanski@imz.pl; Wrożyna, Andrzej, E-mail: awrozyna@imz.pl; Kuziak, Roman, E-mail: rkuziak@imz.pl

    2015-07-15

    Detailed knowledge of the fraction, morphology and chemical composition of phase constituents and their effect on the mechanical properties play a crucial role in understanding of the mechanisms influencing the properties of Advanced High Strength Steels (AHSS). On the other hand, the most important microstructural features of these steels are characterized by different size, starting from the nano- and ending on the microscale. Therefore, a detailed characterization of the AHSS microstructure must involve many methods capable of tracing the microstructure at different scale levels. The paper presents selected capabilities of advanced analytical techniques, in combination with conventional light optical microscopy (LOM), for quantitative characterization of the microstructure developed in AHSS steels during thermomechanical processing or continuous annealing. The material used for the investigation comprised the samples of DP steel sheet produced at the industrial scale. Special emphasis was focused on the capabilities of the Field Emission Gun Scanning Electron Microscopy (FEG SEM) combined with EBSD of microstructural characterization. The significance of accurate microstructure characterization for the modeling of mechanical properties of AHSS steels was demonstrated for the case of numerical calculation of the stress–strain curve in the standard tensile test. The work results indicate that such an engineering approach is useful for prediction of material properties.

  3. An updated taxonomy for characterizing hackers according to their threat properties

    DEFF Research Database (Denmark)

    Hald, Sara Ligaard; Pedersen, Jens Myrup

    2012-01-01

    The objective of this paper is to give an up-to-date terminology for and categorization of hackers on the Internet, and to characterize each category of hackers by their threat properties. To be able to prioritize defense efforts, security experts need an accurate taxonomy of attackers for the pr......The objective of this paper is to give an up-to-date terminology for and categorization of hackers on the Internet, and to characterize each category of hackers by their threat properties. To be able to prioritize defense efforts, security experts need an accurate taxonomy of attackers...

  4. Poly(anthranilic acid) Microspheres: Synthesis, Characterization and their Electrocatalytic Properties

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Suresh; Raju, Prabu; Arunachalam, Vijayaraj; Krishnamoorty, Giribabu; Ramadoss, Manigandan; Arumainathan, Stephen; Vengidusamy, Narayanan [University of Madras, Guindy Maraimalai Campus, Chennai (India)

    2012-06-15

    Poly(anthranilic acid) was synthesized by rapid mixing method using 5-sulphosalicylic acid as a dopant. The synthesized polymer was characterized by various techniques like FT-IR, UV-Visible, and X-ray diffraction etc., The FT-IR studies reveal that the 5-sulphosalicylic acid is well doped within the polymer. The morphological property was characterized by field emission scanning electron microscopic technique. The electrochemical properties of the polymer were studied by cyclic voltammetric method. The synthesized polymer was used to modify glassy carbon electrode (GCE) and the modified electrode was found to exhibit electrocatalytic activity for the oxidation of uric acid (UA)

  5. Preparation, Characterization, and Properties of In Situ Formed Graphene Oxide/Phenol Formaldehyde Nanocomposites

    Directory of Open Access Journals (Sweden)

    Weihua Xu

    2013-01-01

    Full Text Available Graphene oxide (GO has shown great potential to be used as fillers to develop polymer nanocomposites for important applications due to their special 2D geometrical structure as well as their outstanding mechanical, thermal, and electrical properties. In this work, GO was incorporated into phenol formaldehyde (PF resin by in situ polymerization. The morphologies and structures of GO sheets were characterized by FTIR, XRD, and AFM methods. The structure and properties of the GO/PF nanocomposites were characterized using FTIR, XRD, DSC, and TGA methods. Effects of GO content, reactive conditions, and blending methods on the structure and properties of GO/PF nanocomposites were studied. It was found that due to the well dispersion of GO sheets in polymer matrix and the strong interfacial interaction between the GO sheets and PF matrix, the thermal stability and thermal mechanical properties of the GO/PF nanocomposites were greatly enhanced.

  6. On the elastic properties of carbon nanotube-based composites: modelling and characterization

    CERN Document Server

    Thostenson, E T

    2003-01-01

    The exceptional mechanical and physical properties observed for carbon nanotubes has stimulated the development of nanotube-based composite materials, but critical challenges exist before we can exploit these extraordinary nanoscale properties in a macroscopic composite. At the nanoscale, the structure of the carbon nanotube strongly influences the overall properties of the composite. The focus of this research is to develop a fundamental understanding of the structure/size influence of carbon nanotubes on the elastic properties of nanotube-based composites. Towards this end, the nanoscale structure and elastic properties of a model composite system of aligned multi-walled carbon nanotubes embedded in a polystyrene matrix were characterized, and a micromechanical approach for modelling of short fibre composites was modified to account for the structure of the nanotube reinforcement to predict the elastic modulus of the nanocomposite as a function of the constituent properties, reinforcement geometry and nanot...

  7. Characterizing the Absorption Properties for Remote Sensing of Three Small Optically-Diverse South African Reservoirs

    OpenAIRE

    Mark William Matthews; Stewart Bernard

    2013-01-01

    Characterizing the specific inherent optical properties (SIOPs) of water constituents is fundamental to remote sensing applications. Therefore, this paper presents the absorption properties of phytoplankton, gelbstoff and tripton for three small, optically-diverse South African inland waters. The three reservoirs,  Hartbeespoort, Loskop and Theewaterskloof, are challenging for remote sensing, due to differences in phytoplankton assemblage and the considerable range of constituent concentratio...

  8. Characterization of Microstructure and Mechanical Properties of Resistance Spot Welded DP600 Steel

    OpenAIRE

    Ali Ramazani; Krishnendu Mukherjee; Aydemir Abdurakhmanov; Mahmoud Abbasi; Ulrich Prahl

    2015-01-01

    Resistance spot welding (RSW) as a predominant welding technique used for joining steels in automotive applications needs to be studied carefully in order to improve the mechanical properties of the spot welds. The objectives of the present work are to characterize the resistance spot weldment of DP600 sheet steels. The mechanical properties of the welded joints were evaluated using tensile-shear and cross-tensile tests. The time-temperature evolution during the welding cycle was measured. T...

  9. Properties Correlations and Characterization of Athabasca Oil Sands-derived Synthetic Crude Oil

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Zhao Suoqi; Xu Chunming; Chung Keng H.

    2007-01-01

    Narrow fractions of Athabasca oil sands-derived synthetic crude oil (SCO) from Canada were obtained by distillation at 20 ℃ to 500 ℃ and characterized. The yield and properties, such as density, refractive index, viscosity,freezing point, sulfur and nitrogen content and UOP K-index, were correlated as a function of boiling temperature (Tb).The properties of naphtha fractions, jet fuel and diesel fractions could be predicted accurately with the correlations, which are useful for process design considerations, such as optimizing operating conditions of refinery processing units. The other key properties and characteristics of naphtha fractions, jet fuel, diesel and vacuum gas oil were also determined.

  10. Characterization of Compressive Properties of Polymer Foam Materials Using DIC and a Modified Arcan Fixture

    DEFF Research Database (Denmark)

    Taher, Siavash Talebi; Thomsen, Ole Thybo; Dulieu-Barton, J. M.

    2013-01-01

    , a “correction factor” for the measured surface strain is determined using nonlinear finite element analysis (FEA). The paper will focus on the characterization of the compressive material properties including the MAF setup, test specimen design, experimental procedure and validated experimental results....

  11. Thermo-Mechanical FE Simulation & Characterization of MoGr’s Elastic Properties

    CERN Document Server

    de Bras de Fer, Thibault

    2014-01-01

    This report summarizes a two-month’s internship within the EN-MME department, focusing on Finite Element simulations for the Collimation project and PSB H0/H- dump upgrade, and the progress done on the characterization of Molybdenum-Graphite elastic properties.

  12. Characterization of Different Parts of Oil Palm Fronds (Elaeis Guineensis and Its Properties

    Directory of Open Access Journals (Sweden)

    Noor Afeefah Nordin

    2016-01-01

    Full Text Available The study was conducted on characterizing the properties of oil palm fronds (Elaeis guineensis from different parts. The fronds were cut to three parts which were the top, middle and bottom. The samples were chipped, dried in the oven of 50 °C and ground before they were characterized. The properties of the fronds were characterized using thermal gravimetric analyser (TGA, fourier transform infrared spectroscopy (FTIR and x-ray diffraction (XRD. The results from TGA showed that the bottom part of the frond had the lowest percentage of residues which was 29.22 % and the degradation temperature was 194.17 °C. The FTIR spectra showed almost similar peaks for all samples. The bottom part of the frond had the highest crystallinity index which was 35.26 %. The study proved that different parts of the frond had different characteristics due to its chemical compositions.

  13. Molecular Characterization, Antioxidant and Protein Solubility-Related Properties of Polyphenolic Compounds from Walnut (Juglans regia).

    Science.gov (United States)

    Labuckas, Diana; Maestri, Damián; Lamarque, Alicia

    2016-05-01

    Aqueous ethanol extraction of partially defatted walnut flours provides a simple and reliable method to obtain extracts with high content of polyphenolic compounds. These were characterized by means of HPLC-ESI-MS/MS analytical techniques and molecular parameters. Considering the whole set of polyphenolic compounds identified, a high average number of phenolic-OH groups was found. Although these represent potential hydrogen-atom transfer sites, which are associated with high free-radical scavenging capacity, results show that such a property could be strongly limited by the low lipophilicity of polyphenols affecting the accessibility of these molecules to lipid substrates. Variations in pH values were found to change the ionization behavior of phenolic compounds. These changes, however, had minor effects on walnut protein solubility-related properties. The results obtained in this study highlight the importance of molecular characterization of walnut phenolic compounds in order to assess better their bioactive properties. PMID:27319138

  14. Molecular Characterization, Antioxidant and Protein Solubility-Related Properties of Polyphenolic Compounds from Walnut (Juglans regia).

    Science.gov (United States)

    Labuckas, Diana; Maestri, Damián; Lamarque, Alicia

    2016-05-01

    Aqueous ethanol extraction of partially defatted walnut flours provides a simple and reliable method to obtain extracts with high content of polyphenolic compounds. These were characterized by means of HPLC-ESI-MS/MS analytical techniques and molecular parameters. Considering the whole set of polyphenolic compounds identified, a high average number of phenolic-OH groups was found. Although these represent potential hydrogen-atom transfer sites, which are associated with high free-radical scavenging capacity, results show that such a property could be strongly limited by the low lipophilicity of polyphenols affecting the accessibility of these molecules to lipid substrates. Variations in pH values were found to change the ionization behavior of phenolic compounds. These changes, however, had minor effects on walnut protein solubility-related properties. The results obtained in this study highlight the importance of molecular characterization of walnut phenolic compounds in order to assess better their bioactive properties.

  15. Aerosol Characterization and New Instrumentation for Better Understanding Snow Radiative Properties

    Science.gov (United States)

    Beres, N. D.

    2015-12-01

    Snow albedo is determined by snowpack thickness and grain size, but also affected by contamination with light-absorbing, microscopic (e.g., mineral dust, combustion aerosols, bio-aerosols) and macroscopic (e.g., microalgae, plant debris, sand, organisms) compounds. Most currently available instruments for measuring snow albedo utilize the natural, downward flux of solar radiation and the reflected upward flux. This reliance on solar radiation (and, thus, large zenith angles and clear-sky conditions) leads to severe constraints, preventing characterization of detailed diurnal snow albedo cycles. Here, we describe instrumentation and methodologies to address these limitations with the development and deployment of new snow radiation sensors for measuring surface spectral and in-snow radiative properties. This novel instrumentation will be tested at the CRREL/UCSB Eastern Sierra (CUES) Snow Study Site at Mammoth Mountain, which is extensively instrumented for characterizing snow properties including snow albedo and surface morphology. However, it has been lacking instrumentation for the characterization of aerosols that can be deposited on the snow surface through dry and wet deposition. Currently, we are installing aerosol instrumentation at the CUES site, which are also described. This includes instruments for the multi-wavelength measurement of aerosol scattering and absorption coefficients and for the characterization of aerosol size distribution. Knowledge of aerosol concentration and physical and optical properties will allow for the study of aerosol deposition and modification of snow albedo and for establishing an aerosol climatology for the CUES site.

  16. Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometry.

    Science.gov (United States)

    Canovic, Elizabeth Peruski; Qing, Bo; Mijailovic, Aleksandar S; Jagielska, Anna; Whitfield, Matthew J; Kelly, Elyza; Turner, Daria; Sahin, Mustafa; Van Vliet, Krystyn J

    2016-01-01

    To design and engineer materials inspired by the properties of the brain, whether for mechanical simulants or for tissue regeneration studies, the brain tissue itself must be well characterized at various length and time scales. Like many biological tissues, brain tissue exhibits a complex, hierarchical structure. However, in contrast to most other tissues, brain is of very low mechanical stiffness, with Young's elastic moduli E on the order of 100s of Pa. This low stiffness can present challenges to experimental characterization of key mechanical properties. Here, we demonstrate several mechanical characterization techniques that have been adapted to measure the elastic and viscoelastic properties of hydrated, compliant biological materials such as brain tissue, at different length scales and loading rates. At the microscale, we conduct creep-compliance and force relaxation experiments using atomic force microscope-enabled indentation. At the mesoscale, we perform impact indentation experiments using a pendulum-based instrumented indenter. At the macroscale, we conduct parallel plate rheometry to quantify the frequency dependent shear elastic moduli. We also discuss the challenges and limitations associated with each method. Together these techniques enable an in-depth mechanical characterization of brain tissue that can be used to better understand the structure of brain and to engineer bio-inspired materials. PMID:27684097

  17. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy.

    Science.gov (United States)

    Tello, Marta; Spenlé, Caroline; Hemmerlé, Joseph; Mercier, Luc; Fabre, Roxane; Allio, Guillaume; Simon-Assmann, Patricia; Goetz, Jacky G

    2016-02-01

    Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.

  18. WET TORREFACTION OF MISCANTHUS – CHARACTERIZATION OF HYDROCHARS IN VIEW OF HANDLING, STORAGE AND COMBUSTION PROPERTIES

    Directory of Open Access Journals (Sweden)

    Mateusz Wnukowski

    2015-06-01

    Full Text Available Properties of miscanthus hydrochars obtained through wet torrefaction were studied. The process was carried out in three different temperatures – 180, 200 and 220 °C and with four different ratios of water to biomass – 3:1, 6:1, 12:1 and 16:1. The obtained solid products were characterized with respect to their fuel properties. The best results were obtained for the temperature of 220 °C and showed a noticeable improvement in fuel properties – especially grindability and lowered ash content. The influence of water to biomass ratio was not so explicit and while high ratio showed an improvement in all mentioned properties, low ratio allowed to achieve the highest energy yield. The results obtained for miscanthus wet torrefaction and the literature data for dry torrefaction were compared.

  19. Characterization and Design of Zeolite Catalysts Solid Acidity, Shape Selectivity and Loading Properties

    CERN Document Server

    Niwa, Miki; Okumura, Kazu

    2010-01-01

    Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Zeolite-based catalysts are used by industrial chemical companies in the interconversion of hydrocarbons and the alkylation of aromatic compounds. The current book deals with the characterization of specific properties of Zeolites and calculations for the design of catalysts. Measurements and utilization of solid acidity, shape selectivity, and loading properties, that are three prominent properties of a Zeolite catalyst, are treated in detail. These features concern chemical vapor deposition of silica, shape selectivity, loading properties, solid activity, Brønsted or Lewis character, ammonia temperature programmed desorption, control of the pore-opening size by chemical vapor deposition of silica and XAFS analysis of metals being highly dispersed inside and outside a framework.

  20. Design and Fabrication a Microfluidic Device for Fetal Cells Dielectrophoretic Properties Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guolin [Institute of Bioengineering and Nanotechnologies, 31 Biopolis, Way, The Nanos, hashmark 04-01, Singapore 138669 (Singapore); Chan, M B [Nanyang Technological University, Singapore. 16 Nanyang Drive, Singapore 637722 (Singapore); Yang, Charles [Nanyang Technological University, Singapore. 16 Nanyang Drive, Singapore 637722 (Singapore); Sukumar, P [National University Hospital, Singapore. 10 Medical Drive, Singapore 117597 (Singapore); Choolani, M [National University Hospital, Singapore. 10 Medical Drive, Singapore 117597 (Singapore); Ying, Jackie Y [Institute of Bioengineering and Nanotechnologies, 31 Biopolis, Way, The Nanos, hashmark 04-01, Singapore 138669 (Singapore)

    2006-04-01

    The present work presents a microfluidic device with interdigitated microelectrode and microchannel for fetal nucleated red blood cell dielectrophoresis properties characterization using crossover frequency method. To obtain the electric field and its gradient along the microchannel, simulation study was done by using MAXWELL{sup TM} software. Results show maximum electric field and gradient are obtained near the electrode edge and they are affected by electrode width and the electrode gap. The crossover frequency should be obtained by keeping the cell moving near the electrode edge. The device has been successfully used in fetal cell characterization with better than 1KHz frequency repeatability, which is about 2% of the measured crossover frequency.

  1. Development of Characterization Techniques of Thermodynamic and Physical Properties Applied to the CO2-DMSO Mixture

    OpenAIRE

    Calvignac, Brice; Rodier, Elisabeth; Letourneau, Jean-Jacques; Fages, Jacques

    2009-01-01

    International audience This work is focused on the development of new characterization techniques of physical and thermodynamic properties. These techniques have been validated using the binary system DMSO-CO2 for which several studies of characterization have been well documented. We focused on the DMSO-rich phase and we carried out measurements of volumetric expansion, density, viscosity and CO2 solubility at 298.15, 308.15 and 313.15 K and pressures up to 9 MPa. The experimental procedu...

  2. Synthesis, characterization and properties of polyaniline/expanded vermiculite intercalated nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jianming; Tang Qunwei; Wu Jihuai; Sun Hui [Key Laboratory of Functional Materials for Fujian Higher Education, Institute of Material Physical Chemistry, Huaqiao University, Quanzhou 362021 (China)], E-mail: jhwu@hqu.edu.cn

    2008-04-15

    The synthesis characterization and conductivities of polyaniline/expanded vermiculite intercalated nanocomposite are presented in this paper. The conductive emeraldine salt form of polyaniline is inserted into the interlayer of expanded vermiculite to produce the nanocomposite with high conductivity. The structures and properties are characterized by transmission electron microscopy x-ray diffraction spectroscopy fourier transform infrared spectroscopy thermogravimetry analysis and by the measurements of conductivity and stability. The results show that an intercalated nanocomposite with high conductivity and stability is obtained. The synthesis conditions are optimized to obtain the highest conductivity which is 6.80 S cm{sup -1}.

  3. Synthesis, characterization and properties of polyaniline/expanded vermiculite intercalated nanocomposite

    Directory of Open Access Journals (Sweden)

    Jianming Lin, Qunwei Tang, Jihuai Wu and Hui Sun

    2008-01-01

    Full Text Available The synthesis characterization and conductivities of polyaniline/expanded vermiculite intercalated nanocomposite are presented in this paper. The conductive emeraldine salt form of polyaniline is inserted into the interlayer of expanded vermiculite to produce the nanocomposite with high conductivity. The structures and properties are characterized by transmission electron microscopy x-ray diffraction spectroscopy fourier transform infrared spectroscopy thermogravimetry analysis and by the measurements of conductivity and stability. The results show that an intercalated nanocomposite with high conductivity and stability is obtained. The synthesis conditions are optimized to obtain the highest conductivity which is 6.80 S cm−1.

  4. TCNQ-embedded heptacene and nonacene: Synthesis, characterization and physical properties

    KAUST Repository

    Ye, Qun

    2013-01-01

    Incorporation of 7,7,8,8-tetracyanoquinodimethane (TCNQ) moieties into the acene backbone has been successfully achieved and two heptacene-TCNQ derivatives and one nonacene-TCNQ derivative have been synthesized and well characterized. Two TCNQ moieties have been embedded into heptacene and nonacene backbones for the first time. All the three compounds have good stability and solubility due to the presence of TCNQ moieties. Single crystal analysis revealed a bent butterfly-like conformation of these molecules. Their charge transport properties have been characterized using organic field effect transistors (OFETs). © 2013 The Royal Society of Chemistry.

  5. A Statistics-Based Material Property Analysis to Support TPS Characterization

    Science.gov (United States)

    Copeland, Sean R.; Cozmuta, Ioana; Alonso, Juan J.

    2012-01-01

    Accurate characterization of entry capsule heat shield material properties is a critical component in modeling and simulating Thermal Protection System (TPS) response in a prescribed aerothermal environment. The thermal decomposition of the TPS material during the pyrolysis and charring processes is poorly characterized and typically results in large uncertainties in material properties as inputs for ablation models. These material property uncertainties contribute to large design margins on flight systems and cloud re- construction efforts for data collected during flight and ground testing, making revision to existing models for entry systems more challenging. The analysis presented in this work quantifies how material property uncertainties propagate through an ablation model and guides an experimental test regimen aimed at reducing these uncertainties and characterizing the dependencies between properties in the virgin and charred states for a Phenolic Impregnated Carbon Ablator (PICA) based TPS. A sensitivity analysis identifies how the high-fidelity model behaves in the expected flight environment, while a Monte Carlo based uncertainty propagation strategy is used to quantify the expected spread in the in-depth temperature response of the TPS. An examination of how perturbations to the input probability density functions affect output temperature statistics is accomplished using a Kriging response surface of the high-fidelity model. Simulations are based on capsule configuration and aerothermal environments expected during the Mars Science Laboratory (MSL) entry sequence. We identify and rank primary sources of uncertainty from material properties in a flight-relevant environment, show the dependence on spatial orientation and in-depth location on those uncertainty contributors, and quantify how sensitive the expected results are.

  6. Novel polymeric potassium complex: Its synthesis, structural characterization, photoluminescence and electrochemical properties

    International Nuclear Information System (INIS)

    In this paper, we obtained a novel poly(vanillinato potassium) complex (PVP) as a single crystal and characterized by analytical and spectroscopic methods. A single crystal of the PVP was obtained from the acetone solution. X-ray structural data show that crystals contain polymeric K+ complex of vanillin. Each potassium ion in the polymeric structure is identical and seven-coordinate, bonded to two methoxy, two phenoxy and three aldehyde oxygen atoms from four vaniline molecules. Two aldehyde oxygen atoms are bridging between potassium ions. It crystallizes in the monoclinic system, space group P21/c, with lattice parameters a=9.6215(10) Å, b=17.4139(19) Å, c=9.6119(10) Å, β=100.457(2)° and Z=4. Thermal properties of the PVP were investigated by TGA, DTA and DSC methods. The electrochemical properties of the complex were studied in different solvents and at various scan rates. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence property in CH3CN and n-butanol. - Highlights: ► Novel polymeric potassium complex was prepared and fully characterized. ► X-ray crystal structure of complex was reported. ► Electrochemical properties of compound were investigated. ► Thermal and DSC measurements of complex were examined.

  7. Novel polymeric potassium complex: Its synthesis, structural characterization, photoluminescence and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ceyhan, Goekhan [Chemistry Department, K.Maras Suetcue Imam University, 46100 K.Maras (Turkey); Tuemer, Mehmet, E-mail: mtumer@ksu.edu.tr [Chemistry Department, K.Maras Suetcue Imam University, 46100 K.Maras (Turkey); Koese, Muhammet; McKee, Vickie [Chemistry Department, Loughborough University, LE11 3TU Leicestershire (United Kingdom)

    2012-03-15

    In this paper, we obtained a novel poly(vanillinato potassium) complex (PVP) as a single crystal and characterized by analytical and spectroscopic methods. A single crystal of the PVP was obtained from the acetone solution. X-ray structural data show that crystals contain polymeric K{sup +} complex of vanillin. Each potassium ion in the polymeric structure is identical and seven-coordinate, bonded to two methoxy, two phenoxy and three aldehyde oxygen atoms from four vaniline molecules. Two aldehyde oxygen atoms are bridging between potassium ions. It crystallizes in the monoclinic system, space group P2{sub 1}/c, with lattice parameters a=9.6215(10) A, b=17.4139(19) A, c=9.6119(10) A, {beta}=100.457(2) Degree-Sign and Z=4. Thermal properties of the PVP were investigated by TGA, DTA and DSC methods. The electrochemical properties of the complex were studied in different solvents and at various scan rates. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence property in CH{sub 3}CN and n-butanol. - Highlights: Black-Right-Pointing-Pointer Novel polymeric potassium complex was prepared and fully characterized. Black-Right-Pointing-Pointer X-ray crystal structure of complex was reported. Black-Right-Pointing-Pointer Electrochemical properties of compound were investigated. Black-Right-Pointing-Pointer Thermal and DSC measurements of complex were examined.

  8. Integral Parameters for Characterizing Water, Energy, and Aeration Properties of Soilless Plant Growth Media

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Lopez, Jose Choc Chen; Møldrup, Per;

    2013-01-01

    approach provided important insights for irrigation management and for potential optimization of substrate properties. Furthermore, an observed relationship between the integral parameters for water availability and oxygen diffusivity can be potentially applied for the design of advanced irrigation...... and management strategies to ensure stress-free growth conditions, while conserving water resources. 2013 Elsevier B.V. All rights reserved....... there are considerable empirical and theoretical efforts devoted to characterize water retention and aeration substrate properties, a holistic, physically-based approach considering water retention and aeration concurrently is lacking. In this study, the previously developed concept of integral water storage and energy...

  9. HEAT-RESISTANT PYRIDINE-BASED POLY(ETHER-ESTER)S: SYNTHESIS,CHARACTERIZATION AND PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Shahram Mehdipour-Ataei; Ali Mahmoodi

    2013-01-01

    A pyridine-based diacid was synthesized via nucleophilic substitution reaction of 4-hydroxy benzoic acid with 2,6-dichloropyridine in the presence of potassium carbonate.The diacid was characterized using FT-IR and 1H-NMR spectroscopic methods and also with elemental analysis.Polycondensation reaction of the diacid with different diols including 1,4-dihydroxy benzene,1,5-dihydroxy naphthalene,bis-phenol A and bis-phenol-P resulted in preparation of pyridine-based poly(ether-ester)s.The polymers were characterized and their physical and thermal properties including inherent viscosity,molecular weight,solubility,thermal stability,thermal behavior and crystallinity were studied.They revealed high heat-resistance and improved solubility in polar solvents.Structure-property relations for the prepared polyester were also studied.

  10. Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms.

    Science.gov (United States)

    Hohne, Danial N; Younger, John G; Solomon, Michael J

    2009-07-01

    We introduce a flexible microfluidic device to characterize the mechanical properties of soft viscoelastic solids such as bacterial biofilms. In the device, stress is imposed on a test specimen by the application of a fixed pressure to a thin, flexible poly(dimethyl siloxane) (PDMS) membrane that is in contact with the specimen. The stress is applied by pressurizing a microfabricated air channel located above the test area. The strain resulting from the applied stress is quantified by measuring the membrane deflection with a confocal laser scanning microscope. The deflection is governed by the viscoelastic properties of the PDMS membrane and of the test specimen. The relative contributions of the membrane and test material to the measured deformation are quantified by comparing a finite element analysis with an independent (control) measurement of the PDMS membrane mechanical properties. The flexible microfluidic rheometer was used to characterize both the steady-state elastic modulus and the transient strain recoil of two soft materials: gellan gums and bacterial biofilms. The measured linear elastic moduli and viscoelastic relaxation times of gellan gum solutions were in good agreement with the results of conventional mechanical rheometry. The linear Young's moduli of biofilms of Staphylococcus epidermidis and Klebsiella pneumoniae, which could not be measured using conventional methods, were found to be 3.2 and 1.1 kPa, respectively, and the relaxation time of the S. epidermidis biofilm was 13.8 s. Additionally, strain hardening was observed in all the biofilms studied. Finally, design parameters and detection limits of the method show that the device is capable of characterizing soft viscoelastic solids with elastic moduli in the range of 102-105 Pa. The flexible microfluidic rheometer addresses the need for mechanical property characterization of soft viscoelastic solids common in fields such as biomaterials, food, and consumer products. It requires only 200 p

  11. Photoelectrochemical characterization and photocatalytic properties of mesoporous TiO2/ZrO2 films

    OpenAIRE

    Natalie Smirnova; Yuriy Gnatyuk; Anna Eremenko; Gennadiy Kolbasov; Vera Vorobetz; Irina Kolbasova; Olga Linyucheva

    2006-01-01

    Optically transparent, crack-free mesoporous titania and zirconia-doped titania thin film photocatalysts were fabricated by sol-gel technique, using nonionic amphiphilic block copolymer Pluronic P123 as template. The structural and optical properties of these films were characterized using SEM, low-angle XRD, and UV/Vis spectroscopy, hexane adsorption investigation. Band gap energy and the position of flatband potentials were estimated by photoelectrochemical measurements...

  12. Contact lens physical properties and lipid deposition in a novel characterized artificial tear solution

    OpenAIRE

    Lorentz, Holly; Heynen, Miriam; Kay, Lise M.M.; Dominici, Claudia Yvette; Khan, Warda; Ng, Wendy W.S.; Jones, Lyndon

    2011-01-01

    Purpose To characterize various properties of a physiologically-relevant artificial tear solution (ATS) containing a range of tear film components within a complex salt solution, and to measure contact lens parameters and lipid deposition of a variety of contact lens materials after incubation in this ATS. Methods A complex ATS was developed that contains a range of salts, proteins, lipids, mucin, and other tear film constituents in tear-film relevant concentrations. This ATS was tested to co...

  13. Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms.

    Science.gov (United States)

    Hohne, Danial N; Younger, John G; Solomon, Michael J

    2009-07-01

    We introduce a flexible microfluidic device to characterize the mechanical properties of soft viscoelastic solids such as bacterial biofilms. In the device, stress is imposed on a test specimen by the application of a fixed pressure to a thin, flexible poly(dimethyl siloxane) (PDMS) membrane that is in contact with the specimen. The stress is applied by pressurizing a microfabricated air channel located above the test area. The strain resulting from the applied stress is quantified by measuring the membrane deflection with a confocal laser scanning microscope. The deflection is governed by the viscoelastic properties of the PDMS membrane and of the test specimen. The relative contributions of the membrane and test material to the measured deformation are quantified by comparing a finite element analysis with an independent (control) measurement of the PDMS membrane mechanical properties. The flexible microfluidic rheometer was used to characterize both the steady-state elastic modulus and the transient strain recoil of two soft materials: gellan gums and bacterial biofilms. The measured linear elastic moduli and viscoelastic relaxation times of gellan gum solutions were in good agreement with the results of conventional mechanical rheometry. The linear Young's moduli of biofilms of Staphylococcus epidermidis and Klebsiella pneumoniae, which could not be measured using conventional methods, were found to be 3.2 and 1.1 kPa, respectively, and the relaxation time of the S. epidermidis biofilm was 13.8 s. Additionally, strain hardening was observed in all the biofilms studied. Finally, design parameters and detection limits of the method show that the device is capable of characterizing soft viscoelastic solids with elastic moduli in the range of 102-105 Pa. The flexible microfluidic rheometer addresses the need for mechanical property characterization of soft viscoelastic solids common in fields such as biomaterials, food, and consumer products. It requires only 200 p

  14. Characterization of Anticancer, Antimicrobial, Antioxidant Properties and Chemical Compositions of Peperomia Pellucida Leaf Extract

    OpenAIRE

    Desy Fitrya Syamsumir; Julius Yong Fu Siong; Wendy Wee; Lee Seong Wei

    2011-01-01

    Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then char...

  15. Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites

    OpenAIRE

    Wen, John Z.; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F; Zhou, Y. Norman

    2013-01-01

    Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, al...

  16. Characterization of Physical and Structural Properties of Brass Powder After Biofield Treatment

    OpenAIRE

    Trivedi, Mahendra; Nayak, Gopal

    2015-01-01

    Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. The aim of present study was to evaluate the effect of biofield treatment on structural and physical properties of brass powder. The brass powder sample was divided into two parts: control and treated. The treated part was subjected to Mr.Trivedi’s biofield treatment. Control and treated brass powder were characterized using particle...

  17. Characterization of Physical and Structural Properties of Brass Powder After Biofield Treatment

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. The aim of present study was to evaluate the effect of biofield treatment on structural and physical properties of brass powder. The brass powder sample was divided into two parts: control and treated. The treated part was subjected to Mr.Trivedi’s biofield treatment. Control and treated brass powder were characterized using pa...

  18. Characterization of Physical and Thermal Properties of Biofield Treated Neopentyl glycol

    OpenAIRE

    Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Gopal Nayak

    2015-01-01

    Neopentyl glycol (NPG) has been extensively used as solid-solid phase change materials (PCMs) for thermal energy storage applications. The objective of the present study was to evaluate the impact of biofield treatment on physical, spectral and thermal properties of NPG. The study was performed in two groups (control and treated). The control group remained as untreated, and treatment group was subjected to Mr. Trivedi’s biofield treatment. The control and treated NPG were characterized...

  19. Characterization of conformational properties of protein/trehalose/water system by neutron scattering

    CERN Document Server

    Brandt, A; Mangione, A; Migliardo, F; Vertessy, B G

    2002-01-01

    In this contribution we report results of a small-angle neutron scattering (SANS) investigation of dUTPase/D sub 2 O solutions. Data were collected by the V4 spectrometer at the BENSC facility (Berlin, Germany). The results allow us to characterize the conformational properties of the protein in solution as a function of temperature and in the presence of trehalose, a disaccharide with a noticeable bioprotective action. (orig.)

  20. Towards High-Throughput, Simultaneous Characterization of Thermal and Thermoelectric Properties

    Science.gov (United States)

    Miers, Collier Stephen

    The extension of thermoelectric generators to more general markets requires that the devices be affordable and practical (low $/Watt) to implement. A key challenge in this pursuit is the quick and accurate characterization of thermoelectric materials, which will allow researchers to tune and modify the material properties quickly. The goal of this thesis is to design and fabricate a high-throughput characterization system for the simultaneous characterization of thermal, electrical, and thermoelectric properties for device scale material samples. The measurement methodology presented in this thesis combines a custom designed measurement system created specifically for high-throughput testing with a novel device structure that permits simultaneous characterization of the material properties. The measurement system is based upon the 3o method for thermal conductivity measurements, with the addition of electrodes and voltage probes to measure the electrical conductivity and Seebeck coefficient. A device designed and optimized to permit the rapid characterization of thermoelectric materials is also presented. This structure is optimized to ensure 1D heat transfer within the sample, thus permitting rapid data analysis and fitting using a MATLAB script. Verification of the thermal portion of the system is presented using fused silica and sapphire materials for benchmarking. The fused silica samples yielded a thermal conductivity of 1.21 W/(m K), while a thermal conductivity of 31.2 W/(m K) was measured for the sapphire samples. The device and measurement system designed and developed in this thesis provide insight and serve as a foundation for the development of high throughput, simultaneous measurement platforms.

  1. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments.

    Science.gov (United States)

    Seol, Yongkoo; Choi, Jeong-Hoon; Dai, Sheng

    2014-08-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field. PMID:25173288

  2. A probabilistic approach to rock mechanical property characterization for nuclear waste repository design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kunsoo; Gao, Hang [Columbia Univ., New York, NY (United States)

    1996-04-01

    A probabilistic approach is proposed for the characterization of host rock mechanical properties at the Yucca Mountain site. This approach helps define the probability distribution of rock properties by utilizing extreme value statistics and Monte Carlo simulation. We analyze mechanical property data of tuff obtained by the NNWSI Project to assess the utility of the methodology. The analysis indicates that laboratory measured strength and deformation data of Calico Hills and Bullfrog tuffs follow an extremal. probability distribution (the third type asymptotic distribution of the smallest values). Monte Carlo simulation is carried out to estimate rock mass deformation moduli using a one-dimensional tuff model proposed by Zimmermann and Finley. We suggest that the results of these analyses be incorporated into the repository design.

  3. Synthesis and Characterization of Imide Containing Hybrid Epoxy Resin with Improved Mechanical and Thermal Properties

    Directory of Open Access Journals (Sweden)

    U. G. Rane

    2014-01-01

    Full Text Available Phosphorous containing amine, tripropyldiamine phosphine oxide (TPDAP, and hybrid monomer 4-(N-phthalimidophenyl glycidylether (PPGE were synthesized and characterized by Fourier transform infrared (FTIR spectroscopy, nuclear magnetic resonance (NMR spectroscopy, and elemental analysis (EDX. PPGE was incorporated in bisphenol A epoxy resin (BPA in various concentrations (5% to 20%, based on a weight percentage of BPA resin. Curing was carried out with the stoichiometric amount of TPDAP and 1,3-propanediamine (PDA to result in cross-link network. Various mechanical, chemical, thermal, and flame retardant properties of modified and unmodified epoxy resin were studied. The coatings obtained with the addition of PPGE were found to have improved properties as compared with those of the unmodified resin. Coatings with 15% loading of PPGE showed improved flame retardant and mechanical properties with stable thermal behaviour.

  4. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.

    Science.gov (United States)

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-12-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  5. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications

    Science.gov (United States)

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-03-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  6. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.

    Science.gov (United States)

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-12-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  7. Characterization of Skeletonema costatum Intracellular Organic Matter and Study of Nanomechanical Properties under Different Solution Conditions

    KAUST Repository

    Gutierrez, Leonardo

    2016-06-17

    In the current investigation, a rigorous characterization of the high molecular weight (HMW) compounds of Skeletonema costatum (SKC) intracellular organic matter (IOM), including nanomechanical properties, was conducted. HMW SKC-IOM was characterized as a mixture of polysaccharides, proteins, and lipids. Atomic force microscopy (AFM) provided crucial information of this isolate at a nanoscale resolution. HMW SKC-IOM showed highly responsive to solution chemistry: fully extended chains at low ionic strength, and compressing structures with increasing electrolyte concentration in solution. Interestingly, two regions of different nanomechanical properties were observed: (a) Region #1: located farther from the substrate and showing extended polymeric chains, and (b) Region #2: located <10 nm above the substrate and presenting compressed structures. The polymer length, polymer grafting density, and compressibility of these two regions were highly influenced by solution conditions. Results suggest that steric interactions originating from HMW SKC-IOM polymeric structure would be a dominant interacting mechanism with surfaces. The current investigation has successfully applied models of polymer physics to describe the complex HMW SKC-IOM structural conformation at different solution conditions. The detailed methodology presented provides a tool to characterize and understand biopolymers interactions with surfaces, including filtration membranes, and can be extended to other environmentally relevant organic compounds.

  8. Characterization of Local Mechanical Properties of Polymer Thin Films and Polymer Nanocomposites via AFM indentations

    Science.gov (United States)

    Cheng, Xu

    AFM indentation has become a tool with great potential in the characterization of nano-mechanical properties of materials. Thanks to the nanometer sized probes, AFM indentation is capable of capturing the changes of multiple properties within the range of tens of nanometers, such task would otherwise be difficult by using other experiment instruments. Despite the great potentials of AFM indentation, it operates based on a simple mechanism: driving the delicate AFM probe to indent the sample surface, and recording the force-displacement response. With limited information provided by AFM indentation, efforts are still required for any practice to successfully extract the desired nano-scale properties from specific materials. In this thesis, we focus on the mechanical properties of interphase between polymer and inorganic materials. It is known that in nanocomposites, a region of polymer exist around nanoparticles with altered molecular structures and improved properties, which is named as interphase polymer. The system with polymer thin films and inorganic material substrates is widely used to simulate the interphase effect in nanocomposites. In this thesis, we developed an efficient and reliable method to process film/substrate samples and characterize the changes of local mechanical properties inside the interphase region with ultra-high resolution AFM mechanical mapping technique. Applying this newly developed method, the interphase of several film/substrate pairs were examined and compared. The local mechanical properties on the other side of the polymer thin film, the free surface side, was also investigated using AFM indentation equipped with surface modified probes. In order to extract the full spectrum of local elastic modulus inside the surface region in the range of only tens of nanometers, the different contact mechanics models were studied and compared, and a Finite Element model was also established. Though the film/substrate system has been wide used as

  9. V2O5 xerogel-poly(ethylene oxide) hybrid material: Synthesis, characterization, and electrochemical properties

    International Nuclear Information System (INIS)

    In this work, we report the synthesis, characterization, and electrochemical properties of vanadium pentoxide xerogel-poly(ethylene oxide) (PEO) hybrid materials obtained by varying the average molecular weight of the organic component as well as the components' ratios. The materials were characterized by X-ray diffraction, ultraviolet/visible and infrared spectroscopies, thermogravimetric analysis, scanning electron microscopy, electron paramagnetic resonance, and cyclic voltammetry. Despite the presence of broad and low intensity peaks, the X-ray diffractograms indicate that the lamellar structure of the vanadium pentoxide xerogel is preserved, with increase in the interplanar spacing, giving evidence of a low-crystalline structure. We found that the electrochemical behaviour of the hybrid materials is quite similar to that found for the V2O5 xerogel alone, and we verified that PEO leads to stabilization and reproducibility of the Li+ electrochemical insertion/de-insertion into the V2O5 xerogel structure, which makes these materials potential components of lithium ion batteries. - Graphical abstract: The synthesis, structural and electrochemical properties of vanadium pentoxide xerogel-poly(ethylene oxide) hybrid materials have been described. Despite the presence of broad and low intensity peaks, the X-ray diffractograms indicate that the lamellar structure of the vanadium pentoxide xerogel is preserved. The cyclic voltammetry technique demonstrated that PEO intercalation provides an improvement in the electrochemical properties, mainly with respect to the lithium electroinsertion process into the oxide matrix

  10. Characterization-Based Molecular Design of Biofuel Additives Using Chemometric and Property Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Subin eHada

    2014-06-01

    Full Text Available In this work, multivariate characterization data such as infrared (IR spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis (PCA allowed capturing important features of the molecular architecture from complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods (GCM based on characterization data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.

  11. Fabrication, Characterization, Properties, and Applications of Low-Dimensional BiFeO3 Nanostructures

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2014-01-01

    Full Text Available Low-dimensional BiFeO3 nanostructures (e.g., nanocrystals, nanowires, nanotubes, and nanoislands have received considerable attention due to their novel size-dependent properties and outstanding multiferroic properties at room temperature. In recent years, much progress has been made both in fabrications and (microstructural, electrical, and magnetic in characterizations of BiFeO3 low-dimensional nanostructures. An overview of the state of art in BiFeO3 low-dimensional nanostructures is presented. First, we review the fabrications of high-quality BiFeO3 low-dimensional nanostructures via a variety of techniques, and then the structural characterizations and physical properties of the BiFeO3 low-dimensional nanostructures are summarized. Their potential applications in the next-generation magnetoelectric random access memories and photovoltaic devices are also discussed. Finally, we conclude this review by providing our perspectives to the future researches of BiFeO3 low-dimensional nanostructures and some key problems are also outlined.

  12. Quantitative characterization of processing-microstructure-properties relationships in pressure die-cast magnesium alloys

    Science.gov (United States)

    Lee, Soon Gi

    The central goal of this research is to quantitatively characterize the relationships between processing, microstructure, and mechanical properties of important high-pressure die-cast (HPDC) Mg-alloys. For this purpose, a new digital image processing technique for automatic detection and segmentation of gas and shrinkage pores in the cast microstructure is developed and it is applied to quantitatively characterize the effects of HPDC process parameters on the size distribution and spatial arrangement of porosity. To get better insights into detailed geometry and distribution of porosity and other microstructural features, an efficient and unbiased montage based serial sectioning technique is applied for reconstruction of three-dimensional microstructures. The quantitative microstructural data have been correlated to the HPDC process parameters and the mechanical properties. The analysis has led to hypothesis of formation of new type of shrinkage porosity called, "gas induced shrinkage porosity" that has been substantiated via simple heat transfer simulations. The presence of inverse surface macrosegregation has been also shown for the first time in the HPDC Mg-alloys. An image analysis based technique has been proposed for simulations of realistic virtual microstructures that have realistic complex pore morphologies. These virtual microstructures can be implemented in the object oriented finite elements framework to model the variability in the fracture sensitive mechanical properties of the HPDC alloys.

  13. Characterization and property evaluation of U-15 wt%Pu alloy for fast reactor

    Science.gov (United States)

    Kaity, Santu; Banerjee, Joydipta; Ravi, K.; Keswani, R.; Kutty, T. R. G.; Kumar, Arun; Prasad, G. J.

    2013-02-01

    The characterization and high temperature behaviour of U-15 wt%Pu alloy has been investigated in this study for the first time. U-15 wt%Pu alloy sample for this study was prepared by following melting and casting route. Microstructural characterization of the alloy was carried out by XRD and optical microscopy. The thermophysical properties like phase transition temperatures, coefficient of thermal expansion and hot hardness of the above alloy were determined. Eutectic temperature between T91 and U-15 wt%Pu was established. Apart from that, the fuel-cladding chemical compatibility of U-15 wt%Pu alloy with T91 grade steel was studied by diffusion couple experiment.

  14. Microstructural characterization and properties of dissimilar joints used in coupling of PWR control rod driving

    International Nuclear Information System (INIS)

    The chemical, mechanical and microstructural characterizations of a dissimilar joint between SA336F347 austenitic and SA479Tp414 martensitic stainless steels were done, welded by TIG process, defining as a result of this characterization that the ER Ni Cr-3 Ni consumable seems to be the best applicable consumable compared to the ER309L consumable; The main variables of the process control were also evaluated, its weldability and properties for a future qualification of a welding procedure, besides to simulate possible situations to be found in this type of joint, such as, its weldability by the LASER process, welded joint without filler metal and without shielding gas, obtaining in this way enough data for the production of products that contains this type of joint. (author)

  15. Characterizing Economic and Social Properties of Trust and Reputation Systems in P2P Environment

    Institute of Scientific and Technical Information of China (English)

    Yu-Feng Wang; Yoshiaki Hori; Kouichi Sakurai

    2008-01-01

    Considering the fact that P2P (Peer-to-Peer) systems are self-organized and autonomous, social-control mechanism (like trust and reputation) is essential to evaluate the trustworthiness of participating peers and to combat the selfish, dishonest and malicious peer behaviors. So, naturally, we advocate that P2P systems that gradually act as an important information infrastructure should be multi-disciplinary research topic, and reflect certain features of our society. So, from economic and social perspective, this paper designs the incentive-compatible reputation feedback scheme based on well-known economic model, and characterizes the social features of trust network in terms of efficiency and cost. Specifically, our framework has two distinctive purposes: first, from high-level perspective, we argue trust system is a special kind of social network, and an accurate characterization of the structural properties of the network can be of fundamental importance to understand the dynamics of the system. Thus, inspired by the concept of weighted small-world, this paper proposes new measurements to characterize the social properties of trust system, that is, highg lobal and local efficiency, and low cost; then, from relative low-level perspective, we argue that reputation feedback is a special kind of information, and it is not free. So, based on economic model, VCG (Vickrey-Clarke-Grove)-like reputation remuneration mechanism is proposed to stimulate rational peers not only to provide reputation feedback, but truthfully offer feedback. Furthermore, considering that trust and reputation is subjective, we classify the trust into functional trust and referral trust, and extend the referral trust to include two factors: similarity and truthfulness, which can efficiently reduce the trust inference error. The preliminary simulation results show the benefits of our proposal and the emergence of certain social properties in trust network.

  16. The WO3/WS2 nanostructures: Preparation, characterization and optical absorption properties

    Science.gov (United States)

    Cao, Shixiu; Zhao, Cong; Han, Tao; Peng, Lingling

    2016-07-01

    The WO3/WS2 nanostructures were successfully prepared using a two-step hydrothermal/gas phase method. The physical properties of the nanostructures were characterized using XRD, SEM, TEM, UV-visible spectroscopy. The WO3/WS2 nanostructures obtained were coexistence of WO3 and WS2 in the same particle. The WO3/WS2 nanostructures contained a wide and intensive absorption in the UV-visible light region of 245-750 nm, which showed that the WO3/WS2 nanostructures may have a potential application as an UV-visible photocatalyst.

  17. Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    OpenAIRE

    Jiang, Y.(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; Department of Physics, Nanjing University, Nanjing, Jiangsu, China; School of Physics, Shandong University, Jinan, Shandong, China; Physics Department, Shanghai Jiao Tong University, Shanghai, China); O'Neill, AJ; Ding, Y.

    2015-01-01

    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive (Staphyloc...

  18. CdTe Quantum Dots Embedded in Multidentate Biopolymer Based on Salep: Characterization and Optical Properties

    OpenAIRE

    Ghasem Rezanejade Bardajee; Zari Hooshyar

    2013-01-01

    This paper describes a novel method for surface modification of water soluble CdTe quantum dots (QDs) by using poly(acrylic acid) grafted onto salep (salep-g-PAA) as a biopolymer. As-prepared CdTe-salep-g-PAA QDs were characterized by Fourier transform infrared (FT-IR) spectrum, thermogravimetric (TG) analysis, and transmission electron microscopy (TEM). The absorption and fluorescence emission spectra were measured to investigate the effect of salep-g-PAA biopolymer on the optical propertie...

  19. Preparation, characterization, and photoelectric properties of a covalently self-assembled monolayer of ferrocenyl hemicyanine.

    Science.gov (United States)

    Li, Lin-Ying; Chen, Xi; Xu, Meng-Yun; Zhang, Qian-Jin; Wang, Ke-Zhi

    2011-11-01

    A monolayer of a ferrocenyl hemicyanine was covalently self-assembled on an indium tin oxide (ITO)-coated glass substrate, and was characterized by UV/Vis absorption and X-ray photoelectron spectroscopy, and cyclic voltammetry. The photoelectrochemical properties and mechanism of photocurrent generation have also been studied. This monolayer film was found to exhibit a large anodic photocurrent density of 0.13 microA/cm2 with the highest photoelectric yield of 3.32% under irradiation of white light (730 nm > lambda > 325 nm) at a bias potential of +0.4 V versus saturated calomel electrode.

  20. Synthesis, Characterization and Properties of LiFePO4/C Cathode Material

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xin-wen; ZHAN Dan; WANG Li-na; LIU Qiao-yun; ZONG Hong-xing; ZHANG Ke-li

    2005-01-01

    Lithium iron phosphate coated with carbon(LiFePO4/C) was synthesized by improved solid-state reaction using comparatively lower temperature and fewer sintering time. The carbon came from citric acid, which acted as a new carbon source. It was characterized by thermogravimetry and differential thermal analysis (TG/DTA), X ray diffractometer (XRD), Element Analysis (EA) and Scanning electron microscope (SEM). We also studied the electrochemical properties of the material. The first discharge capacity of the and retained 95 % of the initial capacity after 100 cycles. The LiFePO4/C obtained shows a good electrochemical capacity and cycle ability at a large current density.

  1. Surface characterization of proteins using multi-fractal property of heat-denatured aggregates

    Science.gov (United States)

    Lahiri, Tapobrata; Mishra, Hrishikesh; Sarkar, Subrata; Misra, Krishna

    2008-01-01

    Multi-fractal property of heat-denatured protein aggregates (HDPA) is characteristic of its individual form. The visual similarity between digitally generated microscopic images of HDPA with that of surface-image of its individual X-ray structures in protein databank (PDB) displayed using Visual Molecular Dynamics (VMD) viewer is the basis of the study. We deigned experiments to view the fractal nature of proteins at different aggregate scales. Intensity based multi-fractal dimensions (ILMFD) extracted from various planes of digital microscopic images of protein aggregates were used to characterize HDPA into different classes. Moreover, the ILMFD parameters extracted from aggregates show similar classification pattern to digital images of protein surface displayed by VMD viewer using PDB entry. We discuss the use of irregular patterns of heat-denatured aggregate proteins to understand various surface properties in native proteins. PMID:18795110

  2. CdTe Quantum Dots Embedded in Multidentate Biopolymer Based on Salep: Characterization and Optical Properties

    Directory of Open Access Journals (Sweden)

    Ghasem Rezanejade Bardajee

    2013-01-01

    Full Text Available This paper describes a novel method for surface modification of water soluble CdTe quantum dots (QDs by using poly(acrylic acid grafted onto salep (salep-g-PAA as a biopolymer. As-prepared CdTe-salep-g-PAA QDs were characterized by Fourier transform infrared (FT-IR spectrum, thermogravimetric (TG analysis, and transmission electron microscopy (TEM. The absorption and fluorescence emission spectra were measured to investigate the effect of salep-g-PAA biopolymer on the optical properties of CdTe QDs. The results showed that the optical properties of CdTe QDs were significantly enhanced by using salep-g-PAA-based biopolymer.

  3. Quantitative characterization of the microstructure and properties of nanocrystalline WC–Co bulk

    International Nuclear Information System (INIS)

    Graphical abstract: Microstructure of the nanocrystalline WC–Co cermet bulk was quantitatively described by transmission electron microscopy based precession electron diffraction technology. It is discovered that the fraction of the Σ2 grain boundaries increases with the decrease of WC grain size. The effect of microstructure on mechanical properties depends on Co distribution, Σ2 boundaries fraction and WC grain contiguity. -- Nanocrystalline WC–Co bulk was prepared using a novel route that combined in situ reactions and subsequent spark plasma sintering. The microstructure was characterized by transmission electron microscopy-based precession electron diffraction technology. The nanocrystalline microstructure has a high WC grain contiguity. The fraction of Σ2 boundaries increases with a decrease in WC grain size. The effect of microstructure on the mechanical properties was analyzed in terms of the correlations between Co distribution, Σ2 boundary fraction and WC grain contiguity.

  4. Characterization of the mechanical properties of HL-1 cardiomyocytes with high throughput magnetic tweezers

    International Nuclear Information System (INIS)

    We characterized the mechanical properties of cardiomyocyte-like HL-1 cells using our recently developed multi-pole magnetic tweezers. With the optimized design, both high force and high throughput are achieved at the same time. Force up to 100 pN can be applied on a 1 μm diameter superparamagnetic bead in a workspace with 60 μm radius, which is encircled symmetrically by 3 sharp magnetic tips. By adjusting the coil currents, both the strength and direction of force can be controlled. The result shows that both viscosity and shear elastic modulus of HL-1 cells exhibit an approximately log-normal distribution. The cells became stiffer as they matured, consistent with a transition from proliferating cells to contractile muscle tissue. Moreover, the mechanical properties of HL-1 cells show high heterogeneity, which agrees well with their physiological structure

  5. Characterization of Microstructure and Mechanical Properties of Resistance Spot Welded DP600 Steel

    Directory of Open Access Journals (Sweden)

    Ali Ramazani

    2015-09-01

    Full Text Available Resistance spot welding (RSW as a predominant welding technique used for joining steels in automotive applications needs to be studied carefully in order to improve the mechanical properties of the spot welds. The objectives of the present work are to characterize the resistance spot weldment of DP600 sheet steels. The mechanical properties of the welded joints were evaluated using tensile-shear and cross-tensile tests. The time-temperature evolution during the welding cycle was measured. The microstructures observed in different sites of the welds were correlated to thermal history recorded by thermocouples in the corresponding areas. It was found that cracks initiated in the periphery region of weld nuggets with a martensitic microstructure and a pull-out failure mode was observed. It was also concluded that tempering during RSW was the main reason for hardness decrease in HAZ.

  6. Synthesis, Characterization, Electrical Conductivity and Fluorescence Properties of Polyimine Bearing Phenylacetylene Units.

    Science.gov (United States)

    Şenol, Dilek; Kolcu, Feyza; Kaya, İsmet

    2016-09-01

    In this study, a Schiff base was synthesized by the condensation reaction of 4-bromobenzaldehyde and 4-aminophenol. Then, phenylacetylene substituted Schiff base monomer (IPA) was obtained by HBr elimination reaction of IPA with phenylacetylene through Sonogashira reaction. IPA was polymerized via chemical oxidative polycondensation reaction. FT-IR and NMR measurements were used for the structural analyses of the synthesized substances. Fluorescence and UV-Vis analyses were carried out for optical characterization. Electrochemical characteristics, electrical conductivities and thermal properties were determined using cyclic voltammetry (CV), four-point probe conductometer, TG-DTA and DSC methods. The main purpose of the present study was to investigate the effects of phenylacetylene bearing units on the properties of conjugated aromatic polyimines. The spectral analysis signified a green light emission behavior when irradiated at different wavelengths. Combined with fluorescent behavior and good thermal stability, the electrical conductivity was found to be very crucial for π-conjugated polymer.

  7. Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties

    Science.gov (United States)

    Maddahfar, Mahnaz; Ramezani, Majid; Mostafa Hosseinpour-Mashkani, S.

    2016-08-01

    In the present study, barium hexaferrite nanocrystals (BaFe12O19) were successfully synthesized through the two-step sol-gel method in an aqueous solution in the presence of barium nitrate and iron (III) nitrate. Besides, the effect of the molar ratio of graphene oxide on the particle size and magnetic properties of final product was investigated. In this research, glucose plays a role as capping and chelating agent in the synthesis of BaFe12O19/graphene oxide. Moreover, it was found that the size, morphology, and magnetic properties of the final products could be greatly influenced by the molar ratio of graphene oxide. BaFe12O19/graphene oxide was characterized by using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and energy-dispersive spectrometry.

  8. Synthesis, Characterization, Electrical Conductivity and Fluorescence Properties of Polyimine Bearing Phenylacetylene Units.

    Science.gov (United States)

    Şenol, Dilek; Kolcu, Feyza; Kaya, İsmet

    2016-09-01

    In this study, a Schiff base was synthesized by the condensation reaction of 4-bromobenzaldehyde and 4-aminophenol. Then, phenylacetylene substituted Schiff base monomer (IPA) was obtained by HBr elimination reaction of IPA with phenylacetylene through Sonogashira reaction. IPA was polymerized via chemical oxidative polycondensation reaction. FT-IR and NMR measurements were used for the structural analyses of the synthesized substances. Fluorescence and UV-Vis analyses were carried out for optical characterization. Electrochemical characteristics, electrical conductivities and thermal properties were determined using cyclic voltammetry (CV), four-point probe conductometer, TG-DTA and DSC methods. The main purpose of the present study was to investigate the effects of phenylacetylene bearing units on the properties of conjugated aromatic polyimines. The spectral analysis signified a green light emission behavior when irradiated at different wavelengths. Combined with fluorescent behavior and good thermal stability, the electrical conductivity was found to be very crucial for π-conjugated polymer. PMID:27338948

  9. Characterization of the mechanical properties of HL-1 cardiomyocytes with high throughput magnetic tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim [Institute of Bioelectronics (ICS-8/PGI-8), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2015-08-03

    We characterized the mechanical properties of cardiomyocyte-like HL-1 cells using our recently developed multi-pole magnetic tweezers. With the optimized design, both high force and high throughput are achieved at the same time. Force up to 100 pN can be applied on a 1 μm diameter superparamagnetic bead in a workspace with 60 μm radius, which is encircled symmetrically by 3 sharp magnetic tips. By adjusting the coil currents, both the strength and direction of force can be controlled. The result shows that both viscosity and shear elastic modulus of HL-1 cells exhibit an approximately log-normal distribution. The cells became stiffer as they matured, consistent with a transition from proliferating cells to contractile muscle tissue. Moreover, the mechanical properties of HL-1 cells show high heterogeneity, which agrees well with their physiological structure.

  10. A simple method to characterize the electrical and mechanical properties of micro-fibers

    CERN Document Server

    Castellanos-Gomez, Andres

    2013-01-01

    A procedure to characterize the electrical and mechanical properties of micro-fibers is presented here. As the required equipment can be found in many teaching laboratories, it can be carried out by physics and mechanical/electrical engineering students. The electrical resistivity, mass density and Young's modulus of carbon micro-fibers have been determined using this procedure, obtaining values in very good agreement with the reference values. The Young's modulus has been obtained by measuring the resonance frequency of carbon fiber based cantilevers. In this way, one can avoid common approaches based on tensile or bending tests which are difficult to implement for microscale materials. Despite the simplicity of the experiments proposed here, they can be used to trigger in the students interest on the electrical and mechanical properties of microscale materials.

  11. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems

    Science.gov (United States)

    Sun, H. G.; Chen, W.; Wei, H.; Chen, Y. Q.

    2011-03-01

    How to characterize the memory property of systems is a challenging issue in the modeling and analysis of complex systems. This study makes a comparative investigation of integer-order derivative, constant-order fractional derivative and two types of variable-order fractional derivatives in characterizing the memory property of systems. The advantages and potential applications of two variable-order derivative definitions are highlighted through a comparative analysis of anomalous relaxation process.

  12. Characterizing petrophysical properties of carbonate rocks using nuclear magnetic resonance and spectral induced polarization

    Science.gov (United States)

    Zhang, Fan; Zhang, Chi; Rankey, Eugene

    2016-04-01

    Unlike sandstones, with well-characterized correlations between porosity and permeability, carbonate rocks are well known for their highly complex petrophysical behaviors due to their intrinsically heterogeneous pore shape, pore size, and pore distributions and connectivity. The characterization of petrophysical properties of carbonate rocks, including rock properties and rock-fluid interactions, remains big challenges. This laboratory study focuses on integrating two geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to determine porosity, pore size distribution, and permeability of carbonate rocks. NMR measures the relaxation of hydrogen nuclei at pore scale. Samples with different pore structures saturated by fluids have molecular relaxation responses to the external magnetic field which could generate various NMR signals. Permeability estimation from NMR in siliciclastic rocks is routine, however, is problematic in carbonates. SIP determines complex resistivity of a sample across a wide range of frequency and is sensitive to variations in the properties of solid-fluid and fluid-fluid interfaces in porous media. Previous studies investigated the relationships between permeability and parameters derived from SIP data, but are restricted to narrow lithology range. Our study used carbonate core samples from three depositional environments: tidal zone, shallow marine, and platform/reef margin of an atoll. Samples were fully saturated by water for T2 relaxation measurements and complex conductivity measurements at low frequencies. We compare the pore volume to surface area ratio measured from NMR and SIP and assess the applicability of established petrophysical models to estimate permeability from NMR and SIP data. We hope to build a relationship between NMR signals, SIP responses and petrophysical properties in carbonate rocks. The results could also provide new data and help further understand the unique and complex pore

  13. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    Science.gov (United States)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  14. Graphene oxide-modified ZnO particles: synthesis, characterization, and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Zhong LL

    2015-08-01

    Full Text Available Linlin Zhong, Kyusik Yun Department of Bionanotechnology, Gachon University, Gyeonggi-do, Republic of Korea Abstract: Nanosized ZnO particles with diameters of 15 nm were prepared with a solution precipitation method at low cost and high yield. The synthesis of the particles was functionalized by the organic solvent dimethylformamide, and the particles were covalently bonded to the surface of graphene oxide. The morphology of the graphene oxide sheets and ZnO particles was confirmed with field emission scanning electron microscopy and biological atomic force microscopy. Fourier transform infrared spectroscopy and X-ray diffraction were used to analyze the physical and chemical properties of the ZnO/graphene oxide composites that differed from those of the individual components. Enhanced electrochemical properties were detected with cyclic voltammetry, with a redox peak of the composites at 0.025 mV. Excellent antibacterial activity of ZnO/graphene oxide composites was observed with a microdilution method in which minimum inhibitory concentrations of 6.25 µg/mL for Escherichia coli and Salmonella typhimurium, 12.5 µg/mL for Bacillus subtilis, and 25 µg/mL for Enterococcus faecalis. After further study of the antibacterial mechanism, we concluded that a vast number of reactive oxygen species formed on the surface of composites, improving antibacterial properties. Keywords: graphene oxide, ZnO, characterization, antibacterial property

  15. Production, characterization, and mechanical properties of starch modified by Ophiostoma spp.

    Directory of Open Access Journals (Sweden)

    Saville, B. A.

    2006-11-01

    Full Text Available Microbial modification of starch with Ophiostoma spp. was investigated, with the purpose of developing a novel packaging material for the food or pharmaceutical industries. Various starch sources, such as tapioca, potato, corn, rice and amylopectin were tested as raw materials. The initial screening demonstrated that tapioca and potato starch had better performance for biopolymer production. The yield was about 85%. Preliminary characterization of the modified biopolymer was also conducted. Following microbial conversion, the percentage of molecules with molecular weight (abbreviated Mw more than 10M (abbreviations of million Daltons increased from 25% to 89% after 3 days, confirming that the modification increased the weight of the starch polymer. Fourier Transform Infrared (FT-IR revealed changes in the chemical structure of the starch after the modification. Both pure starches and the modified biopolymers were cast into films and tested for mechanical properties. The tensile tests showed that after treatment with the fungus, the peak stress and modulus of the films increased about 10 and 40 times, respectively. Also, the water barrier property was improved. Therefore, microbial modification positively impacted proper-ties relevant to the proposed application. Although the role of the fungus in the modification and the function-property relationship of the biopolymer are not yet completely clear, the results of this study show promise for development of a novel biopolymer that competes with existing packaging materials.

  16. High Resolution Imaging Spectroscopy for Characterizing Soil Properties over Large Areas

    Science.gov (United States)

    Dutta, D.; Kumar, P.

    2014-12-01

    Quantitative mapping of high resolution surface soil texture (percentage sand, silt and clay), soil organic matter and chemical constituents are important for understanding infiltration, runoff and other surficial hydrologic processes at different scales. The Visible Near Infrared Analysis (VNIRA) method, which is a combination of imaging spectroscopy and laboratory chemical analysis with an underlying statistical model, has been established for the quantification of soil properties from imaging spectrometer data. In this study we characterize the feasibility of quantifying soil properties over large areas with the aim that these methods may be extended to space-borne sensors such as HyspIRI. Hyperspectral Infrared Imager (HyspIRI) is a space-borne NASA mission concept having 10nm contiguous bands in the VSWIR region (380nm to 2500nm) of the electromagnetic spectra. High resolution (7.6m) Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected by NASA immediately after the massive 2011 Mississippi River floods at the Birds Point New Madrid (BPNM) floodway, coupled with in situ samples obtained at the time of the flight, is used to generate HyspIRI like data at 60m resolution. The VNIRA method is applied in a data-mining framework for quantification of the different soil textural properties and chemical constituents. The empirical models are further used for creating quantitative maps of the soil properties for the entire BPNM floodway. These maps are compared with the fine resolution AVIRIS maps of the same area for the different legacy landscape features and spatial correlations with the underlying topography immediately disturbed by the flooding event. The scales of variation in the soil constituents captured by the fine resolution data are also compared to the scales of variation captured by coarser resolution data. This study further explores the issues of applicability, challenges (such as the sensitivity of NDVI from mixed neighborhood pixels

  17. Preliminary Characterization of the Probiotic Properties of Candida Famata and Geobacillus Thermoleovorans

    Directory of Open Access Journals (Sweden)

    A Bakhrouf

    2011-12-01

    Full Text Available Background and Objective: Probiotics are live microbial feed supplements which beneficially affect the host animal by improving its intestinal microbial balance, producing metabolites which inhibit the colonization or growth of other microorganisms or by competing with them for resources such as nutrients or space. The aim of this study was to investigate the probiotic properties of Candida famata and Geobacillus thermoleovorans.Material and Methods: In this study, yeast and bacterial strains isolated from pure oil waste were identified using Api 50 CHB and Api Candida Systems and their probiotic properties were studied through antimicrobial activity, biofilm production, adherence assay and enzymatic characterization.Results and Conclusion: According to biochemical analyses, these strains corresponded to Geobacillus thermoleovorans and Candida famata. Antagonism assay results showed that the tested strains have an inhibitory effect against tested pathogenic bacteria. The yeast Candida famata was unable to produce biofilm on Congo Red Agar (CRA, while the bacterial strain was a slime producer. Adherence assays to abiotic surfaces revealed that the investigated strains were fairly adhesive to polystyrene with values ranging from 0.18 to 0.34 at 595 nm. The enzymatic characterization revealed that the tested strains expressed enzymes such as phosphatase alkaline, esterase lipase (C8, amylase, lipase, lecitenase and caseinase. The obtained results may allow the isolated strains to be considered as having the potential to be candidate probiotics.

  18. Electrodeposition of Ni-W Alloy and Characterization of Microstructure and Properties of the Deposits

    DEFF Research Database (Denmark)

    Mizushima, Io

    2007-01-01

    The subject of this thesis is an electrodeposition of Ni-W alloy and characterization of microstructure and properties of the deposits. In Chapter 3 background such as theoretical comments and literature reviews which provided suggestions for the way to tackle this subject, is described. The expe......The subject of this thesis is an electrodeposition of Ni-W alloy and characterization of microstructure and properties of the deposits. In Chapter 3 background such as theoretical comments and literature reviews which provided suggestions for the way to tackle this subject, is described......, a paper on the fabrication of forming tool by electroforming of nickel based alloys is added as an appendix to this thesis. This serves as an example of an application of the material developed in this work. Details of the experimental procedures and the theories of unusual techniques such as cross......) on the electrodeposition of Ni-W layers from electrolytes based on NiSO4 and Na2WO4, is investigated. High W content and current efficiency could be realized by using electrolytes containing all of the three complexing agents. The results show that small amounts of glycine in a citrate-triethanolamine based electrolyte...

  19. Synthesis, characterization and DFT calculations of electronic and optical properties of YbPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Khadraoui, Z.; Horchani-Naifer, K.; Ferhi, M., E-mail: ferhi.mounir@gmail.com; Ferid, M.

    2015-08-18

    Highlights: • Single crystals of YbPO{sub 4} were synthesized and characterized. • Electronic structure and optical properties were investigated by DFT method. • The DFT method is based on a combination of the GGA and the LDA + U approaches. • The calculated values were compared to the phosphate experimental data. - Abstract: YbPO{sub 4} crystals were synthesized by solid-state reaction and characterized by X-ray diffraction, infrared and Raman spectroscopies. The electronic structure and optical properties of YbPO{sub 4} such as the energy band structures, density of states and chemical bonds were calculated with the Density Functional Theory (DFT) for the first time. We present a combination of the GGA and the LDA + U approaches in order to obtain appropriate results due to the strong Coulomb repulsion between the highly localized 4f electrons of rare earth atoms. The linear photon-energy-dependent dielectric functions, conductivity and some optical constants such as refractive index, reflectivity and absorption coefficients were determined. The calculated total and partial densities of states indicate that the top of valance band is built upon O-2p states with P-3p states via σ (P–O) interactions, and the conduction bands mostly originate from Yb-5d states.

  20. Formulation development and characterization of cellulose acetate nitrate based propellants for improved insensitive munitions properties

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2014-06-01

    Full Text Available Cellulose acetate nitrate (CAN was used as an insensitive energetic binder to improve the insensitive munitions (IM properties of gun propellants to replace the M1 propellant used in 105 mm artillery charges. CAN contains the energetic nitro groups found in nitrocellulose (NC, but also acetyl functionalities, which lowered the polymer's sensitivity to heat and shock, and therefore improved its IM properties relative to NC. The formulation, development and small-scale characterization testing of several CAN-based propellants were done. The formulations, using insensitive energetic solid fillers and high-nitrogen modifiers in place of nitramine were completed. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and chemical compatibility were done. The mechanical response of the propellants under high-rate uni-axial compression at, hot, cold, and ambient temperatures were also completed. Critical diameter testing, hot fragment conductive ignition (HFCI tests were done to evaluate the propellants' responses to thermal and shock stimuli. Utilizing the propellant chemical composition, theoretical predictions of erosivity were completed. All the small scale test results were utilized to down-select the promising CAN based formulations for large scale demonstration testing such as the ballistic performance and fragment impact testing in the 105 mm M67 artillery charge configurations. The test results completed in the small and large scale testing are discussed.

  1. Formulation development and characterization of cellulose acetate nitrate based propellants for improved insensitive munitions properties

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Keith LUHMANN; Steve VELARDE; Christine KNOTT; Stephanie M.PIRAINO; Kevin BOYD; Jeffrey WYCKOFF; Carlton ADAM; Eugene ROZUMOV; Kenneth KLINGAMAN; Viral PANCHAL; Joseph LAQUIDARA; Mike FAIR; John BOLOGNINI

    2014-01-01

    Cellulose acetate nitrate (CAN) was used as an insensitive energetic binder to improve the insensitive munitions (IM) properties of gun propellants to replace the M1 propellant used in 105 mm artillery charges. CAN contains the energetic nitro groups found in nitrocellulose (NC), but also acetyl functionalities, which lowered the polymer's sensitivity to heat and shock, and therefore improved its IM properties relative to NC. The formulation, development and small-scale characterization testing of several CAN-based propellants were done. The formulations, using insensitive energetic solid fillers and high-nitrogen modifiers in place of nitramine were completed. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and chemical compatibility were done. The mechanical response of the pro-pellants under high-rate uni-axial compression at, hot, cold, and ambient temperatures were also completed. Critical diameter testing, hot fragment conductive ignition (HFCI) tests were done to evaluate the propellants' responses to thermal and shock stimuli. Utilizing the propellant chemical composition, theoretical predictions of erosivity were completed. All the small scale test results were utilized to down-select the promising CAN based formulations for large scale demonstration testing such as the ballistic performance and fragment impact testing in the 105 mm M67 artillery charge configurations. The test results completed in the small and large scale testing are discussed.

  2. Characterization of the surface properties of nitrogen-enriched carbons by inverse gas chromatography methods

    Energy Technology Data Exchange (ETDEWEB)

    Vagner, C.; Finqueneisel, G.; Zimny, T.; Burg, P.; Grzyb, B.; Machnikowski, J.; Weber, J.V. [University of Metz, St. Avold (France)

    2003-07-01

    The characterization of the surface properties of carbonaceous materials by inverse gas chromatography (IGC) techniques is described. The cokes investigated were produced by the co-pyrolysis of a coal-tar pitch (CTP) with different amounts of polyacrylonitrile (PAN) as a possible method to synthesize carbonaceous materials enriched in nitrogen. IGC at infinite dilution and LSER (linear solvation energy relationship) techniques were used to determine the physical and chemical surface properties of the cokes. In general, the surface free energy of adsorption is due to both dispersive and specific interactions. The dispersive component of the surface free energy was determined using n-alkane probes. For the specific component, which is primarily due to acid-base interactions, different polar probes were used. The LSER method was applied to improve our understanding of the adsorption process in terms of molecular interactions. We show that, to characterize dispersive interactions using n-alkanes, the LSER and IGC methods are equivalent. On the other hand, with both methods we find that all the samples present acidic and basic characteristics. However, the sensitivity of the LSER method does not allow one to discriminate between the three samples in terms of specific interactions.

  3. Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies

    Science.gov (United States)

    Savage, Kara A.

    Recent government initiatives and commercial activities have targeted asteroids for in situ material characterization, manipulation, and possible resource extraction. Most of these activities and missions have proposed significant robotic components, given the risks and costs associated with manned missions. To successfully execute these robotic activities, detailed mechanical characteristics of the target space bodies must be known prior to contact, in order to appropriately plan and direct the autonomous robotic protocols. Unfortunately, current estimates of asteroid mechanical properties are based on limited direct information, and significant uncertainty remains specifically concerning internal structures, strengths, and elastic properties of asteroids. One proposed method to elucidate this information is through in situ, nondestructive testing of asteroid material immediately after contact, but prior to any manipulation or resource extraction activities. While numerous nondestructive rock characterization techniques have been widely deployed for terrestrial applications, these methods must be adapted to account for unique properties of asteroid material and environmental conditions of space. For example, asteroid surface temperatures may range from -100°C to 30°C due to diurnal cycling, and these low temperatures are especially noteworthy due to their deleterious influence on non-destructive testing. As a result, this thesis investigates the effect of low temperature on the mechanical characteristics and nondestructive technique responses of rock material. Initially, a novel method to produce low temperature rock samples was developed. Dry ice and methanol cooling baths of specific formulations were used to decrease rock to temperatures ranging from -60°C to 0°C. At these temperatures, shale, chalk, and limestone rock samples were exposed to several nondestructive and conventional mechanical tests, including Schmidt hammer, ultrasonic pulse velocity, point

  4. Novel Methodology for Characterizing Regional Variations in the Material Properties of Murine Aortas.

    Science.gov (United States)

    Bersi, Matthew R; Bellini, Chiara; Di Achille, Paolo; Humphrey, Jay D; Genovese, Katia; Avril, Stéphane

    2016-07-01

    Many vascular disorders, including aortic aneurysms and dissections, are characterized by localized changes in wall composition and structure. Notwithstanding the importance of histopathologic changes that occur at the microstructural level, macroscopic manifestations ultimately dictate the mechanical functionality and structural integrity of the aortic wall. Understanding structure-function relationships locally is thus critical for gaining increased insight into conditions that render a vessel susceptible to disease or failure. Given the scarcity of human data, mouse models are increasingly useful in this regard. In this paper, we present a novel inverse characterization of regional, nonlinear, anisotropic properties of the murine aorta. Full-field biaxial data are collected using a panoramic-digital image correlation (p-DIC) system. An inverse method, based on the principle of virtual power (PVP), is used to estimate values of material parameters regionally for a microstructurally motivated constitutive relation. We validate our experimental-computational approach by comparing results to those from standard biaxial testing. The results for the nondiseased suprarenal abdominal aorta from apolipoprotein-E null mice reveal material heterogeneities, with significant differences between dorsal and ventral as well as between proximal and distal locations, which may arise in part due to differential perivascular support and localized branches. Overall results were validated for both a membrane and a thick-wall model that delineated medial and adventitial properties. Whereas full-field characterization can be useful in the study of normal arteries, we submit that it will be particularly useful for studying complex lesions such as aneurysms, which can now be pursued with confidence given the present validation. PMID:27210500

  5. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to Heparan Sulfate

    Science.gov (United States)

    Pradines, Joël R.; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan

    2016-04-01

    Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements.

  6. Characterization of mechanical and geometrical properties of a tube with axial and circumferential guided waves.

    Science.gov (United States)

    Yeh, Cheng-Hung; Yang, Che-Hua

    2011-05-01

    Guided waves propagating in cylindrical tubes are frequently applied for the characterization of material or geometrical properties of tubes. In a tube, guided waves can propagate in the axial direction and called axial guided waves, or in the circumferential direction called circumferential guided waves. Dispersion spectra for the axial and circumferential guided waves share some common behaviors and however exhibit some particular behaviors of their own. This study provides an investigation with theoretical modeling, experimental measurements, and a simplex-based inversion procedure to explore the similarity and difference between the axial guided waves and circumferential guided waves, aiming at providing useful information while axial and circumferential guided waves are applied in the area of material characterization. The sensitivity to the radius curvature for the circumferential guided waves dispersion spectra is a major point that makes circumferential guided waves different from axial guided waves. For the purpose of material characterization, both axial and circumferential guided waves are able to extract an elastic moduli and wall-thickness information from the dispersion spectra, however, radius information can only be extracted from the circumferential guided waves spectra. PMID:21211810

  7. Hydrophilic olive cake extracts: Characterization by physicochemical properties and Cu(II) complexation

    Energy Technology Data Exchange (ETDEWEB)

    Kolokassidou, K. [Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Lefkosia (Cyprus); Szymczak, W. [Institute of Radiation Protection, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany); Wolf, M.; Obermeier, C. [Institute of Groundwater Ecology, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany); Buckau, G. [Institut fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Pashalidis, I., E-mail: pspasch@ucy.ac.cy [Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Lefkosia (Cyprus)

    2009-05-30

    Disposed olive cake generates hydrophilic components that can be mobilized in the aquatic environment. This paper deals with the characterization of such components, isolated by alkaline extraction. It is shown that these substances possess properties very much resembling humic acid, including a substantial inventory of proton exchanging groups. Extraction and purification of the hydrophilic components from the disposed olive cake was performed by the standard approach for isolation of humic acids from solid sources, i.e. alternating alkaline dissolution and acid flocculation, leaving the purified extract in the protonated form. The purified sample was characterized by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Fourier Transform Infra Red Spectroscopy (FTIR), UV-vis, Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Asymmetrical Flow Field-Flow Fractionation (AFFFF). The complex formation properties were investigated by potentiometry using Cu(II) ion selective electrode under atmospheric conditions at I = 0.1 M NaClO{sub 4} (aqueous solution) and pH 6. The formation constant for the CuHA complex is found to be log {beta} = 5.3 {+-} 0.4 which is close to the corresponding value (log {beta} = 5.2 {+-} 0.4) obtained from similar investigations with the commercially available Aldrich humic acid (this study) and corresponding published values for various humic acids. Both, structural properties and complex formation data show that the olive cake extract has considerable similarities with humic acids from different sources, pointing towards potential similarities in environmental behavior and impact.

  8. Manganese ferrite prepared using reverse micelle process: Structural and magnetic properties characterization

    International Nuclear Information System (INIS)

    Highlights: • Preparation of Mn3+ substituted MnFe2O4 ferrite by Reverse microemulsion process. • Characterization by XRD, SEM, VSM, Mössbauer spectroscopy and dielectric measurements techniques. • Magnetic properties of MnFe2O4 enhanced after Mn3+ substitution. • The dielectric constant and ac conductivity increased with Mn3+ substitution. - Abstract: Reverse microemulsion process was employed to prepare of nanocrystalline Mn3+ substituted MnFe2−xMnxO4 ferrites. The structural, magnetic and dielectric properties were studied for different concentrations of Mn3+. The structural and microstructural properties were analyzed using X-ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy techniques. The phase identification of the materials was studied by Rietveld refined XRD patterns which reveals single phase with cubic symmetry for the samples. The lattice parameters were ranged in between 8.369 and 8.379 Å and do not show any significant change with the substitution of Mn3+. The average particles size was found to be around 11 ± 3 nm. Magnetization results obtained from the vibrating sample magnetometer (VSM) confirm that the substitution of Mn3+ in MnFe2O4 ferrite caused an increase in the saturation magnetization and coercivity. The dependence of Mössbauer parameters on Mn3+ substitution has been analyzed. Magnetic behavior of the samples were also studied at field cooled (FC) and zero field cooled (ZFC) mode. The dependence of Mössbauer parameters on Mn3+ substitution was also analyzed. All the magnetic characterization shows that Mn3+ substitution enhance the magnetic behavior of MnFe2O4 ferrite nanoparticles

  9. Synthesis, characterization and properties of yellow-light-emitting polyethers containing bis(styryl)anthracene units

    Energy Technology Data Exchange (ETDEWEB)

    Gioti, M., E-mail: mgiot@physics.auth.gr; Pitsalidis, C., E-mail: mgiot@physics.auth.gr; Tzounis, L.; Logothetidis, S., E-mail: logot@auth.gr [Laboratory for Thin Films-Nanosystems and Nanometrology (LTFN), Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Andreopoulou, A. K.; Kallitsis, J. K. [Department of Chemistry, University of Patras, University Campus, Rio-Patras GR26504, Greece and Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Platani Str., Patras GR26504 (Greece); Mparmpoutsis, E. [Department of Chemistry, University of Patras, University Campus, Rio-Patras GR26504 (Greece)

    2015-02-17

    Aromatic aliphatic polyethers containing bis(styryl)anthracene units in the main chain separated by flexible spacer of 11 (AND52) or 12 (AND53) methylene units, were synthesized and characterized aiming to be applied as emitting materials in polymer light emitting diode (PLED) devices. The polymers are soluble in common organic solvents and have average molecular weight of about 15kDa. Differentiations owing to an odd-even number of methylene units (χ=11 vs χ=12) are observed in their optical properties in solid state. Thin films as well as PLED devices were fabricated via conventional spin-coating process. Initially, various parameters have been investigated concerning the solubility of the polymers, the effect of film thickness on the electrical properties, and their thermal stability. The optical properties of the two polymers were investigated by NIR-Vis-far UV spectroscopic ellipsometry (SE). The accurate determination of the thickness and the optical constants (refractive index and dielectric function as a function of wavelength) were derived. These provide substantial insights into the final design of the optimum final multi-layer structure of the PLEDs, if we take into account that the external quantum efficiency (EQE) of electroluminescence (EL) strongly depends on the optical interference of the beams of emitted light that have been multiply reflected from the layer interfaces. The morphological characterization of the AND52 and AND53 polymeric thin films was carried out using atomic force microscopy (AFM), while current density-voltage (J-V) characteristics of the devices were studied by electrical measurements. The single PLED devices were switched on at relatively low operation voltages, showing the potential as backplanes for active matrix PLED applications. In this perspective, it can be assumed that further studies of the presented materials will enable the development of flexible PLEDs with the possibility to scale up their dimensions for bigger

  10. Manganese ferrite prepared using reverse micelle process: Structural and magnetic properties characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Department of Engineering, Shinshu University, Nagano 380-8553 (Japan); Meena, S.S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mane, M.L. [Department of Physics, S.G.R.G. Shinde Mahavidyalaya, Paranda 413502, MS (India); Kumar, Shalendra [School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Bhatt, Pramod [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur, HP (India); Prasad, N.K.; Alla, S.K. [Deptartment of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Shah, Jyoti; Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Mohammed, K.A. [Department of Mathematics & Physics Sciences, College of Arts and Sciences, University of Nizwa, Nizwa (Oman); Şentürk, Erdoğan [Department of Physics, Sakarya University, Esentepe, 54187 Sakarya (Turkey); Alimuddin [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2015-09-05

    Highlights: • Preparation of Mn{sup 3+} substituted MnFe{sub 2}O{sub 4} ferrite by Reverse microemulsion process. • Characterization by XRD, SEM, VSM, Mössbauer spectroscopy and dielectric measurements techniques. • Magnetic properties of MnFe{sub 2}O{sub 4} enhanced after Mn{sup 3+} substitution. • The dielectric constant and ac conductivity increased with Mn{sup 3+} substitution. - Abstract: Reverse microemulsion process was employed to prepare of nanocrystalline Mn{sup 3+} substituted MnFe{sub 2−x}Mn{sub x}O{sub 4} ferrites. The structural, magnetic and dielectric properties were studied for different concentrations of Mn{sup 3+}. The structural and microstructural properties were analyzed using X-ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy techniques. The phase identification of the materials was studied by Rietveld refined XRD patterns which reveals single phase with cubic symmetry for the samples. The lattice parameters were ranged in between 8.369 and 8.379 Å and do not show any significant change with the substitution of Mn{sup 3+}. The average particles size was found to be around 11 ± 3 nm. Magnetization results obtained from the vibrating sample magnetometer (VSM) confirm that the substitution of Mn{sup 3+} in MnFe{sub 2}O{sub 4} ferrite caused an increase in the saturation magnetization and coercivity. The dependence of Mössbauer parameters on Mn{sup 3+} substitution has been analyzed. Magnetic behavior of the samples were also studied at field cooled (FC) and zero field cooled (ZFC) mode. The dependence of Mössbauer parameters on Mn{sup 3+} substitution was also analyzed. All the magnetic characterization shows that Mn{sup 3+} substitution enhance the magnetic behavior of MnFe{sub 2}O{sub 4} ferrite nanoparticles.

  11. Studies on solid phase synthesis,characterization and fluorescent property of the new rare earth complexes

    Directory of Open Access Journals (Sweden)

    Jianwei SHI

    2015-04-01

    Full Text Available Rare earth-β-diketone ligand complex luminescent material has stable chemical properties and excellent luminous property. Using europium oxide and (γ-NTA as raw materials, novel rare earth-β-dione complexes are synthesized by solid state coordination chemistry. The synthesis temperature and milling time are discussed for optimization. Experimental results show that the suitable reaction situation is at 50 ℃ and 20 h for solid-phase synthesis. The compositions and structures of the complexes are characterized by means of elemental analysis, UV-Vis and FTIR methods, and the phase stability of the complex is determined by using TG-DTA technique. It is proved that preparation of waterless binary rare earth complexes by the solid phase reaction method results in a higher product yield. The fluorescence spectra show that between Eu (Ⅲ and γ-NTA, there exists efficient energy transfer, and the rare earth complexes synthesis is an excellent red bright light-emitting material with excellent UV excited luminescence properties.

  12. Regional Characterization of Soil Properties via a Combination of Methods from Remote Sensing, Geophysics and Geopedology

    Science.gov (United States)

    Meyer, Uwe; Fries, Elke; Frei, Michaela

    2016-04-01

    Soil is one of the most precious resources on Earth. Preserving, using and enriching soils are most complex processes that fundamentally need a sound regional data base. Many countries lack this sort of extensive data or the existing data must be urgently updated when land use recently changed in major patterns. The project "RECHARBO" (Regional Characterization of Soil Properties) aims at the combination of methods from remote sensing, geophysics and geopedology in order to develop a new system to map soils on a regional scale in a quick and efficient manner. First tests will be performed on existing soil monitoring districts, using newly available sensing systems as well as established techniques. Especially hyperspectral and infrared data measured from satellites or airborne platforms shall be combined. Moreover, a systematic correlation between hyperspectral imagery and gamma-ray spectroscopy shall be established. These recordings will be compared and correlated to measurements upon ground and on soil samples to get hold of properties such as soil moisture, soil density, specific resistance plus analytic properties like clay content, anorganic background, organic matter etc. The goal is to generate a system that enables users to map soil patterns on a regional scale using airborne or satellite data and to fix their characteristics with only a limited number of soil samples.

  13. Characterization of Regolith Volatile Transport and Storage Properties by The MECA MSP 2001 Lander Payload

    Science.gov (United States)

    Clifford, S. M.; Marshall, J.

    1999-01-01

    The diffusive and adsorptive properties of the Martian regolith influence the exchange of volatiles between the atmosphere and subsurface. Our quantitative knowledge of these properties is extremely poor -introducing substantial uncertainties in efforts to model long-term evolution of ground ice and diurnal, seasonal, and climatic cycles of CO2 and H20. This situation should significantly improve upon arrival of the 2001 Mars Surveyor Lander in 2002. In support of the Human Exploration and Development of Space (HEDS) enterprise, the 2001 mission will include a suite of instruments to characterize the nature of the Martian environment and assess whether it contains hazards that may threaten future human exploration. A major element of this effort is the Mars Environmental Compatibility Assessment (MECA) payload, which consists an optical microscopy system incorporating electrostatic, magnetic, and scratch-hardness materials testing palets, an atomic force microscope with imaging capabilities comparable to an SEM, a wet chemistry laboratory with four independent test cells, an electrometer on the robotic arm, material test patches, a camera also mounted on the arm, and a soil scoop for excavating down to about 50 cm into the soil. Although conceived to address the needs of HEDS, MECA payload is a sophisticated soil science laboratory that should provide a wealth of new data relevant to the volatile transport and storage properties of the regolith. Additional information os contained in the original.

  14. An experimental characterization of damping properties of thermal barrier coatings at elevated temperatures

    Science.gov (United States)

    Easterday, Oliver T.

    Modern gas turbine engines have routinely utilized thermal barrier coatings for the past three decades to coax greater thermodynamic efficiency out of jet engines. In service, it has been noted that these ceramic materials are also effective at suppressing high cycle fatigue in the engine components, increasing their respective fatigue life. Recent efforts have been made to mechanically characterize these materials; this has been a challenge as they are thin coatings, prone to history effects, and are materially nonlinear. Refinement of the apparatus have occurred and it is now desired to characterize them across a range of likely service temperatures. A free-free beam apparatus has been adapted to accomplish this. Important to achieving viable results is the design, analysis, and experimental validation of the chamber in regards to the free-free specimen being heat-able, modally detuned and free-hanging, and the preservation of a non-contacting excitation method. Critical to success is ensuring a near-isothermal heated beam specimen. After successful validation and calibration of the chamber, a common thermal barrier coating, 8-YSZ, was tested, primarily using the free-decay, logarithmic decrement method, using the chamber from 70-900degF. Materially non-linear behavior was observed and findings of material storage modulus and loss coefficient that are consistent with previous studies were obtained. The chamber was also used to characterize the bare metal beam blanks and bond-coat only specimens. The apparatus was found to be sensitive when determining the storage modulus and damping, more so than the baseline configuration. This was due to changes in design to proof it against high temperature. Resulting, it clearly characterized the anisotropic modulus of titanium and determined that bond coating had a negligible contribution to the beam system. Design life criteria with the properties of the coating could now be adopted across a range of temperatures.

  15. Isolation and Characterization of Lytic Properties of Bacteriophages Specific for M. haemolytica Strains.

    Directory of Open Access Journals (Sweden)

    Renata Urban-Chmiel

    Full Text Available The objective of this study was isolation and morphological characterization of temperate bacteriophages obtained from M. haemolytica strains and evaluation of their lytic properties in vitro against M. haemolytica isolated from the respiratory tract of calves.The material for the study consisted of the reference strain M. haemolytica serotype 1 (ATCC® BAA-410™, reference serotypes A1, A2, A5, A6, A7, A9 and A11, and wild-type isolates of M. haemolytica. Bacteriophages were induced from an overnight bacterial starter culture of all examined M. haemolytica strains treated with mitomycin C. The lytic properties and host ranges were determined by plaque assays. The morphology of the bacteriophages was examined in negative-stained smears with 5% uranyl acetate solution using a transmission electron microscope. The genetic analysis of the bacteriophages was followed by restriction analysis of bacteriophage DNA. This was followed by analysis of genetic material by polymerase chain reaction (PCR.Eight bacteriophages were obtained, like typical of the families Myoviridae, Siphoviridae and Podoviridae. Most of the bacteriophages exhibited lytic properties against the M. haemolytica strains. Restriction analysis revealed similarities to the P2-like phage obtained from the strain M. haemolytica BAA-410. The most similar profiles were observed in the case of bacteriophages φA1 and φA5. All of the bacteriophages obtained were characterized by the presence of additional fragments in the restriction profiles with respect to the P2-like reference phage. In the analysis of PCR products for the P2-like reference phage phi-MhaA1-PHL101 (DQ426904 and the phages of the M. haemolytica serotypes, a 734-bp phage PCR product was obtained. The primers were programmed in Primer-Blast software using the structure of the sequence DQ426904 of reference phage PHL101.The results obtained indicate the need for further research aimed at isolating and characterizing

  16. Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique

    Science.gov (United States)

    Ullah, Hameed; Sohail, Muhammad; Malik, Uzma; Ali, Naveed; Bangash, Masroor Ahmad; Nawaz, Mohsan

    2016-07-01

    Zinc oxide (ZnO) is one of the very important metal oxides (MOs) for applications in optoelectronic devices which work in the blue and UV regions. However, to meet the challenges of obtaining ZnO nanomaterials suitable for practical applications, various modifications in physico-chemical properties are highly desirable. One of the ways adopted for altering the properties is to synthesize composite(s) of ZnO with various reinforcements. Here we report on the tuning of optoelectronic properties of ZnO upon doping by nanodiamonds (NDs) using the ball milling technique. A varying weight percent (wt.%) of NDs were ball milled for 2 h with ZnO nanoparticles prepared by a simple precipitation method. The effects of different parameters, the calcination temperature of ZnO, wt.% of NDs and mechanical milling upon the optoelectronic properties of the resulting ZnO–NDs nanocomposites have been investigated. The ZnO–NDs nanocomposites were characterized by IR spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The UV-vis spectroscopy revealed the alteration in the bandgap energy (Eg ) of ZnO as a function of the calcination temperature of ZnO, changing the concentration of NDs, and mechanical milling of the resulting nanocomposites. The photoluminescence (PL) spectroscopy showed a decrease in the deep level emission (DLE) peaks and an increase in near-band-edge transition peaks as a result of the increasing concentration of NDs. The decrease in DLE and increase in band to band transition peaks were due to the strong interaction between the NDs and the Zn+; consequently, the Zn+ concentration decreased on the interstitial sites.

  17. Synthesis, characterization and magnetic properties of monodisperse Ni, Zn-ferrite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjeev, E-mail: sanjeevkumar.dubey2@gmail.com [University of Petroleum and Energy Studies, Dehradun, Uttarakhand (India); Kumar, Pankaj [University of Petroleum and Energy Studies, Dehradun, Uttarakhand (India); Singh, Vaishali [University School of Basic and Applied Science (India); Kumar Mandal, Uttam [University of Chemical Technology, GGS Indraprastha University, Sector 16, Dwarka, Delhi 110403 (India); Kumar Kotnala, Ravinder [National Physical laboratory, New Delhi 110012 (India)

    2015-04-01

    Synthesization of monodisperse Ni, Zn-ferrite (Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4}, x=1, 0.8, 0.6, 0.5, 0.4, 0.2, 0.0) nanocrystals has been achieved by the inverse microemulsion method using CTAB as surfactant and kerosene as an oil phase. The detailed characterization of the synthesized nanocrystals and measurement of the magnetic properties has been done by techniques like X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), Fourier transform infrared spectroscopy (FITR) and Vibrating Sample Magnetometer (VSM) respectively. The relationship between the structure and composition of the nanocrystals with magnetic properties has been investigated. The nanocrystals size is found to be in the range 1–5 nm. The effect of Zn substitution on size and magnetic properties has been studied. It has been observed that magnetism changed from ferromagnetic at X= 0 to super paramagnetic to paramagnetic at X=1 as Zn concentration increased. The Curie temperature is found to decrease with an increase in Zn concentration. - Highlights: • Reverse microemulsion route is very facile route for synthesis of Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} ferrite. • Presence of Zn changes the structural and magnetic properties of the Zn substituted NiFe{sub 2}O{sub 4.} • The lattice constant increases with the increase in Zn substitution. • The curie temperature decreases with Zn concentration appreciably. • Magnetic behavior varies from ferromagnetic at x=0 to superparamagnetic to paramagnetic at x=1.

  18. Characterization of Cirrus Cloud Properties by Airborne Differential Absorption and High Spectral Resolution Lidar Measurements

    Science.gov (United States)

    Ehret, G.; Gross, S.; Schäfler, A.; Wirth, M.; Fix, A.; Kiemle, C.

    2014-12-01

    Despite the large impact of cirrus clouds on the Earth's climate system, their effects are still only poorly understood. Our knowledge of the climate effect of cirrus clouds is mainly based on theoretical simulations using idealized cloud structure and microphysics, as well as radiative transfer approximations. To improve the representation of cirrus clouds in idealized simulations and circulation models, we need a better understanding of the micro- and macrophysical properties of cirrus clouds. Airborne lidar measurements provide two-dimensional information of the atmospheric structure, and are thus a suitable tool to study the fine-structure of cirrus clouds, as well as their macrophysical properties. Aerosol and water vapor was measured with the airborne high spectral resolution lidar (HSRL) and differential absorption lidar (DIAL) system WALES of the German Aerospace Center (DLR), Oberpfaffenhofen. The system was operated onboard the German high altitude and long range research aircraft HALO during the Next-generation remote sensing for validation studies campaign (NARVAL) in December 2013 over the tropical North-Atlantic and in January 2014 out of Iceland, and during the ML-Cirrus campaign in March/April 2014 over Central and Southern Europe. During NARVAL 18 flights with more than 110 flight hours were performed providing a large number of cirrus cloud overpasses with combined lidar and radar instrumentation. In the framework of the ML-Cirrus campaign 17 flights with more than 80 flight hours were performed to characterize cirrus cloud properties in different environmental conditions using a combination of remote sensing (e.g. lidar) and in-situ observations. In our presentation we will give a general overview of the campaigns and of the WALES measurements. We will show first results from the aerosol and water vapor lidar measurements with focus on the structure of cirrus clouds, the humidity distribution within and outside the cloud and on the impact of the

  19. Syntheses, characterization and properties of silver, copper and palladium complexes from bis(oxazoline)-containing ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kuai, Hai-Wei, E-mail: hyitshy@126.com; Cheng, Xiao-Chun; Li, Deng-Hao; Hu, Tao; Zhu, Xiao-Hong

    2015-08-15

    The reactions of 2,6-di(2-oxazolyl)pyridine (L{sup 1}) and 2,6-bis[(S)-4-phenyl-2-oxazolyl]pyridine (L{sup 2}) with silver, copper and palladium salts to yield six new complexes: ([Ag{sub 5}(L{sup 1}){sub 5}](BF{sub 4}){sub 5}){sub n} (1), ([Ag(L{sup 1})](SbF{sub 6})){sub n} (2), [Cu{sub 4}I{sub 4}(L{sup 1}){sub 2}] (3), [Cu{sub 6}I{sub 6}(L{sup 1}){sub 2}] (4), [Pd(L′{sup 1})(OAc)] (5), [Pd(L′{sup 2})Cl] (6), which were fully characterized by single-crystal and powder X-ray diffraction, IR, elemental and thermogravimetric analyses. 1 and 2 are a pair of Ag-oxazoline helical chain structure complexes. The spiral directions of chains are opposite in 1, while identical in 2; the measurement of CD spectra can further confirm their meso and chiral structures. Complexes 3 and 4 show eight-nuclear and twelve-nuclear iodine–cuprous cluster structure. Their structural diversity is induced by different molar ratios of CuI:L{sup 1}. Complexes 5 and 6 are discrete mononuclear palladium complexes. In situ oxazolyl-ring-opening reactions take place in the syntheses of them and the L{sup 1} and the L{sup 2} were transformed to their oxazolyl-ring opened derivatives L′{sup 1} and L′{sup 2}. Moreover, fluorescence, non-linear optical properties, and ferroelectric properties have been investigated. - Graphical abstract: 2,6-di(2-oxazolyl)pyridine (L{sup 1}) reacts with silver and copper salts to yield helical and cluster structure complexes. - Highlights: • Helical and cluster structure complexes. • In situ oxazolyl-ring-opening reactions. • Fluorescence, non-linear optical properties, and ferroelectric properties.

  20. Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties.

    Science.gov (United States)

    Bruschi, Michela; Pirri, Giovanna; Giuliani, Andrea; Nicoletto, Silvia Fabiole; Baster, Izabela; Scorciapino, Mariano Andrea; Casu, Mariano; Rinaldi, Andrea C

    2010-08-01

    Multimeric peptides offer several advantages with respect to their monomeric counterparts, as increased activity and greater stability to peptidases and proteases. SB041 is a novel antimicrobial peptide with dendrimeric structure; it is a tetramer of pyrEKKIRVRLSA linked by a lysine core, with an amino valeric acid chain. Here, we report on its synthesis, NMR characterization, antimicrobial activity, and LPS-interaction properties. The peptide was especially active against Gram-negative strains, with a potency comparable (on molar basis) to that of lipopeptides colistin and polymixin B, but it also displayed some activity against selected Gram-positive strains. Following these indications, we investigated the efficacy of SB041 in binding Escherichia coli and Pseudomonas aeruginosa LPS in vitro and counteracting its biological effects in RAW-Blue cells, derived from RAW 264.7 macrophages. SB041 strongly bound purified LPS, especially that of E. coli, as proved by fluorescent displacement assay, and readily penetrated into LPS monolayers. However, the killing activity of SB041 against E. coli was not inhibited by increasing concentrations of LPS added to the medium. Checking the SB041 effect on LPS-induced activation of pattern recognition receptors (PRRs) in Raw-Blue cells revealed that while the peptide gave a statistically significant decrease in PRRs stimulation when RAW-Blue cells were challenged with P. aeruginosa LPS, the same was not seen when E. coli LPS was used to activate innate immune defense-like responses. Thus, as previously seen for other antimicrobial peptides, also for SB041 binding to LPS did not translate necessarily into LPS-neutralizing activity, suggesting that SB041-LPS interactions must be of complex nature.

  1. Mechanical and structural characterization of the poroviscoelastic properties of natural and synthetic biocomposites

    Science.gov (United States)

    Hayot, Celine M.

    Rubber-like insect cuticle is a light fibrous composite which exhibits great deformability and long range elasticity due to the presence of a large amount of the elastomeric protein resilin. The presence of resilin in specific locations in the insect body leads to the assumption that its main function is loss-free storage of energy. The composition of the cuticle reveals the presence of a resilin matrix in which chitin fibers are embedded. Nanoindentation testing was used to study the differences in the mechanical properties of the structure between genders and wing morphs of the sand field cricket, Gryllus firmus. The results provide insight into the structure-function relations associated with the properties of insect rubber-like cuticle from different morphs and genders. An understanding of this relationship is of great importance if synthetic bio-inspired loss-free composites are to be manufactured. Inspired by the rubber-like cuticle, a synthetic composite was made of the elastomeric protein elastin in which polycaprolactone fibers were embedded. Nanoindentation testing was used to investigate the differences in the mechanical properties of the synthetic rubber-like composite between materials crosslinked for different time periods (2, 4, and 6 hours). Furthermore, the characterization of the viscoelastic properties of the synthetic composite by nanoindentation reveals the composite crosslinked for 4 hours as an optimized strain energy storage material when employed at low frequency load cycles. Also, investigating the microstructure of the synthetic composite shows the presence of pores which, under deformation, are responsible for the generation of a simultaneous mechanical response to viscoelasticity which is known as poroelasticity. Thus in this dissertation a methodology is developed to decouple the viscoelastic and the poroelastic behavior by combining the nanoindentation technique with finite element simulations. With this approach, it is possible to

  2. Characterization of anisotropy in viscoelastic properties of intra-abdominal soft tissues.

    Science.gov (United States)

    Deo, Dhanannjay; Singh, Tejinder Paul; Dunnican, Ward; De, Suvranu

    2009-01-01

    A portable instrumentation rig is presented for characterizing nonlinear viscoelastic anisotropic response of intra-abdominal organ-tissues. Two linearly independent in-situ experiments are performed at each indentation site on the intra-abdominal organ, by subjecting the organ to 1) normal and 2) tangential displacement stimuli using the above robotic device. For normal indentation experiments, the indenter is ramped into the tissue and held for 10 seconds before sinusoidal indentation stimuli are applied. For tangential (shear) loading, the indenter tip is rigidly glued to the soft tissue surface. Sinusoidal displacement stimuli are then applied laterally in the tangential plane and the force response is recorded. Tangential loading is repeated along orthogonal directions to measure in-plane mechanical properties. Combined analysis of both experiments leads to assessment of anisotropy. In situ experiments on fresh human cadavers are currently under way at the Albany Medical College. PMID:19377118

  3. Fabrication and characterization of multi-scale microlens arrays with anti-reflection and diffusion properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-Pin; Lee, Chih-Hsien; Wang, Lon A, E-mail: lon@ntu.edu.tw [Photonics and Nano-Structure Laboratory, Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China)

    2011-05-27

    In this paper, an effective method for fabricating artificial compound-eye structures is demonstrated. The fabrication of high fill factor microlens arrays (MLAs) with sub-wavelength structures (SWSs) on a polycarbonate (PC) substrate involves nanoimprint and thermo-extrusion techniques by using two different scales of nano/micromolds. In addition, the MLAs with SWSs on the PC substrate would be replicated on a polymethylmethacrylate (PMMA) millimeter concave surface by hot-embossing, forming three-level compound-eye structures. The optical properties of these samples are characterized. The transmittances of two-level PC and three-level PMMA compound structures are increased by 2.5% and 2%, and the uniformities are enhanced by 18% and 24%, respectively.

  4. -pyrrole substituted porphyrin-pyrene dyads using vinylene spacer: Synthesis, characterization and photophysical properties

    Indian Academy of Sciences (India)

    P Silviya Reeta; Ravi Kumar Kanaparthi; L Giribabu

    2013-03-01

    We have designed and synthesized donor-acceptor conjugates having donor pyrene at the pyrrole- position of either free-base porphyrin or Zn(II) porphyrin using vinylene spacer. Both the dyads have been completely characterized by elemental analysis,MALDI-MS, UV-Vis., and fluorescence (steady state and timeresolved) spectroscopies as well as cyclic voltammetry. The absorption maxima of both dyads are red-shifted by 8-12 nm. The ground state properties showed that there exist minimum - interaction between the aromatic subunits of these D-A systems. Quenched emission was observed in both the dyads when excited at 290 nm. The quenched emission explained in terms of intramolecular excitation energy transfer competes with the photo-induced electron transfer reaction in these D-A system.

  5. TEST AND CHARACTERIZATION FOR THE INCOMPRESSIBLE HYPERELASTIC PROPERTIES OF CONDITIONED RUBBERS UNDER MODERATE FINITE DEFORMATION

    Institute of Scientific and Technical Information of China (English)

    XiaYong; LiWei; XiaYuanming

    2004-01-01

    In this paper, the automated grid method is applied to test for the mechanical properties of conditioned rubbers under the moderate finite deformation (not exceeding 100%).More accurate stress-strain curves of conditioned rubber specimens under different conditioned strains are obtained. Test results show differences between these curves. Based on an analysis of the classical constitutive models, a new modified eight-chain model is proposed, which take saccount of both the locking stretch of chains and the interaction effect in the network. Fitting test data shows that the modified model well characterizes the incompressible hyperelastic mechanical behavior of conditioned rubbers under the moderate finite deformation as well as under the large deformation.

  6. Preparation,characterization and properties studies of quinine-imprinted polymer in the aqueous phase

    Institute of Scientific and Technical Information of China (English)

    He Jianfeng; Liu Lan; Yang Guilan; Deng Qinying

    2006-01-01

    The uniform-sized spherical molecularly imprinted polymers were successfully prepared through molecular imprinting technology by two-step seed swelling and mini-emulsion polymerization in the aqueous condition using quinine as template molecules and methacrylic acid (MAA)as functional monomer.The polymers were characterized by IR spectra,thermal-weight analysis,scanning electron microscope and laser particle size analysis.The properties of imprinted polymers were investigated in different organic phases and aqueous media.In the organic media,results suggested that polar interactions(hydrogen bonding,ionic interactions)between acidic monomer/polymer and template molecules are mainly responsible for the binding and recognition;whereas in the aqueous medium,a considerable recognition effect was also obtained where the ionic(electrostatic)interaction and hydrophobic interaction play an important role.The experiments of binding different substrates indicated that the MIPs possessed an excellent rebinding ability and inherent selectivity to quinine.

  7. Thermoelectric Characterization of Electronic Properties of GaMnAs Nanowires

    Directory of Open Access Journals (Sweden)

    Phillip M. Wu

    2012-01-01

    Full Text Available Nanowires with magnetic doping centers are an exciting candidate for the study of spin physics and proof-of-principle spintronics devices. The required heavy doping can be expected to have a significant impact on the nanowires' electron transport properties. Here, we use thermopower and conductance measurements for transport characterization of Ga0.95Mn0.05As nanowires over a broad temperature range. We determine the carrier type (holes and concentration and find a sharp increase of the thermopower below temperatures of 120 K that can be qualitatively described by a hopping conduction model. However, the unusually large thermopower suggests that additional mechanisms must be considered as well.

  8. Photoelectrochemical characterization and photocatalytic properties of mesoporous TiO 2 / ZrO 2 films

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Optically transparent, crack-free mesoporous titania and zirconia-doped titania thin film photocatalysts were fabricated by sol-gel technique, using nonionic amphiphilic block copolymer Pluronic P123 as template. The structural and optical properties of these films were characterized using SEM, low-angle XRD, and UV/Vis spectroscopy, hexane adsorption investigation. Band gap energy and the position of flatband potentials were estimated by photoelectrochemical measurements. Enhancing of photocatalytic activity of zirconia-doped films relative to pure TiO 2 originates from an anodic shift of the valence band edge potential. Catalytic activity of mesoporous TiO 2 and TiO 2 / ZrO 2 ( 5 –50% of ZrO 2 films in the processes of Cr VI to Cr III photoreduction and 2,4-dinitroaniline photooxidation correlates with crystalline size and growth with increasing of specific surface area of the samples.

  9. Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunhong, E-mail: y.jiang@leeds.ac.uk [University of Leeds, Institute of Particle Science and Engineering (United Kingdom); O’Neill, Alex J. [University of Leeds, School of Molecular and Cellular Biology (United Kingdom); Ding, Yulong [University of Leeds, Institute of Particle Science and Engineering (United Kingdom)

    2015-04-15

    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water.

  10. Hydrothermal Synthesis, Characterization, and Optical Properties of Ce Doped Bi2MoO6 Nanoplates

    Directory of Open Access Journals (Sweden)

    Anukorn Phuruangrat

    2014-01-01

    Full Text Available Undoped and Ce doped Bi2MoO6 samples were synthesized by hydrothermal reaction at 180°C for 20 h. Phase, morphology, atomic vibration, and optical properties were characterized by X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, Raman spectrophotometry, Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, selected area electron diffraction (SAED, and UV-visible spectroscopy. In this research, the products were orthorhombic Bi2MoO6 nanoplates with the growth direction along the [0b0], including the asymmetric and symmetric stretching and bending modes of Bi–O and Mo–O. Undoped and Ce doped Bi2MoO6 samples show a strong absorption in the UV region.

  11. Novel axially carborane-cage substituted silicon phthalocyanine photosensitizer; synthesis, characterization and photophysicochemical properties.

    Science.gov (United States)

    Atmaca, Göknur Yaşa; Dizman, Cemil; Eren, Tarık; Erdoğmuş, Ali

    2015-02-25

    The novel axially dicarborane substituted silicon (IV) (SiPc-DC) phthalocyanine was synthesized by treating silicon phthalocyanine dichloride SiPc(Cl)2 (SiPc) with o-Carborane monool. The compound was characterized by mass spectrometry, UV-Vis, FT-IR, (1)H and (11)B Nuclear Magnetic Resonance Spectroscopy (NMR). Spectral, photophysical (fluorescence quantum yield) and photochemical (singlet oxygen (ΦΔ) and photodegradation quantum yield (Φd)) properties of the complex were reported in different solutions (Dimethyl sulfoxide (DMSO), Dimethylformamide (DMF) and Toluene). The results of spectral measurements showed that both SiPc and carborane cage can have potential to be used as sensitizers in photodynamic therapy (PDT) and boron neutron capture therapy (BNCT) by their singlet oxygen efficiencies (ΦΔ=0.41, 0.39). PMID:25222320

  12. Quantitative Characterization of the Microstructure and Transport Properties of Biopolymer Networks

    CERN Document Server

    Jiao, Yang

    2012-01-01

    Biopolymer networks are of fundamental importance to many biological processes in normal and tumorous tissues. In this paper, we employ the panoply of theoretical and simulation techniques developed for characterizing heterogeneous materials to quantify the microstructure and effective diffusive transport properties (diffusion coefficient $D_e$ and mean survival time $\\tau$) of collagen type I networks at various collagen concentrations. In particular, we compute the pore-size probability density function $P(\\delta)$ for the networks and present a variety of analytical estimates of the effective diffusion coefficient $D_e$ for finite-sized diffusing particles. The Hashin-Strikman upper bound on the effective diffusion coefficient $D_e$ and the pore-size lower bound on the mean survival time $\\tau$ are used as benchmarks to test our analytical approximations and numerical results. Moreover, we generalize the efficient first-passage-time techniques for Brownian-motion simulations in suspensions of spheres to th...

  13. Synthesis, Characterization and Catalytic Properties of Perovskite LaFeO3 Nanoparticles

    Science.gov (United States)

    Afifah, Nur; Saleh, Rosari

    2016-04-01

    Orthorhombic structure of rare earth perovskite-type oxide LaFeO3 nanoparticles with light absorption properties in the visible range was prepared by co-precipitation method. The prepared nanoparticles was characterized by several measurements such as X-ray diffraction, energy dispersive X-ray, field emission scanning electron microscope, diffuse reflectance spectroscopy, vibrating sample magnetometer and electron spin resonance spectroscopy. Methylene blue was taken as the model pollutant to evaluate its photocatalytic, sonocatalytic, photosonocatalytic degradation in the presence of LaFeO3 nanoparticles. The degradation of methylene blue followed the pseudo-first order model in all three processes. The observed rate constants indicate that the photosonocatalytic was faster than the respective individual. Radical scavenger experiments revealed that holes were the predominant oxidative species involved in all three processes.

  14. Synthesis, Characterization, Absorbance, Fluorescence and Non Linear Optical Properties of Some Donor Acceptor Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Asiri, Abdullah M.; Khan, Salman A.; Alamry, Kalid A. [King Abdulaziz University, Jeddah (Saudi Arabia); Al-Amoudi, Muhammed S. [Taif University, Taif (Saudi Arabia)

    2012-06-15

    Three carbazole chromophores featuring dicyano, cyano, ethyl acetate and dimethyl acetate groups as an acceptor moiety with a {pi}-conjugated spacer and N-methyl dibenzo[b]pyrole as donor were synthesized by Knovenagel condensation and characterized by IR, {sup 1}HNMR, {sup 13}CNMR, UV-vis, fluorescence spectroscopy, electrochemistry and theoretical B3LYP/6-311G* level whilst NLO properties and spectroscopic quantities were calculated. Calculations showed remarkable trend with HOMO located on the donor moiety and LUMO on the acceptors dicyano methylene, cyano, ethyl acetate methylene and dimethyl acetate methylene. In agreement with the calculations, solvatochromic, behavior intramolecular charge transfer band was observed in the visible region

  15. Preparation, characterization and mechanical properties of rare-earth-based nanocomposites

    Directory of Open Access Journals (Sweden)

    Musbah S.S.

    2012-01-01

    Full Text Available This study reports research related to different preparation methods and characterization of polymer nanocomposites for optical applications. The Eu-ion doped Gd2O3 nanophosphor powder with different nanoparticle content was embedded in the matrix of PMMA. Preparation was carried out by mixing molding (bulk, electrospinning (nanofibers and solution casting (thin films with neat particles and particles coated with AMEO silane. Among the pros and cons for proposed methods, the mixing molding enables to avoid solvent use while the best deagglomeration and nanoparticle distribution is gained using the electrospinning method. The results of dynamic mechanical analysis (DMA and nanoindentation revealed that the storage modulus of the composites was higher than that of pure PMMA and increased with nanophosphor content. Surface modification of particles improved the mechanical properties of nanocomposites.

  16. Synthesis,Characterization and Catalytic Properties of Mesoporous HPMo/SiO2 Composite

    Institute of Scientific and Technical Information of China (English)

    YAN Xuemin; YAN Jiabao; MEI Ping; LEI Jiaheng

    2008-01-01

    A novel mesoporous HPMo/SiO2 composite was synthesized by the sol-gel method with triblock copolymer EO20PO70EO20 as template.The properties of the product were characterized by X-ray diffraction,transmission electron microscopy,N2 adsorption-desorption isotherms,Fourier transform infrared spectrometer and inductively-coupled plasma analysis.The experimental results show that the product has a very ordered hexagonal mesostructure,and the HPMo is immobilized into the framework of silica.The final mesoporous composite shows excellent stability in polar solvents.Results of catalytic tests indicate that the composite is an effective catalyst for oxidation of dibenzothiophen,and there are few activity losses even after the third cycle of uses.The high catalytic activity and good insolubility make it a promising catalyst in oxidative desulfurization process.

  17. Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites

    Science.gov (United States)

    Wen, John Z.; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F.; Zhou, Y. Norman

    2013-04-01

    Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.

  18. Preparation and property characterization of PAA/Fe3O4 nanocomposite

    Institute of Scientific and Technical Information of China (English)

    WEI Shanshan; ZHANG Yi; XU Jiarui

    2007-01-01

    PAA/Fe3O4 nanocomposites were prepared by mixing nano-Fe3O4 and polyacrylic acid(PAA)ethanol solution and then evaporating the solvent.The materials were characterized by transmission electron microscope(TEM),Fourier transform infrared spectroscope(FTIR),thermogravimetry analysis (TGA),dynamic ultra-micro hardness tester (DUMHT)and superconducting quantum interference device (SQUID)magnetometer.Results showed that PAA coordinated with nano-Fe3O4 to form a cross-linking structure.The presence of nano-Fe3O4 enhanced the thermal stability of the nanocomposite.The elasticity and hardness of the nanocomposite increased,and the indentation depth reduced with the increase of Fe3O4 content in the composites.The nanocomposites showed superparamagnetic properties at 300K.

  19. Improved production, characterization and flocculation properties of poly (-glutamic acid produced from Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Bhunia B

    2012-04-01

    Full Text Available Bacillus subtilis 2063 produced extracellular biopolymer whichshowed excellent flocculation activity. The biopolymer wasconfirmed as poly (γ-glutamic acid (PGA by using productcharacterization. HPLC profile showed that molecular weight ofPGA was found to be 5.8×106 Da. Improved production,Characterization and flocculation properties of PGA produced byBacillus species were studied. PGA produced by B. subtilis wasdevoid of any polysaccharides. The flocculating activity wasmarkedly stimulated by the addition of cations. The pH of reaction mixture also influenced the flocculating activity. Glycerol and ammonium chloride were found to be most useful carbon and nitrogen sources. An overall 4.24-fold increase in protease production was achieved in the design medium composed with Glycerol and ammonium chloride as a carbon and nitrogen sources as compared with basal media. PGA production increased significantly with optimized medium (21.42 gl-1 when compared with basal medium (5.06 gl-1.

  20. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    International Nuclear Information System (INIS)

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  1. Synthesis, Characterization, Optical and Electrochemical Properties of Fulleropyrrolidines Containing Trifluoromethyl Group

    Institute of Scientific and Technical Information of China (English)

    李祥子; 余锐; 方舒; 魏先文

    2012-01-01

    Four novel [60]fullerene pyrrolidines containing trifluoromethyl (--CF3) group have been synthesized via 1,3-dipolar cycloaddition reaction, which have been characterized by UV-Vis spectroscopy, fourier transform in- frared spectroscopy, matrix-assisted laser desorption ionization-time of flight mass spectroscopy, and IH, 13C, 19F nuclear magnetic resonance spectrometer (IH NMR, 13C NMR, 19F NMR). Their optical and electrochemical prop- erties have been studied, and the results show that those fulleropyrrolidines containing --CF3 group have good fluo- rescence and electrochemical properties. Compared with C60, they have negative shifts in varying degrees for half-wave potentials, and may have potential applications for photovoltaic conversion materials since their lowest unoccupied molecular orbital (LUMO) levels are close to that of [6,6]-phenyl-C6:butyric acid methyl ester.

  2. Synthesis and characterization of novel phthalocyanines and evaluation of photodynamic therapy properties

    Science.gov (United States)

    Korkmaz, Aysun; Kahraman, Mehmet; Yilmaz, Yusuf

    2016-03-01

    In this study, phthalocyanine (Pc) compounds were synthesized and evaluated photophysical and photochemical properties for the possible application of PDT. Zinc is used as central atom for the Pc to obtain higher singlet oxygen production. The structures of the synthesized Pc are characterized by IR, UV-vis, 1H , elemental analysis and MS. The results demonstrated that the synthesized Pc is a good candidate for the PDT applications for the cancers. The synthesized Pc will be also bound covalently to the nano surface via -SH functional group that can contribute to the production of singlet oxygen amount carrying phthalocyanines having diamagnetic metal. Thus, phthalocyanine compounds and their derivatives having high wavelength (near-IR) absorption, high triplet quantum yields, triplet state lifetime of singlet oxygen allow us to use PDT applications effectively.

  3. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    Science.gov (United States)

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Xie, Xinping; Hu, Yiming

    2012-08-01

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  4. Synthesis, characterization and luminescence properties of rare earth complexes with a new biphenylamide

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yan-Ling, E-mail: guoyl2004@163.com [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Dou, Wei; Wang, Yu-Jiao; Zhou, Xiao-Yan; Liu, Wei-Sheng [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2013-03-15

    A new amide-based ligand derived from biphenyl, N,N-dibenzyl-2-{l_brace}2 Prime -[(dibenzylcarbamoyl)-methoxy]-biphenyl-2-yloxy{r_brace} -acetamide (L), and its complexes of rare earth picrates were synthesized. The complexes were characterized by elemental analysis, IR, {sup 1}H NMR, UV-Vis spectra and conductivity measurements. Under the excitation, the europium(III) complex exhibited characteristic emissions of europium. The luminescence properties of the europium(III) complex in solid state and in CHCl{sub 3}, acetone, acetonitrile and DMF were investigated. The lifetime of the {sup 5}D{sub 0} level of the Eu{sup 3+} ion in the complex is 0.68 ms. The quantum yield {Phi} of the europium picrate complex was found to be 2.54 Multiplication-Sign 10{sup -3} with quinine sulfate as reference. The lowest triplet state energy level of the ligand indicates that the triplet state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion. - Highlights: Black-Right-Pointing-Pointer Synthesis of a new amide type podand and its lanthanide picrate complexes. Black-Right-Pointing-Pointer Characterization was done by elemental analysis, conductivity, IR, {sup 1}H NMR and UV-Vis. Black-Right-Pointing-Pointer Luminescence properties of Eu{sup 3+} complex were analyzed. Black-Right-Pointing-Pointer Triplet state energy level of ligand matches better to the resonance level of Eu{sup 3+} than Tb{sup 3+} ion.

  5. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xiaohai; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Zhang, Tao; Wang, Yongjuan; Zhang, Zewu; He, Man

    2014-08-15

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity.

  6. Exchange coupled L10-FePt/fcc-FePt nanomagnets: Synthesis, characterization and magnetic properties

    Science.gov (United States)

    Srivastava, Sachchidanand; Gajbhiye, Namdeo S.

    2016-03-01

    We report synthesis, characterization and magnetic properties of exchange-coupled L10-FePt/fcc-FePt nanomagnets. Structural and morphological characterization of exchange-coupled L10-FePt/fcc-FePt was carried out by powder X-ray diffraction, Mössbauer spectroscopy and transmission electron microscopy. Rietveld refinement of powder X-ray diffraction pattern has been used to quantify L10-FePt and fcc-FePt phases present in samples. Room temperature Mössbauer spectroscopy showed sextets of both L10-FePt and fcc-FePt phases with their respective hyperfine interaction parameters. Transmission electron microscopic (TEM and HRTEM) images confirmed nanocrystalline nature of exchange-coupled nanomagnets with particle size ranges from 15 nm to 50 nm after annealing for different time at 700 °C. Room temperature magnetic studies showed ferromagnetic nature of nanomagnets and maximum energy product (BH)max~10.92 MGOe was obtained for sample containing 89.0% volume fraction of L10-FePt phase.

  7. Regional characterization of hydraulic properties of rock using well test data

    Energy Technology Data Exchange (ETDEWEB)

    Wladis, D.; Joensson, P.; Wallroth, T. [Chalmers Univ. of Technology., Goeteborg (Sweden). Dept. of Geology

    1997-11-01

    This study was aimed at investigating the possible use of data from the SGU well archive for characterization of the hydraulic properties of the crystalline basement of Sweden at a regional scale. Two areas studied as possible candidates for a radioactive waste repository were selected. The SGU well data and the hydraulic conductivity data evaluated from packer tests in boreholes at the sites were characterized statistically also considering possible spatial dependence. The two types of data were compared and the correlation between the data sets was investigated. This part of the study considered the uppermost 100 m of the packer test data, which is the approximate depth range covered by the SGU data. In a second part of the work the packer test data from the two study areas were analyzed in terms of possible depth trends. The exploratory statistical analyses suggested that the SGU data are useful for estimations of hydrogeological parameters for areas of different geologic settings. The geostatistical analysis provided further understanding of the spatial behaviour of the studied parameters. The analysis of depth dependence indicates that at both sites there is a layer of higher hydraulic conductivity close to the surface. Within these layers, about 200 and 280 m thick, resp., the conductivity decreases with increasing depth. At larger depths however, the decrease with depth is very slow or negligible. It was found that the scatter in the measured hydraulic conductivity data is very large compared to differences between the depth functions tested 33 refs, 21 figs, 6 tabs

  8. Structure Characterization and Properties of Metal-Surfactant Complexes Dispersed in Organic Solvents.

    Science.gov (United States)

    de la Iglesia, Pablo; Jaeger, Vance W; Xi, Yuyin; Pfaendtner, Jim; Pozzo, Lilo D

    2015-08-25

    This work describes the synthesis and characterization of metal-surfactant complexes. Dioctyl sulfosuccinate and dodecylbenzenesulfonate are associated with multivalent aluminum, iron, and vanadium ions using an ion exchange reaction. The metal complexes are dispersible in various organic solvents. In solvents with low polarity, the complexes form "inverse" macromolecular structures with multiple metal ions. In contrast, in alcohols, the complex size is reduced, showing a more disperse conformation. The metal and surfactant ions are still strongly bonded to each other in all the solvents probed. Small-angle X-ray and neutron scattering (SAXS and SANS) are used to characterize the structures. Simultaneous fitting of neutron and X-ray scattering spectra is performed in order to obtain an accurate description of the system. Scattering results are also validated by performing molecular dynamics (MD) simulations. The conductive and electrochemical properties of the complexes in solution are also evaluated. The dispersion of metal-organic complexes significantly increases electric conductivity, and some metal ions in the core of the complexes are shown to be electrochemically active in apolar solvents.

  9. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    International Nuclear Information System (INIS)

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity

  10. TDR-EC: A Rapid Subsurface Characterization of Particle Size & Hydrologic Properties

    Science.gov (United States)

    Jones, C. A.; Schaap, M. G.

    2011-12-01

    Time-domain reflectometry (TDR) is a geophysical tool used in the field and laboratory to determine soil moisture, bulk soil electric conductivity (EC). We employ this tool in many ways to understand temporal and spatial soil dynamics in a small catchment. Several hundred sites within this catchment, located in the Valles Caldera National Preserve, were surveyed using TDR with the intention of characterizing the spatial distribution of soil properties. Data was collected a few weeks after the snowmelt, when we assumed the soil to be at field capacity and therefore, the relationship between soil texture and moisture content is strongest. Laser diffraction particle size analyses of the soils sampled in this survey demonstrated that bulk soil EC correlates very strongly to clay and sand fractions. This relationship provides us with an estimate of soil texture once the difference between estimated clay and sand is calculated. A pedo-transfer function, Rosetta, is used to approximate saturated hydraulic conductivity, Ksat. In order to test the effectiveness of estimating Ksat using this method, ring infiltrometers were used at numerous sample locations. To further investigate the relationship between bulk soil EC and clay, the same type of survey in two catchments of different parent material was completed earlier this year Temporal characterization is achieved with the use of data from soil pits instrumented at several depths with sensors recording, water content, EC, temperature, and matric potential at 10 minute intervals. Preliminary results from HYDRUS 1-D will guide us in determining whether or not a 2 or 3-D model is necessary to characterize subsurface dynamics.

  11. Synthesis, Characterization, and Microwave-Absorbing Properties of Polypyrrole/MnFe2O4 Nanocomposite

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Hosseini

    2012-01-01

    Full Text Available Conductive polypyrrole (PPy-manganese ferrite (MnFe2O4 nanocomposites with core-shell structure were synthesized by in situ polymerization in the presence of dodecyl benzene sulfonic acid (DBSA as the surfactant and dopant and iron chloride (FeCl3 as the oxidant. The structure and magnetic properties of manganese ferrite nanoparticles were measured by using powder X-ray diffraction (XRD and vibrating sample magnetometer (VSM, respectively. Its morphology, microstructure, and DC conductivity of the nanocomposite were characterized by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and four-wire technique, respectively. The microwave-absorbing properties of the nanocomposite powders dispersing in resin acrylic coating with the coating thickness of 1.5 mm were investigated by using vector network analyzers in the frequency range of 8–12 GHz. A minimum reflection loss of −12 dB was observed at 11.3 GHz.

  12. Synthesis, characterization and magnetic properties of polyaniline/-Fe2O3 composites

    Indian Academy of Sciences (India)

    Syed Khasim; S C Raghavendra; M Revanasiddappa; K C Sajjan; Mohana Lakshmi; Muhammad Faisal

    2011-12-01

    Conducting polyaniline/-Fe2O3 (PANI/FE) composites have been synthesized using an in situ deposition technique by placing fine-graded -Fe2O3 in a polymerization mixture of aniline. The composites are characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD) and infrared (IR) spectroscopy. The electrical properties such as d.c. and a.c. conductivities are studied by sandwitching the pellets of these composites between the silver electrodes. It is observed that the conductivity increases up to a composition of 20 wt.% of -Fe2O3 in polyaniline and decreases thereafter. The initial increase in conductivity is attributed to the extended chain length of polyaniline, where polarons possess sufficient energy to hop between favourable sites. Beyond 20 wt.% of -Fe2O3 in polyaniline, the blocking of charge carrier hop occurs, reducing conductivity values. The magnetic properties such as hysteresis characteristics and normalized a.c. susceptibility are also measured, which show a strong dependence on content of -Fe2O3 in polyaniline. Because of superparamagnetic behaviour of these composites, they may find extensive technological applications, especially for absorbing and shielding applications in microwave frequencies.

  13. Growth, Characterization, and Electrochemical Properties of Doped n-type KTaO3 Photoanodes

    Energy Technology Data Exchange (ETDEWEB)

    Paulauskas, Irene E [ORNL; Katz, J. E. [Beckman Institute and Kavli Nanoscience Institute, Division of Chemistry and Che; Lewis, N. [California Institute of Technology, Pasadena; Boatner, Lynn A [ORNL; Brown, G. M. [Oak Ridge National Laboratory (ORNL)

    2009-01-01

    The effects of compositionally induced changes on the semiconducting properties, optical response, chemical stability, and overall performance of KTaO3 photo-anodes in photoelectrochemical cells have been investigated. Single crystals of n-type Ca- and Ba-doped KTaO3 with carrier concentrations ranging from 0.45 - 11.5 x 1019 cm-3 were grown and characterized as photoanodes for hydrogen production in basic aqueous electrolytes. The photoelectrochemical properties of the crystals, including the photocurrent, photovoltage, and flat-band potential in contact with 8.5 M NaOH(aq) were relatively independent of whether Ca or Ba was used to produce the semiconducting form of KTaO3. All of the Ca- or Ba- doped KTaO3 single crystal photoanodes were chemically stable in the electrolyte; and based on the open-circuit potential and the band-edge positions, they were capable of unassisted photochemical H2 and O2 evolution from H2O. The minority carrier diffusion lengths values were small and comparable to the depletion region width. Photoanodic currents were only observed for photo-anode illumination with light above the band gap (i.e., < 340 nm). The maximum external quantum yield occurred at = 1 nm (4.85 eV), and the depletion width plus the minority carrier diffusion length ranged from 20 to 65 nm for the various KTaO3-based photoanode materials.

  14. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites

    Directory of Open Access Journals (Sweden)

    Zakya Rubab

    2014-01-01

    Full Text Available This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS spectroscopy, scanning electron microscopy (SEM, differential scanning calorimetry (DSC, thermogravimetric (TG, and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%, thermal oxidative stability (>12.0%, tensile strength (>21.8%, and Young’s modulus (>16.8% of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress.

  15. Characterization and electrocatalytic properties of sonochemical synthesized PdAg nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Godinez-Garcia, Andres, E-mail: agodinez@qro.cinvestav.mx [Depto. Materiales, Centro de Investigacion y de Estudios Avanzados del IPN, Libramiento norponiente 2000, Fracc. Real de Juriquilla, C.P. 76230 Santiago de Queretaro, Qro. (Mexico); Perez-Robles, Juan Francisco [Depto. Materiales, Centro de Investigacion y de Estudios Avanzados del IPN, Libramiento norponiente 2000, Fracc. Real de Juriquilla, C.P. 76230 Santiago de Queretaro, Qro. (Mexico); Martinez-Tejada, Hader Vladimir [Grupo de Energia y Termodinamica, Universidad Pontificia Bolivariana, Medellin, Antioquia C.P. 050031 (Colombia); Solorza-Feria, Omar [Depto. Quimica, CINVESTAV-IPN, Av. IPN 2508, A. P. 14-740, 07360 D.F. Mexico (Mexico)

    2012-06-15

    High intensity ultrasound was used in the synthesis of PdAg nanoparticles. PdAg nanoparticles were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). Catalytic properties for oxygen reduction reaction (ORR) were determined by electrochemical techniques of cyclic voltammetry (CV) and thin-film rotating disk electrode (TF-RDE). Finally the electrocatalyst was tested as a cathode in a single polymer electrolyte membrane fuel cell (PEMFC). Sonochemical synthesis (SS) decreased the overpotential required for the ORR and increased the double-layer capacitance (DLC) respect to the sodium borohydride reduction method due to a better distribution on vulcan carbon support. The electrocatalytic activity of the nanometric bimetallic electrocatalyst for the ORR in acid media showed a favorable multielectron charge transfer process (n = 4e{sup -}) to water formation. The performance of the membrane electrode assembly (MEA) prepared with dispersed PdAg/C as a cathode catalyst in a single PEMFC is lower in comparison to platinum. - Highlights: Black-Right-Pointing-Pointer Sonochemical synthesized PdAg nanoparticles supported on carbon were produced. Black-Right-Pointing-Pointer The material showed catalytic properties for the oxygen reduction reaction (ORR). Black-Right-Pointing-Pointer The ORR favored the pathway to water formation.

  16. Hydrothermal Synthesis, Characterization, and Visible Light-Driven Photocatalytic Properties of Bi2WO6 Nanoplates

    Directory of Open Access Journals (Sweden)

    Anukorn Phuruangrat

    2014-01-01

    Full Text Available In this research, the effects on reaction temperature and length of time on Bi2WO6 nanoplates by hydrothermal synthesis on morphologies and photocatalytic properties were studied. The products obtained at different reaction temperature and reaction time were characterized by XRD, Raman, FTIR, SEM, and TEM techniques. The photocatalytic properties of the samples were measured by decomposing the rhodamine-B organic dye. XRD pattern was specified as pure orthorhombic well-crystallized Bi2WO6 phase for the 180°C and 20 h synthesis. Its FTIR spectrum shows main absorption bands at 400–1000 cm−1, assigned to Bi–O stretching, W–O stretching, and W–O–W bridging stretching modes. SEM and TEM analyses show that the product was composed of nanoplates. Photocatalytic activity of Bi2WO6 nanoplates shows the 98.24% degradation of rhodamine-B under the Xe light irradiation within 100 min.

  17. Characterizing biotic and abiotic properties of landscape and their implications for ecohydrological processes across scales

    Science.gov (United States)

    Kumar, J.; Langford, Z.; Hoffman, F. M.

    2015-12-01

    Ecohydrological processes governing the dynamics of terrestrial ecosystems and its response and feedback to climate change occur at diverse spatial and temporal scales. To accurately capture the dynamics of ecohydrological processes in the model, its critically important to capture the subgrid scale heterogeneity of the landscape and develop scale aware process representation and parameterization. This study focused on the Arctic tundra landscape at Seward Peninsula of Alaska. Ecohydrological processes in this sensitive landscape are strongly governed by the physical and structural properties (like topography, soil, permafrost, geomorphology etc.) of the landscape, environmental conditions (like temperature, precipitation, light, radiation) and biotic conditions (vegetation, above/below biomass and organic matter, disturbance history etc.). From site to watershed to regional (scale at which models often operate), landscape is a complex mosaic of a range of biotic and abiotic properties. We have developed and applied a hierarchical characterization and classification approach to segment the landscape in distinct units which can be used to develop and parameterize process models at local scale. We also analyze how the distribution and organization of the landscape units as building blocks influence and interact with ecosystem processes across scales. Our goals is understand the landscape organization principles and their roles to inform and improve process based models of ecohydrological processes in Arctic tundra landscape.

  18. New bithiophene-containing electroluminescent polymer: Synthesis, characterization, optical and electrical properties

    Science.gov (United States)

    Jaballah, Nejmeddine; Chemli, Mejed; Fave, Jean-Louis; Majdoub, Mustapha

    2015-12-01

    A semi-conducting polymer, P-DSBT, based on distyryl-bithiophene π-conjugated sequences has been synthesized and characterized. The macromolecular material was soluble in volatile solvents and showed a good film quality; it exhibited an amorphous morphology with relatively high glass transition temperature. The absorption and photoluminescence properties of the polymer were studied in solution and as thin solid film, which showed an optical gap of 2.6 eV. The HOMO/LUMO energy levels were evaluated by cyclic voltammetry measurements and indicate a p-type semi-conducting material. The electrical properties of P-DSBT were investigated by the current-tension characteristic and modeled by the current space-charge-limited (SCLC) mechanism; charge carrier mobility higher than 10-6 cm2 V-1 s-1 was evaluated. A yellow-green electroluminescence was evidenced in a multilayer organic light-emitting diode with an [ITO/PEDOT:PPS/P-DSBT/BCP/Al] configuration.

  19. Characterization of biomechanical properties of aged human and ovine mitral valve chordae tendineae.

    Science.gov (United States)

    Zuo, Keping; Pham, Thuy; Li, Kewei; Martin, Caitlin; He, Zhaoming; Sun, Wei

    2016-09-01

    The mitral valve (MV) is a highly complex cardiac valve consisting of an annulus, anterior and posterior leaflets, chordae tendineae (chords) and two papillary muscles. The chordae tendineae mechanics play a pivotal role in proper MV function: the chords help maintain proper leaflet coaptation and rupture of the chordae tendineae due to disease or aging can lead to mitral valve insufficiency. Therefore, the aim of this study was to characterize the mechanical properties of aged human and ovine mitral chordae tendineae. The human and ovine chordal specimens were categorized by insertion location (i.e., marginal, basal and strut) and leaflet type (i.e., anterior and posterior). The results show that human and ovine chords of differing types vary largely in size but do not have significantly different elastic and failure properties. The excess fibrous tissue layers surrounding the central core of human chords added thickness to the chords but did not contribute to the overall strength of the chords. In general, the thinner marginal chords were stiffer than the thicker basal and strut chords, and the anterior chords were stiffer and weaker than the posterior chords. The human chords of all types were significantly stiffer than the corresponding ovine chords and exhibited much lower failure strains. These findings can be explained by the diminished crimp pattern of collagen fibers of the human mitral chords observed histologically. Moreover, the mechanical testing data was modeled with the nonlinear hyperelastic Ogden strain energy function to facilitate accurate computational modeling of the human MV. PMID:27315372

  20. Characterization of Elastic-plastic Material Properties for IMC Layer of ENEPIG by Using Reverse Algorithm

    Science.gov (United States)

    Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong; Kim, Young-Jin; Ji, Kum-Young

    2010-05-01

    Recently, the reliability assurance of lead-free solder to prevent environmental contamination is quite important issue for chip-scale packaging. Although lots of efforts have been devoted to the solder undergone drop, shear and creep loads, there was a little research on IMC due primarily to its thickness restriction and geometric irregularity. However, the IMC is known as the weakest layer governing failures of the solder joint. The present work is to characterize realistic material properties of the IMC for ENEPIG process. Lee's modified reverse algorithm was adopted to determine elastic-plastic stress-strain curve and so forth, after examining several methods, which requires inherently elastic data. In this context, a series of nano-indentation tests as well as corresponding simulations were carried out by changing indentation depths from 200 to 400 nm and strain rates from 0.05 to 0.10 1/s. It would be conclude that effect of strain rate is relatively small and IMC layer should be more than 5 times of indentation depth when using the recommended method, which are applicable to generate realistic material properties for further diverse structural integrity simulations.

  1. Charge Variants of an Avastin Biosimilar Isolation, Characterization, In Vitro Properties and Pharmacokinetics in Rat.

    Directory of Open Access Journals (Sweden)

    Yan-Yan Zhao

    Full Text Available The similarity between a proposed biosimilar product and the reference product can be affected by many factors. This study is designed to examine whether any subtle difference in the distribution of the charge variants of an Avastin biosimilar can affect its in vitro potency and in vivo PK. Here, the acidic, basic and main peak fractions of a biosimilar product were isolated using high-performance cation-exchange chromatography and were subjected to various studies to compare their in vitro properties and in vivo PK profile. A serial of analytical methods, including size exclusion chromatography (SEC, imaged capillary isoelectric focusing (icIEF capillary zone electrophoresis (CZE and cation-exchange chromatography (CEX-HPLC were also used to characterize the isolated charge variants. The kinetics constant was measured using a Biacore X100 system. The study indicates the biosimilar product has a high similarity with avastin in physicochemical properties. The potency in vitro and PK profile in rat of charge variants and biosimilar product are consistent with avastin.

  2. Synthesis and characterization of electric and magnetic properties of intermetallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Biao.

    1993-01-01

    A series of solid intermetallic compounds have been prepared and a variety of chemical and physical properties have been studied. The synthetic protocol consists of the preparation of Zintl phases at high temperature followed by an examination of their chemical reactivity with metals and metal ions in solution phases at room temperature to produce intermetallic solids. The Zintl phase materials exhibit a wide range of solid structure from discrete units such as K[sub 3]SbTe[sub 3] to one-dimensional polymeric anionic substructure of K[sub 4]Ga[sub 2]Sb[sub 4], as well as various chemical and electrical properties. The K[sub 4]Ga[sub 2]Sb[sub 4] has been shown to be an intrinsic semiconductor with the band gap of 0.05 eV and K[sub 3]SbTe[sub 3] has been found to be soluble in polar solvents. The soluble Zintl anions are reactive and can undergo the metathesis reaction with transition metal salts to form new intermetallic materials such as M[sub 5](InTe[sub 4])[sub 2] (M = Cr, Mn, Fe, Co, and Ni), CO[sub 3](SbTe[sub 3])[sub 2], Fe[sub 3](GaTe[sub 3])[sub 2], and FeTe[sub 2]. These intermetallic materials are of amorphous nature. All of these new materials except M[sub 5](InTe[sub 4])[sub 2] (M = Cr, Mn, and Ni) exhibit magnetic properties characterized as spin glass behavior. Electrical properties from metallic conductor to semiconductor in the series of M[sub 5](InTe[sub 4])[sub 2] have been discussed, along with the variable-range hopping mechanism proposed to interpret the amorphous semiconductors. Photomagnetic effects are also observed in some spin glass materials of Co[sub 3](SbTe[sub 3])[sub 2] and Fe[sub 3](GaTe[sub 3])[sub 2]. These materials exhibit the ability to accommodate magnetic bubbles or holes. These intermetallics are usually metastable and heat treatment has been specifically studied on the amorphous material FeTe[sub 2]. This material has been shown to exhibit different crystal morphology and magnetic properties.

  3. Characterization of macroscopic properties and crystalline defects in neutron-irradiated silicon carbide

    International Nuclear Information System (INIS)

    Length change, mechanical properties, helium release behavior, ESR observation and microstructure of neutron-irradiated silicon carbide (SiC) were investigated. Changes in those properties due to annealing were also measured to clarify the relationship between crystalline defects induced by neutron irradiation and macroscopic properties. The effects of external stress on defect annihilation and bubble swelling during annealing of neutron-irradiated specimens were investigated. From those experiments, it is clarified that the decrease in length by annealing below 1300 degC was not affected by the external stress. However, annealing above 1300 degC led to an increase in length in B-containing SiC, and the compressive stress retarded the expansion along the loading direction. The helium release behavior of neutron-irradiated SiC containing B was observed and it was clarified that the helium release rate of ceramic and its powder was different from each other. Defects characterization was carried out by ESR measurement and high-resolution electron microscopy. It was indicated that the vacancies with unpaired electron detected by ESR selectively disappear at lower temperature than those detected by a macroscopic length measurement. High-resolution electron microscopy revealed that very small interstitial type Flank loops lying on {111}, having a Burgers vector b=1/3, were formed in β-SiC heavily-neutron-irradiated in a fast reactor. Defect nuclei, a few nanometer in diameter, in hexagonal α-SiC were induced by lower doses in a thermal reactor. They are on the (0001) basal plane and have a Burgers vector b=1/6 [0001]. (J.P.N.)

  4. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    Science.gov (United States)

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) programmed PCM devices at very high heating rates (>10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

  5. Characterization of differential properties of rabbit tendon stem cells and tenocytes

    Directory of Open Access Journals (Sweden)

    Wang James

    2010-01-01

    Full Text Available Abstract Background Tendons are traditionally thought to consist of tenocytes only, the resident cells of tendons; however, a recent study has demonstrated that human and mouse tendons also contain stem cells, referred to as tendon stem/progenitor cells (TSCs. However, the differential properties of TSCs and tenocytes remain largely undefined. This study aims to characterize the properties of these tendon cells derived from rabbits. Methods TSCs and tenocytes were isolated from patellar and Achilles tendons of rabbits. The differentiation potential and cell marker expression of the two types of cells were examined using histochemical, immunohistochemical, and qRT-PCR analysis as well as in vivo implantation. In addition, morphology, colony formation, and proliferation of TSCs and tenocytes were also compared. Results It was found that TSCs were able to differentiate into adipocytes, chondrocytes, and osteocytes in vitro, and form tendon-like, cartilage-like, and bone-like tissues in vivo. In contrast, tenocytes had little such differentiation potential. Moreover, TSCs expressed the stem cell markers Oct-4, SSEA-4, and nucleostemin, whereas tenocytes expressed none of these markers. Morphologically, TSCs possessed smaller cell bodies and larger nuclei than ordinary tenocytes and had cobblestone-like morphology in confluent culture whereas tenocytes were highly elongated. TSCs also proliferated more quickly than tenocytes in culture. Additionally, TSCs from patellar tendons formed more numerous and larger colonies and proliferated more rapidly than TSCs from Achilles tendons. Conclusions TSCs exhibit distinct properties compared to tenocytes, including differences in cell marker expression, proliferative and differentiation potential, and cell morphology in culture. Future research should investigate the mechanobiology of TSCs and explore the possibility of using TSCs to more effectively repair or regenerate injured tendons.

  6. Preparation, characterization and electrochemical properties of a graphene-like carbon nano-fragment material

    International Nuclear Information System (INIS)

    Highlights: • The spent graphite material is utilized to prepare carbon nano-fragments (CNFs). • The preparation procedure is based on chemical oxidation and ultrasonic crushing. • The as-prepared graphene-like CNFs are systemically characterized. • The CNFs exhibit high electrocatalytic and electrochemical energy-storage properties. - Abstract: A graphene-like nanomaterial, carbon nano-fragments (CNFs), is obtained using the graphite anodes of spent lithium-ion batteries (LIBs) as carbon source, and its morphology, structure, functional groups, and reactivity are characterized to evaluate the properties and potential applications. The interlayer space increase, layer distortion, and remnant lithium of the waste lithium-intercalated graphite are utilized to prepare the oxidized CNFs (ox-CNFs) through a chemical oxidation and ultrasonic crushing process. These ox-CNFs exhibit a size distribution of 15 nm to 2 μm and excellent hydrophilicity, and disperse well in an aqueous suspension. Under the hydrothermal condition at 180 °C for 12 h, the ox-CNFs are converted into a suspension of reduced CNFs (re-CNFs), or a cylindrical aggregate when the concentration exceeds 2 mg·mL−1. The spectroscopic results demonstrate that there are abundant edges, defects, and functional groups existing on the CNFs, which affect their reactive, electronic, and electrochemical properties. Thereinto, the vacuum-dried ox-CNFs film can be converted from an insulator to a conductor after a chemical reduction by hydroiodic acid. And the re-CNFs modified glass carbon electrode (re-CNFs/GCE) exhibits enhanced electrocatalytic activity of about 8 times than the GCE to the oxidation reaction of dopamine. Furthermore, with the addition of the carboxylic ox-CNFs in aniline, the CNFs/polyaniline composite discharges a capacitance of 356.4 F·g−1 at 2 mV·s−1, an increase of 80.5% compared to the polyaniline. This preparation entails not only novel carbon nanomaterials but also an

  7. Characterizing the Material Properties of Polymer-Based Microelectrode Arrays for Retinal Prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Park, C S; Maghribi, M

    2003-05-10

    The Retinal Prosthesis project is a three year project conducted in part at the Lawrence Livermore National Laboratory and funded by the Department of Energy to create an epiretinal microelectrode array for stimulating retinal cells. The implant must be flexible to conform to the retina, robust to sustain handling during fabrication and implantation, and biocompatible to withstand physiological conditions within the eye. Using poly(dimethyl siloxane) (PDMS), LLNL aims to use microfabrication techniques to increase the number of electrodes and integrate electronics. After the initial designs were fabricated and tested in acute implantation, it became obvious that there was a need to characterize and understand the mechanical and electrical properties of these new structures. This knowledge would be imperative in gaining credibility for polymer microfabrication and optimizing the designs. Thin composite microfabricated devices are challenging to characterize because they are difficult to handle, and exhibit non-linear, viscoelastic, and anisotropic properties. The objective of this research is to device experiments and protocols, develop an analytical model to represent the composite behavior, design and fabricate test structures, and conduct experimental testing to determine the mechanical and electrical properties of PDMS-metal composites. Previous uniaxial stretch tests show an average of 7% strain before failure on resistive heaters of similar dimensions deposited on PDMS. Lack of background information and questionable human accuracy demands a more sophisticated and thorough testing method. An Instron tensile testing machine was set up to interface with a digital multiplexor and computer interface to simultaneously record and graph position, load, and resistance across devices. With a compliant load cell for testing polymers and electrical interconnect grips designed and fabricated to interface the sample to the electronics, real-time resistance measurements

  8. A study on the medicinal mushroom Cordyceps militaris (L.) link: chemical characterization, antioxidant, antimicrobial and antiproliferative properties

    OpenAIRE

    Reis, Filipa S.; Stojković, Dejan; Glamočlija, Jasmina; Ćirić, Ana; Van Griensven, Leo J. L. D.; Soković, Marina; Isabel C. F. R. Ferreira

    2013-01-01

    The Cordyceps genus is well known for its medicinal properties. A number of bioactive constituents from Cordyceps species have been reported such as antibacterial, antifungal, immunopotentiating or antitumor agents [1]. The anti-inflammatory and anti-angiogenic properties of Cordyceps militaris (L.) Link have been reported as also the antioxidant activity of its cultured mycelium [2]. In this work, the chemical characterization of C. militaris was performed, includingbioactive ...

  9. Use and utility of combined solute and heat tracer tests for characterizing hydrogeothermal properties of an alluvial aquifer

    OpenAIRE

    Klepikova, Maria; Wildemeersch, Samuel; Jamin, Pierre; Orban, Philippe; Hermans, Thomas; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain

    2015-01-01

    Using heat as a tracer together with a solute tracer is interesting for characterizing hydrogeothermal properties of the underground. These properties are particularly needed to dimension any low temperature geothermal project using an open doublet system (pumping-reinjection) in a shallow aquifer. The tracing experiment, conducted in the alluvial aquifer of the River Meuse (Hermalle near Liège), consisted in injecting simultaneously heated water at 40°C and a dye tracer in a piezometer and m...

  10. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  11. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  12. Fossil group origins. IV. Characterization of the sample and observational properties of fossil systems

    Science.gov (United States)

    Zarattini, S.; Barrena, R.; Girardi, M.; Castro-Rodriguez, N.; Boschin, W.; Aguerri, J. A. L.; Méndez-Abreu, J.; Sánchez-Janssen, R.; Catalán-Torrecilla, C.; Corsini, E. M.; del Burgo, C.; D'Onghia, E.; Herrera-Ruiz, N.; Iglesias-Páramo, J.; Jimenez Bailon, E.; Lozada Muoz, M.; Napolitano, N.; Vilchez, J. M.

    2014-05-01

    Context. Virialized halos grow by the accretion of smaller ones in the cold dark matter scenario. The rate of accretion depends on the different properties of the host halo. Those halos for which this accretion rate was very fast and efficient resulted in systems dominated by a central galaxy surrounded by smaller galaxies that were at least two magnitudes fainter. These galaxy systems are called fossil systems, and they can be the fossil relics of ancient galaxy structures. Aims: We started an extensive observational program to characterize a sample of 34 fossil group candidates spanning a broad range of physical properties. Methods: Deep r-band images were obtained with the 2.5-m Isaac Newton Telescope and Nordic Optic Telescope. Optical spectroscopic observations were performed at the 3.5-m Telescopio Nazionale Galileo for ~1200 galaxies. This new dataset was completed with Sloan Digital Sky Survey Data Release 7 archival data to obtain robust cluster membership and global properties of each fossil group candidate. For each system, we recomputed the magnitude gaps between the two brightest galaxies (Δm12) and the first and fourth ranked galaxies (Δm14) within 0.5 R200. We consider fossil systems to be those with Δm12 ≥ 2 mag or Δm14 ≥ 2.5 mag within the errors. Results: We find that 15 candidates turned out to be fossil systems. Their observational properties agree with those of non-fossil systems. Both follow the same correlations, but the fossil systems are always extreme cases. In particular, they host the brightest central galaxies, and the fraction of total galaxy light enclosed in the brightest group galaxy is larger in fossil than in non-fossil systems. Finally, we confirm the existence of genuine fossil clusters. Conclusions: Combining our results with others in the literature, we favor the merging scenario in which fossil systems formed from mergers of L∗ galaxies. The large magnitude gap is a consequence of the extreme merger ratio within

  13. Fabricating and Characterizing Physical Properties of Electrospun Polypeptide-based Nanofibers

    Science.gov (United States)

    Khadka, Dhan Bahadur

    This dissertation has aimed to fabricate polypeptide based biomaterial and characterize physical properties. Electrospinning is used as a tool for the sample fabrication. Project focused on determining the feasibility of electrospinning of certain synthetic polypeptides and certain elastin-like peptides from aqueous feedstocks and to characterize physical properties of polymer aqueous solution, cast film and spun fibers and fiber mats. The research involves peptide design, polymer electrospinning, fibers crosslinking, determining the extent of crosslinking, fibers protease degradation study, fibers stability and self-organization analysis, structure and composition determination by various spectroscopy and microscopy techniques and characterization of mechanical properties of individual suspended fibers. Fiber mats of a synthetic cationic polypeptide poly(L-ornithine) (PLO) and an anionic co-polypeptide of L-glutamic acid and L-tyrosine (PLEY) of defined composition have been produced by electrospinning. Fibers were obtained from polymer aqueous solution at concentrations of 20-45% (w/v) in PLO and at concentrations of 20-60% (w/v) in PLEY. Applied voltage and spinneret-collector distance were also found to influence polymer spinnability and fibers morphology. Oriented fibers were obtained by parallel electrodes geometry. Fiber diameter and morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). PLO fibers exposed on glutaraldehyde (GTA) vapor rendered fiber mats water-insoluble. A common chemical reagent, carbodiimide was used to crosslink PLEY fibers. Fiber solubility in aqueous solution varied as a function of crosslinking time and crosslinker concentration. Crosslink density has been quantified by a visible-wavelength dye-based method. Degradation of crosslinked fibers by different proteases has been demonstrated. Investigation of crosslinked PLEY fibers has provided insight into the mechanisms of stability at different

  14. Characterization of functional properties of Enterococcus faecium strains isolated from human gut.

    Science.gov (United States)

    İspirli, Hümeyra; Demirbaş, Fatmanur; Dertli, Enes

    2015-11-01

    The aim of this work was to characterize the functional properties of Enterococcus faecium strains identified after isolation from human faeces. Of these isolates, strain R13 showed the best resistance to low pH, bile salts, and survival in the simulated in vitro digestion assay, and demonstrated an important level of adhesion to hexadecane as a potential probiotic candidate. Analysis of the antibiotic resistance of E. faecium strains indicated that in general these isolates were sensitive to the tested antibiotics and no strain appeared to be resistant to vancomycin. Examination of the virulence determinants for E. faecium strains demonstrated that all strains contained the virulence genes common in gut- and food-originated enterococci, and strain R13 harboured the lowest number of virulence genes. Additionally, no strain contained the genes related to cytolysin metabolism and showed hemolytic activity. The antimicrobial role of E. faecium strains was tested against several pathogens, in which different levels of inhibitory effects were observed, and strain R13 was inhibitory to all tested pathogens. PCR screening of genes encoding enterocin A and B indicated the presence of these genes in E. faecium strains. Preliminary characterization of bacteriocins revealed that their activity was lost after proteolytic enzyme treatments, but no alteration in antimicrobial activity was observed at different pHs (3.5 to 9.5) and after heat treatments. In conclusion, this study revealed the functional characteristics of E. faecium R13 as a gut isolate, and this strain could be developed as a new probiotic after further tests.

  15. [Characterization of surface properties of 1-allyl-3-methylimidazolium chloride ionic liquid by inverse gas chromatography].

    Science.gov (United States)

    Chen, Yali; Wang, Qiang; Deng, Lishuang; Zhang, Zhengfang; Tang, Jun

    2013-02-01

    The determination of the dispersive component of surface free energies (gamma(s)d) at different temperatures and Lewis acid-base parameters of 1-allyl-3-methylimidazolium chloride ionic liquid ([AMIM]Cl) were investigated by means of inverse gas chromatography (IGC). Four n-alkanes, including n-hexane (C6), n-heptane (C7), n-octane (C8) and n-nonane (C9), were chosen as the apolar probes to characterize the dispersive component of the surface free energies at 343.15, 353.15, 363.15 and 373.15 K, respectively; and dichloromethane (DCM), trichloromethane (TCM), tetrahydrofuran (THF), ethyl acetate (EtAc), acetone (Acet) as the polar probes to estimate the Lewis acid-base parameters to judge the interactions between [AMIM] Cl and the solvents. The IGC characterizations encompassed the adsorption thermodynamic parameters to acid-base surface interactions, including the standard enthalpy (deltaHa(s)) and the free energy change of adsorption (deltaGa(s)) at different temperatures. The results showed that the Lewis acid parameter Ka of [AMIM] Cl was 0.34, and the base parameter Kb was 1.68, which indicated it was Lewis amphoteric with predominantly basic character. Furthermore, the free energy of adsorption deltaGa(s) was also figured out. It was found that the gamma(s)d of the [AMIM] Cl were 52.26, 50.82, 46.08 and 42.05 mJ/m2 at 343.15, 353.15, 363.15 and 373.15 K, respectively. The results are of great importance to the study of the surface properties and the application of ionic liquid.

  16. Characterization of Anticancer, Antimicrobial, Antioxidant Properties and Chemical Compositions of Peperomia Pellucida Leaf Extract

    Directory of Open Access Journals (Sweden)

    Desy Fitrya Syamsumir

    2011-10-01

    Full Text Available Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium assay against human breast adenocarcinoma (MCF-7 cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then characterized using α, α-diphenyl-β-picrylhydrazyl (DPPH radical scavenging method and the chemical compositions were screened and identified using gas chromatography-mass spectrometry (GC-MS. The results of present study indicated that P. pellucida leaf extract possessed anticancer activities with half maximal inhibitory concentration (IC50 of 10.4±0.06 µg/ml. The minimum inhibitory concentration (MIC values were ranged from 31.25 to 125 mg/l in which the plant extract was found to inhibit the growth of Edwardsiella tarda, Escherichia coli, Flavobacterium sp., Pseudomonas aeruginosa and Vibrio cholerae at 31.25 mg/l; Klebsiella sp., Aeromonas hydrophila and Vibrio alginolyticus at 62.5 mg/l; and it was able to control the growth of Salmonella sp. and Vibrio parahaemolyticus at 125 mg/l. At the concentration of 0.625 ppt, the plant extract was found to inhibit 30% of DPPH, free radical. Phytol (37.88% was the major compound in the plant extract followed by 2-Naphthalenol, decahydro- (26.20%, Hexadecanoic acid, methyl ester (18.31% and 9,12-Octadecadienoic acid (Z,Z-, methyl ester (17.61%. Findings from this study indicated that methanol extract of P. pellucida leaf possessed vast potential as medicinal drug especially in breast cancer treatment.

  17. γ-MnS nano and micro architectures: Synthesis, characterization and optical properties

    International Nuclear Information System (INIS)

    Highlights: → In this article we have reported the formation of γ-MnS nano/microcrystalline material by a novel proposed route. Na2[Mn(HL)2(H2O)2]; 1:2 (M:L) chelate complex was synthesized in the first step by our previously reported method. The chelate complex precursor was subsequently decomposed by alkaline solution of thiocarbamide, resulting formation of γ-MnS crystals in situ. → The effect of reaction time and surfactant have been observed and discussed. The materials were characterized for crystallanity and morphology by SEM, TEM, XRD, UV-Vis, PL spectra and the results are thoroughly discussed. → γ-MnS crystals were formed when metal complex was used as metal source whereas Mn3O4 was the dominant product when MnSO4.H2O was used as metal source. → We have also proposed a plausible formation mechanism based on experimental evidence, analyses and previous reports. → Optical property of the material has also been discussed in the present article. -- Abstract: γ-MnS nanocrystalline materials have been prepared by reaction of Na2[Mn(HL)2(H2O)2]; 1:2 (M:L) chelate complex with alkaline solution of thiocarbamide in aqueous solution phase. Effect of metal chelate complex, reaction time and surfactant sodium dodecyl sulfate; SDS on phase, morphology and size of the products have been investigated. The metal chelate complex was synthesized by reacting Mn(II) ions with eriochrome black T (NaH2L) in alkaline medium. γ-MnS crystals were formed when metal complex was used as metal source whereas Mn3O4 was the dominant product when MnSO4.H2O was used as metal source. Materials thus formed having various morphologies were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) to determine the crystallinity, phase, structure and morphology. The optical properties of the thus prepared samples were determined by UV-vis absorption spectra and photoluminescence spectra. A possible formation mechanism of

  18. Characterization of signal properties in atherosclerotic plaque components by intravascular MRI.

    Science.gov (United States)

    Rogers, W J; Prichard, J W; Hu, Y L; Olson, P R; Benckart, D H; Kramer, C M; Vido, D A; Reichek, N

    2000-07-01

    Magnetic resonance imaging (MRI) is capable of distinguishing between atherosclerotic plaque components solely on the basis of biochemical differences. However, to date, the majority of plaque characterization has been performed by using high-field strength units or special coils, which are not clinically applicable. Thus, the purpose of the present study was to evaluate MRI properties in histologically verified plaque components in excised human carotid endarterectomy specimens with the use of a 5F catheter-based imaging coil, standard acquisition software, and a clinical scanner operating at 0.5 T. Human carotid endarterectomy specimens from 17 patients were imaged at 37 degrees C by use of an opposed solenoid intravascular radiofrequency coil integrated into a 5F double-lumen catheter interfaced to a 0.5-T General Electric interventional scanner. Cross-sectional intravascular MRI (156x250 microm in-plane resolution) that used different imaging parameters permitted the calculation of absolute T1and T2, the magnetization transfer contrast ratio, the magnitude of regional signal loss associated with an inversion recovery sequence (inversion ratio), and regional signal loss in gradient echo (gradient echo-to-spin echo ratio) in plaque components. Histological staining included hematoxylin and eosin, Masson's trichrome, Kossa, oil red O, and Gomori's iron stain. X-ray micrographs were also used to identify regions of calcium. Seven plaque components were evaluated: fibrous cap, smooth muscle cells, organizing thrombus, fresh thrombus, lipid, edema, and calcium. The magnetization transfer contrast ratio was significantly less in the fibrous cap (0.62+/-13) than in all other components (Psmooth muscle cells) were not significantly different between groups. In vitro intravascular MRI with catheter-based coils and standard software permits sufficient spatial resolution to visualize major plaque components. Pulse sequences that take advantage of differences in biochemical

  19. Synthesis, Characterization and Saponification of Poly (AN-Starch Composites and Properties of their Hydrogels

    Directory of Open Access Journals (Sweden)

    A. Hashem

    2005-01-01

    Full Text Available Hydrogels based on saponified products of poly (acrylonitrile, AN-starch composites were prepared, characterized and their water abosrbency properties examined. The term composite refered to the resultant products of polymerizatin of AN with starch in presence of ceric ammonium nitrate (CAN as initiator, that is the composite consists of poly(AN-starch graft copolymer, homopoly(AN , oxidized starch and unreacted starch. Thus AN monomer was polymerized with gelatinized starch using the ceric ion method. Gelatinization of starch prior to polymerization was affected by heating certain weight of starch in certain volume of distilled water at different temperrature (65, 75 and 85°C. Polymerization was carried out under a variety of coditions. Saponification of poly (AN-starch composites was performed in sodium hydroxide to yield the hydrogels. The water absorbency properties of these hydrogels were found to rely on variables affecting the magnitudes of both polymerization and saponification. Among these variables mention was made of the starch/liquor ratio, cocentration of ceric ammonium nitrate (CAN, monomer/starch molar ratio, duration of grafting and gelatinization temperature as well as saponification time. Hydrogels display their maximum water absorbency when granular starch was firstly gelatinized at 85°C for 30 min and secondly subjected to polymerization with AN using AN/starch molar ratio of 4.8 and CAN concentration of 10 mmol/L liquor ratio of 12.5 and thirdly sample of the so obtained poly (AN-starch composite was saponified in sodium hydroxide (0.7 N at 95°C for 180 min. The saponified product was then precipitated in excess methanol, dried and finally converted into powder. The product (hydrogel in the powder form exhibited maximum water absorbency of 920 g water per gram hydrogel and 38 mL synthetic urine per gram hydrogel.

  20. Characterization of anisotropic elastic properties of the arteries by exponential and polynomial strain energy functions.

    Science.gov (United States)

    Hudetz, A G; Monos, E

    1981-01-01

    Three-dimensional quasi-static mechanical measurements were carried out on cylindrical segments of the dog carotid and iliac arteries for determination of the passive anisotropic elastic properties of the vessel wall. On the basis of passive characteristics of outer diameter vs. intraluminal pressure, and axial extending force vs. intraluminal pressure, picked up at various fixed initial vascular length values, the incremental Young moduli and poisson ratios of the vessel wall were calculated in the 0--33 kPa (0--250 mm Hg) pressure range. The strain energy function of the arteries was approximated by polynomial and exponential models. We found that an exponential energy function with 4-parameters gives more accurate results than the 7- or 12-parameter polynomial functions. According to the results the axial modulus reaches higher values than the tangential and radial moduli at a low tangential stretch level, while at high tangential stretch the tangential modulus is the highest in both carotid and iliac arteries. After elevation of the initial tangential stretch the increase in the tangential modulus is the most pronounced, while the values of radial and axial moduli increased less. A change in the initial axial stretch influences the axial and radial moduli to a similar extent, but has no substantial effect on the value of the tangential modulus. The values of corresponding poisson ratios depend in a similar way on the initial deformation state. The different behaviour of the two Poisson ratios characterizing the mechanical coupling between tangential and axial directions, indicates that the structural coupling between the two main directions is asymmetrical. It is assumed that this property of the passive vascular structure can be explained by the network arrangement of collagen fibres in the vessel wall.

  1. Characterization of the regenerated cellulose films in ionic liquids and rheological properties of the solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhen; Wang Hui [Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Li Zengxi, E-mail: zxli@home.ipe.ac.cn [Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Lu Xingmei; Zhang Xiangping [State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Zhang Suojiang, E-mail: sjzhang@home.ipe.ac.cn [State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Zhou Kebin [Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2011-07-15

    Highlights: {yields} The solubility can reach 13 wt% at 90 deg. C in ionic liquid of [bmim]Cl. {yields} Additive N-methylimidazole can minimize DP loss of the regenerated films. {yields} A mechanism of the dissolution of cellulose in [bmim]Cl was proposed. {yields} The ionic liquid of [bmim]Cl could be recycled. - Abstract: Dissolution and regeneration of cotton pulp using ionic liquids as solvent was investigated. The physicochemical properties of the regenerated cellulose films have been characterized by scanning electron microscopy, X-ray diffractometer, infrared spectrometric analyzer, differential scanning calorimeter, and thermogravimetric analysis instrument. The rheological properties of cotton pulp dissolved in ionic liquids have been investigated by steady shear and oscillatory shear measurements. The influences of experimental parameters, such as the reaction temperature, additives on the solubility and degree of polymerization (DP) of regenerated cellulose were also studied. The results show that 1-butyl-3-methylimidazolium chloride ([bmim]Cl) was a good solvent to dissolve cotton pulp and the solubility can reach 13 wt% at 90 deg. C, but the DP remarkably decreased from 510 to 180 within 7 h. It was found that additive N-methylimidazole can effectively minimize DP loss of the regenerated cellulose, which can attribute to the fact that in the mixture of [bmim]Cl and NMI solution, the {beta}-1,4-glycosidic bond of the cellulose chains cannot be broken because of the relative low concentration of Cl{sup -}. In the steady shear measurement, all the solutions show a shear thinning behavior at high shear rates. In addition, a mechanism of the dissolution of cellulose in [bmim]Cl was proposed.

  2. Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Nida [Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my [Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Nik Malek, Nik Ahmad Nazim [Faculty of Bioscience and Medical Engineering (FBME), Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Mahmood, Nasrul Humaimi Bin [Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Murali, Malliga Raman; Kamarul, T. [Tissue Engineering Group, NOCERAL, Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2013-09-01

    Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W for 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms.

  3. Fabrication, characterization, and mechanical properties of spark plasma sintered Al–BN nanoparticle composites

    Energy Technology Data Exchange (ETDEWEB)

    Firestein, Konstantin L., E-mail: kosty@firestein.ru [National University of Science and Technology “MISIS”, Leninsky prospect 4, Moscow 119049 (Russian Federation); Steinman, Alexander E.; Golovin, Igor S. [National University of Science and Technology “MISIS”, Leninsky prospect 4, Moscow 119049 (Russian Federation); Cifre, Joan [Universitat de les Illes Balears, Ctra. de Valldemossa, km. 7.5, E-07122 Palma de Mallorca (Spain); Obraztsova, Ekaterina A.; Matveev, Andrei T.; Kovalskii, Andrey M. [National University of Science and Technology “MISIS”, Leninsky prospect 4, Moscow 119049 (Russian Federation); Lebedev, Oleg I. [CRISMAT, UMR 6508, CNRS-ENSICAEN, 6Bd Marechal Juin, 14050 Caen (France); Shtansky, Dmitry V., E-mail: shtansky@shs.misis.ru [National University of Science and Technology “MISIS”, Leninsky prospect 4, Moscow 119049 (Russian Federation); Golberg, Dmitri, E-mail: golberg.dmitri@nims.go.jp [World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS), Namiki 1, Tsukuba, Ibaraki 3050044 (Japan)

    2015-08-26

    Fabrication of high strength yet light and low cost composite materials with good mechanical properties at room and elevated temperatures is a challenge that metallurgy and materials science communities are facing for many years, and no “dream material” has been developed so far. The primary goal of this study was to fabricate, characterize, and to carry out tensile tests on Al-based composite materials strengthened with commercially-available BN nanoparticles (BNNPs). The composites were fabricated by spark plasma sintering (SPS) technique. The structures of powder mixtures and composite materials, as well as their fracture surfaces, were studied by scanning and transmission electron microscopy. The influence of BNNPs content (0.5, 1.5, 3, 4.5, 6, and 7.5 wt%) and holding times (5, 60, and 300 min) at 600 °C during SPS on the tensile strength was investigated. A maximum increase in strength was observed for Al-based composites with 4.5 wt% of BNNPs. The sample demonstrated a 50% increase in tensile strength compared with pristine Al. Although the tensile tests performed at 300 °C revealed that the tensile strength became 20% lower than the strength at room temperature, it was, however, still 75% higher compared with that of the pure Al at 300 °C. In addition, at 300 °C the Al–BNNPs composites demonstrated a much higher value of yield stress, about 115 MPa, which is 190% higher than that of pure Al at the same temperature. The damping properties of Al–BNNPs composites were evaluated by temperature dependent internal friction (TDIF) measurements. The obtained results are discussed based on structural analysis and the TDIF data.

  4. Characterization of porous glass fiber-reinforced composite (FRC) implant structures: porosity and mechanical properties.

    Science.gov (United States)

    Ylä-Soininmäki, Anne; Moritz, Niko; Lassila, Lippo V J; Peltola, Matti; Aro, Hannu T; Vallittu, Pekka K

    2013-12-01

    The aim of this study was to characterize the microstructure and mechanical properties of porous fiber-reinforced composites (FRC). Implants made of the FRC structures are intended for cranial applications. The FRC specimens were prepared by impregnating E-glass fiber sheet with non-resorbable bifunctional bis-phenyl glycidyl dimethacrylate and triethylene glycol dimethacrylate resin matrix. Four groups of porous FRC specimens were prepared with a different amount of resin matrix. Control group contained specimens of fibers, which were bound together with sizing only. Microstructure of the specimens was analyzed using a micro computed tomography (micro-CT) based method. Mechanical properties of the specimens were measured with a tensile test. The amount of resin matrix in the specimens had an effect on the microstructure. Total porosity was 59.5 % (median) in the group with the lowest resin content and 11.2 % (median) in the group with the highest resin content. In control group, total porosity was 94.2 % (median). Correlations with resin content were obtained for all micro-CT based parameters except TbPf. The tensile strength of the composites was 21.3 MPa (median) in the group with the highest resin content and 43.4 MPa (median) in the group with the highest resin content. The tensile strength in control group was 18.9 MPa (median). There were strong correlations between the tensile strength of the specimens and most of the micro-CT based parameters. This experiment suggests that porous FRC structures may have the potential for use in implants for cranial bone reconstructions, provided further relevant in vitro and in vivo tests are performed. PMID:23929214

  5. Statistical Properties of Solar Active Regions Based on Objective Detection and Characterization

    Science.gov (United States)

    Zhang, Jie

    2010-05-01

    We present a study of the statistical properties of solar magnetic regions based on objective detection and characterization. The uniformity and consistency of the magnetogram images provided by SOHO/MDI make it an ideal database for automated detection of solar magnetic features. The results of detection are mainly controlled by the following four parameters or thresholds: (1) magnetic intensity threshold of kernel pixels (to find strong field regions), (2) erosion size threshold for morphological opening operation (to remove small patches), (3) magnetic intensity threshold of AR pixels (to recover the whole size of an AR), (4) dilation size threshold for morphological closing operation (to merge neighboring patches to form a whole AR). We find that the best combination of the above four parameters is (1) 250 Gauss, (2) 10 Mm, (3) 50 Gauss, and (4) 10 Mm, which yields a detection of 1772 ARs that is most similar to the NOAA catalog based on human operators; as a comparison, NOAA/SWPC reports 2281 ARs during the same period. By varying the values of the control parameters, the number of ARs detected can range from as small as 1000 to as large as 10000. With these data, we are now able to make detailed statistical study of solar active regions, including (1) how AR number and emerged magnetic flux vary with solar cycle? (2) how AR number and emerged magnetic flux vary with latitude during different phases of solar cycle? (3) the distribution of AR number with respect to the size; Is the distribution power-law, Gaussian or log-normal, and the implication on the mechanisms of generating ARs? Is there a north-south asymmetry of ARs? How the strong magnetic patches distribute within an AR? This study provides us new insights on the properties and generations of solar active regions.

  6. Synthesis, characterization, thermal and electrical properties of composite of polyaniline with cobaltmonoethanolamine complex

    Indian Academy of Sciences (India)

    Rehana Rasool; Kowsar Majid

    2014-08-01

    The present paper involves the synthesis of polyaniline (PANI) composite with cobaltmonoethanolamine [Co(mea)2(H2O)2Cl2] complex via in situ oxidative polymerization by ammonium persulphate. The complex has been synthesized by refluxing method. The composite has been subjected to UV–Visible spectra, FT–IR, X-ray diffraction, SEM and electrical conductivity characterization techniques. Thermal analysis has been done by using TG and DSC techniques. FT–IR absorption peaks confirm the insertion of complex in the backbone of PANI. SEM of the composite also supports its successful synthesis. The XRD of composite also shows crystalline structure hence, proving the successful synthesis of PANI. Thermal analysis shows enhanced thermal stability of polyaniline. In the present composite system, the polymerization of PANI with [Co(mea)2(H2O)2Cl2] complex causes strong interfacial interactions between PANI and [Co(mea)2(H2O)2Cl2] complex crystallites, also suggested by the FT–IR and XRD studies, thereby changing the molecular conformation of PANI from compact coil structure to an expanded coil-like structure. As a consequence, there is an enhancement in the conductivity of composite of PANI up to certain dopant concentration. The anticorrosive property of a coating of PANI/[Co(mea)2(H2O)2Cl2] composite on mild steel coupon in 3 M HNO3 was evaluated using weight loss measurement and compared with pure polyaniline coating. The said composite has shown anticorrosive property and can thus, act as a potent dopant for enhancing corrosion resistance of PANI coatings.

  7. Cassava Peels for Alternative Fibre in Pulp and Paper Industry: Chemical Properties and Morphology Characterization

    Directory of Open Access Journals (Sweden)

    Ashuvila Mohd Aripin

    2013-11-01

    Full Text Available Without a proper waste management, the organic wastes such as cassava peels could result in increased amount of solid waste dump into landfill. This study aims to use non-wood organic wastes as pulp for paper making industries; promoting the concept of ‘from waste to wealth and recyclable material’. The objective  of this study is to determine the potential of casssava peel as alternative fibre in pulp and paper based on its chemical properties and surface morphology characteristic. Quantified parameters involved are holocellulose, cellulose, hemicellulose, lignin, one percent of sodium hydroxide, hot water solubility and ash content. The chemical characterization was in accordance with relevant TAPPI Test, Kurscher-Hoffner and Chlorite methods. Scanning electron microscopy (SEM was used to observe and determine the morphological characteristic of untreated cassava peels fibre. In order to propose the suitability of the studied plant as an alternative fibre resource in pulp and paper making, the obtained results are compared to other published literatures especially from wood sources. Results indicated that the amount of holocellulose contents in cassava peels (66% is the lowest than of wood (70 - 80.5% and canola straw (77.5%; however this value is still within the limit suitability to produce paper. The lignin content (7.52% is the lowest than those of all wood species (19.9-26.22%. Finally, the SEM images showed that untreated cassava peel contains abundance fibre such as hemicellulose and cellulose that is hold by the lignin in it. In conclusion, chemical properties and morphological characteristics of cassava peel indicated that it is suitable to be used as an alternative fibre sources for pulp and paper making industry, especially in countries with limited wood resources

  8. Monodisperse Co, Zn-Ferrite nanocrystals: Controlled synthesis, characterization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjeev, E-mail: sanjeevkumar.dubey2@gmail.com [University of Petroleum and Energy Studies, Dehradun 248007 (India); Singh, Vaishali; Aggarwal, Saroj [School of Basic and Applied Sciences (India); Mandal, Uttam Kumar [University School of Chemical Technology, GGS Indraprastha University, Kashmere Gate, Delhi 110403 (India); Kotnala, R.K. [National Physical laboratory, New Delhi 110012 (India)

    2012-11-15

    Co{sub x}Zn{sub y}Fe{sub 3-x-y}O{sub 4} ferrite (x=1 to 0; y=0 to1) nanocrystals have been synthesized by reverse microemulsion method. The nanocrystals are then comprehensively characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Field emission transmission electron microscopy (FETEM), and magnetic properties were measured by using Vibrating sample magnetometer. X-ray analysis showed that all the crystals were cubic spinel. The lattice constant increased with the increase in Zn substitution. FETEM reveals that particle size varies in the range from 3 to 6 nm. As the concentration of Zn increases the magnetic behavior varies from ferromagnetic at y=0 and 0.2 to superparamagnetic to paramagnetic at y=1. The Curie temperature decreases with increasing concentration of Zn. - Highlights: Black-Right-Pointing-Pointer Reverse microemulsion route is a very facile route for synthesis of Co{sub x}Zn{sub y}Fe{sub 3-x-y}O{sub 4} ferrite and all particles synthesized by reverse microemulsion is in the range of 3-6 nm. Black-Right-Pointing-Pointer Presence of Zn changes the structural and magnetic properties of the Zn substituted CoFe{sub 2}O{sub 4}. Black-Right-Pointing-Pointer The lattice constant increases with the increase in Zn substitution. Black-Right-Pointing-Pointer The curie temperature decreases with Zn concentration appreciably. Black-Right-Pointing-Pointer Magnetic behavior varies from ferromagnetic at y=0, 0.2 to superparamagnetic to paramagnetic at y=1.

  9. Characterization of the Radiation Shielding Properties of US and Russian EVA Suits

    International Nuclear Information System (INIS)

    Reported herein are results from the Eril Research, Inc. (ERI) participation in the NASA Johnson Space Center sponsored study characterizing the radiation shielding properties of the two types of space suit that astronauts are wearing during the EVA on-orbit assembly of the International Space Station (ISS). Measurements using passive detectors were carried out to assess the shielding properties of the USEMU Suit and the Russian Orlan-M suit during irradiations of the suits and a tissue equivalent phantom to monoenergetic proton and electron beams at the Loma Linda University Medical Center (LLUMC). During irradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as a function of depth was measured using TLDs exposed behind swatches of the two suit materials and inside the two EVA helmets. Considerable reduction in electron dose was measured behind all suit materials in exposures to 6MeV electrons. Slowing of the proton beam in the suit materials led to an increase in dose measured in exposures to 60 MeV protons. During 232 MeV proton irradiations, measurements were made with TLDs and CR-39 PNTDs at five organ locations inside a tissue equivalent phantom, exposed both with and without the two EVA suits. The EVA helmets produce a 13 to 27 percent reduction in total dose and a 0 to 25 percent reduction in dose equivalent when compared to measurements made in the phantom head alone. Differences in dose and dose equivalent between the suit and non-suit irradiations for the lower portions of the two EVA suits tended to be smaller. Proton-induced target fragmentation was found to be a significant source of increased dose equivalent, especially within the two EVA helmets, and average quality factor inside the EMU and Orlan-M helmets was 2 to 14 percent greater than that measured in the bare phantom head

  10. Structural- and optical-property characterization of three-dimensional branched ZnO nanospikes

    Energy Technology Data Exchange (ETDEWEB)

    Chia, M.Y. [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University Malaya, 50603, Lembah Pantai, Kuala Lumpur (Malaysia); Chiu, W.S., E-mail: w.s.chiu@um.edu.my [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University Malaya, 50603, Lembah Pantai, Kuala Lumpur (Malaysia); Daud, S.N.H. [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University Malaya, 50603, Lembah Pantai, Kuala Lumpur (Malaysia); Khiew, P.S. [Faculty of Engineering, University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor (Malaysia); Radiman, S.; Abd-Shukor, R.; Hamid, M.A.A. [School of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-08-15

    Current study reports the synthesis of three-dimensional (3-D) ZnO nanospikes with anomalous optical property, where zinc stearate is adopted as a safe, common and low-cost precursor that undergoes thermal pyrolysis under non-hydrolytic approach. High resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM) result show that the as-synthesized 3-D ZnO nanospikes are constructed by bundle of nanorods that sprout radially outwards in random orientation. The possible growth mechanism is discussed by referring to the microscopy results. X-ray diffraction (XRD) pattern confirms that the nanospikes are highly crystalline, which existed in hexagonal wurtzite crystal structure. Optical absorption characterization shows that the onset absorption for the nanospikes is slightly red-shifted if compared to commercial ZnO and the corresponding bandgap energy is estimated to be 3.1 eV. The photoluminescene (PL) result of ZnO nanospikes indicate that its optical emission exhibits weak UV emission but very intense visible-light emission that ranged from green- up to red-region. The factors that contributed to the intriguing PL characteristic are discussed. Current finding would offer a versatile synthesis scheme in engineering advanced nanostructures with new design that exhibit congruent optical property. - Graphical abstract: Display Omitted - Highlights: • Pyrolysis of zinc stearate in synthesizing 3-D ZnO nanospikes • ZnO nanospikes possess bundle of nanorods that sprout out from the hexagonal stump • Growth mechanism is deduced to elucidate the morphological evolution from nanobullet to nanospike with branching topology • PL spectrum indicate that the nanospike exhibit prominent visible-light emission that ranged from green- to red-region.

  11. Characterizing the Absorption Properties for Remote Sensing of Three Small Optically-Diverse South African Reservoirs

    Directory of Open Access Journals (Sweden)

    Mark William Matthews

    2013-09-01

    Full Text Available Characterizing the specific inherent optical properties (SIOPs of water constituents is fundamental to remote sensing applications. Therefore, this paper presents the absorption properties of phytoplankton, gelbstoff and tripton for three small, optically-diverse South African inland waters. The three reservoirs,  Hartbeespoort, Loskop and Theewaterskloof, are challenging for remote sensing, due to differences in phytoplankton assemblage and the considerable range of constituent concentrations. Relationships between the absorption properties and biogeophysical parameters, chlorophyll-a (chl-a, TChl (chl-a plus  phaeopigments,  seston,  minerals  and  tripton, are established. The value determined for the mass-specific tripton absorption coefficient at 442 nm, a∗ (442, ranges from 0.024 to 0.263 m2·g−1. The value of the TChl-specific phytoplankton absorption coefficient (a∗ was strongly influenced by phytoplankton species, size, accessory pigmentation and biomass. a∗ (440 ranged from 0.056 to 0.018 m2·mg−1 in oligotrophic to hypertrophic waters. The positive relationship between cell size and trophic state observed in open ocean waters was violated by significant small cyanobacterial populations. The phycocyanin-specific phytoplankton  absorption  at  620  nm,  a∗ (620, was determined as 0.007 m2·g−1 in a M. aeruginosa bloom. Chl-a was a better indicator of phytoplankton biomass than phycocyanin (PC in surface scums, due to reduced accessory pigment production. Absorption budgets demonstrate that monospecific blooms of M. aeruginosa and C. hirundinella may be treated as “cultures”, removing some complexities for remote sensing applications.   These results contribute toward a better understanding of IOPs and remote sensing applications in hypertrophic inland waters. However, the majority of the water is optically complex, requiring the usage of all the SIOPs derived here for remote sensing applications. The

  12. Characterization and pharmacological properties of a novel multifunctional Kunitz inhibitor from Erythrina velutina seeds.

    Directory of Open Access Journals (Sweden)

    Richele J A Machado

    Full Text Available Inhibitors of peptidases isolated from leguminous seeds have been studied for their pharmacological properties. The present study focused on purification, biochemical characterization and anti-inflammatory and anticoagulant evaluation of a novel Kunitz trypsin inhibitor from Erythrina velutina seeds (EvTI. Trypsin inhibitors were purified by ammonium sulfate (30-60%, fractionation followed by Trypsin-Sepharose affinity chromatography and reversed-phase high performance liquid chromatography. The purified inhibitor showed molecular mass of 19,210.48 Da. Furthermore, a second isoform with 19,228.16 Da was also observed. The inhibitor that showed highest trypsin specificity and enhanced recovery yield was named EvTI (P2 and was selected for further analysis. The EvTI peptide fragments, generated by trypsin and pepsin digestion, were further analyzed by MALDI-ToF-ToF mass spectrometry, allowing a partial primary structure elucidation. EvTI exhibited inhibitory activity against trypsin with IC50 of 2.2×10(-8 mol.L(-1 and constant inhibition (Ki of 1.0×10(-8 mol.L(-1, by a non-competitive mechanism. In addition to inhibit the activity of trypsin, EvTI also inhibited factor Xa and neutrophil elastase, but do not inhibit thrombin, chymotrypsin or peptidase 3. EvTI was investigated for its anti-inflammatory and anti-coagulant properties. Firstly, EvTI showed no cytotoxic effect on human peripheral blood cells. Nevertheless, the inhibitor was able to prolong the clotting time in a dose-dependent manner by using in vitro and in vivo models. Due to anti-inflammatory and anticoagulant EvTI properties, two sepsis models were here challenged. EvTI inhibited leukocyte migration and specifically acted by inhibiting TNF-α release and stimulating IFN-α and IL-12 synthesis. The data presented clearly contribute to a better understanding of the use of Kunitz inhibitors in sepsis as a bioactive agent capable of interfering in blood coagulation and inflammation.

  13. Construction of Ru(II) Polypyridyl Based Macrocycles: Synthesis, Characterization, Electrochemical, Li+ Binding, Antitumour and Anti-HIV properties

    OpenAIRE

    Mishra, Lallan; Sinha, Ragini; Pandey, P. C.

    2001-01-01

    Some ruthenium (II) polypyridyl complexes with a bis-chalcone (obtained by the condensation of 3-methyl-thiophene-2-carboxaldehyde and 4-acetyl pyridine) have been synthesized and characterized spectroscopically (IR, NMR, UV/Vis), conductimetric, elemental analysis and FAB mass data. Their luminescent, redox and Li+ binding properties have been studied. The anti-HIV and antitumour activities have also been reported.

  14. ZnCr2O4 Nanoparticles: Facile Synthesis, Characterization, and Photocatalytic Properties

    Science.gov (United States)

    Mousavi, Zahra; Soofivand, Faezeh; Esmaeili-Zare, Mahdiyeh; Salavati-Niasari, Masoud; Bagheri, Samira

    2016-02-01

    In this work, zinc chromite (ZnCr2O4) nanostructures have been synthesized through co-precipitation method. The effect of various parameters such as alkaline agent, pH value, and capping agent type was investigated on purity, particle size and morphology of samples. It was found that particle size and morphology of the products could be greatly influenced via these parameters. The synthesized products were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), fourier transform infrared (FT-IR) spectra, X-ray energy dispersive spectroscopy (EDS), photoluminescence (PL) spectroscopy, diffuse reflectance spectroscopy (DRS) and vibrating sample magnetometry (VSM). The superhydrophilicity of the calcined oxides was investigated by wetting experiments and a sessile drop technique which carried out at room temperature in air to determine the surface and interfacial interactions. Furthermore, the photocatalytic activity of ZnCr2O4 nanoparticles was confirmed by degradation of anionic dyes such as Eosin-Y and phenol red under UV light irradiation. The obtained ZnCr2O4 nanoparticles exhibit a paramagnetic behavior although bulk ZnCr2O4 is antiferromagnetic, this change in magnetic property can be ascribed to finite size effects.

  15. Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization

    International Nuclear Information System (INIS)

    Joining of dissimilar materials is of increasing interest for a wide range of industrial applications. The automotive industry, in particular, views dissimilar materials joining as a gateway for the implementation of lightweight materials. Specifically, the introduction of aluminum alloy parts into a steel car body requires the development of reliable, efficient and economic joining processes. Since aluminum and steel demonstrate different physical, mechanical and metallurgical properties, identification of proper welding processes and practices can be problematic. In this work, inertia friction welding has been used to create joints between a 6061-T6 aluminum alloy and a AISI 1018 steel using various parameters. The joints were evaluated by mechanical testing and metallurgical analysis. Microstructural analyses were done using metallography, microhardness testing, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray elemental mapping, focused ion beam (FIB) with ultra high resolution SEM and transmission electron microscopy (TEM) in TEM and STEM modes. Results of these analysis first suggested that joint strengths on the order of 250 MPa could be achieved. In addition, failures were seen in the plasticized layer on the aluminum side of the joint. Further, bond lines were characterized by a thin layer of formed Al-Fe intermetallic. This intermetallic layer averaged roughly 250 nm thick and compositionally appears related to the FeAl and Fe2Al5 phases.

  16. Elastin-like recombinamer catalyst-free click gels: characterization of poroelastic and intrinsic viscoelastic properties.

    Science.gov (United States)

    González de Torre, Israel; Santos, Mercedes; Quintanilla, Luis; Testera, Ana; Alonso, Matilde; Rodríguez Cabello, José Carlos

    2014-06-01

    Elastin-like recombinamer catalyst-free click gels (ELR-CFCGs) have been prepared and characterized by modifying both a structural ELR (VKVx24) and a biofunctionalized ELR-bearing RGD cell-adhesion sequence (HRGD6) to bear the reactive groups needed to form hydrogels via a click reaction. Prior to formation of the ELR-CFCGs, azide-bearing and cyclooctyne-modified ELRs were also synthesized. Subsequent covalent crosslinking was based on the reaction between these azide and cyclooctyne groups, which takes place under physiological conditions and without the need for a catalyst. The correlation among SEM micrographs, porosity, swelling ratio, and rheological measurements have been carried out. The storage and loss moduli at 1Hz are in the range 1-10kPa and 100-1000Pa, respectively. The linear dependence of |G∗| on f(½) and the peak value of tan δ were considered to be consistent with a poroelastic mechanism dominating the frequency range 0.3-70Hz. The discrete relaxation spectrum was obtained from stress relaxation measurements (t>5s). The good fit of the relaxation modulus to decrease exponential functions suggests that an intrinsic viscoelastic mechanism dominates the transients. Several recombinamer concentrations and temperatures were tested to obtain gels with fully tuneable properties that could find applications in the biomedical field. PMID:24530853

  17. Preparation, characterization and magnetic properties of the BaFe12O19 @ chitosan composites

    Science.gov (United States)

    Li, Lei; Zhang, Zunju; Xie, Yu; Zhao, Jie

    2016-07-01

    The BaFe12O19 @ chitosan composites are synthesized by the crosslinking reaction through chitosan and glutaraldehyde onto the surface of BaFe12O19. The structures of the samples were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The shape and size were observed by scanning electron microscopy and transmission electron microscopy. These results showed that chitosan has been decorated onto the surface of BaFe12O19, and the chitosan-glutaraldehyde Schiff-base composites have also been formed within the chitosan layers. Then, the magnetic properties of the samples were tested with the vibrating sample magnetometer. The magnetic saturation (MS), residual magnetization (Mr) and coercive force (Hc) values of the BaFe12O19 @ chitosan Schiff-base composite have achieved 44.94 emu/g, 27.82 emu/g and 3580.7 Oe, respectively. Compared with single BaFe12O19, the MS, and Mr of the BaFe12O19 @ chitosan composites decreases 12.31 emu/g and 8.58 emu/g, respectively. Finally, based on the experimental results, the probable formation mechanism of this composite has been investigated.

  18. Characterization and Catalytic Properties of a Rapidly Quenched Ni-RE-P-AL Catalyst

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A Ni-RE-P-AL catalyst prepared by alkaline extraction of a rapidly quenched Ni-RE-P-AL alloy was characterized by means of ICP,BET,XRD,ZPS and TEM.The results show that the rapidly quenched Ni-RE-P-AL alloy contained less crystalline AL3Ni than AL-Ni alloy.After alkaline extraction,most of Al in the Ni-RE-P-AL alloy was leached out and the resulted Ni-RE-P-AL catalyst presented a spone structure similar to Raney Ni.Although Crystalline Ni is the major phase in the Ni-RE-P-AL catalyst and Raney Ni,amorphous Ni-P phase has been detected in the Ni-RE-P-AL catalyst.Studies on catalytic hydrogenation of toluene,phenyl ethylene,acetylene benzene,nitrobenzene,cyclohexanone and adiponitrile in liquid phase showed that the activity and selectivity of this Ni-RE-P-AL catalyst are superior to those of Raney Ni,especially at low temperatures.The amorphous phase is considered to be responsible for its superior catalytic properties.

  19. Synthesis of an amphiphilic rhodamine derivative and characterization of its solution and thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Aviv, Hagit [Department of Chemistry, Bar-Ilan University, Ramat-Gan (Israel); Bar-Ilan University Institute for Nanotechnology and Advanced Materials, Ramat-Gan (Israel); Harazi, Sivan [Department of Chemistry, Bar-Ilan University, Ramat-Gan (Israel); Department of Physics, Bar-Ilan University, Ramat-Gan (Israel); Bar-Ilan University Institute for Nanotechnology and Advanced Materials, Ramat-Gan (Israel); Schiff, Dillon [Department of Chemistry, Bar-Ilan University, Ramat-Gan (Israel); Bar-Ilan University Institute for Nanotechnology and Advanced Materials, Ramat-Gan (Israel); Ramon, Yoni [Department of Chemistry, Bar-Ilan University, Ramat-Gan (Israel); Department of Physics, Bar-Ilan University, Ramat-Gan (Israel); Bar-Ilan University Institute for Nanotechnology and Advanced Materials, Ramat-Gan (Israel); Tischler, Yaakov R., E-mail: yrt@biu.ac.il [Department of Chemistry, Bar-Ilan University, Ramat-Gan (Israel); Bar-Ilan University Institute for Nanotechnology and Advanced Materials, Ramat-Gan (Israel)

    2014-08-01

    Here we present characterization of solution and thin film properties of Lissamine rhodamine B sulfonyl didodecyl amine (LRSD), an amphiphilic derivative of rhodamine. LRSD was synthesized by functionalizing Lissamine rhodamine B sulfonyl chloride (LRSC) with didodecylamine via a straightforward sulfonylation reaction. LRSD's long alkane chains make it highly soluble in chloroform, with a marked increase in brightness compared to the starting material. LRSD is shown to form well-defined robust micelles in water, without the addition of a co-surfactant and stable monolayers at the air–water interface. The greater lipophilicity of LRSD also enables doping into non-polar polymeric host matrices such as polystyrene with less aggregation and hence higher fluorescence quantum yield than LRSC or even rhodamine B. The monolayers of LRSD were prepared via Langmuir–Blodgett deposition and showed shifts in the photoluminescence peak from 575 nm to 595 nm, as the surface pressure is varied from 3 mN/m to 11 mN/m. - Highlights: • Lissamine rhodamine B sulfonyl didodecyl amine (LRSD) is soluble in chloroform. • LRSD shows robust quantum yield in solution and as a dopant in thin film. • LRSD is an amphiphilic rhodamine dye that forms compact fluorescent micelles. • LRSD forms a stable isotherm when spread at the air–water interface.

  20. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles.

    Science.gov (United States)

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-06-15

    This study was aimed to develop biopolymer based antimicrobial films for active food packaging and to reduce environmental pollution caused by accumulation of synthetic packaging. The ZnO NPs were incorporated as antimicrobials into different biopolymers such as agar, carrageenan and CMC. Solvent casting method was performed to prepare active nanocomposite films. Methods such as FE-SEM, FT-IR and XRD were used to characterize resulting films. Physical, mechanical, thermal and antimicrobial properties were also examined. Remarkable surface morphological differences were observed between control and nanocomposite films. The crystallinity of ZnO was confirmed by XRD analysis. The addition of ZnO NPs increased color, UV barrier, moisture content, hydrophobicity, elongation and thermal stability of the films, while decreased WVP, tensile strength and elastic modulus. ZnO NPs impregnated films inhibited growth of L. monocytogenes and E. coli. So these newly prepared nanocomposite films can be used as active packaging film to extend shelf-life of food.

  1. Characterization of material properties of soft solid thin layers with acoustic radiation force and wave propagation.

    Science.gov (United States)

    Urban, Matthew W; Nenadic, Ivan Z; Qiang, Bo; Bernal, Miguel; Chen, Shigao; Greenleaf, James F

    2015-10-01

    Evaluation of tissue engineering constructs is performed by a series of different tests. In many cases it is important to match the mechanical properties of these constructs to those of native tissues. However, many mechanical testing methods are destructive in nature which increases cost for evaluation because of the need for additional samples reserved for these assessments. A wave propagation method is proposed for characterizing the shear elasticity of thin layers bounded by a rigid substrate and fluid-loading, similar to the configuration for many tissue engineering applications. An analytic wave propagation model was derived for this configuration and compared against finite element model simulations and numerical solutions from the software package Disperse. The results from the different models found very good agreement. Experiments were performed in tissue-mimicking gelatin phantoms with thicknesses of 1 and 4 mm and found that the wave propagation method could resolve the shear modulus with very good accuracy, no more than 4.10% error. This method could be used in tissue engineering applications to monitor tissue engineering construct maturation with a nondestructive wave propagation method to evaluate the shear modulus of a material.

  2. Preliminary studies on the chemical characterization and antioxidant properties of acidic polysaccharides from Sargassum fusiforme

    Institute of Scientific and Technical Information of China (English)

    Jing ZHOU; Nan HU; Ya-lin WU; Yuan-jiang PAN; Cui-rong SUN

    2008-01-01

    In order to investigate the antioxidant properties of the polysaccharides from the brown alga Sargassum fusiforme, the crude polysaccharides from S.fusiforme (SFPS) were extracted in hot water, and the lipid peroxidation inhibition assay exhibited that SFPS possessed a potential antioxidant activity. Hence, two purely polymeric fractions, SFPS-1 and SFPS-2 were isolated by the column of DEAE (2-diethylaminoethanol)-Sepharose Fast Flow, with their molecular weights of 51.4 and 30.3 kDa determined by high performance gel permeation chromatography (HPGPC). They were preliminarily characterized using chemical analysis in combination of infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies and found to contain large amounts of uronic acids and β-glycosidical linkages. The antioxidant activities of these two SFPS fractions were evaluated using superoxide and hydroxyl radical-scavenging assays. The results show that the antioxidant ability of SFPS-2 was higher than that of SFPS-1, probably correlating with the molecular weight and uronic acid content.

  3. Microstructure characterization and tensile properties of 18Cr–4Al-oxide dispersion strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaofu; Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn; Li, Ming; Wang, Man; Zhang, Guangming

    2015-11-05

    A microstructural characterization was performed on an 18Cr–4Al oxide dispersion strengthened (ODS) ferritic steel using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the secondary phases in the 18Cr–4Al-ODS ferritic steel can be roughly divided into three categories according to their size-level: (1) micron-sized intermetallic σ and YAl phases; (2) submicron-sized precipitates consisting of TiN and AlN precipitates; (3) nano-sized Al{sub 2}O{sub 3} and Y–Ti–O/Y–Al–O complex oxide particles with diameters in a broad size range from several to dozens of nanometers. In addition, tensile testing results revealed that the 18Cr–4Al-ODS sample exhibited better tensile strength and ductility as compared with another commercial ODS steel with similar composition. - Graphical abstract: TEM BF micrographs of carbon extraction replicas of the as-heat treated 18Cr–4Al-ODS sample. - Highlights: • Various types of secondary phase precipitates were identified. • Two kinds of nano-sized particles (Y–Ti–O/Y–Al–O) were found in matrix. • Nano-sized oxide particles uniformly dispersed in matrix. • Correlation between secondary phases and tensile properties was discussed.

  4. Evaluation of High Temperature Properties and Microstructural Characterization of Resistance Spot Welded Steel Lap Shear Joints

    Science.gov (United States)

    Gupta, R. K.; Anil Kumar, V.; Panicker, Paul G.

    2016-02-01

    Joining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.

  5. Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal.

    Science.gov (United States)

    Sobral, Filipa; Sampaio, Andreia; Falcão, Soraia; Queiroz, Maria João R P; Calhelha, Ricardo C; Vilas-Boas, Miguel; Ferreira, Isabel C F R

    2016-08-01

    Bee venom (BV) or apitoxin is a complex mixture of substances with reported biological activity. In the present work, five bee venom samples obtained from Apis mellifera iberiensis from the Northeast Portugal (two different apiaries) were chemically characterized and evaluated for their antioxidant, anti-inflammatory and cytotoxic properties. The LC/DAD/ESI-MS(n) analysis of the samples showed that melittin was the most abundant compound, followed by phospholipase A2 and apamin. All the samples revealed antioxidant and anti-inflammatory activity but without a direct relation with any of the individual chemical components identified. The results highlight that there are specific concentrations (present in BV5) in which these compounds are more active. The BV samples showed similar cytotoxicity for all the tested tumour cell lines (MCF-7, NCI-H460, HeLa and HepG2), being MCF-7 and HeLa the most susceptible ones. Nevertheless, the studied samples seem to be suitable to treat breast, hepatocellular and cervical carcinoma because at the active concentrations, the samples were not toxic for non-tumour cells (PLP2). Regarding the non-small cell lung carcinoma, BV should be used under the toxic concentration for non-tumour cells. Overall, the present study corroborates the enormous bioactive potential of BV being the first report on samples from Portugal. PMID:27288930

  6. Synthesis and characterization of Ag nanoparticles decorated mesoporous sintered activated carbon with antibacterial and adsorptive properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxia; Xiao, Kaijun, E-mail: fekjxiao@scut.edu.cn; He, Tinglin; Zhu, Liang, E-mail: zhuliang@scut.edu.cn

    2015-10-25

    In this study, the sliver nanoparticles (AgNPs) immobilized on the sintered activated carbon (Ag/SAC) were synthesized by the ultrasonic-assisted impregnation method and were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption. SEM showed that the AgNPs were well embedded in the SAC and immersion time had an important influence on final morphologies of AgNPs. Longer immersing duration caused significant aggregation of the AgNPs. The XRD data revealed that the successful synthesis of AgNPs on the SAC and immobilizing AgNPs on sintered active carbon did not change the crystalline degree of SAC. Texture characteristics were determined by analysis of the N{sub 2}/77 K isotherms. The minimum inhibitory concentration (MIC) of Ag/SAC against Escherichia coli (DH5α) and Staphyloccocus aureus (ATCC 29213) was evaluated by a broth dilution method. MICs such as 5 mg/L (against E. coli) and 10 mg/L (against S. aureus) suggest that Ag/SAC have predominant antibacterial activity compared to active carbon. - Highlights: • Sintered active carbon (SAC) was coated with Ag via a facile approach. • The Ag/SAC exhibit good adsorption properties and excellent antibacterial effects. • The Ag/SAC was durable and stable in the application of water purification.

  7. Structural Characterization and Property Study on the Activated Alumina-activated Carbon Composite Material

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Qing; WU Ren-Ping; YE Xian-Feng

    2012-01-01

    AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g.

  8. Synthesis, characterization and electrical properties of visible-light-driven Pt-ZnO/CNT

    Indian Academy of Sciences (India)

    M Mujahid

    2015-08-01

    This paper deals with synthesis of ZnO doped with different concentrations of platinum (Pt) and its deposition on the surface of multi-walled carbon nanotube (MWCNT). The synthesized nanocomposite material was characterized by standard analytical techniques like X-ray diffraction (XRD), UV–vis spectroscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive spectroscopy. The XRD analysis confirms two things; first, synthesized nanocomposite shows no impurity peaks indicating products being crystalline in nature, second, the phase structure of composite remains unchanged during doping of Pt into ZnO crystal. Results indicate that the incorporation of dopant into ZnO coated on the surface of MWCNT was found to shift the fundamental absorption edge towards the longer wavelength side. The impedance analysis was carried out to distinguish between the grain and grain boundary contributions to the system. The dielectric property was strongly affected by increasing the dopant concentration. The dielectric constant () and dielectric loss (tan ) factors decrease with the increase in frequency only upto a certain limit. The a.c. conductivity also increases with the increase in frequency.

  9. Optical properties and electrochromic characterization of sol-gel deposited ceria films

    Energy Technology Data Exchange (ETDEWEB)

    Oezer, N. [Department of Materials Science and Mineral Engineering, University of California, 94720-1760 Berkeley, CA (United States)

    2001-06-01

    Ceria (CeO{sub 2}) films were deposited by the sol-gel spin coating process and optical and electrochromic properties have been investigated. Ceria coating solutions were prepared using cerium ammonium nitrate and ethanol. The films were characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-visible (UV-Vis) spectroscopy and cyclic voltammetry. XRD analysis of the films showed that they had a cerianite structure for heat treatment temperatures at or above 450C. XPS examinations show that the film stoichiometry was CeO{sub 2}. The SEM examinations showed that the surface texture was very uniform and homogeneous. Optical constants of the films were calculated from transmittance (T) spectra using optical spectrometer in the wavelength range of 300-900nm. The refractive index (n), and extinction coefficient (k) values were n=1.82{+-}0.01 and k=0.02{+-}0.002 at 550nm, respectively. The optical bandgap (E{sub g}) of crystalline cerium oxide film was 3.1{+-}0.003eV. The electrochemical behavior investigated in 0.5M LiClO{sub 4} propylene carbonate (PC) electrolyte. Cyclic voltammetry showed a reversible electrochemical insertion or extraction of the Li{sup +} ions maintaining a high optical transmissivity. Spectroelectrochemistry showed that these films could be used as optically passive counter-electrode in transmissive electrochromic devices.

  10. Characterization of dynamical phase transitions in quantum jump trajectories beyond the properties of the stationary state.

    Science.gov (United States)

    Lesanovsky, Igor; van Horssen, Merlijn; Guţă, Mădălin; Garrahan, Juan P

    2013-04-12

    We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser, and a dissipative version of the quantum Ising model. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and, in general, dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states. PMID:25167231

  11. Characterization of starch morphology, composition, physicochemi-cal properties and gene expressions in oat

    Institute of Scientific and Technical Information of China (English)

    Zheng Ke; Zheng You-liang; Jiang Qian-tao; Wei Long; Zhang Xiao-wei; Ma Jian; Chen guo-yue; Wei Yu-ming; Mitchell Fetch Jennifer; Lu Zhen-xiang

    2015-01-01

    abstract Starch is the major carbohydrate in oat (Avena sativaL.) and starch formation requires the coordinated actions of several synthesis enzymes. In this study, the granule morphology, composition and physicochemical properties of oat starch, as wel as the expressions of starch synthesis genes were investigated during oat endosperm development. Under the scanning electron microscopy (SEM), we observed that the unique compound granules were developed in oat endosperms at 10 days post anthesis (DPA) and then fragmented into irregular or polygonal simple granules from 12 DPA until seed maturity. The amylose content, branch chain length of degree of polymerization (DP=13–24), gelatinization temperature and percentage of retrogradation were gradualy increased during the endosperm development; whereas the distribution of short chains (DP=6–12) were gradualy decreased. The relative expressions of 4 classes of 13 starch synthesis genes characterized in this study indicated that three expression pattern groups were signiifcantly different among gene classes as wel as among varied isoforms, in which the ifrst group of starch synthesis genes may play a key role on the initiation of starch synthesis in oat endosperms.

  12. Synthesis, Characterization and Properties of CeO2-doped TiO2 Composite Nanocrystals

    Directory of Open Access Journals (Sweden)

    Oman ZUAS

    2013-12-01

    Full Text Available Pure TiO2 and CeO2-doped TiO2 (3 % CeO2-97 %TiO2 composite nanocrystals were synthesized via co-precipitation method and characterized using TGA, XRD, FTIR, DR-UV-vis and TEM. The XRD data revealed that the phase structure of the synthesized samples was mainly in pure anatase having crystallite size in the range of 7 nm – 11 nm. Spherical shapes with moderate aggregation of the crystal particles were observed under the TEM observation. The presence of the CeO2 at TiO2 site has not only affected morphologically but also induced the electronic property of the TiO2 by lowering the band gap energy from 3.29 eV (Eg-Ti to 3.15 eV (Eg-CeTi. Performance evaluation of the synthesized samples showed that both samples have a strong adsorption capacity toward Congo red (CR dye in aqueous solution at room temperature experiment, where  the capacity of the CeTi was higher than the Ti sample. Based on DR-UV data, the synthesized samples obtained in this study may also become promising catalysts for photo-assisted removal of synthetic dye in aqueous solution. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2732

  13. Synthesis, structure characterization, and ion exchange properties of a novel open-framework ecomaterial silicotitanate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel open-framework ecomaterial silicotitanate (Na4Ti4Si3O10) was synthesized by a combination of solgel and hydrothermal methods. The investigation on ion exchange properties shows that Na4Ti4Si3O10 exhibits high adsorption for cesium, i.e., Kd is as high as 60 000 mL/g in neutral solution. The crystal structure of Na4Ti4Si3O10 was characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), transmission electron microscope (TEM),Raman spectrum, differential thermal and thermogravimetric analysis (DTA/TGA), inductively coupled plasma (ICP),and X fluorescence analysis. The compound is tetragonal, P42, a = b = 0.781 10 nm, c = 1.196 45 nm, a =β = γ = 90°, Z= 4, and Ra = 0.041; Na4Ti4Si3O10 has a three dimensional framework consisting of Ti-O octahedral clusters and Si-O tetrahedra. The results show that Na4Ti4Si3O10 has good chemical stability, thermal stability, and high cesium ion exchange capacity in the whole pH range.

  14. Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Hierarchical CuO nanostructures were grown on Cu foil. • Monoclinic phase of CuO was grown. • XPS analysis revealed the presence of Cu(2p3/2) and Cu(2p1/2) on the surfaces. • Specific capacitance of 94 F/g was achieved for the CuO using cyclic voltammetry. • Impedance spectra show their pseudo capacitor applications. - Abstract: In this paper, we have investigated the electrochemical properties of hierarchical CuO nanostructures for pseudo-supercapacitor device applications. Moreover, the CuO nanostructures were formed on Cu substrate by in situ crystallization process. The as-grown CuO nanostructures were characterized using X-ray diffraction (XRD), Fourier transform-infra red spectroscopy (FT-IR), X-ray photoelectron spectroscopy and field emission-scanning electron microscope (FE-SEM) analysis. The XRD and FT-IR analysis confirm the formation of monoclinic CuO nanostructures. FE-SEM analysis shows the formation of leave like hierarchical structures of CuO with high uniformity and controlled density. The electrochemical analysis such as cyclic voltammetry and electrochemical impedance spectroscopy studies confirms the pseudo-capacitive behavior of the CuO nanostructures. Our experimental results suggest that CuO nanostructures will create promising applications of CuO toward pseudo-supercapacitors

  15. Characterization of Mechanical Properties: Low-Density Polyethylene Nanocomposite Using Nanoalumina Particle as Filler

    Directory of Open Access Journals (Sweden)

    Ching Yern Chee

    2012-01-01

    Full Text Available Nanocomposites based on low-density polyethylene (LDPE, containing 0.5, 1, 2, 3, and 5 wt% of nanoalumina, were prepared by melt-mixing at 125°C and hot melt-pressing to thin polymer film at 125°C. To enhance the interfacial interaction between alumina and LDPE, alumina surface was treated with silane which acts as coupling agent. The effects of alumina additions to the structure and morphology of LDPE matrix were characterized using Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM, respectively. The mechanical behaviour of nanoalumina-reinforced LDPE composite was studied using tensile tests, flexural tests, and impact tests. The interfacial adhesion between nano alumina particle and LDPE matrix was investigated. The result showed that the reinforcement performance of nano alumina to LDPE matrix was attributed to the interfacial adhesion between nanoparticle and polymer matrix. The addition of 1 wt% nano alumina has successfully enhanced the mechanical properties of LDPE material.

  16. Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles.

    Science.gov (United States)

    Ibrahim, Haytham M M; Hassan, Mahmoud S

    2016-10-20

    In the present study, antimicrobial formulations, based on silver nanoparticles (AgNPs) and butyl acrylate binder, were prepared and applied to a cotton fabric, followed by gamma-radiation or thermal curing, to protect it against the undesirable microbial effects. AgNPs were prepared by a biological method, using the biomass filtrate of fungus Alternaria alternata. Nanoparticles were characterized by UV-vis spectroscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and dynamic light scattering. Besides, the thermal stability, surface morphology, color strength, and mechanical properties of treated fabric were investigated. Treated cotton fabric showed good quantitative and qualitative antimicrobial activity; the bacterial reduction efficiency reached ∼100% for Escherichia coli and Staphylococcus aureus. They revealed excellent resistance to biodegradation caused by soil microflora. Moreover, they exhibited high durability of the attained antimicrobial activities, even after 20 washing cycles; where they achieved 99.1% and 98.7% reduction of E. coli and S. aureus bacterial counts, respectively. PMID:27474632

  17. Characterization and Properties of Micro-arc Composite Ceramic Coatings on Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long; Jiang, Bailing; Ge, Yanfeng; Nyberg, Eric A.; Liu, Ming

    2013-05-21

    Magnesium alloys are of growing interest for many industrial applications due to their favorable strength-to-weight ratio and excellent cast ability. However, one of the limiting factors in the use of magnesium on production vehicles is its poor corrosion resistance. Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared in combination with Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance, thermal shock resistance and adhesion of MCC coating were studied, respectively. The surface and cross-section morphologies of MAO and MCC coating showed that the outer organic coating filled the holes on the surface of the MAO coating. It acted as a shelter on the MAO coating surface when the MCC coatings were exposed to corrosive environments. The corrosion resistance of the MCC coating was characterized by a copper-accelerated acetic acid salt spray test. The testing results showed that the creep back from scribe lines was less than 1mm and completely fit the evaluation standard. The composite structure of the MCC coating vastly improved the corrosion resistance of Mg alloys. According to testing standards, the resistance to abrasion, stone impact resistance, thermal shock resistance and adhesion of MCC coatings completely met the evaluation standard requirements. The MCC coated AZ91D magnesium alloys possessed excellent properties; this is a promising corrosion and wear resistance surface treatment technology on magnesium alloys for production vehicles.

  18. Characterization of Biaxial and Triaxial Braids: Fiber Architecture and Mechanical Properties

    Science.gov (United States)

    Birkefeld, Karin; Röder, Mirko; von Reden, Tjark; Bulat, Martina; Drechsler, Klaus

    2012-06-01

    Biaxial and triaxial carbon fiber braids with off-axis braiding angles of 30°, 45° and 55° are characterized with respect to their fiber architecture. All braids are produced on a round mandrel with constant cross section. Detailed geometric information on the different braids, like roving dimensions, roving shapes and the degree of nesting is given. The findings from measurements in photomicrographs are used to construct meso-model yarn architectures at the unit cell level which are then analyzed with the WiseTex software (Lomov et al. Compos. Sci. Technol. 60:2083-2095, 2000). The results of the models' analysis with TexComp and comparison of mechanical properties with tests are consistent and essential for further steps in predictive modeling. Predictive modeling was also performed for biaxial braids based on the packing density in the material and parameters of the braiding process. The good conformance of the predictive models gives a validated starting point for development of braided structures concerning stiffness behavior. In addition, the information about the fiber architecture can be used for failure analysis on unit cell level.

  19. Structure/property (constitutive and dynamic strength/damage characterization of additively manufactured 316L SS

    Directory of Open Access Journals (Sweden)

    Gray III G.T.

    2015-01-01

    Full Text Available For additive manufacturing (AM, the certification and qualification paradigm needs to evolve as there exists no “ASTM-type” additive manufacturing certified process or AM-material produced specifications. Accordingly, utilization of AM materials to meet engineering applications requires quantification of the constitutive properties of these evolving materials in comparison to conventionally-manufactured metals and alloys. Cylinders of 316L SS were produced using a LENS MR-7 laser additive manufacturing system from Optomec (Albuquerque, NM equipped with a 1kW Yb-fiber laser. The microstructure of the AM-316L SS is detailed in both the as-built condition and following heat-treatments designed to obtain full recrystallization. The constitutive behavior as a function of strain rate and temperature is presented and compared to that of nominal annealed wrought 316L SS plate. The dynamic damage evolution and failure response of all three materials was probed using flyer-plate impact driven spallation experiments at a peak stress of 4.5 GPa to examine incipient spallation response. The spall strength of AM-produced 316L SS was found to be very similar for the peak shock stress studied to that of annealed wrought or AM-316L SS following recrystallization. The damage evolution as a function of microstructure was characterized using optical metallography.

  20. Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic Lactobacillus casei LOCK 0919

    Science.gov (United States)

    Górska, Sabina; Hermanova, Petra; Ciekot, Jarosław; Schwarzer, Martin; Srutkova, Dagmar; Brzozowska, Ewa; Kozakova, Hana; Gamian, Andrzej

    2016-01-01

    The Lactobacillus casei strain, LOCK 0919, is intended for the dietary management of food allergies and atopic dermatitis (LATOPIC® BIOMED). The use of a probiotic to modulate immune responses is an interesting strategy for solving imbalance problems of gut microflora that may lead to various disorders. However, the exact bacterial signaling mechanisms underlying such modulations are still far from being understood. Here, we investigated variations in the chemical compositions and immunomodulatory properties of the polysaccharides (PS), L919/A and L919/B, which are produced by L. casei LOCK 0919. By virtue of their chemical features, such PS can modulate the immune responses to third-party antigens. Our results revealed that L919/A and L919/B could both modulate the immune response to Lactobacillus planatarum WCFS1, but only L919/B could alter the response of THP-1 cells (in terms of tumor necrosis factor alpha production) to L. planatarum WCFS1 and Escherichia coli Nissle 1917. The comprehensive immunochemical characterization is crucial for the understanding of the biological function as well as of the bacteria–host and bacteria–bacteria cross-talk. PMID:27102285

  1. A novel Characterization Method for electric Properties of single Silver-coated Polymer Spheres

    OpenAIRE

    Stokkeland, August Emil Tobiesen

    2015-01-01

    The electrical properties of isotropic conductive adhesives (ICAs) are dependent on the filler concentration and electrical properties of the conductive additives. ICAs with metal-coated polymer spheres (MPS) are an efficient way of reducing the amount of precious metals in the adhesive without compromising the condcuting properties. Today little is known about the electrical properties of a single MPS and how the thickness of the metal coating relates to the electrical properties, because no...

  2. Structure-Property Characterization of the Crinkle-Leaf Peach Wood Phenotype: A Future Model System for Wood Properties Research?

    Science.gov (United States)

    Wiedenhoeft, Alex C.; Arévalo, Rafael; Ledbetter, Craig; Jakes, Joseph E.

    2016-09-01

    Nearly 400 million years of evolution and field-testing by the natural world has given humans thousands of wood types, each with unique structure-property relationships to study, exploit, and ideally, to manipulate, but the slow growth of trees makes them a recalcitrant experimental system. Variations in wood features of two genotypes of peach ( Prunus persica L.) trees, wild-type and crinkle-leaf, were examined to elucidate the nature of weak wood in crinkle-leaf trees. Crinkle-leaf is a naturally-occurring mutation in which wood strength is altered in conjunction with an easily observed `crinkling' of the leaves' surface. Trees from three vigor classes (low growth rate, average growth rate, and high growth rate) of each genotype were sampled. No meaningful tendency of dissimilarities among the different vigor classes was found, nor any pattern in features in a genotype-by-vigor analysis. Wild-type trees exhibited longer vessels and fibers, wider rays, and slightly higher specific gravity. Neither cell wall mechanical properties measured with nanoindentation nor cell wall histochemical properties were statistically or observably different between crinkle-leaf and wild-type wood. The crinkle-leaf mutant has the potential to be a useful model system for wood properties investigation and manipulation if it can serve as a field-observable vegetative marker for altered wood properties.

  3. Structure-Property Characterization of the Crinkle-Leaf Peach Wood Phenotype: A Future Model System for Wood Properties Research?

    Science.gov (United States)

    Wiedenhoeft, Alex C.; Arévalo, Rafael; Ledbetter, Craig; Jakes, Joseph E.

    2016-08-01

    Nearly 400 million years of evolution and field-testing by the natural world has given humans thousands of wood types, each with unique structure-property relationships to study, exploit, and ideally, to manipulate, but the slow growth of trees makes them a recalcitrant experimental system. Variations in wood features of two genotypes of peach (Prunus persica L.) trees, wild-type and crinkle-leaf, were examined to elucidate the nature of weak wood in crinkle-leaf trees. Crinkle-leaf is a naturally-occurring mutation in which wood strength is altered in conjunction with an easily observed `crinkling' of the leaves' surface. Trees from three vigor classes (low growth rate, average growth rate, and high growth rate) of each genotype were sampled. No meaningful tendency of dissimilarities among the different vigor classes was found, nor any pattern in features in a genotype-by-vigor analysis. Wild-type trees exhibited longer vessels and fibers, wider rays, and slightly higher specific gravity. Neither cell wall mechanical properties measured with nanoindentation nor cell wall histochemical properties were statistically or observably different between crinkle-leaf and wild-type wood. The crinkle-leaf mutant has the potential to be a useful model system for wood properties investigation and manipulation if it can serve as a field-observable vegetative marker for altered wood properties.

  4. Structural characterization and optical properties of perovskite ZnZrO 3 nanoparticles

    KAUST Repository

    Zhu, Xinhua

    2014-03-17

    Perovskite ZnZrO3 nanoparticles were synthesized by hydrothermal method, and their microstructures and optical properties were characterized. The crystallinity, phase formation, morphology and composition of the as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), high-resolutiontransmission electron microscopy (HRTEM), and energy-dispersive X-ray (EDX) spectroscopy analysis, respectively. TEM images demonstrated that the average particle size of the ZnZrO3 powders was increased with increasing the Zn/Zr molar ratios in the precursors, and more large ZnZrO3 particles with cubic morphology were observed at high Zn/Zr molar ratios. In addition, the phase structures of the ZnZrO3 particles were also evolved from a cubic to tetragonal perovskite phase, as revealed by XRD and SAED patterns. HRTEM images demonstrate that surface structures of the ZnZrO3 powders synthesized at high Zn/Zr molar ratios, are composed of corners bound by the {100} mini-facets, and the surface steps lying on the {100} planes are frequently observed, whereas the (101) facet isoccasionally observed. The formation of such a rough surface structure is understood from the periodic bond chain theory. Quantitative EDX analyses demonstrated that the atomic concentrations (at.%) of Zn:Zr:O in the particles were 20.70:21.07:58.23, as close to the composition of ZnZrO3. In the optical spectra, a significant red shift of the absorption edges (for the ZnZrO3 nanopowders) from UV to visible region (from 394 to 417 nm) was observed as increasing the Zn/Zr molar ratios in the precursors, which corresponds to that the band gap energies of the ZnZrO3 nanopowders can be continuously tuned from 3.15 to 2.97 eV. This opens an easy way to tune the band gap energies of the ZnZrO3 nanopowders. © 2014 The American Ceramic Society.

  5. Characterizations and Catalytic Properties of Transition Metal Ions Incorporated in Mesoporous Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Ye

    2004-01-01

    Mesoporous materials typified by MCM-41 possess well-ordered mesoporous channels with controllable pore sizes from 2-30 nm, and are expected as desirable materials for catalysis.However, silicious mesoporous materials generally do not have sufficient intrinsic catalytic activities.Thus many studies have focused on introducing catalytically active sites. It is expected that different synthetic methods would result in different coordination structures of metal cations introduced in MCM-41, and thus different catalytic properties in catalytic reactions. The author's group has used two methods, i.e., direct hydrothermal synthesis (DHT) and template-ion exchange (TIE), for the syntheses of V-, Fe-, and Cr-MCM-41 and applied them as catalysts to selective oxidations of hydrocarbons. This paper highlights the characterizations of the coordination structures of these metal cations introduced into MCM-41 by the DHT and the TIE methods, and the structural-property relationships of these metal ion-containing MCM-41 materials in selective oxidation reactions.MCM-41 was prepared by hydrothermal synthesis using hexadecyltrimethylammonium bromide and sodium silicate as the sources of template and silicon, respectively. In the DHT method, metal cations were directly added into the synthesis gel before hydrothermal synthesis, while the exchanging of metal ions in ethanolic solutions with the template cations contained in the uncalcined MCM-41 was performed in the TIE method. XRD and N2-adsorption measurements showed that the mesoporous regularity was not destroyed with both synthetic methods for all the metal ion-containing MCM-41 with appropriate contents of metal cations.For V-MCM-41, the characterizations with mainly EXAFS suggested that V5+ cations were in tetrahedral coordination and mainly incorporated inside the framework of MCM-41 to substitute Si4+in the samples by the DHT method. Tetrahedrally coordinated Vanadyl species were also obtained by the TIE method, but the VO4

  6. Rapid characterization of the biomechanical properties of drug-treated cells in a microfluidic device

    International Nuclear Information System (INIS)

    Cell mechanics is closely related to many cell functions. Recent studies have suggested that the deformability of cells can be an effective biomarker to indicate the onset and progression of diseases. In this paper, a microfluidic chip is designed for rapid characterization of the mechanics of drug-treated cells through stretching with dielectrophoresis (DEP) force. This chip was fabricated using PDMS and micro-electrodes were integrated and patterned on the ITO layer of the chip. Leukemia NB4 cells were considered and the effect of all-trans retinoic acid (ATRA) drug on NB4 cells were examined via the microfluidic chip. To induce a DEP force onto the cell, a relatively weak ac voltage was utilized to immobilize a cell at one side of the electrodes. The applied voltage was then increased to 3.5 V pp and the cell started to be stretched along the applied electric field lines. The elongation of the cell was observed using an optical microscope and the results showed that both types of cells were deformed by the induced DEP force. The strain of the NB4 cell without the drug treatment was recorded to be about 0.08 (time t = 180 s) and the drug-treated NB4 cell was about 0.21 (time t = 180 s), indicating a decrease in the stiffness after drug treatment. The elastic modulus of the cell was also evaluated and the modulus changed from 140 Pa to 41 Pa after drug treatment. This microfluidic chip can provide a simple and rapid platform for measuring the change in the biomechanical properties of cells and can potentially be used as the tool to determine the biomechanical effects of different drug treatments for drug discovery and development applications. (paper)

  7. Synthesis, structural characterization and photoluminescence properties of a novel La(III) complex

    Science.gov (United States)

    Köse, Muhammet; Ceyhan, Gökhan; Atcı, Emine; McKee, Vickie; Tümer, Mehmet

    2015-05-01

    In this study, a novel La(III) complex [La(H2L)2(NO3)3(MeOH)] of a Schiff base ligand was synthesized and characterized by spectroscopic and analytical methods. Single crystals of the complex suitable for X-ray diffraction study were obtained by slow diffusion of diethyl ether into a MeOH solution of the complex which was found to crystallise as [La(H2L)2(NO3)3(MeOH)]ṡ2MeOHṡH2O. The structure was solved in monoclinic crystal system, P21/n space group with unit cell parameters a = 10.5641(11), b = 12.6661(16), c = 16.0022(17) Å, α = 67.364(2), β = 83.794(2)°, γ = 70.541(2)°, V = 1862.9(4) Å3 and Z = 2 with R final value of 0.526. In the complex, the La(III) ion is ten-coordinated by O atoms, five of which come from three nitrate ions, four from the two Schiff base ligands and one from MeOH oxygen atom. The Schiff base ligands in the structure are in a zwitter ion form with the phenolic H transferred to the imine N atom. Thermal properties of the La(III) complex were examined by thermogravimetric analysis and the complex was found to be thermally stable up to 310 °C. The Schiff base ligand and its La(II) complex were screened for their in vitro antimicrobial activity against Bacillus megaterium, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus (Gram positive bacteria), Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa (Gram negative bacteria), Candida albicans,Yarrowia lipolytica (fungus) and Saccharomyces cerevisiae (yeast). The complex shows more antimicrobial activity than the free ligand.

  8. Synthesis, characterization and multifunctional properties of plasmonic Ag-TiO2 nanocomposites.

    Science.gov (United States)

    Prakash, Jai; Kumar, Promod; Harris, R A; Swart, Chantel; Neethling, J H; van Vuuren, A Janse; Swart, H C

    2016-09-01

    We report on the synthesis of multifunctional Ag-TiO2 nanocomposites and their optical, physio-chemical, surface enhanced Raman scattering (SERS) and antibacterial properties. A series of Ag-TiO2 nanocomposites were synthesized by sol-gel technique and characterized by x-ray diffraction, scanning and transmission electron microscopy, energy-dispersed x-ray analysis, photoluminescence, UV-vis, x-ray photoelectron and Raman spectroscopy and Brunauer-Emmett-Teller method. The Ag nanoparticles (NPs) (7-20 nm) were found to be uniformly distributed around and strongly attached to TiO2 NPs. The novel optical responses of the nanocomposites are due to the strong electric field from the localized surface plasmon (LSP) excitation of the Ag NPs and decreased recombination of photo-induced electrons and holes at Ag-TiO2 interface providing potential materials for photocatalysis. The nanocomposites show enhancement in the SERS signals of methyl orange (MO) molecules with increasing Ag content attributed to the long-range electromagnetic enhancement from the excited LSP of the Ag NPs. To further understand the SERS activity, molecular mechanics and molecular dynamics simulations were used to study the geometries and SERS enhancement of MO adsorbed onto Ag-TiO2 respectively. Simulation results indicate that number of ligands (MO) that adsorb onto the Ag NPs as well as binding energy per ligand increases with increasing NP density and molecule-to-surface orientation is mainly flat resulting in strong bond strength between MO and Ag NP surface and enhanced SERS signals. The antimicrobial activity of the Ag-TiO2 nanocomposites was tested against the bacterium Staphylococcus aureus and enhanced antibacterial effect was observed with increasing Ag content explained by contact killing action mechanism. These results foresee promising applications of the plasmonic metal-semiconductor based nano-biocomposites for both chemical and biological samples. PMID:27456278

  9. Rapid characterization of the biomechanical properties of drug-treated cells in a microfluidic device

    Science.gov (United States)

    Zhang, Xiaofei; Chu, Henry K.; Zhang, Yang; Bai, Guohua; Wang, Kaiqun; Tan, Qiulin; Sun, Dong

    2015-10-01

    Cell mechanics is closely related to many cell functions. Recent studies have suggested that the deformability of cells can be an effective biomarker to indicate the onset and progression of diseases. In this paper, a microfluidic chip is designed for rapid characterization of the mechanics of drug-treated cells through stretching with dielectrophoresis (DEP) force. This chip was fabricated using PDMS and micro-electrodes were integrated and patterned on the ITO layer of the chip. Leukemia NB4 cells were considered and the effect of all-trans retinoic acid (ATRA) drug on NB4 cells were examined via the microfluidic chip. To induce a DEP force onto the cell, a relatively weak ac voltage was utilized to immobilize a cell at one side of the electrodes. The applied voltage was then increased to 3.5 V pp and the cell started to be stretched along the applied electric field lines. The elongation of the cell was observed using an optical microscope and the results showed that both types of cells were deformed by the induced DEP force. The strain of the NB4 cell without the drug treatment was recorded to be about 0.08 (time t = 180 s) and the drug-treated NB4 cell was about 0.21 (time t = 180 s), indicating a decrease in the stiffness after drug treatment. The elastic modulus of the cell was also evaluated and the modulus changed from 140 Pa to 41 Pa after drug treatment. This microfluidic chip can provide a simple and rapid platform for measuring the change in the biomechanical properties of cells and can potentially be used as the tool to determine the biomechanical effects of different drug treatments for drug discovery and development applications.

  10. Synthesis, characterization, and energetic properties of salts of the 1-cyanomethyl-1,1-dimethylhydrazinium cation.

    Science.gov (United States)

    Miró Sabaté, Carles; Delalu, Henri; Jeanneau, Erwann

    2012-05-01

    1,1-Dimethylhydrazine can be readily alkylated with bromoacetonitrile to form 1-cyanomethyl-1,1-dimethylhydrazinium bromide ([(CH(3))(2)N(CH(2)CN)NH(2)]Br, 1). The metathesis reaction of compound 1 led to the formation of a new family of energetic salts based on the [(CH(3))(2)N(CH(2)CN)NH(2)](+) cation and nitrate (2), perchlorate (3), azide (4), 5-aminotetrazolate ([H(2)N-CN(4)](-), 5), 5,5'-azobistetrazolate ([N(4)C-N=N-CN(4)](2-), 7), and picrate (8) anions. The new materials were characterized by elemental analysis, mass spectrometry, and (multinuclear) NMR and vibrational (infrared and Raman) spectroscopies. Additionally, the molecular structure of the [(CH(3))(2)N(CH(2)CN)NH(2)](+) cation in compounds 1, 3, and 8 and that of sodium 5,5'-azobistetrazolate octahydrate (NaZT·8H(2)O) were solved by X-ray diffraction techniques. The hydrogen-bonding networks found in the structure of salts 1, 3, 8, and NaZT·8H(2)O are described using graph-set analysis. The melting and decomposition points of the new compounds were determined by differential scanning calorimetry, and insight into their sensitivity towards impact, friction, and electrostatics was gained by submitting the materials to standard tests. Furthermore, we estimated some performance parameters of interest and predicted the decomposition gases formed upon decomposition of salts 2-8 and of mixtures with an oxidizer. The interesting thermal, sensitivity, and performance properties of some of the compounds described in this work make them attractive towards a prospective energetic application.

  11. Biferroic LuCrO{sub 3}: Structural characterization, magnetic and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Durán, A., E-mail: dural@cnyn.unam.mx [Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana-Ensenada, Apartado Postal 14, C.P. 22800 Ensenada, BC (Mexico); Meza F, C.; Morán, E.; Alario-Franco, M.A. [Departamento de Química Inorgánica y Laboratorio Complutense de Altas Presiones, Facultad de Química, Universidad Complutense de Madrid, EU, 28040 Madrid (Spain); Ostos, C., E-mail: ceostoso@gmail.com [Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-02-14

    Multiferroic LuCrO{sub 3} perovskite-type structure (Pbnm) obtained via auto-ignition synthesis was characterized by a combination of X-ray diffraction (XRD) and thermogravimetric (TG) techniques, and through magnetization and permittivity measurements. Results showed that amorphous combustion powders were fully transformed to orthorhombic LuCrO{sub 3} structure at 1200 K after the first LuCrO{sub 4} crystallization at 700 K. The magnetic response displays thermal irreversibility between zero-field-cooling and field-cooling condition which is due to spin canted AF switching at 116 K. Accordingly, a hysteresis loop in the M(H) data confirms weak ferromagnetism in LuCrO{sub 3}. On the other hand, the permittivity measurement shows a broad peak transition typical of relaxor-type ferroelectrics transition at ∼450 K. Electrical conductivity increases as temperature increases showing an anomaly around the diffuse phase transition. The diffuse phase transition and the formation of the charge carriers are discussed in terms of a local distortion around the Lu Site. - Highlights: • Multiferroic LuCrO{sub 3} was successfully obtained via auto-ignition synthesis. • Amorphous powder is transformed first to LuCrO{sub 4} (700 K) and next to LuCrO{sub 3} (1100 K). • The CrO{sub 6} octahedra are tilted away and rotates from the ideal octahedral shape. • LuCrO{sub 3} exhibits a canted AFM transition (116 K) and a relaxor ferroelectric behavior. • Tilting and rotation of CrO{sub 6} octahedra influenced transport properties on LuCrO{sub 3}.

  12. Synthesis, Property Characterization, and Photocatalytic Activity of Novel Visible Light-Responsive Photocatalyst

    Directory of Open Access Journals (Sweden)

    Jingfei Luan

    2012-01-01

    Full Text Available Fe2BiSbO7 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of Fe2BiSbO7 have been characterized. The results showed that Fe2BiSbO7 was crystallized with the pyrochlore-type structure, cubic crystal system, and space group Fd3m. The lattice parameter for Fe2BiSbO7 was  Å. The photocatalytic degradation of methylene blue (MB was realized under visible light irradiation with Fe2BiSbO7 as catalyst. Fe2BiSbO7 owned higher catalytic activity compared with Bi2InTaO7 or pure TiO2 or N-doped TiO2 for photocatalytic degradation of MB. The photocatalytic degradation of MB with Fe2BiSbO7, Bi2InTaO7, or N-doped TiO2 followed the first-order reaction kinetics, and the first-order rate constant was 0.01189, 0.00275, or 0.00333 min−1. After visible light irradiation for 230 min with Fe2BiSbO7, complete removal and mineralization of MB was observed. The reduction of the total organic carbon, the formation of inorganic products, and , and the evolution of CO2 revealed the continuous mineralization of MB during the photocatalytic process. The photocatalytic degradation pathway of MB was obtained. Fe2BiSbO7/(visible light photocatalysis system was found to be suitable for textile industry wastewater treatment.

  13. Synthesis, characterization and multifunctional properties of plasmonic Ag-TiO2 nanocomposites

    Science.gov (United States)

    Prakash, Jai; Kumar, Promod; Harris, R. A.; Swart, Chantel; Neethling, J. H.; Janse van Vuuren, A.; Swart, H. C.

    2016-09-01

    We report on the synthesis of multifunctional Ag-TiO2 nanocomposites and their optical, physio-chemical, surface enhanced Raman scattering (SERS) and antibacterial properties. A series of Ag-TiO2 nanocomposites were synthesized by sol-gel technique and characterized by x-ray diffraction, scanning and transmission electron microscopy, energy-dispersed x-ray analysis, photoluminescence, UV-vis, x-ray photoelectron and Raman spectroscopy and Brunauer-Emmett-Teller method. The Ag nanoparticles (NPs) (7-20 nm) were found to be uniformly distributed around and strongly attached to TiO2 NPs. The novel optical responses of the nanocomposites are due to the strong electric field from the localized surface plasmon (LSP) excitation of the Ag NPs and decreased recombination of photo-induced electrons and holes at Ag-TiO2 interface providing potential materials for photocatalysis. The nanocomposites show enhancement in the SERS signals of methyl orange (MO) molecules with increasing Ag content attributed to the long-range electromagnetic enhancement from the excited LSP of the Ag NPs. To further understand the SERS activity, molecular mechanics and molecular dynamics simulations were used to study the geometries and SERS enhancement of MO adsorbed onto Ag-TiO2 respectively. Simulation results indicate that number of ligands (MO) that adsorb onto the Ag NPs as well as binding energy per ligand increases with increasing NP density and molecule-to-surface orientation is mainly flat resulting in strong bond strength between MO and Ag NP surface and enhanced SERS signals. The antimicrobial activity of the Ag-TiO2 nanocomposites was tested against the bacterium Staphylococcus aureus and enhanced antibacterial effect was observed with increasing Ag content explained by contact killing action mechanism. These results foresee promising applications of the plasmonic metal-semiconductor based nano-biocomposites for both chemical and biological samples.

  14. Isolation, characterization and formulation properties of a new plant gum obtained from Cissus refescence

    Directory of Open Access Journals (Sweden)

    Emeje Martins

    2009-01-01

    Full Text Available This study elucidated the physical, thermal, sorption and functional properties of a gum obtained from the stem of Cissus refescence (CRG. Scanning electron microscopy (SEM, Particle size analysis, X-ray powder diffraction (XPRD, Thermo gravimetric analysis (TGA, Differential scanning colorimetry (DSC, Fourier transmittance infra red (FTIR, and Elemental analysis were used to characterize the gum sample. Tablets were prepared by incorporating an anti asthmatic drug; theophylline. In vitro drug release was carried out in simulated gastric and intestinal conditions. Effect of gum concentration on release kinetics was evaluated. CRG had a glass transition (Tg and melting peak of 233.5 and 270 o C respectively. This material showed a 10.59 % loss in weight at 195 o C. The sample had very strong peaks at approximately 14 o , 15 o , 23 o , 24 o , and 29 o 2θ degrees of 2-theta (θ in the X-Ray Powder Diffraction pattern. Elemental analysis showed that CRG contains 44.1, 7.1, 48.5, and 0.3% Carbon, Hydrogen, Oxygen and Nitrogen respectively. Release of theophylline under simulated biologic conditions varied between 2 to 12 hours depending on the concentration of the gum used in formulation. Drug release was found to be erosion-controlled initially (i.e. in SGF, but at later stage, it became swelling -controlled (i.e. in SIF. The results obtained in this study establish the fundamental characteristics of CRG. The matrices were pH sensitive and can potentially be used for intestinal drug delivery.

  15. Lidar-radar synergy for characterizing properties of ultragiant volcanic aerosol

    Science.gov (United States)

    Madonna, F.; Amodeo, A.; D'Amico, G.; Giunta, A.; Mona, L.; Pappalardo, G.

    2011-12-01

    , but from Central Europe where many lidar observations confirm the presence of volcanic aerosol in the previous days. Therefore, both CIAO lidar observations and the backtrajectory analysis suggests a volcanic origin of the ultragiant aerosol observed by the radar, revealing that these particles might have travelled for more than 4000 km after their injection into the atmosphere. The reported observation fostered a study, reported in this work, about the performances of multi-wavelength Raman lidars in the identification and the characterization of ultragiant aerosols layers in the troposphere. Results from simulations using Mie, T-Matrix and ray-tracing codes will be presented and compared with the observations performed in April-May 2010 during the Eyjafjallajökull eruption. Sensitivity ranges in detection of aerosol layer are pointed out in terms of experimental limits of both lidar and radar techniques and of aerosol optical depth. Moreover, recommendations for use of a combined lidar-radar approach for the aerosol typing and for the retrieval of their microphysical properties are reported.

  16. Characterization of Lactobacillus from Algerian goat's milk based on phenotypic, 16S rDNA sequencing and their technological properties

    Directory of Open Access Journals (Sweden)

    Ahmed Marroki

    2011-03-01

    Full Text Available Nineteen strains of Lactobacillus isolated from goat's milk from farms in north-west of Algeria were characterized. Isolates were identified by phenotypic, physiological and genotypic methods and some of their important technological properties were studied. Phenotypic characterization was carried out by studying physiological, morphological characteristics and carbohydrate fermentation patterns using API 50 CHL system. Isolates were also characterized by partial 16S rDNA sequencing. Results obtained with phenotypic methods were correlated with the genotypic characterization and 13 isolates were identified as L. plantarum, two isolates as L. rhamnosus and one isolate as L. fermentum. Three isolates identified as L. plantarum by phenotypic characterization were found to be L. pentosus by the genotypic method. A large diversity in technological properties (acid production in skim milk, exopolysaccharide production, aminopeptidase activity, antibacterial activity and antibiotic susceptibility was observed. Based on these results, two strains of L. plantarum (LbMS16 and LbMS21 and one strain of L. rhamnosus (LbMF25 have been tentatively selected for use as starter cultures in the manufacture of artisanal fermented dairy products in Algeria.

  17. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.

  18. Design, synthesis, and characterization of new phosphazene related materials, and study the structure property correlations

    Science.gov (United States)

    Tian, Zhicheng

    The work described in this thesis is divided into three major parts, and all of which involve the exploration of the chemistry of polyphosphazenes. The first part (chapters 2 and 3) of my research is synthesis and study polyphoshazenes for biomedical applications, including polymer drug conjugates and injectable hydrogels for drug or biomolecule delivery. The second part (chapters 4 and 5) focuses on the synthesis of several organic/inorganic hybrid polymeric structures, such as diblock, star, brush and palm tree copolymers using living cationic polymerization and atom transfer radical polymerization techniques. The last part (chapters 6 and 7) is about exploratory synthesis of new polymeric structures with fluorinated side groups or cycloaliphatic side groups, and the study of new structure property relationships. Chapter 1 is an outline of the fundamental concepts for polymeric materials, as such the history, important definitions, and some introductory material for to polymer chemistry and physics. The chemistry and applications of phopshazenes is also briefly described. Chapter 2 is a description of the design, synthesis, and characterization of development of a new class of polymer drug conjugate materials based on biodegradable polyphosphazenes and antibiotics. Poly(dichlorophosphazene), synthesized by a thermal ring opening polymerization, was reacted with up to 25 mol% of ciprofloxacin or norfloxacin and three different amino acid esters (glycine, alanine, or phenylalanine) as cosubstituents via macromolecular substitutions. Nano/microfibers of several selected polymers were prepared by an electrospinning technique. Chapter 3 is concerned with the development of a class of injectable and biodegradable hydrogels based on water-soluble poly(organophosphazenes) containing oligo(ethylene glycol) methyl ethers and glycine ethyl esters. The hydrogels can be obtained by mixing alpha-cyclodextrin aqueous solution and poly(organophosphazenes) aqueous solution in

  19. Structural characterizations and optical properties of new Li–Sr–Nb-phosphate glasses

    International Nuclear Information System (INIS)

    A new Li2O–SrO–Nb2O5–P2O5 glass system was prepared by a high-temperature alumina crucible, and structural characterization and optical properties were investigated. Proper content of Li2O and Nb2O5 was employed to replace partial SrO and P2O5 to improve the optical properties. It was observed that the enhancement of the refractive index from 1.75 to 1.85 is mainly due to the Nb2O5 content. An addition of Li2O significantly increases the optical transmittance; optical transparency can be enhanced from 60% to higher than 85% in the UV–visible region with addition of 20–40 mol% Li2O species. However, optical transmittance is monotonically decreased from about 90% to 80% under 10–30 mol% Nb2O5 addition. The 40P2O5–20Nb2O5–20SrO–20Li2O glasses demonstrate the optimum refractive index (n > 1.75) and high optical transparency (>80%) in the UV–visible region. Furthermore, the effect of Nb2O5 on the structural transition was focused on the (60 − y)P2O5–yNb2O5–20SrO–20Li2O vitreous system since the transition of FTIR spectra reveals that the Nb2O5 has more pronounced effect than Li2O in the glass network due to the higher covalent extent and electronegativity. Addition of Nb2O5 generates Nb–O bonds by dissociating P–O chains and results in the decrease in the intensity of the (PO2), (POP), and (PO3) absorption bands. The O1s-XPS analysis shows that Nb2O5 addition dissociates symmetric bridging oxygens in P–O–P bonding and forms asymmetric bridging oxygens in P–O–Nb and non-bridging Nb–O- bonds, in which octahedral [NbO6] unit is eventually substituted by [NbO4] tetrahedral unit in the Li–Sr–Nb phosphate glasses. - Highlights: • The prepared glasses demonstrate great optical properties (n = 1.65–1.85 and T > 80%). • The deconvoluted O1s XPS are presented to reveal oxygen bonding in the network. • Coloring effect in Sr–Nb phosphate glasses is eliminated by incorporation of Li2O. • The optical band gap is

  20. Characterization of viscoelastic properties of hydrolyzed polyacrylamide using the stress recovery experiment

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng; DU Yukou; TANG Ji'an; LI Xingchang; YANG Ping

    2004-01-01

    Polymer solutions have very important applications in the enhanced oil recovery due to their unique viscoelastic properties increasing microscale displacement efficiency. In this paper, the viscoelastic properties of partially hydrolyzed polyacrylamide (HPAM) solution have been investigated. Results show that the viscoelastic properties of HPAM increase with HPAM concentration increasing, and decrease with the increase of sodium dodecyl sulfate (SDS). Meanwhile, adding NaCl can destroy the viscoelastic properties.

  1. Characterization methods for silicon photodiode and silicon sub-surface properties

    OpenAIRE

    Haapalinna, Atte

    2004-01-01

    This thesis considers the characterization of silicon photodiode and the applications of silicon photodiodes in precision metrology, and some aspects of the silicon material characterizations. Such material characterizations are required in the process of semiconductor device manufacturing, one example of which is the silicon photodiode manufacturing. The motivation for the research on radiometry reported in this thesis has been the development of optical metrology at the Helsinki Univers...

  2. Synthesis and characterization of NiO nanoparticles by thermal decomposition of nickel linoleate and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kalam, Abul, E-mail: abul_k33@yahoo.com [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia); Al-Sehemi, Abdullah G.; Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia); Du Gaohui [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Ahmad, Tokeer [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)

    2012-06-15

    Well dispersed nickel oxide nanoparticles have been synthesized successfully by direct calcination of nickel linoleate. The structure, morphology and properties of the nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and ultraviolet-visible spectroscopy. Transmission electron microscopic studies show that nickel oxide nanoparticles are uniform with an average size of 14-20 nm. The optical band gap of 3.8 eV is obtained using UV-Visible spectroscopy which exhibits the red shift compared with the bulk counterpart. - Highlights: Black-Right-Pointing-Pointer Synthesis of metal oxide nanoparticles by using metal complexes as precursors. Black-Right-Pointing-Pointer Characterization of isolated nanoparticles using XRD, FTIR, SEM, TEM and HRTEM data. Black-Right-Pointing-Pointer The expected optical properties of these nanoparticles are clarified.

  3. Characterization of the elastic properties of alloys used in the nuclear industry using non-destructive ultrasonic goniometry

    International Nuclear Information System (INIS)

    Ultrasonic goniometry is a powerful method for acoustic-elastic characterization of materials based on critical angle reflectivity measurements. Instrumental improvements and software refinements achieved over more than 10 years led the INR-Ultra-acoustic R and D Laboratory to the development of an automatic high resolution goniometer having an angular resolution of the order of 0.001o and a sensitivity of the phase velocity measurements (dV/V) of the order of 10-4. This apparatus is destined to systematic investigations of the acoustic-elastic properties of the metallic materials used in the nuclear industry. The paper presents experimental data concerning the characterization of elastic properties of zircaloy-4 thin wall tubes. (Author) 19 Refs

  4. Novel ion-exchange nanocomposite membrane containing in-situ formed FeOOH nanoparticles: Synthesis, characterization and transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Heidary, Farhad; Kharat, Ali Nemati [University of Tehran, Tehran (Iran, Islamic Republic of); Khodabakhshi, Ali Reza [Faculty of Science, Arak University, Arak (Iran, Islamic Republic of)

    2016-04-15

    A new type of cation-exchange nanocomposite membrane was prepared via in-situ formation of FeOOH nanoparticles in a blend containing sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) and sulfonated polyvinylchloride by a simple one-step chemical method. Prepared nanocomposite membranes were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. The SEM images showed uniform dispersion of FeOOH nanoparticles throughout the polymeric matrices. The effect of additive loading on physicochemical and electrochemical properties of prepared cation-exchange nanocomposite membranes was studied. Various characterizations showed that the incorporation of different amounts of FeOOH nanoparticles into the basic membrane structure had a significant influence on the membrane performance and could improve the electrochemical properties.

  5. Characterization of the Influence of Tool Pin Profile on Microstructural and Mechanical Properties of Friction Stir Welding

    Science.gov (United States)

    Marzbanrad, Javad; Akbari, Mostafa; Asadi, Parviz; Safaee, Samad

    2014-10-01

    In this study, the effect of tool pin profile on mechanical properties, microstructural, material flow, thermal and strain distributions of friction stir welding of AA5083 was investigated. Two different tools with cylindrical and square pin profiles were employed to produce the welds. A numerical model is developed for investigating the effect of tool pin profiles on material flow, thermal and strain distributions based on thermo-mechanically coupled rigid-viscoplastic 3D FEM. Then, optical microscopy was employed to characterize the microstructures features of the weld. Finally, tensile test was carried out to characterize the mechanical properties of the weld. Obtained results showed that square pin profile produced finer grain structure and higher ultimate strength relative to cylindrical one. These results may be related to higher eccentricity, larger stirred zone, and higher temperature in the weld zone of the square pin profile.

  6. Chemical characterization and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems

    OpenAIRE

    Bastos, Claudete; Barros, Lillian; Dueñas, Montserrat; Ricardo C. Calhelha; Queiroz, Maria João R. P.; Santos-Buelga, Celestino; Ferreira, Isabel C.F.R.

    2015-01-01

    The aim of this study was to characterize sweet cherry regarding nutritional composition of the fruits, and individual phytochemicals and bioactive properties of fruits and stems. The chromatographic profiles in sugars, organic acids, fatty acids, tocopherols and phenolic compounds were established. All the preparations (extracts, infusions and decoctions) obtained using stems revealed higher antioxidant potential than the fruits extract, which is certainly related with its hig...

  7. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Congjin, E-mail: gxdxccj@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Xin [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Tong, Zhangfa [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Yue [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Li, Mingfei [Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083 (China)

    2014-10-01

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}. • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H{sub 2}O{sub 2} concentration 1.0 mol l{sup −1}, modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I{sub 2}). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N{sub 2} adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H{sub 2}O{sub 2} solution, the optimized conditions were found to be as follows: aqueous H{sub 2}O{sub 2} solution concentration 1.0 mol·l{sup −1}, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased

  8. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    International Nuclear Information System (INIS)

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H2O2. • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H2O2 concentration 1.0 mol l−1, modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I2). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l−1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC

  9. MgO:Dy{sup 3+} nanophosphor: Self ignition route, characterization and its photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Devaraja, P.B. [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103 (India); Department of Physics, C.M.R.T.U, RV College of Engineering, Bangalore 560 059 (India); Department of Physics, Acharya Institute of graduate studies, Bangalore 560 090 (India); Avadhani, D.N. [Department of Physics, C.M.R.T.U, RV College of Engineering, Bangalore 560 059 (India); Nagabhushana, H., E-mail: bhushanvlc@gmail.com [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103 (India); Prashantha, S.C., E-mail: scphysics@gmail.com [Research Center, Department of Science, East West Institute of Technology, Bangalore 560 091 (India); Sharma, S.C. [Chattisgarh Swamy Vivekananda Technological University, Bhilai, CG 493441 (India); Nagabhushana, B.M. [Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore 560 054 (India); Nagaswarupa, H.P. [Research Center, Department of Science, East West Institute of Technology, Bangalore 560 091 (India); Daruka Prasad, B. [Department of Physics, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India)

    2014-11-15

    For the first time series of MgO phosphors doped with different concentrations of Dy{sup 3+} (1–9 mol%) were prepared by solution combustion method using glycine as a fuel. The final products were well characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The powder X-ray diffraction patterns of the as-formed product show single cubic phase. The crystallite size estimated using Scherrer's method was found to be in the range 5–15 nm and the same was confirmed by transmission electron microscopy result. Photoluminescence properties of Dy{sup 3+} (1–9 mol%) doped MgO for near ultra violet excitation (325 nm) was studied in order to investigate the possibility of its use in white light emitting diode applications. The emission spectra consists of intra 4f transitions of Dy{sup 3+}, namely {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2} (483 nm), and {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2} (573 nm). Further, the emission at 573 nm shows strong yellow emission and can be applied to the yellow emission of phosphor for the application for near ultraviolet excitation. The intensity of yellow emission was attributed to intrinsic defects, especially oxygen-vacancies, which could assist the energy transfer from the MgO host to the Dy{sup 3+} ions. The Commission International De I-Eclairage chromaticity co-ordinates were calculated from emission spectra, the values (x,y) were very close to the National Television System Committee standard value of white emission. Therefore, the present phosphor was highly useful for display applications. - Graphical Abstract: PL emission spectra and CIE diagram of MgO:Dy{sup 3+} nanophosphor. - Highlights: • MgO:Dy{sup 3+} prepared by simple and low cost LCS method at low temperature (400 °C). • Characteristic emission peaks of Dy{sup 3+} ion at ∼ 483 and 573 nm are recorded. • CIE co-ordinate values located in the white region.

  10. Characterization and Evaluation of Micro-mechanical Properties of Ultra High Strength Concrete by using Micro-indentation Test

    Science.gov (United States)

    Murthy, A. Ramachandra; Iyer, Nagesh R.; Raghu Prasad, B. K.

    2016-09-01

    This work presents the details of characterization and micro-mechanical properties of ultra high strength concrete. Characterization was carried out for High Strength Concrete (HSC, HSC1) and Ultra High Strength Concrete (UHSC). Various mechanical properties, namely, compressive strength, split tensile strength and modulus of elasticity have been estimated for HSC, HSC1 and UHSC. It was observed from characterization studies that the split tensile strength is high in the case of UHSC compared to HSC and HSC1. X-ray diffraction analysis has been performed for cement, silica fume and quartz powder to know the chemical composition. The amount of quantified phases has been estimated. Micro indentation technique has been employed to evaluate the micromechanical properties such as modulus of elasticity and hardness. Oliver and Pharr method has been used to compute modulus of elasticity and hardness. It is observed that the value of modulus of elasticity obtained from the micro indentation test is in very good agreement with that of the value obtained from uniaxial compression test data of a cylindrical specimen. Finally micro-structure of the specimen has been obtained for various magnifications to examine the voids/pores in the UHSC matrix.

  11. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  12. Characterization of Thermo-Physical Properties of EVA/ATH: Application to Gasification Experiments and Pyrolysis Modeling

    Directory of Open Access Journals (Sweden)

    Bertrand Girardin

    2015-11-01

    Full Text Available The pyrolysis of solid polymeric materials is a complex process that involves both chemical and physical phenomena such as phase transitions, chemical reactions, heat transfer, and mass transport of gaseous components. For modeling purposes, it is important to characterize and to quantify the properties driving those phenomena, especially in the case of flame-retarded materials. In this study, protocols have been developed to characterize the thermal conductivity and the heat capacity of an ethylene-vinyl acetate copolymer (EVA flame retarded with aluminum tri-hydroxide (ATH. These properties were measured for the various species identified across the decomposition of the material. Namely, the thermal conductivity was found to decrease as a function of temperature before decomposition whereas the ceramic residue obtained after the decomposition at the steady state exhibits a thermal conductivity as low as 0.2 W/m/K. The heat capacity of the material was also investigated using both isothermal modulated Differential Scanning Calorimetry (DSC and the standard method (ASTM E1269. It was shown that the final residue exhibits a similar behavior to alumina, which is consistent with the decomposition pathway of EVA/ATH. Besides, the two experimental approaches give similar results over the whole range of temperatures. Moreover, the optical properties before decomposition and the heat capacity of the decomposition gases were also analyzed. Those properties were then used as input data for a pyrolysis model in order to predict gasification experiments. Mass losses of gasification experiments were well predicted, thus validating the characterization of the thermo-physical properties of the material.

  13. Characterization of mechanical properties and microstructure of highly irradiated SS 316

    Science.gov (United States)

    Karthik, V.; Kumar, RanVijay; Vijayaragavan, A.; Venkiteswaran, C. N.; Anandaraj, V.; Parameswaran, P.; Saroja, S.; Muralidharan, N. G.; Joseph, Jojo; Kasiviswanathan, K. V.; Jayakumar, T.; Raj, Baldev

    2013-08-01

    Cold worked austenitic stainless steel type AISI 316 is used as the material for fuel cladding and wrapper of the Fast Breeder Test Reactor (FBTR), India. The evaluation of mechanical properties of these core structurals is very essential to assess its integrity and ensure safe and productive operation of FBTR to very high burn-ups. The changes in the mechanical properties of these core structurals are associated with microstructural changes caused by high fluence neutron irradiation and temperatures of 673-823 K. Remote tensile testing has been used for evaluating the tensile properties of irradiated clad tubes and shear punch test using small disk specimens for evaluating the properties of irradiated hexagonal wrapper. This paper will highlight the methods employed for evaluating the mechanical properties of the irradiated cladding and wrapper and discuss the trends in properties as a function of dpa (displacement per atom) and irradiation temperature.

  14. Synthesis, microstructural characterization and optical properties of CuO nanorods and nanowires obtained by aerosol assisted CVD

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Ruelas, M. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, Chihuahua, Chih. C.P. 31109 (Mexico); Universidad Autónoma de Chihuahua, Facultad de Ingeniería, Circuito No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, Chih. C.P. 31240 (Mexico); Amézaga-Madrid, P. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, Chihuahua, Chih. C.P. 31109 (Mexico); Esquivel-Pereyra, O. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, Chihuahua, Chih. C.P. 31109 (Mexico); Universidad Autónoma de Chihuahua, Facultad de Ingeniería, Circuito No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, Chih. C.P. 31240 (Mexico); Antúnez-Flores, W.; Pizá-Ruiz, P.; Ornelas-Gutiérrez, C. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, Chihuahua, Chih. C.P. 31109 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, Chihuahua, Chih. C.P. 31109 (Mexico)

    2015-09-15

    Highlights: • Nanorods and nanowires of CuO were successfully synthesized by AACVD technique. • The carrier gas velocity was a determinant factor for the growth of nanorods or nanowires. • The increase of deposition time generates the reduction in the evenness and distribution density. • The crystalline phase of nanorods and nanowires was monoclinic tenorite. - Abstract: Copper oxide is a particularly interesting material because it presents photovoltaic, electrochemical and catalytic properties. Its unique properties are very important in the area of nanotechnology and may be an advantage because these nanomaterials can be applied in the design and manufacture of nanosensors, photocatalysis area, nanolasers switches and transistors. Nowadays one-dimensional nanostructures as nanorods, nanowires, etc., have generated a great importance and have received considerable attention and study due to their unique physical and chemical properties. In this work we report the synthesis, microstructural characterization and optical properties of CuO nanorods and nanowires grown by aerosol assisted chemical vapor deposition onto a CuO, ZnO and TiO{sub 2} thin film covered and bare borosilicate glass substrate. Concentration of the precursor solution and carrier gas flux were previously optimized and fixed at 0.1 mol dm{sup −3} and 5 L min{sup −1}, respectively. Other deposition parameters such as substrate temperature, as well the carrier gas velocity and deposition time were varied from 623 to 973 K, 0.88 to 1.77 m s{sup −1} and 11 to 16 min, respectively. Their influence on the morphology, microstructure and optical properties of the nanorods and nanowires were analyzed. The crystalline structure of the materials was characterized by grazing incidence X-ray diffraction; results indicate the presence of the tenorite phase. Surface morphology and microstructure were studied by field emission scanning electron microscopy, and high resolution transmission electron

  15. Thermal Properties of Materials Characterized by Scanning Electron-Acoustic Microscopy

    Institute of Scientific and Technical Information of China (English)

    GAO Chun-Ming; ZHANG Shu-Yi; ZHANG Zhong-Ning; SHUI Xiu-Ji; JIANG Tao

    2005-01-01

    @@ A modified technique of scanning electron-acoustic microscopy is employed to determine thermal diffusivity of materials. Using the dependence of the electron-acoustic signal on modulation frequency of the electron beam,the thermal diffusivity of materials is characterized based on a simplified thermoelastic theory. The thermal diffusivities of several metals characterized by the modified scanning electron-acoustic microscopy are in good agreement with the referential values of the corresponding materials, which proves that the scanning electronacoustic microscopy can be used to characterize the thermal diffusivity of materials effectively. In addition, for micro-inhomogeneous materials, such as biological tissues, the macro-effective (average) thermal diffusivities are characterized by the technique.

  16. Characterization of Birefringence and Dispersion Properties in an Arrayed Waveguide Grating

    Institute of Scientific and Technical Information of China (English)

    Jeong Hwan Song; Oh Dal Kwon; Dong-Su Kim; Sun Tae Jung; Kyung Shik Lee

    2003-01-01

    We have characterized polarization dependent loss(PDL), differential group delay(DGD), and chromatic dispersion of an AWG and a simple method was proposed to estimate the chromatic dispersion from the measured DGD of the device.

  17. An experimental comparison of laboratory techniques in determining bulk properties of tuffaceous rocks; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, P.J.; Martin, R.J. III [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States). YMP Performance Assessment Applications Dept.

    1994-04-01

    Samples of tuffaceous rock were studied as part of the site characterization for a potential nuclear waste repository at Yucca Mountain in southern Nevada. These efforts were scoping in nature, and their results, along with those of other investigations, are being used to develop suitable procedures for determining bulk properties of tuffaceous rock in support of thermal and mechanical properties evaluations. Comparisons were made between various sample preparation, handling, and measurement techniques for both zeolitized and nonzeolitized tuff in order to assess their effects on bulk property determinations. Laboratory tests included extensive drying regimes to evaluate dehydration behavior, the acquisition of data derived from both gas and water pycnometers to compare their suitability in determining grain densities, a comparison of particle size effects, and a set of experiments to evaluate whole core saturation methods. The results affirm the added complexity of these types of measurements where there is a zeolite component in the sample mineralogy. Absolute values for the bulk properties of zeolitized tuff are immeasurable due to the complex nature of their dehydration behavior. However, the results of the techniques that were investigated provide a basis for the development of preferred, consistent methods for determining the grain density, dry and saturated bulk densities, and porosity of tuffaceous rock, including zeolitic tuff in support of thermal and mechanical properties evaluations.

  18. Characterization and Mechanical Properties of WC-Co Based Scratch Tips

    OpenAIRE

    ERDOĞAN, Muzaffer; EROL, Ayhan; Yönetken, Ahmet

    2013-01-01

    Tungsten carbide is known to have excellent high hardness and wear resistance carbide ceramics feature. Thanks to its superior properties and wear resistance carbide cutting-plotter teams, if desired, the industry has a wide application area. In this study, the WC-based material, ceramic material Co. To produce composite samples. In other words, ceramic and metal powders, with powder metallurgy technique, of mechanical properties and composite materials to produce the survey covers. WC powder...

  19. Characterization of temperature-dependent optical material properties of polymer powders

    International Nuclear Information System (INIS)

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders

  20. Characterization of temperature-dependent optical material properties of polymer powders

    Energy Technology Data Exchange (ETDEWEB)

    Laumer, Tobias [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Stichel, Thomas; Bock, Thomas; Amend, Philipp [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Schmidt, Michael [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); University of Erlangen-Nürnberg, Institute of Photonic Technologies, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany)

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.

  1. Synthesis, characterization and properties of novel amide derivatives based open-chain crown ether and their Tb (III) complexes

    International Nuclear Information System (INIS)

    Six amide-based open-chain crown ether and their solid complexes with terbium nitrates were synthesized. The target complexes were characterized by elemental analysis, mass spectra, EDTA titrimetric analysis, thermal analysis, molar conductivity, infrared spectra and UV–vis spectra. Luminescence properties of the ligands and the corresponding complexes in solid were studied. The results showed that the introduction of electron-donating group to the ligand enhanced the luminescence intensity of the corresponding complex, but electron-withdrawing group conversely. Meanwhile, among all complexes, the luminescence quantum yield of the complex Tb(NO3)3Y1 was highest up to 0.76. Electrochemical properties were also investigated, and the results showed that the introduction of electron-donating group to the ligand enhanced the highest occupied molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO) energy level, but electron-withdrawing group conversely. And these target complexes may possibly be useful for studying in organic light-emitting devices field. - Highlights: • Novel amide derivatives based open-chain crown ether and their Tb (III) complexes were prepared and characterized. • The target complexes presented high thermodynamic stability. • Influence of the substituent on luminescence intensity and electrochemical property were discussed

  2. Synthesis, characterization and properties of novel amide derivatives based open-chain crown ether and their Tb (III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanhong; He, Wei [School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Yang, Zehui [School of Chemical Engineering, Ningbo University of Technology, Ningbo 315016 (China); Chen, Yanwen [Hunan Labour Protection Institute of Nonferrous Metals, Changsha 410014 (China); Wang, Xinwei [School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Guo, Dongcai, E-mail: dcguo2001@hnu.edu.cn [School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2015-04-15

    Six amide-based open-chain crown ether and their solid complexes with terbium nitrates were synthesized. The target complexes were characterized by elemental analysis, mass spectra, EDTA titrimetric analysis, thermal analysis, molar conductivity, infrared spectra and UV–vis spectra. Luminescence properties of the ligands and the corresponding complexes in solid were studied. The results showed that the introduction of electron-donating group to the ligand enhanced the luminescence intensity of the corresponding complex, but electron-withdrawing group conversely. Meanwhile, among all complexes, the luminescence quantum yield of the complex Tb(NO{sub 3}){sub 3}Y{sup 1} was highest up to 0.76. Electrochemical properties were also investigated, and the results showed that the introduction of electron-donating group to the ligand enhanced the highest occupied molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO) energy level, but electron-withdrawing group conversely. And these target complexes may possibly be useful for studying in organic light-emitting devices field. - Highlights: • Novel amide derivatives based open-chain crown ether and their Tb (III) complexes were prepared and characterized. • The target complexes presented high thermodynamic stability. • Influence of the substituent on luminescence intensity and electrochemical property were discussed.

  3. Improved characterization of cartilage mechanical properties using a combination of stress relaxation and creep.

    Science.gov (United States)

    Chin, Hooi Chuan; Khayat, Ghazaleh; Quinn, Thomas M

    2011-01-01

    Mechanical characterization of cartilage, other soft tissues and gels has become a ubiquitous and essential aspect of biomechanics and biomaterials research. Current progress in theoretical modeling and tools for data analysis often exceed what is required for routine mechanical characterization assays in experimental studies, making selection of methodologies difficult for the nonspecialist. We have therefore developed an approach for measurement of confined compression modulus and hydraulic permeability based on simple poroelasticity theory and requiring only linear regression tools for data analysis. This technique involves a new application of an early-time solution for creep combined with stress relaxation measurements to characterize soft tissue mechanical parameters as a function of compressive strain or water content. This combined methodology allows measurement of hydraulic permeability by two different techniques with only a modest increase in experimental duration, providing a more precise assessment of permeability and associated measurement error. PMID:20869717

  4. Characterization of scale-free properties of human electrocorticography in awake and slow wave sleep states

    Directory of Open Access Journals (Sweden)

    John M Zempel

    2012-06-01

    Full Text Available Like many complex dynamic systems, the brain exhibits scale-free dynamics that follow power law scaling. Broadband power spectral density (PSD of brain electrical activity exhibits state-dependent power law scaling with a log frequency exponent that varies across frequency ranges. Widely divergent naturally occurring neural states, awake and slow wave sleep (SWS periods, were used evaluate the nature of changes in scale-free indices. We demonstrate two analytic approaches to characterizing electrocorticographic (ECoG data obtained during Awake and SWS states. A data driven approach was used, characterizing all available frequency ranges. Using an Equal Error State Discriminator (EESD, a single frequency range did not best characterize state across data from all six subjects, though the ability to distinguish awake and SWS states in individual subjects was excellent. Multisegment piecewise linear fits were used to characterize scale-free slopes across the entire frequency range (0.2-200 Hz. These scale-free slopes differed between Awake and SWS states across subjects, particularly at frequencies below 10 Hz and showed little difference at frequencies above 70 Hz. A Multivariate Maximum Likelihood Analysis (MMLA method using the multisegment slope indices successfully categorized ECoG data in most subjects, though individual variation was seen. The ECoG spectrum is not well characterized by a single linear fit across a defined set of frequencies, but is best described by a set of discrete linear fits across the full range of available frequencies. With increasing computational tractability, the use of scale-free slope values to characterize EEG data will have practical value in clinical and research EEG studies.

  5. Nanomechanical characterization of thermo-mechanical properties of irradiated zirconium with consideration of temperature and microstructure

    Science.gov (United States)

    Marsh, Jonathan T.

    Zirconium (Zr) and zirconium-alloys have been utilized in the nuclear industry for decades, most commonly in nuclear fuel cladding. The characteristics which make Zr ideal for these applications include: low density, high hardness, high ductility, and high corrosion resistance. Efforts have been made to further enhance these properties through the use of Zr-alloys, such as Zircaloy-2 and Zircaloy-4, which are made up 95-99% Zr by weight, with the remaining weight percentage being made of other metals (tin, niobium, nickel, iron, chromium). The performance of these materials directly influences the efficiency of the nuclear reactor and are thus of primary concern. While the properties of these materials alone have been studied extensively, the nuclear reactor environment itself serves to degrade or enhance these properties, depending on the situation. The coupled effect of irradiation, high temperature, and microstructure is not understood. Each of these aspects uniquely influence the thermo-mechanical properties of these Zr-based materials and a better understanding of these coupled phenomena is necessary to effectively and efficiently design these nuclear reactor components. The aim of the following work is to experimentally investigate the effect of these coupled phenomena on the thermo-mechanical properties and viscoplastic response of Zr.

  6. Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys

    International Nuclear Information System (INIS)

    Highlights: • Aluminum and magnesium alloys were joined by underwater friction stir welding. • Underwater FSW was conducted to improve properties of joint with lower heat input. • Microstructures and mechanical properties of dissimilar joint were investigated. • Intermetallic compounds developed in the fracture interface were analyzed. • Fracture features of the tensile samples were analyzed. - Abstract: Formation of intermetallic compounds in the stir zone of dissimilar welds affects the mechanical properties of the joints significantly. In order to reduce heat input and control the amount and morphological characteristics of brittle intermetallic compounds underwater friction stir welding of 6013 Al alloy and AZ31 Mg alloy was carried out. Microstructures, mechanical properties, elements distribution, and the fracture surface of the joints were analyzed by optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, etc. The result shows that sound dissimilar joint with good mechanical properties can be obtained by underwater friction stir welding. Al and Mg alloys were stirred together and undergone the process of recrystallization, forming complex intercalated flow patterns in the stir zone. Tensile strength of the dissimilar joint was up to 152.3 MPa. Maximum hardness (142HV) appeared in the middle of the centerline of the specimen. Intermetallic compounds layer consisting of Al3Mg2 and Mg17Al12 formed in the Al/Mg interface and resulted in the fracture of the joint

  7. Structural characterization and dielectric properties of BaTiO3 thin films obtained by spin coating

    Directory of Open Access Journals (Sweden)

    Branimir Bajac

    2014-12-01

    Full Text Available Barium titanate thin films were prepared by spin coating deposition technique of an acetic precursor sol and sintered at 750, 900 and 1050 °C. Phase composition of the obtained thin films was characterized by X-ray diffraction and Raman spectroscopy. Their morphology was analysed by scanning electron microscopy and atomic force microscopy. Dielectric properties of thin films sintered at 750 and 900 °C were characterized by LCD device, where the influence of sintering temperature on dielectric permittivity and loss tangent was inspected. It was concluded that higher sintering temperature increases grain size and amount of tetragonal phase, hence higher relative permittivity was recorded. The almost constant relative permittivity in the measured frequency (800 Hz–0.5 MHz and temperature (25–200 °C ranges as well as low dielectric loss are very important for the application of BaTiO3 films in microelectronic devices.

  8. Gelatinized and nongelatinized corn starch/ poly(epsilon-caprolactone blends: characterization by rheological, mechanical and morphological properties

    Directory of Open Access Journals (Sweden)

    Derval S. Rosa

    2004-09-01

    Full Text Available Poly(epsilon-caprolactone/corn starch blends containing 25, 50 and 75 wt.% starch were prepared by mechanical processing and characterized by the melt flow index (MFI, tensile test and scanning electron microscopy (SEM. For comparison, starch was used in gelatinized and nongelatinized forms and was also characterized by viscography. The addition of starch to poly(epsilon-caprolactone reduced the MFI values, the tensile strength and the elongation at break, whereas the modulus increased. The reductions in the MFI and tensile properties were most evident when gelatinized starch was used. Viscography and SEM showed that starch was well gelatinized by the gelatinization process. Blends containing nongelatinized starch showed a good dispersion of starch but poor interfacial interactions.

  9. Characterization of chemical, biological and antiproliferative properties of fermented black carrot juice, shalgam

    Science.gov (United States)

    Shalgam juice is a dark red-colored and sour fermented beverage produced and consumed in Turkey. The main ingredient of shalgam juice is black carrot, which is rich in anthocyanins. In this study, commercially available shalgam juice was characterized by determining its chemical composition and anti...

  10. Synthesis, Characterization and Evaluation of Physical Properties of Biodegradable Composites from Corn Starch

    OpenAIRE

    Sanjay Kumar; Deepak Prashar

    2012-01-01

    This research paper deals with the synthesis and characterization of corn starch based composites using resorcinol-formaldehyde as cross linker. Acid, base and moisture resistance studies of the composites were also done. Moreover, biodegradation studies of the composites were also done using composting method and the different stages of the biodegradation were evaluated using scanning electron microscopy.

  11. Characterization of structural and functional properties of fish protein hydrolysates from surimi processing by-products.

    Science.gov (United States)

    Liu, Yongle; Li, Xianghong; Chen, Zhijun; Yu, Jian; Wang, Faxiang; Wang, Jianhui

    2014-05-15

    Structural and functional properties of fish protein hydrolysates with different degrees of hydrolysis (DH) from surimi processing by-products, prepared by Protamex and Alcalase, were evaluated. As the DH increased, the zeta potentials of the hydrolysates increased (p>0.05). The surface hydrophobicity of the hydrolysates was significantly affected by DH (phydrolysate with DH 10%, prepared by Protamex, contained more large protein molecules than did the others. Hydrolysis by both enzymes increased solubility to more than 65% over a wide pH range (pH 2-10). The interfacial activities of hydrolysates decreased with increasing DH (phydrolysate with DH 10%, prepared by Protamex, exhibited the best interfacial properties among all of the samples. Thermal properties were also affected by the hydrolysis. The results reveal that structures and functionalities of the hydrolysates were determined both by DH and enzyme type employed. PMID:24423557

  12. Excited State Properties of Fluorine-Substituted Hexabenzocoronene: A Quantum-Chemical Characterization

    Institute of Scientific and Technical Information of China (English)

    LI Yuan-Zuo; SUN Yu; LI Yong-Qing; MA Feng-Cai

    2006-01-01

    The first fluorine-substituted hexabenzocoronene has been synthesized and its electronic structure and optical properties have been reported [Q. Zhang, et al., Org. Lett.7 (2005) 5019]. In this letter, the electronic structure and excited state properties of the fluorine-substituted hexabenzocoronene are studied with quantum chemistry method as well as the transition and the charge difference densities. The transition densities show the orientations and strength of the dipole moments and the charge difference densities reveal the orientation and results of the intramolecular charge transfer. The calculated transition energies and oscillator strengths are consistent with the experimental data, and the theoretical results of transition and charge difference densities are valuable to understanding the excited state properties of the fluorine-substituted hexabenzocoronene.

  13. Characterization of the mechanical properties and structural integrity of T-welded connections repaired by grinding and wet welding

    International Nuclear Information System (INIS)

    This paper presents an experimental methodology to characterize the structural integrity and mechanical properties of repaired T-welded connections using in fixed offshore structures. Grinding is employed to remove localized damage like cracking and corrosion and subsequent wet welding can be used to fill the grinded material. But it is important to define the grinding depth and profile in order to maintain structural integrity during the repair. Therefore, in this work different grinding depths were performed, for damage material removal, at the weld toe of the T-welded connections. The grinding was filled by wet welding in a hyperbaric chamber, simulating three different water depths: 50 m, 70 m and 100 m. The electrodes were coated with vinilic varnish, which is cheap and easy to apply. The characterization of the mechanical properties of the T-welded connections was done with standard tensile, hardness and Charpy tests; microstructure and porosity analysis were also performed. The samples were obtained from the welded connections in regions of the wet weld beads. The test results were compared with the mechanical properties of the T-welded connections welded in air conditions performed by other authors. The results showed that the wet welding technique performed in this work produced good mechanical properties of the repaired T-welded connection. The mechanical properties, measured in wet conditions, for 6 mm grinding depth, were similar for the 3 different water depths measured in air conditions. But for 10 mm grinding depth, the values of the mechanical properties measured in wet conditions were quite lower than that for air conditions for the 3 water depths. However a porosity analysis, performed with a Scanning Electronic Microscopy (SEM), showed that the level of porosity in the resulted wet weld beads is in the range of that published in the literature and some samples revealed lower level of porosity. The main resulting microstructure was polygonal

  14. Characterization of the mechanical properties and structural integrity of T-welded connections repaired by grinding and wet welding

    Energy Technology Data Exchange (ETDEWEB)

    Terán, G., E-mail: gteran@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Cuamatzi-Meléndez, R., E-mail: rcuamatzi@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Albiter, A., E-mail: aalbiter@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Maldonado, C., E-mail: cmzepeda@umich.mx [Instituto de Investigaciones Metalúrgicas, UMSNH, PO Box 52-B, 58000, México (Mexico); Bracarense, A.Q., E-mail: bracarense@ufmg.br [UFMG Departamento de Engeharia Mecánica Belo Horizonte, MG (Brazil)

    2014-04-01

    This paper presents an experimental methodology to characterize the structural integrity and mechanical properties of repaired T-welded connections using in fixed offshore structures. Grinding is employed to remove localized damage like cracking and corrosion and subsequent wet welding can be used to fill the grinded material. But it is important to define the grinding depth and profile in order to maintain structural integrity during the repair. Therefore, in this work different grinding depths were performed, for damage material removal, at the weld toe of the T-welded connections. The grinding was filled by wet welding in a hyperbaric chamber, simulating three different water depths: 50 m, 70 m and 100 m. The electrodes were coated with vinilic varnish, which is cheap and easy to apply. The characterization of the mechanical properties of the T-welded connections was done with standard tensile, hardness and Charpy tests; microstructure and porosity analysis were also performed. The samples were obtained from the welded connections in regions of the wet weld beads. The test results were compared with the mechanical properties of the T-welded connections welded in air conditions performed by other authors. The results showed that the wet welding technique performed in this work produced good mechanical properties of the repaired T-welded connection. The mechanical properties, measured in wet conditions, for 6 mm grinding depth, were similar for the 3 different water depths measured in air conditions. But for 10 mm grinding depth, the values of the mechanical properties measured in wet conditions were quite lower than that for air conditions for the 3 water depths. However a porosity analysis, performed with a Scanning Electronic Microscopy (SEM), showed that the level of porosity in the resulted wet weld beads is in the range of that published in the literature and some samples revealed lower level of porosity. The main resulting microstructure was polygonal

  15. Spin glass: thermal properties and characterization of the ± J Sherrington-Kirkpatrick model partition function zeros

    International Nuclear Information System (INIS)

    A detailed study of the S-K model through the analysis of the zeros of the partition function in the complex temperature plane is performed. By the exact way, the notable thermodynamical properties of the system to a variety of the length (N=5→25 spins) are calculated, using only standards concepts (without the use of tricks like that of replicas). Dilute models had been also considered. The principal result of this work is the characterization of the zeros of the partition function of the S-K model. (author)

  16. Synthesis, characterization, photo and physicochemical properties of 11-mercaptoundecanoic acid and tetraaniline capped CdS quantum dots

    International Nuclear Information System (INIS)

    Surface modification of quantum dots (QDs) for improved photo and physicochemical properties is a topic of potential technological interest. Herein, we report on the synthesis of aggregation free 11-mercaptoundecanoic acid and tetraaniline (TA) capped CdS QDs with narrow size distribution (∼2.3 nm diameter), which are further characterized using UV-visible spectroscopy, photoluminescence spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The TA capped CdS QDs show improved photoluminescence and photostability, which is attributed to the effective grafting of TA on CdS QDs through N-atoms, changing the surface chemical environment and facilitating charge transfer.

  17. Synthesis, characterization, photo and physicochemical properties of 11-mercaptoundecanoic acid and tetraaniline capped CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Yin [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Ghule, Anil Vithal, E-mail: anighule@gmail.com [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chang, Jia-Yaw; Chen, Bo-Jung; Liu, Jen-Yu; Tzing, Shin-Hwa [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Ling, Yong-Chien, E-mail: ycling@mx.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2010-10-01

    Surface modification of quantum dots (QDs) for improved photo and physicochemical properties is a topic of potential technological interest. Herein, we report on the synthesis of aggregation free 11-mercaptoundecanoic acid and tetraaniline (TA) capped CdS QDs with narrow size distribution ({approx}2.3 nm diameter), which are further characterized using UV-visible spectroscopy, photoluminescence spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The TA capped CdS QDs show improved photoluminescence and photostability, which is attributed to the effective grafting of TA on CdS QDs through N-atoms, changing the surface chemical environment and facilitating charge transfer.

  18. Preparation and characterization of electrospun poly(phthalazinone ether nitrile ketone) membrane with novel thermally stable properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Zhang, Hao; Qian, Bingqing [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Wang, Jinyan, E-mail: wangjinyan@dlut.edu.cn [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116024 (China); Jian, Xigao [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116024 (China); Qiu, Jieshan, E-mail: jqiu@dlut.edu.cn [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2015-10-01

    Highlights: • Poly (phthalazinone ether nitrile ketone) (PPENK) was used to successfully prepare nanofiber membranes by electrospinning. • Electrospun membrane exhibits a good thermostability. • Electrospun membrane. - Abstract: Electrospun nanofibrous membranes have several applications because of their excellent properties, such as high porosity, small fiber diameter, and large surface area. However, high-temperature resistant electrospun membranes remain a challenge because of the absence of precursors that offer spinnability, scalability, and superior thermal stability. In this study, poly(phthalazinone ether nitrile ketone) (PPENK) was used to successfully prepare nanofiber membranes by electrospinning. Electrospun PPENK membranes were characterized by scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile stress–strain tests. Results indicated that the prepared electrospun membranes had a very high glass transition temperature, superior chemical resistance, and excellent mechanical strength. These desirable properties broaden their potential application in membranes and treatment of various hot fluid streams without strict temperature control.

  19. Characterization of combustion properties of black liquor by gas-liquid chromatography; Mustalipeaen poltto-ominaisuuksien karakterisointi kaasukromatografian avulla

    Energy Technology Data Exchange (ETDEWEB)

    Alen, R.; Barck, M.; Liukkonen, S.; Louhelainen, J. [Jyvaeskylae Univ. (Finland). Dept. of Chemistry

    1995-11-01

    A new idea of characterizing the combustion properties (burning time and swelling) of black liquor is presented in this paper. It is based on detailed analysis low-molecular-mass degradation products (aliphatic carboxylic acids and ligninmonomers) derived from wood feedstock. The complex mixture of these substances can be resolved into single components by using gas chromatography (GC). The method is theoretically based on the fact that the concentration some of these low-molecular-mass constituents and the combustion properties of black liquor are both systematically changing as the cook proceeds. For this reason, the combustion behavior of black liquors from the different stage delignification can be predicted with reasonable accurance on the basis of the GLC data. The preliminary tests performed with the kraft black liquors from conventional lab-scale cooking of softwood and hardwood look promising. (author)

  20. Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera

    Energy Technology Data Exchange (ETDEWEB)

    Papi, M. [Institute of Physics, Università Cattolica del Sacro Cuore, Largo F.Vito 1, 00168 Rome (Italy); Paoletti, P. [Centre for Engineering Dynamics, School of Engineering, Brownlow Hill, Liverpool, L69 3GH (United Kingdom); Geraghty, B.; Akhtar, R. [Centre for Materials and Structures, School of Engineering, Brownlow Hill, Liverpool, L69 3GH (United Kingdom)

    2014-03-10

    We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We examine variations in the collagen fibril diameter, adhesion, elastic modulus and dissipation in the posterior, equatorial and anterior regions of the sclera. The mean fibril diameter, elastic modulus and dissipation increased from the posterior to the anterior region. Collagen fibril diameter correlated linearly with elastic modulus. Our data matches the known macroscopic mechanical behavior of the sclera. We propose that PFQNM has significant potential in ocular biomechanics and biophysics research.

  1. Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment

    OpenAIRE

    Trivedi, Mahendra; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal

    2015-01-01

    Chromium (VI) oxide (CrO3) has gained extensive attention due to its versatile physical and chemical properties. The objective of the present study was to evaluate the impact of biofield treatment on physical, thermal and structural properties of CrO3 powder. In this study, CrO3 powder was divided into two parts i.e. control and treatment. Control part was remained as untreated and treated part received Mr. Trivedi’s biofield treatment. Subsequently, control and treated CrO3 samples were char...

  2. Characterization of Oligomeric and Kinetic Properties of Tomato Thymidine Kinase 1

    DEFF Research Database (Denmark)

    Mutahir, Zeeshan; Larsen, Nicolai Balle; Andersson, Karl-Magnus;

    2011-01-01

    The gene encoding thymidine kinase 1 from tomato (toTK1) has in combination with azidothymidine (AZT) recently been proposed as a powerful suicide gene for anticancer gene therapy. The toTK1/AZT combination has been demonstrated to have several advantages for the treatment of glioblastomas because...... AZT can easily penetrate the blood–brain barrier and toTK1 can efficiently phosphorylate AZT and also AZT-monophosphate. In a pursuit to further understand the properties of toTK1, we examined the oligomerization properties of recombinant toTK1 and its effect on enzyme kinetics. Previously, it has...

  3. Implementing ground surface deformation tools to characterize field-scale properties of a fractured aquifer during a short hydraulic test

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane

    2016-04-01

    In naturally fractured reservoirs, fluid flow is governed by the structural and hydromechanical properties of fracture networks or conductive fault zones. In order to ensure a sustained exploitation of resources or to assess the safety of underground storage, it is necessary to evaluate these properties. As they generally form highly heterogeneous and anisotropic reservoirs, fractured media may be well characterized by means of several complementary experimental methods or sounding techniques. In this framework, the observation of ground deformation has been proved useful to gain insight of a fractured reservoir's geometry and hydraulic properties. Commonly, large conductive structures like faults can be studied from surface deformation from satellite methods at monthly time scales, whereas meter scale fractures have to be examined under short-term in situ experiments using high accuracy intruments like tiltmeters or extensometers installed in boreholes or at the ground's surface. To the best of our knowledge, the feasability of a field scale (~ 100 m) characterization of a fractured reservoir with geodetic tools in a short term experiment has not yet been addressed. In the present study, we implement two complementary ground surface geodetic tools, namely tiltmetry and optical leveling, to monitor the deformation induced by a hydraulic recovery test at the Ploemeur hydrological observatory (France). Employing a simple purely elastic modeling approach, we show that the joint use of time constraining data (tilt) and spatially constraining data (vertical displacement) makes it possible to evaluate the geometry (dip, root depth and lateral extent) and the storativity of a hydraulically active fault zone, in good agreement with previous studies. Hence we demonstrate that the adequate use of two complementary ground surface deformation methods offer a rich insight of large conductive structure's properties using a single short term hydraulic load. Ground surface

  4. Preparation, characterization and latent heat thermal energy storage properties of micro-nanoencapsulated fatty acids by polystyrene shell

    International Nuclear Information System (INIS)

    This work deals with the synthesis, physico-chemical characterization and latent heat thermal energy storage (LHTES) properties of micro-nanoencapsulated capric, lauric and myristic acids with polystyrene (PS) by using emulsion polymerization method. In synthesized micro-nanocapsules, the fatty acid has a function of phase change material (PCM) while PS acts as a shell material. The micro-nanoencapsulated PCMs (M-NEPCMs) were characterized chemically and morphologically by using Fourier transform infrared (FT-IR) spectroscopy, particle size distribution (PSD), and polarized optical microscopy (POM) and scanning electron microscopy (SEM) analyses methods. Differential scanning calorimeter (DSC) analysis showed that the fabricated M-NEPCMs melt and freeze in the temperature range of 22–48 °C and 19–49 °C as they storage and release a latent heat in range of 87–98 J/g and (−84) J/g–(−96) J/g. The M-NEPCMs were subjected to a thermal cycling test consisted with 5000 heating/cooling processes and the results revealed that their LHTES properties were changed slightly. The M-NEPCMs had good thermal durability and reasonable thermal conductivity values. These advantageous properties make them potential LHTES materials for thermal regulating, solar heat pumps and solar space heating–cooling applications in buildings. - Graphical abstract: This work is focused on the synthesis, physico-chemical characterization and determination of latent heat thermal energy storage (LHTES) properties of micro-nanoencapsulated some fatty acids (capric, lauric and myristic acids) with polystyrene (PS) by using emulsion polymerization method. The obtained all results that the prepared M-NEPCMs have high potential for different thermal energy storage systems due to their good LHTES and morphological properties, thermal and chemical stability. - Highlights: • The chemical structures of the M-NEPCMs were verified using FTIR spectroscopy. • The prepared spherical capsules

  5. Spatial characterization of soil properties and influence in soil formation in oak-grassland of Sierra Morena, S Spain

    Science.gov (United States)

    Román-Sánchez, Andrea; Cáceres, Francisco; Pédèches, Remi; Giráldez Cervera, Juan Vicente; Vanwalleghem, Tom

    2016-04-01

    The Mediterranean oak-grassland ecosystem is very important for the rural economy and for the biodiversity of south-western European countries like Spain and Portugal. Nevertheless these ecosystems are not well characterized especially their soils. In this report soil carbon has been evaluated and related to other properties. The principal factors controlling the structure, productivity and evolution of forest ecosystems are bedrock, climate, relief, vegetation and time. Soil carbon has an important influence in the soil and ecosystem structures. The purpose of this study is to determine the relationship between relief, soil properties, spatial distribution of soil carbon and their influence in soil formation and geomorphology. This work is part of another study which aims to elucidate the processes involved in the soil formation and to examine their behaviour on long-term with a modelling. In our study area, located in oak-grassland of Sierra Morena, in Cordoba, S Spain, have been studied 67 points at 6 depths in 262 hectares in order to determine carbon content varying between 0-6%, soil properties such as soil depth between 0-4 m, horizon depth and the rocks amount in surface. The relationship between the soil carbon, soil properties and the relief characteristic like slope, aspect, curvature can shed light the processes that affect the mechanisms of bedrock weathering and their interrelationship with geomorphological processes.

  6. Thermophysical properties and corrosion characterization of low cost lithium containing nitrate salts produced in northern Chile for thermal energy storage

    Science.gov (United States)

    Fernández, Ángel G.; Gomez, Judith C.; Galleguillos, Hector; Fuentealba, Edward

    2016-05-01

    In recent years, lithium containing salts have been studied for thermal energy storage (TES) systems applications, because of their optimal thermophysical properties. In solar power plants, lithium is seen as a way to improve the properties of molten salts used today. Lithium nitrate is a good candidate for sensible heat storage, due to its ability to increase the salt mixture's working temperature range. In the present research, thermophysical properties characterization of lithium nitrate containing salts, produced in Chile, have been carried out. Corrosion evaluations of carbon and low chromium steels were performed at 390°C for 1000 hours. Thermophysical properties of the salt mixtures, such as thermal stability and heat capacity, were measured before and after corrosion tests. Chemical composition of the salts was also determined and an estimation of Chilean production costs is reported. Results showed that purity, thermal stability and heat capacity of the salts were reduced, caused by partial thermal decomposition and incorporation of corrosion products from the steel.

  7. Thermophysical Properties and Corrosion Characterization of Low Cost Lithium Containing Nitrate Salts Produced in Northern Chile for Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Angel G.; Gomez, Judith C.; Galleguillos, Hector; Fuentealba, Edward

    2016-05-31

    In recent years, lithium containing salts have been studied for thermal energy storage (TES) systems applications, because of their optimal thermophysical properties. In solar power plants, lithium is seen as a way to improve the properties of molten salts used today. Lithium nitrate is a good candidate for sensible heat storage, due to its ability to increase the salt mixture's working temperature range. In the present research, thermophysical properties characterization of lithium nitrate containing salts, produced in Chile, have been carried out. Corrosion evaluations of carbon and low chromium steels were performed at 390 degrees C for 1000 hours. Thermophysical properties of the salt mixtures, such as thermal stability and heat capacity, were measured before and after corrosion tests. Chemical composition of the salts was also determined and an estimation of Chilean production costs is reported. Results showed that purity, thermal stability and heat capacity of the salts were reduced, caused by partial thermal decomposition and incorporation of corrosion products from the steel.

  8. Characterization of in Vitro Pharmacokinetic Properties of Hoodigogenin A from Hoodia gordonii

    Science.gov (United States)

    This study was aimed to determine ADME properties of Hoodigogenin A, which is aglycone of oxypregnane steroidal glycoside P57AS3 (P57) isolated from Hoodia gordonii. A series of in vitro assays were used to predict its gastric, intestinal and metabolic stability, intestinal and blood brain barrier (...

  9. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging.

    Science.gov (United States)

    Maïsetti, Olivier; Hug, François; Bouillard, Killian; Nordez, Antoine

    2012-04-01

    The passive elastic properties of a muscle-tendon complex are usually estimated from the relationship between the joint angle and the passive resistive torque, although the properties of the different structures crossing the joint cannot be easily assessed. This study aimed to determine the passive mechanical properties of the gastrocnemius medialis muscle (GM) using supersonic shear imaging (SSI) that allows the measurement of localized muscle shear modulus (μ). The SSI of the GM was taken for 7 subjects during passive ankle dorsiflexion at a range of knee positions performed on an isokinetic dynamometer. The relationship between normalized μ and the length of the gastrocnemius muscle-tendon units (GMTU) was very well fitted to an exponential model (0.944knee fully extended was calculated. The μ-length relationship was highly correlated with the force-length (0.964knee extended were similar to that reconstructed from all knee angles and displayed good intra-session reliability (for α, SEM: 9.7 m(-1); CV: 7.5%; ICC: 0.652; for l(0), SEM: 0.002 m; CV: 0.4%; ICC: 0.992). These findings indicate that SSI may provide an indirect estimation of passive muscle force, and highlight its clinical applicability to evaluate the passive properties of mono- and bi-articular muscles.

  10. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Science.gov (United States)

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.-M.

    2013-07-01

    Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2) and the main hydrates of the cement paste (portlandite and C-S-H). Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation). This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions) at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  11. Characterization of system theoretic properties for a class of spatially invariant systems

    NARCIS (Netherlands)

    Fatmawati,; Zwart, Hans; El Jai, A.; Afifi, L.; Zerrik, E.

    2009-01-01

    This paper considers the analysis of the system properties stability and stabilizability for a class of spatially distributed systems on a two-dimensional spatial domain. Using the Fourier transform on the spatial variables, we obtain a mathematically simpler infinite dimensional system. The analysi

  12. Characterization of real gas properties for space shuttle main engine fuel turbine and performance calculations

    Science.gov (United States)

    Harloff, G. J.

    1986-01-01

    Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbine. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K, and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.

  13. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites.

    Science.gov (United States)

    Luo, Juhua; Shen, Pan; Yao, Wei; Jiang, Cuifeng; Xu, Jianguang

    2016-12-01

    Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2-18 GHz. The value of the maximum RL was -45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials. PMID:26969594

  14. Isolation, Characterization, and Surfactant Properties of the Major Triterpenoid Glycosides from Unripe Tomato Fruits

    NARCIS (Netherlands)

    Yamanaka, T.; Vincken, J.P.; Waard, de P.; Sanders, M.G.; Takada, N.; Gruppen, H.

    2008-01-01

    Various triterpenoid glycosides were extracted from whole unripe tomato fruits (Lycopersicon esculentum cv. Cedrico), using aqueous 70% (v/v) ethanol to study their surfactant properties. Cation-exchange chromatography using a Source 15S column and subsequent semipreparative HPLC using an XTerra RP1

  15. Use of an integrated approach to characterize the physicochemical properties of foundry green sands

    Science.gov (United States)

    A fresh green sand, spent green sand, and a weathered spent green sand from a landfill were analyzed using diffractometry, electron microscopy, granulometry, spectrometry, and thermogravimetry. Our objective was to understand how the physicochemical properties of the green sands change from their o...

  16. Impact of carbonation on the durability of cementitious materials: Water transport properties characterization

    International Nuclear Information System (INIS)

    Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2) and the main hydrates of the cement paste (portlandite and C-S-H). Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation). This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions) at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated. (authors)

  17. One step forward toward characterization: some important material properties to distinguish biochars.

    Science.gov (United States)

    Schimmelpfennig, Sonja; Glaser, Bruno

    2012-01-01

    Terra Preta research gave evidence for the positive influence of charred organic material (biochar) on infertile tropical soils. Facing global challenges such as land degradation, fossil energy decline, water shortage, and climate change, the use of biochar as a soil amendment embedded into regional matter cycles seems to provide an all-round solution. However, little is known about biochar effects on individual ecosystem processes. Besides, the term is used for a variety of charred products. Therefore, the aim of this study was to investigate principal material properties of different chars to establish a minimum set of analytical properties and thresholds for biochar identification. For this purpose, chars from different production processes (traditional charcoal stack, rotary kiln, Pyreg reactor, wood gasifier, and hydrothermal carbonization) were analyzed for physical and chemical properties such as surface area, black carbon, polycyclic aromatic hydrocarbons, and elemental composition. Our results showed a significant influence of production processes on biochar properties. Based on our results, to identify biochar suitable for soil amendment and carbon sequestration, we recommend using variables with the following thresholds: O/C ratio 15% C, polyaromatic hydrocarbons lower than soil background values, and a surface area >100 m g. PMID:22751042

  18. Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties

    NARCIS (Netherlands)

    Richter, Alexander P.; Bharti, Bhuvnesh; Armstrong, Hinton B.; Brown, Joseph S.; Plemmons, Dayne; Paunov, Vesselin N.; Stoyanov, Simeon D.; Velev, Orlin D.

    2016-01-01

    Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and

  19. Synthesis and Characterization of Biodegradable Lignin Nanoparticles with Tunable Surface Properties.

    Science.gov (United States)

    Richter, Alexander P; Bharti, Bhuvnesh; Armstrong, Hinton B; Brown, Joseph S; Plemmons, Dayne; Paunov, Vesselin N; Stoyanov, Simeon D; Velev, Orlin D

    2016-06-28

    Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and Organosolv (high-purity lignin). The green synthesis process is based on flash precipitation of dissolved lignin polymer, which enabled the formation of nanoparticles in the size range of 45-250 nm. The size evolution of the two types of lignin particles is fitted on the basis of modified diffusive growth kinetics and mass balance dependencies. The surface properties of the nanoparticles are fine-tuned by coating them with a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). We analyze how the colloidal stability and dispersion properties of these two types of nanoparticles vary as a function of pH and salinities. The data show that the properties of the nanoparticles are governed by the type of lignin used and the presence of polyelectrolyte surface coating. The coating allows the control of the nanoparticles' surface charge and the extension of their stability into strongly basic regimes, facilitating their potential application at extreme pH conditions. PMID:27268077

  20. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2 and the main hydrates of the cement paste (portlandite and C-S-H. Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation. This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  1. Synthesis, characterization, and catalytic properties of stable mesoporous molecular sieve MCM-41 prepared from zeolite mordenite

    International Nuclear Information System (INIS)

    Mesoporous molecular sieves (denoted as M-MCM-41) with ordered hexagonal structure have been successfully synthesized from the assembly of precursors from preformed zeolite Mordenite with CTAB surfactant micelle in alkaline media. The samples were characterized by XRD, N2 adsorption, IR and DTG. The materials exhibit highly hydrothermal stability, as compared with conventional MCM-41. Characterization results indicate that the mesoporous walls of M-MCM-41 contain the secondary building units similar to those in microporous crystal of zeolite Mordenite. In catalytic dealkylation of C10+ aromatic hydrocarbon, M-MCM-41 shows higher activities in comparison with Mordenite and MCM-41, which would be ascribed to the combination of advantages of both MCM-41 (large pores) and Mordenite (strong acidity). Furthermore, this synthesis strategy could be used as a new general method for the preparation of hydrothermally stable mesoporous aluminosilicate materials under alkaline conditions

  2. Synthesis and Characterization of Imide Containing Hybrid Epoxy Resin with Improved Mechanical and Thermal Properties

    OpenAIRE

    Rane, U. G.; Sabnis, A. A.; Shertukde, V. V.

    2014-01-01

    Phosphorous containing amine, tripropyldiamine phosphine oxide (TPDAP), and hybrid monomer 4-(N-phthalimidophenyl) glycidylether (PPGE) were synthesized and characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis (EDX). PPGE was incorporated in bisphenol A epoxy resin (BPA) in various concentrations (5% to 20%), based on a weight percentage of BPA resin. Curing was carried out with the stoichiometric amount of TPDA...

  3. Preparation, Characterization, and Photocatalytic Property of C u O - T i O Nanocomposites

    OpenAIRE

    Li, Longfeng; Zhang, Maolin

    2012-01-01

    The Cu2O-TiO2 nanocomposites were successfully synthesized by the homogeneous hydrolysation, followed by the solvothermal crystallization and ethylene glycol-thermal reduction process, respectively. The obtained products were characterized by means of X-ray diffraction(XRD), Uv-vis diffuse reflectance spectroscopy, laser particle size analysis, and scanning electron microscopy (SEM), respectively. The photocatalytic performance of Cu2O-TiO2 nanocomposites was evaluated by the degradation of m...

  4. Preparation, Characterization, and Photocatalytic Property of CuO-TiO Nanocomposites

    OpenAIRE

    Longfeng Li; Maolin Zhang

    2012-01-01

    The Cu2O-TiO2 nanocomposites were successfully synthesized by the homogeneous hydrolysation, followed by the solvothermal crystallization and ethylene glycol-thermal reduction process, respectively. The obtained products were characterized by means of X-ray diffraction(XRD), Uv-vis diffuse reflectance spectroscopy, laser particle size analysis, and scanning electron microscopy (SEM), respectively. The photocatalytic performance of Cu2O-TiO2 nanocomposites was evaluated by the degrad...

  5. Characterization and Emulsification Properties of Rhamnolipid and Sophorolipid Biosurfactants and Their Applications

    OpenAIRE

    Nguyen, Thu T.; Sabatini, David A.

    2011-01-01

    Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extrac...

  6. Airborne in situ characterization of dry aerosol optical properties in a multisource influenced marine region

    OpenAIRE

    Targino, Admir C.; Noone, Kevin J.; Öström, Elisabeth

    2011-01-01

    In situ data from the 2nd Aerosol Characterization Experiment (ACE-2) were used to describe the aerosol opticalproperties in a marine environment perturbed by continental sources, such as the outflow of European aerosol and dustoutbreaks from North Africa. The data consist of airborne measurements made with an integrating nephelometer andabsorption photometer.The cases investigated in theACE-2 experiment included vertical profiles flown in dusty, polluted and clean airmasses.While it was poss...

  7. Characterizations of gamma-AG^{**}-groupoids by the properties their gamma-ideals

    CERN Document Server

    Khan, Madad; Rehman, Inayatur

    2010-01-01

    In this paper we have discusses {\\Gamma}-left, {\\Gamma}-right, {\\Gamma}-bi-, {\\Gamma}-quasi-, {\\Gamma}-interior and {\\Gamma}-ideals in {\\Gamma}-AG^{**}-groupoids and regular {\\Gamma}-AG^{**}-groupoids. Moreover we have proved that the set of {\\Gamma}-ideals in a regular {\\Gamma}-AG^{**}-groupoid form a semilattice structure. Also we have characterized a regular {\\Gamma}-AG^{**}-groupoid in terms of left ideals.

  8. Synthesis, characterization and antibacterial properties of multifunctional hindered amine light stabilizers

    Institute of Scientific and Technical Information of China (English)

    Yi Deng; Wei Chen; Tao Yu; Li Gong Chen; Fang Liu; Chun Wei Xin

    2008-01-01

    A series of novel hindered amine light stabilizers containing an N-halamine moiety were designed and synthesized. Their structures were characterized by FT-IR, 1H NMR, and MS. The compounds were tested for antibacterial activity against Candida albicans, Staphylococcus aureus, and Escherichia coli. At a concentration of 0.5 retool/L, these compounds all exhibited satisfactory antibacterial activity against all the three types of bacteria.

  9. Production, characterization, and mechanical properties of starch modified by Ophiostoma spp.

    OpenAIRE

    Saville, B. A.; Sain, M.; Jeng, R.; Huang, C. B.; Hubbes, M.

    2006-01-01

    Microbial modification of starch with Ophiostoma spp. was investigated, with the purpose of developing a novel packaging material for the food or pharmaceutical industries. Various starch sources, such as tapioca, potato, corn, rice and amylopectin were tested as raw materials. The initial screening demonstrated that tapioca and potato starch had better performance for biopolymer production. The yield was about 85%. Preliminary characterization of the modified biopolymer was also conducted. F...

  10. Characterization of phenolic compounds and antioxidant properties of Glycyrrhiza glabra L. rhizomes and roots

    OpenAIRE

    Martins, Natália; Barros, Lillian; Dueñas, Montserrat; Santos-Buelga, Celestino; Ferreira, Isabel C.F.R.

    2015-01-01

    The present work aims to characterize and quantify the phenolic composition and to evaluate the antioxidant activity of Glycyrrhiza glabra L. (commonly known as licorice) rhizomes and roots. The antioxidant potential of its methanol/water extract could be related with flavones (mainly apigenin derivatives), flavanones (mainly liquirintin derivatives), a methylated isoflavone and a chalcone, identified in the extract. Lipid peroxidation inhibition was the most pronounced antioxidant effect (EC...

  11. Synthesis and Characterization of Novel Chiral Ionic Liquids and Investigation of their Enantiomeric Recognition Properties

    OpenAIRE

    Bwambok, David K.; Hadi M Marwani; Fernand, Vivian E.; FAKAYODE, SAYO O.; Lowry, Mark; Negulescu, Ioan; Robert M Strongin; Warner, Isiah M.

    2008-01-01

    We report the synthesis and characterization of amino acid ester based chiral ionic liquids, derived from L- and D-alanine tert butyl ester chloride. The synthesis was accomplished via an anion metathesis reaction between commercially available L-and D-alanine tert butyl ester chloride using a variety of counterions such as lithium bis (trifluoromethane) sulfonimide, silver nitrate, silver lactate, and silver tetrafluoroborate. Both enantiomeric forms were obtained as confirmed by bands of op...

  12. Computer signal processing for ultrasonic attenuation and velocity measurements for material property characterizations

    Science.gov (United States)

    Vary, A.

    1979-01-01

    This report deals with instrumentation and computer programming concepts that have been developed for ultrasonic materials characterization. Methods that facilitate velocity and attenuation measurements are described. The apparatus described is based on a broadband, buffered contact probe using a pulse-echo approach for simultaneously measuring velocity and attenuation. Instrumentation, specimen condition, and signal acquisition and acceptance criteria are discussed. Typical results with some representative materials are presented.

  13. Microstructural characterization of the chemomechanical behavior of asphalt in terms of aging and fatigue performance properties

    Science.gov (United States)

    Allen, Robert Grover

    The study of asphalt chemo-mechanics requires a basic understanding of the physical properties and chemical composition of asphalt and how these properties are linked to changes in performance induced by chemical modifications. This work uniquely implements the framework of chemo-mechanics by investigating two types of chemical modification processes, natural (oxidative aging) and synthetic (chemical doping) as they relate not only to macro-scale properties of asphalt binder but also to the asphalt microstructure and nanorheology. Furthermore, this study demonstrates the application of atomic force microscopy (AFM) imaging and the extraction of nano-scale engineering properties, i.e. elastic modulus, relaxation modulus, and surface energy, as a method to predict performance related to the fatigue characteristics of asphalt binders by modeling intrinsic material flaws present amongst phase interfaces. It was revealed that oxidative aging induces substantial microstructural changes in asphalt, including variations in phase structure, phase properties, and phase distribution. It has also been shown that certain asphalt chemical parameters have a consistent and measureable effect on the asphalt microstructure that is observed with AFM. In fact, particular phases that emerged via chemical doping revealed a surprising correlation between oxidative aging and the saturates chemical parameter of asphalt in terms of how they explicitly impact durability and performance of asphalt. By implementing a crack initiation model---which requires measureable microstructural characteristics as an input parameter---it was found that microstructural flaws (depending on the extremity) can have a more profound impact on asphalt performance than the properties of the material located between the flaws. It was also discovered by comparing the findings to performance data in the Strategic Highway Research Program's (SHRP's) Materials Reference Library (MRL), that the crack initiation model

  14. Characterization of the Microstructure, Fracture, and Mechanical Properties of Aluminum Alloys 7085-O and 7175-T7452 Hollow Cylinder Extrusions

    Science.gov (United States)

    Benoit, Samuel G.; Chalivendra, Vijaya B.; Rice, Matthew A.; Doleski, Robert F.

    2016-06-01

    Microstructural, tensile, and fracture characterizations of cylindrically forged forms of aluminum alloys AA7085-O and AA7175-T7452 were performed. Mechanical and fracture properties were investigated along radial, circumferential, and longitudinal directions to determine directional dependency. American Society for Testing and Materials (ASTM) test methods (ASTM E8-04 and ASTM E1820) were employed for both the tensile and fracture characterizations, respectively. The tensile and fracture properties were related to microstructure in each direction. The strength, elongation at break, and ultimate tensile strength of AA7085-O were higher than those of AA7175-T7452. AA7175-T7452 alloy failed in a brittle manner during fracture studies. AA7085-O outperformed AA7175-T7452 on fracture energy in all of the orientations studied. Smaller grain sizes on the planes normal to circumferential and longitudinal directions showed improvement in both elongation at break and fracture energy values compared to those of radial direction. Scanning electron microscopy images demonstrated cleavage fracture in AA7175-T7452 and transgranular fracture in AA7085-O.

  15. Structure and Properties Characterization of Ceramic Coatings Produced on Steel Using a Combined Technique

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Metallurgically bonded ceramic coatings were prepared on a steel surface with a combined method of arc spraying and micro-arc oxidation for the first time. Coatings were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Point and line distribution of elements of the ceramic coatings were determined using energy dispersive spectroscopy (EDS). Coatings abrasive wear resistance, corrosion resistance and hot impact property were assessed respectively. The property test results show that metallurgically bonded ceramic coatings were formed on aluminum coatings and the ceramic coatings is mainly composed of α-Al2O3、γ-Al2O3、θ-Al2O3 and a little amorphous. The coatings possess excellent abrasive wear, corrosion and hot shock resistance, which can in part be attributed to the gradual distribution of different phases from surface to the substrate.

  16. In Vitro Urethra Model to Characterize The Frictional Properties of Urinary Catheters

    DEFF Research Database (Denmark)

    Røn, Troels; Lee, Seunghwan

    2016-01-01

    Surface lubricity is one of the most important properties required for biomaterials or biomedical devices where tribological contacts with biological tissues are expected. While standard tribological techniques can provide sufficiently meaningful pre-clinical screening of their surface slipperine...... of sliding contacts with the urethra model with unlubricated and lubricated catheters were determined. Impact of the improved bio-relevance of friction testing methods on the evaluation of various catheter materials and surface modification methods is discussed in detail.......Surface lubricity is one of the most important properties required for biomaterials or biomedical devices where tribological contacts with biological tissues are expected. While standard tribological techniques can provide sufficiently meaningful pre-clinical screening of their surface slipperiness...... conformal sliding contacts with the catheter and high relevance to clinical catherization. With the proposed urethra model assembled in texture analyzer, the lubricity of catheters lubricated in different modes was tested. In comparison with conventional pin-on-disk tribometry, the coefficients of friction...

  17. Structure and Properties Characterization of Ceramic Coatings Produced on Steel Using a Combined Technique

    Institute of Scientific and Technical Information of China (English)

    SHENDe-jiu; WANGYu-lin; GUWei-chao; XINGGuang-zhong

    2004-01-01

    Metallurgically bonded ceramic coatings were prepared on a steel surface with a combined method of arc spraying and micro-arc oxidation for the first time. Coatings were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Point and line distribution of elements of the ceramic coatings were determined using energy dispersive spectroscopy (EDS). Coatings abrasive wear resistance, corrosion resistance and hot impact property were assessed respectively. The property test results show that metallurgically bonded ceramic coatings were formed on aluminum coatings and the ceramic coatings is mainly composed of α-Al2O3, γ-Al2O3, θ-Al2O3 and a little amorphous. The coatings possess excellent abrasive wear, corrosion and hot shock resistance, which can in part be attributed to the gradual distribution of different phases from surface to the substrate.

  18. Structural Characterization and Infrared and Electrical Properties of the New Inorganic-Organic Hybrid Compound

    Directory of Open Access Journals (Sweden)

    A. Oueslati

    2013-01-01

    Full Text Available New inorganic-organic hybrid [(C3H74N]2Hg2Cl6 compound was obtained and characterised by single-crystal X-ray diffraction, infrared, and impedance spectroscopy. The latter crystallizes in the monoclinic system (space group C 2/c, with the following unit cell dimensions: (1 Å, (6 Å, (2 Å, and (2. Besides, its structure was solved using 84860 independent reflections leading to . Electrical properties of the material were studied using impedance spectroscopic technique at different temperatures in the frequency range of 209 Hz to 5 MHz. Detailed analysis of the impedance spectrum suggested that the electrical properties of the material are strongly temperature-dependent. The Nyquist plots clearly showed the presence of bulk and grain boundary effect in the compound.

  19. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF$_4$ nanoparticles

    Indian Academy of Sciences (India)

    JIGMET LADOL; HEENA KHAJURIA; SONIKA KHAJURIA; HAQ NAWAZ SHEIKH

    2016-08-01

    Nanoparticles of sodium lanthanum (III) fluoride-doped and co-doped with Eu$^{3+}/Tb$^{3+}$ were prepared by the hydrothermal method using citric acid as structure-directing agent. Structural aspects and optical properties of synthesized nanoparticles were studied by powder X-ray diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectra (EDS), particle size by dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectrum and photoluminescence (PL) techniques. Nanoparticles consist of well-crystallized hexagonal phase and the average crystallite size for undoped and doped-NaLaF$_4$ nanoparticles are in the range of 20–22 nm. TEM images show that nanoparticles have cylindrical shape and crystalline nature of nanoparticles was confirmed by SAED patterns. Downconversion(DC) luminescent properties of doped NaLaF4 were also investigated and impact of co-doping has been explored.

  20. Characterization of the mechanical properties of tough biopolymer fibres from the mussel byssus of Aulacomya ater.

    Science.gov (United States)

    Troncoso, O P; Torres, F G; Grande, C J

    2008-07-01

    Byssus fibres are tough biopolymer fibres produced by mussels to attach themselves to rocks. In this communication, we present the mechanical properties of the byssus from the South American mussel Aulacomya ater which have not been previously reported in the literature. The mechanical properties of the whole threads were assessed by uniaxial tensile tests of dry and hydrated specimens. Elastoplastic and elastomeric stress-strain curves were found for byssal threads from A. ater in the dry and hydrated state, respectively. The results obtained from mechanical tests were modelled using linear, power-law-type and Mooney-Rivlin relationships. These methods for dealing with tensile measurements of mussel byssus have the potential to be used with other stretchy biomaterials. PMID:18321800

  1. Maillard Reaction in Natural Rubber Latex: Characterization and Physical Properties of Solid Natural Rubber

    Directory of Open Access Journals (Sweden)

    S. Montha

    2016-01-01

    Full Text Available Maillard reaction in Natural Rubber (NR latex was investigated by treating fresh NR latex with glutaraldehyde (C5H8O2 in amounts of 0, 50, 100, and 200 mmol/kg of latex. Protein cross-linking in fresh NR latex and solid NR was confirmed by using sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE and attenuated total reflection infrared (ATR-IR spectroscopy, respectively. It was found that degree of protein cross-linking in NR increased with increasing C5H8O2 concentration. Physical properties of untreated and treated NR substances in terms of gel content, initial Wallace plasticity (P0, plasticity retention index (PRI, Mooney viscosity, and tensile strength were carefully explored. Results clearly showed that the Maillard cross-linking of proteins had remarkable effect on bulk NR properties, that is, solvent resistance, hardness, resistance to oxidation, rheological behavior, and resistance to stretching out.

  2. Structures and Properties Characterization of Acrylonitrile-butadiene-styrene/Organo-palygorskite Clay Composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; CHANG Ying; XU Jian; WU Zhancui; MA Hengchang; LEI Ziqiang

    2012-01-01

    Palygorskite (PGS) and vinyl tris-(2-methoxyethoxy) silane (KH-172) modified palygorskite (OPGS) were used to prepare acrylonitrile-butadiene-styrene (ABS)/clay composites.Thermal stability of the composites was evaluated by using thermogravimetric analysis (TGA).The morphology of the fractured surface and the degree of dispersion of the clay in the ABS matrix were observed by scanning electron microscopy (SEM).X-ray diffraction (XRD) analysis results showed the variation of the crystal structure.Measurements of the tensile properties of the ABS/clay composites proved that the ABS/OPGS composited material represented the most excellent tensile property,because of good compatibility and dispersion of ABS with OPGS.

  3. SYNTHESIS, CHARACTERIZATION AND PROPERTIES OF ORGANOCLAY-MODIFIED POLYSULFONE/EPOXY INTERPENETRATING POLYMER NETWORK NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    R.Rajasekaran; C.Karikalchozhan; M.Alagar

    2008-01-01

    Organoclay-modified hydroxylterminated polysulfone (PSF)/epoxy interpenetrating network nanocomposites (oM-PSF/EP nanocomposites) were prepared by adding organophilic montmorillonite (oMMT) to interpenetrating polymer networks (IPNs) of polysulfone and epoxy resin (PSF/EP) using diaminodiphenylmethane (DDM) as curing agent.The mechanical properties like tensile strength,tensile modulus,flexural strength,flexural modulus and impact properties of the nanocomposites were studied as per ASTM standards.Differential scanning calorimetry (DSC) analysis,dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM) analysis showed that PSF was compatible with EP,and the glass transition temperature (Tg) of the oM-PSF/EP nanocomposites decreased with increasing the oMMT content.Water absorption tests showed that the PSF/EP interpenetrating networks and oMMT had synergistic effects on improvement in the water resistance of the oM-PSF/EP nanocomposites.

  4. Surface characterization of proteins using multi-fractal property of heat-denatured aggregates

    OpenAIRE

    Lahiri, Tapobrata; Mishra, Hrishikesh; Sarkar, Subrata; Misra, Krishna

    2008-01-01

    Multi-fractal property of heat-denatured protein aggregates (HDPA) is characteristic of its individual form. The visual similarity between digitally generated microscopic images of HDPA with that of surface-image of its individual X-ray structures in protein databank (PDB) displayed using Visual Molecular Dynamics (VMD) viewer is the basis of the study. We deigned experiments to view the fractal nature of proteins at different aggregate scales. Intensity based multi-fractal dimensions (ILMFD)...

  5. Characterization of the flow and compression properties of chitosan / Jolanda Sonnekus

    OpenAIRE

    Sonnekus, Jolanda

    2008-01-01

    The most useful dosage form taken from a patient's point of view is tablets because of its simplicity and portability (Takeuchi et al., 2004:132). Manufacturing of tablets can be done by wet granulation or direct compression of powders. For direct compression it is important that the powder has good particle flowability and compactability. Various methods to investigate these properties of the powder have been developed, which provide comparative indices to assist in the proces...

  6. Characterization and biological properties of Citrus industrial derivatives and waste products for the formulation of nutraceuticals

    OpenAIRE

    Pagano, Francesco

    2015-01-01

    2013 - 2014 Polyphenols are natural chemical compounds, common in higher plants as and particularly known and appreciated for their health properties. We focused attention on Citrus bergamia, Citrus sinensis, Mela annurca and Vitis Vinifera. Citrus is one of larges species among plant; it consists of 40 species which are distributed in all continents and its fruits. We have developed a fast HPLC with ion-trap TOF-MS method for the analysis of flavonoids in these juices. With respect to the...

  7. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites

    OpenAIRE

    Zakya Rubab; Adeel Afzal; Siddiqi, Humaira M.; Shaukat Saeed

    2014-01-01

    This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The a...

  8. Preparation and Characterization of Chitosan/Agar Blended Films: Part 2. Thermal, Mechanical, and Surface Properties

    OpenAIRE

    Elhefian, Esam. A.; Mohamed Mahmoud NASEF; Yahaya, Abdul Hamid

    2012-01-01

    Chitosan/agar (CS/AG) films were prepared by blending different proportions of chitosan and agar (considering chitosan as the major component) in solution forms. The thermal stability of the blended films was studied using thermal gravimetric analysis (TGA). It was revealed that chitosan and agar form a compatible blend. Studying the mechanical properties of the films showed a decrease in the tensile strength and elongation at break with increasing agar content. Blending of agar with chitosan...

  9. Composition, Property Characterization and Application of Agricultural and Forest Biomass Carbon

    OpenAIRE

    Lei, Chunsheng; Zhu, Xiaofeng; Zhou, Meicheng; Liang, Yuting; Zhang, Feng'e

    2014-01-01

    We analyzed the compositions and basic properties of agricultural and forest biomass carbon, and used the pot method to study the influence of such element on the remediation of contaminated soils and growth of crops. Results show that agricultural and forest biomass carbon contains various nutrients that are necessary for crop growth, high specific surface area, and pore structure development. Cotton stalk charcoal can reduce bioavailability of Cadmium (Cd) in soil. Under mild Cd pollution, ...

  10. Studies on the Synthesis,Characterization and Properties of the Reactive Thermotropic Liquid Crystalline Polymer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction Four species of reactive thermotropic liquid crystalline polymer (LCMC) with different relative molecular weight were synthesized in this work (see scheme 1, n=2, 6, 10, ∞.n means number of repeat structure unit). Their structure, morphology and properties were investigated systemically by differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Wide-angle X-ray diffraction (WAXD), polarizing opticalmicroscopy (POM) and ubb...

  11. Synthesis and Characterization of Carbon Based One-Dimensional Structures : Tuning Physical and Chemical Properties

    OpenAIRE

    Barzegar, HamidReza

    2015-01-01

    Carbon nanostructures have been extensively used in different applications; ranging from electronic and optoelectronic devices to energy conversion. The interest stems from the fact that covalently bonded carbon atoms can form a wide variety of structures with zero-, one- and two-dimensional configuration with different physical properties. For instance, while fullerene molecules (zero-dimensional carbon structures) realize semiconductor behavior, two-dimensional graphene shows metallic behav...

  12. Graphene: Synthesis, Characterization, Properties and Functional Behavior as Catalyst Support and Gas Sensor

    OpenAIRE

    Kayhan, Emine

    2013-01-01

    Graphene has attracted intense scientific interest due to its exceptional electrical, mechanical and chemical properties over the last couple of years. This strictly two-dimensional (2D) material has potential applications in advanced electronic devices and composite materials. The challenge is to produce large area defect-free graphene necessary for electronic applications while bulk-production at gram scale of graphene with defects enabling anchoring sites for nanoparticles is required for ...

  13. THE SYNTHESIS AND CHARACTERIZATION OF SOME POROUS RESINS AND THEIR ADSORPTION PROPERTY ON STEVIA GLYCOSIDES

    Institute of Scientific and Technical Information of China (English)

    ZhangYang; ChenTianhong; 等

    1998-01-01

    A series of porous resins (PYR) with different content of pyridyl group were prepared,and their physical structure and adsorption properties on the stevia glycosides were studied in detail.After the selective adsorption of PYR resins,the rebaudioside A could be separated from the other components of the stevia glycosides,and a new method for obtaining pure rebaudioside A is reported.

  14. Characterization of the optical properties of normal and defective pickling cucumbers and whole pickles

    Science.gov (United States)

    Lu, Renfu; Ariana, Diwan P.; Cen, Haiyan

    2010-04-01

    Internal defect in pickling cucumbers can cause bloater damage during brining, which lowers the quality of final pickled products and results in economic loss for the pickle industry. Hence it is important to have an effective optical inspection system for detection and segregation of defective pickling cucumbers. This research was intended to measure the spectral absorption and scattering properties of normal and internally defective pickling cucumbers and whole pickles, using hyperspectral imaging-based spatially-resolved technique. Spatially-resolved hyperspectral scattering images were acquired from 50 freshly harvested 'Journey' pickling cucumbers in the summer of 2008. The cucumbers were then subjected to rolling under mechanical load to induce internal damage. The damaged cucumbers were imaged again one hour and one day after the mechanical stress treatment. In addition, 20 whole pickles each of normal and defective (bloated) class were also measured by following the same procedure as that for pickling cucumbers. Spectra of the absorption and reduced scattering coefficients for pickling cucumbers and whole pickles were extracted from the spatially-resolved scattering profiles, using an inverse algorithm for a diffusion theory model, for the spectral range of 700-1,000 nm. It was found that within one hour after mechanical damage, changes in the absorption and reduced scattering coefficients for the cucumbers were minimal. One day after mechanical damage, the absorption coefficient for the cucumbers increased noticeably for the wavelengths of 700-920 nm, whereas the reduced scattering coefficient decreased more significantly for the wavelengths of 700-1,000 nm. Overall mechanical damage had greater impact on the scattering properties than on the absorption properties. After brining, pickles became translucent and scattering was greatly diminished. Thus the diffusion theory model was no longer valid for determining the optical properties of whole pickles. This

  15. Tiltmeters as Tools for Characterizing Geometrical and Hydrodynamical Properties of Fractured Crystalline Aquifers and Fault Zones

    Science.gov (United States)

    Schuite, J.; Longuevergne, L.; Bour, O.; Lavenant, N.; Boudin, F.

    2014-12-01

    In many geological reservoirs, open fractures or fault zones generally induce high spatial variability of hydrodynamical properties and shape the main deep-seated flow paths. It is of crucial interest to determine their structure and properties in order to achieve a sound and sustained exploitation of resources or to estimate the risk of failure of any underground storage. Tiltmeters have emerged as new tools to observe deformation generated by groundwater flow. As such instruments are highly sensitive to pressure gradients, they are perfectly suited for monitoring channelized flow in connected fractures and fault zones. Hence, they provide a unique insight of these reservoirs' geometry and dynamics over broad time scales. Here we demonstrate that continuous tilt data from surface long baseline tiltmeters (LBT) can be used alone to evaluate the general functioning of a fractured hardrock system and estimate the hydraulic properties of its main conductive features. The study is applied to the pumping site of Ploemeur observatory (Brittany, France) which is well documented and instrumented, and therefore forms a convenient setting for introducing LBT as tools for fractured media hydrology. On the short term, tilt signals are strongly correlated with pumping cycles and associated head level changes in well-connected boreholes. Besides, when pumps are stopped the maximal tilt direction is systematically perpendicular to a subvertical fault zone whose azimuth of strike has thereby been refined down to degree precision. By using a semi-analytical model of deformation, we establish the link between tilt and pressure change during pumping interruptions which then allows for hydraulic properties estimation from tilt measurements only. Finally, we validate our results with previous estimates obtained from other studies and discuss the orientation of future work that could enhance these estimates.

  16. Elaboration and characterization of environmental properties of TiO2 plasma sprayed coatings

    OpenAIRE

    Toma, L; Keller, N; Bertrand, G.; Klein, D; C. Coddet

    2003-01-01

    Titanium dioxide (TiO2) is an attractive material for numerous technological applications such as photocatalytical applications. These materials can in some conditions have the ability to allow the environmental purification of air and water by the decomposition and removal of harmful substances, such as volatile organic compounds (VOC), benzene compounds, NOx, SO2, etc. Our work was focused on the elaboration and the evaluation of the environmental properties of titanium dioxide coatings by ...

  17. Characterization and cartography of topsoil hydraulic properties in a French mountainous peri-urban catchment

    OpenAIRE

    Gonzalez-Sosa, E.; Braud, I.; Dehotin, J.; Branger, F.; LAGOUY, M

    2009-01-01

    International audience; Due to the increase of urbanization and modification of agricultural practices, peri-urban areas experiment a quick change in land use. The impact of such change on the catchment hydrological cycle must be quantified. To achieve this goal, distributed hydrological models offer the ability to take into account land use change, and more specifically its effect on surface infiltration capacity. A distributed assessment of infiltration properties and their variability at t...

  18. Characterization and cartography of topsoil hydraulic properties in a French mountainous peri-urban catchment

    Science.gov (United States)

    Gonzalez-Sosa, E.; Braud, I.; Gonzalez-Sosa, E.; Dehotin, J.; Branger, F.; Lagouy, M.

    2009-04-01

    Due to the increase of urbanization and modification of agricultural practices, peri-urban areas experiment a quick change in land use. The impact of such change on the catchment hydrological cycle must be quantified. To achieve this goal, distributed hydrological models offer the ability to take into account land use change, and more specifically its effect on surface infiltration capacity. A distributed assessment of infiltration properties and their variability at the catchment scale is thus of great importance if accurate simulation of the water balance are expected on such catchments. This paper presents a field campaign conducted in a 7 km2 peri-urban catchment, located in the "Mont du Lyonnais" area, close to the city of Lyon (France) in order to document the topsoil hydraulic properties. The sampling strategy was set up in order to sample the largest number of soil/land use combinations. The locations were chosen from a GIS analysis based on the overlapping of the pedology and land use maps, and accessibility consideration. At each location, two types of infiltration tests were performed: infiltration tests under suction using mini-disk infiltrometers and single ring infiltration tests under positive head. Three replicates were performed for each method. Particle size data and organic matter analysis were also conducted at each location. Results will be discussed in terms of soil hydraulic properties and particle size data statistics. Relationship with external factors such as pedological unit, land use, slope, texture will be explored. Preliminary results show that forest and pasture soils exhibit the highest hydraulic conductivity and sorptivity. In order to provide models with values at the modelling unit scale (field and/or sub-catchment scale), existing pedotransfer function will be assessed and if necessary calibrated using the local measurements. Finally a methodology for the cartography of the soil hydraulic properties will be proposed.

  19. Fabrication and Characterization of Multi-layer Heat Mirror with Photocatalytic Properties

    Institute of Scientific and Technical Information of China (English)

    Tran Le; Tuan Tran; Huu Chi Nguyen; Dac Ngoc Son Luu; Minh Nam Hoang; Dinh Quan Nguyen

    2009-01-01

    A novel TiO_2~(5)/TiO_2~(buffer)/Ti~(4)/Ag~(3)/Ti~(2)/TiO_2~(1) multi-layer film coating with coming glass is designed and fabricated by a dc magnetron sputtering method as a renovation of the well-known TiO_2/Ti/Ag/Ti/TiO_2 system in order to obtain a heat mirror system with photocatalytic properties due to sufficient thickness of the TiO_2 layer. The outer TiO_2 layer is fabricated in two steps, possibly claimed as two layers TiO _2~(5) and TiO_2~(buffer), among which the 70-nm-thick layer TiO _2~(buffer) deposited in poor oxygen effectively minimizes the oxidation toward its neighbor Ti (4) layer. The optimal total thickness of the TiO_2~ (5) and TiO_2~(buffer) di-layer is found to be 300nm to yield a highly photo-catalytic property of the film without affecting the optical properties considerably. This multi-layer film can transmit light of above 75-85% in the visible spectrum (380≤λ≤760 nm) and reflect radiation of above 90% in the infrared spectrum (λ≥760 nm). Such multi-layer coatings are strongly recommended not only as promising transparent heat mirrors but also as photo-catalytic films for architectural window coatings.

  20. Use of an integrated approach to characterize the physicochemical properties of foundry green sands

    Energy Technology Data Exchange (ETDEWEB)

    Carnin, Raquel L.P. [Tupy S.A., Rua Albano Schmidt 3.400, Joinville, Santa Catarina (Brazil); Folgueras, Marilena Valadares; Luvizao, Rubia Raquel; Correia, Sivaldo Leite [Universidade do Estado de Santa Catarina, Rua Paulo Malschitzki, s/numero - Campus Universitario Prof. Avelino Marcante, Bairro Zona Industrial Norte, Joinville, Santa Catarina (Brazil); Cunha, Carlos Jorge da [Universidade Federal do Parana, Centro Politecnico, Jardim das Americas, Curitiba, Parana (Brazil); Dungan, Robert S., E-mail: robert.dungan@ars.usda.gov [USDA-ARS, Northwest Irrigation and Soils Research Laboratory, 3793 North 3600 East, Kimberly, ID 83341 (United States)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer Physicochemical properties of fresh, spent, and landfilled foundry green sands were determined. Black-Right-Pointing-Pointer A phase composition model was postulated for each material based on thermogravimetric results. Black-Right-Pointing-Pointer Sand from the landfill was determined to be composed of almost pure silica sand. Black-Right-Pointing-Pointer Weathering is likely responsible for removing the coating materials from the green sands. Black-Right-Pointing-Pointer Landfilled sands may be suitable for reuse within the foundry or beneficial use applications. - Abstract: A fresh green sand, spent green sand, and a weathered spent green sand (wSGS) from a foundry landfill were analyzed using diffractometry, electron microscopy, fluorometry, granulometry, spectrometry, and thermogravimetry (TG). Our objective was to understand how the physicochemical properties of the foundry green sands change from their original form after being subjected to the casting process, then after weathering at the landfill. A quantitative phase composition model was also postulated for each material based on the TG results and it was found to be the most reliable and informative quantitative data for this type of residue. The weathered sample, that remained in a landfill for two years, was found to be composed of almost pure sand. Because of the weathering process, it may be possible to use the wSGS as a virgin sand replacement in the regeneration system or in geotechnical applications where bentonite would affect the properties of the final product.

  1. Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites.

    Science.gov (United States)

    Giannakas, Aris; Vlacha, Maria; Salmas, Constantinos; Leontiou, Areti; Katapodis, Petros; Stamatis, Haralambos; Barkoula, Nektaria-Marianthi; Ladavos, Athanasios

    2016-04-20

    In the current study low molecular weight poly(vinylalcohol) (PVOH) was used to prepare chitosan/PVOH blends and chitosan/PVOH/montmorillonite nanocomposites via a reflux - solution - heat pressing method. The effect of PVOH content and montmorillonite type (hydrophylic vs. organically modified) on the morphology, mechanical, thermomechanical, barrier and antimicrobial properties of the obtained polymer blends and nanocomposite films was studied. Higher amounts of PVOH (20 and 30%) resulted in plasticization of the films, with an increase in the elongation at break and decrease of the stiffness and the strength while effective blending between chitosan and PVOH chains was observed based on the XRD and DMA findings. Addition of PVOH was beneficial for water and oxygen barrier properties of the obtained films while it did not influence the antimicrobial activity of films against the growth of Escherichia coli. Intercalated structures were obtained after the addition of hydrophilic and organo-modified clays leading into stiffening of the nano-modified films and enhancement of their barrier and antimicrobial properties. PMID:26876868

  2. A model for the characterization of the spatial properties in vestibular neurons

    Science.gov (United States)

    Angelaki, D. E.; Bush, G. A.; Perachio, A. A.

    1992-01-01

    Quantitative study of the static and dynamic response properties of some otolith-sensitive neurons has been difficult in the past partly because their responses to different linear acceleration vectors exhibited no "null" plane and a dependence of phase on stimulus orientation. The theoretical formulation of the response ellipse provides a quantitative way to estimate the spatio-temporal properties of such neurons. Its semi-major axis gives the direction of the polarization vector (i.e., direction of maximal sensitivity) and it estimates the neuronal response for stimulation along that direction. In addition, the semi-minor axis of the ellipse provides an estimate of the neuron's maximal sensitivity in the "null" plane. In this paper, extracellular recordings from otolith-sensitive vestibular nuclei neurons in decerebrate rats were used to demonstrate the practical application of the method. The experimentally observed gain and phase dependence on the orientation angle of the acceleration vector in a head-horizontal plane was described and satisfactorily fit by the response ellipse model. In addition, the model satisfactorily fits neuronal responses in three-dimensions and unequivocally demonstrates that the response ellipse formulation is the general approach to describe quantitatively the spatial properties of vestibular neurons.

  3. Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties

    Science.gov (United States)

    Abdullah, M. M.; Rajab, Fahd M.; Al-Abbas, Saleh M.

    2014-02-01

    The structural, optical and dielectric properties of as-grown Cr2O3 nanostructures are demonstrated in this paper. Powder X-ray diffractometry analysis confirmed the rhombohedral structure of the material with lattice parameter, a = b = 4.953 Å; c = 13.578 Å, and average crystallize size (62.40 ± 21.3) nm. FE-SEM image illustrated the mixture of different shapes (disk, particle and rod) of as-grown nanostructures whereas; EDS spectrum confirmed the elemental purity of the material. FTIR spectroscopy, revealed the characteristic peaks of Cr-O bond stretching vibrations. Energy band gap (3.2 eV) of the nanostructures has been determined using the results of UV-VIS-NIR spectrophotometer. The dielectric properties of the material were checked in the wide frequency region (100Hz-30 MHz). In the low frequency region, the matrix of the dielectric behaves like source as well as sink of electrical energy within the relaxation time. Low value of dielectric loss exhibits that the materials posses good optical quality with lesser defects. The ac conductivity of the material in the high frequency region was found according to frequency power law. The physical-mechanism and the theoretical-interpretation of dielectric-properties of Cr2O3 nanostructures attest the potential candidature of the material as an efficient dielectric medium.

  4. Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties

    International Nuclear Information System (INIS)

    The structural, optical and dielectric properties of as-grown Cr2O3 nanostructures are demonstrated in this paper. Powder X-ray diffractometry analysis confirmed the rhombohedral structure of the material with lattice parameter, a = b = 4.953 Å; c = 13.578 Å, and average crystallize size (62.40 ± 21.3) nm. FE-SEM image illustrated the mixture of different shapes (disk, particle and rod) of as-grown nanostructures whereas; EDS spectrum confirmed the elemental purity of the material. FTIR spectroscopy, revealed the characteristic peaks of Cr–O bond stretching vibrations. Energy band gap (3.2 eV) of the nanostructures has been determined using the results of UV-VIS-NIR spectrophotometer. The dielectric properties of the material were checked in the wide frequency region (100Hz-30 MHz). In the low frequency region, the matrix of the dielectric behaves like source as well as sink of electrical energy within the relaxation time. Low value of dielectric loss exhibits that the materials posses good optical quality with lesser defects. The ac conductivity of the material in the high frequency region was found according to frequency power law. The physical-mechanism and the theoretical-interpretation of dielectric-properties of Cr2O3 nanostructures attest the potential candidature of the material as an efficient dielectric medium

  5. A Review for Characterization of Silica Fume and Its Effects on Concrete Properties

    Directory of Open Access Journals (Sweden)

    Mohammad Panjehpour

    2011-12-01

    Full Text Available Mineral additions which are also known as mineral admixtures have been used in Portland cement for many years. There are two types of additions which are commonly mixed into the Portland clinker or blended directly with cement these days. They are crystalline, also known as hydraulically inactive additions and pozzolanic, which are hydraulically active additions. Silica fume is very reactive pozzolan, while it is used in concrete because of its fine particles, large surface area and high SiO2 content. Silica fume is much fined separated silica obtained as a by-product in industry. It is used as an admixture in the concrete mix and it has significant effects on the properties of the resulting material. Simultaneously, silica fume can be also utilized in production of refectory and porcelain, to increase intensity and durability. In addition, it can improve the overall performance of the material as filler used in coating resin, paint, rubber and other high molecular materials. This review paper discusses the effects of silica fume on the concrete properties such as strength, modulus, ductility, permeability, chemical attack resistance, corrosion, freeze-thaw durability, creep rate. Characterisation of silica fume as well as its physical and chemical properties will also be reviewed in this paper.

  6. Structural characterization and corrosive property of Ni-P/CeO2composite coating

    Institute of Scientific and Technical Information of China (English)

    JIN Huiming; JIANG Shihang; ZHANG Linnan

    2009-01-01

    Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), X-ray diffraction spectrometer (XRD), and differential scanning calorimeter (DSC) were used to examine surface morphology and microstructure of the coating. Corrosive investigation was carried out in 3%NaCl+5%H2SO4 solution. The results showed that Ni-P coating had partial amorphous structure mixed with nanocrystals, whereas the Ni-P/CeO2 coating had perfect amorphous structure. In high temperature condition, Ni3P precipitation and Ni crystallization occurred in both coatings but at different temperatures, whereas the Ni-P/CeO2 coating had sintered phase of NiCe2O4 spinels. The anticorrosion property and passivity were improved in the CeO2-containing coating due to its less liability to undergo local-cell corrosion than its CeO2-free counterpart. During the co-deposition process, some Cen+ (n=3, 4) ions may be adsorbed to the metal/solution interface, hinder nickel's crystal-typed deposition and promote phosphorous deposition. The nano-CeO2 doping finally resulted in the coating' perfect amorphous structure and good anti-corrosive property.

  7. Characterization of dynamic change of Fan-delta reservoir properties in water-drive development

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shenghe; Xiong Qihua; Liu Yuhong [Univ. of Petroleum Changping, Beijing (China)

    1997-08-01

    Fan-delta reservoir in Huzhuangji oil field of east China, is a typical highly heterogeneous reservoir. The oil field has been developed by water-drive for 10 years, but the oil recovery is less than 12%, and water cut is over 90%, resulting from high heterogeneity and serious dynamic change of reservoir properties. This paper aims at the study of dynamic change of reservoir properties in water-drive development. Through quantitative imaging analysis and mercury injection analysis of cores from inspection wells, the dynamic change of reservoir pore structure in water-drive development was studied. The results show that the {open_quotes}large pore channels{close_quotes} develop in distributary channel sandstone and become larger in water-drive development, resulting in more serious pore heterogeneity. Through reservoir sensitivity experiments, the rock-fluid reaction in water-drive development is studied. The results show the permeability of some distal bar sandstone and deserted channel sandstone becomes lower due to swelling of I/S clay minerals in pore throats. OD the other hand, the permeability of distributary channel and mouth bar sandstone become larger because the authigenic Koalinites in pore throats are flushed away with the increase of flow rate of injection water. Well-logging analysis of flooded reservoirs are used to study the dynamic change of reservoir properties in various flow units. The distribution of remaining oil is closely related to the types and distribution of flow units.

  8. Characterization and properties of shock and corrosion resistant of titanium based coatings

    International Nuclear Information System (INIS)

    Thermal spraying technologies are an effective way to ensure surface protection against destructive effects of wear, corrosion and oxidizing phenomena. These technologies can be applied in majority of industrial sectors in order to improve properties of new parts or for reconditioning worn out parts technology. Ideally, it would be comfortable to have a material able to resist to all type of wear, but the work condition intricacy combined with economic reason have lead to the development of a big number of powder materials that are used in thermal spraying technologies. The titanium powders are suitable for coating layers which have a good behavior in 'metal on metal friction', toughness, shock and corrosion resistance. In particular, titanium layers obtained by plasma spraying are used in different aerospace and non aerospace applications due to the combination of low density, very good mechanical properties and high corrosion resistance. The accomplishment of new titanium thermal layers is effectively used in order to increase the lifetime of different engine parts securing the thermal protection in use, resistance to high corrosion and oxidizing phenomena. This paper deals about the mechanical properties of Ti based coatings applied by plasma spray process on steel substrates, the obtained results show the possibility to apply titanium coatings where special and high performance materials are needed. (author)

  9. Cellulose acetate electrospun nanofibrous membrane: fabrication, characterization, drug loading and antibacterial properties

    Indian Academy of Sciences (India)

    NAZNIN SULTANA; ANISAH ZAINAL

    2016-04-01

    Cellulose-based materials are one of the most commonly used materials for biomedical applications, which normally applied as carriers for pharmaceuticals and drug-releasing scaffolds. In this study, cellulose acetate (CA) was used to fabricate the nanofibrous membrane using the electrospinning technique. CA solutions at different concentrations were prepared by dissolving the polymer in a mixture of acetic acid/acetone solvents with the ratio of 3:1. The field emission scanning electron microscope results showed that electrospinning of 10% (w/v) CA produced nanofibres with many beads. When the CA concentration was increased to 14% (w/v), bead-free nanofibres were produced. The contact angle measurement results confirmed the hydrophilic properties of nanofibres. In order to prevent common bacterial infections, a model drug, Tetracycline · HCL was incorporated into the CA nanofibres. The drug-loaded CA nanofibres showed antibacterial activity against Gram-positive and Gram-negative bacteria.CA nanofibres had high water uptake properties. The CA nanofibrous membrane was non-toxic to human skin fibroblast cells. Thus the CA nanofibres with 14% (w/v) concentration exerted suitable properties for wound healingapplication.

  10. Characterization of cancer stem cell properties of CD24 and CD26-positive human malignant mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hiroto; Naito, Motohiko; Ghani, Farhana Ishrat [Division of Clinical Immunology, Institute of Medical Science, University of Tokyo, Tokyo (Japan); Dang, Nam H. [Division of Hematology/Oncology, University of Florida Shands Cancer Center, Gainesville, FL 32610 (United States); Iwata, Satoshi [Division of Clinical Immunology, Institute of Medical Science, University of Tokyo, Tokyo (Japan); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Division of Clinical Immunology, Institute of Medical Science, University of Tokyo, Tokyo (Japan)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer We focused on CD24 and CD26 for further analysis of CSC properties in MM. Black-Right-Pointing-Pointer Their expressions were correlated with chemoresistance, cell growth, and invasion. Black-Right-Pointing-Pointer Their expressions were also correlated with several cancer related genes. Black-Right-Pointing-Pointer The expression of each marker was correlated with different CSC property in Meso1. Black-Right-Pointing-Pointer Phosphorylation of ERK by EGF was regulated by expression of CD26, but not CD24. -- Abstract: Malignant mesothelioma (MM) is an asbestos-related malignancy characterized by rapid growth and poor prognosis. In our previous study, we have demonstrated that several cancer stem cell (CSC) markers correlated with CSC properties in MM cells. Among these markers, we focused on two: CD24, the common CSC marker, and CD26, the additional CSC marker. We further analyzed the CSC properties of CD24 and CD26-positve MM cells. We established RNAi-knockdown cells and found that these markers were significantly correlated with chemoresistance, proliferation, and invasion potentials in vitro. Interestingly, while Meso-1 cells expressed both CD24 and CD26, the presence of each of these two markers was correlated with different CSC property. In addition, downstream signaling of these markers was explored by microarray analysis, which revealed that their expressions were correlated with several cancer-related genes. Furthermore, phosphorylation of ERK by EGF stimulation was significantly affected by the expression of CD26, but not CD24. These results suggest that CD24 and CD26 differentially regulate the CSC potentials of MM and could be promising targets for CSC-oriented therapy.

  11. Pseudo-automatic characterization of the morphological and kinematical properties of coronal mass ejections using a texture-based technique

    Science.gov (United States)

    Braga, Carlos Roberto; Dal Lago, Alisson; Stenborg, Guillermo

    2013-05-01

    The white light coronagraphs onboard SOHO (LASCO-C2 and -C3) and most recently STEREO (SECCHI -COR1 and -COR2) have detected a myriad of coronal mass ejections (CME). They are a key component of space weather and under certain conditions they can become geo-effective, hence the importance of their kinematic characterization to help predict their effects. However, there is still a lot of debate on how to define the event boundaries for space weather purposes, which in turn makes it difficult to agree on their kinematic properties. That lack of agreement is reflected in both the manual and automated CME catalogs in existence. To contribute to a more objective definition and characterization of white-light coronagraph events, Goussies et al. (2010) introduced recently the concept of "texture of the event". Based on that property, they developed a supervised segmentation algorithm to allow the automatic tracking of dynamic events observed in the coronagraphs field of view, which is called CORonal SEgmentation Technique (CORSET). In this work, we have enhanced the capabilities of the algorithm by adding several new functionalities, namely the automatic computation of different morphological and kinematic parameters. We tested its performance on 57 well-studied limb CME events observed with the LASCO coronagraphs between 1997 and 2001, and compared the parameters obtained with those from three existent CME lists: two of them obtained from an observer-based detection and tracking method (i.e., two manual catalogs), and the other one based on the automated detection and characterization of the CME events (i.e., a fully automated catalog). We found that 51 events could be tracked and quantified in agreement with the CME definition. In general terms, the position angle, and the radial and expansion speeds are in agreement with the manual catalogs used for comparison. On the other hand, some discrepancies between CORSET and the automated catalog were found, which can be

  12. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties.

    Directory of Open Access Journals (Sweden)

    Xabier Osteikoetxea

    Full Text Available In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody and ganglioside GM1 (cholera toxin subunit B. We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition, may prove useful for quality control of extracellular vesicle related basic and clinical studies.

  13. Cross-Characterization of Aerosol Properties from Multiple Spaceborne Sensors Facilitated by Regional Ground-Based Observations

    Science.gov (United States)

    Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory

    2010-01-01

    Aerosol observations from space have become a standard source for retrieval of aerosol properties on both regional and global scales. Indeed, the large number of currently operational spaceborne sensors provides for unprecedented access to the most complete set of complimentary aerosol measurements ever to be available. Nonetheless, this resource remains under-utilized, largely due to the discrepancies and differences existing between the sensors and their aerosol products. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have designed and implemented an online Multi-sensor Aerosol Products Sampling System (MAPSS) that facilitates the joint sampling of aerosol data from multiple sensors. MAPSS consistently samples aerosol products from multiple spaceborne sensors using a unified spatial and temporal resolution, where each dataset is sampled over Aerosol Robotic Network (AERONET) locations together with coincident AERONET data samples. In this way, MAPSS enables a direct cross-characterization and data integration between aerosol products from multiple sensors. Moreover, the well-characterized co-located ground-based AERONET data provides the basis for the integrated validation of these products.

  14. Synthesis, surface characterization and optical properties of 3-thiopropionic acid capped ZnS:Cu nanocrystals

    Indian Academy of Sciences (India)

    Ashish Tiwari; S A Khan; R S Kher

    2011-08-01

    3-Thiopropionic acid (TPA) capped ZnS:Cu nanocrystals have been successfully synthesized by simple aqueous method. Powder X-ray diffraction (XRD) studies revealed the particle size to be 4.2 nm. Surface characterization of the nanocrystals by FTIR spectroscopy has been done and the structure for surface bound TPA based on spectral analysis was proposed. The optical studies were done using UV-VIS spectroscopy and particle size and diameter polydispersity index (DPI) were calculated. Photoluminescence (PL) spectrum reveals emission related to the transition from conduction band of ZnS to 2 level of Cu2+. Electron microscopy was also done by scanning electron microscopy (SEM).

  15. Bimetallic Heteronuclear Complexes Bridged with Ferrichexathiocyanate-Synthesis, Characterization and Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Mohammad Nasir Uddin

    2014-04-01

    Full Text Available A number of heterobinuclear thiocyanato-bridged complexes of cations, [M(NH2X6]2+ and [M(en3]2+ (where en= Ethylenediamine, X = H, Ph; M= Ni, Cu, Cd, Zn, with ferrichexathiocyanate have been prepared. The complexes have been characterized by FT-IR, 13C NMR and UV-vis spectroscopy, metal analysis, magnetic and conductance studies.  The composition complexes has been proposed on the basis of experimental and literature evidences. The antibacterial activity of the prepared complexes has also been investigated against the gram positive-Bacillus cereus and gram negative- Salmonella typhi and Escherichia coli pathogens.

  16. Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications.

    Science.gov (United States)

    Nguyen, Thu T; Sabatini, David A

    2011-01-01

    Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extraction for biodiesel application is also discussed. Rhamnolipid was found to be a hydrophilic surfactant while sophorolipid was found to be very hydrophobic. Therefore, rhamnolipid and sophorolipid biosurfactants in mixtures showed robust performance in these applications. PMID:21541055

  17. EVALUATION OF OPTICAL PROPERTIES OF ATMOSPHERIC AEROSOLS BASED ON CHEMICAL CHARACTERIZATION

    OpenAIRE

    Ohta,Sachio; Murao, Naoto

    1998-01-01

    研究概要:Atmospheric fine particles, aerosols less than 2μm in diameter, were collected on filters and chemically analyzed in Sapporo, Okinawa island in Japan and Ester-Dome, Alaska in U. S. A. They were made up of nine components such as elemental carbon, organics, sulfate, nitrate, ammonium, sea-salt cations, soil and water. Based on the chemical characterization, it was assumed that atmospheric aerosols comprise seven species of particles such as elemental carbon, organics, ammonium sulfate, a...

  18. Characterization and Magnetic Properties of Iron-Based Alloy Antidot Arrays

    Institute of Scientific and Technical Information of China (English)

    LIU Qing-Fang; JIANG Chang-Jun; WANG Jian-Bo; FAN Xiao-Long; XUE De-Sheng

    2007-01-01

    Fe29Co71 and Fe19Ni8 antidot arrays, with different dimensions, are prepared with the rf magnetron sputtering method onto the porous alumina substrate. The size and shape of antidot arrays are characterized by scanning electron microscopy. The glancing angle x-ray diffraction patterns of Fe29Co71 and Fe1gNis1 antidot arrays indicate the bcc and fcc structures, respectively. The coercivities of both the alloys show abnormal thickness dependence, which are discussed qualitatively by considering the pinning and the thickness effect to the films.

  19. Characterization and Emulsification Properties of Rhamnolipid and Sophorolipid Biosurfactants and Their Applications

    Directory of Open Access Journals (Sweden)

    Thu T. Nguyen

    2011-02-01

    Full Text Available Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extraction for biodiesel application is also discussed. Rhamnolipid was found to be a hydrophilic surfactant while sophorolipid was found to be very hydrophobic. Therefore, rhamnolipid and sophorolipid biosurfactants in mixtures showed robust performance in these applications.

  20. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    International Nuclear Information System (INIS)

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  1. Nanomechanical Pyrolytic Carbon Resonators: Novel Fabrication Method and Characterization of Mechanical Properties

    Science.gov (United States)

    Kurek, Maksymilian; Larsen, Frederik K.; Larsen, Peter E.; Schmid, Silvan; Boisen, Anja; Keller, Stephan S.

    2016-01-01

    Micro- and nanomechanical string resonators, which essentially are highly stressed bridges, are of particular interest for micro- and nanomechanical sensing because they exhibit resonant behavior with exceptionally high quality factors. Here, we fabricated and characterized nanomechanical pyrolytic carbon resonators (strings and cantilevers) obtained through pyrolysis of photoresist precursors. The developed fabrication process consists of only three processing steps: photolithography, dry etching and pyrolysis. Two different fabrication strategies with two different photoresists, namely SU-8 2005 (negative) and AZ 5214e (positive), were compared. The resonant behavior of the pyrolytic resonators was characterized at room temperature and in high vacuum using a laser Doppler vibrometer. The experimental data was used to estimate the Young’s modulus of pyrolytic carbon and the tensile stress in the string resonators. The Young’s moduli were calculated to be 74 ± 8 GPa with SU-8 and 115 ± 8 GPa with AZ 5214e as the precursor. The tensile stress in the string resonators was 33 ± 7 MPa with AZ 5214e as the precursor. The string resonators displayed maximal quality factor values of up to 3000 for 525-µm-long structures. PMID:27428980

  2. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties.

    Science.gov (United States)

    Abdel-Mohsen, A M; Jancar, J; Massoud, D; Fohlerova, Z; Elhadidy, H; Spotz, Z; Hebeish, A

    2016-08-20

    Chitin/chitosan-glucan complex (ChCsGC) was isolated from Schizophyllum commune (S. commune) and dissolved for the first time in precooled (-15°C) 8wt.% urea/6wt.% NaOH aqueous solution. Novel nonwoven microfiber mats were fabricated by wet-dry-spinning technique and evaluated the mechanical of fabrics mats and surface morphology. Isolated and nonwoven mat were characterized employing FTIR-ATR, Optical microscope, TGA, DSC, H/C NMR, SEM and XRD techniques. According to the physical/chemical characterization measurements we can assumed that, the net and the novel dressing mats have the same chemical structure with slightly changes in the thermal stability for the dressing mats.The biological activity of the nonwoven ChCsGC fabric was tested against different types of bacteria exhibiting excellent antibacterial activity. Cell viability of the plain complex and nonwovens mats were evaluated utilizing mouse fibroblast cell line varying concentrations and treatment time. ChCsGC did not show any cytotoxicity against mouse fibroblast cells and the cell-fabrics interaction was also investigated using fluorescence microscope. The novel ChCsGC nonwovens exhibited excellent surgical wound healing ability when tested using rat models. PMID:27265311

  3. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Minmin [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Hou, Li-an, E-mail: 11liuminmin@tongji.edu.cn [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xi, Beidou; Zhao, Ying; Xia, Xunfeng [China Research Academy of Environmental Science, Beijing 200012 (China)

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and {sup 29}Si and {sup 27}Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  4. Progress in characterizing the multidimensional color quality properties of white LED light sources

    Science.gov (United States)

    Teunissen, Kees; Hoelen, Christoph

    2016-03-01

    With the introduction of solid state light sources, the variety in emission spectra is almost unlimited. However, the set of standardized parameters to characterize a white LED light source, such as correlated color temperature (CCT) and CIE general color rendering index (Ra), is known to be limited and insufficient for describing perceived differences between light sources. Several characterization methods have been proposed over the past decades, but their contribution to perceived color quality has not always been validated. To gain more insight in the relevant characteristics of the emission spectra for specific applications, we have conducted a perception experiment to rate the attractiveness of three sets of objects, including fresh food, packaging materials and skin tones. The objects were illuminated with seven different combinations of Red, Green, Blue, Amber and White LEDs, all with the same CCT and illumination level, but with differences in Ra and color saturation. The results show that, in general, object attractiveness does not correlate well with Ra, but shows a positive correlation with saturation increase for two out of three applications. There is no clear relation between saturation and skin tone attractiveness, partly due to differences in preference between males and females. A relative gamut area index (Ga) represents the average change in saturation and a complementary color vector graphic shows the direction and magnitude of chromatic differences for the eight CIE-1974 test-color samples. Together with the CIE general color rendering index (Ra) they provide useful information for designing and optimizing application specific emission spectra.

  5. SYNTHESES AND CHARACTERIZATION OF POLY(IMINOPHENOL)S DERIVED FROM 4-BROMOBENZALDEHYDE: THERMAL, OPTICAL,ELECTROCHEMICAL AND FLUORESCENT PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    (I)smet Kaya; Ali Avci; (O)zlem Gültekin

    2012-01-01

    Schiff base monomers [2-(4-bromobenzylideneamino)phenol and 2-(4-bromobenzylideneamino)-5-methylphenol]were synthesized by the condensation reaction of 4-bromobenzaldehyde with aromatic aminophenols.Then,the monomers were converted to their polyphenol derivatives by oxidative polycondensation reactions (OP) in an aqueous alkaline medium.The structures of the synthesized compounds were characterized by solubility tests,FT-IR,NMR,TG-DTA,DSC and SEC techniques.The HOMO-LUMO energy levels and electrochemical (E'g) and optical (Eg) band gaps were calculated from cyclic voltammetry (CV) and UV-Vis measurements,respectively.Cyclic voltammetry (CV) was used to determine the electrochemical oxidation-reduction characteristics.Optical properties were investigated by UV-Vis and fluorescence analyses.Solid state electrical conductivities were measured on polymer films by four point probe technique using a Keithley 2400 electrometer.The effects of electron-donating (-CH3) group at p-position of-NH2 group in aminophenol on electrochemical and thermal properties were also discussed.Photoluminescence (PL) properties of the synthesized materials were determined in solution forms using different solvents.Fluorescence measurements were carried out in various concentrated solutions to determine the optimum concentrations to obtain the maximal PL intensities.

  6. Polydentate Schiff Base Ligands and Their La(III Complexes: Synthesis, Characterization, Antibacterial, Thermal, and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Ali E. Şabik

    2012-01-01

    Full Text Available We synthesized the Schiff base ligands H2L1–H2L4 and their La(III complexes and characterized them by the analytical and spectroscopic methods. We investigated their electrochemical and antimicrobial activity properties. The electrochemical properties of the ligands H2L1–H2L4 and their La(III complexes were studied at the different scan rates (100 and 200 mV, different pH ranges (pH=2−12, and in the different solvents. The electrooxidation of the Schiff base ligands involves a reversible transfer of two electrons and two protons in solutions of pH up to 5.5, in agreement with the one-step two-electron mechanism. In solutions of pH higher than 5.5, the process of electrooxidation reaction of the Schiff base ligands and their La(III complexes follows an ECi mechanism. The antimicrobial activities of the ligands and their complexes were studied. The thermal properties of the metal complexes were studied under nitrogen atmosphere in the range of temperature 20–1000°C.

  7. Modified β-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. complete in vitro evaluation and characterization.

    Science.gov (United States)

    García, Agustina; Leonardi, Darío; Salazar, Mario Oscar; Lamas, María Celina

    2014-01-01

    The potential use of natural cyclodextrins and their synthetic derivatives have been studied extensively in pharmaceutical research and development to modify certain properties of hydrophobic drugs. The ability of these host molecules of including guest molecules within their cavities improves notably the physicochemical properties of poorly soluble drugs, such as albendazole, the first chosen drug to treat gastrointestinal helminthic infections. Thus, the aim of this work was to synthesize a beta cyclodextrin citrate derivative, to analyze its ability to form complexes with albendazole and to evaluate its solubility and dissolution rate. The synthesis progress of the cyclodextrin derivative was followed by electrospray mass spectrometry and the acid-base titration of the product. The derivative exhibited an important drug affinity. Nuclear magnetic resonance experiments demonstrated that the tail and the aromatic ring of the drug were inside the cavity of the cyclodextrin derivative. The inclusion complex was prepared by spray drying and full characterized. The drug dissolution rate displayed exceptional results, achieving 100% drug release after 20 minutes. The studies indicated that the inclusion complex with the cyclodextrin derivative improved remarkably the physicochemical properties of albendazole, being a suitable excipient to design oral dosage forms. PMID:24551084

  8. Synthesis, characterization and microwave absorption properties of dendrite-like Fe3O4 embedded within amorphous sugar carbon matrix

    Science.gov (United States)

    Wu, Hao; Wang, Liuding; Wu, Hongjing

    2014-01-01

    Magnetite dendrites/sugar carbon (MDs/SC) nanocomposites, embedding MDs within amorphous SC matrix, were prepared by simple carbonization-reduction method using α-Fe2O3 dendrites (HDs) as precursor of MDs and sucrose as SC source, while still maintain the dendritic shape of the precursor. The morphology, composition, structure and static magnetic properties of the as-prepared MDs/SC nanocomposites were characterized by various techniques thoroughly. Particularly, the electromagnetic and microwave absorption properties of the MDs/SC and MDs paraffin composites (40 wt.%) were compared over 2-14 GHz. The results show that the microwave absorption performance of MDs/SC samples is comparable or even superior to that of MDs case. The absorption band with reflection loss (RL) below -20 dB for one of the MDs/SC samples can cover the whole X-band (8-12 GHz) with thickness of 1.8-2.4 mm when the content of MDs in the MDs/SC nanocomposite is 25.8 wt.%, and the minimum RL can reach -49.9 dB at 12.1 GHz when the layer thickness is only 1.9 mm. The excellent microwave absorption properties of the MDs/SC paraffin composites are attributed to the proper match between the complex permittivity and permeability, and the unique fractal structures of MDs.

  9. Modified β-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. complete in vitro evaluation and characterization.

    Directory of Open Access Journals (Sweden)

    Agustina García

    Full Text Available The potential use of natural cyclodextrins and their synthetic derivatives have been studied extensively in pharmaceutical research and development to modify certain properties of hydrophobic drugs. The ability of these host molecules of including guest molecules within their cavities improves notably the physicochemical properties of poorly soluble drugs, such as albendazole, the first chosen drug to treat gastrointestinal helminthic infections. Thus, the aim of this work was to synthesize a beta cyclodextrin citrate derivative, to analyze its ability to form complexes with albendazole and to evaluate its solubility and dissolution rate. The synthesis progress of the cyclodextrin derivative was followed by electrospray mass spectrometry and the acid-base titration of the product. The derivative exhibited an important drug affinity. Nuclear magnetic resonance experiments demonstrated that the tail and the aromatic ring of the drug were inside the cavity of the cyclodextrin derivative. The inclusion complex was prepared by spray drying and full characterized. The drug dissolution rate displayed exceptional results, achieving 100% drug release after 20 minutes. The studies indicated that the inclusion complex with the cyclodextrin derivative improved remarkably the physicochemical properties of albendazole, being a suitable excipient to design oral dosage forms.

  10. Characterization of the charge-carrier transport properties of IIa-Tech SC diamond for radiation detection applications

    International Nuclear Information System (INIS)

    Single crystal (SC) diamond has since years demonstrated its interest for the fabrication of radiation detectors, especially where the material properties are providing superior interests with respect to the detection application. Among the industrial suppliers able to provide on a commercial basis high-grade single crystal diamond, IIa-Tech has recently appeared in the market as a new player. The aim of this paper is to assess the quality of one SC sample when characterized under α-particles for the measurement of its carrier transport properties. We observed that full charge collection could be observed at biases as low as 0.11 V/μm with no space charge build-up (conventionally typical bias values used are closer to 1 V/μm). Velocity reached values of 38 μm/ns and 53 μm/ns for electrons and holes, respectively (values probed at 0.33 V/μm). Similarly, the α detection spectrum displays a sharp line demonstrating the good uniformity of the material over its surface. By combining the measurements with more conventional optical observations such as birefringence and cathodoluminescence spectroscopy, it comes that the material demonstrates its ability to be used as a detector, with properties that can compare with the highest grade materials today available on the market. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Characterization and assessment of hyperelastic and elastic properties of decellularized human adipose tissues.

    Science.gov (United States)

    Omidi, Ehsan; Fuetterer, Lydia; Reza Mousavi, Seyed; Armstrong, Ryan C; Flynn, Lauren E; Samani, Abbas

    2014-11-28

    Decellularized adipose tissue (DAT) has shown potential as a regenerative scaffold for plastic and reconstructive surgery to augment or replace damaged or missing adipose tissue (e.g. following lumpectomy or mastectomy). The mechanical properties of soft tissue substitutes are of paramount importance in restoring the natural shape and appearance of the affected tissues, and mechanical mismatching can lead to unpredictable scar tissue formation and poor implant integration. The goal of this work was to assess the linear elastic and hyperelastic properties of decellularized human adipose tissue and compare them to those of normal breast adipose tissue. To assess the influence of the adipose depot source on the mechanical properties of the resultant decellularized scaffolds, we performed indentation tests on DAT samples sourced from adipose tissue isolated from the breast, subcutaneous abdominal region, omentum, pericardial depot and thymic remnant, and their corresponding force-displacement data were acquired. Elastic and hyperelastic parameters were estimated using inverse finite element algorithms. Subsequently, a simulation was conducted in which the estimated hyperelastic parameters were tested in a real human breast model under gravity loading in order to assess the suitability of the scaffolds for implantation. Results of these tests showed that in the human breast, the DAT would show similar deformability to that of native normal tissue. Using the measured hyperelastic parameters, we were able to assess whether DAT derived from different depots exhibited different intrinsic nonlinearities. Results showed that DAT sourced from varying regions of the body exhibited little intrinsic nonlinearity, with no statistically significant differences between the groups.

  12. Electromagnetic properties of carbonyl iron and their microwave absorbing characterization as filler in silicone rubber

    Indian Academy of Sciences (India)

    Yuping Duan; Guofang Li; Lidong Liu; Shunhua Liu

    2010-10-01

    The complex permittivity, permeability and microwave-absorbing properties of rubber composites filled with carbonyl iron are measured at frequencies from 2–18 GHz. The results indicate that the reflection loss peak shifts towards low frequency region with increasing layer thickness or increasing weight concentration. The minimum reflection loss value of –23.06 dB was obtained at 3.3 GHz for the composites with 80% wt. These results show that the composites possess good microwave absorbing ability in both low- and highfrequency bands.

  13. Cassava Peels for Alternative Fibre in Pulp and Paper Industry: Chemical Properties and Morphology Characterization

    OpenAIRE

    Ashuvila Mohd Aripin; Angzzas Sari Mohd Kassim; Zawawi Daud; Mohd Zainuri Mohd Hatta

    2013-01-01

    Without a proper waste management, the organic wastes such as cassava peels could result in increased amount of solid waste dump into landfill. This study aims to use non-wood organic wastes as pulp for paper making industries; promoting the concept of ‘from waste to wealth and recyclable material’. The objective  of this study is to determine the potential of casssava peel as alternative fibre in pulp and paper based on its chemical properties and surface morphology characteristic. Quantifie...

  14. Process characterization and properties of titanium nitride films prepared by the linear magnetron sputtering system

    International Nuclear Information System (INIS)

    The paper describes a new type of the planar magnetron sputtering system having a double-sided opened configuration of the magnetic field (so-called linear magnetron) and its application for thin films deposition. The structure of this magnetron sputtering source is shown. Relationships occurring between the length of a magnetic trap and its characteristics are described and the influence of changes in pressure on breakdown voltage is determined. Also the results of the experimental investigation of coating parameters and the corresponding physical properties (e.g. morphology, thickness distribution, reflectance curves) of titanium nitride layers are given for the film deposited in different coating zones. (author). 9 refs., 4 Figs

  15. Characterization of Atomic and Physical Properties of Biofield Energy Treated Manganese Sulfide Powder

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Manganese sulfide (MnS) is known for its wide applications in solar cell, opto-electronic devices, and photochemical industries. The present study was designed to evaluate the effect of biofield energy treatment on the atomic and physical properties of MnS. The MnS powder sample was equally divided into two parts, referred as to be control and to be treated. The treated part was subjected to Mr. Trivedi’s biofield energy treatment. After that, both control and treated samples were inves...

  16. Thermomechanical characterization of graphite/polymide composites. [Stiffness; strength; shear properties

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, S. C.

    1980-01-01

    The stiffness, strength and shear properties of three polyimide resins (NR-150B2, PMR-15 and CPI-2237) combined with three different moduli graphite fibers (C-6000, F-5A and GY-70) were determined at 20 to 371/sup 0/. Stiffness retention with increasing temperature is affected only by the thermal integrity of the polymide matrix. No loss in modulus occurs up to 316/sup 0/C for the PMR-15 and CPI-2237 based composites (T/sub g/ = 377/sup 0/C) or to 260/sup 0/C for the NR-150B2 based material (T/sub g/ approx. = 349/sup 0/C), with any of the three fibers. Both flexure and shear strengths show fiber dependent behavior with temperature. The higher modulus fiber composites (F-5A, GY-70) undergo little strength change up to 343/sup 0/C. Composite strengths of the lower modulus fibers (C-6000), however, degrade by as much as 50% over the same temperature range. Thermal-oxidative stability of the various graphite fibers, and its effect on interfacial strength degradation, are considered primary causes for the fiber-type dominated strength behavior. In general, strength retention appears directly related to degree of graphitization (modulus) of the fibers. The accumulated mechanical property data, some previously unknown, are correlated with microstructural features such as the fiber-matrix adhesion, porosity and processing defects. 11 figures.

  17. Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Jinn P., E-mail: jpchu@mail.ntust.edu.tw [Dept. of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Liu, Tz-Yah; Li, Chia-Lin; Wang, Chen-Hao [Dept. of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Jang, Jason S.C. [Dept. of Mechanical Engineering, National Taiwan Central University, Jhongli 32001, Taiwan (China); Chen, Ming-Jen; Chang, Shih-Hsin; Huang, Wen-Chien [Mackay Memorial Hospital, Taipei 10449, Taiwan (China)

    2014-06-30

    Metallic glasses with the disordered atomic structure have unique properties of high strength, high toughness, good corrosion and abrasion resistances. These materials are thus potentially useful for medical application. In this work, we evaluate the antibacterial property and durability of materials sputter-coated with Zr-based (Zr{sub 53}Cu{sub 33}Al{sub 9}Ta{sub 5}) and Cu-based (Cu{sub 48}Zr{sub 42}Ti{sub 4}Al{sub 6}) thin film metallic glasses (TFMGs). Good adhesive coating of Zr-based TFMG on the dermatome gives rise to blade sharpness improvement of ∼ 27%, substantial surface roughness reduction of ∼ 66% and smoother incised wound on the pig skin. As compared to 48.8° on the bare Si wafer, the water contact angles of 119.5° and 106.6° for Zr- and Cu-based TFMGs, respectively, reveal the hydrophobic characteristic of the coated surfaces. The bacterial adhesion of Escherichia coli and Staphylococcus aureus to both Zr- and Cu-based TFMGs is hindered to different extents. - Highlights: • Thin film metallic glass (TFMG) coatings are evaluated for medical application. • Good adhesive TFMG on the dermatome yields blade sharpness improvement of ∼ 27%. • A reduction of ∼ 66% in surface roughness is observed after coating with TFMG. • Water contact angle measurement reveals the hydrophobic characteristic for TFMGs. • Bacterial adhesion of E. coli and S. aureus to TFMGs is hindered.

  18. Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Vladimir; Bluemle, Michael J.; Mann, J. Adin; Zawodzinski, Thomas A. [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7217 (United States); De Castro, Emory S.; Tsou, Yu-Min [E-TEK division, De Nora North America Inc., 41 Veronica Avenue, Somerset, NJ 08873 (United States)

    2006-10-06

    This is the first in a series of papers in which we present state-of-the-art methods demonstrated at Case for the estimation of transport properties in gas diffusion layers (GDLs) for proton exchange membrane fuel cells (PEMFCs). Most of the methods used today for measuring wettability properties of GDLs are related to the external contact angle to water. The external contact angle however does not describe adequately capillary forces acting on the water inside the GDL pores. We show as well that the direct method of estimation of the internal contact angle using goniometry on micrographs is impractical. We propose and describe in this paper a method for estimating the internal contact angle to water and the surface energy of hydrophobic and hydrophilic gas diffusion media. The method was applied to GDLs having different contents of hydrophobic agent and carbon types. The method can be applied separately to different components of the GDL including macro-porous substrates and micro-porous layers. The uncertainty estimates using this method are usually within 3% of the measured value. (author)

  19. Purification of cress seed (Lepidium sativum) gum: Physicochemical characterization and functional properties.

    Science.gov (United States)

    Razmkhah, Somayeh; Mohammadifar, Mohammad Amin; Razavi, Seyed Mohammad Ali; Ale, Marcel Tutor

    2016-05-01

    The aim of the present study was to investigate the effects of different purification methods (ethanol, isopropanol and ethanol-isopropanol) on the physicochemical and functional characteristics of cress seed gum. Sugar composition and molecular weight of the samples varied significantly. All the purification methods reduced ash and protein content and molecular weight of cress seed gum. The main decomposition of the purified samples started above 200°C and initial decomposition temperature of the crude gum was 190.21°C. DSC thermograms of the purified gums showed two exothermic events at 257.81-261.95°C and 302.46-311.57°C. Crude gum displayed an exothermic peak at 259.42°C. Sample I (purified using isopropanol) imparted the best surface activity among the purified samples as it had the highest protein and uronic acid contents and the lowest Mw. All the purification methods could improve emulsifying properties of cress seed gum and there was no significant difference among the purified samples. Crude gum showed the lowest foaming properties, while samples I and E (purified using ethanol) showed the highest foaming capacity and foam stability, respectively.

  20. Characterization and antioxidant properties of alcoholic extracts from gamma irradiated κ-carrageenan

    International Nuclear Information System (INIS)

    Different extracts from unirradiated and gamma irradiated κ-carrageenan (solid and 1% w/v aqueous solution) were obtained with isopropyl alcohol (IPA) at concentrations of 40%, 60% and 80% v/v at room temperature. Physical and chemical properties of the different IPA extracts were analyzed by GPC, UV, and FT-IR. The extracts consisted of low molecular weight fragments with an average molecular weight (Mw) ranging from 2300 Da to 5000 Da. UV analyses of extracts from irradiated carrageenan showed varying maximum absorptions in the range of 265–280 nm. FT-IR spectra of all extracts from irradiated carrageenan showed all the important functional groups of carrageenan in the fingerprint region (4000–600 cm−1) and additional carbonyl C=O and C=C double bond peaks. Antioxidant properties of the different extracts were investigated using reducing power assay. The reducing power of extracts from the irradiated solution follows the order of 80%>60%>40% while no trend was observed for all extracts from irradiated solid κ-carrageenan. - Highlights: • Alcoholic extracts from irradiated κ-carrageenan (solid and 1% w/v) were obtained. • Extracts consisted of low molecular weight oligomers with Mw from 2300 to 5000 Da. • Structural analysis showed C=O and C=C functional groups in the extracts. • Fraction with Mw<2000 Da exhibited higher antioxidant potential

  1. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. PMID:24702940

  2. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Directory of Open Access Journals (Sweden)

    Pawel Sikora

    2016-08-01

    Full Text Available The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100% to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  3. Optical properties of human tendons characterized by PSOCT and their relation to tendinopathy: a clinical study

    Science.gov (United States)

    Bagnaninchi, P. O.; Churmakov, D.; Bonesi, M.; Yang, Y.; Phelan, C.; Maffulli, N.; Meglinski, I.; El Haj, A.

    2008-02-01

    Polarisation-sensitive optical coherence tomography (PSOCT) is a non destructive technique with great potential for tendinopathy diagnosis. Functional optical assessment can be used in operating theatres to delineate in depth the margin of the non-healthy area, and limit the amount of tissue to be removed. A clinical study of 21 patients has been undertaken to correlate the optical properties of tendons to their clinical conditions. Tendons were scanned ex vivo with a fibre based time domain PSOCT. The beam from a superluminescent diode with a bandwidth of 52nm is sent through a polarizer and a polarizer modulator, and split into a sample and reference arm. After passing through polarization beam splitter, the interferences fringes are detected with two balanced detectors, for horizontal and vertical polarization. Scattering, birefringence and in depth stokes vectors are extracted from the measurements. Direct microstructural variation and changes in scattering properties are correlated with different tendinopathy and presence of scar tissue, which is cross-validated by histology. Lack of tissue organization, detected as the disappearance of the bands of birefringence, is representative of tendon degeneration. Special attention is paid to the difference between crimp patterns of different patient's tendons. As in polarization microscopy, the crimp pattern appears as extinction bands, and is particularly important as its alteration is generally symptomatic and could be used as an early diagnosis. Its optical origin is investigated by varying polarization and scanning conditions.

  4. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. PMID:23768605

  5. Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application

    International Nuclear Information System (INIS)

    Metallic glasses with the disordered atomic structure have unique properties of high strength, high toughness, good corrosion and abrasion resistances. These materials are thus potentially useful for medical application. In this work, we evaluate the antibacterial property and durability of materials sputter-coated with Zr-based (Zr53Cu33Al9Ta5) and Cu-based (Cu48Zr42Ti4Al6) thin film metallic glasses (TFMGs). Good adhesive coating of Zr-based TFMG on the dermatome gives rise to blade sharpness improvement of ∼ 27%, substantial surface roughness reduction of ∼ 66% and smoother incised wound on the pig skin. As compared to 48.8° on the bare Si wafer, the water contact angles of 119.5° and 106.6° for Zr- and Cu-based TFMGs, respectively, reveal the hydrophobic characteristic of the coated surfaces. The bacterial adhesion of Escherichia coli and Staphylococcus aureus to both Zr- and Cu-based TFMGs is hindered to different extents. - Highlights: • Thin film metallic glass (TFMG) coatings are evaluated for medical application. • Good adhesive TFMG on the dermatome yields blade sharpness improvement of ∼ 27%. • A reduction of ∼ 66% in surface roughness is observed after coating with TFMG. • Water contact angle measurement reveals the hydrophobic characteristic for TFMGs. • Bacterial adhesion of E. coli and S. aureus to TFMGs is hindered

  6. Hierarchical ZSM-11 with intergrowth structures:Synthesis,characterization and catalytic properties

    Institute of Scientific and Technical Information of China (English)

    Qingjun; Yu; Chaoyue; Cui; Qiang; Zhang; Jing; Chen; Yang; Li; Jinpeng; Sun; Chunyi; Li; Qiukai; Cui; Chaohe; Yang; Honghong; Shan

    2013-01-01

    Hierarchical ZSM-11 microspheres with intercrystalline mesoporous properties and rod-like crystals intergrowth morphology have been synthesized using a spot of tetrabutylammonium as a single template.XRD,FTIR,SEM,TEM and N2 adsorption analysis revealed that each individual particle was composed of nanosized rod crystals inserting each other and the intercrystalline voids existing among rods gave a significant mesopore size distribution.Steam treatment result demonstrated the excellent hydrothermal stability of samples.Various crystallization modes including constant temperature crystallization (one-stage crystallization) and two-stage temperature-varying crystallization with different 1st stage durations were investigated.The results suggested that the crystallization modes were mainly responsible for the adjustable particle size and textural properties of samples while the small amount of tetrabutylammonium bromide was mainly used to direct the formation of both ZSM-11 framework and its intergrowth morphology.Furthermore,the performance of optimal ZSM-11 as an active component for the catalytic pyrolysis of heavy oil was also investigated.Compared with the commercial pyrolysis catalyst,the hierarchical ZSM-11 catalyst exhibited a high selectivity to desired products(LPG+gasoline+diesel),as well as a much lower dry gas and coke yield,plus a high selectivity and yield of light olefins(C=3 C=4)and very poor selectivity to benzene.Therefore,fully open micropore-mesopore connectivity would make such hierarchically porous ZSM-11 zeolites very attractive for applications in clean petrochemical catalysis field.

  7. Preparation and characterization of osmium hexacyanoferrate films and their electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.-M. [Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (China)]. E-mail: smchen78@ms15.hinet.net; Liao, C.-J. [Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (China)

    2004-11-15

    Osmium hexacyanoferrate films have been prepared using repeated cyclic voltammetry, and the deposition process and the films' electrocatalytic properties in electrolytes containing various cations have been investigated. The cyclic voltammograms recorded the deposition of osmium hexacyanoferrate films directly from the mixing of Os{sup 3+} and Fe(CN){sub 6}{sup 3-} ions from solutions containing various cations. An electrochemical quartz crystal microbalance, cyclic voltammetry, and UV-visible spectroscopy were used to study the growth mechanism of the osmium hexacyanoferrate films. The osmium hexacyanoferrate films showed a single redox couple, and the redox reactions included 'electron transfer' and 'proton transfer' with a formal potential that demonstrates a proton effect in acidic solutions up to a 12 M aqueous HCl solution. The electrochemical and electrochemical quartz crystal microbalance results indicate that the redox process was confined to the immobilized osmium hexacyanoferrate film. The electrocatalytic reduction of dopamine, epinephrine, norepinephrine, S{sub 2}O{sub 3}{sup 2-}, and SO{sub 5}{sup 2-} by the osmium hexacyanoferrate films was performed. The preparation and electrochemical properties of co-deposited osmium(III) hexacyanoferrate and copper(II) hexacyanoferrate films were determined, and their two redox couples showed formal potentials that demonstrated a proton effect and an alkaline cation effect, respectively. Electrocatalytic reactions on the hybrid films were also investigated.

  8. Mesenchymal Stem/Stromal Cells from Discarded Neonatal Sternal Tissue: In Vitro Characterization and Angiogenic Properties

    Directory of Open Access Journals (Sweden)

    Shuyun Wang

    2016-01-01

    Full Text Available Autologous and nonautologous bone marrow mesenchymal stem/stromal cells (MSCs are being evaluated as proangiogenic agents for ischemic and vascular disease in adults but not in children. A significant number of newborns and infants with critical congenital heart disease who undergo cardiac surgery already have or are at risk of developing conditions related to inadequate tissue perfusion. During neonatal cardiac surgery, a small amount of sternal tissue is usually discarded. Here we demonstrate that MSCs can be isolated from human neonatal sternal tissue using a nonenzymatic explant culture method. Neonatal sternal bone MSCs (sbMSCs were clonogenic, had a surface marker expression profile that was characteristic of bone marrow MSCs, were multipotent, and expressed pluripotency-related genes at low levels. Neonatal sbMSCs also demonstrated in vitro proangiogenic properties. Sternal bone MSCs cooperated with human umbilical vein endothelial cells (HUVECs to form 3D networks and tubes in vitro. Conditioned media from sbMSCs cultured in hypoxia also promoted HUVEC survival and migration. Given the neonatal source, ease of isolation, and proangiogenic properties, sbMSCs may have relevance to therapeutic applications.

  9. Extraction, characterization, nutritional and functional properties of Roselle (Hibiscus sabdariffa Linn seed proteins

    Directory of Open Access Journals (Sweden)

    Fatoumata Tounkara

    2013-04-01

    Full Text Available Physicochemical, nutritional and functional properties of protein fractions and protein isolate (RSPI from Roselle seedwere investigated. The protein content was 91.50, 93.77, 81.55, 71.30 and 40.83% for RSPI, globulin, albumin, glutelin andprolamin, respectively. The functional properties were variable among samples. Glutelin possessed the highest water holdingcapacity and albumin the lowest. The oil holding capacity ranged from 3.47 to 7.23 mL/g and the emulsifying capacity from95 to 18 mL/g. Glutelin had the higher foam capacity, while RSPI showed the more stable foam. The molecular weight of allsamples ranged from 55,000 Da to below 14,300 Da. All the estimated nutritional parameters based on amino acids compositionsuggested that Roselle protein fractions and its isolates have good nutritional quality and could be a good source of proteinfortification for a variety of food products for protein deficient consumers as well as a potential food ingredient.

  10. Characterization of optical properties of the site of the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Yepes-Ramírez, H., E-mail: Harold.Yepes@ific.uv.es [Instituto de Física Corpuscular (IFIC), Edificios de investigación de Paterna, CSIC - Universitat de València, Apdo. de Correos 22085, E-46071 Valencia (Spain)

    2013-10-11

    ANTARES is a neutrino detector based on a three-dimensional grid of photomultipliers tubes (PMT's) arranged in several detection lines anchored to the seabed at depth of 2.5 km in the Mediterranean Sea (40 km off the Toulon coast in France), its main physics goal is the reconstruction and identification of high energy neutrinos of extra-terrestrial origin. The PMT's register the Cherenkov light induced by relativistic charged leptons produced by the interaction of neutrinos with material in the detector surroundings. The propagation of Cherenkov light strongly depends on the optical properties of the sea water, the understanding of which is crucial in order to achieve the expected detector performance. To reach the ANTARES physics goals, good time and positioning calibration systems are required. The ANTARES optical beacon system consists of a set of pulsed light sources strategically located throughout the detector. The system is mainly used for time calibration but can also be used as a tool to study the water optical properties and their stability. In this contribution we will present the current status of our measurements of the group velocity and transmission length of light carried out between 2008 and 2011. A set of water models strategically defined will be discussed as well as some preliminary results concerning track reconstruction parameters.

  11. Titania nanotubes from weak organic acid electrolyte: fabrication, characterization and oxide film properties.

    Science.gov (United States)

    Munirathinam, Balakrishnan; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO2 nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5h, 1h, 2h and 3h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600°C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10(5)-10(6)Ωcm(2)) and lower passive current density (10(-7)Acm(-2)) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity. PMID:25686985

  12. Characterization and functional properties of mango peel pectin extracted by ultrasound assisted citric acid.

    Science.gov (United States)

    Wang, Miaomiao; Huang, Bohui; Fan, Chuanhui; Zhao, Kaili; Hu, Hao; Xu, Xiaoyun; Pan, Siyi; Liu, Fengxia

    2016-10-01

    Pectin was extracted from 'Tainong No. 1' mango peels, using a chelating agent-citric acid as extraction medium by ultrasound-assisted extraction (UAE) and conventional extraction (CE) at temperatures of 20 and 80°C. Chemical structures, rheological and emulsifying properties of mango peel pectins (MPPs) were comparatively studied with laboratory grade citrus pectin (CP). All MPPs exhibited higher protein content (4.74%-5.94%), degree of methoxylation (85.43-88.38%), average molecular weight (Mw, 378.4-2858kDa) than the CP, but lower galacuronic acid content (GalA, 52.21-53.35%). CE or UAE at 80°C resulted in significantly higher pectin yield than those at 20°C, while the extraction time for UAE-80°C (15min) was significantly shorter compared to CE-80°C (2h) with comparable pectin yield. Moreover, MPPs extracted at 80°C were observed with higher GalA and protein content, higher Mw, resulting in higher viscosity, better emulsifying capacity and stability, as compared to those extracted at 20°C and the CP. Therefore, these results suggested that MPPs from 'Tainong No. 1' may become a highly promising pectin with good thickening and emulsifying properties, using ultrasound-assisted citric acid as an efficient and eco-friendly extraction method.

  13. Characterization of Jatropha curcas L. Protein Cast Films with respect to Packaging Relevant Properties

    Directory of Open Access Journals (Sweden)

    Gabriele Gofferje

    2015-01-01

    Full Text Available There is increasing research ongoing towards the substitution of petrochemical based plastics by more sustainable raw materials, especially in the field of bioplastics. Proteins of different types such as whey, casein, gelatine, or zein show potential beyond the food and feed industry as, for instance, the application in packaging. Protein based coatings provide different packaging relevant properties such as barrier against permanent gases, certain water vapour barrier, and mechanical resistance. The aim of this study was to explore the potential for packaging applications of proteins from Jatropha curcas L. and to compare the performance with literature data on cast films from whey protein isolate. As a by-product from oil extraction, high amounts of Jatropha meal are obtained requiring a concept for its sustainable utilization. Jatropha seed cake includes up to 40% (w/w of protein which is currently not utilized. The present study provides new data on the potential of Jatropha protein for packaging applications. It was shown that Jatropha protein cast films show suitable barrier and mechanical properties depending on the extraction and purification method as well as on the plasticiser content. Based on these findings Jatropha proteins own potential to be utilized as coating material for food packaging applications.

  14. Synthesis, characterization, optical and electrical properties of bis(phenylvinyl)anthracene-based polymers

    Science.gov (United States)

    Mansour, Nadia; Hriz, Khaled; Jaballah, Nejmeddine; Kreher, David; Majdoub, Mustapha

    2016-08-01

    A series of bis(phenylvinyl)anthracene-based polymers containing different lengths of polar ethylene glycol groups in the main chain (P1-3) were efficiently synthesized by Wittig polycondensation. These polymers are fully soluble in volatile solvents, which helped a lot to obtain high quality films. Moreover, these semi-conducting materials exhibited semi-crystalline morphology with relatively high glass transition temperature. In this article, the UV-visible absorption and fluorescence properties of P1-3 were studied consequently both in solution and as thin solid film: tan absorption-onset at 433 nm was observed and all these bis(phenylvinyl)anthracene-based polymers (P1-3) show a blue emission in solution, fluorescence quantum efficiencies being respectively 52% for P1, 75% for P2 and 67% for P3. In addition, the HOMO/LUMO energy levels were evaluated by cyclic voltammetry measurements and indicate a p-type semi-conducting materials. Finally, the electrical properties of P1-3 were investigated by recording current-tension characteristics and these experimental results were modeled by the current space-charge-limited (SCLC) mechanism.

  15. Characterization and antioxidant properties of alcoholic extracts from gamma irradiated κ-carrageenan

    Science.gov (United States)

    Relleve, Lorna; Abad, Lucille

    2015-07-01

    Different extracts from unirradiated and gamma irradiated κ-carrageenan (solid and 1% w/v aqueous solution) were obtained with isopropyl alcohol (IPA) at concentrations of 40%, 60% and 80% v/v at room temperature. Physical and chemical properties of the different IPA extracts were analyzed by GPC, UV, and FT-IR. The extracts consisted of low molecular weight fragments with an average molecular weight (Mw) ranging from 2300 Da to 5000 Da. UV analyses of extracts from irradiated carrageenan showed varying maximum absorptions in the range of 265-280 nm. FT-IR spectra of all extracts from irradiated carrageenan showed all the important functional groups of carrageenan in the fingerprint region (4000-600 cm-1) and additional carbonyl C=O and C=C double bond peaks. Antioxidant properties of the different extracts were investigated using reducing power assay. The reducing power of extracts from the irradiated solution follows the order of 80%>60%>40% while no trend was observed for all extracts from irradiated solid κ-carrageenan.

  16. Synthesis and characterization of (Z)-5-arylmethylidene-rhodanines with photosynthesis-inhibiting properties.

    Science.gov (United States)

    Opletalova, Veronika; Dolezel, Jan; Kralova, Katarina; Pesko, Matus; Kunes, Jiri; Jampilek, Josef

    2011-01-01

    A series of rhodanine derivatives was prepared. The synthetic approach, analytical and spectroscopic data of all synthesized compounds are presented. Lipophilicity of all the discussed rhodanine derivatives was analyzed using the RP-HPLC method. The compounds were tested for their ability to inhibit photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts and reduce chlorophyll content in freshwater alga Chlorella vulgaris. Structure-activity relationships between the chemical structure, physical properties and biological activities of the evaluated compounds are discussed. For majority of the tested compounds the lipophilicity of the compound and not electronic properties of the R1 substituent were decisive for PET-inhibiting activity. The most potent PET inhibitor was (5Z)-5-(4-bromobenzylidene)-2-thioxo-1,3-thiazolidin-4-one (IC(50) = 3.0 μmol/L) and the highest antialgal activity was exhibited by (5Z)-5-(4-chlorobenzylidene)-2-thioxo-1,3-thiazolidin-4-one (IC(50) = 1.3 μmol/L).

  17. Synthesis and Characterization of (Z-5-Arylmethylidene-rhodanines with Photosynthesis-Inhibiting Properties

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2011-06-01

    Full Text Available A series of rhodanine derivatives was prepared. The synthetic approach, analytical and spectroscopic data of all synthesized compounds are presented. Lipophilicity of all the discussed rhodanine derivatives was analyzed using the RP-HPLC method. The compounds were tested for their ability to inhibit photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts and reduce chlorophyll content in freshwater alga Chlorella vulgaris. Structure-activity relationships between the chemical structure, physical properties and biological activities of the evaluated compounds are discussed. For majority of the tested compounds the lipophilicity of the compound and not electronic properties of the R1 substituent were decisive for PET-inhibiting activity. The most potent PET inhibitor was (5Z-5-(4-bromobenzylidene-2-thioxo-1,3-thiazolidin-4-one (IC50 = 3.0 μmol/L and the highest antialgal activity was exhibited by (5Z-5-(4-chlorobenzylidene-2-thioxo-1,3-thiazolidin-4-one (IC50 = 1.3 μmol/L.

  18. Characterization of subhalo structural properties and implications for dark matter annihilation signals

    CERN Document Server

    Moliné, Ángeles; Palomares-Ruiz, Sergio; Prada, Francisco

    2016-01-01

    A prediction of the standard LCDM cosmological model, also confirmed by N-body simulations, is that dark matter (DM) halos are teeming with numerous self-bound substructure, or subhalos. The precise properties of these subhalos represent important probes of the underlying cosmological model. In this work, we use data from the VL-II and ELVIS Milky Way-size simulations to learn about the structure of subhalos with masses 10^6-10^11 h^-1 Msun. Thanks to a superb subhalo statistics, by taking a profile-independent approach, we study subhalo properties as a function of the distance to the host halo center and subhalo mass, and provide a set of fits that, including both dependences, accurately describe the subhalo structure. With this at hand, we also investigate the role of subhalos on the search for DM via its annihilation products. Indeed, previous work has shown that subhalos are expected to boost the DM signal of their host halos significantly. Yet, these works have traditionally assumed that subhalos exhibit...

  19. Synthesis, characterization and properties of Se nanowires intercalated polyaniline/Se nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Husain

    2013-09-01

    Full Text Available Present work reports novel synthesis of Polyaniline (PANI/Se nanocomposites. Se nanowires are prepared from SeO2 under assistance of vitamin C and polyaniline is synthesized through chemical oxidation. The effect of composition of Se nanowires on the properties of polyaniline was investigated and five orders increase in conductivity after doping has been observed. The electrical properties of nanocomposites show that conduction is through hopping process due to the wide range of localized states present near fermi level. FTIR (Fourier Transform Infrared spectroscopy and ultraviolet (UV-visible studies confirm the occurrence of polyaniline in conducting emeraldine salt form in the composites and suggest incorporation of Se in polymer. The optical studies indicate that absorption mechanism is due to indirect allowed transition and the optical band gap tends to decrease after doping. The thermal stability of composites has been ascertained on the basis of DSC (Differential Scanning Calorimetery measurements. TEM (Transmission Electron Microscopy and SEM (Scanning Electron Microscopy analysis have also been carried out for morphological studies.

  20. Biological Properties and Characterization of ASL50 Protein from Aged Allium sativum Bulbs.

    Science.gov (United States)

    Kumar, Suresh; Jitendra, Kumar; Singh, Kusum; Kapoor, Vaishali; Sinha, Mou; Xess, Immaculata; Das, Satya N; Sharma, Sujata; Singh, Tej P; Dey, Sharmistha

    2015-08-01

    Allium sativum is well known for its medicinal properties. The A. sativum lectin 50 (ASL50, 50 kDa) was isolated from aged A. sativum bulbs and purified by gel filtration chromatography on Sephacryl S-200 column. Agar well diffusion assay were used to evaluate the antimicrobial activity of ASL50 against Candida species and bacteria then minimal inhibitory concentration (MIC) was determined. The lipid A binding to ASL50 was determined by surface plasmon resonance (SPR) technology with varying concentrations. Electron microscopic studies were done to see the mode of action of ASL50 on microbes. It exerted antimicrobial activity against clinical Candida isolates with a MIC of 10-40 μg/ml and clinical Pseudomonas aeruginosa isolates with a MIC of 10-80 μg/ml. The electron microscopic study illustrates that it disrupts the cell membrane of the bacteria and cell wall of fungi. It exhibited antiproliferative activity on oral carcinoma KB cells with an IC50 of 36 μg/ml after treatment for 48 h and induces the apoptosis of cancer cells by inducing 2.5-fold higher caspase enzyme activity than untreated cells. However, it has no cytotoxic effects towards HEK 293 cells as well as human erythrocytes even at higher concentration of ASL50. Biological properties of ASL50 may have its therapeutic significance in aiding infection and cancer treatments. PMID:26043852