WorldWideScience

Sample records for characterization techniques applied

  1. Resistance to abrasion of extrinsic porcelain esthetic characterization techniques.

    Science.gov (United States)

    Chi, Woo J; Browning, William; Looney, Stephen; Mackert, J Rodway; Windhorn, Richard J; Rueggeberg, Frederick

    2017-01-01

    A novel esthetic porcelain characterization technique involves mixing an appropriate amount of ceramic colorants with clear, low-fusing porcelain (LFP), applying the mixture on the external surfaces, and firing the combined components onto the surface of restorations in a porcelain oven. This method may provide better esthetic qualities and toothbrush abrasion resistance compared to the conventional techniques of applying color-corrective porcelain colorants alone, or applying a clear glaze layer over the colorants. However, there is no scientific literature to support this claim. This research evaluated toothbrush abrasion resistance of a novel porcelain esthetic characterization technique by subjecting specimens to various durations of simulated toothbrush abrasion. The results were compared to those obtained using the conventional characterization techniques of colorant application only or colorant followed by placement of a clear over-glaze. Four experimental groups, all of which were a leucite reinforced ceramic of E TC1 (Vita A1) shade, were prepared and fired in a porcelain oven according to the manufacturer's instructions. Group S (stain only) was characterized by application of surface colorants to provide a definitive shade of Vita A3.5. Group GS (glaze over stain) was characterized by application of a layer of glaze over the existing colorant layer as used for Group S. Group SL (stain+LFP) was characterized by application of a mixture of colorants and clear low-fusing add-on porcelain to provide a definitive shade of Vita A3.5. Group C (Control) was used as a control without any surface characterization. The 4 groups were subjected to mechanical toothbrushing using a 1:1 water-to-toothpaste solution for a simulated duration of 32 years of clinical use. The amount of wear was measured at time intervals simulating every 4 years of toothbrushing. These parameters were evaluated longitudinally for all groups as well as compared at similar time points among

  2. Acoustic Emission Technique Applied in Textiles Mechanical Characterization

    Directory of Open Access Journals (Sweden)

    Rios-Soberanis Carlos Rolando

    2017-01-01

    Full Text Available The common textile architecture/geometry are woven, braided, knitted, stitch boded, and Z-pinned. Fibres in textile form exhibit good out-of-plane properties and good fatigue and impact resistance, additionally, they have better dimensional stability and conformability. Besides the nature of the textile, the architecture has a great role in the mechanical behaviour and mechanisms of damage in textiles, therefore damage mechanisms and mechanical performance in structural applications textiles have been a major concern. Mechanical damage occurs to a large extent during the service lifetime consequently it is vital to understand the material mechanical behaviour by identifying its mechanisms of failure such as onset of damage, crack generation and propagation. In this work, textiles of different architecture were used to manufacture epoxy based composites in order to study failure events under tensile load by using acoustic emission technique which is a powerful characterization tool due to its link between AE data and fracture mechanics, which makes this relation a very useful from the engineering point of view.

  3. Applying contemporary statistical techniques

    CERN Document Server

    Wilcox, Rand R

    2003-01-01

    Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible.* Assumes no previous training in statistics * Explains how and why modern statistical methods provide more accurate results than conventional methods* Covers the latest developments on multiple comparisons * Includes recent advanc

  4. Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications.

    Science.gov (United States)

    Galvão, Elson Silva; Santos, Jane Meri; Lima, Ana Teresa; Reis, Neyval Costa; Orlando, Marcos Tadeu D'Azeredo; Stuetz, Richard Michael

    2018-05-01

    Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Materials characterization techniques

    National Research Council Canada - National Science Library

    Zhang, Sam; Li, L; Kumar, Ashok

    2009-01-01

    "With an emphasis on practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used advanced surface and structural characterization...

  6. Applied ALARA techniques

    International Nuclear Information System (INIS)

    Waggoner, L.O.

    1998-01-01

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work

  7. Applied ALARA techniques

    Energy Technology Data Exchange (ETDEWEB)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  8. Nuclear analytical techniques applied to characterization of atmospheric aerosols in Amazon Region

    International Nuclear Information System (INIS)

    Gerab, Fabio; Artaxo, Paulo

    1996-01-01

    This work presents the atmospheric aerosols characterization that exist in different regions of Amazon basin. The biogenic aerosol emission by forest, as well as the atmospheric emissions of particulate materials due to biomass burning, were analyzed. Samples of aerosol particles were collected during three years in two different locations of Amazon region using Stacked Unit Filters. In order to study these samples some analytical nuclear techniques were used. The high concentrations of aerosols as a result of biomass burning process were observed in the period of june-september

  9. SEM-based characterization techniques

    International Nuclear Information System (INIS)

    Russell, P.E.

    1986-01-01

    The scanning electron microscope is now a common instrument in materials characterization laboratories. The basic role of the SEM as a topographic imaging system has steadily been expanding to include a variety of SEM-based analytical techniques. These techniques cover the range of basic semiconductor materials characterization to live-time device characterization of operating LSI or VLSI devices. This paper introduces many of the more commonly used techniques, describes the modifications or additions to a conventional SEM required to utilize the techniques, and gives examples of the use of such techniques. First, the types of signals available from a sample being irradiated by an electron beam are reviewed. Then, where applicable, the type of spectroscopy or microscopy which has evolved to utilize the various signal types are described. This is followed by specific examples of the use of such techniques to solve problems related to semiconductor technology. Techniques emphasized include: x-ray fluorescence spectroscopy, electron beam induced current (EBIC), stroboscopic voltage analysis, cathodoluminescnece and electron beam IC metrology. Current and future trends of some of the these techniques, as related to the semiconductor industry are discussed

  10. Residual stress characterization of welds using x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Pineault, J.A.; Brauss, M.E.

    1996-01-01

    Neglect of residual stresses created during processes lead to stress corrosion cracking, distortion, fatigue cracking, premature failures in components, and instances of over design. Automated residual stress mapping and truly portable equipment have now made the characterization of residual stresses using x-ray diffraction (XRI) practical. The nondestructive nature of the x-ray diffraction technique has made the tile residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. This paper illustrates the importance of residual stress characterization in welds and presents examples where x-ray diffraction techniques were applied in the characterization of various kinds of welds. arc welds, TIG welds, resistance welds, laser welds and electron beam welds. Numerous techniques are available to help manage potentially harmfull residual stresses created during the welding process thus, the effects of a few example post weld processes such as grinding, heat treating and shot peening are also addressed

  11. An integrated approach using orthogonal analytical techniques to characterize heparan sulfate structure.

    Science.gov (United States)

    Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Gunay, Nur Sibel; Wang, Jing; Sun, Elaine Y; Pradines, Joël R; Farutin, Victor; Shriver, Zachary; Kaundinya, Ganesh V; Capila, Ishan

    2017-02-01

    Heparan sulfate (HS), a glycosaminoglycan present on the surface of cells, has been postulated to have important roles in driving both normal and pathological physiologies. The chemical structure and sulfation pattern (domain structure) of HS is believed to determine its biological function, to vary across tissue types, and to be modified in the context of disease. Characterization of HS requires isolation and purification of cell surface HS as a complex mixture. This process may introduce additional chemical modification of the native residues. In this study, we describe an approach towards thorough characterization of bovine kidney heparan sulfate (BKHS) that utilizes a variety of orthogonal analytical techniques (e.g. NMR, IP-RPHPLC, LC-MS). These techniques are applied to characterize this mixture at various levels including composition, fragment level, and overall chain properties. The combination of these techniques in many instances provides orthogonal views into the fine structure of HS, and in other instances provides overlapping / confirmatory information from different perspectives. Specifically, this approach enables quantitative determination of natural and modified saccharide residues in the HS chains, and identifies unusual structures. Analysis of partially digested HS chains allows for a better understanding of the domain structures within this mixture, and yields specific insights into the non-reducing end and reducing end structures of the chains. This approach outlines a useful framework that can be applied to elucidate HS structure and thereby provides means to advance understanding of its biological role and potential involvement in disease progression. In addition, the techniques described here can be applied to characterization of heparin from different sources.

  12. Temporal Check-All-That-Apply Characterization of Syrah Wine.

    Science.gov (United States)

    Baker, Allison K; Castura, John C; Ross, Carolyn F

    2016-06-01

    Temporal Check-All-That-Apply (TCATA) is a new dynamic sensory method for which analysis techniques are still being developed and optimized. In this study, TCATA methodology was applied for the evaluation of wine finish by trained panelists (n = 13) on Syrah wines with different ethanol concentrations (10.5% v/v and 15.5% v/v). Raw data were time standardized to create a percentage of finish duration, subsequently segmented into thirds (beginning, middle, and end) to capture panel perception. Results indicated the finish of the high ethanol treatments lasted longer (approximately 12 s longer) than the low ethanol treatment (P ≤ 0.05). Within each finish segment, Cochran's Q was conducted on each attribute and differences were detected amongst treatments (P ≤ 0.05). Pairwise tests showed the high ethanol treatments were more described by astringency, heat/ethanol burn, bitterness, dark fruit, and spices, whereas the low ethanol treatment was more characterized by sourness, red fruit, and green flavors (P ≤ 0.05). This study demonstrated techniques for dealing with the data generated by TCATA. Furthermore, this study further characterized the influence of ethanol on wine finish, and by extension wine quality, with implications to winemakers responsible for wine processing decisions involving alcohol management. © 2016 Institute of Food Technologists®

  13. Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    Science.gov (United States)

    Vary, A.; Klima, S. J.

    1985-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  14. Background Characterization Techniques For Pattern Recognition Applications

    Science.gov (United States)

    Noah, Meg A.; Noah, Paul V.; Schroeder, John W.; Kessler, Bernard V.; Chernick, Julian A.

    1989-08-01

    The Department of Defense has a requirement to investigate technologies for the detection of air and ground vehicles in a clutter environment. The use of autonomous systems using infrared, visible, and millimeter wave detectors has the potential to meet DOD's needs. In general, however, the hard-ware technology (large detector arrays with high sensitivity) has outpaced the development of processing techniques and software. In a complex background scene the "problem" is as much one of clutter rejection as it is target detection. The work described in this paper has investigated a new, and innovative, methodology for background clutter characterization, target detection and target identification. The approach uses multivariate statistical analysis to evaluate a set of image metrics applied to infrared cloud imagery and terrain clutter scenes. The techniques are applied to two distinct problems: the characterization of atmospheric water vapor cloud scenes for the Navy's Infrared Search and Track (IRST) applications to support the Infrared Modeling Measurement and Analysis Program (IRAMMP); and the detection of ground vehicles for the Army's Autonomous Homing Munitions (AHM) problems. This work was sponsored under two separate Small Business Innovative Research (SBIR) programs by the Naval Surface Warfare Center (NSWC), White Oak MD, and the Army Material Systems Analysis Activity at Aberdeen Proving Ground MD. The software described in this paper will be available from the respective contract technical representatives.

  15. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  16. Wire-mesh and ultrasound techniques applied for the characterization of gas-liquid slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Ofuchi, Cesar Y.; Sieczkowski, Wytila Chagas; Neves Junior, Flavio; Arruda, Lucia V.R.; Morales, Rigoberto E.M.; Amaral, Carlos E.F.; Silva, Marco J. da [Federal University of Technology of Parana, Curitiba, PR (Brazil)], e-mails: ofuchi@utfpr.edu.br, wytila@utfpr.edu.br, neves@utfpr.edu.br, lvrarruda@utfpr.edu.br, rmorales@utfpr.edu.br, camaral@utfpr.edu.br, mdasilva@utfpr.edu.br

    2010-07-01

    Gas-liquid two-phase flows are found in a broad range of industrial applications, such as chemical, petrochemical and nuclear industries and quite often determine the efficiency and safety of process and plants. Several experimental techniques have been proposed and applied to measure and quantify two-phase flows so far. In this experimental study the wire-mesh sensor and an ultrasound technique are used and comparatively evaluated to study two-phase slug flows in horizontal pipes. The wire-mesh is an imaging technique and thus appropriated for scientific studies while ultrasound-based technique is robust and non-intrusive and hence well suited for industrial applications. Based on the measured raw data it is possible to extract some specific slug flow parameters of interest such as mean void fraction and characteristic frequency. The experiments were performed in the Thermal Sciences Laboratory (LACIT) at UTFPR, Brazil, in which an experimental two-phase flow loop is available. The experimental flow loop comprises a horizontal acrylic pipe of 26 mm diameter and 9 m length. Water and air were used to produce the two phase flow under controlled conditions. The results show good agreement between the techniques. (author)

  17. Analytical techniques applied to study cultural heritage objects

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, M.A.; Curado, J.F.; Bernardes, S.; Campos, P.H.O.V.; Kajiya, E.A.M.; Silva, T.F.; Rodrigues, C.L.; Moro, M.; Tabacniks, M.; Added, N., E-mail: rizzutto@if.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2015-07-01

    The scientific study of artistic and cultural heritage objects have been routinely performed in Europe and the United States for decades. In Brazil this research area is growing, mainly through the use of physical and chemical characterization methods. Since 2003 the Group of Applied Physics with Particle Accelerators of the Physics Institute of the University of Sao Paulo (GFAA-IF) has been working with various methodologies for material characterization and analysis of cultural objects. Initially using ion beam analysis performed with Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering (RBS) and recently Ion Beam Induced Luminescence (IBIL), for the determination of the elements and chemical compounds in the surface layers. These techniques are widely used in the Laboratory of Materials Analysis with Ion Beams (LAMFI-USP). Recently, the GFAA expanded the studies to other possibilities of analysis enabled by imaging techniques that coupled with elemental and compositional characterization provide a better understanding on the materials and techniques used in the creative process in the manufacture of objects. The imaging analysis, mainly used to examine and document artistic and cultural heritage objects, are performed through images with visible light, infrared reflectography (IR), fluorescence with ultraviolet radiation (UV), tangential light and digital radiography. Expanding more the possibilities of analysis, new capabilities were added using portable equipment such as Energy Dispersive X-Ray Fluorescence (ED-XRF) and Raman Spectroscopy that can be used for analysis 'in situ' at the museums. The results of these analyzes are providing valuable information on the manufacturing process and have provided new information on objects of different University of Sao Paulo museums. Improving the arsenal of cultural heritage analysis it was recently constructed an 3D robotic stage for the precise positioning of samples in the external beam setup

  18. Analytical techniques applied to study cultural heritage objects

    International Nuclear Information System (INIS)

    Rizzutto, M.A.; Curado, J.F.; Bernardes, S.; Campos, P.H.O.V.; Kajiya, E.A.M.; Silva, T.F.; Rodrigues, C.L.; Moro, M.; Tabacniks, M.; Added, N.

    2015-01-01

    The scientific study of artistic and cultural heritage objects have been routinely performed in Europe and the United States for decades. In Brazil this research area is growing, mainly through the use of physical and chemical characterization methods. Since 2003 the Group of Applied Physics with Particle Accelerators of the Physics Institute of the University of Sao Paulo (GFAA-IF) has been working with various methodologies for material characterization and analysis of cultural objects. Initially using ion beam analysis performed with Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering (RBS) and recently Ion Beam Induced Luminescence (IBIL), for the determination of the elements and chemical compounds in the surface layers. These techniques are widely used in the Laboratory of Materials Analysis with Ion Beams (LAMFI-USP). Recently, the GFAA expanded the studies to other possibilities of analysis enabled by imaging techniques that coupled with elemental and compositional characterization provide a better understanding on the materials and techniques used in the creative process in the manufacture of objects. The imaging analysis, mainly used to examine and document artistic and cultural heritage objects, are performed through images with visible light, infrared reflectography (IR), fluorescence with ultraviolet radiation (UV), tangential light and digital radiography. Expanding more the possibilities of analysis, new capabilities were added using portable equipment such as Energy Dispersive X-Ray Fluorescence (ED-XRF) and Raman Spectroscopy that can be used for analysis 'in situ' at the museums. The results of these analyzes are providing valuable information on the manufacturing process and have provided new information on objects of different University of Sao Paulo museums. Improving the arsenal of cultural heritage analysis it was recently constructed an 3D robotic stage for the precise positioning of samples in the external beam setup

  19. Colorimetry Technique for Scalable Characterization of Suspended Graphene.

    Science.gov (United States)

    Cartamil-Bueno, Santiago J; Steeneken, Peter G; Centeno, Alba; Zurutuza, Amaia; van der Zant, Herre S J; Houri, Samer

    2016-11-09

    Previous statistical studies on the mechanical properties of chemical-vapor-deposited (CVD) suspended graphene membranes have been performed by means of measuring individual devices or with techniques that affect the material. Here, we present a colorimetry technique as a parallel, noninvasive, and affordable way of characterizing suspended graphene devices. We exploit Newton's rings interference patterns to study the deformation of a double-layer graphene drum 13.2 μm in diameter when a pressure step is applied. By studying the time evolution of the deformation, we find that filling the drum cavity with air is 2-5 times slower than when it is purged.

  20. Report on COTECH test procedure and characterization techniques

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul

    that need to be attained for successful characterization of the planned demonstrators and it deals with the material characterization and prototype testing for the COTECH demonstrators. The summary of this report includes:  General description of COTECH industrial demonstrators  COTECH materials...... and material characterization techniquesCharacterization techniques of the COTECH demonstrators  Functionality and lifecycle testing of the COTECH demonstrators Besides the general introduction and conclusion each section of the report is dedicated to the characterization techniques and test procedure.......Characterization techniques and test procedure requirements for innovative self-ligating dental brackets (EO) Section 5.Characterization techniques and test procedure requirements for smart diagnostic chips comprising a microfluidic channel system (GBO) Section 6.Characterization techniques and test procedure...

  1. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    Science.gov (United States)

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  2. Ultrasonic techniques for fluids characterization

    CERN Document Server

    Povey, Malcolm J W

    1997-01-01

    This book is a comprehensive and practical guide to the use of ultrasonic techniques for the characterization of fluids. Focusing on ultrasonic velocimetry, the author covers the basic topics and techniques necessaryfor successful ultrasound measurements on emulsions, dispersions, multiphase media, and viscoelastic/viscoplastic materials. Advanced techniques such as scattering, particle sizing, and automation are also presented. As a handbook for industrial and scientific use, Ultrasonic Techniques for Fluids Characterization is an indispensable guide to chemists and chemical engineers using ultrasound for research or process monitoring in the chemical, food processing, pharmaceutical, cosmetic, biotechnology,and fuels industries. Key Features * Appeals to anyone using ultrasound to study fluids * Provides the first detailed description of the ultrasound profiling technique for dispersions * Describes new techniques for measuring phase transitions and nucleation, such as water/ice and oil/fat * Presents the l...

  3. Recent Experience Using Active Love Wave Techniques to Characterize Seismographic Station Sites

    Science.gov (United States)

    Martin, A. J.; Yong, A.; Salomone, L.

    2014-12-01

    Active-source Love waves recorded by the multi-channel analysis of surface wave (MASLW) technique were recently analyzed in two site characterization projects. Between 2010 and 2011, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 189 seismographic stations—185 in California and 4 in the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in the investigation it became evident that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not effective at characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. The MASLW technique was deployed at a total of 38 sites, in addition to other methods, and used as the primary technique to characterize 22 sites, 5 of which were also characterized using Rayleigh wave techniques. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites—the remaining 9 sites and 2 overlapping sites were characterized by University of Texas, Austin. Of the 24 sites characterized by GEOVision, 16 were characterized using MASLW data, 4 using both MASLW and MASRW data and 4 using MASRW data. Love wave techniques were often found to perform better, or at least yield phase velocity data that could be more readily modeled using the fundamental mode assumption, at shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in Love wave data. At such sites, it may be possible

  4. A general technique for characterizing x-ray position sensitive arrays

    International Nuclear Information System (INIS)

    Dufresne, E.; Bruning, R.; Sutton, M.; Stephenson, G.B.

    1994-03-01

    We present a general statistical technique for characterizing x-ray sensitive linear diode arrays and CCD arrays. We apply this technique to characterize the response of a linear diode array, Princeton Instrument model X-PDA, and a virtual phase CCD array, TI 4849, to direct illumination by x-rays. We find that the response of the linear array is linearly proportional to the incident intensity and uniform over its length to within 2 %. Its quantum efficiency is 38 % for Cu K α x-rays. The resolution function is evaluated from the spatial autocorrelation function and falls to 10 % of its peak value after one pixel. On the other hand, the response of the CCD detecting system to direct x-ray exposure is non-linear. To properly quantify the scattered x-rays, one must correct for the non- linearity. The resolution is two pixels along the serial transfer direction. We characterize the noise of the CCD and propose a model that takes into account the non-linearity and the resolution function to estimate the quantum efficiency of the detector. The quantum efficiency is 20 %

  5. Application of physical and chemical characterization techniques to metallic powders

    International Nuclear Information System (INIS)

    Slotwinski, J. A.; Watson, S. S.; Stutzman, P. E.; Ferraris, C. F.; Peltz, M. A.; Garboczi, E. J.

    2014-01-01

    Systematic studies have been carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to chemistry, including X-ray diffraction and energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, were also employed. Results of these analyses will be used to shed light on the question: how does virgin powder change after being exposed to and recycled from one or more additive manufacturing build cycles? In addition, these findings can give insight into the actual additive manufacturing process

  6. Signal integrity characterization techniques

    CERN Document Server

    Bogatin, Eric

    2009-01-01

    "Signal Integrity Characterization Techniques" addresses the gap between traditional digital and microwave curricula all while focusing on a practical and intuitive understanding of signal integrity effects within the data transmission channel. High-speed interconnects such as connectors, PCBs, cables, IC packages, and backplanes are critical elements of differential channels that must be designed using today's most powerful analysis and characterization tools.Both measurements and simulation must be done on the device under test, and both activities must yield data that correlates with each other. Most of this book focuses on real-world applications of signal integrity measurements - from backplane for design challenges to error correction techniques to jitter measurement technologies. The authors' approach wisely addresses some of these new high-speed technologies, and it also provides valuable insight into its future direction and will teach the reader valuable lessons on the industry.

  7. Characterization of used lubricating oil by spectrometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Andressa Moreira de, E-mail: andressa@ctaa.embrapa.br [Embrapa Agroindustria de Alimentos, Guaratiba, Rio de Janeiro, RJ (Brazil); Correa, Sergio Machado [Faculdade de Engenharia. Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil); Silva, Glauco Correa da [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: The engine lubricating oil drags all kinds of impurities generated by wear of internal components. Thus, it is necessary to monitor the physical and chemical properties and concentration of metals in lubricants used to determine the appropriate time to replace them. Moreover, one can monitor the wear of the engines through the levels of metals in oils. To achieve these goals, some detection techniques such as Flame atomic absorption spectrometry (FAAS), Inductively coupled plasma optical emission spectrometry (ICP-OES) and X-ray fluorescence (XRF), have been widely used to determine metals in lubricating oils and also in other oil derivatives. Thus, some of these techniques were used in this study. Also the technique used was Gas chromatography mass spectrometry (GC / MS) for characterization of chromatographic profile of the engine lubricating oil after use. Through the technique of ICP-OES for method of United States Environmental Protection Agency (USEPA) METHOD 6010B - Inductively coupled plasma optical emission spectrometry was performed to characterize metals in lubricating oil motor, using equipment from ICP-OES Perkin-Elmer{sup R} OPTIMA 3000 ICP-Winlab and software, obtaining the following identification of metals: barium (Ba), calcium (Ca), lead (Pb), copper (Cu), Chromium (Cr), iron (Fe), magnesium (Mg), molybdenum (Mo) and zinc (Zn). Using the XRF technique, through the equipment EDFRX Shimadzu{sup R} model 800HS EDX, Rh tube, applied voltage of 50kV, amperage 100{mu}A, detector Si (Li) cooled with liquid nitrogen and collimator 10mm, we analyzed all the components comprised in the range of Ti to U and Na to SC, identified the following metals: calcium (Ca), zinc (Zn), iron (Fe), copper (Cu), molybdenum (Mo) and nickel (Ni). The characterization was performed by chromatographic methods: USEPA METHOD 5021A - Volatile organic compounds in various sample matrices using equilibrium headspace analysis, USEPA METHOD 8015B - Nonhalogenated Organics

  8. Characterization of used lubricating oil by spectrometric techniques

    International Nuclear Information System (INIS)

    Souza, Andressa Moreira de; Correa, Sergio Machado; Silva, Glauco Correa da

    2011-01-01

    Full text: The engine lubricating oil drags all kinds of impurities generated by wear of internal components. Thus, it is necessary to monitor the physical and chemical properties and concentration of metals in lubricants used to determine the appropriate time to replace them. Moreover, one can monitor the wear of the engines through the levels of metals in oils. To achieve these goals, some detection techniques such as Flame atomic absorption spectrometry (FAAS), Inductively coupled plasma optical emission spectrometry (ICP-OES) and X-ray fluorescence (XRF), have been widely used to determine metals in lubricating oils and also in other oil derivatives. Thus, some of these techniques were used in this study. Also the technique used was Gas chromatography mass spectrometry (GC / MS) for characterization of chromatographic profile of the engine lubricating oil after use. Through the technique of ICP-OES for method of United States Environmental Protection Agency (USEPA) METHOD 6010B - Inductively coupled plasma optical emission spectrometry was performed to characterize metals in lubricating oil motor, using equipment from ICP-OES Perkin-Elmer R OPTIMA 3000 ICP-Winlab and software, obtaining the following identification of metals: barium (Ba), calcium (Ca), lead (Pb), copper (Cu), Chromium (Cr), iron (Fe), magnesium (Mg), molybdenum (Mo) and zinc (Zn). Using the XRF technique, through the equipment EDFRX Shimadzu R model 800HS EDX, Rh tube, applied voltage of 50kV, amperage 100μA, detector Si (Li) cooled with liquid nitrogen and collimator 10mm, we analyzed all the components comprised in the range of Ti to U and Na to SC, identified the following metals: calcium (Ca), zinc (Zn), iron (Fe), copper (Cu), molybdenum (Mo) and nickel (Ni). The characterization was performed by chromatographic methods: USEPA METHOD 5021A - Volatile organic compounds in various sample matrices using equilibrium headspace analysis, USEPA METHOD 8015B - Nonhalogenated Organics Using GC

  9. Ambient air contamination: Characterization and detection techniques

    Science.gov (United States)

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  10. Magnetic characterization techniques for nanomaterials

    CERN Document Server

    2017-01-01

    Sixth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Magnetic Characterization Techniques for Nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  11. Basalt characterization by means of nuclear and electrical well logging techniques. Case study from Southern Syria

    International Nuclear Information System (INIS)

    Asfahani, Jamal

    2011-01-01

    Nuclear well logging, including natural gamma ray, density, and neutron-porosity techniques are used with electrical well logging of long and short normal techniques to characterize the basaltic areas largely extended in Southern Syria. Statistical analysis approach with the threshold concept has been adapted for such characterization, where four kinds of basalt have been identified: very hard basalt, hard basalt, fractured basalt, and basalt alteration products. The spectrometric gamma technique has also been applied on the retrieved rock samples in order to determine the radioactive content (eU, eTh, and K%) of the basaltic section in the study area. No radioactive anomalies have been detected, the radioactive values are normal and in the expected range.

  12. Frequency-domain Harman technique for rapid characterization of bulk and thin film thermoelectric materials

    Science.gov (United States)

    Moran, Samuel

    Nanostructured thermoelectrics, often in the form of thin films, may potentially improve the generally poor efficiency of bulk thermoelectric power generators and coolers. In order to characterize the efficiency of these new materials it is necessary to measure their thermoelectric figure of merit, ZT. The only direct measurement of ZT is based on the Harman technique and relies on measuring the voltage drop across a sample subjected to a passing continuous current. Application of this technique to thin films is currently carried out as a time-domain measurement of the voltage as the thermal component decays after switching off an applied voltage. This work develops a technique for direct simultaneous measurement of figure of merit and Seebeck coefficient from the harmonic response of a thermoelectric material under alternating current excitation. A thermocouple mounted on the top surface measures voltage across the device as the frequency of the applied voltage is varied. A thermal model allows the sample thermal conductivity to also be determined and shows good agreement with measurements. This technique provides improved signal-to-noise ratio and accuracy compared to time-domain ZT measurements for comparable conditions while simultaneously measuring Seebeck coefficient. The technique is applied to both bulk and thin film thermoelectric samples.

  13. Measurement techniques for radiological characterization of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M

    1996-09-18

    Once the decision is taken to characterize a contaminated site, appropriate measurement techniques must be selected. The choice will depend on the available information, on the nature and extent of the contamination, as well as on available resources (staff and budget). Some techniques are described on the basis of examples of characterization projects (e.g. Olen area in Belgium).

  14. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  15. Statistical sampling applied to the radiological characterization of historical waste

    Directory of Open Access Journals (Sweden)

    Zaffora Biagio

    2016-01-01

    Full Text Available The evaluation of the activity of radionuclides in radioactive waste is required for its disposal in final repositories. Easy-to-measure nuclides, like γ-emitters and high-energy X-rays, can be measured via non-destructive nuclear techniques from outside a waste package. Some radionuclides are difficult-to-measure (DTM from outside a package because they are α- or β-emitters. The present article discusses the application of linear regression, scaling factors (SF and the so-called “mean activity method” to estimate the activity of DTM nuclides on metallic waste produced at the European Organization for Nuclear Research (CERN. Various statistical sampling techniques including simple random sampling, systematic sampling, stratified and authoritative sampling are described and applied to 2 waste populations of activated copper cables. The bootstrap is introduced as a tool to estimate average activities and standard errors in waste characterization. The analysis of the DTM Ni-63 is used as an example. Experimental and theoretical values of SFs are calculated and compared. Guidelines for sampling historical waste using probabilistic and non-probabilistic sampling are finally given.

  16. Proposal of requirements for performance in Brazil for systems of external individual monitoring for neutrons applying the TLD-albedo technique

    International Nuclear Information System (INIS)

    Martins, Marcelo M.; Mauricio, Claudia L.P.; Pereira, Walsan W.; Fonseca, Evaldo S. da; Silva, Ademir X.

    2009-01-01

    This work presents a criteria and conditions proposal for the regulations in Brazil of individual monitoring systems for neutrons applying the albedo technique with thermoluminescent detectors. Tests are proposed for the characterization performance of the system based on the Regulation ISO 21909 and on the experience of the authors

  17. Characterization techniques for graphene-based materials in catalysis

    Directory of Open Access Journals (Sweden)

    Maocong Hu

    2017-06-01

    Full Text Available Graphene-based materials have been studied in a wide range of applications including catalysis due to the outstanding electronic, thermal, and mechanical properties. The unprecedented features of graphene-based catalysts, which are believed to be responsible for their superior performance, have been characterized by many techniques. In this article, we comprehensively summarized the characterization methods covering bulk and surface structure analysis, chemisorption ability determination, and reaction mechanism investigation. We reviewed the advantages/disadvantages of different techniques including Raman spectroscopy, X-ray photoelectron spectroscopy (XPS, Fourier transform infrared spectroscopy (FTIR and Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS, X-Ray diffraction (XRD, X-ray absorption near edge structure (XANES and X-ray absorption fine structure (XAFS, atomic force microscopy (AFM, scanning electron microscopy (SEM, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM, ultraviolet-visible spectroscopy (UV-vis, X-ray fluorescence (XRF, inductively coupled plasma mass spectrometry (ICP, thermogravimetric analysis (TGA, Brunauer–Emmett–Teller (BET, and scanning tunneling microscopy (STM. The application of temperature-programmed reduction (TPR, CO chemisorption, and NH3/CO2-temperature-programmed desorption (TPD was also briefly introduced. Finally, we discussed the challenges and provided possible suggestions on choosing characterization techniques. This review provides key information to catalysis community to adopt suitable characterization techniques for their research.

  18. Metrological evaluation of characterization methods applied to nuclear fuels

    International Nuclear Information System (INIS)

    Faeda, Kelly Cristina Martins; Lameiras, Fernando Soares; Camarano, Denise das Merces; Ferreira, Ricardo Alberto Neto; Migliorini, Fabricio Lima; Carneiro, Luciana Capanema Silva; Silva, Egonn Hendrigo Carvalho

    2010-01-01

    In manufacturing the nuclear fuel, characterizations are performed in order to assure the minimization of harmful effects. The uranium dioxide is the most used substance as nuclear reactor fuel because of many advantages, such as: high stability even when it is in contact with water at high temperatures, high fusion point, and high capacity to retain fission products. Several methods are used for characterization of nuclear fuels, such as thermogravimetric analysis for the ratio O / U, penetration-immersion method, helium pycnometer and mercury porosimetry for the density and porosity, BET method for the specific surface, chemical analyses for relevant impurities, and the laser flash method for thermophysical properties. Specific tools are needed to control the diameter and the sphericity of the microspheres and the properties of the coating layers (thickness, density, and degree of anisotropy). Other methods can also give information, such as scanning and transmission electron microscopy, X-ray diffraction, microanalysis, and mass spectroscopy of secondary ions for chemical analysis. The accuracy of measurement and level of uncertainty of the resulting data are important. This work describes a general metrological characterization of some techniques applied to the characterization of nuclear fuel. Sources of measurement uncertainty were analyzed. The purpose is to summarize selected properties of UO 2 that have been studied by CDTN in a program of fuel development for Pressurized Water Reactors (PWR). The selected properties are crucial for thermalhydraulic codes to study basic design accidents. The thermal characterization (thermal diffusivity and thermal conductivity) and the penetration immersion method (density and open porosity) of UO 2 samples were focused. The thermal characterization of UO 2 samples was determined by the laser flash method between room temperature and 448 K. The adaptive Monte Carlo Method was used to obtain the endpoints of the

  19. Metrological evaluation of characterization methods applied to nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Faeda, Kelly Cristina Martins; Lameiras, Fernando Soares; Camarano, Denise das Merces; Ferreira, Ricardo Alberto Neto; Migliorini, Fabricio Lima; Carneiro, Luciana Capanema Silva; Silva, Egonn Hendrigo Carvalho, E-mail: kellyfisica@gmail.co, E-mail: fernando.lameiras@pq.cnpq.b, E-mail: dmc@cdtn.b, E-mail: ranf@cdtn.b, E-mail: flmigliorini@hotmail.co, E-mail: lucsc@hotmail.co, E-mail: egonn@ufmg.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2010-07-01

    In manufacturing the nuclear fuel, characterizations are performed in order to assure the minimization of harmful effects. The uranium dioxide is the most used substance as nuclear reactor fuel because of many advantages, such as: high stability even when it is in contact with water at high temperatures, high fusion point, and high capacity to retain fission products. Several methods are used for characterization of nuclear fuels, such as thermogravimetric analysis for the ratio O / U, penetration-immersion method, helium pycnometer and mercury porosimetry for the density and porosity, BET method for the specific surface, chemical analyses for relevant impurities, and the laser flash method for thermophysical properties. Specific tools are needed to control the diameter and the sphericity of the microspheres and the properties of the coating layers (thickness, density, and degree of anisotropy). Other methods can also give information, such as scanning and transmission electron microscopy, X-ray diffraction, microanalysis, and mass spectroscopy of secondary ions for chemical analysis. The accuracy of measurement and level of uncertainty of the resulting data are important. This work describes a general metrological characterization of some techniques applied to the characterization of nuclear fuel. Sources of measurement uncertainty were analyzed. The purpose is to summarize selected properties of UO{sub 2} that have been studied by CDTN in a program of fuel development for Pressurized Water Reactors (PWR). The selected properties are crucial for thermalhydraulic codes to study basic design accidents. The thermal characterization (thermal diffusivity and thermal conductivity) and the penetration immersion method (density and open porosity) of UO{sub 2} samples were focused. The thermal characterization of UO{sub 2} samples was determined by the laser flash method between room temperature and 448 K. The adaptive Monte Carlo Method was used to obtain the endpoints of

  20. Satellite SAR interferometric techniques applied to emergency mapping

    Science.gov (United States)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce

  1. Chemical vapor deposition: A technique for applying protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, T.C. Sr.; Bowman, M.G.

    1979-01-01

    Chemical vapor deposition is discussed as a technique for applying coatings for materials protection in energy systems. The fundamentals of the process are emphasized in order to establish a basis for understanding the relative advantages and limitations of the technique. Several examples of the successful application of CVD coating are described. 31 refs., and 18 figs.

  2. Measurements Techniques for Gyrotron characterization

    International Nuclear Information System (INIS)

    Castro, P.J. de.

    1987-08-01

    Experiments planned for the characterization of the 35GHz girotron, which is being built at the Plasma Laboratory of INPE, are described. The methods of the measurements are presented and the required instrumentation and devices are specified. Special attention is given to the measurement techniques of the resonator electric field profile. (author) [pt

  3. Early counterpulse technique applied to vacuum interrupters

    International Nuclear Information System (INIS)

    Warren, R.W.

    1979-11-01

    Interruption of dc currents using counterpulse techniques is investigated with vacuum interrupters and a novel approach in which the counterpulse is applied before contact separation. Important increases have been achieved in this way in the maximum interruptible current as well as large reductions in contact erosion. The factors establishing these new limits are presented and ways are discussed to make further improvements

  4. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Science.gov (United States)

    Varela, J. A.; Amado, J. M.; Tobar, M. J.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2015-05-01

    Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  5. Early counterpulse technique applied to vacuum interrupters

    International Nuclear Information System (INIS)

    Warren, R.W.

    1979-01-01

    Interruption of dc currents using counterpulse techniques is investigated with vacuum interrupters and a novel approach in which the counterpulse is applied before contact separation. Important increases have been achieved in this way in the maximum interruptible current and large reductions in contact erosion. The factors establishing these new limits are presented and ways are discussed to make further improvements to the maximum interruptible current

  6. Nondestructive characterization of materials (ultrasonic and micromagnetic techniques) for strength and toughness prediction and the detection of early creep damage

    International Nuclear Information System (INIS)

    Dobmann, G.; Kroening, M.; Theiner, W.; Willems, H.; Fiedler, U.

    1995-01-01

    In recent years, nondestructive testing techniques for materials characterization have been developed in Germany under the sponsorship of the Ministry of Research and Development, as part of the Reactor Safety Research Programme, in order to provide techniques for PSI and ISI that are sensitive and reliable, in particular with respect to the prediction of strength and toughness. As ferritic steels (pressure vessels and pipelines in the primary circuit) are of special interest, R and D was concentrated on micromagnetic techniques which are sensitive to the microstructure and its changes under service and/or repair conditions. In order to characterize microstructural states superimposed by residual stresses in an unambiguous way, numerical modelling was applied using advanced tools of mathematical approximation theory, i.e. multiregression algorithms and neural networks.For the detection of early creep damage in fossil power plant applications, i.e. micropores and their subsequent development to linked pores and microcracks, besides the micromagnetic techniques an ultrasonic technique was also applied and optimized for in situ applications on components such as pipe bends. Whereas the ultrasonic technique is sensitive to pore concentrations as small as about 0.2%, the parameters of the micromagnetic techniques are mainly influenced by temperature- and load-induced microstructural changes occurring in service, dependent on the steel quality. The techniques are applied at two pipe bends (steel grades 14MoV63 and X20CrMoV121) loaded under near practical conditions during seven inspection intervals between 2048h and 21000h to evaluate the progress of damage. (orig.)

  7. Computational optimization techniques applied to microgrids planning

    DEFF Research Database (Denmark)

    Gamarra, Carlos; Guerrero, Josep M.

    2015-01-01

    Microgrids are expected to become part of the next electric power system evolution, not only in rural and remote areas but also in urban communities. Since microgrids are expected to coexist with traditional power grids (such as district heating does with traditional heating systems......), their planning process must be addressed to economic feasibility, as a long-term stability guarantee. Planning a microgrid is a complex process due to existing alternatives, goals, constraints and uncertainties. Usually planning goals conflict each other and, as a consequence, different optimization problems...... appear along the planning process. In this context, technical literature about optimization techniques applied to microgrid planning have been reviewed and the guidelines for innovative planning methodologies focused on economic feasibility can be defined. Finally, some trending techniques and new...

  8. Nondestructive characterization of metal-matrix-composites by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon Hyun

    1992-01-01

    Nondestructive characterizations using ultrasonic technique were conducted systematically on Al 2 O 3 short fiber reinforced pure Al and AC8A aluminium metal-matrix composites. In order to determine the elastic moduli of metal-matrix composites(MMCs), Al 2 O 3 /AC8A composites with volume fraction of Al 2 O 3 short fiber varying up to 30% were fabricated by squeeze casting technique. Pure Al and AC8A reinforced with Al 2 O 3 short fiber were also fabricated by changing the fabrication parameters such as the applied pressure, the volume fraction of fiber. The Influences of texture change associated with change of fabrication parameters were investigated using the sophisticated LFB acoustic microscope with the frequency of 225 MHz. Ultrasonic velocities of longitudinal, shear and Rayleigh waves of the composites were measured by pulse-echo method and line-focus-beam(LBF) acoustic microscope. Ultrasonic velocities of the longitudinal, the shear and Rayleigh waves were found to correlate primarily with the volume fraction of Al 2 O 3 . The elastic constants of composites including Young's Modulus, Shear Modulus, Bulk Modulus and Poisson's ratio were determined on the basis of the longitudinal and the shear wave velocities measured by an ultrasonic pulse-echo method. The Young's Modulus of the composites obtained by ultrasonic technique were slightly lower than those measured by 4-point-bend test and also showed relatively good agreements with the calculated results derived from the equal stress condition. The applicability of LFB acoustic microscope on material characterization of the MMCs was discussed on the basis of the relationships between Rayleigh wave velocity as a function of rotated angle of specimen and fabrication parameters of the MMCs.

  9. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  10. Characterization of titanium silicide thin films by X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Morimoto, N.J.

    1987-01-01

    This thesis deals with characterization techniques of thin films by means of X-ray diffraction. This includes phase identification and residual stress, microstress and crystallite size calculations. The techniques developed were applied on the study of the titanium silicide formation obtained by means of Rapidy Thermal Processing (RTP) pf Ti films deposited on silicon substratum. The different phases were studied in relation with processing temperature and time in one and two anneling steps. The low resistivity TiSi 2 phase was observed for temperature of 700 0 C and higher. The experimental results indicate that the residual stress of TiSi 2 films doesn't vary significantly with the annealing conditions. On the other hand, the microstress is reduced with annealing time at 800 0 C, while the crystallite size is almost not affected. For the microstress and the crystallite size determination technique, two methods were implemented and compared. The Riella's method appeared to be very efficient, while the Gangulle's method seemed to be inadequate, because the results oscillate too much [pt

  11. Applying of USB interface technique in nuclear spectrum acquisition system

    International Nuclear Information System (INIS)

    Zhou Jianbin; Huang Jinhua

    2004-01-01

    This paper introduces applying of USB technique and constructing nuclear spectrum acquisition system via PC's USB interface. The authors choose the USB component USB100 module and the W77E58μc to do the key work. It's easy to apply USB interface technique, when USB100 module is used. USB100 module can be treated as a common I/O component for the μc controller, and can be treated as a communication interface (COM) when connected to PC' USB interface. It's easy to modify the PC's program for the new system with USB100 module. The authors can smoothly change from ISA, RS232 bus to USB bus. (authors)

  12. Photoacoustic spectroscopy applied to the optical characterization of calcium phosphates for biomedical use

    Energy Technology Data Exchange (ETDEWEB)

    Mendez G, M. [ESFM-IPN, 07738 Mexico D.F. (Mexico); Cruz O, A. [CINVESTAV, Dept. of Physics, 07360 Mexico D.F. (Mexico)

    2007-07-01

    Full text: Photoacoustic Spectroscopy (PAS), based on the Rosencwaig and Gersho model, has been used for thermal and optical characterization of diverse materials. The use of PAS has become an important tool because is a nondestructive and no contact analytical technique. Furthermore its use to measure optical absorption spectra has advantages over the usual transmission measurements due to important features as the fact that scattered light does not disturb the measurements significantly and also the sample don't need to be prepared to have good quality surfaces. Then the optical properties of biological samples can be easily investigated with this technique. In the present study PAS is applied to obtain the optical absorption spectra of hydroxyapatite (HAp) [Ca{sub 10} (PO{sub 4} ){sub 6} (OH ){sub 2}] and bioactive calcium phosphates. The spectra of these samples ranged from 300 to 800 nm. All samples were prepared in a power form with particle size < 741m. Complementary studies X-ray diffraction and EDC were performed. (Author)

  13. Site characterization techniques used in environmental remediation activities

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    2000-01-01

    As a result of decades of nuclear energy research, weapons production, as well as ongoing operations, a significant amount of radioactive contamination has occurred throughout the United States Department of Energy (DOE) complex. DOE facility are in the process of assessing and potentially remediating various sites according to the regulations imposed by a Federal Facility Agreement and Consent order (FFA/CO) between DOE, the state in which the facility is located, and the U.S. Environmental Protection Agency (EPA). In support of these active site remediation efforts, the DOE has devoted considerable resources towards the development of innovative site characterization techniques that support environmental restoration activities. These resources and efforts have focused on various aspects of this complex problem. Research and technology development conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the ability and state-of-the-art equipment required to obtain real-time, densely spaced, in situ characterization data (i.e. detection, speciation, and location) of various radionuclides and contaminants. The Remedial Action Monitoring System (RAMS), developed by the INEEL, consists of enhanced sensor technology, measurement modeling and interpretation techniques, and a suite of deployment platforms which can be interchanged to directly support remedial cleanup and site verification operations. In situ characterization techniques have advanced to the point where they are being actively deployed in support of remedial operations. The INEEL has deployed its system at various DOE and international sites. The deployment of in situ characterization systems during environmental restoration operations has shown that this approach results in several significant benefits versus conventional sampling techniques. A flexible characterization system permits rapid modification to satisfy physical site conditions, available site resources

  14. Comparison of experimental techniques for characterization of through-thickness texture variations

    DEFF Research Database (Denmark)

    Mishin, Oleg; Lauridsen, E.M.; Krieger Lassen, N.C.

    1999-01-01

    For the investigation of through-thickness texture gradients, a number of layers in rolled plates and sheets are inspected. Crystallographic textures in different layers can be characterized using several techniques. In the present work, traditional low-energy X-ray diffraction, the electron...... backscattering pattern technique in the scanning electron microscope and a novel technique which involves high energy synchrotron radiation are used for characterization of through-thickness texture variations in commercial purity cold-rolled aluminium. Important experimental aspects of these three techniques...

  15. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.

    2016-01-01

    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  16. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.

    2016-04-24

    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  17. Characterization of the Teotihuacan mural painting: application of the external particle beam as non destructive technique

    International Nuclear Information System (INIS)

    Martinez, C.; Manzanilla, L.; Ruvalcaba, J.L.; Ontalba, M.A.

    2005-01-01

    The characterization of technical indicators contained in the painting mural should follow a minim methodology from their discovery in the archaeological excavations until their analysis in the laboratory, with the purpose of rescuing diagnostic elements that mark the stages of socio cultural development in the towns. With this spirit it was carried out the present study analyzing some fragments of the Teotihuacan mural painting. The analysis consisted on applying some of the analytical techniques with particle beams used for archaeometry like the Proton induced X-ray emission (PIXE) and the particle elastic backscattering (RBS), due to it is treated of complementary techniques, very sensitive, of multielemental character, but mainly because its are non destructive analytical techniques. (Author)

  18. Morphologic characterization of Mycobacterium marinum by neutron radiographic technique

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jaqueline Michele da; Crispim, Verginia Reis, E-mail: vrcrispim@gmail.com [Universidade Federal do Rio de Janeiro (CT/UFRJ) Centro Tecnologico, Engenharia Nuclear, RJ (Brazil); Silva, Marlei Gomes da [Universidade Federal do Rio de Janeiro (CCS/UFRJ), Centro de Ciencias da Saude. Instituto de Microbiologia Professor Paulo de Goes (Brazil)

    2011-07-01

    The genus Mycobacterium shares many characteristics with the genera Corynebacterium and Actinomyces, among which, similar genome content of bases Guanine-Cytosine and the production of branched long-chain fatty acids called mycolic acids should be enhanced. Mycobacteria are strict aerobic, considered weakly Gram-positive, rod-shaped microorganisms, not possessing flagella. They are intracellular infecting and proliferating in the interior of macrophages, they do not form spores, produce toxins or have capsule. Optimal growth temperature and rate are variable. The genus encompasses approximately 120 known species; however, the present study focuses the characterization of Mycobacterium marinum. This species is generally pathogenic causing deep skin infections. Colonies grow slowly at temperatures around 37 degree C. The aim of this study is to speed the process of M. Marinum morphologic characterization and, in the future, apply it to other species of Nontuberculous Mycobacteria (NTM. In relation to conventional microbiologic essays that usually demand 28 days for colony growth, nuclear testing, using the neutron radiography technique, prove to be much faster. The samples were initially sterilized at the Mycobacteria Laboratory/IMPPG/UFRJ using hypochlorite solution, gluta + formaldehyde and warmed distilled water, according conventional protocols. Then, they were incubated with sodium borate, deposited over CR-39 sheets, fixed with casein (only the first and third sample) and irradiated with a thermal neutron beam generated at the J-9 channel of the Argonauta reactor from the IEN/CNEN. To this end, the following parameters were optimized: incubation time, irradiation time and CR-39 developing time. The images registered in CR-39 were visualized with the help of a Nikon E-400 optical microscope and captured with a Cool pix 995 digital camera. The results showed that the technique produces enlarged images, making it easier the morphologic characterization of

  19. Morphologic characterization of Mycobacterium marinum by neutron radiographic technique

    International Nuclear Information System (INIS)

    Silva, Jaqueline Michele da; Crispim, Verginia Reis; Silva, Marlei Gomes da

    2011-01-01

    The genus Mycobacterium shares many characteristics with the genera Corynebacterium and Actinomyces, among which, similar genome content of bases Guanine-Cytosine and the production of branched long-chain fatty acids called mycolic acids should be enhanced. Mycobacteria are strict aerobic, considered weakly Gram-positive, rod-shaped microorganisms, not possessing flagella. They are intracellular infecting and proliferating in the interior of macrophages, they do not form spores, produce toxins or have capsule. Optimal growth temperature and rate are variable. The genus encompasses approximately 120 known species; however, the present study focuses the characterization of Mycobacterium marinum. This species is generally pathogenic causing deep skin infections. Colonies grow slowly at temperatures around 37 degree C. The aim of this study is to speed the process of M. Marinum morphologic characterization and, in the future, apply it to other species of Nontuberculous Mycobacteria (NTM. In relation to conventional microbiologic essays that usually demand 28 days for colony growth, nuclear testing, using the neutron radiography technique, prove to be much faster. The samples were initially sterilized at the Mycobacteria Laboratory/IMPPG/UFRJ using hypochlorite solution, gluta + formaldehyde and warmed distilled water, according conventional protocols. Then, they were incubated with sodium borate, deposited over CR-39 sheets, fixed with casein (only the first and third sample) and irradiated with a thermal neutron beam generated at the J-9 channel of the Argonauta reactor from the IEN/CNEN. To this end, the following parameters were optimized: incubation time, irradiation time and CR-39 developing time. The images registered in CR-39 were visualized with the help of a Nikon E-400 optical microscope and captured with a Cool pix 995 digital camera. The results showed that the technique produces enlarged images, making it easier the morphologic characterization of

  20. Use of non-standardised micro-destructive techniques in the characterization of traditional construction materials

    Science.gov (United States)

    Ioannou, Ioannis; Theodoridou, Magdalini; Modestou, Sevasti; Fournari, Revecca; Dagrain, Fabrice

    2013-04-01

    The characterization of material properties and the diagnosis of their state of weathering and conservation are three of the most important steps in the field of cultural heritage preservation. Several standardised experimental methods exist, especially for determining the material properties and their durability. However, they are limited in their application by the required size of test specimens and the controlled laboratory conditions needed to undertake the tests; this is especially true when the materials under study constitute immovable parts of heritage structures. The current use of other advanced methods of analysis, such as imaging techniques, in the aforementioned field of research offers invaluable results. However, these techniques may not always be accessible to the wider research community due to their complex nature and relatively high cost of application. This study presents innovative applications of two recently developed cutting techniques; the portable Drilling Resistance Measuring System (DRMS) and the scratch tool. Both methods are defined as micro-destructive, since they only destroy a very small portion of sample material. The general concept of both methods lies within the forces needed to cut a material by linear (scratch tool) or rotational (DRMS) cutting action; these forces are related to the mechanical properties of the material and the technological parameters applied on the tool. Therefore, for a given testing configuration, the only parameter influencing the forces applied is the strength of the material. These two techniques have been used alongside a series of standardised laboratory tests aiming at the correlation of various stone properties (density, porosity, dynamic elastic modulus and uniaxial compressive strength). The results prove the potential of both techniques in assessing the uniaxial compressive strength of stones. The scratch tool has also been used effectively to estimate the compressive strength of mud bricks. It

  1. Diagonal ordering operation technique applied to Morse oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Dušan, E-mail: dusan_popov@yahoo.co.uk [Politehnica University Timisoara, Department of Physical Foundations of Engineering, Bd. V. Parvan No. 2, 300223 Timisoara (Romania); Dong, Shi-Hai [CIDETEC, Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Mexico D.F. 07700 (Mexico); Popov, Miodrag [Politehnica University Timisoara, Department of Steel Structures and Building Mechanics, Traian Lalescu Street, No. 2/A, 300223 Timisoara (Romania)

    2015-11-15

    We generalize the technique called as the integration within a normally ordered product (IWOP) of operators referring to the creation and annihilation operators of the harmonic oscillator coherent states to a new operatorial approach, i.e. the diagonal ordering operation technique (DOOT) about the calculations connected with the normally ordered product of generalized creation and annihilation operators that generate the generalized hypergeometric coherent states. We apply this technique to the coherent states of the Morse oscillator including the mixed (thermal) state case and get the well-known results achieved by other methods in the corresponding coherent state representation. Also, in the last section we construct the coherent states for the continuous dynamics of the Morse oscillator by using two new methods: the discrete–continuous limit, respectively by solving a finite difference equation. Finally, we construct the coherent states corresponding to the whole Morse spectrum (discrete plus continuous) and demonstrate their properties according the Klauder’s prescriptions.

  2. Applied potential tomography. A new noninvasive technique for measuring gastric emptying

    International Nuclear Information System (INIS)

    Avill, R.; Mangnall, Y.F.; Bird, N.C.; Brown, B.H.; Barber, D.C.; Seagar, A.D.; Johnson, A.G.; Read, N.W.

    1987-01-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivity were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant

  3. Applied potential tomography. A new noninvasive technique for measuring gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Avill, R.; Mangnall, Y.F.; Bird, N.C.; Brown, B.H.; Barber, D.C.; Seagar, A.D.; Johnson, A.G.; Read, N.W.

    1987-04-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivity were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant.

  4. Microscale and nanoscale strain mapping techniques applied to creep of rocks

    Science.gov (United States)

    Quintanilla-Terminel, Alejandra; Zimmerman, Mark E.; Evans, Brian; Kohlstedt, David L.

    2017-07-01

    Usually several deformation mechanisms interact to accommodate plastic deformation. Quantifying the contribution of each to the total strain is necessary to bridge the gaps from observations of microstructures, to geomechanical descriptions, to extrapolating from laboratory data to field observations. Here, we describe the experimental and computational techniques involved in microscale strain mapping (MSSM), which allows strain produced during high-pressure, high-temperature deformation experiments to be tracked with high resolution. MSSM relies on the analysis of the relative displacement of initially regularly spaced markers after deformation. We present two lithography techniques used to pattern rock substrates at different scales: photolithography and electron-beam lithography. Further, we discuss the challenges of applying the MSSM technique to samples used in high-temperature and high-pressure experiments. We applied the MSSM technique to a study of strain partitioning during creep of Carrara marble and grain boundary sliding in San Carlos olivine, synthetic forsterite, and Solnhofen limestone at a confining pressure, Pc, of 300 MPa and homologous temperatures, T/Tm, of 0.3 to 0.6. The MSSM technique works very well up to temperatures of 700 °C. The experimental developments described here show promising results for higher-temperature applications.

  5. X-ray and neutron techniques for nanomaterials characterization

    CERN Document Server

    2016-01-01

    Fifth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about X-ray and Neutron Techniques for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  6. Histochemical characterization of human osteochondral tissue: comparison between healthy cartilage, arthrotic tissues, and cartilage defect treated with MACI technique

    Directory of Open Access Journals (Sweden)

    F. Tessarolo

    2011-01-01

    Full Text Available Matrix-induced sutologous chondrocytes implantation (MACI is a promising technique for the treatment of articular cartilage lesions, but long time outcome have to be established. We developed and optimized specific techniques of histochemical staining to characterize healthy and pathologic osteochondral tissue. Seven different staining protocols were applied to assess tissue architecture, cells morphology, proteoglycan content, and collagen fibers distribution. Potentialities of histochemical staining and histomorphology of biopsies from second look arthroscopy will be presented.

  7. Dielectric spectroscopy technique applied to study the behaviour of irradiated polymer

    International Nuclear Information System (INIS)

    Saoud, R.; Soualmia, A.; Guerbi, C.A.; Benrekaa, N.

    2006-01-01

    Relaxation spectroscopy provides an excellent method for the study of motional processes in materials and has been widely applied to macromolecules and polymers. The technique is potentially of most interest when applied to irradiated systems. Application to the study of the structure beam-irradiated Teflon is thus an outstanding opportunity for the dielectric relaxation technique, particularly as this material exhibits clamping problems when subjected to dynamic mechanical relaxation studies. A very wide frequency range is necessary to resolve dipolar effects. In this paper, we discuss some significant results about the behavior and the modification of the structure of Teflon submitted to weak energy radiations

  8. Statistical Techniques Used in Three Applied Linguistics Journals: "Language Learning,""Applied Linguistics" and "TESOL Quarterly," 1980-1986: Implications for Readers and Researchers.

    Science.gov (United States)

    Teleni, Vicki; Baldauf, Richard B., Jr.

    A study investigated the statistical techniques used by applied linguists and reported in three journals, "Language Learning,""Applied Linguistics," and "TESOL Quarterly," between 1980 and 1986. It was found that 47% of the published articles used statistical procedures. In these articles, 63% of the techniques used could be called basic, 28%…

  9. The impact of applying product-modelling techniques in configurator projects

    DEFF Research Database (Denmark)

    Hvam, Lars; Kristjansdottir, Katrin; Shafiee, Sara

    2018-01-01

    This paper aims to increase understanding of the impact of using product-modelling techniques to structure and formalise knowledge in configurator projects. Companies that provide customised products increasingly apply configurators in support of sales and design activities, reaping benefits...... that include shorter lead times, improved quality of specifications and products, and lower overall product costs. The design and implementation of configurators are a challenging task that calls for scientifically based modelling techniques to support the formal representation of configurator knowledge. Even...... the phenomenon model and information model are considered visually, (2) non-UML-based modelling techniques, in which only the phenomenon model is considered and (3) non-formal modelling techniques. This study analyses the impact to companies from increased availability of product knowledge and improved control...

  10. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  11. UQ and V&V techniques applied to experiments and simulations of heated pipes pressurized to failure

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Vicente Jose [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dempsey, J. Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antoun, Bonnie R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    This report demonstrates versatile and practical model validation and uncertainty quantification techniques applied to the accuracy assessment of a computational model of heated steel pipes pressurized to failure. The Real Space validation methodology segregates aleatory and epistemic uncertainties to form straightforward model validation metrics especially suited for assessing models to be used in the analysis of performance and safety margins. The methodology handles difficulties associated with representing and propagating interval and/or probabilistic uncertainties from multiple correlated and uncorrelated sources in the experiments and simulations including: material variability characterized by non-parametric random functions (discrete temperature dependent stress-strain curves); very limited (sparse) experimental data at the coupon testing level for material characterization and at the pipe-test validation level; boundary condition reconstruction uncertainties from spatially sparse sensor data; normalization of pipe experimental responses for measured input-condition differences among tests and for random and systematic uncertainties in measurement/processing/inference of experimental inputs and outputs; numerical solution uncertainty from model discretization and solver effects.

  12. Determination of palladium in biological samples applying nuclear analytical techniques

    International Nuclear Information System (INIS)

    Cavalcante, Cassio Q.; Sato, Ivone M.; Salvador, Vera L. R.; Saiki, Mitiko

    2008-01-01

    This study presents Pd determinations in bovine tissue samples containing palladium prepared in the laboratory, and CCQM-P63 automotive catalyst materials of the Proficiency Test, using instrumental thermal and epithermal neutron activation analysis and energy dispersive X-ray fluorescence techniques. Solvent extraction and solid phase extraction procedures were also applied to separate Pd from interfering elements before the irradiation in the nuclear reactor. The results obtained by different techniques were compared against each other to examine sensitivity, precision and accuracy. (author)

  13. Advanced electron microscopic techniques applied to the characterization of irradiation effects and fission product identification of irradiated TRISO coated particles from the AGR-1 experiment

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Lillo, T.M.; Trowbridge, T.L.; Madden, J.M.; Wu, Y.Q.; Goran, D.

    2013-01-01

    Preliminary electron microscopy of coated fuel particles from the AGR-1 experiment was conducted using characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and wavelength dispersive spectroscopy (WDS). Microscopic quantification of fission-product precipitates was performed. Although numerous micro- and nano-sized precipitates observed in the coating layers during initial SEM characterization of the cross-sections, and in subsequent TEM diffraction patterns, were indexed as UPd 2 Si 2 , no Ag was conclusively found. Additionally, characterization of these precipitates highlighted the difficulty of measuring low concentrations of Ag in precipitates in the presence of significantly higher concentrations of Pd and U. The electron microscopy team followed a multi-directional and phased approach in the identification of fission products in irradiated TRISO fuel. The advanced electron microscopy techniques discussed in this paper, not only demonstrate the usefulness of the equipment (methods) as relevant research tools, but also provide relevant scientific results which increase the knowledge about TRISO fuel particles microstructure and fission products transport

  14. A comparative study of techniques used for porous membrane characterization: pore characterization

    NARCIS (Netherlands)

    Broek, A.P.; Kim, K.J.; Fane, A.G.; Ben aim, R.; Liu, M.G.; Jonsson, G.; Tessaro, I.C.; Broek, A.P.; Bargeman, D.; Bargeman, D.

    1994-01-01

    A range of commerical UF membranes have been characterized by thermoporometry, biliquid permporometry and molecular weight cut-off experiments. A comparison of results from these three independent techniques for the same types of membrane shows an indication of the strength and weakness of the

  15. Characterization of European sword blades through neutron imaging techniques

    Science.gov (United States)

    Salvemini, F.; Grazzi, F.; Peetermans, S.; Gener, M.; Lehmann, E. H.; Zoppi, M.

    2014-09-01

    In the present work, we have studied two European rapier blades, dating back to the period ranging from the Late Renaissance to the Early Modern Age (about 17th to 18th century). In order to determine variation in quality and differences in technology, a study was undertaken with the purpose to observe variations in the blade microstructure (and consequently in the construction processes). The samples, which in the present case were expendable, have been investigated, preliminarily, through standard metallography and then by means of white beam and energy-selective neutron imaging. The comparison of the results, using the two techniques, turned out to be satisfactory, with a substantial quantitative agreement of the results obtained with the two techniques, and show the complementarity of the two methods. Metallography has been considered up to now the method of choice for metal material characterization. The correspondence between the two methods, as well as the non-invasive character of the neutron-based techniques and its possibility to obtain 3D reconstruction, candidate neutron imaging as an important and quantitatively reliable technique for metal characterization.

  16. Review on characterization methods applied to HTR-fuel element components

    International Nuclear Information System (INIS)

    Koizlik, K.

    1976-02-01

    One of the difficulties which on the whole are of no special scientific interest, but which bear a lot of technical problems for the development and production of HTR fuel elements is the proper characterization of the element and its components. Consequently a lot of work has been done during the past years to develop characterization procedures for the fuel, the fuel kernel, the pyrocarbon for the coatings, the matrix and graphite and their components binder and filler. This paper tries to give a status report on characterization procedures which are applied to HTR fuel in KFA and cooperating institutions. (orig.) [de

  17. The practical use of computer graphics techniques for site characterization

    International Nuclear Information System (INIS)

    Tencer, B.; Newell, J.C.

    1982-01-01

    In this paper the authors describe the approach utilized by Roy F. Weston, Inc. (WESTON) to analyze and characterize data relative to a specific site and the computerized graphical techniques developed to display site characterization data. These techniques reduce massive amounts of tabular data to a limited number of graphics easily understood by both the public and policy level decision makers. First, they describe the general design of the system; then the application of this system to a low level rad site followed by a description of an application to an uncontrolled hazardous waste site

  18. Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques.

    Science.gov (United States)

    Pastor, Victoria; Vicent, Cristian; Cerezo, Miguel; Mauch-Mani, Brigitte; Dean, John; Flors, Victor

    2012-04-01

    An approach for the detection and characterization of SA derivatives in plant samples is presented based on liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometric techniques. Precursor ion scan methods using an ESI triple quadrupole spectrometer for samples from plants challenged with the virulent Pseudomonas syringae pv tomato DC3000 allowed us to detect two potential SA derivatives. The criterion used to consider a potential SA derivative is based on the detection of analytes in the precursor ion scan chromatogram upon selecting m/z 137 and m/z 93 that correspond to the salicylate and its main product ion, respectively. Product ion spectra of the newly-detected analytes as well as accurate m/z determinations using an ESI Q-time-of-flight instrument were registered as means of characterization and strongly suggest that glucosylated forms of SA at the carboxylic and at the phenol functional groups are present in plant samples. The specific synthesis and subsequent chromatography of salicylic glucosyl ester (SGE) and glucosyl salicylate (SAG) standards confirmed the chemical identity of both peaks that were obtained applying different tandem mass spectrometric techniques and accurate m/z determinations. A multiple reaction monitoring method has been developed and applied to plant samples. The advantages of this LC-ESI-MS/MS methods with respect to the traditional analysis of glucosyl conjugates are also discussed. Preliminary results revealed that SA and the glucosyl conjugates are accumulated in Arabidopsis thaliana in a time dependent manner, accordingly to the up-regulation of SA-dependent defenses following P. syringae infection. This technique applied to plant hormones or fragment ions may be useful to obtain chemical family members of plant metabolites and help identify their contribution in the signaling of plant defenses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Applying BI Techniques To Improve Decision Making And Provide Knowledge Based Management

    Directory of Open Access Journals (Sweden)

    Alexandra Maria Ioana FLOREA

    2015-07-01

    Full Text Available The paper focuses on BI techniques and especially data mining algorithms that can support and improve the decision making process, with applications within the financial sector. We consider the data mining techniques to be more efficient and thus we applied several techniques, supervised and unsupervised learning algorithms The case study in which these algorithms have been implemented regards the activity of a banking institution, with focus on the management of lending activities.

  20. 2012 Annual Conference on Experimental and Applied Mechanics

    CERN Document Server

    Crone, Wendy; Jin, Helena; Sciammarella, Cesar; Furlong, Cosme; Furlong, Cosme; Chalivendra, Vijay; Song, Bo; Casem, Daniel; Antoun, Bonnie; Qi, H; Hall, Richard; Tandon, GP; Lu, Hongbing; Lu, Charles; Yoshida, Sanichiro; Shaw, Gordon; Prorok, Barton; Barthelat, François; Korach, Chad; Grande-Allen, K; Lipke, Elizabeth; Lykofatitits, George; Zavattieri, Pablo; Starman, LaVern; Patterson, Eann; Backman, David; Cloud, Gary; Vol.1 Dynamic Behavior of Materials; Vol.2 Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials; Vol.3 Imaging Methods for Novel Materials and Challenging Applications; Vol.4 Experimental and Applied Mechanics; Vol.5 Mechanics of Biological Systems and Materials; Vol.6 MEMS and Nanotechnology; Vol.7 Composite Materials and Joining Technologies for Composites

    2013-01-01

    Experimental and Applied Mechanics, Volume 4: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics, the fourth volume of seven from the Conference, brings together 54 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental and Applied Mechanics, including papers on:  Fracture & Fatigue Microscale & Microstructural Effects in Fatigue & Fracture Material Applications Composite Characterization Using Digital Image Correlation Techniques Multi-Scale Simulation and Testing of Composites Residual Stress Inverse Problems/Hybrid Methods Nano-Composites Microstructure Material Characterization Modeling and Uncertainty Quantification Impact Behavior of Composites.

  1. Femtosecond Pulse Characterization as Applied to One-Dimensional Photonic Band Edge Structures

    Science.gov (United States)

    Fork, Richard L.; Gamble, Lisa J.; Diffey, William M.

    1999-01-01

    The ability to control the group velocity and phase of an optical pulse is important to many current active areas of research. Electronically addressable one-dimensional photonic crystals are an attractive candidate to achieve this control. This report details work done toward the characterization of photonic crystals and improvement of the characterization technique. As part of the work, the spectral dependence of the group delay imparted by a GaAs/AlAs photonic crystal was characterized. Also, a first generation an electrically addressable photonic crystal was tested for the ability to electronically control the group delay. The measurement technique, using 100 femtosecond continuum pulses was improved to yield high spectral resolution (1.7 nanometers) and concurrently with high temporal resolution (tens of femtoseconds). Conclusions and recommendations based upon the work done are also presented.

  2. Microstructure Characterization and Hardness Evaluation of Alloy 52 Welded Stainless Steel 316 Subjected to Ultrasonic Nanocyrtal Surface Modification Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. D.; Amanov, A.; Pyun, Y. S. [Sun Moon Univ., Asan (Korea, Republic of); Kim, Y. S.; Choi, Y. S. [Andong National Univ., Andong (Korea, Republic of)

    2015-10-15

    In this study, an ultrasonic nanocrystal surface modification (UNSM) technique was applied to dissimilar weld point between STS316L and Alloy 52. This UNSM technique is a patented technology, which can be described as a type of ultrasonic cold-forging technology. It has been demonstrated that the UNSM technique is a simple method to produce a nanocrystalline surface layer at the top surface of metallic materials. Microstructure and hardness of STS316L and Alloy 52 are investigated before and after UNSM treatment. It is expected according to the previous study that the UNSM technique is able to release the residual stress which delays PWSCC. In this study, microstructural characterization and hardness evaluation of STS316L and welded Alloy 52 subjected to UNSM technique were investigated.

  3. Techniques for physicochemical characterization of nanomaterials

    Science.gov (United States)

    Lin, Ping-Chang; Lin, Stephen; Wang, Paul C.; Sridhar, Rajagopalan

    2014-01-01

    Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics. PMID:24252561

  4. Ionic liquid-based observation technique for nonconductive materials in the scanning electron microscope: Application to the characterization of a rare earth ore.

    Science.gov (United States)

    Brodusch, Nicolas; Waters, Kristian; Demers, Hendrix; Gauvin, Raynald

    2014-03-01

    A new approach for preparing geological materials is proposed to reduce charging during their characterization in a scanning electron microscope. This technique was applied to a sample of the Nechalacho rare earth deposit, which contains a significant amount of the minerals fergusonite and zircon. Instead of covering the specimen surface with a conductive coating, the sample was immersed in a dilute solution of ionic liquid and then air dried prior to SEM analysis. Imaging at a wide range of accelerating voltages was then possible without evidence of charging when using the in-chamber secondary and backscattered electrons detectors, even at 1 kV. High resolution x-ray and electron backscatter diffraction mapping were successfully obtained at 20 and 5 kV with negligible image drifting and permitted the characterization of the microstructure of the zircon/fergusonite-Y aggregates encased in the matrix minerals. Because of the absence of a conductive layer at the surface of the specimen, the Kikuchi band contrast was improved and the backscatter electron signal increased at both 5 and 20 kV as confirmed by Monte Carlo modeling. These major developments led to an improvement of the spatial resolution and efficiency of the above characterization techniques applied to the rare earth ore and it is expected that they can be applied to other types of ores and minerals. Copyright © 2014 Wiley Periodicals, Inc.

  5. Replica casting technique for micro Fresnel lenses characterization

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    The available measuring techniques are not always suitable for the characterization of optical surfaces such as Fresnel lenses or polished specimens. A way to overcome these challenges is to reproduce the optical components surface using a polymer casting method and to measure the replicated...

  6. Applying DEA Technique to Library Evaluation in Academic Research Libraries.

    Science.gov (United States)

    Shim, Wonsik

    2003-01-01

    This study applied an analytical technique called Data Envelopment Analysis (DEA) to calculate the relative technical efficiency of 95 academic research libraries, all members of the Association of Research Libraries. DEA, with the proper model of library inputs and outputs, can reveal best practices in the peer groups, as well as the technical…

  7. In Situ Analytical Characterization of Contaminated Sites Using Nuclear Spectrometry Techniques. Review of Methodologies and Measurements

    International Nuclear Information System (INIS)

    2017-01-01

    Past and current human activities can result in the contamination of sites by radionuclides and heavy metals. The sources of contamination are various. The most important sources for radionuclide release include global fallout from nuclear testing, nuclear and radiological accidents, waste production from nuclear facilities, and activities involving naturally occurring radioactive material (NORM). Contamination of the environment by heavy metals mainly originates from industrial applications and mineralogical background concentration. Contamination of sites by radionuclides and heavy metals can present a risk to people and the environment. Therefore, the estimation of the contamination level and the identification of the source constitute important information for the national authorities with the responsibility to protect people and the environment from adverse health effects. In situ analytical techniques based on nuclear spectrometry are important tools for the characterization of contaminated sites. Much progress has been made in the design and implementation of portable systems for efficient and effective monitoring of radioactivity and heavy metals in the environment directly on-site. Accordingly, the IAEA organized a Technical Meeting to review the current status and trends of various applications of in situ nuclear spectrometry techniques for analytical characterization of contaminated sites and to support Member States in their national environmental monitoring programmes applying portable instrumentation. This publication represents a comprehensive review of the in situ gamma ray spectrometry and field portable X ray fluorescence analysis techniques for the characterization of contaminated sites. It includes papers on the use of these techniques, which provide useful background information for conducting similar studies, in the following Member States: Argentina, Australia, Brazil, Czech Republic, Egypt, France, Greece, Hungary, Italy, Lithuania

  8. Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data

    Science.gov (United States)

    Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.

    2017-12-01

    We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).

  9. Surface analytical techniques applied to minerals processing

    International Nuclear Information System (INIS)

    Smart, R.St.C.

    1991-01-01

    An understanding of the chemical and physical forms of the chemically altered layers on the surfaces of base metal sulphides, particularly in the form of hydroxides, oxyhydroxides and oxides, and the changes that occur in them during minerals processing lies at the core of a complete description of flotation chemistry. This paper reviews the application of a variety of surface-sensitive techniques and methodologies applied to the study of surface layers on single minerals, mixed minerals, synthetic ores and real ores. Evidence from combined XPS/SAM/SEM studies have provided images and analyses of three forms of oxide, oxyhydroxide and hydroxide products on the surfaces of single sulphide minerals, mineral mixtures and complex sulphide ores. 4 refs., 2 tabs., 4 figs

  10. The correlated k-distribution technique as applied to the AVHRR channels

    Science.gov (United States)

    Kratz, David P.

    1995-01-01

    Correlated k-distributions have been created to account for the molecular absorption found in the spectral ranges of the five Advanced Very High Resolution Radiometer (AVHRR) satellite channels. The production of the k-distributions was based upon an exponential-sum fitting of transmissions (ESFT) technique which was applied to reference line-by-line absorptance calculations. To account for the overlap of spectral features from different molecular species, the present routines made use of the multiplication transmissivity property which allows for considerable flexibility, especially when altering relative mixing ratios of the various molecular species. To determine the accuracy of the correlated k-distribution technique as compared to the line-by-line procedure, atmospheric flux and heating rate calculations were run for a wide variety of atmospheric conditions. For the atmospheric conditions taken into consideration, the correlated k-distribution technique has yielded results within about 0.5% for both the cases where the satellite spectral response functions were applied and where they were not. The correlated k-distribution's principal advantages is that it can be incorporated directly into multiple scattering routines that consider scattering as well as absorption by clouds and aerosol particles.

  11. Characterization technique for long optical fiber cavities based on beating spectrum of multi-longitudinal mode fiber laser and beating spectrum in the RF domain

    Science.gov (United States)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-03-01

    The characterization of long fiber cavities is essential for many systems to predict the system practical performance. The conventional techniques for optical cavity characterization are not suitable for long fiber cavities due to the cavities' small free spectral ranges and due to the length variations caused by the environmental effects. In this work, we present a novel technique to characterize long fiber cavities using multi-longitudinal mode fiber laser source and RF spectrum analyzer. The fiber laser source is formed in a ring configuration, where the fiber laser cavity length is chosen to be 15 km to ensure that the free spectral range is much smaller than the free spectral range of the characterized passive fiber cavities. The method has been applied experimentally to characterize ring cavities with lengths of 6.2 m and 2.4 km. The results are compared to theoretical predictions with very good agreement.

  12. [Technique and value of direct MR arthrography applying articular distraction].

    Science.gov (United States)

    Becce, Fabio; Wettstein, Michael; Guntern, Daniel; Mouhsine, Elyazid; Palhais, Nuno; Theumann, Nicolas

    2010-02-24

    Direct MR arthrography has a better diagnostic accuracy than MR imaging alone. However, contrast material is not always homogeneously distributed in the articular space. Lesions of cartilage surfaces or intra-articular soft tissues can thus be misdiagnosed. Concomitant application of axial traction during MR arthrography leads to articular distraction. This enables better distribution of contrast material in the joint and better delineation of intra-articular structures. Therefore, this technique improves detection of cartilage lesions. Moreover, the axial stress applied on articular structures may reveal lesions invisible on MR images without traction. Based on our clinical experience, we believe that this relatively unknown technique is promising and should be further developed.

  13. Development of characterization methods applied to radioactive wastes and waste packages

    International Nuclear Information System (INIS)

    Guy, C.; Bienvenu, Ph.; Comte, J.; Excoffier, E.; Dodi, A.; Gal, O.; Gmar, M.; Jeanneau, F.; Poumarede, B.; Tola, F.; Moulin, V.; Jallu, F.; Lyoussi, A.; Ma, J.L.; Oriol, L.; Passard, Ch.; Perot, B.; Pettier, J.L.; Raoux, A.C.; Thierry, R.

    2004-01-01

    This document is a compilation of R and D studies carried out in the framework of the axis 3 of the December 1991 law about the conditioning and storage of high-level and long lived radioactive wastes and waste packages, and relative to the methods of characterization of these wastes. This R and D work has permitted to implement and qualify new methods (characterization of long-lived radioelements, high energy imaging..) and also to improve the existing methods by lowering detection limits and reducing uncertainties of measured data. This document is the result of the scientific production of several CEA laboratories that use complementary techniques: destructive methods and radiochemical analyses, photo-fission and active photonic interrogation, high energy imaging systems, neutron interrogation, gamma spectroscopy and active and passive imaging techniques. (J.S.)

  14. Comparison of mechanical properties and microstructural characterization of CoCrMo alloy obtained via selective laser melting (SLM) and casting techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mergulhao, Marcello Vertamatti; Podesta, Carlos Eduardo; Neves, Mauricio David Martins das, E-mail: marcellovertamatti@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Advances in processes using the powder metallurgy techniques are making this technology competitive compared to the other traditional manufacturing processes, especially in medicine area. The additive manufacturing technique - selective laser melting (SLM) was applied in a biomaterial of CoCrMo alloy (ASTM F75), to study the mechanical properties and microstructural characterization in comparison between the conventional technique - lost wax casting. The gas atomized powder was investigated by their physical (as apparent density, bulk density and flow rate) and the chemical properties (SEM-EDS and X-ray fluorescence). Specimens of standard samples were manufactured using these techniques to evaluate the mechanical properties as yield strength, maximum tensile, rupture tensile, elongation, elastic modulus, transverse rupture strength and the Vickers hardness. Before the mechanical tests the microstructure of specimens were examined using optical microscope (OM) and SEM-EDS. The results of mechanical properties showed a higher values in the SLM specimens compared with the obtained in the cast specimens. The micrographs revealed a typical morphology of consolidation process, like as the characterized by selected layer used in the SLM technique and the primary and secondary dendrites arms in the casting technique. (author)

  15. Geomechanical characterization of volcanic rocks using empirical systems and data mining techniques

    Directory of Open Access Journals (Sweden)

    T. Miranda

    2018-02-01

    Full Text Available This paper tries to characterize volcanic rocks through the development and application of an empirical geomechanical system. Geotechnical information was collected from the samples from several Atlantic Ocean islands including Madeira, Azores and Canarias archipelagos. An empirical rock classification system termed as the volcanic rock system (VRS is developed and presented in detail. Results using the VRS are compared with those obtained using the traditional rock mass rating (RMR system. Data mining (DM techniques are applied to a database of volcanic rock geomechanical information from the islands. Different algorithms were developed and consequently approaches were followed for predicting rock mass classes using the VRS and RMR classification systems. Finally, some conclusions are drawn with emphasis on the fact that a better performance was achieved using attributes from VRS.

  16. Optimization technique applied to interpretation of experimental data and research of constitutive laws

    International Nuclear Information System (INIS)

    Grossette, J.C.

    1982-01-01

    The feasibility of identification technique applied to one dimensional numerical analysis of the split-Hopkinson pressure bar experiment is proven. A general 1-D elastic-plastic-viscoplastic computer program was written down so as to give an adequate solution for elastic-plastic-viscoplastic response of a pressure bar subjected to a general Heaviside step loading function in time which is applied over one end of the bar. Special emphasis is placed on the response of the specimen during the first microseconds where no equilibrium conditions can be stated. During this transient phase discontinuity conditions related to wave propagation are encountered and must be carefully taken into account. Having derived an adequate numerical model, then Pontryagin identification technique has been applied in such a way that the unknowns are physical parameters. The solutions depend mainly on the selection of a class of proper eigen objective functionals (cost functions) which may be combined so as to obtain a convenient numerical objective function. A number of significant questions arising in the choice of parameter adjustment algorithms are discussed. In particular, this technique leads to a two point boundary value problem which has been solved using an iterative gradient like technique usually referred to as a double operator gradient method. This method combines the classical Fletcher-Powell technique and a partial quadratic technique with an automatic parameter step size selection. This method is much more efficient than usual ones. Numerical experimentation with simulated data was performed to test the accuracy and stability of the identification algorithm and to determine the most adequate type and quantity of data for estimation purposes

  17. Geologic flow characterization using tracer techniques

    International Nuclear Information System (INIS)

    Klett, R.D.; Tyner, C.E.; Hertel, E.S. Jr.

    1981-04-01

    A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included

  18. Pattern recognition applied to mineral characterization of Brazilian coffees and sugar-cane spirits

    International Nuclear Information System (INIS)

    Fernandes, Andrea P.; Santos, Mirian C.; Lemos, Sherlan G.; Ferreira, Marcia M.C.; Nogueira, Ana Rita A.; Nobrega, Joaquim A.

    2005-01-01

    Aluminium, Ca, Cu, Fe, K, Mg, Mn, Na, Pb, S, Se, Si, Sn, Sr, and Zn were determined in coffee and sugar-cane spirit (cachaca) samples by axial viewing inductively coupled plasma optical emission spectrometry (ICP OES). Pattern recognition techniques such as principal component analysis and cluster analysis were applied to data sets in order to characterize samples with relation to their geographical origin and production mode (industrial or homemade and organically or conventionally produced). Attempts to correlate metal ion content with the geographical origin of coffee and the production mode (organic or conventional) of cachaca were not successful. Some differentiation was suggested for the geographical origin of cachaca of three regions (Northeast, Central, and South), and for coffee samples, related to the production mode. Clear separations were only obtained for differentiation between industrial and homemade cachacas, and between instant soluble and roasted coffees

  19. Evaluation of ultrasonic technique to characterize the concentration of boric acid in liquid medium

    International Nuclear Information System (INIS)

    Kohara, Richard Yuzo Ramida

    2015-01-01

    This dissertation is to analyze the viability of using ultrasonic technique to characterize the concentration of boric acid in liquid medium non-invasively, therefore, ultrasonic tests were performed relating different boric acid concentrations with the travel time of the ultrasonic wave, also were evaluated factors able to mask the characterization of these concentrations by ultrasonic technique. The results showed that the ultrasonic technique allows the characterization of boric acid concentrations in liquid medium in very simple terms by the ultrasonic wave travel time, requiring further studies in complex conditions. (author)

  20. Evaluation of irradiation damage effect by applying electric properties based techniques

    International Nuclear Information System (INIS)

    Acosta, B.; Sevini, F.

    2004-01-01

    The most important effect of the degradation by radiation is the decrease in the ductility of the pressure vessel of the reactor (RPV) ferritic steels. The main way to determine the mechanical behaviour of the RPV steels is tensile and impact tests, from which the ductile to brittle transition temperature (DBTT) and its increase due to neutron irradiation can be calculated. These tests are destructive and regularly applied to surveillance specimens to assess the integrity of RPV. The possibility of applying validated non-destructive ageing monitoring techniques would however facilitate the surveillance of the materials that form the reactor vessel. The JRC-IE has developed two devices, focused on the measurement of the electrical properties to assess non-destructively the embrittlement state of materials. The first technique, called Seebeck and Thomson Effects on Aged Material (STEAM), is based on the measurement of the Seebeck coefficient, characteristic of the material and related to the microstructural changes induced by irradiation embrittlement. With the same aim the second technique, named Resistivity Effects on Aged Material (REAM), measures instead the resistivity of the material. The purpose of this research is to correlate the results of the impact tests, STEAM and REAM measurements with the change in the mechanical properties due to neutron irradiation. These results will make possible the improvement of such techniques based on the measurement of material electrical properties for their application to the irradiation embrittlement assessment

  1. Nuclear analytical techniques applied to forensic chemistry

    International Nuclear Information System (INIS)

    Nicolau, Veronica; Montoro, Silvia; Pratta, Nora; Giandomenico, Angel Di

    1999-01-01

    Gun shot residues produced by firing guns are mainly composed by visible particles. The individual characterization of these particles allows distinguishing those ones containing heavy metals, from gun shot residues, from those having a different origin or history. In this work, the results obtained from the study of gun shot residues particles collected from hands are presented. The aim of the analysis is to establish whether a person has shot a firing gun has been in contact with one after the shot has been produced. As reference samples, particles collected hands of persons affected to different activities were studied to make comparisons. The complete study was based on the application of nuclear analytical techniques such as Scanning Electron Microscopy, Energy Dispersive X Ray Electron Probe Microanalysis and Graphite Furnace Atomic Absorption Spectrometry. The essays allow to be completed within time compatible with the forensic requirements. (author)

  2. Applying field mapping refractive beam shapers to improve holographic techniques

    Science.gov (United States)

    Laskin, Alexander; Williams, Gavin; McWilliam, Richard; Laskin, Vadim

    2012-03-01

    Performance of various holographic techniques can be essentially improved by homogenizing the intensity profile of the laser beam with using beam shaping optics, for example, the achromatic field mapping refractive beam shapers like πShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flattop one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with several laser sources with different wavelengths simultaneously. Applying of these beam shapers brings serious benefits to the Spatial Light Modulator based techniques like Computer Generated Holography or Dot-Matrix mastering of security holograms since uniform illumination of an SLM allows simplifying mathematical calculations and increasing predictability and reliability of the imaging results. Another example is multicolour Denisyuk holography when the achromatic πShaper provides uniform illumination of a field at various wavelengths simultaneously. This paper will describe some design basics of the field mapping refractive beam shapers and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.

  3. Challenges in materials science and possibilities in 3D and 4D characterization techniques

    International Nuclear Information System (INIS)

    Hansen, N.; Juul Jensen, D.; Nielsen, S.F.; Poulsen, H.F.; Ralph, B.

    2010-01-01

    Present days see a global effort to develop new and advanced materials and as an integral part of this endeavor a range of new characterization techniques are becoming available, which have led to significant breakthroughs in materials science and engineering. Within this broad scientific field the symposium focus on metals and on 3D and 4D characterization techniques using x-rays, neutrons and electrons. These techniques now allow characterization on a finer and finer scale and open up for analysis of dynamic behavior by real time in-situ investigations. This means that techniques are now available by which key challenges in materials science can be addressed. The combination of techniques and challenges has been the guide for contributions to this year symposium and these proceedings shows the successful result. The collection of papers demonstrates the many new possibilities in 3D and 4D characterization techniques and also the applications of these techniques in the studies of important materials science and engineering themes, for example: evolution in structure and properties under thermal and mechanical loading and during annealing, phase transformations and fracture/damage. The proceedings contain the 14 key note and 34 contributed presentations of the symposium, covering the above key themes. (LN)

  4. A novel immunohistochemical sequential multi-labelling and erasing technique enables epitope characterization of bone marrow pericytes in primary myelofibrosis

    DEFF Research Database (Denmark)

    Madelung, Ann; Bzorek, Michael; Bondo, Henrik

    2012-01-01

    : In Philadelphia (Ph)-negative chronic myeloproliferative neoplasms, increased microvascular density, bizarre vessel architecture and increased number of pericytes are among the distinct histopathological features. The aim of this study was to characterize bone marrow pericytes in primary myelofibrosis (PMF) using...... a novel multi-labelling immunohistochemical technique. Methods and results: Bone marrow biopsies from a normal donor (n = 1) and patients with PMF (n = 3) were subjected to an immunohistochemical sequential multi-labelling and erasing technique (SE-technique). Antigens of interest in the first and....../or second layer were detected with an immunoperoxidase system and visualized with aminoethylcarbazole. After imaging, erasing and blocking of immunoreagents, the slides were stained with a traditional double immunolabelling procedure. In addition, we applied a Photoshop(®) colour palette, creating a single...

  5. Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Daniela P. [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Amaral, A. Luís [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra (Portugal); Ferreira, Eugénio C., E-mail: ecferreira@deb.uminho.pt [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-11-13

    Graphical abstract: -- Highlights: •Quantitative image analysis shows potential to monitor activated sludge systems. •Staining techniques increase the potential for detection of operational problems. •Chemometrics combined with quantitative image analysis is valuable for process monitoring. -- Abstract: In wastewater treatment processes, and particularly in activated sludge systems, efficiency is quite dependent on the operating conditions, and a number of problems may arise due to sludge structure and proliferation of specific microorganisms. In fact, bacterial communities and protozoa identification by microscopy inspection is already routinely employed in a considerable number of cases. Furthermore, quantitative image analysis techniques have been increasingly used throughout the years for the assessment of aggregates and filamentous bacteria properties. These procedures are able to provide an ever growing amount of data for wastewater treatment processes in which chemometric techniques can be a valuable tool. However, the determination of microbial communities’ properties remains a current challenge in spite of the great diversity of microscopy techniques applied. In this review, activated sludge characterization is discussed highlighting the aggregates structure and filamentous bacteria determination by image analysis on bright-field, phase-contrast, and fluorescence microscopy. An in-depth analysis is performed to summarize the many new findings that have been obtained, and future developments for these biological processes are further discussed.

  6. Just-in-Time techniques as applied to hazardous materials management

    OpenAIRE

    Spicer, John S.

    1996-01-01

    Approved for public release; distribution is unlimited This study investigates the feasibility of integrating JIT techniques in the context of hazardous materials management. This study provides a description of JIT, a description of environmental compliance issues and the outgrowth of related HAZMAT policies, and a broad perspective on strategies for applying JIT to HAZMAT management. http://archive.org/details/justintimetechn00spic Lieutenant Commander, United States Navy

  7. Measurement and characterization techniques for thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, T M

    1997-07-01

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  8. Three-dimensional integrated CAE system applying computer graphic technique

    International Nuclear Information System (INIS)

    Kato, Toshisada; Tanaka, Kazuo; Akitomo, Norio; Obata, Tokayasu.

    1991-01-01

    A three-dimensional CAE system for nuclear power plant design is presented. This system utilizes high-speed computer graphic techniques for the plant design review, and an integrated engineering database for handling the large amount of nuclear power plant engineering data in a unified data format. Applying this system makes it possible to construct a nuclear power plant using only computer data from the basic design phase to the manufacturing phase, and it increases the productivity and reliability of the nuclear power plants. (author)

  9. Applying recursive numerical integration techniques for solving high dimensional integrals

    International Nuclear Information System (INIS)

    Ammon, Andreas; Genz, Alan; Hartung, Tobias; Jansen, Karl; Volmer, Julia; Leoevey, Hernan

    2016-11-01

    The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with N samples behaves like 1/√(N). This scaling makes it often very time intensive to reduce the error of computed observables, in particular for applications in lattice QCD. It is therefore highly desirable to have alternative methods at hand which show an improved error scaling. One candidate for such an alternative integration technique is the method of recursive numerical integration (RNI). The basic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaussian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann weights. We present the application of such an algorithm to the topological rotor and the anharmonic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate that the RNI technique shows an error scaling in the number of integration points m that is at least exponential.

  10. Applying recursive numerical integration techniques for solving high dimensional integrals

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Andreas [IVU Traffic Technologies AG, Berlin (Germany); Genz, Alan [Washington State Univ., Pullman, WA (United States). Dept. of Mathematics; Hartung, Tobias [King' s College, London (United Kingdom). Dept. of Mathematics; Jansen, Karl; Volmer, Julia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leoevey, Hernan [Humboldt Univ. Berlin (Germany). Inst. fuer Mathematik

    2016-11-15

    The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with N samples behaves like 1/√(N). This scaling makes it often very time intensive to reduce the error of computed observables, in particular for applications in lattice QCD. It is therefore highly desirable to have alternative methods at hand which show an improved error scaling. One candidate for such an alternative integration technique is the method of recursive numerical integration (RNI). The basic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaussian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann weights. We present the application of such an algorithm to the topological rotor and the anharmonic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate that the RNI technique shows an error scaling in the number of integration points m that is at least exponential.

  11. Development of technique to apply induction heating stress improvement to recirculation inlet nozzle

    International Nuclear Information System (INIS)

    Chiba, Kunihiko; Nihei, Kenichi; Ootaka, Minoru

    2009-01-01

    Stress corrosion cracking (SCC) have been found in the primary loop recirculation (PLR) systems of boiling water reactors (BWR). Residual stress in welding heat-affected zone is one of the factors of SCC, and the residual stress improvement is one of the most effective methods to prevent SCC. Induction heating stress improvement (IHSI) is one of the techniques to improve reduce residual stress. However, it is difficult to apply IHSI to the place such as the recirculation inlet nozzle where the flow stagnates. In this present study, the technique to apply IHSI to the recirculation inlet nozzle was developed using water jet which blowed into the crevice between the nozzle safe end and the thermal sleeve. (author)

  12. In-depth characterization of prebiotic galactooligosaccharides by a combination of analytical techniques

    NARCIS (Netherlands)

    Coulier, L.; Timmermans, J.; Richard, B.; Dool, R. van den; Haaksman, I.; Klarenbeek, B.; Slaghek, T.; Dongen, W. van

    2009-01-01

    A commercial prebiotic galacto-oligosaccharide mixture (Vivinal GOS) was extensively characterized using a combination of analytical techniques. The different techniques were integrated to give complementary information on specific characteristics of the oligosaccharide mixture, ranging from global

  13. Airflow measurement techniques applied to radon mitigation problems

    International Nuclear Information System (INIS)

    Harrje, D.T.; Gadsby, K.J.

    1989-01-01

    During the past decade a multitude of diagnostic procedures associated with the evaluation of air infiltration and air leakage sites have been developed. The spirit of international cooperation and exchange of ideas within the AIC-AIVC conferences has greatly facilitated the adoption and use of these measurement techniques in the countries participating in Annex V. But wide application of such diagnostic methods are not limited to air infiltration alone. The subject of this paper concerns the ways to evaluate and improve radon reduction in buildings using diagnostic methods directly related to developments familiar to the AIVC. Radon problems are certainly not unique to the United States, and the methods described here have to a degree been applied by researchers of other countries faced with similar problems. The radon problem involves more than a harmful pollutant of the living spaces of our buildings -- it also involves energy to operate radon removal equipment and the loss of interior conditioned air as a direct result. The techniques used for air infiltration evaluation will be shown to be very useful in dealing with the radon mitigation challenge. 10 refs., 7 figs., 1 tab

  14. Database 'catalogue of techniques applied to materials and products of nuclear engineering'

    International Nuclear Information System (INIS)

    Lebedeva, E.E.; Golovanov, V.N.; Podkopayeva, I.A.; Temnoyeva, T.A.

    2002-01-01

    The database 'Catalogue of techniques applied to materials and products of nuclear engineering' (IS MERI) was developed to provide informational support for SSC RF RIAR and other enterprises in scientific investigations. This database contains information on the techniques used at RF Minatom enterprises for reactor material properties investigation. The main purpose of this system consists in the assessment of the current status of the reactor material science experimental base for the further planning of experimental activities and methodical support improvement. (author)

  15. Eddy current techniques for super duplex stainless steel characterization

    Energy Technology Data Exchange (ETDEWEB)

    Camerini, C., E-mail: cgcamerini@metalmat.ufrj.br [Laboratory of Non-Destructive Testing, Corrosion and Welding, Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro (Brazil); Sacramento, R.; Areiza, M.C.; Rocha, A. [Laboratory of Non-Destructive Testing, Corrosion and Welding, Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro (Brazil); Santos, R. [PETROBRAS R& D Center, Rio de Janeiro (Brazil); Rebello, J.M.; Pereira, G. [Laboratory of Non-Destructive Testing, Corrosion and Welding, Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro (Brazil)

    2015-08-15

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content. - Highlights: • Sigma phase precipitation, even for low amounts, dramatically affects SDSS properties. • SDSS samples were thermally treated and carefully characterized by X-Ray Diffraction. • NDT techniques detected low amounts of sigma phase in SDSS microstructure.

  16. Eddy current techniques for super duplex stainless steel characterization

    International Nuclear Information System (INIS)

    Camerini, C.; Sacramento, R.; Areiza, M.C.; Rocha, A.; Santos, R.; Rebello, J.M.; Pereira, G.

    2015-01-01

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content. - Highlights: • Sigma phase precipitation, even for low amounts, dramatically affects SDSS properties. • SDSS samples were thermally treated and carefully characterized by X-Ray Diffraction. • NDT techniques detected low amounts of sigma phase in SDSS microstructure

  17. Characterizing TPS Microstructure: A Review of Some techniques

    Science.gov (United States)

    Gasch, Matthew; Stackpole, Mairead; Agrawal, Parul; Chavez-Garcie, Jose

    2011-01-01

    I. When seeking to understand ablator microstructure and morphology there are several useful techniques A. SEM 1) Visual characteriza3on at various length scales. 2) Chemical mapping by backscatter or x-ray highlights areas of interest. 3) Combined with other techniques (density, weight change, chemical analysis) SEM is a powerful tool to aid in explaining thermo/structural data. B. ASAP. 1) Chemical characteriza3on at various length scales. 2) Chemical mapping of pore structure by gas adsorption. 3) Provides a map of pore size vs. pore volume. 4) Provided surface area of exposed TPS. II. Both methods help characterize and understand how ablators react with other chemical species and provides insight into how they oxidize.

  18. New techniques for the characterization of lignins

    International Nuclear Information System (INIS)

    Javor, T.

    2001-09-01

    In the present work new techniques for the characterization of lignins, ligninsulfonates as well as lignin degradation products with capillary electrophoresis (CE), size exclusion chromatography (SEC) and mass spectrometry (ESI-MS, APCI-MS and MALDI-MS) are described. After an overview on wood and wood pulping the development of microemulsion electrokinetic chromatography (MEEKC) for the investigation of low-molecular-mass lignin degradation compounds is described. This method is suited for the analysis of phenolic compounds as well as for non-phenolic compounds in this kind of samples. Using a carrier electrolyte system consisting of 1-butanol/n-heptane/sodiumdodeylsulfate (SDS)/20 mM borate (6.61/0.81/1.66/90,29 % (w/w)) pH 9.2 it was possible to separate 14 lignin degradation compounds (2-methoxyphenol, 3,4,5-trimethoxyphenol, 2,6-dimethoxyphenol, 3,4-dimethoxybenzaldehyde, 3,4-dimethoxyacetophenone, 3,4,5-trimethoxybenzaldehyde, 3,4,5-trimethoxyacetophenone, 3-(3,4-dimethoxyphenyl)-2-propen-1-ol, 4-methoxyacetophenone, 3,5-Dimethoxy-4-hydroxyacetophenone, acetovanillone, syringaldehyde, vanillin, 4-hydroxybenzaldehyde and 1-(3-methoxy-4-hydroxyphenyl)-2-(2-methoxyphenoxy)-ethanol). In addition the advantages and disadvantages of microemulsions are discussed in comparison with carrier electrolytes containing micelles. Subsequently, the results from size exclusion chromatographic measurements are presented. SEC using modern high-performance poly(styrene-divinylbenzene) gels as stationary phase and 0.1 M NaOH as mobile phase allows efficient separations and good characterization of lignins and ligninsulfonates. Adsorption effects are practical negligible. SEC yields results which are independent of the charge of lignins or ligninsulfonates, so that this technique looks complementary to capillary electrophoresis. For the characterization of intact lignins and ligninsulfonates by capillary zone electrophoretic techniques, carrier electrolytes in the the pH range 10

  19. Dosimetric characterization of BeO samples in alpha, beta and X radiation beams using luminescent techniques

    International Nuclear Information System (INIS)

    Groppo, Daniela Piai

    2013-01-01

    In the medical field, the ionizing radiation is used both for therapeutic and diagnostic purposes, in a wide range of radiation doses. In order to ensure that the objective is achieved in practice, detailed studies of detectors and devices in different types of radiations beams are necessary. In this work a dosimetric characterization of BeO samples was performed using the techniques of thermoluminescence (TL) and optically stimulated luminescence (OSL) by a comparison of their response for alpha, beta and X radiations and the establishment of an appropriated system for use in monitoring of these radiations beams. The main results are: the high sensitivity to beta radiation for both techniques, good reproducibility of TL and OSL response (coefficients of variation lower than 5%), maximum energy dependence of the X radiation of 28% for the TL technique, and only 7% for the OSL technique, within the studied energy range. The dosimetric characteristics obtained in this work show the possibility of applying BeO samples to dosimetry of alpha, beta and X radiations, considering the studied dose ranges, using the TL and OSL techniques. From the results obtained, the samples of BeO showed their potential use for beam dosimetry in diagnostic radiology and radiotherapy. (author)

  20. Survey of geophysical techniques for site characterization in basalt, salt and tuff

    International Nuclear Information System (INIS)

    Jones, G.M.; Blackey, M.E.; Rice, J.E.; Murphy, V.J.; Levine, E.N.; Fisk, P.S.; Bromery, R.W.

    1987-07-01

    Geophysical techniques may help determine the nature and extent of faulting in the target areas, along with structural information that would be relevant to questions concerning the future integrity of a high-level-waste repository. Chapters focus on particular geophysical applications to four rock types - basalt, bedded salt, domal salt and tuff - characteristic of the sites originally proposed for site characterization. No one geophysical method can adequately characterize the geological structure beneath any site. The seismic reflection method, which is generally considered to be the most incisive of the geophysical techniques, has to date provided only marginal information on structure at the depth of the proposed repository at the Hanford, Washington, site, and no useful results at all at the Yucca Mountain, Nevada, site. This result is partially due to geological complexity beneath these sites, but may also be partially attributed to the use of inappropriate acquisition and processing parameters. To adequately characterize a site using geophysics, modifications will have to be made to standard techniques to emphasize structural details at the depths of interest. 137 refs., 43 figs., 4 tabs

  1. Characterization of patinas by means of microscopic techniques

    International Nuclear Information System (INIS)

    Vazquez-Calvo, C.; Alvarez de Buergo, M.; Fort, R.; Varas, M.J.

    2007-01-01

    Many stone-made historic buildings have a yellowish layer called 'patina' on their external surface. In some cases, it is due to the natural ageing of the stone caused by chemical-physical reactions between the surface of the stone and the environment, and in other cases it is the result of biological activity. The origin of these patinas can be also be due to ancient protective treatments. The use of organic additives, such as protein-based compounds, in lime or gypsum-based patinas is a traditional technique, which has been used in past centuries for the conservation and protection of stone materials. The thinness of the patinas ensures that microscopic techniques are irreplaceable for their analysis. Optical Microscopy, Fluorescence Microscopy, Scanning Electron Microscopy together with an Energy Dispersive X-ray Spectrometer, and Electron Microprobe are the microscopic techniques used for the characterization of these coverings, providing very useful information on their composition, texture and structure

  2. Applying Brainstorming Techniques to EFL Classroom

    OpenAIRE

    Toshiya, Oishi; 湘北短期大学; aPart-time Lecturer at Shohoku College

    2015-01-01

    This paper focuses on brainstorming techniques for English language learners. From the author's teaching experiences at Shohoku College during the academic year 2014-2015, the importance of brainstorming techniques was made evident. The author explored three elements of brainstorming techniques for writing using literaturereviews: lack of awareness, connecting to prior knowledge, and creativity. The literature reviews showed the advantage of using brainstorming techniques in an English compos...

  3. Strategies and techniques of communication and public relations applied to non-profit sector

    Directory of Open Access Journals (Sweden)

    Ioana – Julieta Josan

    2010-05-01

    Full Text Available The aim of this paper is to summarize the strategies and techniques of communication and public relations applied to non-profit sector.The approach of the paper is to identify the most appropriate strategies and techniques that non-profit sector can use to accomplish its objectives, to highlight specific differences between the strategies and techniques of the profit and non-profit sectors and to identify potential communication and public relations actions in order to increase visibility among target audience, create brand awareness and to change into positive brand sentiment the target perception about the non-profit sector.

  4. Characterization of nanocrystalline zirconia powders by electron optical techniques

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1989-01-01

    Electron optical techniques are described for the characterization of the size distribution of agglomerates, aggregates and primary micro- and nanocrystallites of as-processed zirconia powders. These techniques allow for direct identification of individual crystallites as tetragonal or monoclinic, by optical transform of high-resolution electron micrographs. The latter also permit surface morphology to be examined with atomic resolution. Applications to a range of pure and doped zirconia powders, of recent commercial interest, are presented, which enable the results of concurrent studies by sedimentation, surface specific area measurements, porosity and sinterability to be correctly interpreted. 18 figs

  5. X-ray wavefront characterization using a rotating shearing interferometer technique.

    Science.gov (United States)

    Wang, Hongchang; Sawhney, Kawal; Berujon, Sébastien; Ziegler, Eric; Rutishauser, Simon; David, Christian

    2011-08-15

    A fast and accurate method to characterize the X-ray wavefront by rotating one of the two gratings of an X-ray shearing interferometer is described and investigated step by step. Such a shearing interferometer consists of a phase grating mounted on a rotation stage, and an absorption grating used as a transmission mask. The mathematical relations for X-ray Moiré fringe analysis when using this device are derived and discussed in the context of the previous literature assumptions. X-ray beam wavefronts without and after X-ray reflective optical elements have been characterized at beamline B16 at Diamond Light Source (DLS) using the presented X-ray rotating shearing interferometer (RSI) technique. It has been demonstrated that this improved method allows accurate calculation of the wavefront radius of curvature and the wavefront distortion, even when one has no previous information on the grating projection pattern period, magnification ratio and the initial grating orientation. As the RSI technique does not require any a priori knowledge of the beam features, it is suitable for routine characterization of wavefronts of a wide range of radii of curvature. © 2011 Optical Society of America

  6. A Hall probe technique for characterizing high-temperature superconductors

    International Nuclear Information System (INIS)

    Zhang, J.; Sheldon, P.; Ahrenkiel, R.K.

    1992-01-01

    Thin-film GaAs Hall probes were fabricated by molecular beam epitaxy technology. A contactless technique was developed to characterize thin-film, high-temperature superconducting (HTSC) materials. The Hall probes detected the ac magnetic flux penetration through the high-temperature superconducting materials. The Hall detector has advantages over the mutual inductance magnetic flux detector

  7. Applying CFD in the Analysis of Heavy-Oil Transportation in Curved Pipes Using Core-Flow Technique

    Directory of Open Access Journals (Sweden)

    S Conceição

    2017-06-01

    Full Text Available Multiphase flow of oil, gas and water occurs in the petroleum industry from the reservoir to the processing units. The occurrence of heavy oils in the world is increasing significantly and points to the need for greater investment in the reservoirs exploitation and, consequently, to the development of new technologies for the production and transport of this oil. Therefore, it is interesting improve techniques to ensure an increase in energy efficiency in the transport of this oil. The core-flow technique is one of the most advantageous methods of lifting and transporting of oil. The core-flow technique does not alter the oil viscosity, but change the flow pattern and thus, reducing friction during heavy oil transportation. This flow pattern is characterized by a fine water pellicle that is formed close to the inner wall of the pipe, aging as lubricant of the oil flowing in the core of the pipe. In this sense, the objective of this paper is to study the isothermal flow of heavy oil in curved pipelines, employing the core-flow technique. A three-dimensional, transient and isothermal mathematical model that considers the mixture and k-e  turbulence models to address the gas-water-heavy oil three-phase flow in the pipe was applied for analysis. Simulations with different flow patterns of the involved phases (oil-gas-water have been done, in order to optimize the transport of heavy oils. Results of pressure and volumetric fraction distribution of the involved phases are presented and analyzed. It was verified that the oil core lubricated by a fine water layer flowing in the pipe considerably decreases pressure drop.

  8. Damage characterization for particles filled semi-crystalline polymer

    Directory of Open Access Journals (Sweden)

    Lauro Franck

    2015-01-01

    Full Text Available Damage evolution and characterization in semi-crystalline polymer filled with particles under various loadings is still a challenge. A specific damage characterization method using Digital Image Correlation is proposed for a wide range of strain rates considering tensile tests with hydraulic jacks as well as Hopkinson's bars. This damage measurement is obtained by using and adapting the SEE method [1] which was developed to characterize the behaviour laws at constant strain rates of polymeric materials in dynamic. To validate the characterization process, various damage measurement techniques are used under quasi-static conditions before to apply the procedure in dynamic. So, the well-known damage characterization by loss of stiffness technique under quasi-static loading is applied to a polypropylene. In addition, an in-situ tensile test, carried out in a microtomograph, is used to observe the cavitation phenomenon in real time. A good correlation is obtained between all these techniques and consequently the proposed technique is supposed suitable for measuring the ductile damage observed in semi-crystalline polymers under dynamic loading. By applying it to the semi-crystalline polymer at moderate and high speed loadings, the damage evolution is measured and it is observed that the damage evolution is not strain rate dependent but the failure strain on the contrary is strain rate dependent.

  9. Turbine blade wear and damage. An overview of advanced characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Schlobohm, Jochen; Li, Yinan; Kaestner, Markus; Poesch, Andreas; Reithmeier, Eduard [Hannover Univ. (Germany). Inst. fuer Mess- und Regelungstechnik; Bruchwald, Oliver; Frackowiak, Wojciech; Reimche, Wilfried; Maier, Hans Juergen [Hannover Univ. (Germany). Inst. fuer Werkstoffkunde

    2016-07-01

    This paper gives an overview of four measurement techniques that allow to extensively characterize the status of a worn turbine blade. In addition to the measurement of geometry and surface properties, the condition of the two protective coatings needs to be monitored. Fringe projection was used to detect and quantify geometric variances. The technique was improved using newly developed algorithms like inverse fringe projection. A Michelson interferometer was employed to further analyze areas with geometric defects and characterize the surface morphology of the blade. Pulsed high frequency induction thermography enabled the scanning of the blade for small cracks at or close to the surface. High frequency eddy current testing was used to determine the protective layers status and their thickness.

  10. Characterizing the estuarine riverbed using acoustic technique

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Menezes, A.A.A.; Muthukumar, K.; Fernandes, W.A.; Saran, A.K.; Mehra, P.

    carried out using geostatistics and non- linear techniques. These methods have been applied to bathymetry and backscatter data collected using multi-beam echo sounder (EM 1002, M/s Kongsberg) operating at a frequency of 95 kHz, installed onboard..., May 04 & May 16 of 2007 respectively. The EM1002 multi-beam echo-sounding system possesses 111 preformed beams i.e., recording 111 depth values in a single ping. In addition to the depth, the system also records quantitative backscatter data...

  11. A Stochastic Imaging Technique for Spatio-Spectral Characterization of Special Nuclear Material

    Science.gov (United States)

    Hamel, Michael C.

    Radiation imaging is advantageous for detecting, locating and characterizing special nuclear material (SNM) in complex environments. A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. The steady-state solution produced by this iterative method will have poor quality compared to solutions produced with fewer iterations. A stopping condition is required to achieve a better solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a good candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution that has image quality comparable to the best MLEM solution. The application of SOE to the DPI is presented in this work. SOE was originally applied in medical imaging applications with no mechanism to isolate spectral information based on location. This capability is critical for non-proliferation applications as complex radiation environments with multiple sources are often encountered. This dissertation extends the SOE algorithm to produce spatially dependent spectra and presents experimental result showing that the technique was effective for isolating a 4.1-kg mass of weapons grade plutonium (WGPu) when other neutron and gamma-ray sources were present. This work also demonstrates the DPI as an effective tool for localizing and characterizing highly enriched uranium (HEU). A series of experiments were performed with the DPI using a deuterium-deuterium (DD) and deuterium-tritium (DT) neutron generator, as well as

  12. Special irradiation techniques

    International Nuclear Information System (INIS)

    Colomez, Gerard; Veyrat, J.F.

    1981-01-01

    Irradiation trials conducted on materials-testing reactors should provide a better understanding of the phenomena which characterize the working and evolution in time of electricity-generating nuclear reactors. The authors begin by outlining the objectives behind experimental irradiation (applied to the various nuclear chains) and then describe the special techniques deployed to achieve these objectives [fr

  13. Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net

    Science.gov (United States)

    Poggi, V.; Burjanek, J.; Michel, C.; Fäh, D.

    2017-08-01

    The Swiss Seismological Service (SED) has recently finalised the installation of ten new seismological broadband stations in northern Switzerland. The project was led in cooperation with the National Cooperative for the Disposal of Radioactive Waste (Nagra) and Swissnuclear to monitor micro seismicity at potential locations of nuclear-waste repositories. To further improve the quality and usability of the seismic recordings, an extensive characterization of the sites surrounding the installation area was performed following a standardised investigation protocol. State-of-the-art geophysical techniques have been used, including advanced active and passive seismic methods. The results of all analyses converged to the definition of a set of best-representative 1-D velocity profiles for each site, which are the input for the computation of engineering soil proxies (traveltime averaged velocity and quarter-wavelength parameters) and numerical amplification models. Computed site response is then validated through comparison with empirical site amplification, which is currently available for any station connected to the Swiss seismic networks. With the goal of a high-sensitivity network, most of the NAGRA stations have been installed on stiff-soil sites of rather high seismic velocity. Seismic characterization of such sites has always been considered challenging, due to lack of relevant velocity contrast and the large wavelengths required to investigate the frequency range of engineering interest. We describe how ambient vibration techniques can successfully be applied in these particular conditions, providing practical recommendations for best practice in seismic site characterization of high-velocity sites.

  14. The Study of Mining Activities and their Influences in the Almaden Region Applying Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Rico, C.; Schmid, T.; Millan, R.; Gumuzzio, J.

    2010-01-01

    This scientific-technical report is a part of an ongoing research work carried out by Celia Rico Fraile in order to obtain the Diploma of Advanced Studies as part of her PhD studies. This work has been developed in collaboration with the Faculty of Science at The Universidad Autonoma de Madrid and the Department of Environment at CIEMAT. The main objective of this work was the characterization and classification of land use in Almaden (Ciudad Real) during cinnabar mineral exploitation and after mining activities ceased in 2002, developing a methodology focused on the integration of remote sensing techniques applying multispectral and hyper spectral satellite data. By means of preprocessing and processing of data from the satellite images as well as data obtained from field campaigns, a spectral library was compiled in order to obtain representative land surfaces within the study area. Monitoring results show that the distribution of areas affected by mining activities is rapidly diminishing in recent years. (Author) 130 refs

  15. Uncertainty quantification applied to the radiological characterization of radioactive waste.

    Science.gov (United States)

    Zaffora, B; Magistris, M; Saporta, G; Chevalier, J-P

    2017-09-01

    This paper describes the process adopted at the European Organization for Nuclear Research (CERN) to quantify uncertainties affecting the characterization of very-low-level radioactive waste. Radioactive waste is a by-product of the operation of high-energy particle accelerators. Radioactive waste must be characterized to ensure its safe disposal in final repositories. Characterizing radioactive waste means establishing the list of radionuclides together with their activities. The estimated activity levels are compared to the limits given by the national authority of the waste disposal. The quantification of the uncertainty affecting the concentration of the radionuclides is therefore essential to estimate the acceptability of the waste in the final repository but also to control the sorting, volume reduction and packaging phases of the characterization process. The characterization method consists of estimating the activity of produced radionuclides either by experimental methods or statistical approaches. The uncertainties are estimated using classical statistical methods and uncertainty propagation. A mixed multivariate random vector is built to generate random input parameters for the activity calculations. The random vector is a robust tool to account for the unknown radiological history of legacy waste. This analytical technique is also particularly useful to generate random chemical compositions of materials when the trace element concentrations are not available or cannot be measured. The methodology was validated using a waste population of legacy copper activated at CERN. The methodology introduced here represents a first approach for the uncertainty quantification (UQ) of the characterization process of waste produced at particle accelerators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Improvement technique of sensitized HAZ by GTAW cladding applied to a BWR power plant

    International Nuclear Information System (INIS)

    Tujimura, Hiroshi; Tamai, Yasumasa; Furukawa, Hideyasu; Kurosawa, Kouichi; Chiba, Isao; Nomura, Keiichi.

    1995-01-01

    A SCC(Stress Corrosion Cracking)-resistant technique, in which the sleeve installed by expansion is melted by GTAW process without filler metal with outside water cooling, was developed. The technique was applied to ICM (In-Core Monitor) housings of a BWR power plant in 1993. The ICM housings of which materials are type 304 Stainless Steels are sensitized with high tensile residual stresses by welding to the RPV (Reactor Pressure Vessel). As the result, ICM housings have potential of SCC initiation. Therefore, the improvement technique resistant to SCC was needed. The technique can improve chemical composition of the housing inside and residual stresses of the housing outside at the same time. Sensitization of the housing inner surface area is eliminated by replacing low-carbon with proper-ferrite microstructure clad. High tensile residual stresses of housing outside surface area is improved into compressive side. Compressive stresses of outside surface are induced by thermal stresses which are caused by inside cladding with outside water cooling. The clad is required to be low-carbon metal with proper ferrite and not to have the new sensitized HAZ (Heat Affected Zone) on the surface by cladding. The effect of the technique was qualified by SCC test, chemical composition check, ferrite content measurement and residual stresses measurement etc. All equipment for remote application were developed and qualified, too. The technique was successfully applied to a BWR plant after sufficient training

  17. Applying AI techniques to improve alarm display effectiveness

    International Nuclear Information System (INIS)

    Gross, J.M.; Birrer, S.A.; Crosberg, D.R.

    1987-01-01

    The Alarm Filtering System (AFS) addresses the problem of information overload in a control room during abnormal operations. Since operators can miss vital information during these periods, systems which emphasize important messages are beneficial. AFS uses the artificial intelligence (AI) technique of object-oriented programming to filter and dynamically prioritize alarm messages. When an alarm's status changes, AFS determines the relative importance of that change according to the current process state. AFS bases that relative importance on relationships the newly changed alarm has with other activated alarms. Evaluations of a alarm importance take place without regard to the activation sequence of alarm signals. The United States Department of Energy has applied for a patent on the approach used in this software. The approach was originally developed by EG and G Idaho for a nuclear reactor control room

  18. Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques

    International Nuclear Information System (INIS)

    Schukar, Vivien G; Kadoke, Daniel; Kusche, Nadine; Münzenberger, Sven; Gründer, Klaus-Peter; Habel, Wolfgang R

    2012-01-01

    Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions. (paper)

  19. Potentialities of some surface characterization techniques for the development of titanium biomedical alloys

    Directory of Open Access Journals (Sweden)

    P.S. Vanzillotta

    2004-09-01

    Full Text Available Bone formation around a metallic implant is a complex process that involves micro- and nanometric interactions. Several surface treatments, including coatings were developed in order to obtain faster osseointegration. To understand the role of these surface treatments on bone formation it is necessary to choose adequate characterization techniques. Among them, we have selected electron microscopy, profilometry, atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS to describe them briefly. Examples of the potentialities of these techniques on the characterization of titanium for biomedical applications were also presented and discussed. Unfortunately more than one technique is usually necessary to describe conveniently the topography (scanning electron microsocopy, profilometry and/or AFM and the chemical state (XPS of the external layer of the material surface. The employment of the techniques above described can be useful especially for the development of new materials or products.

  20. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples

    Energy Technology Data Exchange (ETDEWEB)

    Laborda, Francisco, E-mail: flaborda@unizar.es; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T.; Jiménez, María S.; Pérez-Arantegui, Josefina; Castillo, Juan R.

    2016-01-21

    The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for

  1. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples

    International Nuclear Information System (INIS)

    Laborda, Francisco; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T.; Jiménez, María S.; Pérez-Arantegui, Josefina; Castillo, Juan R.

    2016-01-01

    The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for

  2. Dielectric barrier discharges applied for soft ionization and their mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Sebastian; Klute, Felix David; Schütz, Alexander; Franzke, Joachim, E-mail: joachim.franzke@isas.de

    2017-01-25

    Dielectric barrier discharges are used for analytical applications as dissociative source for optical emission spectrometry and for ambient-ionization techniques. In the range of ambient-ionization techniques it has attracted much attention in fields like food safety, biological analysis, mass spectrometry for reaction monitoring and imaging forensic identification. In this review some examples are given for the application as desorption/ionization source as well as for the sole application as ionization source with different sample introductions. It will be shown that the detection might depend on the certain distance of the plasma in reference to the sample or the kind of discharge which might be produced by different shapes of the applied high voltage. Some attempts of characterization are presented. A more detailed characterization of the dielectric barrier discharge realized with two ring electrodes, each separately covered with a dielectric layer, is described. - Highlights: • Dielectric barrier discharge applied as desorption/ionization source. • Dielectric barrier discharge applied solely as ionization source. • Different geometries in order to maintain soft ionization. • Characterization of the LTP probe. • Dielectric barrier discharges with two dielectric barriers (ring-ring shape).

  3. Optical characterization of bubbly flows with a near-critical-angle scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Onofri, Fabrice R.A.; Krzysiek, Mariusz [IUSTI, UMR, CNRS, University of Provence, Polytech' DME, Technopole Chateau-Gombert, Marseille (France); Mroczka, Janusz [CEPM, Technical University of Wroclaw, Wroclaw (Poland); Ren, Kuan-Fang [CORIA, UMR, CNRS, University of Rouen, Saint-Etienne-du-Rouvray (France); Radev, Stefan [IMECH, Bulgarian Academy of Sciences, Sofia (Bulgaria); Bonnet, Jean-Philippe [M2P2, UMR, CNRS, University Paul Cezanne, Aix-en-Provence (France)

    2009-10-15

    The newly developed critical angle refractometry and sizing technique (CARS) allows simultaneous and instantaneous characterization of the local size distribution and the relative refractive index (i.e. composition) of a cloud of bubbles. The paper presents the recent improvement of this technique by comparison of different light scattering models and inversion procedures. Experimental results carried in various air/water and air/water-ethanol bubbly flows clearly demonstrate the efficiency and the potential of this technique. (orig.)

  4. Applying system engineering methods to site characterization research for nuclear waste repositories

    International Nuclear Information System (INIS)

    Woods, T.W.

    1985-01-01

    Nuclear research and engineering projects can benefit from the use of system engineering methods. This paper is brief overview illustrating how system engineering methods could be applied in structuring a site characterization effort for a candidate nuclear waste repository. System engineering is simply an orderly process that has been widely used to transform a recognized need into a fully defined system. Such a system may be physical or abstract, natural or man-made, hardware or procedural, as is appropriate to the system's need or objective. It is a way of mentally visualizing all the constituent elements and their relationships necessary to fulfill a need, and doing so compliant with all constraining requirements attendant to that need. Such a system approach provides completeness, order, clarity, and direction. Admittedly, system engineering can be burdensome and inappropriate for those project objectives having simple and familiar solutions that are easily held and controlled mentally. However, some type of documented and structured approach is needed for those objectives that dictate extensive, unique, or complex programs, and/or creation of state-of-the-art machines and facilities. System engineering methods have been used extensively and successfully in these cases. The scientific methods has served well in ordering countless technical undertakings that address a specific question. Similarly, conventional construction and engineering job methods will continue to be quite adequate to organize routine building projects. Nuclear waste repository site characterization projects involve multiple complex research questions and regulatory requirements that interface with each other and with advanced engineering and subsurface construction techniques. There is little doubt that system engineering is an appropriate orchestrating process to structure such diverse elements into a cohesive, well defied project

  5. Novel technique for online characterization of cartilaginous tissue properties.

    Science.gov (United States)

    Yuan, Tai-Yi; Huang, Chun-Yuh; Yong Gu, Wei

    2011-09-01

    The goal of tissue engineering is to use substitutes to repair and restore organ function. Bioreactors are an indispensable tool for monitoring and controlling the unique environment for engineered constructs to grow. However, in order to determine the biochemical properties of engineered constructs, samples need to be destroyed. In this study, we developed a novel technique to nondestructively online-characterize the water content and fixed charge density of cartilaginous tissues. A new technique was developed to determine the tissue mechano-electrochemical properties nondestructively. Bovine knee articular cartilage and lumbar annulus fibrosus were used in this study to demonstrate that this technique could be used on different types of tissue. The results show that our newly developed method is capable of precisely predicting the water volume fraction (less than 3% disparity) and fixed charge density (less than 16.7% disparity) within cartilaginous tissues. This novel technique will help to design a new generation of bioreactors which are able to actively determine the essential properties of the engineered constructs, as well as regulate the local environment to achieve the optimal conditions for cultivating constructs.

  6. Multivariate correlation analysis technique based on euclidean distance map for network traffic characterization

    NARCIS (Netherlands)

    Tan, Zhiyuan; Jamdagni, Aruna; He, Xiangjian; Nanda, Priyadarsi; Liu, Ren Ping; Qing, Sihan; Susilo, Willy; Wang, Guilin; Liu, Dongmei

    2011-01-01

    The quality of feature has significant impact on the performance of detection techniques used for Denial-of-Service (DoS) attack. The features that fail to provide accurate characterization for network traffic records make the techniques suffer from low accuracy in detection. Although researches

  7. Atomic Force Microscopy Techniques for Nanomechanical Characterization: A Polymeric Case Study

    Science.gov (United States)

    Reggente, Melania; Rossi, Marco; Angeloni, Livia; Tamburri, Emanuela; Lucci, Massimiliano; Davoli, Ivan; Terranova, Maria Letizia; Passeri, Daniele

    2015-04-01

    Atomic force microscopy (AFM) is a versatile tool to perform mechanical characterization of surface samples at the nanoscale. In this work, we review two of such methods, namely contact resonance AFM (CR-AFM) and torsional harmonics AFM (TH-AFM). First, such techniques are illustrated and their applicability on materials with elastic moduli in different ranges are discussed, together with their main advantages and limitations. Then, a case study is presented in which we report the mechanical characterization using both CR-AFM and TH-AFM of polyaniline and polyaniniline doped with nanodiamond particles tablets prepared by a pressing process. We determined the indentation modulus values of their surfaces, which were found in fairly good agreement, thus demonstrating the accuracy of the techniques. Finally, the determined surface elastic moduli have been compared with the bulk ones measured through standard indentation testing.

  8. Antimicrobial compounds in polyethylene films - characterization and content measurement techniques

    International Nuclear Information System (INIS)

    Pires, Marcia; Santos, Ramon V.; Perao, Leandro; Ellwangler, Manoela W.; Nonemacher, Regina F.; Moraes, Lilian T. de; Gorski, Sandro; Staub, Simone; Petzhold, Cesar L.

    2009-01-01

    Developments have been done in the packaging market to attend the continuous changes in consumer demands and also to keep safety and shelf life of products during transportation and storage. Active packaging is the most innovative concepts in the market. It has been defined as a packaging that changes its conditions to extend shelf life. The objective of this work is the production and characterization of active polyethylene films with antimicrobial compounds. The initial results show that analytical techniques as RX fluorescence and FTIR can be used to characterize and quantify these compounds in polyethylene films. (author)

  9. Construction and performance characterization of ion-selective electrodes for potentiometric determination of pseudoephedrine hydrochloride applying batch and flow injection analysis techniques.

    Science.gov (United States)

    Zayed, Sayed I M; Issa, Yousry M; Hussein, Ahmed

    2006-01-01

    New pseudoephedrine selective electrodes have been constructed of the conventional polymer membrane type by incorporation of pseudoephedrine-phosphotungstate (PE-PT) or pseudoephedrine-silicotungstate (PE-SiT) ion-associates in a poly vinyl chloride (PVC) membrane plasticized with dibutyl phthalate (DBP). The electrodes were fully characterized in terms of the membrane composition, temperature, and pH. The electrodes exhibited mean slopes of calibration graphs of 57.09 and 56.10 mV concentration decade(-1) of PECl at 25 degrees C for (PE-PT) and (PE-SiT) electrodes, respectively. The electrodes showed fast, stable, and near-Nernstian response over the concentration ranges 6.31 x 10(-6)-1.00 x 10(-2) and 5.00 x 10(-5)-1.00x10(-2) M in the case of PE-PT applying batch and flow injection (FI) analysis, respectively, and 1.00 x 10(-5)-1.00 x 10(-2) and 5.00 x 10(-5)-1.00x10(-2) M in the case of PE-SiT for batch and FI analysis system, respectively. Detection limit was 5.01x 10(-6) M for PE-PT electrode and 6.31x10(-6) M for PE-SiT electrode. The electrodes were successfully applied for the potentiometric determination of pseudoephedrine hydrochloride (PECl) in pharmaceutical preparations with mean recovery 101.13 +/- 0.85% and 100.77+0.79% in case of PE-PT applying batch and flow injection systems, respectively, and 100.75+0.85% and 100.79 +/- 0.77% in case of PE-SiT for batch and flow injection systems, respectively. The electrodes exhibited good selectivity for PECl with respect to a large number of inorganic cations, sugars and amino acids.

  10. Applying Metrological Techniques to Satellite Fundamental Climate Data Records

    Science.gov (United States)

    Woolliams, Emma R.; Mittaz, Jonathan PD; Merchant, Christopher J.; Hunt, Samuel E.; Harris, Peter M.

    2018-02-01

    Quantifying long-term environmental variability, including climatic trends, requires decadal-scale time series of observations. The reliability of such trend analysis depends on the long-term stability of the data record, and understanding the sources of uncertainty in historic, current and future sensors. We give a brief overview on how metrological techniques can be applied to historical satellite data sets. In particular we discuss the implications of error correlation at different spatial and temporal scales and the forms of such correlation and consider how uncertainty is propagated with partial correlation. We give a form of the Law of Propagation of Uncertainties that considers the propagation of uncertainties associated with common errors to give the covariance associated with Earth observations in different spectral channels.

  11. Fabrication and Characterization of Surrogate Glasses Aimed to Validate Nuclear Forensic Techniques

    Science.gov (United States)

    2017-12-01

    the glass formed during a nuclear event, trinitite [14]. The SiO2 composition is generally greater than 50% for trinitite and can vary appreciably...CHARACTERIZATION OF SURROGATE GLASSES AIMED TO VALIDATE NUCLEAR FORENSIC TECHNIQUES by Ken G. Foos December 2017 Thesis Advisor: Claudia...December 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FABRICATION AND CHARACTERIZATION OF SURROGATE GLASSES AIMED TO

  12. Modelling the effects of the sterile insect technique applied to Eldana saccharina Walker in sugarcane

    Directory of Open Access Journals (Sweden)

    L Potgieter

    2012-12-01

    Full Text Available A mathematical model is formulated for the population dynamics of an Eldana saccharina Walker infestation of sugarcane under the influence of partially sterile released insects. The model describes the population growth of and interaction between normal and sterile E.saccharina moths in a temporally variable, but spatially homogeneous environment. The model consists of a deterministic system of difference equations subject to strictly positive initial data. The primary objective of this model is to determine suitable parameters in terms of which the above population growth and interaction may be quantified and according to which E.saccharina infestation levels and the associated sugarcane damage may be measured. Although many models have been formulated in the past describing the sterile insect technique, few of these models describe the technique for Lepidopteran species with more than one life stage and where F1-sterility is relevant. In addition, none of these models consider the technique when fully sterile females and partially sterile males are being released. The model formulated is also the first to describe the technique applied specifically to E.saccharina, and to consider the economic viability of applying the technique to this species. Pertinent decision support is provided to farm managers in terms of the best timing for releases, release ratios and release frequencies.

  13. Tutorial - applying extreme value theory to characterize food-processing systems

    DEFF Research Database (Denmark)

    Skou, Peter Bæk; Holroyd, Stephen E.; van der Berg, Franciscus Winfried J

    2017-01-01

    This tutorial presents extreme value theory (EVT) as an analytical tool in process characterization and shows its potential to describe production performance, eg, across different factories, via reliable estimates of the frequency and scale of extreme events. Two alternative EVT methods...... are discussed: point over threshold and block maxima. We illustrate the theoretical framework for EVT by process data from two different examples from the food-processing industry. Finally, we discuss limitations, decisions, and possibilities when applying EVT for process data....

  14. Microstructural characterization of nuclear-waste ceramics

    International Nuclear Information System (INIS)

    Ryerson, F.J.; Clarke, D.R.

    1982-01-01

    Characterization of nuclear waste ceramics requires techniques possessing high spatial and x-ray resolution. XRD, SEM, electron microprobe, TEM and analytical EM techniques are applied to ceramic formulations designed to immobilize both commercial and defense-related reactor wastes. These materials are used to address the strengths and limitations of the techniques above. An iterative approach combining all these techniques is suggested. 16 figures, 2 tables

  15. Characterization technique for inhomogeneous 4H-SiC Schottky contacts: A practical model for high temperature behavior

    Science.gov (United States)

    Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.

    2017-08-01

    In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.

  16. Developments in surface contamination and cleaning fundamentals and applied aspects

    CERN Document Server

    Kohli, Rajiv

    2015-01-01

    Developments in Surface Contamination and Cleaning, Vol. 1: Fundamentals and Applied Aspects, Second Edition, provides an excellent source of information on alternative cleaning techniques and methods for characterization of surface contamination and validation. Each volume in this series contains a particular topical focus, covering the key techniques and recent developments in the area. This volume forms the heart of the series, covering the fundamentals and application aspects, characterization of surface contaminants, and methods for removal of surface contamination. In addition, new cleaning techniques effective at smaller scales are considered and employed for removal where conventional cleaning techniques fail, along with new cleaning techniques for molecular contaminants. The Volume is edited by the leading experts in small particle surface contamination and cleaning, providing an invaluable reference for researchers and engineers in R&D, manufacturing, quality control, and procurement specific...

  17. Advanced Gradient Based Optimization Techniques Applied on Sheet Metal Forming

    International Nuclear Information System (INIS)

    Endelt, Benny; Nielsen, Karl Brian

    2005-01-01

    The computational-costs for finite element simulations of general sheet metal forming processes are considerable, especially measured in time. In combination with optimization, the performance of the optimization algorithm is crucial for the overall performance of the system, i.e. the optimization algorithm should gain as much information about the system in each iteration as possible. Least-square formulation of the object function is widely applied for solution of inverse problems, due to the superior performance of this formulation.In this work focus will be on small problems which are defined as problems with less than 1000 design parameters; as the majority of real life optimization and inverse problems, represented in literature, can be characterized as small problems, typically with less than 20 design parameters.We will show that the least square formulation is well suited for two classes of inverse problems; identification of constitutive parameters and process optimization.The scalability and robustness of the approach are illustrated through a number of process optimizations and inverse material characterization problems; tube hydro forming, two step hydro forming, flexible aluminum tubes, inverse identification of material parameters

  18. Archaeometry: nuclear and conventional techniques applied to the archaeological research

    International Nuclear Information System (INIS)

    Esparza L, R.; Cardenas G, E.

    2005-01-01

    The book that now is presented is formed by twelve articles that approach from different perspective topics as the archaeological prospecting, the analysis of the pre hispanic and colonial ceramic, the obsidian and the mural painting, besides dating and questions about the data ordaining. Following the chronological order in which the exploration techniques and laboratory studies are required, there are presented in the first place the texts about the systematic and detailed study of the archaeological sites, later we pass to relative topics to the application of diverse nuclear techniques as PIXE, RBS, XRD, NAA, SEM, Moessbauer spectroscopy and other conventional techniques. The multidisciplinary is an aspect that highlights in this work, that which owes to the great specialization of the work that is presented even in the archaeological studies including in the open ground of the topography, mapping, excavation and, of course, in the laboratory tests. Most of the articles are the result of several years of investigation and it has been consigned in the responsibility of each article. The texts here gathered emphasize the technical aspects of each investigation, the modern compute systems applied to the prospecting and the archaeological mapping, the chemical and physical analysis of organic materials, of metal artifacts, of diverse rocks used in the pre hispanic epoch, of mural and ceramic paintings, characteristics that justly underline the potential of the collective works. (Author)

  19. Radiation shielding material characterization by non-destructive neutron radiography technique

    International Nuclear Information System (INIS)

    Hafizal Yazid; Azali Muhammad; Abdul Aziz Mohamed; Rafhayudi Jamro; Hishamuddin Husain

    2007-01-01

    Shielding property of boronated rubber was characterized easily by the use of neutron radiography technique. For 10 phr of boron carbide in the natural rubber composite, the ability to completely shield against neutron was found to have 8mm thickness and above for the neutron flux of 1.04 x 10 5 n/cm 2 s (author)

  20. English Language Teachers' Perceptions on Knowing and Applying Contemporary Language Teaching Techniques

    Science.gov (United States)

    Sucuoglu, Esen

    2017-01-01

    The aim of this study is to determine the perceptions of English language teachers teaching at a preparatory school in relation to their knowing and applying contemporary language teaching techniques in their lessons. An investigation was conducted of 21 English language teachers at a preparatory school in North Cyprus. The SPSS statistical…

  1. Scanning probe microscopy techniques for mechanical characterization at nanoscale

    International Nuclear Information System (INIS)

    Passeri, D.; Anastasiadis, P.; Tamburri, E.; Gugkielmotti, V.; Rossi, M.

    2013-01-01

    Three atomic force microscopy (AFM)-based techniques are reviewed that allow one to conduct accurate measurements of mechanical properties of either stiff or compliant materials at a nanometer scale. Atomic force acoustic microscopy, AFM-based depth sensing indentation, and torsional harmonic AFM are briefly described. Examples and results of quantitative characterization of stiff (an ultrathin SeSn film), soft polymeric (polyaniline fibers doped with detonation nanodiamond) and biological (collagen fibers) materials are reported.

  2. Improving skill development: an exploratory study comparing a philosophical and an applied ethical analysis technique

    Science.gov (United States)

    Al-Saggaf, Yeslam; Burmeister, Oliver K.

    2012-09-01

    This exploratory study compares and contrasts two types of critical thinking techniques; one is a philosophical and the other an applied ethical analysis technique. The two techniques analyse an ethically challenging situation involving ICT that a recent media article raised to demonstrate their ability to develop the ethical analysis skills of ICT students and professionals. In particular the skill development focused on includes: being able to recognise ethical challenges and formulate coherent responses; distancing oneself from subjective judgements; developing ethical literacy; identifying stakeholders; and communicating ethical decisions made, to name a few.

  3. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  4. Evaluation of Economic Merger Control Techniques Applied to the European Electricity Sector

    International Nuclear Information System (INIS)

    Vandezande, Leen; Meeus, Leonardo; Delvaux, Bram; Van Calster, Geert; Belmans, Ronnie

    2006-01-01

    With European electricity markets not yet functioning on a competitive basis and consolidation increasing, the European Commission has said it intends to more intensively apply competition law in the electricity sector. Yet economic techniques and theories used in EC merger control fail to take sufficiently into account some specific features of electricity markets. The authors offer suggestions to enhance their reliability and applicability in the electricity sector. (author)

  5. Applying traditional signal processing techniques to social media exploitation for situational understanding

    Science.gov (United States)

    Abdelzaher, Tarek; Roy, Heather; Wang, Shiguang; Giridhar, Prasanna; Al Amin, Md. Tanvir; Bowman, Elizabeth K.; Kolodny, Michael A.

    2016-05-01

    Signal processing techniques such as filtering, detection, estimation and frequency domain analysis have long been applied to extract information from noisy sensor data. This paper describes the exploitation of these signal processing techniques to extract information from social networks, such as Twitter and Instagram. Specifically, we view social networks as noisy sensors that report events in the physical world. We then present a data processing stack for detection, localization, tracking, and veracity analysis of reported events using social network data. We show using a controlled experiment that the behavior of social sources as information relays varies dramatically depending on context. In benign contexts, there is general agreement on events, whereas in conflict scenarios, a significant amount of collective filtering is introduced by conflicted groups, creating a large data distortion. We describe signal processing techniques that mitigate such distortion, resulting in meaningful approximations of actual ground truth, given noisy reported observations. Finally, we briefly present an implementation of the aforementioned social network data processing stack in a sensor network analysis toolkit, called Apollo. Experiences with Apollo show that our techniques are successful at identifying and tracking credible events in the physical world.

  6. Applied methods and techniques for mechatronic systems modelling, identification and control

    CERN Document Server

    Zhu, Quanmin; Cheng, Lei; Wang, Yongji; Zhao, Dongya

    2014-01-01

    Applied Methods and Techniques for Mechatronic Systems brings together the relevant studies in mechatronic systems with the latest research from interdisciplinary theoretical studies, computational algorithm development and exemplary applications. Readers can easily tailor the techniques in this book to accommodate their ad hoc applications. The clear structure of each paper, background - motivation - quantitative development (equations) - case studies/illustration/tutorial (curve, table, etc.) is also helpful. It is mainly aimed at graduate students, professors and academic researchers in related fields, but it will also be helpful to engineers and scientists from industry. Lei Liu is a lecturer at Huazhong University of Science and Technology (HUST), China; Quanmin Zhu is a professor at University of the West of England, UK; Lei Cheng is an associate professor at Wuhan University of Science and Technology, China; Yongji Wang is a professor at HUST; Dongya Zhao is an associate professor at China University o...

  7. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  8. Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow

    International Nuclear Information System (INIS)

    Knoll, D.A.

    1998-01-01

    The authors study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. They use Newton's method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. They investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, mesh sequencing, and a pseudotransient continuation technique is used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with incomplete lower-upper (ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a mesh sequencing implementation provides significant CPU savings for fine grid calculations. Performance comparisons of modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented

  9. 3D scanning electron microscopy applied to surface characterization of fluorosed dental enamel.

    Science.gov (United States)

    Limandri, Silvina; Galván Josa, Víctor; Valentinuzzi, María Cecilia; Chena, María Emilia; Castellano, Gustavo

    2016-05-01

    The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Advantages of active love wave techniques in geophysical characterizations of seismographic station - Case studies in California and the central and eastern United States

    Science.gov (United States)

    Martin, Antony; Yong, Alan K.; Salomone, Larry A.

    2014-01-01

    Active-source Love waves, recorded by the multi-channel analysis of surface wave (MASLW) technique, were recently analyzed in two site characterization projects. Between 2010 and 2012, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 191 seismographic stations in California and the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in this investigation it became clear that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not suited for characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites. At shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments, Love wave techniques generally were found to be easier to interpret, i.e., Love wave data typically yielded unambiguous fundamental mode dispersion curves and thus, reduce uncertainty in the resultant VS model. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in the Love wave data. It is possible to model Rayleigh wave data using multi- or effective-mode techniques; however, extraction of Rayleigh wave dispersion data was found to be difficult in many cases. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to also collect Love wave data when warranted.

  11. Applied research on air pollution using nuclear-related analytical techniques

    International Nuclear Information System (INIS)

    1994-01-01

    A co-ordinated research programme (CRP) on applied research on air pollution using nuclear-related techniques is a global CRP which will run from 1992-1996, and will build upon the experience gained by the Agency from the laboratory support that it has been providing for several years to BAPMoN - the Background Air Pollution Monitoring Network programme organized under the auspices of the World Meterological Organization. The purpose of this CRP is to promote the use of nuclear analytical techniques in air pollution studies, e.g. NAA, XFR, and PIXE for the analysis of toxic and other trace elements in suspended particulate matter (including air filter samples), rainwater and fog-water samples, and in biological indicators of air pollution (e.g. lichens and mosses). The main purposes of the core programme are i) to support the use of nuclear and nuclear-related analytical techniques for practically-oriented research and monitoring studies on air pollution ii) to identify major sources of air pollution affecting each of the participating countries with particular reference to toxic heavy metals, and iii) to obtain comparative data on pollution levels in areas of high pollution (e.g. a city centre or a populated area downwind of a large pollution source) and low pollution (e.g. rural areas). This document reports the discussions held during the first Research Co-ordination Meeting (RCM) for the CRP which took place at the IAEA Headquarters in Vienna. Refs, figs and tabs

  12. Renormalization techniques applied to the study of density of states in disordered systems

    International Nuclear Information System (INIS)

    Ramirez Ibanez, J.

    1985-01-01

    A general scheme for real space renormalization of formal scattering theory is presented and applied to the calculation of density of states (DOS) in some finite width systems. This technique is extended in a self-consistent way, to the treatment of disordered and partially ordered chains. Numerical results of moments and DOS are presented in comparison with previous calculations. In addition, a self-consistent theory for the magnetic order problem in a Hubbard chain is derived and a parametric transition is observed. Properties of localization of the electronic states in disordered chains are studied through various decimation averaging techniques and using numerical simulations. (author) [pt

  13. Nuclear magnetic resonance and high-performance liquid chromatography techniques for the characterization of bioactive compounds from Humulus lupulus L. (hop).

    Science.gov (United States)

    Bertelli, Davide; Brighenti, Virginia; Marchetti, Lucia; Reik, Anna; Pellati, Federica

    2018-06-01

    Humulus lupulus L. (hop) represents one of the most cultivated crops, it being a key ingredient in the brewing process. Many health-related properties have been described for hop extracts, making this plant gain more interest in the field of pharmaceutical and nutraceutical research. Among the analytical tools available for the phytochemical characterization of plant extracts, quantitative nuclear magnetic resonance (qNMR) represents a new and powerful technique. In this ambit, the present study was aimed at the development of a new, simple, and efficient qNMR method for the metabolite fingerprinting of bioactive compounds in hop cones, taking advantage of the novel ERETIC 2 tool. To the best of our knowledge, this is the first attempt to apply this method to complex matrices of natural origin, such as hop extracts. The qNMR method set up in this study was applied to the quantification of both prenylflavonoids and bitter acids in eight hop cultivars. The performance of this analytical method was compared with that of HPLC-UV/DAD, which represents the most frequently used technique in the field of natural product analysis. The quantitative data obtained for hop samples by means of the two aforementioned techniques highlighted that the amount of bioactive compounds was slightly higher when qNMR was applied, although the order of magnitude of the values was the same. The accuracy of qNMR was comparable to that of the chromatographic method, thus proving to be a reliable tool for the analysis of these secondary metabolites in hop extracts. Graphical abstract Graphical abstract related to the extraction and analytical methods applied in this work for the analysis of bioactive compounds in Humulus lupulus L. (hop) cones.

  14. MULTIVARIATE TECHNIQUES APPLIED TO EVALUATION OF LIGNOCELLULOSIC RESIDUES FOR BIOENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812361The evaluation of lignocellulosic wastes for bioenergy production demands to consider several characteristicsand properties that may be correlated. This fact demands the use of various multivariate analysis techniquesthat allow the evaluation of relevant energetic factors. This work aimed to apply cluster analysis and principalcomponents analyses for the selection and evaluation of lignocellulosic wastes for bioenergy production.8 types of residual biomass were used, whose the elemental components (C, H, O, N, S content, lignin, totalextractives and ashes contents, basic density and higher and lower heating values were determined. Bothmultivariate techniques applied for evaluation and selection of lignocellulosic wastes were efficient andsimilarities were observed between the biomass groups formed by them. Through the interpretation of thefirst principal component obtained, it was possible to create a global development index for the evaluationof the viability of energetic uses of biomass. The interpretation of the second principal component alloweda contrast between nitrogen and sulfur contents with oxygen content.

  15. Mechanical characterization of composite materials by optical techniques: A review

    Science.gov (United States)

    Bruno, Luigi

    2018-05-01

    The present review provides an overview of work published in recent years dealing with the mechanical characterization of composite materials performed by optical techniques. The paper emphasizes the strengths derived from the employment of full-field methods when the strain field of an anisotropic material must be evaluated. This is framed in contrast to the use of conventional measurement techniques, which provide single values of the measured quantities unable to offer thorough descriptions of deformation distribution. The review outlines the intensity and articulation of work in this research field to date and its ongoing importance not only in the academy, but also in industrial sectors where composite materials represent a strategic resource for development.

  16. Ultrasound method applied to characterize healthy femoral diaphysis of Wistar rats in vivo

    International Nuclear Information System (INIS)

    Fontes-Pereira, A.; Matusin, D.P.; Rosa, P.; Schanaider, A.; Krüger, M.A. von; Pereira, W.C.A.

    2014-01-01

    A simple experimental protocol applying a quantitative ultrasound (QUS) pulse-echo technique was used to measure the acoustic parameters of healthy femoral diaphyses of Wistar rats in vivo. Five quantitative parameters [apparent integrated backscatter (AIB), frequency slope of apparent backscatter (FSAB), time slope of apparent backscatter (TSAB), integrated reflection coefficient (IRC), and frequency slope of integrated reflection (FSIR)] were calculated using the echoes from cortical and trabecular bone in the femurs of 14 Wistar rats. Signal acquisition was performed three times in each rat, with the ultrasound signal acquired along the femur's central region from three positions 1 mm apart from each other. The parameters estimated for the three positions were averaged to represent the femur diaphysis. The results showed that AIB, FSAB, TSAB, and IRC values were statistically similar, but the FSIR values from Experiments 1 and 3 were different. Furthermore, Pearson's correlation coefficient showed, in general, strong correlations among the parameters. The proposed protocol and calculated parameters demonstrated the potential to characterize the femur diaphysis of rats in vivo. The results are relevant because rats have a bone structure very similar to humans, and thus are an important step toward preclinical trials and subsequent application of QUS in humans

  17. Lessons learned in applying function analysis

    International Nuclear Information System (INIS)

    Mitchel, G.R.; Davey, E.; Basso, R.

    2001-01-01

    This paper summarizes the lessons learned in undertaking and applying function analysis based on the recent experience of utility, AECL and international design and assessment projects. Function analysis is an analytical technique that can be used to characterize and asses the functions of a system and is widely recognized as an essential component of a 'systematic' approach to design, on that integrated operational and user requirements into the standard design process. (author)

  18. Exploring Characterizations of Learning Object Repositories Using Data Mining Techniques

    Science.gov (United States)

    Segura, Alejandra; Vidal, Christian; Menendez, Victor; Zapata, Alfredo; Prieto, Manuel

    Learning object repositories provide a platform for the sharing of Web-based educational resources. As these repositories evolve independently, it is difficult for users to have a clear picture of the kind of contents they give access to. Metadata can be used to automatically extract a characterization of these resources by using machine learning techniques. This paper presents an exploratory study carried out in the contents of four public repositories that uses clustering and association rule mining algorithms to extract characterizations of repository contents. The results of the analysis include potential relationships between different attributes of learning objects that may be useful to gain an understanding of the kind of resources available and eventually develop search mechanisms that consider repository descriptions as a criteria in federated search.

  19. Characterizing Dissolved Organic Matter and Metabolites in an Actively Serpentinizing Ophiolite Using Global Metabolomics Techniques

    Science.gov (United States)

    Seyler, L. M.; Rempfert, K. R.; Kraus, E. A.; Spear, J. R.; Templeton, A. S.; Schrenk, M. O.

    2017-12-01

    Environmental metabolomics is an emerging approach used to study ecosystem properties. Through bioinformatic comparisons to metagenomic data sets, metabolomics can be used to study microbial adaptations and responses to varying environmental conditions. Since the techniques are highly parallel to organic geochemistry approaches, metabolomics can also provide insight into biogeochemical processes. These analyses are a reflection of metabolic potential and intersection with other organisms and environmental components. Here, we used an untargeted metabolomics approach to characterize dissolved organic carbon and aqueous metabolites from groundwater obtained from an actively serpentinizing habitat. Serpentinites are known to support microbial communities that feed off of the products of serpentinization (such as methane and H2 gas), while adapted to harsh environmental conditions such as high pH and low DIC availability. However, the biochemistry of microbial populations that inhabit these environments are understudied and are complicated by overlapping biotic and abiotic processes. The aim of this study was to identify potential sources of carbon in an environment that is depleted of soluble inorganic carbon, and to characterize the flow of metabolites and describe overlapping biogenic and abiogenic processes impacting carbon cycling in serpentinizing rocks. We applied untargeted metabolomics techniques to groundwater taken from a series of wells drilled into the Semail Ophiolite in Oman.. Samples were analyzed via quadrupole time-of-flight liquid chromatography tandem mass spectrometry (QToF-LC/MS/MS). Metabolomes and metagenomic data were imported into Progenesis QI software for statistical analysis and correlation, and metabolic networks constructed using the Genome-Linked Application for Metabolic Maps (GLAMM), a web interface tool. Further multivariate statistical analyses and quality control was performed using EZinfo. Pools of dissolved organic carbon could

  20. Development and characterization of HIP joining techniques for Si3N4 materials

    International Nuclear Information System (INIS)

    Sun Woo, J.

    1991-09-01

    The report deals with the development and optimization of reproducible techniques for joining Si 3 N 4 with Si 3 N 4 without interlayers consisting of other materials, applying hot isostatic pressing and vacuum plasma spraying. Furthermore, experiments are reported that have been performed in addition to the above-mentioned, for preparing Si 3 N 4 sintered specimens without sintering additives, applying the HIP technique. The resulting specimens have been tested for their joining characteristics, which are reported. All reported experiments have been performed varying essential parameters such as HIP temperature, pressure, holding time, surface roughness, and heat treatment. Every parameter has been examined individually for its effect on the bonding strength of the prepared Si 3 N 4 -Si 3 N 4 joint, applying 4P bending tests at room temperature and at 1200deg C. (orig./MM) [de

  1. Investigation of the shear bond strength to dentin of universal adhesives applied with two different techniques

    Directory of Open Access Journals (Sweden)

    Elif Yaşa

    2017-09-01

    Full Text Available Objective: The aim of this study was to evaluate the shear bond strength of universal adhesives applied with self-etch and etch&rinse techniques to dentin. Materials and Method: Fourty-eight sound extracted human third molars were used in this study. Occlusal enamel was removed in order to expose the dentinal surface, and the surface was flattened. Specimens were randomly divided into four groups and were sectioned vestibulo-lingually using a diamond disc. The universal adhesives: All Bond Universal (Group 1a and 1b, Gluma Bond Universal (Group 2a and 2b and Single Bond Universal (Group 3a and 3b were applied onto the tooth specimens either with self-etch technique (a or with etch&rinse technique (b according to the manufacturers’ instructions. Clearfil SE Bond (Group 4a; self-etch and Optibond FL (Group 4b; etch&rinse were used as control groups. Then the specimens were restored with a nanohybrid composite resin (Filtek Z550. After thermocycling, shear bond strength test was performed with a universal test machine at a crosshead speed of 0.5 mm/min. Fracture analysis was done under a stereomicroscope (×40 magnification. Data were analyzed using two-way ANOVA and post-hoc Tukey tests. Results: Statistical analysis showed significant differences in shear bond strength values between the universal adhesives (p<0.05. Significantly higher bond strength values were observed in self-etch groups (a in comparison to etch&rinse groups (b (p<0.05. Among all groups, Single Bond Universal showed the greatest shear bond strength values, whereas All Bond Universal showed the lowest shear bond strength values with both application techniques. Conclusion: Dentin bonding strengths of universal adhesives applied with different techniques may vary depending on the adhesive material. For the universal bonding agents tested in this study, the etch&rinse technique negatively affected the bond strength to dentin.

  2. Methodology for uranium compounds characterization applied to biomedical monitoring

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Chalabreysse, J.; Henge-Napoli, M.H.; Pujol, E.

    1991-01-01

    Chronic exposure and accidental contamination to uranium compounds in the nuclear industry, led the authors to develop a methodology in order to characterize those compounds applied to biomedical monitoring. Such a methodology, based on the recommendation of the ICRP and the assessment of Annual Limit on Intake (ALI) values, involves two main steps: (1) The characterization of the industrial compound, i.e. its physico-chemical properties like density (g cm -3 ), specific area (m 2 g -1 ), x-ray spectrum (crystalline form), solid infrared spectrum (wavelength and bounds), mass spectrometry (isotopic composition), and particle size distribution including measurement of the Activity Median Aerodynamic Diameter (AMAD). They'll specially study aging and hydration state of some compounds. (2) The study of in vitro solubility in several biochemical medium like bicarbonates, Basal Medium Eagle (BME) used in cellular culture, Gamble solvent, which is a serum simulant, with oxygen bubbling, and Gamble added with superoxide anions O2 - . Those different mediums allow one to understand the dissolution mechanisms (oxidation, chelating effects...) and to give ICRP classification D, W, or Y. Those two steps are essential to assess a biomedical monitoring either in routine or accidental exposure, and to calculate the ALI. Results on UO3, UF4 and U02 in the French uranium industry are given

  3. The digital geometric phase technique applied to the deformation evaluation of MEMS devices

    International Nuclear Information System (INIS)

    Liu, Z W; Xie, H M; Gu, C Z; Meng, Y G

    2009-01-01

    Quantitative evaluation of the structure deformation of microfabricated electromechanical systems is of importance for the design and functional control of microsystems. In this investigation, a novel digital geometric phase technique was developed to meet the deformation evaluation requirement of microelectromechanical systems (MEMS). The technique is performed on the basis of regular artificial lattices, instead of a natural atom lattice. The regular artificial lattices with a pitch ranging from micrometer to nanometer will be directly fabricated on the measured surface of MEMS devices by using a focused ion beam (FIB). Phase information can be obtained from the Bragg filtered images after fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of the scanning electronic microscope (SEM) images. Then the in-plane displacement field and the local strain field related to the phase information will be evaluated. The obtained results show that the technique can be well applied to deformation measurement with nanometer sensitivity and stiction force estimation of a MEMS device

  4. Automated quantitative micro-mineralogical characterization for environmental applications

    Science.gov (United States)

    Smith, Kathleen S.; Hoal, K.O.; Walton-Day, Katherine; Stammer, J.G.; Pietersen, K.

    2013-01-01

    Characterization of ore and waste-rock material using automated quantitative micro-mineralogical techniques (e.g., QEMSCAN® and MLA) has the potential to complement traditional acid-base accounting and humidity cell techniques when predicting acid generation and metal release. These characterization techniques, which most commonly are used for metallurgical, mineral-processing, and geometallurgical applications, can be broadly applied throughout the mine-life cycle to include numerous environmental applications. Critical insights into mineral liberation, mineral associations, particle size, particle texture, and mineralogical residence phase(s) of environmentally important elements can be used to anticipate potential environmental challenges. Resources spent on initial characterization result in lower uncertainties of potential environmental impacts and possible cost savings associated with remediation and closure. Examples illustrate mineralogical and textural characterization of fluvial tailings material from the upper Arkansas River in Colorado.

  5. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    Directory of Open Access Journals (Sweden)

    D.D. Lestiani

    2011-08-01

    Full Text Available Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem. The objectives of this study are to apply the nuclear analytical techniques to airborne particulate samples collected in Bandung, to assess the accuracy and to ensure the reliable of analytical results through the comparison of instrumental neutron activation analysis (INAA and particles induced X-ray emission (PIXE. Particle samples in the PM2.5 and PM2.5-10 ranges have been collected in Bandung twice a week for 24 hours using a Gent stacked filter unit. The result showed that generally there was a systematic difference between INAA and PIXE results, which the values obtained by PIXE were lower than values determined by INAA. INAA is generally more sensitive and reliable than PIXE for Na, Al, Cl, V, Mn, Fe, Br and I, therefore INAA data are preffered, while PIXE usually gives better precision than INAA for Mg, K, Ca, Ti and Zn. Nevertheless, both techniques provide reliable results and complement to each other. INAA is still a prospective method, while PIXE with the special capabilities is a promising tool that could contribute and complement the lack of NAA in determination of lead, sulphur and silicon. The combination of INAA and PIXE can advantageously be used in air pollution studies to extend the number of important elements measured as key elements in source apportionment.

  6. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    International Nuclear Information System (INIS)

    Lestiani, D.D.; Santoso, M.

    2011-01-01

    Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem. The objectives of this study are to apply the nuclear analytical techniques to airborne particulate samples collected in Bandung, to assess the accuracy and to ensure the reliable of analytical results through the comparison of instrumental neutron activation analysis (INAA) and particles induced X-ray emission (PIXE). Particle samples in the PM 2.5 and PM 2.5-10 ranges have been collected in Bandung twice a week for 24 hours using a Gent stacked filter unit. The result showed that generally there was a systematic difference between INAA and PIXE results, which the values obtained by PIXE were lower than values determined by INAA. INAA is generally more sensitive and reliable than PIXE for Na, Al, Cl, V, Mn, Fe, Br and I, therefore INAA data are preferred, while PIXE usually gives better precision than INAA for Mg, K, Ca, Ti and Zn. Nevertheless, both techniques provide reliable results and complement to each other. INAA is still a prospective method, while PIXE with the special capabilities is a promising tool that could contribute and complement the lack of NAA in determination of lead, sulphur and silicon. The combination of INAA and PIXE can advantageously be used in air pollution studies to extend the number of important elements measured as key elements in source apportionment. (author)

  7. [Molecular techniques applied in species identification of Toxocara].

    Science.gov (United States)

    Fogt, Renata

    2006-01-01

    Toxocarosis is still an important and actual problem in human medicine. It can manifest as visceral (VLM), ocular (OLM) or covert (CT) larva migrans syndroms. Complicated life cycle of Toxocara, lack of easy and practical methods of species differentiation of the adult nematode and embarrassing in recognition of the infection in definitive hosts create difficulties in fighting with the infection. Although studies on human toxocarosis have been continued for over 50 years there is no conclusive answer, which of species--T. canis or T. cati constitutes a greater risk of transmission of the nematode to man. Neither blood serological examinations nor microscopic observations of the morphological features of the nematode give the satisfied answer on the question. Since the 90-ths molecular methods were developed for species identification and became useful tools being widely applied in parasitological diagnosis. This paper cover the survey of methods of DNA analyses used for identification of Toxocara species. The review may be helpful for researchers focused on Toxocara and toxocarosis as well as on detection of new species. The following techniques are described: PCR (Polymerase Chain Reaction), RFLP (Restriction Fragment Length Polymorphism), RAPD (Random Amplified Polymorphic DNA) and SSCP (Single Strand Conformation Polymorphism).

  8. Mini-review: novel non-destructivein situbiofilm characterization techniques in membrane systems

    KAUST Repository

    Valladares Linares, Rodrigo; Fortunato, Luca; Farhat, Nadia; Bucs, Szilard; Staal, M.; Fridjonsson, E.O.; Johns, M.L.; Vrouwenvelder, Johannes S.; Leiknes, TorOve

    2016-01-01

    Membrane systems are commonly used in the water industry to produce potable water and for advanced wastewater treatment. One of the major drawbacks of membrane systems is biofilm formation (biofouling), which results in an unacceptable decline in membrane performance. Three novel in situ biofouling characterization techniques were assessed: (i) optical coherence tomography (OCT), (ii) planar optodes, and (iii) nuclear magnetic resonance (NMR). The first two techniques were assessed using a biofilm grown on the surface of nanofiltration (NF) membranes using a transparent membrane fouling simulator that accurately simulates spiral wound modules, modified for in situ biofilm imaging. For the NMR study, a spiral wound reverse osmosis membrane module was used. Results show that these techniques can provide information to reconstruct the biofilm accurately, either with 2-D (OCT, planar optodes and NMR), or 3-D (OCT and NMR) scans. These non-destructive tools can elucidate the interaction of hydrodynamics and mass transport on biofilm accumulation in membrane systems. Oxygen distribution in the biofilm can be mapped and linked to water flow and substrate characteristics; insights on the effect of crossflow velocity, flow stagnation, and feed spacer presence can be obtained, and in situ information on biofilm structure, thickness, and spatial distribution can be quantitatively assessed. The combination of these novel non-destructive in situ biofilm characterization techniques can provide real-time observation of biofilm formation at the mesoscale. The information obtained with these tools could potentially be used for further improvement in the design of membrane systems and operational parameters to reduce impact of biofouling on membrane performance. © 2016 Balaban Desalination Publications. All rights reserved.

  9. Mini-review: novel non-destructivein situbiofilm characterization techniques in membrane systems

    KAUST Repository

    Valladares Linares, R.

    2016-05-12

    Membrane systems are commonly used in the water industry to produce potable water and for advanced wastewater treatment. One of the major drawbacks of membrane systems is biofilm formation (biofouling), which results in an unacceptable decline in membrane performance. Three novel in situ biofouling characterization techniques were assessed: (i) optical coherence tomography (OCT), (ii) planar optodes, and (iii) nuclear magnetic resonance (NMR). The first two techniques were assessed using a biofilm grown on the surface of nanofiltration (NF) membranes using a transparent membrane fouling simulator that accurately simulates spiral wound modules, modified for in situ biofilm imaging. For the NMR study, a spiral wound reverse osmosis membrane module was used. Results show that these techniques can provide information to reconstruct the biofilm accurately, either with 2-D (OCT, planar optodes and NMR), or 3-D (OCT and NMR) scans. These non-destructive tools can elucidate the interaction of hydrodynamics and mass transport on biofilm accumulation in membrane systems. Oxygen distribution in the biofilm can be mapped and linked to water flow and substrate characteristics; insights on the effect of crossflow velocity, flow stagnation, and feed spacer presence can be obtained, and in situ information on biofilm structure, thickness, and spatial distribution can be quantitatively assessed. The combination of these novel non-destructive in situ biofilm characterization techniques can provide real-time observation of biofilm formation at the mesoscale. The information obtained with these tools could potentially be used for further improvement in the design of membrane systems and operational parameters to reduce impact of biofouling on membrane performance. © 2016 Balaban Desalination Publications. All rights reserved.

  10. A multi-technique approach for characterizing the geomorphological evolution of a Villerville-Cricqueboeuf coastal landslide (Normandy, France).

    Science.gov (United States)

    Lissak Borges, Candide; Maquaire, Olivier; Malet, Jean-Philippe; Gomez, Christopher; Lavigne, Franck

    2010-05-01

    The Villerville and Cricqueboeuf coastal landslides (Calvados, Normandy, North-West France) have occurred in marly, sandy and chalky formations. The slope instability probably started during the last Quaternary period and is still active over the recent historic period. Since 1982, the slope is affected by a permanent activity (following the Varnes classification) with an annual average displacement of 5-10 cm.y-1 depending on the season. Three major events occurred in 1988, 1995 and 2001 and are controlled by the hydro-climatic conditions. These events induced pluri-decimetres to pluri-meters displacements (e.g. 5m horizontal displacements have been observed in 2001 at Cricqueboeuf) and generated economical and physical damage to buildings and roads. The landslide morphology is characterized by multi-metres scarps, reverse slopes caused by the tilting of landslide blocks and evolving cracks. The objective of this paper is to present the methodology used to characterize the recent historical (since 1808) geomorphological evolution of the landslides, and to discuss the spatio-temporal pattern of observed displacements. A multi-technique research approach has been applied and consisted in historical research, geomorphological mapping, geodetic monitoring and engineering geotechnical investigation. Information gained from different documents and techniques has been combined to propose a conceptual model of landslide evolution: - a retrospective study on landslide events inventoried in the historic period (archive investigation, newspapers); - a multi-temporal (1955-2006) analysis of aerial photographs (image processing, traditional stereoscopic techniques and image orthorectification), ancient maps and cadastres; - the creation of a detailed geomorphological map in 2009; - an analysis of recent displacements monitored since 1985 with traditional geodetic techniques (tacheometry, dGPS, micro-levelling) - geophysical investigation by ground-penetrating radar along the

  11. Advantages and Limitations of Current Imaging Techniques for Characterizing Liposome Morphology

    Directory of Open Access Journals (Sweden)

    Annie-Louise Robson

    2018-02-01

    Full Text Available There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.

  12. Theoretical Study on Synchronous Characterization of Surface and Interfacial Mechanical Properties of Thin-Film/Substrate Systems with Residual Stress Based on Pressure Blister Test Technique

    Directory of Open Access Journals (Sweden)

    Zhi-xin Yang

    2018-01-01

    Full Text Available In this study, based on the pressure blister test technique, a theoretical study on the synchronous characterization of surface and interfacial mechanical properties of thin-film/substrate systems with residual stress was presented, where the problem of axisymmetric deformation of a blistering film with initial stress was analytically solved and its closed-form solution was presented. The expressions to determine Poisson’s ratios, Young’s modulus, and residual stress of surface thin films were derived; the work done by the applied external load and the elastic energy stored in the blistering thin film were analyzed in detail and their expressions were derived; and the interfacial adhesion energy released per unit delamination area of thin-film/substrate (i.e., energy release rate was finally presented. The synchronous characterization technique presented here has theoretically made a big step forward, due to the consideration for the residual stress in surface thin films.

  13. Site characterization techniques used in environmental restoration activities. Final report of a co-ordinated research project 1995-1999

    International Nuclear Information System (INIS)

    2000-05-01

    The objective of this CRP was to promote the exchange of information on the practical experience gained by the Member States in characterization of radioactively contaminated sites. Special emphasis was placed on the development of methods and techniques for the optimization of radiological characterization. In particular, the scope included: definition of a strategy for site characterization; sampling and measurement techniques; data management, including statistical analysis and deterministic radionuclide migration modelling; and post-cleanup radiological surveys and assurance of compliance with release criteria

  14. Site characterization techniques used in environmental restoration activities. Final report of a co-ordinated research project 1995-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The objective of this CRP was to promote the exchange of information on the practical experience gained by the Member States in characterization of radioactively contaminated sites. Special emphasis was placed on the development of methods and techniques for the optimization of radiological characterization. In particular, the scope included: definition of a strategy for site characterization; sampling and measurement techniques; data management, including statistical analysis and deterministic radionuclide migration modelling; and post-cleanup radiological surveys and assurance of compliance with release criteria.

  15. Vibration monitoring/diagnostic techniques, as applied to reactor coolant pumps

    International Nuclear Information System (INIS)

    Sculthorpe, B.R.; Johnson, K.M.

    1986-01-01

    With the increased awareness of reactor coolant pump (RCP) cracked shafts, brought about by the catastrophic shaft failure at Crystal River number3, Florida Power and Light Company, in conjunction with Bently Nevada Corporation, undertook a test program at St. Lucie Nuclear Unit number2, to confirm the integrity of all four RCP pump shafts. Reactor coolant pumps play a major roll in the operation of nuclear-powered generation facilities. The time required to disassemble and physically inspect a single RCP shaft would be lengthy, monetarily costly to the utility and its customers, and cause possible unnecessary man-rem exposure to plant personnel. When properly applied, vibration instrumentation can increase unit availability/reliability, as well as provide enhanced diagnostic capability. This paper reviews monitoring benefits and diagnostic techniques applicable to RCPs/motor drives

  16. Characterization of transient discharges under atmospheric-pressure conditions applying nitrogen photoemission and current measurements

    International Nuclear Information System (INIS)

    Keller, Sandra; Rajasekaran, Priyadarshini; Bibinov, Nikita; Awakowicz, Peter

    2012-01-01

    The plasma parameters such as electron distribution function and electron density of three atmospheric-pressure transient discharges namely filamentary and homogeneous dielectric barrier discharges in air, and the spark discharge of an argon plasma coagulation (APC) system are determined. A combination of numerical simulation as well as diagnostic methods including current measurement and optical emission spectroscopy (OES) based on nitrogen emissions is used. The applied methods supplement each other and resolve problems, which arise when these methods are used individually. Nitrogen is used as a sensor gas and is admixed in low amount to argon for characterizing the APC discharge. Both direct and stepwise electron-impact excitation of nitrogen emissions are included in the plasma-chemical model applied for characterization of these transient discharges using OES where ambiguity arises in the determination of plasma parameters under specific discharge conditions. It is shown that the measured current solves this problem by providing additional information useful for the determination of discharge-specific plasma parameters. (paper)

  17. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    Science.gov (United States)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk that is not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. Multiparameter monitoring networks are deployed on many active volcanoes to record signs of magmatic processes and help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of many processes hiding in recorded signals is still poor. As a direct consequence, a solid interpretation of the state of a volcano is still a challenge. In an attempt to bridge this gap, we combined volcanic monitoring and experimental volcanology. We performed 15 well-monitored, field-based, experiments and fragmented natural rock samples from Colima volcano (Mexico) by rapid decompression. We used cylindrical samples of 60 mm height and 25 mm and 60 mm diameter, respectively, and 25 and 35 vol.% open porosity. The applied pressure range was from 4 to 18 MPa. Using different experimental set-ups, the pressurised volume above the samples ranged from 60 - 170 cm3. The experiments were performed at ambient conditions and at controlled sample porosity and size, confinement geometry, and applied pressure. The experiments have been thoroughly monitored with 1) Doppler Radar (DR), 2) high-speed and high-definition cameras, 3) acoustic and infrasound sensors, 4) pressure transducers, and 5) electrically conducting wires. Our aim was to check for common results achieved by the different approaches and, if so, calibrate state-of-the-art monitoring tools. We present how the velocity of the ejected pyroclasts was measured by and evaluated for the different approaches and how it was affected by the experimental conditions and sample characteristics. We show that all deployed instruments successfully measured the pyroclast

  18. Materials characterization techniques

    National Research Council Canada - National Science Library

    Zhang, Sam; Li, L; Kumar, Ashok

    2009-01-01

    ... techniques for quality assurance, contamination control, and process improvement. The book reviews the most popular and powerful analysis and quality control tools, explaining the appropriate uses and related technical requirements...

  19. Removal of benzaldehyde from a water/ethanol mixture by applying scavenging techniques

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Skov, Thomas; Gernaey, Krist V.

    2017-01-01

    A presence of carbonyl compounds is very common in the food industry. The nature of such compounds is to be reactive and thus many products involve aldehydes/ketones in their synthetic routes. By contrast, the high reactivity of carbonyl compounds could also lead to formation of undesired compounds......, such as genotoxic impurities. It can therefore be important to remove carbonyl compounds by implementing suitable removal techniques, with the aim of protecting final product quality. This work is focused on benzaldehyde as a model component, studying its removal from a water/ethanol mixture by applying different...

  20. Microstructural characterization of TiAl3 intermetallic obtained by the Fast solidification technique

    International Nuclear Information System (INIS)

    Angeles C, C.; Rosas, G.; Perez C, R.

    1997-01-01

    In this work preliminary studies about the TiAl 3 characterization are reported which is obtained starting from the Fast solidification technique in an arc furnace using Scanning electron microscopy, X-ray diffraction and Transmission electron microscopy. (Author)

  1. Laser beam characterization with digital holograms

    CSIR Research Space (South Africa)

    Forbes, A

    2013-04-01

    Full Text Available We show how laser beam characterization may be done in real-time with digital holograms. We illustrate the power of the techniques by applying them to a variety of laser sources, from fibers to solid-state....

  2. Nuclear magnetic resonance applied to the study of polymeric nano composites

    International Nuclear Information System (INIS)

    Tavares, Maria Ines Bruno

    2011-01-01

    Polymers and nanoparticles based nano composites were prepared by intercalation by solution. The obtained nano composites were characterized mainly by the nuclear magnetic spectroscopy (NMR), applying the analysis of carbon-13 (polymeric matrix), silicon-29 (nanoparticle), and by determination of spin-lattice relaxation of the hydrogen nucleus (T 1 H) (polymeric matrix). The NMR have presented a promising technique in the characterization of the nano charge dispersion in the studied polymeric matrixes.

  3. Microbiological evaluation of sludge during an improvement process applying the washing technique (selective pressure)

    International Nuclear Information System (INIS)

    Molina P, Francisco; Gonzalez, Maria Elena; Gonzalez, Luz Catalina

    2001-01-01

    In this investigation, the microbial consortiums were evaluated by using characterization by trophic groups and related groups by their sensibility to oxygen, as well as the specific methanogenic activity (SMA) of an acclimated sludge, starting from an aerobium sludge corning from a residual water treatment plant. Later, the technique of improvement by washing was applicated to this sludge, getting inoculum for the starting of an anaerobic reactor of the kind UASB (treatment reactor). At the same time, a control reactor was operated, inoculated with acclimated sludge. Both reactors were operated during 120 days, using brown sugar as substrate, the experimental phase included dates up to 70 operation days, characterizing the sludge at the end of this period. The SMA was analysed using acetic and formic acids as substrates. The results showed activities between 0,45 and 1,39 g DQO-CH 4 /SSV -d. for both substrates. At the end of the experimental phase of the UASB reactor, the sulphate reducer bacteria from the acetate and the lactate were observed as predominant group, followed by the methanogenic hydrogenophilic bacteria. It is important to notice that, with the application of the sludge washing technique, all the tropic groups were increased, with the exception of the lactate fermentative bacteria

  4. Enhanced nonlinear iterative techniques applied to a non-equilibrium plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, D.A.; McHugh, P.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-12-31

    We study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially-ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales, and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. We use Newton`s method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. We investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, one-way multigrid and a pseudo-transient continuation technique are used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with Incomplete Lower-Upper(ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a one-way multigrid implementation provides significant CPU savings for fine grid calculations. Performance comparisons of the modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented.

  5. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins.

    Science.gov (United States)

    Lakbub, Jude C; Shipman, Joshua T; Desaire, Heather

    2018-04-01

    Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass

  6. Situational Awareness Applied to Geology Field Mapping using Integration of Semantic Data and Visualization Techniques

    Science.gov (United States)

    Houser, P. I. Q.

    2017-12-01

    21st century earth science is data-intensive, characterized by heterogeneous, sometimes voluminous collections representing phenomena at different scales collected for different purposes and managed in disparate ways. However, much of the earth's surface still requires boots-on-the-ground, in-person fieldwork in order to detect the subtle variations from which humans can infer complex structures and patterns. Nevertheless, field experiences can and should be enabled and enhanced by a variety of emerging technologies. The goal of the proposed research project is to pilot test emerging data integration, semantic and visualization technologies for evaluation of their potential usefulness in the field sciences, particularly in the context of field geology. The proposed project will investigate new techniques for data management and integration enabled by semantic web technologies, along with new techniques for augmented reality that can operate on such integrated data to enable in situ visualization in the field. The research objectives include: Develop new technical infrastructure that applies target technologies to field geology; Test, evaluate, and assess the technical infrastructure in a pilot field site; Evaluate the capabilities of the systems for supporting and augmenting field science; and Assess the generality of the system for implementation in new and different types of field sites. Our hypothesis is that these technologies will enable what we call "field science situational awareness" - a cognitive state formerly attained only through long experience in the field - that is highly desirable but difficult to achieve in time- and resource-limited settings. Expected outcomes include elucidation of how, and in what ways, these technologies are beneficial in the field; enumeration of the steps and requirements to implement these systems; and cost/benefit analyses that evaluate under what conditions the investments of time and resources are advisable to construct

  7. High speed resonant frequency determination applied to field mapping using perturbation techniques

    International Nuclear Information System (INIS)

    Smith, B.H.; Burton, R.J.; Hutcheon, R.M.

    1992-01-01

    Perturbation techniques are commonly used for measuring electric and magnetic field distributions in resonant structures. A field measurement system has been assembled using a Hewlett Packard model 8753C network analyzer interfaced via an HPIB bus to a personal computer to form an accurate, rapid and flexible system for data acquisition, control, and analysis of such measurements. Characterization of long linac structures (up to 3 m) is accomplished in about three minutes, minimizing thermal drift effects. This paper describes the system, its application and its extension to applications such as confirming the presence of weak, off-axis quadrupole fields in an on-axis coupled linac. (Author) 5 figs., 10 refs

  8. Case study: how to apply data mining techniques in a healthcare data warehouse.

    Science.gov (United States)

    Silver, M; Sakata, T; Su, H C; Herman, C; Dolins, S B; O'Shea, M J

    2001-01-01

    Healthcare provider organizations are faced with a rising number of financial pressures. Both administrators and physicians need help analyzing large numbers of clinical and financial data when making decisions. To assist them, Rush-Presbyterian-St. Luke's Medical Center and Hitachi America, Ltd. (HAL), Inc., have partnered to build an enterprise data warehouse and perform a series of case study analyses. This article focuses on one analysis, which was performed by a team of physicians and computer science researchers, using a commercially available on-line analytical processing (OLAP) tool in conjunction with proprietary data mining techniques developed by HAL researchers. The initial objective of the analysis was to discover how to use data mining techniques to make business decisions that can influence cost, revenue, and operational efficiency while maintaining a high level of care. Another objective was to understand how to apply these techniques appropriately and to find a repeatable method for analyzing data and finding business insights. The process used to identify opportunities and effect changes is described.

  9. Development of analytical techniques for studies on dispersion of actinides in the environment and characterization of environmental radioactive particles

    International Nuclear Information System (INIS)

    Jernstroem, J.

    2006-01-01

    Radioactive particles from three locations were investigated for elemental composition, oxidation states of matrix elements, and origin. Instrumental techniques applied to the task were scanning electron microscopy, X-ray and gamma-ray spectrometry, secondary ion mass spectrometry, and synchrotron radiation based microanalytical techniques comprising X-ray fluorescence spectrometry, X-ray fluorescence tomography, and X-ray absorption near-edge structure spectroscopy. Uranium-containing low activity particles collected from Irish Sea sediments were characterized in terms of composition and distribution of matrix elements and the oxidation states of uranium. Indications of the origin were obtained from the intensity ratios and the presence of thorium, uranium, and plutonium. Uranium in the particles was found to exist mostly as U(IV). Studies on plutonium particles from Runit Island (Marshall Islands) soil indicated that the samples were weapon fuel fragments originating from two separate detonations: a safety test and a low-yield test. The plutonium in the particles was found to be of similar age. The distribution and oxidation states of uranium and plutonium in the matrix of weapon fuel particles from Thule (Greenland) sediments were investigated. The variations in intensity ratios observed with different techniques indicated more than one origin. Uranium in particle matrixes was mostly U(IV), but plutonium existed in some particles mainly as Pu(IV), and in others mainly as oxidized Pu(VI). The results demonstrated that the various techniques were effectively applied in the characterization of environmental radioactive particles. An on-line method was developed for separating americium from environmental samples. The procedure utilizes extraction chromatography to separate americium from light lanthanides, and cation exchange to concentrate americium before the final separation in an ion chromatography column. The separated radiochemically pure americium fraction

  10. Development of analytical techniques for studies on dispersion of actinides in the environment and characterization of environmental radioactive particles

    Energy Technology Data Exchange (ETDEWEB)

    Jernstroem, J.

    2006-07-01

    Radioactive particles from three locations were investigated for elemental composition, oxidation states of matrix elements, and origin. Instrumental techniques applied to the task were scanning electron microscopy, X-ray and gamma-ray spectrometry, secondary ion mass spectrometry, and synchrotron radiation based microanalytical techniques comprising X-ray fluorescence spectrometry, X-ray fluorescence tomography, and X-ray absorption near-edge structure spectroscopy. Uranium-containing low activity particles collected from Irish Sea sediments were characterized in terms of composition and distribution of matrix elements and the oxidation states of uranium. Indications of the origin were obtained from the intensity ratios and the presence of thorium, uranium, and plutonium. Uranium in the particles was found to exist mostly as U(IV). Studies on plutonium particles from Runit Island (Marshall Islands) soil indicated that the samples were weapon fuel fragments originating from two separate detonations: a safety test and a low-yield test. The plutonium in the particles was found to be of similar age. The distribution and oxidation states of uranium and plutonium in the matrix of weapon fuel particles from Thule (Greenland) sediments were investigated. The variations in intensity ratios observed with different techniques indicated more than one origin. Uranium in particle matrixes was mostly U(IV), but plutonium existed in some particles mainly as Pu(IV), and in others mainly as oxidized Pu(VI). The results demonstrated that the various techniques were effectively applied in the characterization of environmental radioactive particles. An on-line method was developed for separating americium from environmental samples. The procedure utilizes extraction chromatography to separate americium from light lanthanides, and cation exchange to concentrate americium before the final separation in an ion chromatography column. The separated radiochemically pure americium fraction

  11. X-ray microscopy: An emerging technique for semiconductor microstructure characterization

    International Nuclear Information System (INIS)

    Padmore, H.A.

    1998-05-01

    The advent of third generation synchrotron radiation x-ray sources, such as the Advanced Light Source (ALS) at Berkeley have enabled the practical realization of a wide range of new techniques in which mature chemical or structural probes such as x-ray photoelectron spectroscopy (XPS) and x-ray diffraction are used in conjunction with microfocused x-ray beams. In this paper the characteristics of some of these new microscopes are described, particularly in reference to their applicability to the characterization of semiconductor microstructures

  12. Nuclear analytical techniques applied to the large scale measurements of atmospheric aerosols in the amazon region

    International Nuclear Information System (INIS)

    Gerab, Fabio

    1996-03-01

    This work presents the characterization of the atmosphere aerosol collected in different places of the Amazon Basin. We studied both the biogenic emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burning during the dry season. The samples were collected during a three year period at two different locations in the Amazon, namely the Alta Floresta (MT) and Serra do Navio (AP) regions, using stacked unit filters. These regions represent two different atmospheric compositions: the aerosol is dominated by the forest natural biogenic emission at Serra do Navio, while at Alta Floresta it presents an important contribution from the man-made burning during the dry season. At Alta Floresta we took samples in gold in order to characterize mercury emission to the atmosphere related to the gold prospection activity in Amazon. Airplanes were used for aerosol sampling during the 1992 and 1993 dry seasons to characterize the atmospheric aerosol contents from man-made burning in large Amazonian areas. The samples were analyzed using several nuclear analytic techniques: Particle Induced X-ray Emission for the quantitative analysis of trace elements with atomic number above 11; Particle Induced Gamma-ray Emission for the quantitative analysis of Na; and Proton Microprobe was used for the characterization of individual particles of the aerosol. Reflectancy technique was used in the black carbon quantification, gravimetric analysis to determine the total atmospheric aerosol concentration and Cold Vapor Atomic Absorption Spectroscopy for quantitative analysis of mercury in the particulate from the Alta Floresta gold shops. Ionic chromatography was used to quantify ionic contents of aerosols from the fine mode particulate samples from Serra do Navio. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. (author)

  13. Synchrotron and Simulations Techniques Applied to Problems in Materials Science: Catalysts and Azul Maya Pigments

    International Nuclear Information System (INIS)

    Chianelli, R.

    2005-01-01

    Development of synchrotron techniques for the determination of the structure of disordered, amorphous and surface materials has exploded over the past twenty years due to the increasing availability of high flux synchrotron radiation and the continuing development of increasingly powerful synchrotron techniques. These techniques are available to materials scientists who are not necessarily synchrotron scientists through interaction with effective user communities that exist at synchrotrons such as the Stanford Synchrotron Radiation Laboratory (SSRL). In this article we review the application of multiple synchrotron characterization techniques to two classes of materials defined as ''surface compounds.'' One class of surface compounds are materials like MoS 2-x C x that are widely used petroleum catalysts used to improve the environmental properties of transportation fuels. These compounds may be viewed as ''sulfide supported carbides'' in their catalytically active states. The second class of ''surface compounds'' is the ''Maya Blue'' pigments that are based on technology created by the ancient Maya. These compounds are organic/inorganic ''surface complexes'' consisting of the dye indigo and palygorskite, a common clay. The identification of both surface compounds relies on the application of synchrotron techniques as described in this report

  14. Statistical learning techniques applied to epidemiology: a simulated case-control comparison study with logistic regression

    Directory of Open Access Journals (Sweden)

    Land Walker H

    2011-01-01

    Full Text Available Abstract Background When investigating covariate interactions and group associations with standard regression analyses, the relationship between the response variable and exposure may be difficult to characterize. When the relationship is nonlinear, linear modeling techniques do not capture the nonlinear information content. Statistical learning (SL techniques with kernels are capable of addressing nonlinear problems without making parametric assumptions. However, these techniques do not produce findings relevant for epidemiologic interpretations. A simulated case-control study was used to contrast the information embedding characteristics and separation boundaries produced by a specific SL technique with logistic regression (LR modeling representing a parametric approach. The SL technique was comprised of a kernel mapping in combination with a perceptron neural network. Because the LR model has an important epidemiologic interpretation, the SL method was modified to produce the analogous interpretation and generate odds ratios for comparison. Results The SL approach is capable of generating odds ratios for main effects and risk factor interactions that better capture nonlinear relationships between exposure variables and outcome in comparison with LR. Conclusions The integration of SL methods in epidemiology may improve both the understanding and interpretation of complex exposure/disease relationships.

  15. Discrete classification technique applied to TV advertisements liking recognition system based on low-cost EEG headsets.

    Science.gov (United States)

    Soria Morillo, Luis M; Alvarez-Garcia, Juan A; Gonzalez-Abril, Luis; Ortega Ramírez, Juan A

    2016-07-15

    In this paper a new approach is applied to the area of marketing research. The aim of this paper is to recognize how brain activity responds during the visualization of short video advertisements using discrete classification techniques. By means of low cost electroencephalography devices (EEG), the activation level of some brain regions have been studied while the ads are shown to users. We may wonder about how useful is the use of neuroscience knowledge in marketing, or what could provide neuroscience to marketing sector, or why this approach can improve the accuracy and the final user acceptance compared to other works. By using discrete techniques over EEG frequency bands of a generated dataset, C4.5, ANN and the new recognition system based on Ameva, a discretization algorithm, is applied to obtain the score given by subjects to each TV ad. The proposed technique allows to reach more than 75 % of accuracy, which is an excellent result taking into account the typology of EEG sensors used in this work. Furthermore, the time consumption of the algorithm proposed is reduced up to 30 % compared to other techniques presented in this paper. This bring about a battery lifetime improvement on the devices where the algorithm is running, extending the experience in the ubiquitous context where the new approach has been tested.

  16. Automatic Fault Characterization via Abnormality-Enhanced Classification

    Energy Technology Data Exchange (ETDEWEB)

    Bronevetsky, G; Laguna, I; de Supinski, B R

    2010-12-20

    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help to identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.

  17. Open Photoacoustic Cell Configuration Applied to the Thermal Characterization of Liquid CdS Nanocomposites

    Science.gov (United States)

    Faraji, Nastaran; Mahmood Mat Yunus, W.; Kharazmi, Alireza; Saion, Elias; Behzad, Kasra

    2014-01-01

    CdS nanofluids were prepared by the gamma-radiation method at different radiation doses. The samples were characterized by UV-Vis spectroscopy and transmission electron microscopy. The open cell photoacoustic technique was used to measure the thermal effusivity of the CdS nanocomposites. In this technique a He-Ne laser was used as the excitation source and was operated at 632.8 nm with an output power of 70 mW. The precision and accuracy of this technique were initially established by measuring the thermal effusivity of distilled water and ethylene glycol. The thermal-effusivity values of these two samples were found to be close to the values reported in the literature. The thermal effusivity of CdS nanofluids decreased from (0.453 to 0.268) with increased dosage of gamma radiation.

  18. Mathematical Model and Artificial Intelligent Techniques Applied to a Milk Industry through DSM

    Science.gov (United States)

    Babu, P. Ravi; Divya, V. P. Sree

    2011-08-01

    The resources for electrical energy are depleting and hence the gap between the supply and the demand is continuously increasing. Under such circumstances, the option left is optimal utilization of available energy resources. The main objective of this chapter is to discuss about the Peak load management and overcome the problems associated with it in processing industries such as Milk industry with the help of DSM techniques. The chapter presents a generalized mathematical model for minimizing the total operating cost of the industry subject to the constraints. The work presented in this chapter also deals with the results of application of Neural Network, Fuzzy Logic and Demand Side Management (DSM) techniques applied to a medium scale milk industrial consumer in India to achieve the improvement in load factor, reduction in Maximum Demand (MD) and also the consumer gets saving in the energy bill.

  19. Proposal of requirements for performance in Brazil for systems of external individual monitoring for neutrons applying the TLD-albedo technique; Proposta de requisitos de desempenho no Brasil para sistemas de monitoracao individual externa para neutrons empregando a tecnica TLD-albedo

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marcelo M.; Mauricio, Claudia L.P.; Pereira, Walsan W.; Fonseca, Evaldo S. da, E-mail: marcelo@ird.gov.b, E-mail: claudia@ird.gov.b, E-mail: walsan@ird.gov.b, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Silva, Ademir X., E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil).

    2009-07-01

    This work presents a criteria and conditions proposal for the regulations in Brazil of individual monitoring systems for neutrons applying the albedo technique with thermoluminescent detectors. Tests are proposed for the characterization performance of the system based on the Regulation ISO 21909 and on the experience of the authors

  20. Eddy current techniques for super duplex stainless steel characterization

    Science.gov (United States)

    Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.

    2015-08-01

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.

  1. Formation and characterization of vitreous materials prepared by the sol-gel technique

    International Nuclear Information System (INIS)

    Martinez, J.R.; Ruiz, J.F.; Cruz M, J.A. de la; Villasenor G, P.

    1999-01-01

    A full process of preparation and characterization of silica gel, which can be implemented in a experimental course for undergraduate laboratories is presented. Samples of silica gel and sol-gel derived SiO 2 films on glass substrates were fabricated and characterized using atomic force microscopy, Raman and Infrared absorption techniques. Raman and Infrared spectroscopy were used to analyze the local structure. The microstructure characteristics of the films, fabricated by dip-coating, were monitored using atomic force microscopy. The samples were prepared from alcoholic solutions of tetraethylortosilicate (TEOS) keeping the H 2 O/TEOS and Et-OH/TEOS molar ratios constant and equal to 11.66 and 4 respectively. (Author)

  2. Applying Data Mining Techniques to Improve Information Security in the Cloud: A Single Cache System Approach

    OpenAIRE

    Amany AlShawi

    2016-01-01

    Presently, the popularity of cloud computing is gradually increasing day by day. The purpose of this research was to enhance the security of the cloud using techniques such as data mining with specific reference to the single cache system. From the findings of the research, it was observed that the security in the cloud could be enhanced with the single cache system. For future purposes, an Apriori algorithm can be applied to the single cache system. This can be applied by all cloud providers...

  3. Non destructive assay techniques applied to nuclear materials

    International Nuclear Information System (INIS)

    Gavron, A.

    2001-01-01

    Nondestructive assay is a suite of techniques that has matured and become precise, easily implementable, and remotely usable. These techniques provide elaborate safeguards of nuclear material by providing the necessary information for materials accounting. NDA techniques are ubiquitous, reliable, essentially tamper proof, and simple to use. They make the world a safer place to live in, and they make nuclear energy viable. (author)

  4. Effect of the reinforcement bar arrangement on the efficiency of electrochemical chloride removal technique applied to reinforced concrete structures

    International Nuclear Information System (INIS)

    Garces, P.; Sanchez de Rojas, M.J.; Climent, M.A.

    2006-01-01

    This paper reports on the research done to find out the effect that different bar arrangements may have on the efficiency of the electrochemical chloride removal (ECR) technique when applied to a reinforced concrete structural member. Five different types of bar arrangements were considered, corresponding to typical structural members such as columns (with single and double bar reinforcing), slabs, beams and footings. ECR was applied in several steps. We observe that the extraction efficiency depends on the reinforcing bar arrangement. A uniform layer set-up favours chloride extraction. Electrochemical techniques were also used to estimate the reinforcing bar corrosion states, as well as measure the corrosion potential, and instant corrosion rate based on the polarization resistance technique. After ECR treatment, a reduction in the corrosion levels is observed falling short of the depassivation threshold

  5. Motion Capture Technique Applied Research in Sports Technique Diagnosis

    Directory of Open Access Journals (Sweden)

    Zhiwu LIU

    2014-09-01

    Full Text Available The motion capture technology system definition is described in the paper, and its components are researched, the key parameters are obtained from motion technique, the quantitative analysis are made on technical movements, the method of motion capture technology is proposed in sport technical diagnosis. That motion capture step includes calibration system, to attached landmarks to the tester; to capture trajectory, and to analyze the collected data.

  6. Role of thermo-analytical techniques in compositional characterization of nuclear materials

    International Nuclear Information System (INIS)

    Raje, Naina

    2015-01-01

    The study of heat effects on different materials has a long history. Extraction of metals from the ores, pottery production, glasses making etc. are the examples, where the performance of products obtained from raw materials depends on the processing temperatures. Concrete, pottery, bricks etc., are severely damaged due to uncontrolled high temperatures. Therefore, the heating of raw materials in controlled manner is of pivotal importance to get products of the desired quality. Thermo-analytical techniques provide the information on the effect of heat under controlled heating conditions. In thermo-analytical techniques, physical properties of materials are measured as a function of temperature. Simultaneous thermo-analytical techniques are beneficial in comparison to any single thermo-analytical technique. Simultaneous techniques refer to the measurement of two or more signals on the same sample at the same time in the same instrument. Nowadays, simultaneous thermo-analytical technique are extensively in use for the analysis of materials. Ammonium diuranate (ADU) and magnesium diuranate (MDU), also known as yellowcake, are intermediate precursors in fuel fabrication process, with stringent specifications along with the need to understand its thermal behavior. In the processing of lowgrade ores, higher levels of impurities are being encountered in the leach solution that affects the properties of ADU/MDU. In order to meet the fuel specifications, quality assurance of these nuclear materials is essential. Current studies describe the application of simultaneous Thermogravimetry (TG) - differential thermal analysis (DTA) - evolved gas analysis (EGA) techniques for the compositional characterization of ADU/MDU with respect to the impurities present in the matrices

  7. SINP MSU accelerator facility and applied research

    International Nuclear Information System (INIS)

    Chechenin, N.G.; Ishkhanov, B.S.; Kulikauskas, V.S.; Novikov, L.S.; Pokhil, G.P.; Romanovskii, E.A.; Shvedunov, V.I.; Spasskii, A.V.

    2004-01-01

    Full text: SINP accelerator facility includes 120 cm cyclotron, electrostatic generator with the upper voltage 3.0 MeV, electrostatic generator with the upper voltage 2.5 MeV, Cocroft -Walton generator with the upper voltage 500 keV, 150 keV accelerator for solid microparticles. A new generation of electron beam accelerators has been developed during the last decade. The SINP accelerator facility will be shortly described in the report. A wide range of basic research in nuclear and atomic physics, physics of ion-beam interactions with condensed matter is currently carried out. SINP activity in the applied research is concentrated in the following areas of materials science: - Materials diagnostics with the Rutherford backscattering techniques (RBS) and channeling of ions (RBS/C). A large number of surface ad-layers and multilayer systems for advanced micro- and nano-electronic technology have been investigated. A selected series of examples will be illustrated. - Concentration depth profiles of hydrogen by the elastic recoils detection techniques (ERD). Primarily, the hydrogen depth profiles in perspective materials for thermonuclear reactors have been investigated. - Lattice site locations of hydrogen by a combination of ERD and channeling techniques. This is a new technique which was successfully applied for investigation of hydrogen and hydrogen-defect complexes in silicon for the smart-cut technology. - Light element diagnostics by RBS and nuclear backscattering techniques (NBS). The technique is illustrated by applications for nitrogen concentration profiling in steels. Nitrogen take-up and release, nitrides precipitate formation will be illustrated. - New medium energy ion scattering (MEIS) facility and applications. Ultra-high vacuum and superior energy resolution electrostatic toroidal analyzer is designed to be applied for characterization of composition and structure of several upper atomic layers of materials

  8. Secondary side photographic techniques used in characterization of Surry steam generator

    International Nuclear Information System (INIS)

    Sinclair, R.B.

    1984-10-01

    Characterization of the generator's secondary side prior to destructive removal of tubing presents a significant challenge. Information must be obtained in a radioactive field (up to 15 R/h) throughout the tightly spaced bundle of steam generator tubes. This report discusses the various techniques employed, along with their respective advantages and disadvantages. The most successful approach to nondestructive secondary side characterization and documentation was through use of in-house developed pinhole cameras. These devices provided accurate photographic documentation of generator condition. They could be fabricated in geometries allowing access to all parts of the generator. Semi-remote operation coupled with large area coverage per investigation and short at-location times resulted in significant personnel exposure advantages. The fabrication and use of pinhole cameras for remote inspection is discussed in detail

  9. Thermal property characterization of fine fibers by the 3-omega technique

    International Nuclear Information System (INIS)

    Xing, Changhu; Jensen, Colby; Munro, Troy; White, Benjamin; Ban, Heng; Chirtoc, Mihai

    2014-01-01

    The 3 omega method is one of few reliable measurement techniques for thermal characterization of micro to nanoscale suspended wires or fibers and has been applied for measurements of carbon nanotubes and silicon nanowires. However, the models described in the past were either complicated for analysis or simplified from a more complete solution. In addition, the past models cannot be implemented directly when using a more reliable measurement configuration with a Wheatstone bridge. In this work, a simpler, explicit model, is developed to describe the heat transfer process through a suspended wire for measurement of its thermal properties. Generic trends and values of the 3ω harmonic voltage amplitude and phase responses clearly indicate the frequency limits for thermal conductivity and heat capacity determination and ideal conditions for thermal diffusivity estimation. Based on a sensitivity analysis, these limits are confirmed and appropriate frequency ranges for thermal conductivity and diffusivity are recommended. Radiation influence on the measurement results is quantified and correlated to a dimensionless radiation parameter. Two methods are presented to determine sample thermal properties independent of lateral heat losses and validated by numerical experiments using COMSOL. Uncertainty analysis was also derived by Taylor series expansion with calculated parameter sensitivities. - Highlights: • An improved model for suspended wire 3 omega measurement. • Quantification on the radiation induced measurement error. • Numerical simulation validating the improved model. • Sensitivity analysis to find measurement range minimizing uncertainty

  10. Applying decision-making techniques to Civil Engineering Projects

    Directory of Open Access Journals (Sweden)

    Fam F. Abdel-malak

    2017-12-01

    Full Text Available Multi-Criteria Decision-Making (MCDM techniques are found to be useful tools in project managers’ hands to overcome decision-making (DM problems in Civil Engineering Projects (CEPs. The main contribution of this paper includes selecting and studying the popular MCDM techniques that uses different and wide ranges of data types in CEPs. A detailed study including advantages and pitfalls of using the Analytic Hierarchy Process (AHP and Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (Fuzzy TOPSIS is introduced. Those two techniques are selected for the purpose of forming a package that covers most available data types in CEPs. The results indicated that AHP has a structure which simplifies complicated problems, while Fuzzy TOPSIS uses the advantages of linguistic variables to solve the issue of undocumented data and ill-defined problems. Furthermore, AHP is a simple technique that depends on pairwise comparisons of factors and natural attributes, beside it is preferable for widely spread hierarchies. On the other hand, Fuzzy TOPSIS needs more information but works well for the one-tier decision tree as well as it shows more flexibility to work in fuzzy environments. The two techniques have the facility to be integrated and combined in a new module to support most of the decisions required in CEPs. Keywords: Decision-making, AHP, Fuzzy TOPSIS, CBA, Civil Engineering Projects

  11. A new technique of characterization of intrapixel response dedicated to astronomical detectors

    International Nuclear Information System (INIS)

    Ketchazo, C.; Viale, T.; Boulade, O.; Druart, G.; Moreau, V.; Mugnier, L.; Dubrueil, D.; Derelle, S.; Ronayette, S.; Guérineau, N.; Berthé, M.

    2015-01-01

    This paper is devoted to the presentation of a new technique of characterization of the intra-pixel sensitivity variations (IPSVs) of astronomical detectors. The IPSV is the spatial variation of the pixel response function (PRF). In the case of under-sampled instruments for high quality imaging and accurate photometry, IPSV can contribute to the instrument global error and it should be considered carefully. Our measurement technique is based in the Fourier transform (FT) approach. It consists into the sampling of the pixel transfer function (PTF) by projecting high-resolution periodic patterns onto the whole sensor without classic optics but using the self-imaging property (the Talbot effect) of a continuously self imaging grating (CSIG) illuminated by a plane wave. The PRF is determined by computing the inverse FT. Our measurement technique permits to determine the PRF with a resolution of pixel/10 (10 times Nyquist frequency)

  12. Applying Nonverbal Techniques to Organizational Diagnosis.

    Science.gov (United States)

    Tubbs, Stewart L.; Koske, W. Cary

    Ongoing research programs conducted at General Motors Institute are motivated by the practical objective of improving the company's organizational effectiveness. Computer technology is being used whenever possible; for example, a technique developed by Herman Chernoff was used to process data from a survey of employee attitudes into 18 different…

  13. Software engineering techniques applied to agricultural systems an object-oriented and UML approach

    CERN Document Server

    Papajorgji, Petraq J

    2014-01-01

    Software Engineering Techniques Applied to Agricultural Systems presents cutting-edge software engineering techniques for designing and implementing better agricultural software systems based on the object-oriented paradigm and the Unified Modeling Language (UML). The focus is on the presentation of  rigorous step-by-step approaches for modeling flexible agricultural and environmental systems, starting with a conceptual diagram representing elements of the system and their relationships. Furthermore, diagrams such as sequential and collaboration diagrams are used to explain the dynamic and static aspects of the software system.    This second edition includes: a new chapter on Object Constraint Language (OCL), a new section dedicated to the Model-VIEW-Controller (MVC) design pattern, new chapters presenting details of two MDA-based tools – the Virtual Enterprise and Olivia Nova, and a new chapter with exercises on conceptual modeling.  It may be highly useful to undergraduate and graduate students as t...

  14. Electric characterization of GaAs deposited on porous silicon by electrodeposition technique

    International Nuclear Information System (INIS)

    Lajnef, M.; Chtourou, R.; Ezzaouia, H.

    2010-01-01

    GaAs thin films were synthesized on porous Si substrate by the electrodeposition technique. The X-ray diffraction studies showed that the as-grown films were crystallised in mixed phase nature orthorhombic and cubic of GaAs. The GaAs film was then electrically characterized using current-voltage (I-V) and capacitance-voltage (C-V) techniques by the way of Al/GaAs Schottky junctions. The electric analysis allowed us to determine the n factor and the barrier height φ b0 parameters of Al/GaAs Schottky junctions. The (C-V) characteristics were recorded at frequency signal 1 MHz in order to identify the effect of the surface states on the behaviour of the capacitance of the device.

  15. Optical Particle Characterization in Flows

    Science.gov (United States)

    Tropea, Cameron

    2011-01-01

    Particle characterization in dispersed multiphase flows is important in quantifying transport processes both in fundamental and applied research: Examples include atomization and spray processes, cavitation and bubbly flows, and solid particle transport in gas and liquid carrier phases. Optical techniques of particle characterization are preferred owing to their nonintrusiveness, and they can yield information about size, velocity, composition, and to some extent the shape of individual particles. This review focuses on recent advances for measuring size, temperature, and the composition of particles, including several planar methods, various imaging techniques, laser-induced fluorescence, and the more recent use of femtosecond pulsed light sources. It emphasizes the main sources of uncertainty, the achievable accuracy, and the outlook for improvement of specific techniques and for specific applications. Some remarks are also directed toward the computational tools used to design and investigate the performance of optical particle diagnostic instruments.

  16. Self-cleaning Foliar Surfaces Characterization using RIMAPS Technique and Variogram Method

    International Nuclear Information System (INIS)

    Rosi, Pablo E.

    2002-01-01

    Along the last ten years many important studies about characterization of self-cleaning foliar surfaces have been done and focused new interest on this kind of surfaces.These studies were possible due to the development of a novel preparation technique for this biological material that let us observe the delicate structures of a foliar surface under scanning electron microscope (S.E.M.).This technique consists of replacing the natural water of the specimen by glycerol. Digital S.E.M. images from both self-cleaning and non-self-cleaning foliar surfaces were obtained and analyzed using RIMAPS technique and Variograms method. Our results revealed the existence of a common and exclusive geometrical pattern that is found in species which present self-cleaning foliar surfaces.This pattern combines at least nine different directions.The results from the Variograms method showed that the stomata play a key role in the determination of foliar surface roughness. In addition, spectra from RIMAPS technique constitute a fingerprint of a foliar surface so they can be used to find evolutionary relationships among species.Further studies will provide more detailed information to fully elucidate the self-cleaning pattern, so it might be possible to reproduce it on an artificial surface and make it self-cleaning

  17. Burnout prediction using advance image analysis coal characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Edward Lester; Dave Watts; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental and Mining Engineering

    2003-07-01

    The link between petrographic composition and burnout has been investigated previously by the authors. However, these predictions were based on 'bulk' properties of the coal, including the proportion of each maceral or the reflectance of the macerals in the whole sample. Combustion studies relating burnout with microlithotype analysis, or similar, remain less common partly because the technique is more complex than maceral analysis. Despite this, it is likely that any burnout prediction based on petrographic characteristics will become more accurate if it includes information about the maceral associations and the size of each particle. Chars from 13 coals, 106-125 micron size fractions, were prepared using a Drop Tube Furnace (DTF) at 1300{degree}C and 200 millisecond and 1% Oxygen. These chars were then refired in the DTF at 1300{degree}C 5% oxygen and residence times of 200, 400 and 600 milliseconds. The progressive burnout of each char was compared with the characteristics of the initial coals. This paper presents an extension of previous studies in that it relates combustion behaviour to coals that have been characterized on a particle by particle basis using advanced image analysis techniques. 13 refs., 7 figs.

  18. APPLYING ARTIFICIAL INTELLIGENCE TECHNIQUES TO HUMAN-COMPUTER INTERFACES

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1988-01-01

    A description is given of UIMS (User Interface Management System), a system using a variety of artificial intelligence techniques to build knowledge-based user interfaces combining functionality and information from a variety of computer systems that maintain, test, and configure customer telephone...... and data networks. Three artificial intelligence (AI) techniques used in UIMS are discussed, namely, frame representation, object-oriented programming languages, and rule-based systems. The UIMS architecture is presented, and the structure of the UIMS is explained in terms of the AI techniques....

  19. Machine learning techniques applied to system characterization and equalization

    DEFF Research Database (Denmark)

    Zibar, Darko; Thrane, Jakob; Wass, Jesper

    2016-01-01

    Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals.......Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals....

  20. Characterization of ceramics and semiconductors using nuclear techniques. Final report of a co-ordinated research project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    With the aim of promoting research and facilitating more extensive application of nuclear techniques for material development, the IAEA established in 1994 a Co-ordinated Research Project (CRP) on Characterization of Ceramics and Semiconductors using Nuclear Techniques. This publication reviews and summarizes recent developments in this field and includes an assessment of the current status and trends in nuclear techniques in characterization of inorganic materials of technological importance. The TECDOC presents new achievements on ceramic superconductor behaviour under neutron induced defects, optimization of structure of mineral gels,m low temperature preparation of fine particles of ferrites, crystal luminescence of ceramic composites with improved plastic properties, thin film defects and detoxification of asbestos. The investigation of chemical composition, phase transitions and magnetic properties of ferrites by Moessbauer spectroscopy is largely developed. The document includes 18 individual contributions, each of them has been indexed and provided with an abstract Refs, figs, tabs

  1. Characterization of ceramics and semiconductors using nuclear techniques. Final report of a co-ordinated research project

    International Nuclear Information System (INIS)

    1999-03-01

    With the aim of promoting research and facilitating more extensive application of nuclear techniques for material development, the IAEA established in 1994 a Co-ordinated Research Project (CRP) on Characterization of Ceramics and Semiconductors using Nuclear Techniques. This publication reviews and summarizes recent developments in this field and includes an assessment of the current status and trends in nuclear techniques in characterization of inorganic materials of technological importance. The TECDOC presents new achievements on ceramic superconductor behaviour under neutron induced defects, optimization of structure of mineral gels,m low temperature preparation of fine particles of ferrites, crystal luminescence of ceramic composites with improved plastic properties, thin film defects and detoxification of asbestos. The investigation of chemical composition, phase transitions and magnetic properties of ferrites by Moessbauer spectroscopy is largely developed. The document includes 18 individual contributions, each of them has been indexed and provided with an abstract

  2. Applying squeezing technique to clay-rocks: lessons learned from ten years experiments at Mont Terri

    International Nuclear Information System (INIS)

    Fernandez, A. M.; Melon, A.; Sanchez-Ledesma, D.M.; Tournassat, C.; Gaucher, E.; Astudillo, J.; Vinsot, A.

    2012-01-01

    Document available in extended abstract form only. Argillaceous formations of low permeability are considered in several countries as potential host rocks for the disposal of high level radioactive wastes (HLRW). In order to determine their suitability for waste disposal, evaluations of the hydro-geochemistry and transport mechanisms from such geologic formations to the biosphere must be undertaken. The migration of radionuclides through the geosphere will occur predominantly in the aqueous phase, and hence the pore water chemistry plays an important role in determining ion diffusion characteristics in argillaceous formations. Consequently, a great effort has been made to characterise the pore water chemistry in clay-rocks formations. In the last 10 years various techniques were developed for determining pore water composition of clay-rocks including both direct and indirect methods: 1) In situ pore water sampling (water and gas) from sealed boreholes (Pearson et al., 2003; Vinsot et al. 2008); 2) Laboratory pore water sampling from unaltered core samples by the squeezing technique at high pressures (Fernandez et al., 2009); and 3) Characterization of the water chemistry by geochemical modelling (Gaucher et al. 2009). Pore water chemistry in clay-rocks and extraction techniques were documented and reviewed in different studies (Sacchi et al., 2001). Recovering pristine pore water from low permeable and low water content systems is very difficult and sometimes impossible. Besides, uncertainties are associated to each method used for the pore water characterization. In this paper, a review about the high pressure squeezing technique applied to indurate clay-rocks was performed. For this purpose, the experimental work on Opalinus Clay at the Mont Terri Research Laboratory during the last ten years was evaluated. A complete discussion was made about different issues such as: a) why is necessary to obtain the pore water by squeezing in the context of radioactive waste

  3. Characterization-Based Molecular Design of Biofuel Additives Using Chemometric and Property Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Subin eHada

    2014-06-01

    Full Text Available In this work, multivariate characterization data such as infrared (IR spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis (PCA allowed capturing important features of the molecular architecture from complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods (GCM based on characterization data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.

  4. Recent developments and evaluation of selected geochemical techniques applied to uranium exploration

    International Nuclear Information System (INIS)

    Wenrich-Verbeek, K.J.; Cadigan, R.A.; Felmlee, J.K.; Reimer, G.M.; Spirakis, C.S.

    1976-01-01

    Various geochemical techniques for uranium exploration are currently under study by the geochemical techniques team of the Branch of Uranium and Thorium Resources, US Geological Survey. Radium-226 and its parent uranium-238 occur in mineral spring water largely independently of the geochemistry of the solutions and thus are potential indicators of uranium in source rocks. Many radioactive springs, hot or cold, are believed to be related to hydrothermal systems which contain uranium at depth. Radium, when present in the water, is co-precipitated in iron and/or manganese oxides and hydroxides or in barium sulphate associated with calcium carbonate spring deposits. Studies of surface water samples have resulted in improved standardized sample treatment and collection procedures. Stream discharge has been shown to have a significant effect on uranium concentration, while conductivity shows promise as a ''pathfinder'' for uranium. Turbid samples behave differently and consequently must be treated with more caution than samples from clear streams. Both water and stream sediments should be sampled concurrently, as anomalous uranium concentrations may occur in only one of these media and would be overlooked if only one, the wrong one, were analysed. The fission-track technique has been applied to uranium determinations in the above water studies. The advantages of the designed sample collecting system are that only a small quantity, typically one drop, of water is required and sample manipulation is minimized, thereby reducing contamination risks. The fission-track analytical technique is effective at the uranium concentration levels commonly found in natural waters (5.0-0.01 μg/litre). Landsat data were used to detect alteration associated with uranium deposits. Altered areas were detected but were not uniquely defined. Nevertheless, computer processing of Landsat data did suggest a smaller size target for further evaluation and thus is useful as an exploration tool

  5. NEW TECHNIQUES APPLIED IN ECONOMICS. ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Constantin Ilie

    2009-05-01

    Full Text Available The present paper has the objective to inform the public regarding the use of new techniques for the modeling, simulate and forecast of system from different field of activity. One of those techniques is Artificial Neural Network, one of the artificial in

  6. Characterization of kidney stones using NAA and other techniques

    International Nuclear Information System (INIS)

    Srivastava, A.; Bhardwaj, S.; Vashisht, B.; Swain, K.K.; Ajith, Nicy; Chavan, T.; Wagh, D.N.; Reddy, A.V.R.; Mete, U.; Acharya, R.

    2014-01-01

    Six kidney stone samples were collected from patients treated in the Advance Urology Centre of PGIMER, Chandigarh. The samples were characterized using neutron activation analysis (NAA), Energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. For NAA, samples were irradiated in Tray rod facility of Dhruva reactor, Mumbai. Radioactive assay was carried out using high purity germanium detector coupled to 8k channel analyzer. The elements determined in the samples by NAA are Zn, Sr, Co, Fe, Cr, Sc, Se and Th. ED-XRF was used for quantification of Ca. The concentrations of trace elements like Zn, Sr, Fe and Cr were found to be lower in uric acid composite stones as compared to calcium based stones. (author)

  7. Current Methods Applied to Biomaterials - Characterization Approaches, Safety Assessment and Biological International Standards.

    Science.gov (United States)

    Oliveira, Justine P R; Ortiz, H Ivan Melendez; Bucio, Emilio; Alves, Patricia Terra; Lima, Mayara Ingrid Sousa; Goulart, Luiz Ricardo; Mathor, Monica B; Varca, Gustavo H C; Lugao, Ademar B

    2018-04-10

    Safety and biocompatibility assessment of biomaterials are themes of constant concern as advanced materials enter the market as well as products manufactured by new techniques emerge. Within this context, this review provides an up-to-date approach on current methods for the characterization and safety assessment of biomaterials and biomedical devices from a physicalchemical to a biological perspective, including a description of the alternative methods in accordance with current and established international standards. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Advanced analytical techniques for boiling water reactor chemistry control

    Energy Technology Data Exchange (ETDEWEB)

    Alder, H P; Schenker, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-02-01

    The analytical techniques applied can be divided into 5 classes: OFF-LINE (discontinuous, central lab), AT-LINE (discontinuous, analysis near loop), ON-LINE (continuous, analysis in bypass). In all cases pressure and temperature of the water sample are reduced. In a strict sense only IN-LINE (continuous, flow disturbance) and NON-INVASIVE (continuous, no flow disturbance) techniques are suitable for direct process control; - the ultimate goal. An overview of the analytical techniques tested in the pilot loop is given. Apart from process and overall water quality control, standard for BWR operation, the main emphasis is on water impurity characterization (crud particles, hot filtration, organic carbon); on stress corrosion crackling control for materials (corrosion potential, oxygen concentration) and on the characterization of the oxide layer on austenites (impedance spectroscopy, IR-reflection). The above mentioned examples of advanced analytical techniques have the potential of in-line or non-invasive application. They are different stages of development and are described in more detail. 28 refs, 1 fig., 5 tabs.

  9. Detection of corrosion by radiographic techniques

    International Nuclear Information System (INIS)

    Ahmad, M.; Ashraf, M.M.; Khurshid, U.

    2004-01-01

    Radiation processing technologies are playing an increasing role during manufacturing and subsequent use of everyday products. These technologies are now well established and are extensively practiced in industries, to ensure quality and safety of machinery. Corrosion reduces the operational life of the component, its efficiency and helps generate waste. There is an increasing need to detect and characterize the formation of corrosion in industrial components and assemblies at an early stage. Radiation methods and techniques are applied worldwide to examine defects and corrosion-formation in industrial components. For safety and economic reason, appropriate monitoring of the machinery and industrial components would help reduce accidental risks during operation and avoid production-losses. In the present study, X-ray and neutron-radiography techniques were applied for the inspection and evaluation of corrosion in metallic samples for thickness values of the order of 5 mm or less. Relative contrast at various degrees of metal corrosion product loss was computed theoretical and also measured experimentally by applying radiographic techniques. The relative contrast-sensitivity was also measured in two different ways by X-ray and neutron radiography, to compare the visibility of coarse and fine features. Thick metallic areas, free from sealant and variable paint thickness, were imaged with thermal neutrons beam. Low KV X-rays were also applied for imaging corrosion in metallic components. To optimize exposure-time at low KV in X-ray radiography, a medical film/screen combination was used. X-ray radiography approved to be the more promising technique for imaging of corrosion, as compared to neutron radiography. (author)

  10. Characterization-Based Molecular Design of Bio-Fuel Additives Using Chemometric and Property Clustering Techniques

    International Nuclear Information System (INIS)

    Hada, Subin; Solvason, Charles C.; Eden, Mario R.

    2014-01-01

    In this work, multivariate characterization data such as infrared spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis allowed capturing important features of the molecular architecture from enormous amount of complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods based on characterization (cGCM) data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive, which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.

  11. Characterization-Based Molecular Design of Bio-Fuel Additives Using Chemometric and Property Clustering Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Subin; Solvason, Charles C.; Eden, Mario R., E-mail: edenmar@auburn.edu [Department of Chemical Engineering, Auburn University, Auburn, AL (United States)

    2014-06-10

    In this work, multivariate characterization data such as infrared spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis allowed capturing important features of the molecular architecture from enormous amount of complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods based on characterization (cGCM) data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive, which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.

  12. Application of an eddy current technique to steam generator U-bend characterization. Final report

    International Nuclear Information System (INIS)

    Cramer, W.E.; de la Pintiere, L.; Narita, S.; Bergander, M.J.

    1982-04-01

    Eddy current nondestructive testing techniques are used widely throughout the utility industry for the early detection of tube damage in critical power plant components such as steam generators. In this project, the application of an eddy current technique for the characterization of U-bend transitions in the first row tubing in Westinghouse 51 Series Steam Generators has been investigated. A method has been developed for detection of the opposite transition in the U-bend and for defining its severity. Investigation included two different types of U-bend transitions. Using the developed eddy current method for U-bend characterization, on-site inspection was performed on all tubes in the first row in four 51 Series steam generators in Power Plant Unit No. 2 and in one 51 Series steam generator in Power Plant Unit No. 1. The advantages and limitations of the developed method as well as the recommendations for further investigations are included

  13. Experiments in atomic and applied physics using synchrotron radiation

    International Nuclear Information System (INIS)

    Jones, K.W.

    1987-01-01

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs

  14. Rare event techniques applied in the Rasmussen study

    International Nuclear Information System (INIS)

    Vesely, W.E.

    1977-01-01

    The Rasmussen Study estimated public risks from commercial nuclear power plant accidents, and therefore the statistics of rare events had to be treated. Two types of rare events were specifically handled, those rare events which were probabilistically rare events and those which were statistically rare events. Four techniques were used to estimate probabilities of rare events. These techniques were aggregating data samples, discretizing ''continuous'' events, extrapolating from minor to catastrophic severities, and decomposing events using event trees and fault trees. In aggregating or combining data the goal was to enlarge the data sample so that the rare event was no longer rare, i.e., so that the enlarged data sample contained one or more occurrences of the event of interest. This aggregation gave rise to random variable treatments of failure rates, occurrence frequencies, and other characteristics estimated from data. This random variable treatment can be interpreted as being comparable to an empirical Bayes technique or a Bayesian technique. In the discretizing event technique, events of a detailed nature were grouped together into a grosser event for purposes of analysis as well as for data collection. The treatment of data characteristics as random variables helped to account for the uncertainties arising from this discretizing. In the severity extrapolation technique a severity variable was associated with each event occurrence for the purpose of predicting probabilities of catastrophic occurrences. Tail behaviors of distributions therefore needed to be considered. Finally, event trees and fault trees were used to express accident occurrences and system failures in terms of more basic events for which data existed. Common mode failures and general dependencies therefore needed to be treated. 2 figures

  15. Electric characterization of GaAs deposited on porous silicon by electrodeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lajnef, M., E-mail: Mohamed.lajnef@yahoo.fr [Laboratoire de Photovoltaique et de Semi-conducteurs, Centre de Recherche et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia); Chtourou, R.; Ezzaouia, H. [Laboratoire de Photovoltaique et de Semi-conducteurs, Centre de Recherche et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)

    2010-03-01

    GaAs thin films were synthesized on porous Si substrate by the electrodeposition technique. The X-ray diffraction studies showed that the as-grown films were crystallised in mixed phase nature orthorhombic and cubic of GaAs. The GaAs film was then electrically characterized using current-voltage (I-V) and capacitance-voltage (C-V) techniques by the way of Al/GaAs Schottky junctions. The electric analysis allowed us to determine the n factor and the barrier height {phi}{sub b0} parameters of Al/GaAs Schottky junctions. The (C-V) characteristics were recorded at frequency signal 1 MHz in order to identify the effect of the surface states on the behaviour of the capacitance of the device.

  16. Characterization of ultrashort laser pulses employing self-phase modulation dispersion-scan technique

    Science.gov (United States)

    Sharba, A. B.; Chekhlov, O.; Wyatt, A. S.; Pattathil, R.; Borghesi, M.; Sarri, G.

    2018-03-01

    We present a new phase characterization technique for ultrashort laser pulses that employs self-phase modulation (SPM) in the dispersion scan approach. The method can be implemented by recording a set of nonlinearly modulated spectra generated with a set of known chirp values. The unknown phase of the pulse is retrieved by linking the recorded spectra to the initial spectrum of the pulse via a phase function guessed by a function minimization iterative algorithm. This technique has many advantages over the dispersion scan techniques that use frequency conversion processes. Mainly, the use of SPM cancels out the phase and group velocity mismatch errors and dramatically widens the spectral acceptance of the nonlinear medium and the range of working wavelength. The robustness of the technique is demonstrated with smooth and complex phase retrievals using numerical examples. The method is shown to be not affected by the spatial distribution of the beam or the presence of nonlinear absorption process. In addition, we present an efficient method for phase representation based on a summation of a set of Gaussian functions. The independence of the functions from each other prevents phase coupling of any kind and facilitates a flexible phase representation.

  17. A Simplified Analytical Technique for High Frequency Characterization of Resonant Tunneling Diode

    Directory of Open Access Journals (Sweden)

    DESSOUKI, A. A. S.

    2014-11-01

    Full Text Available his paper proposes a simplified analytical technique for high frequency characterization of the resonant tunneling diode (RTD. An equivalent circuit of the RTD that consists of a parallel combination of conductance, G (V, f, and capacitance, C (V, f is formulated. The proposed approach uses the measured DC current versus voltage characteristic of the RTD to extract the equivalent circuit elements parameters in the entire bias range. Using the proposed analytical technique, the frequency response - including the high frequency range - of many characteristic aspects of the RTD is investigated. Also, the maximum oscillation frequency of the RTD is calculated. The results obtained have been compared with those concluded and reported in the literature. The reported results in literature were obtained through simulation of the RTD at high frequency using either a computationally complicated quantum simulator or through difficult RF measurements. A similar pattern of results and highly concordant conclusion are obtained. The proposed analytical technique is simple, correct, and appropriate to investigate the behavior of the RTD at high frequency. In addition, the proposed technique can be easily incorporated into SPICE program to simulate circuits containing RTD.

  18. Time-series-analysis techniques applied to nuclear-material accounting

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.; Downing, D.J.

    1982-05-01

    This document is designed to introduce the reader to the applications of Time Series Analysis techniques to Nuclear Material Accountability data. Time series analysis techniques are designed to extract information from a collection of random variables ordered by time by seeking to identify any trends, patterns, or other structure in the series. Since nuclear material accountability data is a time series, one can extract more information using time series analysis techniques than by using other statistical techniques. Specifically, the objective of this document is to examine the applicability of time series analysis techniques to enhance loss detection of special nuclear materials. An introductory section examines the current industry approach which utilizes inventory differences. The error structure of inventory differences is presented. Time series analysis techniques discussed include the Shewhart Control Chart, the Cumulative Summation of Inventory Differences Statistics (CUSUM) and the Kalman Filter and Linear Smoother

  19. Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study

    Science.gov (United States)

    Motzkus, C.; Macé, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A.; Dirscherl, K.; Hodoroaba, V.-D.; Popov, I.; Popov, O.; Kuselman, I.; Takahata, K.; Ehara, K.; Ausset, P.; Maillé, M.; Michielsen, N.; Bondiguel, S.; Gensdarmes, F.; Morawska, L.; Johnson, G. R.; Faghihi, E. M.; Kim, C. S.; Kim, Y. H.; Chu, M. C.; Guardado, J. A.; Salas, A.; Capannelli, G.; Costa, C.; Bostrom, T.; Jämting, Å. K.; Lawn, M. A.; Adlem, L.; Vaslin-Reimann, S.

    2013-10-01

    Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—"Properties of Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 "Techniques for characterizing size distribution of airborne nanoparticles". Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2-46.6 nm and 80.2-89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.

  20. Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study

    International Nuclear Information System (INIS)

    Motzkus, C.; Macé, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A.; Dirscherl, K.; Hodoroaba, V.-D.; Popov, I.; Popov, O.; Kuselman, I.; Takahata, K.; Ehara, K.; Ausset, P.; Maillé, M.; Michielsen, N.; Bondiguel, S.; Gensdarmes, F.; Morawska, L.; Johnson, G. R.; Faghihi, E. M.

    2013-01-01

    Results of an interlaboratory comparison on size characterization of SiO 2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—“Properties of Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 “Techniques for characterizing size distribution of airborne nanoparticles”. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO 2 nanoparticles characterization are proposed

  1. Applying the GNSS Volcanic Ash Plume Detection Technique to Consumer Navigation Receivers

    Science.gov (United States)

    Rainville, N.; Palo, S.; Larson, K. M.

    2017-12-01

    Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) rely on predictably structured and constant power RF signals to fulfill their primary use for navigation and timing. When the received strength of GNSS signals deviates from the expected baseline, it is typically due to a change in the local environment. This can occur when signal reflections from the ground are modified by changes in snow or soil moisture content, as well as by attenuation of the signal from volcanic ash. This effect allows GNSS signals to be used as a source for passive remote sensing. Larson et al. (2017) have developed a detection technique for volcanic ash plumes based on the attenuation seen at existing geodetic GNSS sites. Since these existing networks are relatively sparse, this technique has been extended to use lower cost consumer GNSS receiver chips to enable higher density measurements of volcanic ash. These low-cost receiver chips have been integrated into a fully stand-alone sensor, with independent power, communications, and logging capabilities as part of a Volcanic Ash Plume Receiver (VAPR) network. A mesh network of these sensors transmits data to a local base-station which then streams the data real-time to a web accessible server. Initial testing of this sensor network has uncovered that a different detection approach is necessary when using consumer GNSS receivers and antennas. The techniques to filter and process the lower quality data from consumer receivers will be discussed and will be applied to initial results from a functioning VAPR network installation.

  2. A preliminary evaluation of certain NDA techniques for RH-TRU characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hartwell, J.K.; Yoon, W.Y.; Peterson, H.K. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    This report presents the results of modeling efforts to evaluate selected NDA assay methods for RH-TRU waste characterization. The target waste stream was Content Code 104/107 113-liter waste drums that comprise the majority of the INEL`s RH-TRU waste inventory. Two NDA techniques are treated in detail. One primary NDA technique examined is gamma-ray spectrometry to determine the drum fission and activation product content, and fuel sample inventory calculations using the ORIGEN code to predict the total drum inventory. A heavily shielded and strongly collimated HPGe spectrometer system was designed using MCNP modeling. Detection limits and expected precision of this approach were estimated by a combination of Monte Carlo modeling and synthetic gamma-ray spectrum generation. This technique may allow the radionuclide content of these wastes to be determined with relative standard deviations of 20 to 50% depending on the drum matrix and radionuclide. The INEL Passive/Active Neutron (PAN) assay system is the second primary technique considered. A shielded overpack for the 113-liter CC104/107 RH-TRU drums was designed to shield the PAN detectors from excessive gamma radiation. MCNP modeling suggests PAN detection limits of about 0.06 g {sup 235}U and 0.04 g {sup 239}Pu during active assays. 12 refs., 2 figs., 6 tabs.

  3. Techniques for characterization and eradication of potato cyst nematode: a review.

    Science.gov (United States)

    Bairwa, Aarti; Venkatasalam, E P; Sudha, R; Umamaheswari, R; Singh, B P

    2017-09-01

    Correct identification of species and pathotypes is must for eradication of potato cyst nematodes (PCN). The identification of PCN species after completing the life cycle is very difficult because it is based on morphological and morphometrical characteristics. Genetically different populations of PCN are morphologically same and differentiated based on the host differential study. Later on these traditional techniques have been replaced by biochemical techniques viz, one and two dimensional gel electrophoresis, capillary gel electrophoresis, isozymes, dot blot hybridization and isoelectric focusing etc. to distinguish both the species. One and two dimensional gel electrophoresis has used to examine inter- and intra-specific differences in proteins of Globodera rostochiensis and G. pallida . Now application of PCR and DNA based characterization techniques like RAPD, AFLP and RFLP are the important tools for differentiating inter- and intra specific variation in PCN and has given opportunities to accurate identification of PCN. For managing the PCN, till now we are following integrated pest management (IPM) strategies, however these strategies are not effective to eradicate the PCN. Therefore to eradicate the PCN we need noval management practices like RNAi (RNA interference) or Gene silencing.

  4. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Worley, C.M.

    1986-05-07

    The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that the polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.

  5. The diagnostic capability of laser induced fluorescence in the characterization of excised breast tissues

    Science.gov (United States)

    Galmed, A. H.; Elshemey, Wael M.

    2017-08-01

    Differentiating between normal, benign and malignant excised breast tissues is one of the major worldwide challenges that need a quantitative, fast and reliable technique in order to avoid personal errors in diagnosis. Laser induced fluorescence (LIF) is a promising technique that has been applied for the characterization of biological tissues including breast tissue. Unfortunately, only few studies have adopted a quantitative approach that can be directly applied for breast tissue characterization. This work provides a quantitative means for such characterization via introduction of several LIF characterization parameters and determining the diagnostic accuracy of each parameter in the differentiation between normal, benign and malignant excised breast tissues. Extensive analysis on 41 lyophilized breast samples using scatter diagrams, cut-off values, diagnostic indices and receiver operating characteristic (ROC) curves, shows that some spectral parameters (peak height and area under the peak) are superior for characterization of normal, benign and malignant breast tissues with high sensitivity (up to 0.91), specificity (up to 0.91) and accuracy ranking (highly accurate).

  6. Semiconductor/dielectric interface engineering and characterization

    Science.gov (United States)

    Lucero, Antonio T.

    The focus of this dissertation is the application and characterization of several, novel interface passivation techniques for III-V semiconductors, and the development of an in-situ electrical characterization. Two different interface passivation techniques were evaluated. The first is interface nitridation using a nitrogen radical plasma source. The nitrogen radical plasma generator is a unique system which is capable of producing a large flux of N-radicals free of energetic ions. This was applied to Si and the surface was studied using x-ray photoelectron spectroscopy (XPS). Ultra-thin nitride layers could be formed from 200-400° C. Metal-oxide-semiconductor capacitors (MOSCAPs) were fabricated using this passivation technique. Interface nitridation was able to reduce leakage current and improve the equivalent oxide thickness of the devices. The second passivation technique studied is the atomic layer deposition (ALD) diethylzinc (DEZ)/water treatment of sulfur treated InGaAs and GaSb. On InGaAs this passivation technique is able to chemically reduce higher oxidation states on the surface, and the process results in the deposition of a ZnS/ZnO interface passivation layer, as determined by XPS. Capacitance-voltage (C-V) measurements of MOSCAPs made on p-InGaAs reveal a large reduction in accumulation dispersion and a reduction in the density of interfacial traps. The same technique was applied to GaSb and the process was studied in an in-situ half-cycle XPS experiment. DEZ/H2O is able to remove all Sb-S from the surface, forming a stable ZnS passivation layer. This passivation layer is resistant to further reoxidation during dielectric deposition. The final part of this dissertation is the design and construction of an ultra-high vacuum cluster tool for in-situ electrical characterization. The system consists of three deposition chambers coupled to an electrical probe station. With this setup, devices can be processed and subsequently electrically characterized

  7. How Can Synchrotron Radiation Techniques Be Applied for Detecting Microstructures in Amorphous Alloys?

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2015-11-01

    Full Text Available In this work, how synchrotron radiation techniques can be applied for detecting the microstructure in metallic glass (MG is studied. The unit cells are the basic structural units in crystals, though it has been suggested that the co-existence of various clusters may be the universal structural feature in MG. Therefore, it is a challenge to detect microstructures of MG even at the short-range scale by directly using synchrotron radiation techniques, such as X-ray diffraction and X-ray absorption methods. Here, a feasible scheme is developed where some state-of-the-art synchrotron radiation-based experiments can be combined with simulations to investigate the microstructure in MG. By studying a typical MG composition (Zr70Pd30, it is found that various clusters do co-exist in its microstructure, and icosahedral-like clusters are the popular structural units. This is the structural origin where there is precipitation of an icosahedral quasicrystalline phase prior to phase transformation from glass to crystal when heating Zr70Pd30 MG.

  8. A multi-technique chemical characterization of a Stradivari decorated violin top plate

    Science.gov (United States)

    Malagodi, M.; Canevari, C.; Bonizzoni, L.; Galli, A.; Maspero, F.; Martini, M.

    2013-08-01

    This paper focuses on the characterization of the materials of a violin top plate made by Antonio Stradivari (17th century), with different diagnostic techniques and with an integrated and non-destructive analytical methodology to study surface coatings and decorations. The UV-induced visible fluorescence, optical digital microscopy, ED-XRF associated with micro-FTIR spectroscopy analysis, and dendrochronology were performed. The investigations were aimed to identify the presence of original varnish layers and to characterize the composition of the decorations, either the inlaid purflings or the composite false-inlay strip between them. Several results were achieved: (i) evidence of the absence of varnish layers on the surface as a result of extended and inappropriate restoring; (ii) identification of the dye used for the black layers of the purflings; (iii) characterization of the black matrix and the white elements of the decoration. Furthermore, a dendrochronological dating was performed. A copy of the top plate was realized with materials similar to those identified on the Stradivari original; the same analyses performed on the original model were carried out on the same areas of the copy.

  9. Fourier Transform Infrared Radiation Spectroscopy Applied for Wood Rot Decay and Mould Fungi Growth Detection

    OpenAIRE

    Jelle, Bjørn Petter; Hovde, Per Jostein

    2012-01-01

    Material characterization may be carried out by the attenuated total reflectance (ATR) Fourier transform infrared (FTIR) radiation spectroscopical technique, which represents a powerful experimental tool. The ATR technique may be applied on both solid state materials, liquids, and gases with none or only minor sample preparations, also including materials which are nontransparent to IR radiation. This facilitation is made possible by pressing the sample directly onto various crystals, for exa...

  10. Synergizing Crosswell Seismic and Electromagnetic Techniques for Enhancing Reservoir Characterization

    KAUST Repository

    Katterbauer, Klemens

    2015-11-18

    Increasing complexity of hydrocarbon projects and the request for higher recovery rates have driven the oil-and-gas industry to look for a more-detailed understanding of the subsurface formation to optimize recovery of oil and profitability. Despite the significant successes of geophysical techniques in determining changes within the reservoir, the benefits from individually mapping the information are limited. Although seismic techniques have been the main approach for imaging the subsurface, the weak density contrast between water and oil has made electromagnetic (EM) technology an attractive complement to improve fluid distinction, especially for high-saline water. This crosswell technology assumes greater importance for obtaining higher-resolution images of the interwell regions to more accurately characterize the reservoir and track fluid-front developments. In this study, an ensemble-Kalman-based history-matching framework is proposed for directly incorporating crosswell time-lapse seismic and EM data into the history-matching process. The direct incorporation of the time-lapse seismic and EM data into the history-matching process exploits the complementarity of these data to enhance subsurface characterization, to incorporate interwell information, and to avoid biases that may be incurred from separate inversions of the geophysical data for attributes. An extensive analysis with 2D and realistic 3D reservoirs illustrates the robustness and enhanced forecastability of critical reservoir variables. The 2D reservoir provides a better understanding of the connection between fluid discrimination and enhanced history matches, and the 3D reservoir demonstrates its applicability to a realistic reservoir. History-matching enhancements (in terms of reduction in the history-matching error) when incorporating both seismic and EM data averaged approximately 50% for the 2D case, and approximately 30% for the 3D case, and permeability estimates were approximately 25

  11. Applying advanced digital signal processing techniques in industrial radioisotopes applications

    International Nuclear Information System (INIS)

    Mahmoud, H.K.A.E.

    2012-01-01

    Radioisotopes can be used to obtain signals or images in order to recognize the information inside the industrial systems. The main problems of using these techniques are the difficulty of identification of the obtained signals or images and the requirement of skilled experts for the interpretation process of the output data of these applications. Now, the interpretation of the output data from these applications is performed mainly manually, depending heavily on the skills and the experience of trained operators. This process is time consuming and the results typically suffer from inconsistency and errors. The objective of the thesis is to apply the advanced digital signal processing techniques for improving the treatment and the interpretation of the output data from the different Industrial Radioisotopes Applications (IRA). This thesis focuses on two IRA; the Residence Time Distribution (RTD) measurement and the defect inspection of welded pipes using a gamma source (gamma radiography). In RTD measurement application, this thesis presents methods for signal pre-processing and modeling of the RTD signals. Simulation results have been presented for two case studies. The first case study is a laboratory experiment for measuring the RTD in a water flow rig. The second case study is an experiment for measuring the RTD in a phosphate production unit. The thesis proposes an approach for RTD signal identification in the presence of noise. In this approach, after signal processing, the Mel Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from the processed signal or from one of its transforms. The Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) have been tested and compared for efficient feature extraction. Neural networks have been used for matching of the extracted features. Furthermore, the Power Density Spectrum (PDS) of the RTD signal has been also used instead of the discrete

  12. Characterization of the damage produced on different materials surfaces

    International Nuclear Information System (INIS)

    Dellavale Clara, Hector Damian

    2004-01-01

    In the present work the characterization techniques of surfaces ULOI and RIMAPS have been applied on laboratory samples made from aluminium, stainless steel and material based on fiberglass.The resultant surfaces of, chemical etching with corrosive agents Keller and Tucker, mechanic damage from the wear and tear of abrasive paper and sandrubbing with alumina particles, are analyzed to different level of damage.The systematic application of the above mentioned techniques is carried out with the objective of finding information, which allows to characterize the superficial damage, both in its incipient state as in the extreme situation revealed by the presence of etch pits. Important results have been obtained, in the characterization of the incipient stage of the chemical etching, using the curves of the normalized area.In addition, it was possible to verify the capacity of the techniques in the early detection of the preferential directions generated by the etch pits

  13. Scanning microwave microscopy technique for nanoscale characterization of magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, C.H., E-mail: hadlee.joseph@artov.imm.cnr.it [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Department of Electronics Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome (Italy); Sardi, G.M. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Tuca, S.S.; Gramse, G. [Johannes Kepler University, Institute for Biophysics, Gruberstrasse 40, A-4020 Linz (Austria); Lucibello, A.; Proietti, E. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Kienberger, F. [Keysight Technologies Austria GmbH, Keysight Laboratories, Gruberstrasse 40, A-4020 Linz (Austria); Marcelli, R. [National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy)

    2016-12-15

    In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S{sub 11} are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S{sub 11} with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.

  14. Applying Data Mining Techniques to Improve Information Security in the Cloud: A Single Cache System Approach

    Directory of Open Access Journals (Sweden)

    Amany AlShawi

    2016-01-01

    Full Text Available Presently, the popularity of cloud computing is gradually increasing day by day. The purpose of this research was to enhance the security of the cloud using techniques such as data mining with specific reference to the single cache system. From the findings of the research, it was observed that the security in the cloud could be enhanced with the single cache system. For future purposes, an Apriori algorithm can be applied to the single cache system. This can be applied by all cloud providers, vendors, data distributors, and others. Further, data objects entered into the single cache system can be extended into 12 components. Database and SPSS modelers can be used to implement the same.

  15. Ion backscattering techniques applied in materials science research

    International Nuclear Information System (INIS)

    Sood, D.K.

    1978-01-01

    The applications of Ion Backscattering Technique (IBT) to material analysis have expanded rapidly during the last decade. It is now regarded as an analysis tool indispensable for a versatile materials research program. The technique consists of simply shooting a beam of monoenergetic ions (usually 4 He + ions at about 2 MeV) onto a target, and measuring their energy distribution after backscattering at a fixed angle. Simple Rutherford scattering analysis of the backscattered ion spectrum yields information on the mass, the absolute amount and the depth profile of elements present upto a few microns of the target surface. The technique is nondestructive, quick, quantitative and the only known method of analysis which gives quantitative results without recourse to calibration standards. Its major limitations are the inability to separate elements of similar mass and a complete absence of chemical-binding information. A typical experimental set up and spectrum analysis have been described. Examples, some of them based on the work at the Bhabha Atomic Research Centre, Bombay, have been given to illustrate the applications of this technique to semiconductor technology, thin film materials science and nuclear energy materials. Limitations of IBT have been illustrated and a few remedies to partly overcome these limitations are presented. (auth.)

  16. Markov chain Monte Carlo techniques applied to parton distribution functions determination: Proof of concept

    Science.gov (United States)

    Gbedo, Yémalin Gabin; Mangin-Brinet, Mariane

    2017-07-01

    We present a new procedure to determine parton distribution functions (PDFs), based on Markov chain Monte Carlo (MCMC) methods. The aim of this paper is to show that we can replace the standard χ2 minimization by procedures grounded on statistical methods, and on Bayesian inference in particular, thus offering additional insight into the rich field of PDFs determination. After a basic introduction to these techniques, we introduce the algorithm we have chosen to implement—namely Hybrid (or Hamiltonian) Monte Carlo. This algorithm, initially developed for Lattice QCD, turns out to be very interesting when applied to PDFs determination by global analyses; we show that it allows us to circumvent the difficulties due to the high dimensionality of the problem, in particular concerning the acceptance. A first feasibility study is performed and presented, which indicates that Markov chain Monte Carlo can successfully be applied to the extraction of PDFs and of their uncertainties.

  17. Enhanced performance of CdS/CdTe thin-film devices through temperature profiling techniques applied to close-spaced sublimation deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiaonan Li; Sheldon, P.; Moutinho, H.; Matson, R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors describe a methodology developed and applied to the close-spaced sublimation technique for thin-film CdTe deposition. The developed temperature profiles consisted of three discrete temperature segments, which the authors called the nucleation, plugging, and annealing temperatures. They have demonstrated that these temperature profiles can be used to grow large-grain material, plug pinholes, and improve CdS/CdTe photovoltaic device performance by about 15%. The improved material and device properties have been obtained while maintaining deposition temperatures compatible with commercially available substrates. This temperature profiling technique can be easily applied to a manufacturing environment by adjusting the temperature as a function of substrate position instead of time.

  18. Characterization of agricultural land using singular value decomposition

    Science.gov (United States)

    Herries, Graham M.; Danaher, Sean; Selige, Thomas

    1995-11-01

    A method is defined and tested for the characterization of agricultural land from multi-spectral imagery, based on singular value decomposition (SVD) and key vector analysis. The SVD technique, which bears a close resemblance to multivariate statistic techniques, has previously been successfully applied to problems of signal extraction for marine data and forestry species classification. In this study the SVD technique is used as a classifier for agricultural regions, using airborne Daedalus ATM data, with 1 m resolution. The specific region chosen is an experimental research farm in Bavaria, Germany. This farm has a large number of crops, within a very small region and hence is not amenable to existing techniques. There are a number of other significant factors which render existing techniques such as the maximum likelihood algorithm less suitable for this area. These include a very dynamic terrain and tessellated pattern soil differences, which together cause large variations in the growth characteristics of the crops. The SVD technique is applied to this data set using a multi-stage classification approach, removing unwanted land-cover classes one step at a time. Typical classification accuracy's for SVD are of the order of 85-100%. Preliminary results indicate that it is a fast and efficient classifier with the ability to differentiate between crop types such as wheat, rye, potatoes and clover. The results of characterizing 3 sub-classes of Winter Wheat are also shown.

  19. Geo-Mechanical Characterization of Carbonate Rock Masses by Means of Laser Scanner Technique

    Science.gov (United States)

    Palma, Biagio; Parise, Mario; Ruocco, Anna

    2017-12-01

    Knowledge of the geometrical and structural setting of rock masses is crucial to evaluate the stability and to design the most suitable stabilization works. In this work we use the Terrestrial Laser Scanning (TLS) at the site of the Grave of the Castellana Caves, a famous show cave in southern Italy. The Grave is the natural access to the cave system, produced by collapse of the vault, due to upward progression of instabilities in the carbonate rock masses. It is about 55-m high, bell-shaped, with maximum width of 120 m. Aim of the work is the characterization of carbonate rock masses from the structural and geo-mechanical standpoints through the use of innovative survey techniques. TLS survey provides a product consisting of millions of geo-referenced points, to be managed in space, to become a suitable database for the morphological and geological-structural analysis. Studying by means of TLS a rock face, partly inaccessible or located in very complex environments, allows to investigate slopes in their overall areal extent, thus offering advantages both as regards safety of the workers and time needed for the survey. In addition to TLS, the traditional approach was also followed by performing scanlines surveys along the rims of the Grave, following the ISRM recommendations for characterization of discontinuity in rock masses. A quantitative comparison among the data obtained by TLS technique and those deriving from the classical geo-mechanical survey is eventually presented, to discuss potentiality of drawbacks of the different techniques used for surveying the rock masses.

  20. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Wang, Hsiang-Jen; Heiroth, Sebastian

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss spec......, indicate apparent variation of the ceria valence state across and along the film. No element segregation to the grain boundaries is detected. These results are discussed in the context of solid oxide fuel cell applications.......The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss...... spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M4,5 edges, used to monitor the local electronic structure of the grains...

  1. Improved techniques for the ultrasonic characterization of graphite

    International Nuclear Information System (INIS)

    Cook, K.V.; Simpson, W.A.

    1981-01-01

    Near-conventional pulse-echo flaw detection techniques can be successfully applied to graphite material. If the specimen configuration (i.e., length-to-diameter ratio) is conducive to the choice of ultrasonic test parameters dictated by the material screening tests, then only the test sensitivity needs to be established. Conventional test block approaches to calibration work well; however, uniform homogeneity of the specimens to be tested must be assumed (depending on the graphite, this may be an invalid assumption). Sensitivities that we have demonstrated typically detect 0.5- to 0.75-mm (0.020 to 0.030-in.) reflectors at depths up to 102 mm (4 in.) for GRAPHNOL (drilled holes, not flat bottom). Other materials may dictate inspection for much larger discontinuities. The least sensitive tests performed to date (using the storage oscilloscope approach) required flat-bottom holes of 6.35 mm (0.250 in.) in diameter for calibration. This relatively insensitive test was necessary because of the billet length and material characteristics

  2. Advanced gamma spectrum processing technique applied to the analysis of scattering spectra for determining material thickness

    International Nuclear Information System (INIS)

    Hoang Duc Tam; VNUHCM-University of Science, Ho Chi Minh City; Huynh Dinh Chuong; Tran Thien Thanh; Vo Hoang Nguyen; Hoang Thi Kieu Trang; Chau Van Tao

    2015-01-01

    In this work, an advanced gamma spectrum processing technique is applied to analyze experimental scattering spectra for determining the thickness of C45 heat-resistant steel plates. The single scattering peak of scattering spectra is taken as an advantage to measure the intensity of single scattering photons. Based on these results, the thickness of steel plates is determined with a maximum deviation of real thickness and measured thickness of about 4 %. Monte Carlo simulation using MCNP5 code is also performed to cross check the results, which yields a maximum deviation of 2 %. These results strongly confirm the capability of this technique in analyzing gamma scattering spectra, which is a simple, effective and convenient method for determining material thickness. (author)

  3. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    OpenAIRE

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-01-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The rev...

  4. Basic principles of applied nuclear techniques

    International Nuclear Information System (INIS)

    Basson, J.K.

    1976-01-01

    The technological applications of radioactive isotopes and radiation in South Africa have grown steadily since the first consignment of man-made radioisotopes reached this country in 1948. By the end of 1975 there were 412 authorised non-medical organisations (327 industries) using hundreds of sealed sources as well as their fair share of the thousands of radioisotope consignments, annually either imported or produced locally (mainly for medical purposes). Consequently, it is necessary for South African technologists to understand the principles of radioactivity in order to appreciate the industrial applications of nuclear techniques [af

  5. X-Ray, Digital Imaging with Volumetric Density Measurement and Profiling, Applied to the Characterization of Waste Drums

    International Nuclear Information System (INIS)

    Huhtiniemi, I.; Gupta, N.; Halliwell, S.

    2006-01-01

    The European Commission's Joint Research Centre Ispra Site (JRC-Ispra) has initiated a decommissioning and waste management program that will span about two decades. The program includes a requirement to characterize the contents of about 6,500 radioactive, 220 litre waste drums whose documented history is incomplete. To render the characterization process more efficient, the drums will be initially divided into homogeneous groups, an activity that will be based on existing documentation and non-destructive examination (NDE) by X-ray digital imaging. This paper describes the X-ray imaging techniques chosen, and the planned performance validation of the equipment. (authors)

  6. Semi-automatic version of the potentiometric titration method for characterization of uranium compounds.

    Science.gov (United States)

    Cristiano, Bárbara F G; Delgado, José Ubiratan; da Silva, José Wanderley S; de Barros, Pedro D; de Araújo, Radier M S; Dias, Fábio C; Lopes, Ricardo T

    2012-09-01

    The potentiometric titration method was used for characterization of uranium compounds to be applied in intercomparison programs. The method is applied with traceability assured using a potassium dichromate primary standard. A semi-automatic version was developed to reduce the analysis time and the operator variation. The standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization and compatible with those obtained by manual techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. An image filtering technique for SPIDER visible tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fonnesu, N., E-mail: nicola.fonnesu@igi.cnr.it; Agostini, M.; Brombin, M.; Pasqualotto, R.; Serianni, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2014-02-15

    The tomographic diagnostic developed for the beam generated in the SPIDER facility (100 keV, 50 A prototype negative ion source of ITER neutral beam injector) will characterize the two-dimensional particle density distribution of the beam. The simulations described in the paper show that instrumental noise has a large influence on the maximum achievable resolution of the diagnostic. To reduce its impact on beam pattern reconstruction, a filtering technique has been adapted and implemented in the tomography code. This technique is applied to the simulated tomographic reconstruction of the SPIDER beam, and the main results are reported.

  8. An image filtering technique for SPIDER visible tomography

    International Nuclear Information System (INIS)

    Fonnesu, N.; Agostini, M.; Brombin, M.; Pasqualotto, R.; Serianni, G.

    2014-01-01

    The tomographic diagnostic developed for the beam generated in the SPIDER facility (100 keV, 50 A prototype negative ion source of ITER neutral beam injector) will characterize the two-dimensional particle density distribution of the beam. The simulations described in the paper show that instrumental noise has a large influence on the maximum achievable resolution of the diagnostic. To reduce its impact on beam pattern reconstruction, a filtering technique has been adapted and implemented in the tomography code. This technique is applied to the simulated tomographic reconstruction of the SPIDER beam, and the main results are reported

  9. Condition monitoring and signature analysis techniques as applied to Madras Atomic Power Station (MAPS) [Paper No.: VIA - 1

    International Nuclear Information System (INIS)

    Rangarajan, V.; Suryanarayana, L.

    1981-01-01

    The technique of vibration signature analysis for identifying the machine troubles in their early stages is explained. The advantage is that a timely corrective action can be planned to avoid breakdowns and unplanned shutdowns. At the Madras Atomic Power Station (MAPS), this technique is applied to regularly monitor vibrations of equipment and thus is serving as a tool for doing corrective maintenance of equipment. Case studies of application of this technique to main boiler feed pumps, moderation pump motors, centrifugal chiller, ventilation system fans, thermal shield ventilation fans, filtered water pumps, emergency process sea water pumps, and antifriction bearings of MAPS are presented. Condition monitoring during commissioning and subsequent operation could indicate defects. Corrective actions which were taken are described. (M.G.B.)

  10. Physicochemical and structural characterization of a two-dimensional polymer performed by using the Langmuir-Blodgett technique

    International Nuclear Information System (INIS)

    Lefevre, Didier

    1995-01-01

    This research thesis addresses the physicochemical and structural characterization of two-dimensional polymer made of polymerizable macro-cycles pre-organised in-plane by using the Langmuir-Blodgett technique. Macro-cycles are porphyrins with four acetylenic functions which bind in both plane directions by formation of diacetylenic covalent bonds. These porphyrins are adsorbed under a single layer of dihexadecyl-phosphoric acid to build up a monomer amphiphilic film. The author reports the characterization of the Langmuir film by the study of compression isotherms and by Brewster angle microscopy. Other techniques are used (UV, visible and infrared spectroscopy, Raman spectroscopy) to highlight the polymerization in LB film. X photo-electronic spectroscopy and secondary ion mass spectroscopy are also used. The author reports the study of the orientation of macro-cycles before and after polymerization by using linear dichroism, electronic paramagnetic resonance and X ray diffraction. The in-plane LB film structure is studied by transmission X ray diffraction, atomic force microscopy in correlation with molecular simulation. The two-dimensional feature of the polymer formed at the water surface is highlighted. The membrane is visualized by electronic and optic microscopy, and characterized by EDXS and electronic diffraction [fr

  11. Size characterization of airborne SiO{sub 2} nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Motzkus, C., E-mail: charles.motzkus@lne.fr; Mace, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A. [Laboratoire National de Metrologie et d' Essais (LNE) (France); Dirscherl, K. [Danish Fundamental Metrology (DFM) (Denmark); Hodoroaba, V.-D. [BAM Federal Institute for Materials Research and Testing (Germany); Popov, I. [The Hebrew University of Jerusalem, Unit for Nanocharacterization (Israel); Popov, O.; Kuselman, I. [National Physical Laboratory of Israel (INPL) (Israel); Takahata, K.; Ehara, K. [National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ) (Japan); Ausset, P.; Maille, M. [Universite Paris-Est Creteil et Universite Paris-Diderot, Laboratoire Interuniversitaire des Systemes Atmospheriques (LISA), UMR CNRS 7583 (France); Michielsen, N.; Bondiguel, S.; Gensdarmes, F. [Institut de Radioprotection et de Surete Nucleaire (IRSN), PSN-RES, SCA, LPMA (France); Morawska, L.; Johnson, G. R.; Faghihi, E. M. [Queensland University of Technology (QUT), International Laboratory for Air Quality and Health (ILAQH) (Australia); and others

    2013-10-15

    Results of an interlaboratory comparison on size characterization of SiO{sub 2} airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34-'Properties of Nanoparticle Populations' of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 'Techniques for characterizing size distribution of airborne nanoparticles'. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2-46.6 nm and 80.2-89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO{sub 2} nanoparticles characterization are proposed.

  12. Characterization of Old Nuclear Waste Packages Coupling Photon Activation Analysis and Complementary Non-Destructive Techniques

    International Nuclear Information System (INIS)

    Carrel, Frederick; Coulon, Romain; Laine, Frederic; Normand, Stephane; Sari, Adrien; Charbonnier, Bruno; Salmon, Corine

    2013-06-01

    Radiological characterization of nuclear waste packages is an industrial issue in order to select the best mode of storage. The characterization becomes crucial particularly for waste packages produced at the beginning of the French nuclear industry. For the latter, available information is often incomplete and some key parameters are sometimes missing (content of the package, alpha-activity, fissile mass...) In this case, the use of non-destructive methods, both passive and active, is an appropriate solution to characterize nuclear waste packages and to obtain all the information of interest. In this article, we present the results of a complete characterization carried out on the TE 1060 block, which is a nuclear waste package produced during the 1960's in Saclay. This characterization is part of the DEMSAC (Dismantling of Saclay's facilities) project (ICPE part). It has been carried out in the SAPHIR facility, located in Saclay and housing a linear electron accelerator. This work enables to show the great interest of active methods (photon activation analysis and high-energy imaging) as soon as passive techniques encounter severe limitations. (authors)

  13. Estimation of fatigue life using electromechanical impedance technique

    Science.gov (United States)

    Lim, Yee Yan; Soh, Chee Kiong

    2010-04-01

    Fatigue induced damage is often progressive and gradual in nature. Structures subjected to large number of fatigue load cycles will encounter the process of progressive crack initiation, propagation and finally fracture. Monitoring of structural health, especially for the critical components, is therefore essential for early detection of potential harmful crack. Recent advent of smart materials such as piezo-impedance transducer adopting the electromechanical impedance (EMI) technique and wave propagation technique are well proven to be effective in incipient damage detection and characterization. Exceptional advantages such as autonomous, real-time and online, remote monitoring may provide a cost-effective alternative to the conventional structural health monitoring (SHM) techniques. In this study, the main focus is to investigate the feasibility of characterizing a propagating fatigue crack in a structure using the EMI technique as well as estimating its remaining fatigue life using the linear elastic fracture mechanics (LEFM) approach. Uniaxial cyclic tensile load is applied on a lab-sized aluminum beam up to failure. Progressive shift in admittance signatures measured by the piezo-impedance transducer (PZT patch) corresponding to increase of loading cycles reflects effectiveness of the EMI technique in tracing the process of fatigue damage progression. With the use of LEFM, prediction of the remaining life of the structure at different cycles of loading is possible.

  14. Gamma-ray spectrometry combined with acceptable knowledge (GSAK). A technique for characterization of certain remote-handled transuranic (RH-TRU) wastes. Part 1. Methodology and techniques

    International Nuclear Information System (INIS)

    Hartwell, J.K.; McIlwain, M.E.

    2005-01-01

    Gamma-ray spectrometry combined with acceptable knowledge (GSAK) is a technique for the characterization of certain remote-handled transuranic (RH-TRU) wastes. GSAK uses gamma-ray spectrometry to quantify a portion of the fission product inventory of RH-TRU wastes. These fission product results are then coupled with calculated inventories derived from acceptable process knowledge to characterize the radionuclide content of the assayed wastes. GSAK has been evaluated and tested through several test exercises. GSAK approach is described, while test results are presented in Part II. (author)

  15. A refined model for characterizing x-ray multilayers

    International Nuclear Information System (INIS)

    Oren, A.L.; Henke, B.L.

    1987-12-01

    The ability to quickly and accurately characterize arbitrary multilayers is very valuable for not only can we use the characterizations to predict the reflectivity of a multilayer for any soft x-ray wavelength, we also can generalize the results to apply to other multilayers of the same type. In addition, we can use the characterizations as a means of evaluating various sputtering environments and refining sputtering techniques to obtain better multilayers. In this report we have obtained improved characterizations for sample molybdenum-silicon and vanadium-silicon multilayers. However, we only examined five crystals overall, so the conclusions that we could draw about the structure of general multilayers is limited. Research involving many multilayers manufactured under the same sputtering conditions is clearly in order. In order to best understand multilayer structures it may be necessary to further refine our model, e.g., adopting a Gaussian form for the interface regions. With such improvements we can expect even better agreement with experimental values and continued concurrence with other characterization techniques. 18 refs., 30 figs., 7 tabs

  16. Large-timestep techniques for particle-in-cell simulation of systems with applied fields that vary rapidly in space

    International Nuclear Information System (INIS)

    Friedman, A.; Grote, D.P.

    1996-10-01

    Under conditions which arise commonly in space-charge-dominated beam applications, the applied focusing, bending, and accelerating fields vary rapidly with axial position, while the self-fields (which are, on average, comparable in strength to the applied fields) vary smoothly. In such cases it is desirable to employ timesteps which advance the particles over distances greater than the characteristic scales over which the applied fields vary. Several related concepts are potentially applicable: sub-cycling of the particle advance relative to the field solution, a higher-order time-advance algorithm, force-averaging by integration along approximate orbits, and orbit-averaging. We report on our investigations into the utility of such techniques for systems typical of those encountered in accelerator studies for heavy-ion beam-driven inertial fusion

  17. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    Science.gov (United States)

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  18. Molecular characterization of Streptococcus agalactiae strains isolated from fishes in Malaysia.

    Science.gov (United States)

    Amal, M N A; Zamri-Saad, M; Siti-Zahrah, A; Zulkafli, A R; Nur-Nazifah, M

    2013-07-01

    The aim of this study was to characterize Streptococcus agalactiae strains that were isolated from fishes in Malaysia using random amplified polymorphic DNA (RAPD) and repetitive extragenic palindromic PCR (REP-PCR) techniques. A total of 181 strains of Strep. agalactiae isolated from red hybrid tilapia (Oreochromis sp.) and golden pompano (Trachinotus blochii) were characterized using RAPD and REP-PCR techniques. Both the fingerprinting techniques generated reproducible band patterns, differing in the number and molecular mass amplicons. The RAPD technique displayed greater discriminatory power by its production of more complex binding pattern and divided all the strains into 13 groups, compared to 9 by REP-PCR technique. Both techniques showed the availability to differentiate the genetic profiles of the strains according to their geographical location of origin. Three strains of Strep. agalactiae that were recovered from golden pompano showed a genetic dissimilarity from the strains isolated from red hybrid tilapia, while the strain of ATCC 27956 that recovered from bovine displayed a unique profile for both methods. Both techniques possess excellent discriminative capabilities and can be used as a rapid means of comparing Strep. agalactiae strains for future epidemiological investigation. Framework as the guideline in traceability of this disease and in the search for potential local vaccine candidates for streptococcosis in this country. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  19. Structural and electrical characterizations of BiFeO{sub 3} capacitors deposited by sol–gel dip coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Cetinkaya, Ali Osman, E-mail: cetinkayaaliosman@gmail.com [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey); Kaya, Senol; Aktag, Aliekber [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey); Budak, Erhan [Chemistry Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Yilmaz, Ercan [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey)

    2015-09-01

    Bismuth ferrite (BiFeO{sub 3}) thin films were deposited by sol–gel dip coating (SGDC) technique on Si-P(100) and glass substrates to investigate the structural and electrical characteristics. The aluminum (Al) metal contacts were formed on the samples deposited on the Si-P(100) to fabricate metal-oxide-semiconductor (MOS) capacitors. The fabricated MOS structures were characterized electrically by capacitance–voltage (C–V) and conductance–voltage (G/ω–V) measurements. The structural characterizations were performed by X-ray diffraction technique and scanning electron microscopy. The compositions of the films were investigated by energy-dispersive X-ray spectroscopy. The results exhibit that pure rhombohedral perovskite phase films were fabricated without any elemental contamination. Average grain sizes of the BiFeO{sub 3} deposited on silicon and glass wafers were found to be about 34,50 and 30,00 nm, respectively. In addition, while the thin films deposited on glass substrate exhibit porous surface, those deposited on Si-P(100) wafers exhibit dense microstructure with a homogenous surface. Moreover, the C–V and G/ω–V characteristics are sensitive to applied voltage frequency due to frequency dependent charges (N{sub ss}) and series resistance (R{sub s}). The peak values of R{sub s} have been decreased from 2,6 kΩ to 40 Ω, while N{sub ss} is varied from 6,57 × 10{sup 12} to 3,68 × 10{sup 12} eV{sup −1} cm{sup −2} with increasing in frequency. Consequently, pure phase polycrystalline BiFeO{sub 3} thin films were fabricated successfully by SGDC technique and BiFeO{sub 3} dielectric layer exhibits stable insulation characteristics. - Highlights: • Bismuth ferrite thin films were deposited onto silicon and glass substrates by sol–gel. • Structural and electrical properties of fabricated films have been investigated. • Pure rhombohedral perovskite phase films without any contamination were deposited. • Series resistance and interface

  20. Structural characterization of the nickel thin film deposited by glad technique

    Directory of Open Access Journals (Sweden)

    Potočnik J.

    2013-01-01

    Full Text Available In this work, a columnar structure of nickel thin film has been obtained using an advanced deposition technique known as Glancing Angle Deposition. Nickel thin film was deposited on glass sample at the constant emission current of 100 mA. Glass sample was positioned 15 degrees with respect to the nickel vapor flux. The obtained nickel thin film was characterized by Force Modulation Atomic Force Microscopy and by Scanning Electron Microscopy. Analysis indicated that the formation of the columnar structure occurred at the film thickness of 1 μm, which was achieved for the deposition time of 3 hours. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  1. Biomechanical study of the funnel technique applied in thoracic ...

    African Journals Online (AJOL)

    of vertebra was made for injury model of anterior and central column ... data were collected to eliminate creep and relaxation of soft tissues in .... 3 Pullout strength curve for Magerl technique (A) and Funnel technique (B). 210x164mm (72 x 72 ...

  2. A simple pulse shape discrimination technique applied to a silicon strip detector

    International Nuclear Information System (INIS)

    Figuera, P.; Lu, J.; Amorini, F.; Cardella, G.; DiPietro, A.; Papa, M.; Musumarra, A.; Pappalardo, G.; Rizzo, F.; Tudisco, S.

    2001-01-01

    Full text: Since the early sixties, it has been known that the shape of signals from solid state detectors can be used for particle identification. Recently, this idea has been revised in a group of papers where it has been shown that the shape of current signals from solid state detectors is mainly governed by the combination of plasma erosion time and charge carrier collection time effects. We will present the results of a systematic study on a pulse shape identification method which, contrary to the techniques proposed, is based on the use of the same electronic chain normally used in the conventional time of flight technique. The method is based on the use of charge preamplifiers, low polarization voltages (i.e. just above full depletion ones), rear side injection of the incident particles, and on a proper setting of the constant fraction discriminators which enhances the dependence of the timing output on the rise time of the input signals (which depends on the charge and energy of the incident ions). The method has been applied to an annular Si strip detector with an inner radius of about 16 mm and an outer radius of about 88 mm. The detector, manufactured by Eurisys Measures (Type Ips.73.74.300.N9), is 300 microns thick and consists of 8 independent sectors each divided into 9 circular strips. On beam tests have been performed at the cyclotron of the Laboratori Nazionali del Sud in Catania using a 25.7 MeV/nucleon 58 Ni beam impinging on a 51 V and 45 Sc composite target. Excellent charge identification from H up to the Ni projectile has been observed and typical charge identification thresholds are: ∼ 1.7 MeV/nucleon for Z ≅ 6, ∼ 3.0 MeV/nucleon for Z ≅ 11, and ∼ 5.5 MeV/nucleon for Z ≅ 20. Isotope identification up to A ≅ 13 has been observed with an energy threshold of about 6 MeV/nucleon. The identification quality has been studied as a function of the constant fraction settings. The method has been applied to all the 72 independent strips

  3. Applying machine-learning techniques to Twitter data for automatic hazard-event classification.

    Science.gov (United States)

    Filgueira, R.; Bee, E. J.; Diaz-Doce, D.; Poole, J., Sr.; Singh, A.

    2017-12-01

    The constant flow of information offered by tweets provides valuable information about all sorts of events at a high temporal and spatial resolution. Over the past year we have been analyzing in real-time geological hazards/phenomenon, such as earthquakes, volcanic eruptions, landslides, floods or the aurora, as part of the GeoSocial project, by geo-locating tweets filtered by keywords in a web-map. However, not all the filtered tweets are related with hazard/phenomenon events. This work explores two classification techniques for automatic hazard-event categorization based on tweets about the "Aurora". First, tweets were filtered using aurora-related keywords, removing stop words and selecting the ones written in English. For classifying the remaining between "aurora-event" or "no-aurora-event" categories, we compared two state-of-art techniques: Support Vector Machine (SVM) and Deep Convolutional Neural Networks (CNN) algorithms. Both approaches belong to the family of supervised learning algorithms, which make predictions based on labelled training dataset. Therefore, we created a training dataset by tagging 1200 tweets between both categories. The general form of SVM is used to separate two classes by a function (kernel). We compared the performance of four different kernels (Linear Regression, Logistic Regression, Multinomial Naïve Bayesian and Stochastic Gradient Descent) provided by Scikit-Learn library using our training dataset to build the SVM classifier. The results shown that the Logistic Regression (LR) gets the best accuracy (87%). So, we selected the SVM-LR classifier to categorise a large collection of tweets using the "dispel4py" framework.Later, we developed a CNN classifier, where the first layer embeds words into low-dimensional vectors. The next layer performs convolutions over the embedded word vectors. Results from the convolutional layer are max-pooled into a long feature vector, which is classified using a softmax layer. The CNN's accuracy

  4. Applying Mixed Methods Techniques in Strategic Planning

    Science.gov (United States)

    Voorhees, Richard A.

    2008-01-01

    In its most basic form, strategic planning is a process of anticipating change, identifying new opportunities, and executing strategy. The use of mixed methods, blending quantitative and qualitative analytical techniques and data, in the process of assembling a strategic plan can help to ensure a successful outcome. In this article, the author…

  5. Method applied for the HPGe detector characterization

    International Nuclear Information System (INIS)

    Guillot, Nicolas; Monestier, Mathieu; Saurel, Nicolas

    2013-06-01

    Gamma ray spectrometry is a passive non destructive assay most commonly used to identify and quantify the radionuclides present in the complex huge objects such as nuclear waste packages. The treatment of spectra from the measurement of nuclear waste is performed in two steps: the first step is to extract the raw data from the spectra (energies and net photoelectric absorption peaks areas) and the second step is to determine the detection efficiency of the measured scene. The establishment by numerical modeling of the detection efficiency of the measured scene requires numerical modeling of both the measuring device (in this case a hyper pure germanium detector HPGe) and numerical modeling of the measured object. Numerical detector modeling is also called diode characterization, and has a spatial response equivalent to these of the real HPGe detector. This characterization is essential for the quantification of complex and non reproducible huge objects for which the detection efficiency can not be determined empirically. The Nuclear Measurement and Valuation Laboratory (LMNE) at the Atomic Energy Commission Valduc (CEA Valduc) has developed a new methodology for characterizing the HPGe detector. It has been tested experimentally with a real diode present in the laboratory (P-type planar detector). The characterization obtained with this methodology is similar to these of a real HPGe detector with an uncertainty approaching 5 percents. It is valid for a distance ranging from 10 cm to 150 cm, an angle ranging from 0 to 90 degrees and energy range from 53 keV to 1112 keV. The energy range is obtained with a source of Barium-133 and a source of Europium-152. The continuity of the detection efficiency curve is checked between the two sources with an uncertainty less than 2 percents. In addition, this methodology can be extrapolated to any type of detector crystal geometry (planar). (authors)

  6. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    Science.gov (United States)

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  7. Characterization of 2.25Cr1Mo welded ferritic steel plate by using diffractometric and ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cernuschi, F.; Ghia, S. [Ente Nazionale per l`Energia Elettrica, Milan (Italy); Albertini, G.; Ceretti, M.; Rustichelli, F. [Ancona Univ. (Italy). Ist. di Fisica Medica; Castelnuovo, A.; Depero, L. [Univ. degli studi, Brescia.Fac. di ingegneria, dip. di ingegneria meccanica (Italy); Giamboni, S.; Gori, M. [Centro Elettrotecnico Sperimentale Italiano (CESI), Milan (Italy)

    1995-12-01

    Four different techniques (X-ray and neutron diffraction, ultrasonic birefringence and incremental hole drilling method) were applied for evaluating residual stress in a butt-welded ferritic steel palte. Measurements were carried out both before and after welding. Effects of post-welding heat treatment is also considered. A comparison between results obtained by using four different techniques is done.

  8. Assessment of analytical techniques for characterization of crystalline clopidogrel forms in patent applications

    Directory of Open Access Journals (Sweden)

    Luiz Marcelo Lira

    2014-04-01

    Full Text Available The aim of this study was to evaluate two important aspects of patent applications of crystalline forms of drugs: (i the physicochemical characterization of the crystalline forms; and (ii the procedure for preparing crystals of the blockbuster drug clopidogrel. To this end, searches were conducted using online patent databases. The results showed that: (i the majority of patent applications for clopidogrel crystalline forms failed to comply with proposed Brazilian Patent Office guidelines. This was primarily due to insufficient number of analytical techniques evaluating the crystalline phase. In addition, some patent applications lacked assessment of chemical/crystallography purity; (ii use of more than two analytical techniques is important; and (iii the crystallization procedure for clopidogrel bisulfate form II were irreproducible based on the procedure given in the patent application.

  9. Preparation and characterization of etoricoxib solid dispersions using lipid carriers by spray drying technique

    OpenAIRE

    Chauhan, Bhaskar; Shimpi, Shyam; Paradkar, Anant

    2005-01-01

    The basic objectives of this study were to prepare and characterize solid dispersions of poorly water-soluble drug etoricoxib using lipid carriers by spray drying technique. The properties of solid dispersions were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), differential scanning calorimetry (DSC), hotstage microscopy (HSM), radiograph powder diffraction (XRPD), and dissolution studies. The absence of etoricoxib peaks in XRPD profiles of solid dispersions ...

  10. Optimization of analytical techniques to characterize antibiotics in aquatic systems

    International Nuclear Information System (INIS)

    Al Mokh, S.

    2013-01-01

    Antibiotics are considered as pollutants when they are present in aquatic ecosystems, ultimate receptacles of anthropogenic substances. These compounds are studied as their persistence in the environment or their effects on natural organisms. Numerous efforts have been made worldwide to assess the environmental quality of different water resources for the survival of aquatic species, but also for human consumption and health risk related. Towards goal, the optimization of analytical techniques for these compounds in aquatic systems remains a necessity. Our objective is to develop extraction and detection methods for 12 molecules of aminoglycosides and colistin in sewage treatment plants and hospitals waters. The lack of analytical methods for analysis of these compounds and the deficiency of studies for their detection in water is the reason for their study. Solid Phase Extraction (SPE) in classic mode (offline) or online followed by Liquid Chromatography analysis coupled with Mass Spectrometry (LC/MS/MS) is the most method commonly used for this type of analysis. The parameters are optimized and validated to ensure the best conditions for the environmental analysis. This technique was applied to real samples of wastewater treatment plants in Bordeaux and Lebanon. (author)

  11. Non-destructive and micro-invasive testing techniques for characterizing materials, structures and restoration problems in mural paintings

    Energy Technology Data Exchange (ETDEWEB)

    Tortora, Mariagrazia, E-mail: Mariagrazia.Tortora@univaq.it [University of L’Aquila, Department of Physical and Chemical Sciences, Via Vetoio (Coppito 1), I-67100, Loc. Coppito, L’Aquila, AQ (Italy); Sfarra, Stefano, E-mail: Stefano.Sfarra@univaq.it [Las.E.R. Laboratory, University of L’Aquila, Department of Industrial and Information Engineering and Economics, Piazzale E. Pontieri 1, I-67100, Loc. Monteluco di Roio, Roio Poggio, L’Aquila, AQ, Italy, (Italy); Chiarini, Marco, E-mail: mchiarini@unite.it [University of Teramo, Department of Bioscience and Technology for Food Agriculture and Environment, Via Carlo Lerici 1, I-64023, Mosciano Sant’Angelo, Teramo, TE, Italy, (Italy); Daniele, Valeria, E-mail: Valeria.Daniele@univaq.it [University of L’Aquila, Department of Industrial and Information Engineering and Economics, Piazzale E. Pontieri 1, I-67100, Loc. Monteluco di Roio, Roio Poggio, L’Aquila, AQ (Italy); Taglieri, Giuliana, E-mail: Giuliana.Taglieri@univaq.it [University of L’Aquila, Department of Industrial and Information Engineering and Economics, Piazzale E. Pontieri 1, I-67100, Loc. Monteluco di Roio, Roio Poggio, L’Aquila, AQ (Italy); Cerichelli, Giorgio, E-mail: Giorgio.Cerichelli@univaq.it [University of L’Aquila, Department of Physical and Chemical Sciences, Via Vetoio (Coppito 1), I-67100, Loc. Coppito, L’Aquila, AQ (Italy)

    2016-11-30

    Highlights: • Infrared thermography allowed to identify structural damage and rising damp effect. • The present approach provided insights on the used pigments and painting techniques. • FT-IR, XRF and XRD analyses of the mortar sample showed the peculiar composition. • 1D, 2D NMR analyses were useful for the identification of the restoration polymer. • NMR technique also allowed to characterize the plasticizing agents. - Abstract: In this paper, chemical and structural studies of medieval wall paintings in Ocre (L’Aquila, Italy) are presented. During the latest restoration campaign, non-destructive (Near-Infrared Reflectography and Infrared Thermography) and micro-invasive (Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, μ-Raman, Scanning Electron Microscopy with X-ray Microanalysis, X-Ray Diffraction, X-Ray Fluorescence, Optical Microscopy, Mass Spectrometry, Thermogravimetry) analyses were performed in order to determine the detachments of wall surfaces and the characterization of original and restoration materials. Data integration allowed to reconstruct the conservative history, the execution techniques and the conservation problems of the artefact, as well as to assess the effectiveness of restoration activities adopted. The combined use of physical and micro-chemical techniques proved to be effective for an in-depth study of materials stratification of paintings.

  12. Non-destructive and micro-invasive testing techniques for characterizing materials, structures and restoration problems in mural paintings

    International Nuclear Information System (INIS)

    Tortora, Mariagrazia; Sfarra, Stefano; Chiarini, Marco; Daniele, Valeria; Taglieri, Giuliana; Cerichelli, Giorgio

    2016-01-01

    Highlights: • Infrared thermography allowed to identify structural damage and rising damp effect. • The present approach provided insights on the used pigments and painting techniques. • FT-IR, XRF and XRD analyses of the mortar sample showed the peculiar composition. • 1D, 2D NMR analyses were useful for the identification of the restoration polymer. • NMR technique also allowed to characterize the plasticizing agents. - Abstract: In this paper, chemical and structural studies of medieval wall paintings in Ocre (L’Aquila, Italy) are presented. During the latest restoration campaign, non-destructive (Near-Infrared Reflectography and Infrared Thermography) and micro-invasive (Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, μ-Raman, Scanning Electron Microscopy with X-ray Microanalysis, X-Ray Diffraction, X-Ray Fluorescence, Optical Microscopy, Mass Spectrometry, Thermogravimetry) analyses were performed in order to determine the detachments of wall surfaces and the characterization of original and restoration materials. Data integration allowed to reconstruct the conservative history, the execution techniques and the conservation problems of the artefact, as well as to assess the effectiveness of restoration activities adopted. The combined use of physical and micro-chemical techniques proved to be effective for an in-depth study of materials stratification of paintings.

  13. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M. [Advanced Concepts Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30318 (United States)

    2016-05-15

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S{sub 21}) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S{sub 21} measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10{sup −3} for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  14. Applying modern psychometric techniques to melodic discrimination testing: Item response theory, computerised adaptive testing, and automatic item generation.

    Science.gov (United States)

    Harrison, Peter M C; Collins, Tom; Müllensiefen, Daniel

    2017-06-15

    Modern psychometric theory provides many useful tools for ability testing, such as item response theory, computerised adaptive testing, and automatic item generation. However, these techniques have yet to be integrated into mainstream psychological practice. This is unfortunate, because modern psychometric techniques can bring many benefits, including sophisticated reliability measures, improved construct validity, avoidance of exposure effects, and improved efficiency. In the present research we therefore use these techniques to develop a new test of a well-studied psychological capacity: melodic discrimination, the ability to detect differences between melodies. We calibrate and validate this test in a series of studies. Studies 1 and 2 respectively calibrate and validate an initial test version, while Studies 3 and 4 calibrate and validate an updated test version incorporating additional easy items. The results support the new test's viability, with evidence for strong reliability and construct validity. We discuss how these modern psychometric techniques may also be profitably applied to other areas of music psychology and psychological science in general.

  15. Characterization modelling of aquatic ecotoxicity from metal emission to be applied in Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Dong, Yan

    water, Al(III) and Cu(II) have the highest CF of all the investigated metals, while Cd has the highest CF in other water types. The emission weighted freshwater CF was recommended to be applied as site-generic CF in the LCA studies where emission location and water chemistry of the receiving freshwater......Following the Apeldoorn Declaration (Aboussouan et al. 2004) and Clearwater Consensus (Diamond et al. 2010), Gandhi et al. (2010) developed a new method to calculate metals Characterization Factor (CF) in freshwater and applied it on six metals, considering metals speciation and its impacts...... is either lacking (e.g. USEtox, IMPACT 2002+), or derived by applying freshwater ecotoxicity data and ignoring metal speciation (e.g. USES-LCA). Moreover, the connection between freshwater and seawater, the estuary, which may act as a metal filter, is missing in the framework. To solve the problems...

  16. Smart materials-based actuators at the micronano-scale characterization, control, and applications

    CERN Document Server

    2013-01-01

    Smart Materials-Based Actuators at the Micro/Nano-Scale: Characterization, Control, and Applications gives a state of the art of emerging techniques to the characterization and control of actuators based on smart materials working at the micro/nano scale. The book aims to characterize some commonly used structures based on piezoelectric and electroactive polymeric actuators and also focuses on various and emerging techniques employed to control them. This book also includes two of the most emerging topics and applications: nanorobotics and cells micro/nano-manipulation. This book: Provides both theoretical and experimental results Contains complete information from characterization, modeling, identification, control to final applications for researchers and engineers that would like to model, characterize, control and apply their own micro/nano-systems Discusses applications such as microrobotics and their control, design and fabrication of microsystems, microassembly and its automation, nanorobotics and thei...

  17. Characterization of Ni–Cr alloys using different casting techniques and molds

    International Nuclear Information System (INIS)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-01-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis

  18. Characterization of Ni–Cr alloys using different casting techniques and molds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Teng, Fu-Yuan [Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Hung, Chun-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China)

    2014-02-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis.

  19. Characterization of Electronic Materials HgZnSe and HgZnTe Using Innovative and Conventional Techniques

    Science.gov (United States)

    Tanton, George; Kesmodel, Roy; Burden, Judy; Su, Ching-Hua; Cobb, Sharon D.; Lehoczky, S. L.

    2000-01-01

    HgZnSe and HgZnTe are electronic materials of interest for potential IR detector and focal plane array applications due to their improved strength and compositional stability over HgCdTe, but they are difficult to grow on Earth and to fully characterize. Conventional contact methods of characterization, such as Hall and van der Paw, although adequate for many situations are typically labor intensive and not entirely suitable where only very small samples are available. To adequately characterize and compare properties of electronic materials grown in low earth orbit with those grown on Earth, innovative techniques are needed that complement existing methods. This paper describes the implementation and test results of a unique non-contact method of characterizing uniformity, mobility, and carrier concentration together with results from conventional methods applied to HgZnSe and HgZnTe. The innovative method has advantages over conventional contact methods since it circumvents problems of possible contamination from alloying electrical contacts to a sample and also has the capability to map a sample. Non- destructive mapping, the determination of the carrier concentration and mobility at each place on a sample, provides a means to quantitatively compare, at high spatial resolution, effects of microgravity on electronic properties and uniformity of electronic materials grown in low-Earth orbit with Earth grown materials. The mapping technique described here uses a 1mm diameter polarized beam of radiation to probe the sample. Activation of a magnetic field, in which the sample is placed, causes the plane of polarization of the probe beam to rotate. This Faraday rotation is a function of the free carrier concentration and the band parameters of the material. Maps of carrier concentration, mobility, and transmission generated from measurements of the Faraday rotation angles over the temperature range from 300K to 77K will be presented. New information on band parameters

  20. General technique to produce isochronous Hamiltonians

    International Nuclear Information System (INIS)

    Calogero, F; Leyvraz, F

    2007-01-01

    We introduce a new technique-characterized by an arbitrary positive constant Ω, with which we associate the period T = 2π/Ω-to 'Ω-modify' a Hamiltonian so that the new Hamiltonian thereby obtained is entirely isochronous, namely it yields motions all of which (except possibly for a lower dimensional set of singular motions) are periodic with the same fixed period T in all their degrees of freedom. This technique transforms real autonomous Hamiltonians into Ω-modified Hamiltonians which are also real and autonomous, and it is widely applicable, for instance, to the most general many-body problem characterized by Newtonian equations of motion ('acceleration equal force') provided it is translation invariant. The Ω-modified Hamiltonians are of course not translation invariant, but for Ω = 0 they reduce (up to marginal changes) to the unmodified Hamiltonians they were obtained from. Hence, when this technique is applied to translation-invariant Hamiltonians yielding, in their center-of-mass systems, chaotic motions with a natural time scale much smaller than T, the corresponding Ω-modified Hamiltonians shall display a chaotic behavior for quite some time before the isochronous character of the motions takes over. We moreover show that the quantized versions of these Ω-modified Hamiltonians feature equispaced spectra

  1. Evaluation of shot peened surfaces using characterization technique of three-dimensional surface topography

    International Nuclear Information System (INIS)

    Kurokawa, S; Ariura, Y

    2005-01-01

    Objective parameters to characterize global topography of three-dimensional surfaces have been derived. The idea of this evaluation is to separate the topography into two global form deviations and residual ones according to the degree of curved surfaces. A shot peened Almen strip is measured by profilometer and concrete parameters of inclination and circular-arc shaped global topography are extracted using the characterization technique. The arc height is calculated using the circular arc-shaped part and compared with a value measured by an Almen gauge. The relation between the coverage and roughness parameters is also investigated. The advantage of this evaluation is that it is possible to determine the arc height and the coverage at the same time from single measured topography. In addition, human error can be excluded from measurement results. This method has the wide application in the field of measurement

  2. Photothermal experiments on condensed phase samples of agricultural interest : optical and thermal characterization

    OpenAIRE

    Favier, J.P.

    1997-01-01


    A rapidly increasing number of photothermal (PT) techniques has had a considerable impact on agriculture and environmental sciences in the last decade. It was the purpose of the work described here to develop and apply new PT techniques in this specific field of research.

    Chapter I is a general introduction with an overview of PT techniques used in this research. Two different photoacoustic (PA) techniques used for optical characterization of a variety of condensed phase sa...

  3. Personnel contamination protection techniques applied during the TMI-2 [Three Mile Island Unit 2] cleanup

    International Nuclear Information System (INIS)

    Hildebrand, J.E.

    1988-01-01

    The severe damage to the Three Mile Island Unit 2 (TMI-2) core and the subsequent discharge of reactor coolant to the reactor and auxiliary buildings resulted in extremely hostile radiological environments in the TMI-2 plant. High fission product surface contamination and radiation levels necessitated the implementation of innovative techniques and methods in performing cleanup operations while assuring effective as low as reasonably achievable (ALARA) practices. The approach utilized by GPU Nuclear throughout the cleanup in applying protective clothing requirements was to consider the overall health risk to the worker including factors such as cardiopulmonary stress, visual and hearing acuity, and heat stress. In applying protective clothing requirements, trade-off considerations had to be made between preventing skin contaminations and possibly overprotecting the worker, thus impacting his ability to perform his intended task at maximum efficiency and in accordance with ALARA principles. The paper discusses the following topics: protective clothing-general use, beta protection, skin contamination, training, personnel access facility, and heat stress

  4. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-Latorre, C., E-mail: carlos.herrero@usc.es; Álvarez-Méndez, J.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.

    2015-01-01

    Highlights: • Analytical techniques for characterization of CNTs: classification, description and examples. • Determination methods for CNTs in biological and environmental samples. • Future trends and perspectives for characterization and determination of CNTs. - Abstract: In the present paper, a critical overview of the most commonly used techniques for the characterization and the determination of carbon nanotubes (CNTs) is given on the basis of 170 references (2000–2014). The analytical techniques used for CNT characterization (including microscopic and diffraction, spectroscopic, thermal and separation techniques) are classified, described, and illustrated with applied examples. Furthermore, the performance of sampling procedures as well as the available methods for the determination of CNTs in real biological and environmental samples are reviewed and discussed according to their analytical characteristics. In addition, future trends and perspectives in this field of work are critically presented.

  5. Nanotribological and nanomechanical characterization of human hair using a nanoscratch technique

    Energy Technology Data Exchange (ETDEWEB)

    Wei Guohua [Nanotribology Laboratory for Information Storage and MEMS/NEMS, Ohio State University, 650 Ackerman Road, Suite 255, Columbus, OH 43202 (United States); Bhushan, Bharat [Nanotribology Laboratory for Information Storage and MEMS/NEMS, Ohio State University, 650 Ackerman Road, Suite 255, Columbus, OH 43202 (United States)]. E-mail: bhushan.2@osu.edu

    2006-06-15

    Human hair ({approx}50-100 {mu}m in diameter) is a nanocomposite biological fiber with well-characterized microstructures, and is of great interest for both cosmetic science and materials science. Characterization of nanotribological and nanomechanical properties of human hair including the coefficient of friction and scratch resistance is essential to develop better shampoo and conditioner products and advance biological and cosmetic science. In this paper, the coefficient of friction and scratch resistance of Caucasian and Asian hair at virgin, chemo-mechanically damaged, and conditioner-treated conditions are measured using a nanoscratch technique with a Nano Indenter II system. The scratch tests were performed on both the single cuticle cell and multiple cuticle cells of each hair sample, and the scratch wear tracks were studied using scanning electron microscopy (SEM) after the scratch tests. The effect of soaking on the coefficient of friction, scratch resistance, hardness and Young's modulus of hair surface were also studied by performing experiments on hair samples which had been soaked in de-ionized water for 5 min. The nanotribological and nanomechanical properties of human hair as a function of hair structure (hair of different ethnicity), damage, treatment and soaking are discussed.

  6. Nanotribological and nanomechanical characterization of human hair using a nanoscratch technique

    International Nuclear Information System (INIS)

    Wei Guohua; Bhushan, Bharat

    2006-01-01

    Human hair (∼50-100 μm in diameter) is a nanocomposite biological fiber with well-characterized microstructures, and is of great interest for both cosmetic science and materials science. Characterization of nanotribological and nanomechanical properties of human hair including the coefficient of friction and scratch resistance is essential to develop better shampoo and conditioner products and advance biological and cosmetic science. In this paper, the coefficient of friction and scratch resistance of Caucasian and Asian hair at virgin, chemo-mechanically damaged, and conditioner-treated conditions are measured using a nanoscratch technique with a Nano Indenter II system. The scratch tests were performed on both the single cuticle cell and multiple cuticle cells of each hair sample, and the scratch wear tracks were studied using scanning electron microscopy (SEM) after the scratch tests. The effect of soaking on the coefficient of friction, scratch resistance, hardness and Young's modulus of hair surface were also studied by performing experiments on hair samples which had been soaked in de-ionized water for 5 min. The nanotribological and nanomechanical properties of human hair as a function of hair structure (hair of different ethnicity), damage, treatment and soaking are discussed

  7. A Systematic Approach to Applying Lean Techniques to Optimize an Office Process at the Y-12 National Security Complex

    Energy Technology Data Exchange (ETDEWEB)

    Credille, Jennifer [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Owens, Elizabeth [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-10-11

    This capstone offers the introduction of Lean concepts to an office activity to demonstrate the versatility of Lean. Traditionally Lean has been associated with process improvements as applied to an industrial atmosphere. However, this paper will demonstrate that implementing Lean concepts within an office activity can result in significant process improvements. Lean first emerged with the conception of the Toyota Production System. This innovative concept was designed to improve productivity in the automotive industry by eliminating waste and variation. Lean has also been applied to office environments, however the limited literature reveals most Lean techniques within an office are restricted to one or two techniques. Our capstone confronts these restrictions by introducing a systematic approach that utilizes multiple Lean concepts. The approach incorporates: system analysis, system reliability, system requirements, and system feasibility. The methodical Lean outline provides tools for a successful outcome, which ensures the process is thoroughly dissected and can be achieved for any process in any work environment.

  8. Development of high-sensitivity ultrasonic techniques for in-service inspection of nuclear reactors

    International Nuclear Information System (INIS)

    Linzer, M.

    1977-01-01

    The principal objective of the program is to develop techniques to enhance the sensitivity of ultrasonic signals which are below the random noise of the system. A secondary objective is to develop instrumentation for improved discrimination of flaw signals from background ''clutter'' and for characterization of failure-related material properties through measurements of ultrasonic parameters such as velocity and attenuation. The improved techniques will be applied to detect flaws in nuclear reactor materials and components

  9. Biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy.

    Science.gov (United States)

    Spyratou, E; Makropoulou, M; Mourelatou, E A; Demetzos, C

    2012-12-31

    Reactive oxygen species (ROS) are usually involved in two opposite procedures related to cancer: initiation, progression and metastasis of cancer, as well as in all non-surgical therapeutic approaches for cancer, including chemotherapy, radiotherapy and photodynamic therapy. This review is concentrated in new therapeutic strategies that take advantage of increased ROS in cancer cells to enhance therapeutic activity and selectivity. Novel biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy are discussed, including optical tweezers and atomic force microscopy. This review highlights how these techniques are playing a critical role in recent and future cancer fighting applications. We can conclude that Biophotonics and nanomedicine are the future for cancer biology and disease management, possessing unique potential for early detection, accurate diagnosis, dosimetry and personalized treatment of biomedical applications targeting cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Aerial radiation survey techniques for efficient characterization of large areas

    International Nuclear Information System (INIS)

    Sydelko, T.; Riedhauser, S.

    2006-01-01

    Full text: Accidental or intentional releases of radioactive isotopes over potentially very large surface areas can pose serious health risks to humans and ecological receptors. Timely and appropriate responses to these releases depend upon rapid and accurate characterization of impacted areas. These characterization efforts can be adversely impacted by heavy vegetation, rugged terrain, urban environments, and the presence of unknown levels of radioactivity. Aerial survey techniques have proven highly successful in measuring gamma emissions from radiological contaminates of concern quickly, efficiently, and safely. Examples of accidental releases include the unintentional distribution of uranium mining ores during transportation, the loss of uranium processing and waste materials, unintentional nuclear power plant emissions into the atmosphere, and the distribution of isotopes during major flooding events such as the one recently occurring in New Orleans. Intentional releases have occurred during the use of deleted uranium ammunition test firing and war time use by military organizations. The threat of radiological dispersion device (dirty bomb) use by terrorists is currently a major concern of many major cities worldwide. The U.S. Department of Energy, in cooperation with its Remote Sensing Laboratory and Argonne National Laboratory, has developed a sophisticated aerial measurement system for identifying the locations, types, and quantities of gamma emitting radionuclides over extremely large areas. Helicopter mounted Nal detectors are flown at low altitude and constant speed along parallel paths measuring the full spectrum of gamma activity. Analytical procedures are capable of distinguishing between radiological contamination and changes in natural background emissions. Mapped and tabular results of these accurate, timely and cost effective aerial gamma radiation surveys can be used to assist with emergency response actions, if necessary, and to focus more

  11. The differential dieaway technique applied to the measurement of the fissile content of drums of cement encapsulated waste

    International Nuclear Information System (INIS)

    Swinhoe, M.T.

    1986-01-01

    This report describes calculations of the differential dieaway technique as applied to cement encapsulated waste. The main difference from previous applications of the technique are that only one detector position is used (diametrically opposite the neutron source) and the chamber walls are made of concrete. The results show that by rotating the drum the response to fissile material across the central plane of the drum can be made relatively uniform. The absolute size of the response is about 0.4. counts per minute per gram fissile for a neutron source of 10 8 neutrons per second. Problems of neutron and gamma background and water content are considered. (author)

  12. Non-destructive electrochemical techniques applied to the corrosion evaluation of the liner structures in nuclear power plants

    International Nuclear Information System (INIS)

    Martinez, I.; Castillo, A.; Andrade, C.

    2008-01-01

    The liner structure in nuclear power plants provides containment for the operation and therefore the study of its durability and integrity during its service life is an important issue. There are several causes for the deterioration of the liner, which in general involve corrosion due to its metallic nature. The present paper is aimed at describing the assessment of corrosion problems of two liners from two different nuclear power plants, which were evaluated using non-destructive electrochemical techniques. In spite of the testing difficulties arisen, from the results extracted it can be concluded that the electrochemical techniques applied are adequate for the corrosion evaluation. They provide important information about the integrity of the structure and allow for its evolution with time to be assessed

  13. Towards factor analysis exploration applied to positron emission tomography functional imaging for breast cancer characterization

    International Nuclear Information System (INIS)

    Rekik, W.; Ketata, I.; Sellami, L.; Ben slima, M.; Ben Hamida, A.; Chtourou, K.; Ruan, S.

    2011-01-01

    This paper aims to explore the factor analysis when applied to a dynamic sequence of medical images obtained using nuclear imaging modality, Positron Emission Tomography (PET). This latter modality allows obtaining information on physiological phenomena, through the examination of radiotracer evolution during time. Factor analysis of dynamic medical images sequence (FADMIS) estimates the underlying fundamental spatial distributions by factor images and the associated so-called fundamental functions (describing the signal variations) by factors. This method is based on an orthogonal analysis followed by an oblique analysis. The results of the FADMIS are physiological curves showing the evolution during time of radiotracer within homogeneous tissues distributions. This functional analysis of dynamic nuclear medical images is considered to be very efficient for cancer diagnostics. In fact, it could be applied for cancer characterization, vascularization as well as possible evaluation of response to therapy.

  14. Morphologic characterization and quantitative analysis on in vitro bacteria by nuclear techniques of measurement

    International Nuclear Information System (INIS)

    Lopes, Joana D'Arc Ramos

    2001-10-01

    The great difficulty to identify microorganisms (bacteria) from infectious processes is related to the necessary time to obtain a reliable result, about 72 hours. The purpose of this work is to establish a faster method to characterize bacterial morphologies through the use of neutron radiography, which can take about 5 hours. The samples containing the microorganisms, bacteria with different morphologies, after the appropriate microbiologic procedures were incubated with B 10 for 30 minutes and soon after deposited in a plate of a solid detector of nuclear tracks (SSNTD), denominated CR-39. To obtain the images relative to bacteria, the detector was submitted to the flow of thermal neutrons of the order of 2.2 x 10 5 n/cm 2 .s from the J-9 channel of the Reactor Argonauta (IEN/CNEN). To observe the images from bacteria in each sample under an optical microscope, the sheets were chemically developed. The analysis of the images revealed morphologic differences among the genera (Gram positive from Gram-negative and coccus from bacillus), in samples containing either isolated or mixed bacteria. We thus verified the viability of the technique to achieve morphological characterization of different microorganisms. A quantitative approach seemed also to be feasible with the technique. The whole process took about 2 hours. (author)

  15. Positron spectroscopy for materials characterization

    International Nuclear Information System (INIS)

    Schultz, P.J.; Snead, C.L. Jr.

    1988-01-01

    One of the more active areas of research on materials involves the observation and characterization of defects. The discovery of positron localization in vacancy-type defects in solids in the 1960's initiated a vast number of experimental and theoretical investigations which continue to this day. Traditional positron annihilation spectroscopic techniques, including lifetime studies, angular correlation, and Doppler broadening of annihilation radiation, are still being applied to new problems in the bulk properties of simple metals and their alloys. In addition new techniques based on tunable sources of monoenergetic positron beams have, in the last 5 years, expanded the horizons to studies of surfaces, thin films, and interfaces. In the present paper we briefly review these experimental techniques, illustrating with some of the important accomplishments of the field. 40 refs., 19 figs

  16. Beyond Astro 101: A First Report on Applying Interactive Education Techniques to an Astronphysics Class for Majors

    Science.gov (United States)

    Perrin, Marshall D.; Ghez, A. M.

    2009-05-01

    Learner-centered interactive instruction methods now have a proven track record in improving learning in "Astro 101" courses for non-majors, but have rarely been applied to higher-level astronomy courses. Can we hope for similar gains in classes aimed at astrophysics majors, or is the subject matter too fundamentally different for those techniques to apply? We present here an initial report on an updated calculus-based Introduction to Astrophysics class at UCLA that suggests such techniques can indeed result in increased learning for major students. We augmented the traditional blackboard-derivation lectures and challenging weekly problem sets by adding online questions on pre-reading assignments (''just-in-time teaching'') and frequent multiple-choice questions in class ("Think-Pair-Share''). We describe our approach, and present examples of the new Think-Pair-Share questions developed for this more sophisticated material. Our informal observations after one term are that with this approach, students are more engaged and alert, and score higher on exams than typical in previous years. This is anecdotal evidence, not hard data yet, and there is clearly a vast amount of work to be done in this area. But our first impressions strongly encourage us that interactive methods should be able improve the astrophysics major just as they have improved Astro 101.

  17. Object oriented programming techniques applied to device access and control

    International Nuclear Information System (INIS)

    Goetz, A.; Klotz, W.D.; Meyer, J.

    1992-01-01

    In this paper a model, called the device server model, has been presented for solving the problem of device access and control faced by all control systems. Object Oriented Programming techniques were used to achieve a powerful yet flexible solution. The model provides a solution to the problem which hides device dependancies. It defines a software framework which has to be respected by implementors of device classes - this is very useful for developing groupware. The decision to implement remote access in the root class means that device servers can be easily integrated in a distributed control system. A lot of the advantages and features of the device server model are due to the adoption of OOP techniques. The main conclusion that can be drawn from this paper is that 1. the device access and control problem is adapted to being solved with OOP techniques, 2. OOP techniques offer a distinct advantage over traditional programming techniques for solving the device access problem. (J.P.N.)

  18. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    Science.gov (United States)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  19. Preparation and characterization of porous Mg-Zn-Ca alloy by space holder technique

    Science.gov (United States)

    Annur, D.; Lestari, Franciska P.; Erryani, A.; Sijabat, Fernando A.; G. P. Astawa, I. N.; Kartika, I.

    2018-04-01

    Magnesium had been recently researched as a future biodegradable implant material. In the recent study, porous Mg-Zn-Ca alloys were developed using space holder technique in powder metallurgy process. Carbamide (10-20%wt) was added into Mg-6Zn-1Ca (in wt%) alloy system as a space holder to create porous structure material. Sintering process was done in a tube furnace under Argon atmosphere in 610 °C for 5 hours. Porous structure of the resulted alloy was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction analysis (XRD). Further, mechanical properties of porous Mg-Zn-Ca alloy was examined through compression testing. Microstructure characterization showed higher content of Carbamide in the alloy would give different type of pores. However, compression test showed that mechanical properties of Mg-Zn-Ca alloy would decrease significantly when higher content of carbamide was added.

  20. A new technique of characterization of the intra-pixel response of astronomical detectors

    International Nuclear Information System (INIS)

    Ketchazo, C.; Boulade, O.; Moreau, V.; Dubreuil, D.; Ronayette, S.; Berthe, M.

    2014-01-01

    This paper is devoted to the presentation of a new technique of characterization of the Intra-Pixel Sensitivity Variations (IPSVs) of astronomical detectors. The IPSV is the spatial variation of the sensitivity within a pixel and it was demonstrated that this variation can contribute to the instrument global error. Then IPSV has not to be neglected especially in the case of under-sampled instruments for high quality imaging and accurate photometry. The common approaches to measure the IPSV consist in determining the pixel response function (PRF) by scanning an optical probe through the detector. These approaches require high-aperture optics, high precision mechanical devices and are time consuming. The original approach we will present in this paper consists in projecting high-resolution periodic patterns onto the whole sensor without classic optics but using the self-imaging property (the Talbot effect) of a Continuously Self Imaging Grating (CSIG) illuminated by a plane wave. This paper describes the test bench and its design rules. The methodology of the measurement is also presented. Two measurement procedures are available: global and local. In the global procedure, the mean PRF corresponding to the whole Focal Plane Array (FPA) or a sub-area of the FPA is evaluated. The results obtained applying this procedure on e2v CCD 204 are presented and discussed in detail. In the local procedure, a CSIG is moved in front of each pixel and a pixel PRF is reconstructed by resolving the inverse problem. The local procedure is presented and validated by simulations. (authors)

  1. Characterization of Hall effect thruster propellant distributors with flame visualization

    Science.gov (United States)

    Langendorf, S.; Walker, M. L. R.

    2013-01-01

    A novel method for the characterization and qualification of Hall effect thruster propellant distributors is presented. A quantitative measurement of the azimuthal number density uniformity, a metric which impacts propellant utilization, is obtained from photographs of a premixed flame anchored on the exit plane of the propellant distributor. The technique is demonstrated for three propellant distributors using a propane-air mixture at reservoir pressure of 40 psi (gauge) (377 kPa) exhausting to atmosphere, with volumetric flow rates ranging from 15-145 cfh (7.2-68 l/min) with equivalence ratios from 1.2 to 2.1. The visualization is compared with in-vacuum pressure measurements 1 mm downstream of the distributor exit plane (chamber pressure held below 2.7 × 10-5 Torr-Xe at all flow rates). Both methods indicate a non-uniformity in line with the propellant inlet, supporting the validity of the technique of flow visualization with flame luminosity for propellant distributor characterization. The technique is applied to a propellant distributor with a manufacturing defect in a known location and is able to identify the defect and characterize its impact. The technique is also applied to a distributor with numerous small orifices at the exit plane and is able to resolve the resulting non-uniformity. Luminosity data are collected with a spatial resolution of 48.2-76.1 μm (pixel width). The azimuthal uniformity is characterized in the form of standard deviation of azimuthal luminosities, normalized by the mean azimuthal luminosity. The distributors investigated achieve standard deviations of 0.346 ± 0.0212, 0.108 ± 0.0178, and 0.708 ± 0.0230 mean-normalized luminosity units respectively, where a value of 0 corresponds to perfect uniformity and a value of 1 represents a standard deviation equivalent to the mean.

  2. A systematic review of applying modern software engineering techniques to developing robotic systems

    Directory of Open Access Journals (Sweden)

    Claudia Pons

    2012-01-01

    Full Text Available Robots have become collaborators in our daily life. While robotic systems become more and more complex, the need to engineer their software development grows as well. The traditional approaches used in developing these software systems are reaching their limits; currently used methodologies and tools fall short of addressing the needs of such complex software development. Separating robotics’ knowledge from short-cycled implementation technologies is essential to foster reuse and maintenance. This paper presents a systematic review (SLR of the current use of modern software engineering techniques for developing robotic software systems and their actual automation level. The survey was aimed at summarizing existing evidence concerning applying such technologies to the field of robotic systems to identify any gaps in current research to suggest areas for further investigation and provide a background for positioning new research activities.

  3. An acceleration technique for the Gauss-Seidel method applied to symmetric linear systems

    Directory of Open Access Journals (Sweden)

    Jesús Cajigas

    2014-06-01

    Full Text Available A preconditioning technique to improve the convergence of the Gauss-Seidel method applied to symmetric linear systems while preserving symmetry is proposed. The preconditioner is of the form I + K and can be applied an arbitrary number of times. It is shown that under certain conditions the application of the preconditioner a finite number of steps reduces the matrix to a diagonal. A series of numerical experiments using matrices from spatial discretizations of partial differential equations demonstrates that both versions of the preconditioner, point and block version, exhibit lower iteration counts than its non-symmetric version. Resumen. Se propone una técnica de precondicionamiento para mejorar la convergencia del método Gauss-Seidel aplicado a sistemas lineales simétricos pero preservando simetría. El precondicionador es de la forma I + K y puede ser aplicado un número arbitrario de veces. Se demuestra que bajo ciertas condiciones la aplicación del precondicionador un número finito de pasos reduce la matriz del sistema precondicionado a una diagonal. Una serie de experimentos con matrices que provienen de la discretización de ecuaciones en derivadas parciales muestra que ambas versiones del precondicionador, por punto y por bloque, muestran un menor número de iteraciones en comparación con la versión que no preserva simetría.

  4. Computational modeling applied to stress gradient analysis for metallic alloys

    International Nuclear Information System (INIS)

    Iglesias, Susana M.; Assis, Joaquim T. de; Monine, Vladimir I.

    2009-01-01

    Nowadays composite materials including materials reinforced by particles are the center of the researcher's attention. There are problems with the stress measurements in these materials, connected with the superficial stress gradient caused by the difference of the stress state of particles on the surface and in the matrix of the composite material. Computer simulation of diffraction profile formed by superficial layers of material allows simulate the diffraction experiment and gives the possibility to resolve the problem of stress measurements when the stress state is characterized by strong gradient. The aim of this paper is the application of computer simulation technique, initially developed for homogeneous materials, for diffraction line simulation of composite materials and alloys. Specifically we applied this technique for siluminum fabricated by powder metallurgy. (author)

  5. Characterization of arsenic-contaminated aquifer sediments from eastern Croatia by ion microbeam, PIXE and ICP-OES techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ujević Bošnjak, M., E-mail: magdalena.ujevic@hzjz.hr [Croatian National Institute of Public Health, Rockefelerova 7, 10000 Zagreb (Croatia); Fazinić, S. [Institute Ruđer Bošković, Bijenička cesta, 10000 Zagreb (Croatia); Duić, Ž. [University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb (Croatia)

    2013-10-01

    Highlights: •ICP-OES and PIXE used in the characterization of As-contaminated sediments. •Observed high correlations between the results obtained by those techniques. •Discrepancies observed for Mn, and for the highest As concentrations. •Microbeam analyses showed As association with sulphides and iron. -- Abstract: Groundwater arsenic contamination has been evidenced in eastern Croatia and hydrochemical results suggest that the occurrence of arsenic in the groundwater depends on the local geology, hydrogeology, and geochemical characteristics of the aquifer. In order to perform the sediment characterization and to investigate arsenic association with the other elements in the sediments, 10 samples from two boreholes (PVc-3 and Gundinci 1) in eastern Croatia were analyzed using two techniques: PIXE (without sample pre-treatment) and ICP-OES (after digestion), as well by ion microbeam analyses. The results of the PIXE and ICP-OES techniques showed quite good agreement; however, greater discrepancies were observed at the higher arsenic and manganese mass ratios. According to both techniques, higher As mass ratios were observed in the sediments from the PVc-3 core (up to 651 mg/kg and 491 mg/kg using PIXE and ICP-OES analyses respectively) than from the Gundinci 1 core (up to 60 mg/kg using both techniques). Although arsenic association with Fe is expected, no correlation was observed. The microbeam analyses demonstrated that arsenic is associated with sulphides and iron in the most As-contaminated sample from the PVc-3 core, while this relationship was not evident in the most As-contaminated sample from the Gundinci 1 borehole.

  6. Characterization of arsenic-contaminated aquifer sediments from eastern Croatia by ion microbeam, PIXE and ICP-OES techniques

    International Nuclear Information System (INIS)

    Ujević Bošnjak, M.; Fazinić, S.; Duić, Ž.

    2013-01-01

    Highlights: •ICP-OES and PIXE used in the characterization of As-contaminated sediments. •Observed high correlations between the results obtained by those techniques. •Discrepancies observed for Mn, and for the highest As concentrations. •Microbeam analyses showed As association with sulphides and iron. -- Abstract: Groundwater arsenic contamination has been evidenced in eastern Croatia and hydrochemical results suggest that the occurrence of arsenic in the groundwater depends on the local geology, hydrogeology, and geochemical characteristics of the aquifer. In order to perform the sediment characterization and to investigate arsenic association with the other elements in the sediments, 10 samples from two boreholes (PVc-3 and Gundinci 1) in eastern Croatia were analyzed using two techniques: PIXE (without sample pre-treatment) and ICP-OES (after digestion), as well by ion microbeam analyses. The results of the PIXE and ICP-OES techniques showed quite good agreement; however, greater discrepancies were observed at the higher arsenic and manganese mass ratios. According to both techniques, higher As mass ratios were observed in the sediments from the PVc-3 core (up to 651 mg/kg and 491 mg/kg using PIXE and ICP-OES analyses respectively) than from the Gundinci 1 core (up to 60 mg/kg using both techniques). Although arsenic association with Fe is expected, no correlation was observed. The microbeam analyses demonstrated that arsenic is associated with sulphides and iron in the most As-contaminated sample from the PVc-3 core, while this relationship was not evident in the most As-contaminated sample from the Gundinci 1 borehole

  7. Isolation, identification and characterization of lawsone from henna leaves powder with soxhlet technique

    Directory of Open Access Journals (Sweden)

    Mehrdad Mahkam

    2014-02-01

    Full Text Available Lawsone, a natural pigment present in the henna leaves, has been used as a skin and hair dye since 1400 BC. The concentration of this natural compound in leaves varies from place to place depending upon many of the environmental factors and the highest quantity reported so far is about 1% of the dry mass. Heretofore, it has been reported that natural colored extracts isolate from Henna leaves with many methods such as maceration, digestion, microwave and infusion. In this paper, regarding the therapeutic effects and traditional applications of henna, it was tried to isolate and characterize Lawsone from the henna leaves marketed in Tabriz city of Iran by soxhlet extraction technique in methanol solvent. The advantage of this technique is the isolation of large amounts of lawsone (720 mg from 40 g henne leaves powder with smaller quantity of methanol.

  8. Closing the gap: accelerating the translational process in nanomedicine by proposing standardized characterization techniques.

    Science.gov (United States)

    Khorasani, Ali A; Weaver, James L; Salvador-Morales, Carolina

    2014-01-01

    On the cusp of widespread permeation of nanomedicine, academia, industry, and government have invested substantial financial resources in developing new ways to better treat diseases. Materials have unique physical and chemical properties at the nanoscale compared with their bulk or small-molecule analogs. These unique properties have been greatly advantageous in providing innovative solutions for medical treatments at the bench level. However, nanomedicine research has not yet fully permeated the clinical setting because of several limitations. Among these limitations are the lack of universal standards for characterizing nanomaterials and the limited knowledge that we possess regarding the interactions between nanomaterials and biological entities such as proteins. In this review, we report on recent developments in the characterization of nanomaterials as well as the newest information about the interactions between nanomaterials and proteins in the human body. We propose a standard set of techniques for universal characterization of nanomaterials. We also address relevant regulatory issues involved in the translational process for the development of drug molecules and drug delivery systems. Adherence and refinement of a universal standard in nanomaterial characterization as well as the acquisition of a deeper understanding of nanomaterials and proteins will likely accelerate the use of nanomedicine in common practice to a great extent.

  9. Intercomparison of techniques for inspection and diagnostics of heavy water reactor pressure tubes. Determination of hydrogen concentration and blister characterization

    International Nuclear Information System (INIS)

    2009-03-01

    Heavy water reactors (HWRs) comprise significant numbers of today's operating nuclear power plants, and more are under construction. Efficient and accurate inspection and diagnostic techniques for various reactor components and systems, especially pressure tubes, are an important factor in ensuring reliable and safe plant operation. To foster international collaboration in the efficient and safe use of nuclear power, the IAEA conducted a Coordinated Research Project (CRP) on Intercomparison of Techniques for HWR Pressure Tube Inspection and Diagnostics. This CRP was carried out within the framework of the IAEA's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). The TWG-HWR is a group of experts nominated by their governments and designated by the IAEA to provide advice and to support implementation of IAEA's project on advanced technologies for HWRs. The objective of the CRP was to compare non-destructive inspection and diagnostic techniques, in use and being developed, for structural integrity assessment of HWR pressure tubes. During the first phase of this CRP participants investigated the capability of different techniques to detect and characterize flaws. During the second phase participants collaborated to detect and characterize hydride blisters and to determine the hydrogen concentration in zirconium alloys. The intention was to identify the most effective pressure tube inspection and diagnostic methods and to identify further development needs. The organizations which participated in phase 2 of this CRP are: - Comision Nacional de Energia Atomica (CNEA), Argentina; - Atomic Energy of Canada Ltd. (AECL), Chalk River Laboratories (CRL), Canada; - Bhabha Atomic Research Centre (BARC), India; - Korea Atomic Energy Research Institute (KAERI), Republic of Korea; - National Institute for Research and Development for Technical Physics (NIRDTP), Romania; - Nuclear Non-Destructive Testing Research and Services (NNDT), Romania. IAEA-TECDOC-1499

  10. Using data mining techniques to characterize participation in observational studies.

    Science.gov (United States)

    Linden, Ariel; Yarnold, Paul R

    2016-12-01

    Data mining techniques are gaining in popularity among health researchers for an array of purposes, such as improving diagnostic accuracy, identifying high-risk patients and extracting concepts from unstructured data. In this paper, we describe how these techniques can be applied to another area in the health research domain: identifying characteristics of individuals who do and do not choose to participate in observational studies. In contrast to randomized studies where individuals have no control over their treatment assignment, participants in observational studies self-select into the treatment arm and therefore have the potential to differ in their characteristics from those who elect not to participate. These differences may explain part, or all, of the difference in the observed outcome, making it crucial to assess whether there is differential participation based on observed characteristics. As compared to traditional approaches to this assessment, data mining offers a more precise understanding of these differences. To describe and illustrate the application of data mining in this domain, we use data from a primary care-based medical home pilot programme and compare the performance of commonly used classification approaches - logistic regression, support vector machines, random forests and classification tree analysis (CTA) - in correctly classifying participants and non-participants. We find that CTA is substantially more accurate than the other models. Moreover, unlike the other models, CTA offers transparency in its computational approach, ease of interpretation via the decision rules produced and provides statistical results familiar to health researchers. Beyond their application to research, data mining techniques could help administrators to identify new candidates for participation who may most benefit from the intervention. © 2016 John Wiley & Sons, Ltd.

  11. Porous Structure Characterization in Titanium Coating for Surgical Implants

    Directory of Open Access Journals (Sweden)

    M.V. Oliveira

    2002-09-01

    Full Text Available Powder metallurgy techniques have been used to produce controlled porous structures, such as the porous coatings applied for dental and orthopedic surgical implants, which allow bony tissue ingrowth within the implant surface improving fixation. This work presents the processing and characterization of titanium porous coatings of different porosity levels, processed through powder metallurgy techniques. Pure titanium sponge powders were used for coating and Ti-6Al7Nb powder metallurgy rods were used as substrates. Characterization was made through quantitative metallographic image analysis using optical light microscope for coating porosity data and SEM analysis for evaluation of the coating/substrate interface integrity. The results allowed optimization of the processing parameters in order to obtain porous coatings that meet the requirements for use as implants.

  12. Nondestructive characterization of hydrogen concentration in zircaloy cladding tubes with laser ultrasound technique

    International Nuclear Information System (INIS)

    Yang, Che Hua; Lai, Yu An

    2006-01-01

    This paper describes a laser ultrasound technique (LUT) for nondestructive characterization of hydrogen concentration (HC) in Zircaloy cladding tubes. With the LUT, guided ultrasonic waves are generated remotely and then propagate in the axial direction of Zircaloy tubes, and finally detected remotely by an optical probe. By measuring the dispersion spectra with the LUT, relations between the dispersion spectra and the HC of the Zircaloy tubes can be established. The LUT is non-contact, capable of remote inspection, and therefore suitable for nondestructive inspection of HC in Zircaloy cladding tubes used in nuclear power plant.

  13. Measurement techniques for radio frequency nanoelectronics

    CERN Document Server

    Wallis, T Mitch

    2017-01-01

    Connect basic theory with real-world applications with this practical, cross-disciplinary guide to radio frequency measurement of nanoscale devices and materials.• Learn the techniques needed for characterizing the performance of devices and their constituent building blocks, including semiconducting nanowires, graphene, and other two dimensional materials such as transition metal dichalcogenides• Gain practical insights into instrumentation, including on-wafer measurement platforms and scanning microwave microscopy• Discover how measurement techniques can be applied to solve real-world problems, in areas such as passive and active nanoelectronic devices, semiconductor dopant profiling, subsurface nanoscale tomography, nanoscale magnetic device engineering, and broadband, spatially localized measurements of biological materialsFeaturing numerous practical examples, and written in a concise yet rigorous style, this is the ideal resource for researchers, practicing engineers, and graduate students new to ...

  14. Characterization of anisotropic UF-membranes: top layer thickness and pore structure

    NARCIS (Netherlands)

    Cuperus, F.P.; Cuperus, F.P.; Bargeman, D.; Bargeman, D.; Smolders, C.A.; Smolders, C.A.

    1991-01-01

    Anisotropic poly(2,6-dimethyl-, 1,4-phenylene oxide) (PPO) ultrafiltration membranes are characterized by means of two techniques. A new method for the determination of skin thicknesses, the gold sol method, is introduced and applied to these membranes. The membranes appeared to have a well-defined

  15. Thermal Characterization of Edible Oils by Using Photopyroelectric Technique

    Science.gov (United States)

    Lara-Hernández, G.; Suaste-Gómez, E.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.; Sánchez-Sinéncio, F.; Valcárcel, J. P.; García-Quiroz, A.

    2013-05-01

    Thermal properties of several edible oils such as olive, sesame, and grape seed oils were obtained by using the photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. Also, the back photopyroelectric configuration was used to obtain the thermal diffusivity of these oils; this thermal parameter was obtained by fitting the theoretical equation for this configuration, as a function of the sample thickness (called the thermal wave resonator cavity), to the experimental data. All measurements were done at room temperature. A complete thermal characterization of these edible oils was achieved by the relationship between the obtained thermal diffusivities and thermal effusivities with their thermal conductivities and volumetric heat capacities. The obtained results are in agreement with the thermal properties reported for the case of the olive oil.

  16. Particle and particle systems characterization small-angle scattering (SAS) applications

    CERN Document Server

    Gille, Wilfried

    2016-01-01

    Small-angle scattering (SAS) is the premier technique for the characterization of disordered nanoscale particle ensembles. SAS is produced by the particle as a whole and does not depend in any way on the internal crystal structure of the particle. Since the first applications of X-ray scattering in the 1930s, SAS has developed into a standard method in the field of materials science. SAS is a non-destructive method and can be directly applied for solid and liquid samples. Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications is geared to any scientist who might want to apply SAS to study tightly packed particle ensembles using elements of stochastic geometry. After completing the book, the reader should be able to demonstrate detailed knowledge of the application of SAS for the characterization of physical and chemical materials.

  17. Isolation and Characterization of Surface and Subsurface Bacteria in Seawater of Mantanani Island, Kota Belud, Sabah by Direct and Enrichment Techniques

    International Nuclear Information System (INIS)

    Benard, L D; Tuah, P M; Suadin, E G; Jamian, N

    2015-01-01

    The distribution of hydrocarbon-utilizing bacterial may vary between surface and subsurface of the seawater. One of the identified contributors is the Total Petroleum Hydrocarbon. The isolation and characterization of bacteria using Direct and Enrichment techniques helps in identifying dominant bacterial populations in seawater of Mantanani Island, Kota Belud, Sabah, potential of further investigation as hydrocarbon degrader. Crude oil (5% v/v) was added as the carbon source for bacteria in Enrichment technique. For surface seawater, the highest population of bacteria identified for both Direct and Enrichment technique were 2.60 × 10 7 CFU/mL and 3.84 × 10 6 CFU/mL respectively. Meanwhile, for subsurface seawater, the highest population of bacteria identified for both Direct and Enrichment technique were 5.21 × 10 6 CFU/mL and 8.99 × 10 7 CFU/mL respectively. Dominant species in surface seawater were characterized as Marinobacter hydrocarbonoclasticus-RMSF-C1 and RMSF-C2 and Alcanivorax borkumensis-RMSF-C3, RMSF-C4 and RMSF-C5. As for subsurface seawater, dominant species were characterized as Pseudomonas luteola-SSBR-W1, Burkholderia cepacia-SSBR-C1, Rhizobium radiobacter- SSBR-C3 and Leuconostoc-cremois -SSBR-C4. (paper)

  18. Laser--Doppler anemometry technique applied to two-phase dispersed flows in a rectangular channel

    International Nuclear Information System (INIS)

    Lee, S.L.; Srinivasan, J.

    1979-01-01

    A new optical technique using Laser--Doppler anemometry has been applied to the local measurement of turbulent upward flow of a dilute water droplet--air two-phase dispersion in a vertical rectangular channel. Individually examined were over 20,000 droplet signals coming from each of a total of ten transversely placed measuring points, the closest of which to the channel wall was 250 μ away from the wall. Two flows of different patterns due to different imposed flow conditions were investigated, one with and the other without a liquid film formed on the channel wall. Reported are the size and number density distribution and the axial and lateral velocity distributions for the droplets as well as the axial and lateral velocity distributions for the air

  19. Characterization of Lavandula spp. Honey Using Multivariate Techniques.

    Science.gov (United States)

    Estevinho, Leticia M; Chambó, Emerson Dechechi; Pereira, Ana Paula Rodrigues; Carvalho, Carlos Alfredo Lopes de; Toledo, Vagner de Alencar Arnaut de

    2016-01-01

    Traditionally, melissopalynological and physicochemical analyses have been the most used to determine the botanical origin of honey. However, when performed individually, these analyses may provide less unambiguous results, making it difficult to discriminate between mono and multifloral honeys. In this context, with the aim of better characterizing this beehive product, a selection of 112 Lavandula spp. monofloral honey samples from several regions were evaluated by association of multivariate statistical techniques with physicochemical, melissopalynological and phenolic compounds analysis. All honey samples fulfilled the quality standards recommended by international legislation, except regarding sucrose content and diastase activity. The content of sucrose and the percentage of Lavandula spp. pollen have a strong positive association. In fact, it was found that higher amounts of sucrose in honey are related with highest percentage of pollen of Lavandula spp.. The samples were very similar for most of the physicochemical parameters, except for proline, flavonoids and phenols (bioactive factors). Concerning the pollen spectrum, the variation of Lavandula spp. pollen percentage in honey had little contribution to the formation of samples groups. The formation of two groups regarding the physicochemical parameters suggests that the presence of other pollen types in small percentages influences the factor termed as "bioactive", which has been linked to diverse beneficial health effects.

  20. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Directory of Open Access Journals (Sweden)

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  1. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    Science.gov (United States)

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  2. Immunochemical characterization of Mycobacterium leprae antigens by the SDS-polyacrylamide gel electrophoresis immunoperoxidase technique (SGIP) using patients' sera

    NARCIS (Netherlands)

    Klatser, P. R.; van Rens, M. M.; Eggelte, T. A.

    1984-01-01

    In this study the SDS-polyacrylamide gel electrophoresis immunoperoxidase (SGIP) assay was used for characterizing the antigenic components of Mycobacterium leprae using patients' sera. This technique involved the separation of mycobacterial sonicates on SDS-polyacrylamide gels, longitudinal

  3. Synthesis and characterization of carbon fibers obtained through plasma techniques

    International Nuclear Information System (INIS)

    Valdivia B, M.

    2005-01-01

    The study of carbon, particularly the nano technology is a recent field, the one which has important implications in the science of new materials. It investigation is of great interest for industries producers of ceramic, metallurgy, electronic, energy storage, biomedicine, among others. The diverse application fields are a reason at national as international level, so that many works are focused in the production of nano fibers of carbon. The Thermal plasma applications laboratory (LAPT) of the National Institute of Nuclear Research (ININ), it is carrying out works about carbon nano technology. The present work has as purpose to carry out the synthesis and characterization of the carbon nano fibers which are obtained by electric arch of alternating current (CA) to high frequencies and by a plasma gun of non transferred arch, where are used hydrocarbons like benzene, methane, acetylene like carbon source and ferrocene, nickel, yttrium and cerium oxide like catalysts. For both techniques its were thought about a relationship among hydrocarbon-catalyst that it favored to the nano fibers production. The obtained product of each experiment outlined it was analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD), analysis with those were obtained pictures and diffraction graphs, which were observed to arrive to one conclusion on the operation conditions, same analysis with those were characterized the tests carried out according to the nano structures formation of carbon. (Author)

  4. Digital filtering techniques applied to electric power systems protection; Tecnicas de filtragem digital aplicadas a protecao de sistemas eletricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Helio Glauco Ferreira

    1996-12-31

    This work introduces an analysis and a comparative study of some of the techniques for digital filtering of the voltage and current waveforms from faulted transmission lines. This study is of fundamental importance for the development of algorithms applied to digital protection of electric power systems. The techniques studied are based on the Discrete Fourier Transform theory, the Walsh functions and the Kalman filter theory. Two aspects were emphasized in this study: Firstly, the non-recursive techniques were analysed with the implementation of filters based on Fourier theory and the Walsh functions. Secondly, recursive techniques were analyzed, with the implementation of the filters based on the Kalman theory and once more on the Fourier theory. (author) 56 refs., 25 figs., 16 tabs.

  5. Machine-learning techniques applied to antibacterial drug discovery.

    Science.gov (United States)

    Durrant, Jacob D; Amaro, Rommie E

    2015-01-01

    The emergence of drug-resistant bacteria threatens to revert humanity back to the preantibiotic era. Even now, multidrug-resistant bacterial infections annually result in millions of hospital days, billions in healthcare costs, and, most importantly, tens of thousands of lives lost. As many pharmaceutical companies have abandoned antibiotic development in search of more lucrative therapeutics, academic researchers are uniquely positioned to fill the pipeline. Traditional high-throughput screens and lead-optimization efforts are expensive and labor intensive. Computer-aided drug-discovery techniques, which are cheaper and faster, can accelerate the identification of novel antibiotics, leading to improved hit rates and faster transitions to preclinical and clinical testing. The current review describes two machine-learning techniques, neural networks and decision trees, that have been used to identify experimentally validated antibiotics. We conclude by describing the future directions of this exciting field. © 2015 John Wiley & Sons A/S.

  6. Development of a Temperature Programmed Identification Technique to Characterize the Organic Sulphur Functional Groups in Coal

    Directory of Open Access Journals (Sweden)

    Moinuddin Ghauri

    2017-06-01

    Full Text Available The Temperature Programmed Reduction (TPR technique is employed for the characterisation of various organic sulphur functional groups in coal. The TPR technique is modified into the Temperature Programmed Identification technique to investigate whether this method can detect various functional groups corresponding to their reduction temperatures. Ollerton, Harworth, Silverdale, Prince of Wales coal and Mequinenza lignite were chosen for this study. High pressure oxydesulphurisation of the coal samples was also done. The characterization of various organic sulphur functional groups present in untreated and treated coal by the TPR method and later by the TPI method confirmed that these methods can identify the organic sulphur groups in coal and that the results based on total sulphur are comparable with those provided by standard analytical techniques. The analysis of the untreated and treated coal samples showed that the structural changes in the organic sulphur matrix due to a reaction can be determined.

  7. Advanced nondestructive techniques applied for the detection of discontinuities in aluminum foams

    Science.gov (United States)

    Katchadjian, Pablo; García, Alejandro; Brizuela, Jose; Camacho, Jorge; Chiné, Bruno; Mussi, Valerio; Britto, Ivan

    2018-04-01

    Metal foams are finding an increasing range of applications by their lightweight structure and physical, chemical and mechanical properties. Foams can be used to fill closed moulds for manufacturing structural foam parts of complex shape [1]; foam filled structures are expected to provide good mechanical properties and energy absorption capabilities. The complexity of the foaming process and the number of parameters to simultaneously control, demand a preliminary and hugely wide experimental activity to manufacture foamed components with a good quality. That is why there are many efforts to improve the structure of foams, in order to obtain a product with good properties. The problem is that even for seemingly identical foaming conditions, the effective foaming can vary significantly from one foaming trial to another. The variation of the foams often is related by structural imperfections, joining region (foam-foam or foam-wall mold) or difficulties in achieving a complete filling of the mould. That is, in a closed mold, the result of the mold filling and its structure or defects are not known a priori and can eventually vary significantly. These defects can cause a drastic deterioration of the mechanical properties [2] and lead to a low performance in its application. This work proposes the use of advanced nondestructive techniques for evaluating the foam distribution after filling the mold to improve the manufacturing process. To achieved this purpose ultrasonic technique (UT) and cone beam computed tomography (CT) were applied on plate and structures of different thicknesses filled with foam of different porosity. UT was carried out on transmission mode with low frequency air-coupled transducers [3], in focused and unfocused configurations.

  8. Development of real time detector for fluorescent particles applied to pollutant transfers characterization

    International Nuclear Information System (INIS)

    Prevost, C.

    1996-06-01

    The studies on aerosol transfer carried out in the field of staff protection and nuclear plants safety become more and more important. So techniques of pollutants simulation by specific tracers with the same aeraulic behaviour are an interesting tool in order to characterize their transfers. Resorting to aerosols tagged by a fluorescent dye allows to realize different studies in ventilation and filtration field. The feasibility of detection in real time for a particulate tracer is the main aim of this work. The need of such a technique is obvious because it can provide the specific aerosol behaviour. Furthermore, direct measurements in real time are required for model validation in calculation codes: they give the most realistic informations on interaction between contaminant and ventilation air flows. Up to now, the principle of fluorescent aerosol concentration measurement allows only an integral response in a delayed time, by means of sampling on filters and a fluorimetric analysis after a specific conditioning of these filters. In order to have the opportunity to detect in real time specific tracer, we have developed a new monitor able to count these particles on the following basis: fluorescent particles pass through a sampling nozzle up to a measurement chamber specially designed; sheath flow rate is defined to confine the test aerosol in the test aerosol in the sample flow rate at nozzle outlet; the interception of this stream by a highly focused laser beam allows aerosol detection and characterization particle by particle; the signature of a passing aerosol is the burst of photons that occurs when the fluoro-phore contained in the glycerol particle is excited by a light of adapted wavelength; these signals are transmitted to a photodetector by a patented optical arrangement. Then, an acquisition interfaced board connected to a computer, converts them into frequencies histograms. In the end, two kind of results could be provided simultaneously : the

  9. Synthesis and characterization of ZnO thin film by low cost modified SILAR technique

    Directory of Open Access Journals (Sweden)

    Haridas D. Dhaygude

    2016-03-01

    Full Text Available The ZnO thin film is prepared on Fluorine Tin Oxide (FTO coated glass substrate by using SILAR deposition technique containing ZnSO4.7H2O and NaOH as precursor solution with 150 deeping cycles at 70 °C temperature. Nanocrystalline diamond like ZnO thin film is characterized by different characterization techniques such as X-ray diffraction (XRD, Fourier transform (FT Raman spectrometer, Field Emission Scanning Electron Microscopy (FE-SEM with Energy dispersive X-Ray Analysis (EDAX, optical absorption, surface wettability and photoelectrochemical cell performance measurement. The X-ray diffraction analysis shows that the ZnO thin film is polycrystalline in nature having hexagonal crystal structure. The FT-Raman scattering exhibits a sharp and strong mode at 383 cm−1 which confirms hexagonal ZnO nanostructure. The surface morphology study reveals that deposited ZnO film consists of nanocrystalline diamond like morphology all over the substrate. The synthesized thin film exhibited absorption wavelength around 309 nm. Optical study predicted the direct band gap and band gap energy of this film is found to be 3.66 eV. The photoelectrochemical cell (PEC parameter measurement study shows that ZnO sample confirmed the highest values of, short circuit current (Isc - 629 mAcm−2, open circuit voltage (Voc - 878 mV, fill factor (FF - 0.48, and maximum efficiency (η - 0.89%, respectively.

  10. Bioremediation techniques applied to aqueous media contaminated with mercury.

    Science.gov (United States)

    Velásquez-Riaño, Möritz; Benavides-Otaya, Holman D

    2016-12-01

    In recent years, the environmental and human health impacts of mercury contamination have driven the search for alternative, eco-efficient techniques different from the traditional physicochemical methods for treating this metal. One of these alternative processes is bioremediation. A comprehensive analysis of the different variables that can affect this process is presented. It focuses on determining the effectiveness of different techniques of bioremediation, with a specific consideration of three variables: the removal percentage, time needed for bioremediation and initial concentration of mercury to be treated in an aqueous medium.

  11. Interaction of phosphorylcholine with fibronectin coatings: Surface characterization and biological performances

    Energy Technology Data Exchange (ETDEWEB)

    Montaño-Machado, Vanessa, E-mail: vanessa.montano-machado.1@ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); ERRMECe, University of Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France); Noël, Céline, E-mail: celine.noel@unamur.be [Research Centre in Physics of Matter and Radiation (PMR), Université de Namur, 61 rue de Bruxelles, B-5000 Namur (Belgium); Chevallier, Pascale, E-mail: pascale.chevallier@crchudequebec.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); Turgeon, Stéphane, E-mail: stephane.turgeon@crchudequebec.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); Houssiau, Laurent, E-mail: laurent.houssiau@unamur.be [Research Centre in Physics of Matter and Radiation (PMR), Université de Namur, 61 rue de Bruxelles, B-5000 Namur (Belgium); Pauthe, Emmanuel, E-mail: emmanuel.pauthe@u-cergy.fr [ERRMECe, University of Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France); and others

    2017-02-28

    Highlights: • Fibronectin/phosphorylcholine coatings on plasma deposited fluorocarbon films were created. • The effect of several coating techniques on the surface biological performances was evaluated. • XPS, DWCA, immunostaining and ToF-SIMS (imaging and depth profiling) techniques were applied. • Potential for cardiovascular applications was showed by endothelial cell and blood interactions. - Abstract: Coating medical devices with several bioactive molecules is an interesting approach to achieve specific biological targets upon the interaction of the biomaterial with the living environment. In this work, a fluorocarbon polymer (CF{sub x}) was first deposited by plasma treatment on stainless steel (SS) substrate and thereafter, coatings containing fibronectin (FN) and phosphorylcholine (PRC) were created for cardiovascular applications. These two biomolecules were chosen to promote endothelialization and to avoid thrombus formation, respectively. Adsorption and grafting techniques were applied – and combined – to accomplish 4 different coatings containing both molecules. However, big challenge was found to characterize a small molecule (PRC: 184 g/mol) interacting with a protein (FN: 450 kD). For the first time XPS, dynamic water contact angle, immunostaining and ToF-SIMS (imaging and depth profiling) analyses were combined to accomplish the characterization of such a coating. The most encouraging biological performances were obtained for samples where FN was grafted to the CF{sub x} film followed by the adsorption of PRC: proliferation of endothelial cells and hemocompatibility properties were observed. Promising coatings for cardiovascular applications were developed. The relevance of characterizing the coatings with high sensitive techniques and the further correlation with their biological performances were evidenced.

  12. Spatial analysis techniques applied to uranium prospecting in Chihuahua State, Mexico

    Science.gov (United States)

    Hinojosa de la Garza, Octavio R.; Montero Cabrera, María Elena; Sanín, Luz H.; Reyes Cortés, Manuel; Martínez Meyer, Enrique

    2014-07-01

    To estimate the distribution of uranium minerals in Chihuahua, the advanced statistical model "Maximun Entropy Method" (MaxEnt) was applied. A distinguishing feature of this method is that it can fit more complex models in case of small datasets (x and y data), as is the location of uranium ores in the State of Chihuahua. For georeferencing uranium ores, a database from the United States Geological Survey and workgroup of experts in Mexico was used. The main contribution of this paper is the proposal of maximum entropy techniques to obtain the mineral's potential distribution. For this model were used 24 environmental layers like topography, gravimetry, climate (worldclim), soil properties and others that were useful to project the uranium's distribution across the study area. For the validation of the places predicted by the model, comparisons were done with other research of the Mexican Service of Geological Survey, with direct exploration of specific areas and by talks with former exploration workers of the enterprise "Uranio de Mexico". Results. New uranium areas predicted by the model were validated, finding some relationship between the model predictions and geological faults. Conclusions. Modeling by spatial analysis provides additional information to the energy and mineral resources sectors.

  13. Tracer techniques applied to groundwater studies

    International Nuclear Information System (INIS)

    Sanchez, W.

    1975-01-01

    The determination of several aquifer characteristics, primarily in the satured zone, namely: porosity, permeability, transmissivity, dispersivity, direction and velocity of sub-surface water is presented. These techniques are based on artificial radioisotopes utilization. Only field determination of porosity are considered here and their advantage over laboratory measurements are: better representation of volume average, insensibility to local inhomogenities and no distortion of the structure due to sampling. The radioisotope dilution method is used to obtain an independent and direct measurement of the filtration velocity in a water-bearing formation under natural or induced hydraulic gradient. The velocity of the flow is usually calculated from Darcy's formula through the measurement of gradients and requires a knowledge of the permeability of the formation. The filtration velocity interpreted in conjunction with other parameters can, under favourable conditions, provide valuable information on the permeability, transmissibility and amount of water moving through an aquifer

  14. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    Science.gov (United States)

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  15. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    International Nuclear Information System (INIS)

    Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J

    2016-01-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. (paper)

  16. Applying Cooperative Techniques in Teaching Problem Solving

    Directory of Open Access Journals (Sweden)

    Krisztina Barczi

    2013-12-01

    Full Text Available Teaching how to solve problems – from solving simple equations to solving difficult competition tasks – has been one of the greatest challenges for mathematics education for many years. Trying to find an effective method is an important educational task. Among others, the question arises as to whether a method in which students help each other might be useful. The present article describes part of an experiment that was designed to determine the effects of cooperative teaching techniques on the development of problem-solving skills.

  17. The ordering operator technique applied to open systems

    International Nuclear Information System (INIS)

    Pedrosa, I.A.; Baseia, B.

    1982-01-01

    A normal ordering technique and the coherent representation are used to discribe the time evolution of an open system of a single oscillator, linearly coupled with an infinite number of reservoir oscillators and it is shown how to include the dissipation and get the exponential decay. (Author) [pt

  18. X-diffraction technique applied for nano system metrology

    International Nuclear Information System (INIS)

    Kuznetsov, Alexei Yu.; Machado, Rogerio; Robertis, Eveline de; Campos, Andrea P.C.; Archanjo, Braulio S.; Gomes, Lincoln S.; Achete, Carlos A.

    2009-01-01

    The application of nano materials are fast growing in all industrial sectors, with a strong necessity in nano metrology and normalizing in the nano material area. The great potential of the X-ray diffraction technique in this field is illustrated at the example of metals, metal oxides and pharmaceuticals

  19. X-Ray Micro-Tomography Applied to Nasa's Materials Research: Heat Shields, Parachutes and Asteroids

    Science.gov (United States)

    Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.; Stern, Eric C.; Barnard, Harold S.; Macdowell, Alastair A.; Parkinson, Dilworth Y.

    2017-01-01

    X-ray micro-tomography is used to support the research on materials carried out at NASA Ames Research Center. The technique is applied to a variety of applications, including the ability to characterize heat shield materials for planetary entry, to study the Earth- impacting asteroids, and to improve broadcloths of spacecraft parachutes. From micro-tomography images, relevant morphological and transport properties are determined and validated against experimental data.

  20. Raman and IR spectroscopic structural characterization of LiAlO2 powders prepared using a liquid mix technique

    International Nuclear Information System (INIS)

    Cornilsen, B.C.; Loyselle, P.L.; Saporta, J.D.

    1990-01-01

    γ-LiAlO 2 and β-LiAlO 2 have been characterized using Raman and infrared spectroscopy. Powders have been prepared using two different preparation techniques: a solution method known as the liquid mix technique (LMT) and the traditional ceramic method. The authors find that the LMT allows direct production of single phase γ-LiAlO 2 at 600 degrees C, below that found using other preparation methods. Furthermore, this solution technique appears to avoid formation of the β-LiAlO 2 intermediate phase. At lower temperatures, the LMT product is a disordered precursor of γ- LiAlO 2

  1. Very large scale characterization of graphene mechanical devices using a colorimetry technique.

    Science.gov (United States)

    Cartamil-Bueno, Santiago Jose; Centeno, Alba; Zurutuza, Amaia; Steeneken, Peter Gerard; van der Zant, Herre Sjoerd Jan; Houri, Samer

    2017-06-08

    We use a scalable optical technique to characterize more than 21 000 circular nanomechanical devices made of suspended single- and double-layer graphene on cavities with different diameters (D) and depths (g). To maximize the contrast between suspended and broken membranes we used a model for selecting the optimal color filter. The method enables parallel and automatized image processing for yield statistics. We find the survival probability to be correlated with a structural mechanics scaling parameter given by D 4 /g 3 . Moreover, we extract a median adhesion energy of Γ = 0.9 J m -2 between the membrane and the native SiO 2 at the bottom of the cavities.

  2. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    Science.gov (United States)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  3. Characterization of mild steel pre rusted and rust converted surfaces through advanced electrochemical analysis

    International Nuclear Information System (INIS)

    Riaz, F.; Rizvi, Z.H.; Arshad, K.

    2008-01-01

    The present work evaluates the anti corrosive properties of a tannin based rust converter applied on the pre rusted steel coupons as compared with the grit blasted bare metal and pre rusted steel coupons. The mechanism and the corrosion control behaviour of the rust converter are characterized and monitored using EIS technique. The result suggested that when the tannin based rust converter applied on the pre rusted/corroded coupon, the protection properties of the mild steel coupon clearly improved because of the more compact conversion layer being formed on the coupon. It is inferred that the rust converter can be applied on the pre rusted samples as an alternative technique to the surface preparation for protection purpose. (author)

  4. Photoacoustic technique applied to the study of skin and leather

    International Nuclear Information System (INIS)

    Vargas, M.; Varela, J.; Hernandez, L.; Gonzalez, A.

    1998-01-01

    In this paper the photoacoustic technique is used in bull skin for the determination of thermal and optical properties as a function of the tanning process steps. Our results show that the photoacoustic technique is sensitive to the study of physical changes in this kind of material due to the tanning process

  5. Evaluating factorial kriging for seismic attributes filtering: a geostatistical filter applied to reservoir characterization; Avaliacao da krigagem fatorial na filtragem de atributos sismicos: um filtro geoestatistico aplicado a caracterizacao de reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Mundim, Evaldo Cesario

    1999-02-01

    In this dissertation the Factorial Kriging analysis for the filtering of seismic attributes applied to reservoir characterization is considered. Factorial Kriging works in the spatial, domain in a similar way to the Spectral Analysis in the frequency domain. The incorporation of filtered attributes via External Drift Kriging and Collocated Cokriging in the estimate of reservoir characterization is discussed. Its relevance for the reservoir porous volume calculation is also evaluated based on comparative analysis of the volume risk curves derived from stochastic conditional simulations with collocated variable and stochastic conditional simulations with collocated variable and stochastic conditional simulations with external drift. results prove Factorial Kriging as an efficient technique for the filtering of seismic attributes images, of which geologic features are enhanced. The attribute filtering improves the correlation between the attributes and the well data and the estimates of the reservoir properties. The differences between the estimates obtained by External Drift Kriging and Collocated Cokriging are also reduced. (author)

  6. Nanomaterial characterization through image treatment, 3D reconstruction and AI techniques

    Science.gov (United States)

    Lopez de Uralde Huarte, Juan Jose

    Nanotechnology is not only the science of the future, but it is indeed the science of today. It is used in all sectors, from health to energy, including information technologies and transport. For the present investigation, we have taken carbon black as a use case. This nanomaterial is mixed with a wide variety of materials to improve their properties, like abrasion resistance, tire and plastic wear or tinting strength in pigments. Nowadays, indirect methods of analysis, like oil absorption or nitrogen adsorption are the most common techniques of the nanomaterial industry. These procedures measure the change in the physical state while adding oil and nitrogen. In this way, the superficial area is estimated and related with the properties of the material. Nevertheless, we have chosen to improve the existent direct methods, which consist in analysing microscopy images of nanomaterials. We have made progress in the image processing treatments and in the extracted features. In fact, some of them have overcome the existing features in the literature. In addition, we have applied, for the first time in the literature, machine learning to aggregate categorization. In this way, we identify automatically their morphology, which will determine the final properties of the material that is mixed with. Finally, we have presented an aggregate reconstruction genetic algorithm that, with only two orthogonal images, provides more information than a tomography, which needs a lot of images. To summarize, we have improved the state of the art in direct analysing techniques, allowing in the near future the replacement of the current indirect techniques.

  7. IAEA Activities on Application of Nuclear Techniques in Development and Characterization of Materials for Hydrogen Economy

    International Nuclear Information System (INIS)

    Salame, P.; Zeman, A.; Mulhauser, F.

    2011-01-01

    Hydrogen and fuel cells can greatly contribute to a more sustainable less carbon-dependent global energy system. An effective and safe method for storage of hydrogen in solid materials is one of the greatest technologically challenging barriers of widespread introduction of hydrogen in global energy systems. However, aspects related to the development of effective materials for hydrogen storage and fuel cells are facing considerable technological challenges. To reach these goals, research efforts using a combination of advanced modeling, synthesis methods and characterization tools are required. Nuclear methods can play an effective role in the development and characterization of materials for hydrogen storage. Therefore, the IAEA initiated a coordinated research project to promote the application of nuclear techniques for investigation and characterization of new/improved materials relevant to hydrogen and fuel cell technologies. This paper gives an overview of the IAEA activities in this subject. (author)

  8. TOMOGRAPHIC SITE CHARACTERIZATION USING CPT, ERT, AND GPR

    Energy Technology Data Exchange (ETDEWEB)

    Rexford M. Morey; Susanne M. Conklin; Stephen P. Farrington, P.E.; James D. Shinn II, P.E.

    1999-07-01

    The US Department of Energy (DOE) is responsible for the cleanup of inactive DOE sites and for bringing DOE sites and facilities into compliance with federal, state, and local laws and regulations. The DOE's Office of Environmental Management (EM) needs advanced technologies that can make environmental restoration and waste management operations more efficient and less costly. These techniques are required to better characterize the physical, hydrogeological, and chemical properties of the subsurface while minimizing and optimizing the use of boreholes and monitoring wells. Today the cone penetrometer technique (CPT) is demonstrating the value of a minimally invasive deployment system for site characterization. Applied Research Associates, Inc. is developing two new sensor packages for site characterization and monitoring. The two new methods are: (1) Electrical Resistivity Tomography (ERT); and (2) Ground Penetrating Radar (GPR) Tomography. These sensor systems are now integrated with the CPT. The results of this program now make it possible to install ERT and GPR units by CPT methods and thereby reduce installation costs and total costs for ERT and GPR surveys. These two techniques can complement each other in regions of low resistivity where ERT is more effective and regions of high resistivity where GPR is more effective. The results show that CPT-installed GeoWells can be used for both ERT and GPR borehole tomographic subsurface imaging. These two imaging techniques can be used for environmental site characterization and monitoring have numerous and diverse applications within site cleanup and waste management operations.

  9. Elemental Characterization of minerals in Chenopodium quinoa grains by the X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Olivera de Lescano, Paula; Nieto Aco, Daniel

    2014-01-01

    In order to characterize by the technique of X-ray fluorescence energy dispersive quinoa grain for human consumption, 8 samples of different trademarks of quinoa, which are distributed in the local market were analyzed; together one reference materials certified by the International Atomic Energy Agency (IAEA) was analyzed. The results show the presence of elements such as K, Ca, Mn, Fe, Cu, Zn, Rb and Sr, the same as compared to data reported in various studies in neighboring countries like Ecuador, Chile and Bolivia. (authors).

  10. Evaluation of ultrasonic technique to characterize the concentration of boric acid in liquid medium; Avaliacao de tecnica ultrassonica para medida de concentracao de acido borico em meio liquido

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, Richard Yuzo Ramida

    2015-06-01

    This dissertation is to analyze the viability of using ultrasonic technique to characterize the concentration of boric acid in liquid medium non-invasively, therefore, ultrasonic tests were performed relating different boric acid concentrations with the travel time of the ultrasonic wave, also were evaluated factors able to mask the characterization of these concentrations by ultrasonic technique. The results showed that the ultrasonic technique allows the characterization of boric acid concentrations in liquid medium in very simple terms by the ultrasonic wave travel time, requiring further studies in complex conditions. (author)

  11. Applications of some non destructive testing techniques to the characterization of calcareous rocks: ultrasounds, X and gamma-ray radiography, tomography, neutron radiography

    International Nuclear Information System (INIS)

    Sicardy, O.

    1986-02-01

    NUCLEART Laboratory has been developping various techniques of conservation of art objects made of wood or stone. It has, among others, achieved a technique of strengthening porous stone objects, by resin impregnation followed by polymerization under gamma rays. The good conduct of such operations implies the existence of characterization means, before and after treatment of the objects. Two means of rocks characterization have been studied: - ultrasound techniques, - radiography techniques. The first part consists in a general description of the calcareous rocks morphology and a presentation of the studied specimens. The second part deals with the application of ultrasound techniques to rocks. Experimentally, one pays particular attention to the specific aspects of ultrasounds propagation inside materials like porous rocks, and especially diffusion phenomena. Results were interpreted in terms of propagation medium structure. Practical interest for rocks control through such techniques has been underligned. The third part concerns the application of radiographic techniques to calcareous rocks. Experimental work consists in establishing exposure curves for a wide range of energy, and the images quality determination. Through a statistics approach, and using digitalization techniques, one has done an exhaustive study of the radiographic noise. Moreover two techniques close to conventional radiography were explored: neutron radiography and X-ray tomography. Their specificity and interest in the case of calcareous rocks have been shown [fr

  12. Practical materials characterization

    CERN Document Server

    2014-01-01

    Presents cross-comparison between materials characterization techniquesIncludes clear specifications of strengths and limitations of each technique for specific materials characterization problemFocuses on applications and clear data interpretation without extensive mathematics

  13. Vibroacoustic Modeling of Mechanically Coupled Structures: Artificial Spring Technique Applied to Light and Heavy Mediums

    Directory of Open Access Journals (Sweden)

    L. Cheng

    1996-01-01

    Full Text Available This article deals with the modeling of vibrating structures immersed in both light and heavy fluids, and possible applications to noise control problems and industrial vessels containing fluids. A theoretical approach, using artificial spring systems to characterize the mechanical coupling between substructures, is extended to include fluid loading. A structure consisting of a plate-ended cylindrical shell and its enclosed acoustic cavity is analyzed. After a brief description of the proposed technique, a number of numerical results are presented. The analysis addresses the following specific issues: the coupling between the plate and the shell; the coupling between the structure and the enclosure; the possibilities and difficulties regarding internal soundproofing through modifications of the joint connections; and the effects of fluid loading on the vibration of the structure.

  14. Evaluation of kriging techniques for high level radioactive waste repository site characterization

    International Nuclear Information System (INIS)

    Doctor, P.G.

    1979-01-01

    Kriging is a statistical method for estimating functions that describe spatially distributed phenomena such as groundwater elevation and depth to basalt. It produces a contour model of the geologic formation of a potential site with an associated measure of uncertainty, and it can be used to optimize the selection of additional sampling locations. Kriging was applied to water potential data and top-of-basalt elevations from the Hanford site; the computer code BLUEPACK was used to perform the computations. The water potential contours were in close agreement with a hand-drawn contour map which is used as a standard. It is concluded that kriging can be a useful tool for geologic waste repository site characterization

  15. Complex layered materials and periodic electromagnetic band-gap structures: Concepts, characterizations, and applications

    Science.gov (United States)

    Mosallaei, Hossein

    The main objective of this dissertation is to characterize and create insight into the electromagnetic performances of two classes of composite structures, namely, complex multi-layered media and periodic Electromagnetic Band-Gap (EBG) structures. The advanced and diversified computational techniques are applied to obtain their unique propagation characteristics and integrate the results into some novel applications. In the first part of this dissertation, the vector wave solution of Maxwell's equations is integrated with the Genetic Algorithm (GA) optimization method to provide a powerful technique for characterizing multi-layered materials, and obtaining their optimal designs. The developed method is successfully applied to determine the optimal composite coatings for Radar Cross Section (RCS) reduction of canonical structures. Both monostatic and bistatic scatterings are explored. A GA with hybrid planar/curved surface implementation is also introduced to efficiently obtain the optimal absorbing materials for curved structures. Furthermore, design optimization of the non-uniform Luneburg and 2-shell spherical lens antennas utilizing modal solution/GA-adaptive-cost function is presented. The lens antennas are effectively optimized for both high gain and suppressed grating lobes. The second part demonstrates the development of an advanced computational engine, which accurately computes the broadband characteristics of challenging periodic electromagnetic band-gap structures. This method utilizes the Finite Difference Time Domain (FDTD) technique with Periodic Boundary Condition/Perfectly Matched Layer (PBC/PML), which is efficiently integrated with the Prony scheme. The computational technique is successfully applied to characterize and present the unique propagation performances of different classes of periodic structures such as Frequency Selective Surfaces (FSS), Photonic Band-Gap (PBG) materials, and Left-Handed (LH) composite media. The results are

  16. Spot size characterization of focused non-Gaussian X-ray laser beams

    NARCIS (Netherlands)

    Chalupsky, J.; Krzywinski, J.; Juha, L.; Hajkova, V.; Cihelka, J.; Burian, T.; Vysin, L.; Gaudin, J.; Gleeson, A.; Jurek, M.; Khorsand, A. R.; Klinger, D.; Wabnitz, H.; Sobierajski, R.; Stormer, M.; Tiedtke, K.; Toleikis, S.

    2010-01-01

    We present a new technique for the characterization of non-Gaussian laser beams which cannot be described by an analytical formula. As a generalization of the beam spot area we apply and refine the definition of so called effective area (A(eff)) [1] in order to avoid using the full-width at half

  17. Eddy current technique applied to automated tube profilometry

    International Nuclear Information System (INIS)

    Dobbeni, D.; Melsen, C. van

    1982-01-01

    The use of eddy current methods in the first totally automated pre-service inspection of the internal diameter of PWR steam generator tubes is described. The technique was developed at Laborelec, the Belgian Laboratory of the Electricity Supply Industry. Details are given of the data acquisition system and of the automated manipulator. Representative tube profiles are illustrated. (U.K.)

  18. Development of analytical techniques in support of waste and effluent characterization

    International Nuclear Information System (INIS)

    Reed, W.J.

    1991-01-01

    The Analytical Services Group within Sellafield Technical Department has been established for >40 yr and employs >150 analysts. The group operates >400 analytical methods across a wide range of techniques and has a yearly workload of ∼250,000 determinations. The group operates under a quality system based on statistical process control that has achieved national recognition through the accreditation of its mass spectrometry and radiochemical services to the standard of national testing laboratories. The group offers services ranging from the characterization of highly active wastes to trace elemental and radiochemical measurements in environmental, biological, and effluent streams. The group has vast experience in the management of analytical services to tight time scales and has pioneered developments not only in analytical instrumentation, but also in the adaptation of equipment to radioactive environments and the design of dedicated analytical facilities

  19. In situ characterization of natural pyrite bioleaching using electrochemical noise technique

    Science.gov (United States)

    Chen, Guo-bao; Yang, Hong-ying; Li, Hai-jun

    2016-02-01

    An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.

  20. Multi-criterion analysis technique in a process of quality management

    OpenAIRE

    A. Gwiazda

    2007-01-01

    Purpose: The aim of this paper is to present the critical analysis of some multi-criteria techniques applied in the area of quality management. It is strongly stated that some solutions in this scientific area characterizes the non-methodological approaches.Design/methodology/approach: The research methodology, in presented work, has been based on the theoretical analysis of the quality tools management and on the empirical researches.Findings: The proposals of improvement the main quality to...

  1. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    International Nuclear Information System (INIS)

    Klinbumrung, Arrak; Thongtem, Titipun; Thongtem, Somchai

    2014-01-01

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm −1 vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH 3 mixed with air at various working temperatures and NH 3 concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH 3

  2. Ion-exchange chromatography for the characterization of biopharmaceuticals.

    Science.gov (United States)

    Fekete, Szabolcs; Beck, Alain; Veuthey, Jean-Luc; Guillarme, Davy

    2015-09-10

    Ion-exchange chromatography (IEX) is a historical technique widely used for the detailed characterization of therapeutic proteins and can be considered as a reference and powerful technique for the qualitative and quantitative evaluation of charge heterogeneity. The goal of this review is to provide an overview of theoretical and practical aspects of modern IEX applied for the characterization of therapeutic proteins including monoclonal antibodies (Mabs) and antibody drug conjugates (ADCs). The section on method development describes how to select a suitable stationary phase chemistry and dimensions, the mobile phase conditions (pH, nature and concentration of salt), as well as the temperature and flow rate, considering proteins isoelectric point (pI). In addition, both salt-gradient and pH-gradient approaches were critically reviewed and benefits as well as limitations of these two strategies were provided. Finally, several applications, mostly from pharmaceutical industries, illustrate the potential of IEX for the characterization of charge variants of various types of biopharmaceutical products. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Use of ion beam techniques to characterize thin plasma grown GaAs and GaAlAs oxide films

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Feldman, L.C.; Chang, R.P.H.

    1978-01-01

    Thin plasma grown films of GaAs oxides and GaAlAs oxides have been analyzed using the combined techniques of Rutherford backscattering, ion-induced X-rays, and nuclear resonance profiling. The stoichiometries of the films have been quantitatively determined and can be combined with other Auger profiling results to characterize the films. The ion-induced X-ray technique has been checked against other measurements to determine its accuracy. For uniform films such as these the X-ray measurements can provide accurate quantitative results. (Auth.)

  4. Dutch Young Adults Ratings of Behavior Change Techniques Applied in Mobile Phone Apps to Promote Physical Activity: A Cross-Sectional Survey.

    Science.gov (United States)

    Belmon, Laura S; Middelweerd, Anouk; Te Velde, Saskia J; Brug, Johannes

    2015-11-12

    Interventions delivered through new device technology, including mobile phone apps, appear to be an effective method to reach young adults. Previous research indicates that self-efficacy and social support for physical activity and self-regulation behavior change techniques (BCT), such as goal setting, feedback, and self-monitoring, are important for promoting physical activity; however, little is known about evaluations by the target population of BCTs applied to physical activity apps and whether these preferences are associated with individual personality characteristics. This study aimed to explore young adults' opinions regarding BCTs (including self-regulation techniques) applied in mobile phone physical activity apps, and to examine associations between personality characteristics and ratings of BCTs applied in physical activity apps. We conducted a cross-sectional online survey among healthy 18 to 30-year-old adults (N=179). Data on participants' gender, age, height, weight, current education level, living situation, mobile phone use, personality traits, exercise self-efficacy, exercise self-identity, total physical activity level, and whether participants met Dutch physical activity guidelines were collected. Items for rating BCTs applied in physical activity apps were selected from a hierarchical taxonomy for BCTs, and were clustered into three BCT categories according to factor analysis: "goal setting and goal reviewing," "feedback and self-monitoring," and "social support and social comparison." Most participants were female (n=146), highly educated (n=169), physically active, and had high levels of self-efficacy. In general, we observed high ratings of BCTs aimed to increase "goal setting and goal reviewing" and "feedback and self-monitoring," but not for BCTs addressing "social support and social comparison." Only 3 (out of 16 tested) significant associations between personality characteristics and BCTs were observed: "agreeableness" was related to

  5. Shape memory alloys – characterization techniques

    Indian Academy of Sciences (India)

    DSC has been used successfully to characterize the recover- ... in 1932. The effect has been observed in many alloy systems, such as Cu–Zn, Cu–Zn–Al, ..... The author is grateful to Indian Space Research Organization (ISRO), Department of.

  6. Multivariate Analysis Techniques for Optimal Vision System Design

    DEFF Research Database (Denmark)

    Sharifzadeh, Sara

    The present thesis considers optimization of the spectral vision systems used for quality inspection of food items. The relationship between food quality, vision based techniques and spectral signature are described. The vision instruments for food analysis as well as datasets of the food items...... used in this thesis are described. The methodological strategies are outlined including sparse regression and pre-processing based on feature selection and extraction methods, supervised versus unsupervised analysis and linear versus non-linear approaches. One supervised feature selection algorithm...... (SSPCA) and DCT based characterization of the spectral diffused reflectance images for wavelength selection and discrimination. These methods together with some other state-of-the-art statistical and mathematical analysis techniques are applied on datasets of different food items; meat, diaries, fruits...

  7. GORE PRECLUDE MVP dura substitute applied as a nonwatertight "underlay" graft for craniotomies: product and technique evaluation.

    Science.gov (United States)

    Chappell, E Thomas; Pare, Laura; Salehpour, Mohammed; Mathews, Marlon; Middlehof, Charles

    2009-01-01

    While watertight closure of the dura is a long-standing tenet of cranial surgery, it is often not possible and sometimes unnecessary. Many graft materials with various attributes and drawbacks have been in use for many years. A novel synthetic dural graft material called GORE PRECLUDE MVP dura substitute (WL Gore & Associates, Inc, Flagstaff, Ariz) (henceforth called "MVP") is designed for use both in traditional watertight dural closure and as a dural "underlay" graft in a nonwatertight fashion. One surface of MVP is engineered to facilitate fibroblast in-growth so that its proximity to the underside of the dura will lead to rapid incorporation, whereas the other surface acts as a barrier to reduce tissue adhesion to the device. A series of 59 human subjects undergoing craniotomy and available for clinical and radiographic follow-up underwent nonwatertight underlay grafting of their durotomy with MVP. This is an assessment of the specific product and technique. No attempt is made to compare this to other products or techniques. The mean follow-up in this group was more than 4 months. All subjects have ultimately experienced excellent outcomes related to use of the graft implanted with the underlay technique. No complications occurred related directly to MVP, but the wound-related complication rate attributed to the underlay technique was higher than expected (17%). However, careful analysis found a high rate of risk factors for wound complications and determined that complications with the underlay technique could be avoided by assuring close approximation of the graft material to the underside of the dura. MVP can be used as an underlay graft in a nonwatertight fashion. However, if used over large voids (relaxed brain or large tumor bed), "tacking" or traditional watertight closure techniques should be used. The underlay application of MVP is best applied over the convexities and is particularly well-suited to duraplasty after hemicraniectomy.

  8. Application of the photoreflectance technique to the characterization of quantum dot intermediate band materials for solar cells

    International Nuclear Information System (INIS)

    Canovas, E.; Marti, A.; Lopez, N.; Antolin, E.; Linares, P.G.; Farmer, C.D.; Stanley, C.R.; Luque, A.

    2008-01-01

    Intermediate band materials rely on the creation of a new electronic band within the bandgap of a conventional semiconductor that is isolated from the conduction and valence band by a true zero density of states. Due to the presence of the intermediate band, a solar cell manufactured using these materials is capable of producing additional photocurrent, thanks to the absorption of photons with energy lower than the conventional bandgap. In this respect, the characterization of these materials by suitable techniques becomes a key element in the development of the new photovoltaic devices called intermediate band solar cells. The technique of photoreflectance is particularly suited to this purpose because it is contact-less and allows the characterization of the material without the need of actually manufacturing a complete device. Using room temperature photoreflectance we have analyzed intermediate band materials based on quantum dots and have been able to identify the energy levels involved. Also, from the photoreflectance data we have demonstrated the overlap of the wave-functions defined by the quantum dots

  9. Applied research on air pollution using nuclear-related analytical techniques. Report on the second research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    A co-ordinated research programme (CRP) on applied research on air pollution using nuclear-related techniques is a global CRP which started in 1992, and is scheduled to run until early 1997. The purpose of this CRP is to promote the use of nuclear analytical techniques in air pollution studies, e.g. NAA, XRF, and PIXE for the analysis of toxic and other trace elements in air particulate matter. The main purposes of the core programme are i) to support the use of nuclear and nuclear-related analytical techniques for research and monitoring studies on air pollution, ii) to identify major sources of air pollution affecting each of the participating countries with particular reference to toxic heavy metals, and iii) to obtain comparative data on pollution levels in areas of high pollution (e.g. a city centre or a populated area downwind of a large pollution source) and low pollution (e.g. rural area). This document reports the discussions held during the second Research Co-ordination Meeting (RCM) for the CRP which took place at ANSTO in Menai, Australia. (author)

  10. Applied research on air pollution using nuclear-related analytical techniques. Report on the second research co-ordination meeting

    International Nuclear Information System (INIS)

    1995-01-01

    A co-ordinated research programme (CRP) on applied research on air pollution using nuclear-related techniques is a global CRP which started in 1992, and is scheduled to run until early 1997. The purpose of this CRP is to promote the use of nuclear analytical techniques in air pollution studies, e.g. NAA, XRF, and PIXE for the analysis of toxic and other trace elements in air particulate matter. The main purposes of the core programme are i) to support the use of nuclear and nuclear-related analytical techniques for research and monitoring studies on air pollution, ii) to identify major sources of air pollution affecting each of the participating countries with particular reference to toxic heavy metals, and iii) to obtain comparative data on pollution levels in areas of high pollution (e.g. a city centre or a populated area downwind of a large pollution source) and low pollution (e.g. rural area). This document reports the discussions held during the second Research Co-ordination Meeting (RCM) for the CRP which took place at ANSTO in Menai, Australia. (author)

  11. Performance values for non destructive assay (NDA) techniques applied to safeguards: the 2002 evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Guardini, S.

    2003-01-01

    The first evaluation of NDA performance values undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques (WGNDA) was published in 1993. Almost 10 years later the Working Group decided to review those values, to report about improvements and to issue new performance values for techniques which were not applied in the early nineties, or were at that time only emerging. Non-Destructive Assay techniques have become more and more important in recent years, and they are used to a large extent in nuclear material accountancy and control both by operators and control authorities. As a consequence, the performance evaluation for NDA techniques is of particular relevance to safeguards authorities in optimising Safeguards operations and reducing costs. Performance values are important also for NMAC regulators, to define detection levels, limits for anomalies, goal quantities and to negotiate basic audit rules. This paper presents the latest evaluation of ESARDA Performance Values (EPVs) for the most common NDA techniques currently used for the assay of nuclear materials for Safeguards purposes. The main topics covered by the document are: techniques for plutonium bearing materials: PuO 2 and MOX; techniques for U-bearing materials; techniques for U and Pu in liquid form; techniques for spent fuel assay. This issue of the performance values is the result of specific international round robin exercises, field measurements and ad hoc experiments, evaluated and discussed in the ESARDA NDA Working Group. (author)

  12. Flash radiographic technique applied to fuel injector sprays

    International Nuclear Information System (INIS)

    Vantine, H.C.

    1977-01-01

    A flash radiographic technique, using 50 ns exposure times, was used to study the pattern and density distribution of a fuel injector spray. The experimental apparatus and method are described. An 85 kVp flash x-ray generator, designed and fabricated at the Lawrence Livermore Laboratory, is utilized. Radiographic images, recorded on standard x-ray films, are digitized and computer processed

  13. Use of Random and Site-Directed Mutagenesis to Probe Protein Structure-Function Relationships: Applied Techniques in the Study of Helicobacter pylori.

    Science.gov (United States)

    Whitmire, Jeannette M; Merrell, D Scott

    2017-01-01

    Mutagenesis is a valuable tool to examine the structure-function relationships of bacterial proteins. As such, a wide variety of mutagenesis techniques and strategies have been developed. This chapter details a selection of random mutagenesis methods and site-directed mutagenesis procedures that can be applied to an array of bacterial species. Additionally, the direct application of the techniques to study the Helicobacter pylori Ferric Uptake Regulator (Fur) protein is described. The varied approaches illustrated herein allow the robust investigation of the structural-functional relationships within a protein of interest.

  14. Characterization of impact materials around Barringer Meteor Crater by micro-PIXE and micro-SRXRF techniques

    Energy Technology Data Exchange (ETDEWEB)

    Uzonyi, I. E-mail: uzonyi@atomki.hu; Szoeor, Gy.; Rozsa, P.; Vekemans, B.; Vincze, L.; Adams, F.; Drakopoulos, M.; Somogyi, A.; Kiss, A.Z

    2004-06-01

    A combined micro-PIXE and micro-SRXRF method has been tested successfully for the characterization of impact materials collected at the well-known Barringer Meteor Crater. The micro-PIXE technique proved to be sensitive in the Z{<=}28 atomic number region while the micro-SRXRF above Fe especially for the siderophile elements. Quantitative analysis has become available for about 40 elements by these complementary methods providing new perspectives for the interpretation of the formation mechanism of impact metamorphosed objects.

  15. Semi-automatic version of the potentiometric titration method for characterization of uranium compounds

    International Nuclear Information System (INIS)

    Cristiano, Bárbara F.G.; Delgado, José Ubiratan; Wanderley S da Silva, José; Barros, Pedro D. de; Araújo, Radier M.S. de; Dias, Fábio C.; Lopes, Ricardo T.

    2012-01-01

    The potentiometric titration method was used for characterization of uranium compounds to be applied in intercomparison programs. The method is applied with traceability assured using a potassium dichromate primary standard. A semi-automatic version was developed to reduce the analysis time and the operator variation. The standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization and compatible with those obtained by manual techniques. - Highlights: ► A semi-automatic potentiometric titration method was developed for U charaterization. ► K 2 Cr 2 O 7 was the only certified reference material used. ► Values obtained for U 3 O 8 samples were consistent with certified. ► Uncertainty of 0.01% was useful for characterization and intercomparison program.

  16. Structural characterization of complex systems by applying a combination of scattering and spectroscopic methods

    International Nuclear Information System (INIS)

    Klose, G.

    1999-01-01

    Lyotropic mesophases possess lattice dimensions of the order of magnitude of the length of their molecules. Consequently, the first Bragg reflections of such systems appear at small scattering angles (small angle scattering). A combination of scattering and NMR methods was applied to study structural properties of POPC/C 12 E n mixtures. Generally, the ranges of existence of the liquid crystalline lamellar phase, the dimension of the unit-cell of the lamellae and important structural parameters of the lipid and surfactant molecules in the mixed bilayers were determined. With that the POPC/C 12 E 4 bilayer represents one of the best structurally characterized mixed model membranes. It is a good starting system for studying the interrelation with other e.g. dynamic or thermodynamic properties. (K.A.)

  17. Characterization of nanomaterials

    International Nuclear Information System (INIS)

    Montone, Amelia; Aurora, Annalisa; Di Girolamo, Giovanni

    2015-01-01

    This paper provides an overview of the main techniques used for the characterization of nanomaterials. The knowledge of some basic characteristics, inherent morphology, microstructure, the distribution phase and chemical composition, it is essential to evaluate the functional properties of nanomaterials and make predictions about their behavior in operation. For the characterization of nanomaterials can be used in both imaging techniques both analytic techniques. Among the first found wide application optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Among the latter some types of spectroscopy and X-ray diffraction (XRD). For each type of material to characterize the choice of the most appropriate technique it is based on the type of details that you want to obtain, and on their scale. In this paper are discussed in detail some examples and the main methods used for the characterization of nanomaterials. [it

  18. Research on imaging, sensing, and characterization of cells at Research Center for Applied Sciences (RCAS), Academia Sinica

    Science.gov (United States)

    Tsai, Hui-Chen; Chang, Chun-Fang; Chen, Bi-Chang; Cheng, Ji-Yen; Chu, Chih-Wei; Han, Hsieh-Cheng; Hatanaka, Koji; Hsieh, Tung-Han; Lee, Chau-Hwang; Lin, Jung-Hsin; Tung, Yi-Chung; Wei, Pei-Kuen; Yang, Fu-Liang; Tsai, Din Ping

    2015-12-01

    Development of imaging, sensing, and characterization of cells at Research Center for Applied Sciences (RCAS) of Academia Sinica in Taiwan is progressing rapidly. The research on advanced lattice light sheet microscopy for temporal visualization of cells in three dimensions at sub-cellular resolution shows novel imaging results. Label-free observation on filopodial dynamics provides a convenient assay on cancer cell motility. The newly-developed software enables us to track the movement of two types of particles through different channels and reconstruct the co-localized tracks. Surface plasmon resonance (SPR) for detecting urinary microRNA for diagnosis of acute kidney injury demonstrates excellent sensitivity. A fully automated and integrated portable reader was constructed as a home-based surveillance system for post-operation hepatocellular carcinoma. New microfluidic cell culture devices for fast and accurate characterizations prove various diagnosis capabilities.

  19. Radiometric Non-Uniformity Characterization and Correction of Landsat 8 OLI Using Earth Imagery-Based Techniques

    Directory of Open Access Journals (Sweden)

    Frank Pesta

    2014-12-01

    Full Text Available Landsat 8 is the first satellite in the Landsat mission to acquire spectral imagery of the Earth using pushbroom sensor instruments. As a result, there are almost 70,000 unique detectors on the Operational Land Imager (OLI alone to monitor. Due to minute variations in manufacturing and temporal degradation, every detector will exhibit a different behavior when exposed to uniform radiance, causing a noticeable striping artifact in collected imagery. Solar collects using the OLI’s on-board solar diffuser panels are the primary method of characterizing detector level non-uniformity. This paper reports on an approach for using a side-slither maneuver to estimate relative detector gains within each individual focal plane module (FPM in the OLI. A method to characterize cirrus band detector-level non-uniformity using deep convective clouds (DCCs is also presented. These approaches are discussed, and then, correction results are compared with the diffuser-based method. Detector relative gain stability is assessed using the side-slither technique. Side-slither relative gains were found to correct streaking in test imagery with quality comparable to diffuser-based gains (within 0.005% for VNIR/PAN; 0.01% for SWIR and identified a 0.5% temporal drift over a year. The DCC technique provided relative gains that visually decreased striping over the operational calibration in many images.

  20. Photophoretic velocimetry for the characterization of aerosols.

    Science.gov (United States)

    Haisch, Christoph; Kykal, Carsten; Niessner, Reinhard

    2008-03-01

    Aerosols are particles in a size range from some nanometers to some micrometers suspended in air or other gases. Their relevance varies as wide as their origin and composition. In the earth's atmosphere they influence the global radiation balance and human health. Artificially produced aerosols are applied, e.g., for drug administration, as paint and print pigments, or in rubber tire production. In all these fields, an exact characterization of single particles as well as of the particle ensemble is essential. Beyond characterization, continuous separation is often required. State-of-the-art separation techniques are based on electrical, thermal, or flow fields. In this work we present an approach to apply light in the form of photophoretic (PP) forces for characterization and separation of aerosol particles according to their optical properties. Such separation technique would allow, e.g., the separation of organic from inorganic particles of the same aerodynamic size. We present a system which automatically records velocities induced by PP forces and does a statistical evaluation in order to characterize the particle ensemble properties. The experimental system essentially consists of a flow cell with rectangular cross section (1 cm(2), length 7 cm), where the aerosol stream is pumped through in the vertical direction at ambient pressure. In the cell, a laser beam is directed orthogonally to the particle flow direction, which results in a lateral displacement of the particles. In an alternative configuration, the beam is directed in the opposite direction to the aerosol flow; hence, the particles are slowed down by the PP force. In any case, the photophoretically induced variations of speed and position are visualized by a second laser illumination and a camera system, feeding a mathematical particle tracking algorithm. The light source inducing the PP force is a diode laser (lambda = 806 nm, P = 0.5 W).

  1. The role of cold work and applied stress on surface oxidation of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Perez, Sergio, E-mail: sergio.lozano-perez@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Kruska, Karen [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Iyengar, Ilya [Winchester College, College Street, Winchester SO23 9LX (United Kingdom); Terachi, Takumi; Yamada, Takuyo [Institute of Nuclear Safety System (INSS), 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FIB 3D sequential sectioning is an ideal technique to characterize surface oxidation. Black-Right-Pointing-Pointer 3D models of the oxide can be produced with nanometre resolution. Black-Right-Pointing-Pointer The effects of stress and cold work in grain boundary oxidation have been analysed. Black-Right-Pointing-Pointer At least three different oxidation modes are observed when stress is applied. - Abstract: FIB 3-dimensional (3D) sequential sectioning has been used to characterize environmental degradation of 304 stainless steels in pressurized water reactor (PWR) simulated primary water. In particular, the effects of cold work and applied stress on oxidation have been studied in detail. It was found that a description of the oxidation behaviour of this alloy is only complete if it is treated statistically, since it can suffer from high variability depending on the feature described.

  2. Analysis of Sidestream Smoke VOCs and Characterization of their Odor Profiles by VOC Preconcentrator-GC-O Techniques

    Directory of Open Access Journals (Sweden)

    Higashi N

    2014-12-01

    Full Text Available Various techniques have been employed in the analysis of volatile organic compounds (VOCs. However, these techniques are insufficient for the precise analysis of tobacco smoke VOCs because of the complexity of the operating system, system instability, or poor sensitivity. To overcome these problems, a combined system of VOC preconcentrator, gas chromatograph, and olfactometer has been developed. The performance of this new system was evaluated in the analysis of VOCs in tobacco smoke and applied to the odor profiling of sidestream smoke (SSS that has not been sufficiently investigated in the past.

  3. Characterization of plastic and boron carbide additive manufactured neutron collimators

    Science.gov (United States)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  4. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Rackham, Jamie; Weber, Anne-Laure; Chard, Patrick

    2012-01-01

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  5. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Rackham, Jamie [Babcock International Group, Sellafield, Seascale, Cumbria, (United Kingdom); Weber, Anne-Laure [Institut de Radioprotection et de Surete Nucleaire Fontenay-Aux-Roses (France); Chard, Patrick [Canberra, Forss Business and Technology park, Thurso, Caithness (United Kingdom)

    2012-12-15

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  6. Surface characterization of hydrophobic core-shell QDs using NMR techniques

    Science.gov (United States)

    Zhang, Chengqi; Zeng, Birong; Palui, Goutam; Mattoussi, Hedi

    2018-02-01

    Using a few solution phase NMR spectroscopy techniques, including 1H NMR and 31P NMR, we have characterized the organic shell on CdSe-ZnS core-shell quantum dots and tracked changes in its composition when the QD dispersions are subjected to varying degrees of purification. Combining solution phase NMR with diffusion ordered spectroscopy (DOSY), we were able to distinguish between freely diffusing ligands in the sample from those bound on the surfaces. Additionally, matrix assisted laser desorption ionization (MALDI) and FTIR measurements were used to provide complementary and supporting information on the organic ligand coating for these nanocrystals. We found that the organic shell is dominated by monomeric or oligomeric n-hexylphosphonic acid (HPA), along with small portion of 1-hexadecyl amine (HDA). The presence of TOP/TOPO (tri-n-octylphosphine / tri-noctylphosphine oxide) molecules is much smaller, even though large excess of TOP/TOPO were used during the QD growth. These results indicate that HPA (alkyl phosphonate) exhibits the strongest coordination affinity to ZnS-rich QD surfaces grown using the high temperature injection route.

  7. Characterization of ceramic materials using ultrasonic technique in the frequency domain and artificial networks

    International Nuclear Information System (INIS)

    Baroni, D.B.; Bittencourt, M.S.Q.; Pereira, C.M.N.A.

    2008-01-01

    The ceramic material characterization is very important to guarantee its mechanical properties. In the case of nuclear fuel (UO 2 ) the adequate porosity ensures its thermal efficiency and its structural integrity that contribute to the safety at nuclear power plants. The Ultrasound Laboratory of the Nuclear Engineering Institute (LABUS/IEN) has developed a technique to measure the porosity in ceramic materials. This technique uses ultrasound signal in the frequency domain and creates spectrum patterns related to the material porosity. Trained artificial neural networks recognizes these patterns and associates them to the porosities. In this work 20 pellets of Alumina were used with porosities in the same range used in the nuclear fuel (0.70% to 4.25%). In this case the used network was able to recognize the patterns of the pellets and to associate to the porosities with 100% of precision. It was possible to distinguished pellets with a difference of 0.01% of the porosity. (author)

  8. Intercomparison of techniques for inspection and diagnostics of heavy water reactor pressure tubes: Flaw detection and characterization [Phase 1

    International Nuclear Information System (INIS)

    2006-05-01

    Nuclear power plants with heavy water reactors (HWRs) comprise nine percent of today's operating nuclear units, and more are under construction. Efficient and accurate inspection and diagnostic techniques for various reactor components and systems are an important factor in assuring reliable and safe plant operation. To foster international collaboration in the efficient and safe use of nuclear power, the IAEA conducted a Coordinated Research Programme (CRP) on Inter-comparison of Techniques for HWR Pressure Tube Inspection and Diagnostics. This CRP was carried out within the frame of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). The TWG-HWR is a group of experts nominated by their governments and designated by the IAEA to provide advice and to support implementation of the IAEA's project on advanced technologies for HWRs. The objective of the CRP was to inter-compare non-destructive inspection and diagnostic techniques, in use and being developed, for structural integrity assessment of HWR pressure tubes. During the first phase of this CRP, participants have investigated the capability of different techniques to detect and characterize flaws. During the second phase of this CRP, participants collaborated to detect and characterize hydride blisters and to determine the hydrogen concentration in Zirconium alloys. The intent was to identify the most effective pressure tube inspection and diagnostic methods, and to identify further development needs. The organizations that have participated in this CRP are: - The Comision Nacional de Energia Atomica (CNEA), Argentina; - Atomic Energy of Canada Ltd. (AECL); Chalk River Laboratories (CRL), Canada; - The Research Institute of Nuclear Power Operations (RINPO), China National Nuclear Corporation (CNNC), China; - Bhabha Atomic Research Centre (BARC), India; - The Korea Electric Power Research Institute (KEPRI), Republic of Korea; - The Korea Atomic Energy

  9. Fluid typing and tortuosity analysis with NMR-DE techniques in volcaniclastic reservoirs, Patagonia/Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Bustos, Ulises Daniel [Schlumberger Argentina S.A., Buenos Aires (Argentina); Breda, Eduardo Walter [Repsol YPF Comodoro Rivadavia, Chubut (Argentina)

    2004-07-01

    Alternative hydrocarbon-detection techniques are used to differentiate water from hydrocarbon where resistivity-based methods are difficult to apply, such as freshwater reservoirs and complex lithologies. One of these areas is represented by the complex volcaniclastic freshwater reservoirs in the Golfo San Jorge basin, Patagonia Argentina, where water and oil have often identical response on conventional logs. Some advances in hydrocarbon identification based on nuclear magnetic resonance (NMR) techniques were achieved in long T1 environments (very light oils, gas) in the Golfo San Jorge basin by previous NMR fluid typing methods. However, since medium to heavy oils are commonly present in these intervals, hydrocarbon detection by such techniques cannot be properly achieved. In addition, restricted diffusion phenomena recognized in these intervals, constitute further complications in fluid typing since its presence have similar response than native oil. To address this problem, a fluid characterization method using NMR Diffusion-Editing techniques and processing/interpretation with D-T2 maps in a suite of NMR measurements was applied. The technique allowed the detection and evaluation of restricted diffusion in these reservoirs, enabling better hydrocarbon characterization in a broad viscosity range (from light to heavy). The method also improved the petrophysical evaluation because restricted diffusion is related to tortuosity in the reservoir. Since the application of this innovative reservoir evaluation method, fluid prognosis vs well completion results was increased from around 68% to around 88% in Golfo San Jorge basin. Moreover, in some of these areas rates above 95% were recently achieved in 2004. (author)

  10. Characterization techniques for ion bombarded insulators

    International Nuclear Information System (INIS)

    Borders, J.A.

    1987-01-01

    The chapter gives a comprehensive review of the experimental methods for the analysis of ion-bombarded insulators including optical and structural methods, resonance, energetic ion methods, and surface techniques. 48 refs.; 34 figs

  11. Reduction reactions applied for synthesizing different nano-structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque Brocchi, Eduardo de; Correia de Siqueira, Rogério Navarro [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil); Motta, Marcelo Senna [Basck Ltd. (United Kingdom); Moura, Francisco José, E-mail: moura@puc-rio.br [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil); Solórzano-Naranjo, Ivan Guillermo [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil)

    2013-06-15

    Different materials have been synthesized by alternative routes: nitrates thermal decomposition to prepare oxide or co-formed oxides and reduction by hydrogen or graphite to obtain mixed oxides, composites or alloys. These chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support its feasibility. In addition, selective reduction reactions have been applied to successfully produce metal/ceramic composites, and alloys. Structural characterization has been carried out by X-ray Diffraction and, more extensively, Transmission Electron Microscopy operating in conventional diffraction contrast (CTEM) and high-resolution mode (HRTEM), indicated the possibility of obtaining oxide and alloy crystals of sizes ranging between 20 and 40 nm. - Highlights: • The viability in obtaining Ni–Co, Cu–Al, Mn–Al co-formed nano oxides was evaluated. • Partial and complete H{sub 2} reduction were used to produce alloy, composite and Spinel. • XRD, TEM and HREM techniques were used to characterize the obtained nanostructures.

  12. Neutron Filter Technique and its use for Fundamental and applied Investigations

    International Nuclear Information System (INIS)

    Gritzay, V.; Kolotyi, V.

    2008-01-01

    At Kyiv Research Reactor (KRR) the neutron filtered beam technique is used for more than 30 years and its development continues, the new and updated facilities for neutron cross section measurements provide the receipt of neutron cross sections with rather high accuracy: total neutron cross sections with accuracy 1% and better, neutron scattering cross sections with 3-6% accuracy. The main purpose of this paper is presentation of the neutron measurement techniques, developed at KRR, and demonstration some experimental results, obtained using these techniques

  13. VIDEOGRAMMETRIC RECONSTRUCTION APPLIED TO VOLCANOLOGY: PERSPECTIVES FOR A NEW MEASUREMENT TECHNIQUE IN VOLCANO MONITORING

    Directory of Open Access Journals (Sweden)

    Emmanuelle Cecchi

    2011-05-01

    Full Text Available This article deals with videogrammetric reconstruction of volcanic structures. As a first step, the method is tested in laboratory. The objective is to reconstruct small sand and plaster cones, analogous to volcanoes, that deform with time. The initial stage consists in modelling the sensor (internal parameters and calculating its orientation and position in space, using a multi-view calibration method. In practice two sets of views are taken: a first one around a calibration target and a second one around the studied object. Both sets are combined in the calibration software to simultaneously compute the internal parameters modelling the sensor, and the external parameters giving the spatial location of each view around the cone. Following this first stage, a N-view reconstruction process is carried out. The principle is as follows: an initial 3D model of the cone is created and then iteratively deformed to fit the real object. The deformation of the meshed model is based on a texture coherence criterion. At present, this reconstruction method and its precision are being validated at laboratory scale. The objective will be then to follow analogue model deformation with time using successive reconstructions. In the future, the method will be applied to real volcanic structures. Modifications of the initial code will certainly be required, however excellent reconstruction accuracy, valuable simplicity and flexibility of the technique are expected, compared to classic stereophotogrammetric techniques used in volcanology.

  14. Dosimetry techniques applied to thermoluminescent age estimation

    International Nuclear Information System (INIS)

    Erramli, H.

    1986-12-01

    The reliability and the ease of the field application of the measuring techniques of natural radioactivity dosimetry are studied. The natural radioactivity in minerals in composed of the internal dose deposited by alpha and beta radiations issued from the sample itself and the external dose deposited by gamma and cosmic radiations issued from the surroundings of the sample. Two technics for external dosimetry are examined in details. TL Dosimetry and field gamma dosimetry. Calibration and experimental conditions are presented. A new integrated dosimetric method for internal and external dose measure is proposed: the TL dosimeter is placed in the soil in exactly the same conditions as the sample ones, during a time long enough for the total dose evaluation [fr

  15. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    Energy Technology Data Exchange (ETDEWEB)

    Klinbumrung, Arrak [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-09-15

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm{sup −1} vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH{sub 3} mixed with air at various working temperatures and NH{sub 3} concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH{sub 3}.

  16. Manipulation of biological samples using micro and nano techniques.

    Science.gov (United States)

    Castillo, Jaime; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    The constant interest in handling, integrating and understanding biological systems of interest for the biomedical field, the pharmaceutical industry and the biomaterial researchers demand the use of techniques that allow the manipulation of biological samples causing minimal or no damage to their natural structure. Thanks to the advances in micro- and nanofabrication during the last decades several manipulation techniques offer us the possibility to image, characterize and manipulate biological material in a controlled way. Using these techniques the integration of biomaterials with remarkable properties with physical transducers has been possible, giving rise to new and highly sensitive biosensing devices. This article reviews the different techniques available to manipulate and integrate biological materials in a controlled manner either by sliding them along a surface (2-D manipulation), by grapping them and moving them to a new position (3-D manipulation), or by manipulating and relocating them applying external forces. The advantages and drawbacks are mentioned together with examples that reflect the state of the art of manipulation techniques for biological samples (171 references).

  17. Use of a multigrid technique to study effects of limited sampling of heterogeneity on transport prediction

    International Nuclear Information System (INIS)

    Cole, C.R.; Foote, H.P.

    1987-02-01

    Reliable ground water transport prediction requires accurate spatial and temporal characterization of a hydrogeologic system. However, cost constraints and the desire to maintain site integrity by minimizing drilling can restrict the amount of spatial sampling that can be obtained to resolve the flow parameter variability associated with heterogeneities. This study quantifies the errors in subsurface transport predictions resulting from incomplete characterization of hydraulic conductivity heterogeneity. A multigrid technique was used to simulate two-dimensional flow velocity fields with high resolution. To obtain these velocity fields, the finite difference code MGRID, which implements a multigrid solution technique, was applied to compute stream functions on a 256-by-256 grid for a variety of hypothetical systems having detailed distributions of hydraulic conductivity. Spatial variability in hydraulic conductivity distributions was characterized by the components in the spectrum of spatial frequencies. A low-pass spatial filtering technique was applied to the base case hydraulic conductivity distribution to produce a data set with lower spatial frequency content. Arrival time curves were then calculated for filtered hydraulic conductivity distribution and compared to base case results to judge the relative importance of the higher spatial frequency components. Results indicate a progression from multimode to single-mode arrival time curves as the number and extent of distinct flow pathways are reduced by low-pass filtering. This relationship between transport predictions and spatial frequencies was used to judge the consequences of sampling the hydraulic conductivity with reduced spatial resolution. 22 refs., 17 figs

  18. Wear Detection of Drill Bit by Image-based Technique

    Science.gov (United States)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  19. Characterization of Complex Colloidal Suspensions

    Science.gov (United States)

    Seaman, J. C.; Guerin, M.; Jackson, B. P.; Ranville, J. M.

    2003-04-01

    Surface chemical reactions play a major role in controlling contaminant fate and transport in the subsurface environment. Recent field and laboratory evidence suggests that mobile soil and groundwater colloids may facilitate the migration of sparingly soluble groundwater contaminants. Colloidal suspensions collected in the field or generated in laboratory column experiments tend to be fairly dilute in nature and comprised of relatively small particulates (reserved for studying ideal systems to the characterization of mobile colloids. However, many of these analytical techniques, including total/selective dissolution methods, dynamic light scattering, micro-electrophoresis, streaming potential, and even scanning electron microscopy (SEM), can be biased in of larger size fractions, and therefore, extremely sensitive to sampling, storage, and fractionation artifacts. In addition, surface modifiers such as sorbed oxides or organics can alter particulate appearance, composition, and behavior when compared to synthetic analogues or mineral standards. The current presentation will discuss the limitations and inherent biases associated with a number of analytical characterization techniques that are commonly applied to the study of mobile soil and groundwater colloids, including field flow fractionation (FFF) and acoustic based methods that have only recently become available.

  20. Characterization of the occupational exposure and air transported particles using the techniques of PIXE 252Cf PMDS and alpha spectrometry

    International Nuclear Information System (INIS)

    Carneiro, Luana Gomes

    2008-01-01

    The risk for human health due to exposure to aerosols depends on the intake pattern, the mass concentration and the speciation of the elements present in airborne particles. In this work PDMS (Plasma Desorption Mass Spectrometry) was used as complementary technique to the PIXE (Particle Induced X ray Emission) technique to characterize aerosols samples collected in the environment. The PIXE technique allows the identification of the elements present in the sample and to determine their mass concentrations. The mass spectrometry (PDMS) was used to identify the speciation of these elements present in the samples. The aerosol samples were collected using a six stage cascade impactor in three sites. The Mass Median Aerodynamic Diameter (MMAD) measured indicated that the airborne particulate were in the fine fraction of the aerosols. The theoretical uranium concentration in urine samples using ICRP lung model parameters suggest that the elemental mass concentration in respirable fraction of aerosol and the chemical speciation are important factors to determine the uranium concentration in urine and that the determination of specific solubility parameters for each compound is the most important factor to calculate the uranium concentration in urine. PIXE allows to identify and quantify the elements heavier than Na (Z=11) while PDMS allows to identify the organic and inorganic compounds present in the samples. As these techniques are used as complementary techniques they provide important information about the aerosols characterization. (author)

  1. Neural networks applied to characterize blends containing refined and extra virgin olive oils.

    Science.gov (United States)

    Aroca-Santos, Regina; Cancilla, John C; Pariente, Enrique S; Torrecilla, José S

    2016-12-01

    The identification and quantification of binary blends of refined olive oil with four different extra virgin olive oil (EVOO) varietals (Picual, Cornicabra, Hojiblanca and Arbequina) was carried out with a simple method based on combining visible spectroscopy and non-linear artificial neural networks (ANNs). The data obtained from the spectroscopic analysis was treated and prepared to be used as independent variables for a multilayer perceptron (MLP) model. The model was able to perfectly classify the EVOO varietal (100% identification rate), whereas the error for the quantification of EVOO in the mixtures containing between 0% and 20% of refined olive oil, in terms of the mean prediction error (MPE), was 2.14%. These results turn visible spectroscopy and MLP models into a trustworthy, user-friendly, low-cost technique which can be implemented on-line to characterize olive oil mixtures containing refined olive oil and EVOOs. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Characterization of silicates and calcium carbonates applied to high-dose dosimetry

    International Nuclear Information System (INIS)

    Vila, Gustavo Barreto

    2012-01-01

    The predominant isomorphous form in the biominerals studied in this work (oyster shell, coral, mother of pearl and shell) was aragonite. The appearance of the calcite phase occurred at 500 deg C at a heating rate of 10 deg C /s for all samples except for the coral sample, which was 400 deg C, independent of the heating rate. The most abundant element in the biominerals samples was Ca in the CaO form, and in the silicates (tremolite, diopside and rhodonite) Si in the SiO form. The most common trace element observed in the biominerals samples was Fe. The analyses of electron paramagnetic resonance showed lines of Mn 2+ in the coral and mother-of-pearl samples before irradiation. In the case of the irradiated samples, the defects found were CO 2 - , CO 3 3- , CO 3 - and SO 2 - , in the g range between 2.0010 and 2.0062. In the analyses by optical absorption of biominerals, transitions due to the presence of Mn in the samples were found. A thermoluminescent (TL) peak at approximately 140 deg C was found for the biominerals and at 180 deg C for silicates, which intensity depends directly on the dose. For samples exposed to different types of radiation, the TL peak occurred at lower temperatures. From the dose-response curves obtained for these materials, it was possible to determine a linear range for which their application in high dose dosimetry becomes possible. Taking into account the radiation type, among biominerals and silicates, the lowest detectable dose (40mGy) to gamma radiation was achieved for oyster shell samples using the measuring technique of optically stimulated luminescence (OSL). Using beta radiation, for diopside and tremolite samples the lowest detectable dose of 60mGy was obtained. For all samples, using the TL, OSL and thermally stimulated exoelectron emission (TSEE) techniques in alpha, beta and gamma radiation beans a good response reproducibility was obtained. Therefore, the samples characterized in this work are suitable to be used as high

  3. Synthesis of niobium carbide by a high energy milling technique of powder metallurgy

    International Nuclear Information System (INIS)

    Antonello, Rodrigo Tecchio; Gonzalez, Cezar Henrique; Urtiga Filho, Severino Leopoldino; Araujo Filho, Oscar Olimpio de; Ambrozio Filho, Francisco

    2010-01-01

    The aim of this work is to obtain and characterize the Niobium Carbide (NbC) by a suitable high energy milling technique using a SPEX Mill vibratory type and niobium and carbon (graphite) powders. Since this carbide is scarced in the national market and it's necessary to apply this NbC as a reinforcement in two molybdenum high speed steels (AISI M2 and AISI M3:2) object of another work motivated this research. The powders were submitted to a high energy milling procedure for suitable times and conditions and then were characterized by means of Scanning Electronic Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (DRX) techniques. The ball-to-powder weight ratio was 10:1. The analysed samples showed that the high-energy milling is an alternative route of the NbC synthesis. (author)

  4. Synthesis of niobium carbide (NbC) by powder metallurgy high energy milling technique

    International Nuclear Information System (INIS)

    Antonello, Rodrigo Tecchio; Urtiga Filho, Severino Leopoldino; Araujo Filho, Oscar Olimpio de; Ambrozio Filho, Francisco; Gonzalez, Cezar Henrique

    2009-01-01

    The aim of this work is to obtain and characterize the Niobium Carbide (NbC) by a suitable high energy milling technique using a SPEX Mill vibratory type and niobium and carbon (graphite) powders. Since this carbide is scarce in the national market and it's necessary to apply this NbC as a reinforcement in two molybdenum high speed steels (AISI M2 and AISI M3:2) object of another work motivated this research. The powders were submitted to a high energy milling procedure for suitable times and conditions and then were characterized by means of Scanning Electronic Microscopy (SEM) and X-ray diffraction (DRX) techniques. The ball-to-powder weight ratio was 10:1. The analysed samples showed that the high-energy milling is an alternative route of the NbC synthesis. (author)

  5. Characterization of natural and modified zeolites using ion beam analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, E. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico)], E-mail: andrade@fisica.unam.mx; Solis, C. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico); Aceves, J.M.; Miranda, R. [Facultad de Estudios Superiores Cuautitlan Itzcalli, Departamento de Quimica, Universidad Nacional Autonoma de Mexico, 1 de Mayo S/N, Cuatitlan Itzcalli, Edo. de Mexico, C.P. 74540 (Mexico); Cruz, J. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico); Rocha, M.F. [Escuela Superior de Ingenieria Mecanica y Electrica, Instituto Politecnico Nacional, U.P. ' Adolfo Lopez Mateos' , Zacatenco, Del. Gustavo A. Madero, Mexico D.F. 07738 (Mexico); Zavala, E.P. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico)

    2008-05-15

    Zeolites are very important materials in catalytic and industrial processes. Natural, modified and synthetic zeolites have a wide range of uses because of their good adsorption, ion exchange capacity and catalytic properties. Mexico is an import source of natural zeolites, however their utilization in the natural form is limited due to the presence of trace metallic impurities. For example, metals such as vanadium and chromium inhibit the elimination of sulfur in hydrocarbons. Therefore, it is important to know the precise composition of the zeolite material. In this work, we report the elemental characterization of zeolites using various IBA techniques. {sup 3}He{sup +} and {sup 2}H{sup +} beams were used to measure the major element concentrations (Si, Al, O, C) by RBS and NRA. PIXE and SEM-EDS were used to measure the total trace element content (V, Cr, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Pb, etc). Additionally, XRD was used to study the zeolite crystal structure.

  6. Analytical approaches for the characterization of nickel proteome.

    Science.gov (United States)

    Jiménez-Lamana, Javier; Szpunar, Joanna

    2017-08-16

    The use of nickel in modern industry and in consumer products implies some health problems for the human being. Nickel allergy and nickel carcinogenicity are well-known health effects related to human exposure to nickel, either during production of nickel-containing products or by direct contact with the final item. In this context, the study of nickel toxicity and nickel carcinogenicity involves the understanding of their molecular mechanisms and hence the characterization of the nickel-binding proteins in different biological samples. During the last 50 years, a broad range of analytical techniques, covering from the first chromatographic columns to the last generation mass spectrometers, have been used in order to fully characterize the nickel proteome. The aim of this review is to present a critical view of the different analytical approaches that have been applied for the purification, isolation, detection and identification of nickel-binding proteins. The different analytical techniques used are discussed from a critical point of view, highlighting advantages and limitations.

  7. Technique development for modulus, microcracking, hermeticity, and coating evaluation capability characterization of SiC/SiC tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Ang, Caen K. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Driven by the need to enlarge the safety margins of nuclear fission reactors in accident scenarios, research and development of accident-tolerant fuel has become an important topic in the nuclear engineering and materials community. A continuous-fiber SiC/SiC composite is under consideration as a replacement for traditional zirconium alloy cladding owing to its high-temperature stability, chemical inertness, and exceptional irradiation resistance. An important task is the development of characterization techniques for SiC/SiC cladding, since traditional work using rectangular bars or disks cannot directly provide useful information on the properties of SiC/SiC composite tubes for fuel cladding applications. At Oak Ridge National Laboratory, experimental capabilities are under development to characterize the modulus, microcracking, and hermeticity of as-fabricated, as-irradiated SiC/SiC composite tubes. Resonant ultrasound spectroscopy has been validated as a promising technique to evaluate the elastic properties of SiC/SiC composite tubes and microcracking within the material. A similar technique, impulse excitation, is efficient in determining the basic mechanical properties of SiC bars prepared by chemical vapor deposition; it also has potential for application in studying the mechanical properties of SiC/SiC composite tubes. Complete evaluation of the quality of the developed coatings, a major mitigation strategy against gas permeation and hydrothermal corrosion, requires the deployment of various experimental techniques, such as scratch indentation, tensile pulling-off tests, and scanning electron microscopy. In addition, a comprehensive permeation test station is being established to assess the hermeticity of SiC/SiC composite tubes and to determine the H/D/He permeability of SiC/SiC composites. This report summarizes the current status of the development of these experimental capabilities.

  8. Basalt identification by interpreting nuclear and electrical well logging measurements using fuzzy technique (case study from southern Syria)

    International Nuclear Information System (INIS)

    Asfahani, J.; Abdul Ghani, B.; Ahmad, Z.

    2015-01-01

    Fuzzy analysis technique is proposed in this research for interpreting the combination of nuclear and electrical well logging data, which include natural gamma ray, density and neutron-porosity, while the electrical well logging include long and short normal. The main objective of this work is to describe, characterize and establish the lithology of the large extended basaltic areas in southern Syria. Kodana well logging measurements have been used and interpreted for testing and applying the proposed technique. The established lithological cross section shows the distribution and the identification of four kinds of basalt, which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The fuzzy analysis technique is successfully applied on the Kodana well logging data, and can be therefore utilized as a powerful tool for interpreting huge well logging data with higher number of variables required for lithological estimations. - Highlights: • Apply fuzzy analysis technique on the nuclear and electrical well logging data of Kodana well in Southern Syria. • Determine and differentiate between four kinds of basalt. • Establish the lithological section of the studied well.

  9. Application of cluster analysis and unsupervised learning to multivariate tissue characterization

    International Nuclear Information System (INIS)

    Momenan, R.; Insana, M.F.; Wagner, R.F.; Garra, B.S.; Loew, M.H.

    1987-01-01

    This paper describes a procedure for classifying tissue types from unlabeled acoustic measurements (data type unknown) using unsupervised cluster analysis. These techniques are being applied to unsupervised ultrasonic image segmentation and tissue characterization. The performance of a new clustering technique is measured and compared with supervised methods, such as a linear Bayes classifier. In these comparisons two objectives are sought: a) How well does the clustering method group the data?; b) Do the clusters correspond to known tissue classes? The first question is investigated by a measure of cluster similarity and dispersion. The second question involves a comparison with a supervised technique using labeled data

  10. Assessment of ground-based monitoring techniques applied to landslide investigations

    Science.gov (United States)

    Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J.

    2016-01-01

    A landslide complex in the Whitby Mudstone Formation at Hollin Hill, North Yorkshire, UK is periodically re-activated in response to rainfall-induced pore-water pressure fluctuations. This paper compares long-term measurements (i.e., 2009-2014) obtained from a combination of monitoring techniques that have been employed together for the first time on an active landslide. The results highlight the relative performance of the different techniques, and can provide guidance for researchers and practitioners for selecting and installing appropriate monitoring techniques to assess unstable slopes. Particular attention is given to the spatial and temporal resolutions offered by the different approaches that include: Real Time Kinematic-GPS (RTK-GPS) monitoring of a ground surface marker array, conventional inclinometers, Shape Acceleration Arrays (SAA), tilt meters, active waveguides with Acoustic Emission (AE) monitoring, and piezometers. High spatial resolution information has allowed locating areas of stability and instability across a large slope. This has enabled identification of areas where further monitoring efforts should be focused. High temporal resolution information allowed the capture of 'S'-shaped slope displacement-time behaviour (i.e. phases of slope acceleration, deceleration and stability) in response to elevations in pore-water pressures. This study shows that a well-balanced suite of monitoring techniques that provides high temporal and spatial resolutions on both measurement and slope scale is necessary to fully understand failure and movement mechanisms of slopes. In the case of the Hollin Hill landslide it enabled detailed interpretation of the geomorphological processes governing landslide activity. It highlights the benefit of regularly surveying a network of GPS markers to determine areas for installation of movement monitoring techniques that offer higher resolution both temporally and spatially. The small sensitivity of tilt meter measurements

  11. Advancements in Particle Analysis Procedures and their Application to the Characterization of Reference Materials for Safeguards

    International Nuclear Information System (INIS)

    Admon, U.; Chinea-Cano, E.; Dzigal, N.; Vogt, K.S.; Halevy, I.; Boblil, E.; Elkayam, T.; Weiss, A.

    2015-01-01

    Two approaches may be employed in the preparation of Reference Materials (RMs) for use in micro analytical techniques: placement of characterized micro artefacts in bulk materials and characterization of certain classes of individual particles in existing materials. In November 2013, a collaborative project was launched with the aim of adding information about such individual particles in existing RMs. The motivation behind this project was to investigate and characterize micro-artefacts present in certain commercially available RM, making them available and fit for use in safeguards and several other nuclear applications. The implementation and development of new techniques for particle characterization in bulk materials are also part of this project. The strategy for that approach includes the following steps: 1. Sample preparation: Dispersion of particles on stubs and planchets by an in-house shock-wave device. 2. Particle-of-Interest identification and characterization: (a) Fission Track (FT) route: Mosaic imaging of detectors containing FT stars; Applying automatic pattern recognition and localization of FT stars in detectors; Using Laser Micro-Dissection (LMD) for retrieval of individual particles; Preparation of sampled particles for SEM observation and other analytical techniques. (b) Alpha Track (αT) route: Direct particle identification and localization using position sensitive detectors (instrumental auto-radiography). (c) The advanced SEM route: Integration of analytical SEM techniques for characterization of individual particles of interest: EDS, mass spectrometry, FIB, micro-Raman. Preliminary results of the ongoing efforts will be reported. Utilization of these hyphenated techniques and instruments represents an innovative approach to particle characterization for Safeguards applications. (author)

  12. Advanced inspection and repair techniques for primary side components

    International Nuclear Information System (INIS)

    Elm, Ralph

    1998-01-01

    The availability of nuclear power plant mainly depends on the components of the Nuclear Steam Supply System (NSSS) such as reactor pressure vessel, core internals and steam generators. The last decade has been characterized by intensive inspection and repair work on PWR steam generators. In the future, it can be expected, that the inspection of the reactor pressure vessel and the inspection and repair of its internals, in both PWR and BWR will be one of the challenges for the nuclear community. Due to this challenge, new, advanced inspection and repair techniques for the vital primary side components have been developed and applied, taking into account such issues as: use of reliable and fast inspection methods, repair of affected components instead of costly replacement, reduction of outage time compared to conventional methods, minimized radiation exposure, acceptable costs. This paper reflects on advanced inspection and repair techniques such as: Baffle Former Bolt inspection and replacement, Barrel Former Bolt inspection and replacement, Mechanized UT and visual inspection of reactor pressure vessels, Steam Generator repair by advanced sleeving technology. The techniques described have been successfully applied in nuclear power plants and improved the operation performance of the components and the NPP. (author). 6 figs

  13. Dynamic characterization, monitoring and control of rotating flexible beam-mass structures via piezo-embedded techniques

    Science.gov (United States)

    Lai, Steven H.-Y.

    1992-01-01

    A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.

  14. Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Fæster, Søren; Hansen, Niels

    2017-01-01

    Thick-walled ductile iron casts have been studied by applying (i) cooling rate calculations by FVM, (ii) microstructural characterization by 2D SEM and 3D X-ray tomography techniques and (iii) fatigue testing of samples drawn from components cast in sand molds and metal molds. An analysis has shown...... correlations between cooling rate, structure and fatigue strengths demonstrating the benefit of 3D structural characterization to identify possible causes of premature fatigue failure of ductile cast iron....

  15. Applying machine learning and image feature extraction techniques to the problem of cerebral aneurysm rupture

    Directory of Open Access Journals (Sweden)

    Steren Chabert

    2017-01-01

    Full Text Available Cerebral aneurysm is a cerebrovascular disorder characterized by a bulging in a weak area in the wall of an artery that supplies blood to the brain. It is relevant to understand the mechanisms leading to the apparition of aneurysms, their growth and, more important, leading to their rupture. The purpose of this study is to study the impact on aneurysm rupture of the combination of different parameters, instead of focusing on only one factor at a time as is frequently found in the literature, using machine learning and feature extraction techniques. This discussion takes relevance in the context of the complex decision that the physicians have to take to decide which therapy to apply, as each intervention bares its own risks, and implies to use a complex ensemble of resources (human resources, OR, etc. in hospitals always under very high work load. This project has been raised in our actual working team, composed of interventional neuroradiologist, radiologic technologist, informatics engineers and biomedical engineers, from Valparaiso public Hospital, Hospital Carlos van Buren, and from Universidad de Valparaíso – Facultad de Ingeniería and Facultad de Medicina. This team has been working together in the last few years, and is now participating in the implementation of an “interdisciplinary platform for innovation in health”, as part of a bigger project leaded by Universidad de Valparaiso (PMI UVA1402. It is relevant to emphasize that this project is made feasible by the existence of this network between physicians and engineers, and by the existence of data already registered in an orderly manner, structured and recorded in digital format. The present proposal arises from the description in nowadays literature that the actual indicators, whether based on morphological description of the aneurysm, or based on characterization of biomechanical factor or others, these indicators were shown not to provide sufficient information in order

  16. Characterization of pigments applied on archaeological material from Chincha's Culture by x-rays fluorescence and transmission electronic microscopy

    International Nuclear Information System (INIS)

    Lopez M, Alcides; Olivera, Paula

    2007-01-01

    The elementary characterization of some pigments applied in the decoration of recipients used by our ancestors of the Chincha Culture by Energy dispersive X-ray fluorescence (EDXRF)method was allowed. Additionally, the morphological and crystalline characterization by Transmission Electronic Microscopy (TEM) method has been possible. The results have allowed identifying the presence of mercury sulphur (HgS) (cinnabar) in the red pigment on the 'mate'; the black and white pigments are constituted by materials of organic aspect; in the case the dark brown one they are constituted by organic matter and ferric oxide. This work also demonstrates that a portable EDXRF spectrometer is the most suitable for the study of pieces of our cultural patrimony, mainly of those that are difficult to transport from an archaeological place or museum to an analytic laboratory by reason of its dimensions and conservation conditions. (author)

  17. Site characterization design and techniques used at the Southern Shipbuilding Corporation site

    International Nuclear Information System (INIS)

    Mueller, J.P.; Geraghty, C.A.; Moore, G.W.; Mullins, J.R.

    1995-01-01

    The Southern Shipbuilding Corporation (SSC) site is an inactive barge/ship manufacturing and repair facility situated on approximately 54 acres in Slidell, St. Tammany Parish, Louisiana. Two unlined surface impoundments (North and South impoundments) are situated on the northwest portion of the site and are surrounded on three sides by Bayou Bonfouca. These impoundments are the sources of carcinogenic polynuclear aromatic hydrocarbon (CPAH) contamination at the site. Inadequate containment has resulted in the release of impoundment wastes into the bayou. To evaluate potential response alternatives for the site, an Engineering Evaluation/Cost Analysis (EE/CA) field investigation was conducted from July through October 1994. A two phase sampling approach was used in combination with innovative and traditional sampling techniques, field screening technologies, and exploitation of the visual characteristics of the waste to determine the extent of waste migration with limited off-site laboratory confirmation. A skid-mounted mobile drilling unit, secured to a specialized sampling platform designed for multiple applications, was used for collection of sediment cores from the bayou as well as tarry sludge cores from the impoundments. Field screening of core samples was accomplished on site using an organic vapor analyzer and a total petroleum hydrocarbon (TPH) field analyzer. Pollutants of concern include metals, cyanide, dioxin, and organic compounds. This paper presents details on the sampling design and characterization techniques used to accomplish the EE/CA field investigation

  18. Development of a measurement technique to characterize erosion and redeposition in a tokamak by speckle interferometry

    International Nuclear Information System (INIS)

    Dore, P.

    2006-11-01

    This work aims at proving the feasibility of temporal phase shifting speckle interferometry to make erosion/redeposition measurements on plasma facing components in situ on a tokamak. Results show clearly that the interferometric technique can be implemented on a tokamak to provide erosion/redeposition measurements. The optical setup and the interferograms acquisition and processing have been developed and tested in laboratory before being suited to the complex tokamak environment. We finally have an optical technique able to characterize erosion/redeposition mechanisms (amount of eroded/redeposited material, location) on optically rough plasma facing components (carbon fibre composite, tungsten). These components, suffering from random displacements (as vibrations) during acquisition, are relatively large (∼ 50 x 50 cm 2 ) and could be situated far away from the CCD camera (∼ 3 m). Now, we need to define the regions of plasma facing components where we want to make erosion and redeposition measurements. After that, we propose a diagnostic to validate the optical technique in situ on a tokamak, allowing us to develop a diagnostic for ITER. (author)

  19. Using Neutron Scattering and Mercury Intrusion Techniques to Characterize Micro- and Nano-Pore Structure of Shale

    Science.gov (United States)

    Zhang, Y.; Barber, T.; Hu, Q.; Bleuel, M.

    2017-12-01

    The micro- and nano-pore structure of oil shale plays a critical role in hydrocarbon storage and migration. This study aims to characterize the pore structure of three Bakken members (i.e., upper organic-rich shale, middle silty/sandy dolomites, and lower organic-rich shale), through small and ultra-small angle neutron scattering (SANS and USANS) techniques, as well as mercury injection capillary pressure (MICP) analyses. SANS/USANS have the capabilities of measuring total porosity (connected and closed porosity) across nm-mm spectrum, not measurable than other fluid-invasion approaches, such as MICP which obtains connected porosity and pore-throat size distribution. Results from both techniques exhibit different features of upper/lower Bakken and middle Bakken, as a result of various mineral composition and organic matter contents. Middle Bakken is primarily dominated by the mineral pores, while in the upper and lower Bakken, organic pores contribute a significant portion of total porosity. A combination of USANS/SANS and MICP techniques gives a comprehensive picture of shale micro- and nano-pore structure.

  20. Characterization of Metal Powders Used for Additive Manufacturing.

    Science.gov (United States)

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  1. Characterization of Metal Powders Used for Additive Manufacturing

    Science.gov (United States)

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  2. Landscape characterization integrating expert and local spatial knowledge of land and forest resources.

    Science.gov (United States)

    Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle

    2013-09-01

    In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.

  3. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, Jason; Gunter, Dan; Tierney, Brian; Allcock, Bill; Bester, Joe; Bresnahan, John; Tuecke, Steve

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. Ensuring that the data is there in time for the computation in today's Internet is a massive problem. From our work developing a scalable distributed network cache, we have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). In this paper, we discuss several hardware and software design techniques and issues, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. We also describe results from two applications using these techniques, which were obtained at the Supercomputing 2000 conference

  4. Aging material evaluation and studies by non-destructive techniques (AMES-NDT) - a European network project

    International Nuclear Information System (INIS)

    Dobmann, Gerd; Debarberis, Luigi; Coste, Jean-Francois

    2001-01-01

    This paper presents results obtained in a round-robin action organized in a concerted action of ten partners in the EURATOM program of the European Community. The objective of the research was to document the state of the art of available non-destructive testing (NDT) techniques in order to characterize material aging phenomena based on a reduction of Charpy-V energy and a shift in the fracture appearance transition temperature. Therefore, samples from the Japanese nuclear reactor pressure vessel JRQ-steel (ASMT Standard A533-B Class 1) have been thermally treated at 700 deg. C for 18 h with a subsequent water quenching. Besides micromagnetic and electromagnetic NDT, the positron annihilation technique, ultrasonic reverberation by using Laser ultrasonics and the thermo-electrical power have been applied to characterize the aged material states

  5. Characterization of the loss allocation techniques for radial systems with distributed generation

    International Nuclear Information System (INIS)

    Carpaneto, Enrico; Chicco, Gianfranco; Sumaili Akilimali, Jean

    2008-01-01

    In the restructured electricity industry, meaningful loss allocation methods are required in order to send correct signals to the market taking into account the location and characteristics of loads and generations, including the local sources forming the distributed generation (DG). This paper addresses the issues related to loss allocation in radial distribution systems with DG, with a three-fold focus. First, the key differences in the formulation of the loss allocation problem for radial distribution systems with respect to transmission systems are discussed, specifying the modeling and computational issues concerning the treatment of the slack node in radial distribution systems. Then, the characteristics of derivative-based and circuit-based loss allocation techniques are presented and compared, illustrating the arrangements used for adapting the various techniques to be applied to radial distribution systems with DG. Finally, the effects of introducing voltage-controllable local generation on the calculation of the loss allocation coefficients are discussed, proposing the adoption of a ''reduced'' representation of the system capable of taking into proper account the characteristics of the nodes containing voltage-controllable DG units. Numerical results are provided to show the time evolution of the loss allocation coefficients for distribution systems with variable load and local generation patterns. (author)

  6. Zero order and signal processing spectrophotometric techniques applied for resolving interference of metronidazole with ciprofloxacin in their pharmaceutical dosage form.

    Science.gov (United States)

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2016-02-05

    Four rapid, simple, accurate and precise spectrophotometric methods were used for the determination of ciprofloxacin in the presence of metronidazole as interference. The methods under study are area under the curve, simultaneous equation in addition to smart signal processing techniques of manipulating ratio spectra namely Savitsky-Golay filters and continuous wavelet transform. All the methods were validated according to the ICH guidelines where accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can therefore be used for the routine analysis of ciprofloxacin in quality-control laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Complementarities of nuclear-based analytical techniques for the characterization of thin film technological materials

    International Nuclear Information System (INIS)

    Bamford, Samuel; Kregsamer, Peter; Fazinic, Stjepko; Jaksic, Milko; Wegrzynek, Dariusz; Chinea-Cano, Ernesto; Markowicz, Andrzej

    2007-01-01

    Two thin film technological materials (A/B) from the aerospace industry have been characterized for their elemental composition, for the purpose of determining their purity and trace element distribution. The results contribute to the assessment of the materials' suitability as part of a spacecraft's thermal hardware. Analysis was done using a combination of PIXE/RBS and energy dispersive X-ray fluorescence (EDXRF) analytical techniques. Samples of the materials were analyzed with PIXE/RBS system using 2 MeV proton beam from a 1 MV Tandetron accelerator and also with separate EDXRF systems employing Am-241 and Mo-secondary target as excitation sources. PIXE/RBS measurements enabled identification of the elemental composition and elucidation of the layer structure of the materials. From the PIXE/RBS results, Am-241-excited EDXRF technique was selected for quantitative determination of indium (In) and tin (Sn) by their K-X-rays, after reasonable absorption corrections. A comparison has been made of the results obtained from EDXRF and PIXE/RBS. Material A has been found to be a thin film with three layers, while material B is a thin film comprised of four layers. Thicknesses and compositions (including trace elements) of all layers have been determined. The limitation of EDXRF in the analysis of inhomogeneously distributed elements was overcome by using PIXE/RBS as an appropriate complimentary technique

  8. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D D; Bailey, G; Martin, J; Garton, D; Noorman, H; Stelcer, E; Johnson, P [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  9. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Bailey, G.; Martin, J.; Garton, D.; Noorman, H.; Stelcer, E.; Johnson, P. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  10. Applying Toyota production system techniques for medication delivery: improving hospital safety and efficiency.

    Science.gov (United States)

    Newell, Terry L; Steinmetz-Malato, Laura L; Van Dyke, Deborah L

    2011-01-01

    The inpatient medication delivery system used at a large regional acute care hospital in the Midwest had become antiquated and inefficient. The existing 24-hr medication cart-fill exchange process with delivery to the patients' bedside did not always provide ordered medications to the nursing units when they were needed. In 2007 the principles of the Toyota Production System (TPS) were applied to the system. Project objectives were to improve medication safety and reduce the time needed for nurses to retrieve patient medications. A multidisciplinary team was formed that included representatives from nursing, pharmacy, informatics, quality, and various operational support departments. Team members were educated and trained in the tools and techniques of TPS, and then designed and implemented a new pull system benchmarking the TPS Ideal State model. The newly installed process, providing just-in-time medication availability, has measurably improved delivery processes as well as patient safety and satisfaction. Other positive outcomes have included improved nursing satisfaction, reduced nursing wait time for delivered medications, and improved efficiency in the pharmacy. After a successful pilot on two nursing units, the system is being extended to the rest of the hospital. © 2010 National Association for Healthcare Quality.

  11. Preparation, Characterization and application of Alumina Powder Produced by advanced Preparation Techniques

    International Nuclear Information System (INIS)

    Khalil, T.; Abou El Nour, F.; Bossert, J.; Ashor, A.H.

    2000-01-01

    Aluminum oxide powders were prepared by advanced chemical techniques. The morphology of the produced powders were examined using scanning electron microscopy (SEM). Surface characteristics of the powders were measured through nitrogen gas adsorption and application of the BET equation at 77 K, through the use of nitrogen gas adsorption at liquid nitrogen temperature and application of the Brunauer-Emett-Teller (BET) equation. The total surface area, total pore volume and pore radius of the powders were calculated through the construction of the plots relating the amount of nitrogen gas adsorbed V 1 and the thickness of the adsorbed layer t(V 1 -t plots). The thermal behaviour of the powders were studied with the help of differential thermal analysis (DTA) and thermogravimetry (TG). Due to the presence of some changes in the DTA base lines, possibly as a result of phase transformations, X-ray diffraction was applied to identify these phases. The sintering behaviour of the compact powders after isostatic pressing was evaluated using dilatometry. The sintering temperature of the studied samples were also determined using heating microscopy. The effect of changing sintering temperature and of applying different isostatic pressures on the density and porosity of the compacts was investigated

  12. Modal analysis application for dynamic characterization of simple structures

    International Nuclear Information System (INIS)

    Pastorini, A.J.; Belinco, C.G.

    1987-01-01

    The knowledge of the dynamic characteristics of a structure helps to foresee the vibrating behaviour under operating conditions. The modal analysis techniques offer a method to perform the dynamic characterization of a studied structure from the vibration modes of such structure. A hammer provided with a loaded cell to excite a wide frequency band and accelerometer and, on the basis of a measurement of the transfer function at different points, various simple structures were given with a dynamic structures analysis (of the type of Fourier's rapidly transformation) and the results were compared with those obtained by other methods. Different fields where these techniques are applied, are also enumerated. (Author)

  13. Preparation of Risedronate Nanoparticles by Solvent Evaporation Technique

    Directory of Open Access Journals (Sweden)

    Eliska Vaculikova

    2014-11-01

    Full Text Available One approach for the enhancement of oral drug bioavailability is the technique of nanoparticle preparation. Risedronate sodium (Biopharmaceutical Classification System Class III was chosen as a model compound with high water solubility and low intestinal permeability. Eighteen samples of risedronate sodium were prepared by the solvent evaporation technique with sodium dodecyl sulfate, polysorbate, macrogol, sodium carboxymethyl cellulose and sodium carboxymethyl dextran as nanoparticle stabilizers applied in three concentrations. The prepared samples were characterized by dynamic light scattering and scanning electron microscopy. Fourier transform mid-infrared spectroscopy was used for verification of the composition of the samples. The particle size of sixteen samples was less than 200 nm. Polysorbate, sodium carboxymethyl dextran and macrogol were determined as the most favourable excipients; the particle size of the samples of risedronate with these excipients ranged from 2.8 to 10.5 nm.

  14. Gamma-ray spectrometry combined with acceptable knowledge (GSAK). A technique for characterization of certain remote-handled transuranic (RH-TRU) wastes. Part 2. Testing and results

    International Nuclear Information System (INIS)

    Hartwell, J.K.; McIlwain, M.E.

    2005-01-01

    Gamma-ray spectrometry combined with acceptable knowledge (GSAK) is a technique for the characterization of certain remote-handled transuranic (RH-TRU) wastes. GSAK uses gamma-ray spectrometry to quantify a portion of the fission product inventory of RH-TRU wastes. These fission product results are then coupled with calculated inventories derived from acceptable process knowledge to characterize the radionuclide content of the assayed wastes. GSAK has been evaluated and tested through several test exercises. These tests and their results are described; while the former paper in this issue presents the methodology, equipment and techniques. (author)

  15. Techniques and methods of characterization of admixtures for the concrete

    Directory of Open Access Journals (Sweden)

    Palacios, M.

    2003-03-01

    Full Text Available Admixtures are defined as those products that are incorporated in the moment of the process of mixture of the concrete in a quantity not bigger than 5 by mass of the cement %, with relationship to the cement content in the concrete, with object of modifying the properties of the mixture in .state fresh and/or hardened. The behaviour of the admixtures depends on its chemical and ionic composition, the organic functional groups present, and the structure of the polymer and the distribution of molecular weight of the different polymers. In the present work the techniques and methods of characterization physical-chemistry, chemistry and ionic, structural, as well as of the polymers that constitute this admixtures, are described. A lot of techniques have been employed like: ionic chromatography, ultraviolet-visible spectroscopy (UV-VIS, Fourier transform infrared spectroscopy (FTIR, Fourier transform Raman spectroscopy (FT-Raman, nuclear magnetic resonance spectroscopy (1H-RMN and 13C-RMN, gel permeation chromatography (GPC. Two commercial admixtures have been selected to carry out this characterization, a superplastificant based on policarboxilates, and a reducer of the shrinkage based on polipropilenglycol.

    RESUMEN Se definen los aditivos como aquellos productos que son incorporados en el momento del amasado del hormigón en una cantidad no mayor del 5% en masa, con relación al contenido de cemento en el hormigón, con objeto de modificar las propiedades de la mezcla en estado fresco y/o endurecido. El comportamiento de los aditivos depende de su composición química e iónica, de los grupos funcionales orgánicos presentes, de la estructura del polímero y de la distribución de pesos moleculares de los diferentes polímeros que lo constituyen. En el presente trabajo se describen diferentes técnicas y métodos de caracterización físico-química, química e iónica, estructural, así como de los polímeros que

  16. Applying of Reliability Techniques and Expert Systems in Management of Radioactive Accidents

    International Nuclear Information System (INIS)

    Aldaihan, S.; Alhbaib, A.; Alrushudi, S.; Karazaitri, C.

    1998-01-01

    Accidents including radioactive exposure have variety of nature and size. This makes such accidents complex situations to be handled by radiation protection agencies or any responsible authority. The situations becomes worse with introducing advanced technology with high complexity that provide operator huge information about system working on. This paper discusses the application of reliability techniques in radioactive risk management. Event tree technique from nuclear field is described as well as two other techniques from nonnuclear fields, Hazard and Operability and Quality Function Deployment. The objective is to show the importance and the applicability of these techniques in radiation risk management. Finally, Expert Systems in the field of accidents management are explored and classified upon their applications

  17. Applying NISHIJIN historical textile technique for e-Textile.

    Science.gov (United States)

    Kuroda, Tomohiro; Hirano, Kikuo; Sugimura, Kazushige; Adachi, Satoshi; Igarashi, Hidetsugu; Ueshima, Kazuo; Nakamura, Hideo; Nambu, Masayuki; Doi, Takahiro

    2013-01-01

    The e-Textile is the key technology for continuous ambient health monitoring to increase quality of life of patients with chronic diseases. The authors introduce techniques of Japanese historical textile, NISHIJIN, which illustrate almost any pattern from one continuous yarn within the machine weaving process, which is suitable for mixed flow production. Thus, NISHIJIN is suitable for e-Textile production, which requires rapid prototyping and mass production of very complicated patterns. The authors prototyped and evaluated a few vests to take twelve-lead electrocardiogram. The result tells that the prototypes obtains electrocardiogram, which is good enough for diagnosis.

  18. Characterization of spent fuel assemblies for storage facilities using non destructive assay

    International Nuclear Information System (INIS)

    Lebrun, A.; Bignan, G.; Recroix, H.; Huver, M.

    1999-01-01

    Many non destructive assay (NDA) techniques have been developed by the French Atomic Energy Commission (CEA) for spent fuel characterization and management. Passive and active neutron methods as well as gamma spectrometric methods have been carried out and applied to industrial devices like PYTHON TM and NAJA. Many existing NDA methods can be successfully applied to storage, but the most promising are the neutron methods combined with on line evolution codes. For dry storage applications, active neutron measurements require further R and D to achieve accurate results. Characterization data given by NDA instruments can now be linked to automatic fuel recognition. Both information can feed the storage management software in order to meet the storage operation requirements like: fissile mass inventory, operators declaration consistency or automatic selection of proper storage conditions. (author)

  19. Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds.

    Science.gov (United States)

    Delrue, Steven; Tabatabaeipour, Morteza; Hettler, Jan; Van Den Abeele, Koen

    2016-05-01

    Friction stir welding (FSW) is a promising technology for the joining of aluminum alloys and other metallic admixtures that are hard to weld by conventional fusion welding. Although FSW generally provides better fatigue properties than traditional fusion welding methods, fatigue properties are still significantly lower than for the base material. Apart from voids, kissing bonds for instance, in the form of closed cracks propagating along the interface of the stirred and heat affected zone, are inherent features of the weld and can be considered as one of the main causes of a reduced fatigue life of FSW in comparison to the base material. The main problem with kissing bond defects in FSW, is that they currently are very difficult to detect using existing NDT methods. Besides, in most cases, the defects are not directly accessible from the exposed surface. Therefore, new techniques capable of detecting small kissing bond flaws need to be introduced. In the present paper, a novel and practical approach is introduced based on a nonlinear, single-sided, ultrasonic technique. The proposed inspection technique uses two single element transducers, with the first transducer transmitting an ultrasonic signal that focuses the ultrasonic waves at the bottom side of the sample where cracks are most likely to occur. The large amount of energy at the focus activates the kissing bond, resulting in the generation of nonlinear features in the wave propagation. These nonlinear features are then captured by the second transducer operating in pitch-catch mode, and are analyzed, using pulse inversion, to reveal the presence of a defect. The performance of the proposed nonlinear, pitch-catch technique, is first illustrated using a numerical study of an aluminum sample containing simple, vertically oriented, incipient cracks. Later, the proposed technique is also applied experimentally on a real-life friction stir welded butt joint containing a kissing bond flaw. Copyright © 2016

  20. Applied computing in medicine and health

    CERN Document Server

    Al-Jumeily, Dhiya; Mallucci, Conor; Oliver, Carol

    2015-01-01

    Applied Computing in Medicine and Health is a comprehensive presentation of on-going investigations into current applied computing challenges and advances, with a focus on a particular class of applications, primarily artificial intelligence methods and techniques in medicine and health. Applied computing is the use of practical computer science knowledge to enable use of the latest technology and techniques in a variety of different fields ranging from business to scientific research. One of the most important and relevant areas in applied computing is the use of artificial intelligence (AI) in health and medicine. Artificial intelligence in health and medicine (AIHM) is assuming the challenge of creating and distributing tools that can support medical doctors and specialists in new endeavors. The material included covers a wide variety of interdisciplinary perspectives concerning the theory and practice of applied computing in medicine, human biology, and health care. Particular attention is given to AI-bas...

  1. Learning mediastinoscopy: the need for education, experience and modern techniques--interdependency of the applied technique and surgeon's training level.

    Science.gov (United States)

    Walles, Thorsten; Friedel, Godehard; Stegherr, Tobias; Steger, Volker

    2013-04-01

    Mediastinoscopy represents the gold standard for invasive mediastinal staging. While learning and teaching the surgical technique are challenging due to the limited accessibility of the operation field, both benefited from the implementation of video-assisted techniques. However, it has not been established yet whether video-assisted mediastinoscopy improves the mediastinal staging in itself. Retrospective single-centre cohort analysis of 657 mediastinoscopies performed at a specialized tertiary care thoracic surgery unit from 1994 to 2006. The number of specimens obtained per procedure and per lymph node station (2, 4, 7, 8 for mediastinoscopy and 2-9 for open lymphadenectomy), the number of lymph node stations examined, sensitivity and negative predictive value with a focus on the technique employed (video-assisted vs standard technique) and the surgeon's experience were calculated. Overall sensitivity was 60%, accuracy was 90% and negative predictive value 88%. With the conventional technique, experience alone improved sensitivity from 49 to 57% and it was predominant at the paratracheal right region (from 62 to 82%). But with the video-assisted technique, experienced surgeons rose sensitivity from 57 to 79% in contrast to inexperienced surgeons who lowered sensitivity from 49 to 33%. We found significant differences concerning (i) the total number of specimens taken, (ii) the amount of lymph node stations examined, (iii) the number of specimens taken per lymph node station and (iv) true positive mediastinoscopies. The video-assisted technique can significantly improve the results of mediastinoscopy. A thorough education on the modern video-assisted technique is mandatory for thoracic surgeons until they can fully exhaust its potential.

  2. Optical techniques for solid-state materials characterization

    CERN Document Server

    Prasankumar, Rohit P

    2016-01-01

    This book has comprehensively covered the essential optical approaches needed for solid-state materials characterization. Written by experts in the field, this will be a great reference for students, engineers, and scientists.-Professor Yoke Khin Yap, Michigan Technical University.

  3. Obtention of polyester-montmorillonite (MMT) nanocomposites applied to powder coating - part 1: nanocomposites characterization

    International Nuclear Information System (INIS)

    Piazza, Diego; Zattera, Ademir J.; Silveira, Debora S.; Lorandi, Natalia P.; Birriel, Eliena J.; Scienza, Lisete C.

    2009-01-01

    The development and obtention of polymeric nanocomposites in the nanotechnology and nanoscience field have attracted great attention due to diversity of potential applications and significant property improvement when compared to conventional composites. In this work, commercial formulations of polyester-based powder coating with 0, 2 and 4% (w/w) of montmorillonite (MMT) were obtained by incorporation in the melting state and characterized by TEM, SEM, DSC, TGA and XRD. The nanocoatings were applied on the mild carbon steel panels by electrostatic paint. The microscopy analysis showed MMT in the coating film, predominantly in the exfoliated form, corroborated by XRD results. Some tactoid structures and a surface film with some defects and porous were also revealed. Progressive reduction of crosslinking temperature and thermal stability was observed in thermal analysis. The best clay dispersion in the coating and a higher quality film were achieved at 2% MMT concentration. (author)

  4. Active and passive infrared thermography applied to the detection and characterization of hidden defects in structure

    Science.gov (United States)

    Dumoulin, Jean

    2013-04-01

    Infrared thermography for Non Destructive Testing (NDT) has encountered a wide spreading this last 2 decades, in particular thanks to emergence on the market of low cost uncooled infrared camera. So, infrared thermography is not anymore a measurement technique limited to laboratory application. It has been more and more involved in civil engineering and cultural heritage applications, but also in many other domains, as indicated by numerous papers in the literature. Nevertheless, laboratory, measurements are done as much as possible in quite ideal conditions (good atmosphere conditions, known properties of materials, etc.), while measurement on real site requires to consider the influence of not controlled environmental parameters and additional unknown thermal properties. So, dedicated protocol and additional sensors are required for measurement data correction. Furthermore, thermal excitation is required to enhance the signature of defects in materials. Post-processing of data requires to take into account the protocol used for the thermal excitation and sometimes its nature to avoid false detection. This analysis step is based on signal and image processing tool and allows to carry out the detection. Characterization of anomalies detected at the previous step can be done by additional signal processing in particular for manufactured objects. The use of thermal modelling and inverse method allows to determine properties of the defective area. The present paper will first address a review of some protocols currently in use for field measurement with passive and/or active infrared measurements. Illustrations in various experiments carried out on civil engineering structure will be shown and discussed. In a second part, different post-processing approaches will be presented and discussed. In particular, a review of the most standard processing methods like Fast Fourier Analysis, Principal Components Analysis, Polynomial Decomposition, defect characterization using

  5. Human soft tissue analysis using x-ray or gamma-ray techniques

    International Nuclear Information System (INIS)

    Theodorakou, C; Farquharson, M J

    2008-01-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus. (topical review)

  6. Genomics meets applied ecology: Characterizing habitat quality for sloths in a tropical agroecosystem.

    Science.gov (United States)

    Fountain, Emily D; Kang, Jung Koo; Tempel, Douglas J; Palsbøll, Per J; Pauli, Jonathan N; Zachariah Peery, M

    2018-01-01

    Understanding how habitat quality in heterogeneous landscapes governs the distribution and fitness of individuals is a fundamental aspect of ecology. While mean individual fitness is generally considered a key to assessing habitat quality, a comprehensive understanding of habitat quality in heterogeneous landscapes requires estimates of dispersal rates among habitat types. The increasing accessibility of genomic approaches, combined with field-based demographic methods, provides novel opportunities for incorporating dispersal estimation into assessments of habitat quality. In this study, we integrated genomic kinship approaches with field-based estimates of fitness components and approximate Bayesian computation (ABC) procedures to estimate habitat-specific dispersal rates and characterize habitat quality in two-toed sloths (Choloepus hoffmanni) occurring in a Costa Rican agricultural ecosystem. Field-based observations indicated that birth and survival rates were similar in a sparsely shaded cacao farm and adjacent cattle pasture-forest mosaic. Sloth density was threefold higher in pasture compared with cacao, whereas home range size and overlap were greater in cacao compared with pasture. Dispersal rates were similar between the two habitats, as estimated using ABC procedures applied to the spatial distribution of pairs of related individuals identified using 3,431 single nucleotide polymorphism and 11 microsatellite locus genotypes. Our results indicate that crops produced under a sparse overstorey can, in some cases, constitute lower-quality habitat than pasture-forest mosaics for sloths, perhaps because of differences in food resources or predator communities. Finally, our study demonstrates that integrating field-based demographic approaches with genomic methods can provide a powerful means for characterizing habitat quality for animal populations occurring in heterogeneous landscapes. © 2017 John Wiley & Sons Ltd.

  7. Growth and characterization of Ag/n-ZnO/p-Si/Al heterojunction diode by sol–gel spin technique

    International Nuclear Information System (INIS)

    Keskenler, E.F.; Tomakin, M.; Doğan, S.; Turgut, G.; Aydın, S.; Duman, S.; Gürbulak, B.

    2013-01-01

    Highlights: ► Ag/n-ZnO/p-Si/Al heterojunction diode was grown via sol–gel technique. ► The characterization of ZnO material was investigated. ► The heterojunction structure showed a rectification behavior. ► Ideality factor and barrier height were found to be 2.03 and 0.71 eV, respectively. - Abstract: Polycrystalline ZnO thin film was obtained on the p-Si for the heterojunction diode fabrication by sol–gel method. X-ray diffraction study showed that the texture of the film is hexagonal with a strong (0 0 2) preferred direction. Scanning electron microscope image of ZnO showed that the obtained ZnO thin films had more porous character. High purity vacuum evaporated silver (Ag) and aluminum (Al) metals were used to make Ohmic contacts to the n-ZnO/p-Si heterojunction structure. The electrical properties of Ag/n-ZnO/p-Si/Al diode were investigated by using current–voltage measurements. Ag/n-ZnO/p-Si/Al heterojunction diode showed a rectification behavior, and its ideality factor and barrier height values were found to be 2.03 and 0.71 eV by applying a thermionic emission theory, respectively. The values of series resistance from dV/d (ln I) versus I and H(I) versus I curves were found to be 42.1 and 198.3 Ω, respectively.

  8. X-ray microtomography characterization of carbonate microbialites from a hypersaline coastal lagoon in the Rio de Janeiro State—Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Machado, A.S., E-mail: alemachado@lin.ufrj.br [Laboratório de Geologia Sedimentar—IGEO, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Laboratório de Instrumentação Nuclear—COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Dal Bó, P.F.F. [Laboratório de Geologia Sedimentar—IGEO, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Lima, I. [Laboratório de Instrumentação Nuclear—COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Borghi, L. [Laboratório de Geologia Sedimentar—IGEO, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Lopes, R. [Laboratório de Instrumentação Nuclear—COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2015-06-01

    The objective of the present study is to apply the micro-CT technique to assess recent microbialite samples from a hypersaline coastal lagoon in the Rio de Janeiro State. The study comprises structural assessment, mineralogical characterization and porosity distribution of each sample. Micro-CT is increasingly present in geological reservoir analyses, and has advantages over other laboratory techniques since it is non-invasive and allows 2D/3D visualization of inner structures without previous preparation method, such as slabbing, polishing, thinning or impregnation. This technique renders structural analyses which can be spatially resolved to a scale of micrometers. Results show that micro-CT technique is also adequate for the characterization of carbonate microbialites, providing excellent high resolution 3D images, that enabled to distinguish different mineralogies and porosity distribution beyond it is inner structure.

  9. X-ray microtomography characterization of carbonate microbialites from a hypersaline coastal lagoon in the Rio de Janeiro State—Brazil

    International Nuclear Information System (INIS)

    Machado, A.S.; Dal Bó, P.F.F.; Lima, I.; Borghi, L.; Lopes, R.

    2015-01-01

    The objective of the present study is to apply the micro-CT technique to assess recent microbialite samples from a hypersaline coastal lagoon in the Rio de Janeiro State. The study comprises structural assessment, mineralogical characterization and porosity distribution of each sample. Micro-CT is increasingly present in geological reservoir analyses, and has advantages over other laboratory techniques since it is non-invasive and allows 2D/3D visualization of inner structures without previous preparation method, such as slabbing, polishing, thinning or impregnation. This technique renders structural analyses which can be spatially resolved to a scale of micrometers. Results show that micro-CT technique is also adequate for the characterization of carbonate microbialites, providing excellent high resolution 3D images, that enabled to distinguish different mineralogies and porosity distribution beyond it is inner structure

  10. Estimates of error introduced when one-dimensional inverse heat transfer techniques are applied to multi-dimensional problems

    International Nuclear Information System (INIS)

    Lopez, C.; Koski, J.A.; Razani, A.

    2000-01-01

    A study of the errors introduced when one-dimensional inverse heat conduction techniques are applied to problems involving two-dimensional heat transfer effects was performed. The geometry used for the study was a cylinder with similar dimensions as a typical container used for the transportation of radioactive materials. The finite element analysis code MSC P/Thermal was used to generate synthetic test data that was then used as input for an inverse heat conduction code. Four different problems were considered including one with uniform flux around the outer surface of the cylinder and three with non-uniform flux applied over 360 deg C, 180 deg C, and 90 deg C sections of the outer surface of the cylinder. The Sandia One-Dimensional Direct and Inverse Thermal (SODDIT) code was used to estimate the surface heat flux of all four cases. The error analysis was performed by comparing the results from SODDIT and the heat flux calculated based on the temperature results obtained from P/Thermal. Results showed an increase in error of the surface heat flux estimates as the applied heat became more localized. For the uniform case, SODDIT provided heat flux estimates with a maximum error of 0.5% whereas for the non-uniform cases, the maximum errors were found to be about 3%, 7%, and 18% for the 360 deg C, 180 deg C, and 90 deg C cases, respectively

  11. Magnetic separation techniques in sample preparation for biological analysis: a review.

    Science.gov (United States)

    He, Jincan; Huang, Meiying; Wang, Dongmei; Zhang, Zhuomin; Li, Gongke

    2014-12-01

    Sample preparation is a fundamental and essential step in almost all the analytical procedures, especially for the analysis of complex samples like biological and environmental samples. In past decades, with advantages of superparamagnetic property, good biocompatibility and high binding capacity, functionalized magnetic materials have been widely applied in various processes of sample preparation for biological analysis. In this paper, the recent advancements of magnetic separation techniques based on magnetic materials in the field of sample preparation for biological analysis were reviewed. The strategy of magnetic separation techniques was summarized. The synthesis, stabilization and bio-functionalization of magnetic nanoparticles were reviewed in detail. Characterization of magnetic materials was also summarized. Moreover, the applications of magnetic separation techniques for the enrichment of protein, nucleic acid, cell, bioactive compound and immobilization of enzyme were described. Finally, the existed problems and possible trends of magnetic separation techniques for biological analysis in the future were proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. New techniques in systems neuroscience

    CERN Document Server

    2015-01-01

    This volume is essential reading for anyone wishing to understand the recent explosion of experimental tools in neuroscience that now make it possible to manipulate, record, and understand neuronal activity within the intact brain, and which are helping us to learn how the many neurons that comprise a network act together to control behavior. Leaders in the field discuss the latest developments in optogenetics, functional imaging, circuit mapping, and the application of these tools to complex biological problems. New Techniques in Systems Neuroscience Explores cutting-edge methodological developments and their biological motivations Covers state-of-the-art advances in optogenetics, imaging, circuit mapping, and the molecular characterization of individual neurons Describes key examples of how these methods have been applied in different model organisms Is appropriate for experts and those just entering the field alike.

  13. Water spray cooling technique applied on a photovoltaic panel: The performance response

    International Nuclear Information System (INIS)

    Nižetić, S.; Čoko, D.; Yadav, A.; Grubišić-Čabo, F.

    2016-01-01

    Highlights: • An experimental study was conducted on a monocrystalline photovoltaic panel (PV). • A water spray cooling technique was implemented to determine PV panel response. • The experimental results showed favorable cooling effect on the panel performance. • A feasibility aspect of the water spray cooling technique was also proven. - Abstract: This paper presents an alternative cooling technique for photovoltaic (PV) panels that includes a water spray application over panel surfaces. An alternative cooling technique in the sense that both sides of the PV panel were cooled simultaneously, to investigate the total water spray cooling effect on the PV panel performance in circumstances of peak solar irradiation levels. A specific experimental setup was elaborated in detail and the developed cooling system for the PV panel was tested in a geographical location with a typical Mediterranean climate. The experimental result shows that it is possible to achieve a maximal total increase of 16.3% (effective 7.7%) in electric power output and a total increase of 14.1% (effective 5.9%) in PV panel electrical efficiency by using the proposed cooling technique in circumstances of peak solar irradiation. Furthermore, it was also possible to decrease panel temperature from an average 54 °C (non-cooled PV panel) to 24 °C in the case of simultaneous front and backside PV panel cooling. Economic feasibility was also determined for of the proposed water spray cooling technique, where the main advantage of the analyzed cooling technique is regarding the PV panel’s surface and its self-cleaning effect, which additionally acts as a booster to the average delivered electricity.

  14. Study for applying microwave power saturation technique on fingernail/EPR dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byeong Ryong; Choi, Hoon; Nam, Hyun Ill; Lee, Byung Ill [Radiation Health Research Institute, Seoul (Korea, Republic of)

    2012-10-15

    There is growing recognition worldwide of the need to develop effective uses of dosimetry methods to assess unexpected exposure to radiation in the event of a large scale event. One of physically based dosimetry methods electron paramagnetic resonance (EPR) spectroscopy has been applied to perform retrospective radiation dosimetry using extracted samples of tooth enamel and nail(fingernail and toenail), following radiation accidents and exposures resulting from weapon use, testing, and production. Human fingernails are composed largely of a keratin, which consists of {alpha} helical peptide chains that are twisted into a left handed coil and strengthened by disulphide cross links. Ionizing radiation generates free radicals in the keratin matrix, and these radicals are stable over a relatively long period (days to weeks). Most importantly, the number of radicals is proportional to the magnitude of the dose over a wide dose range (0{approx}30 Gy). Also, dose can be estimated at four different locations on the human body, providing information on the homogeneity of the radiation exposure. And The results from EPR nail dosimetry are immediately available However, relatively large background signal (BKS) converted from mechanically induced signal (MIS) after cutting process of fingernail, normally overlaps with the radiation induced signal (RIS), make it difficult to estimate accurate dose accidental exposure. Therefore, estimation method using dose response curve was difficult to ensure reliability below 5 Gy. In this study, In order to overcome these disadvantages, we measured the reactions of RIS and BKS (MIS) according to the change of Microwave power level, and researched about the applicability of the Power saturation technique at low dose.

  15. New ways of polymeric ion track characterization

    International Nuclear Information System (INIS)

    Fink, D.; Mueller, M.; Ghosh, S.; Dwivedi, K.K.; Vacik, J.; Hnatowicz, V.; Cervena, J.; Kobayashi, Y.; Hirata, K.

    1999-01-01

    New ways have been applied for characterization of ion tracks in polymers in the last few years, which are essentially related to depth profile determinations of ions, molecules, or positrons penetrating into these tracks. In combination with tomography, the first three-dimensional results have been obtained. Extensive diffusion simulations accompanying the measurements have enabled us to obtain a better understanding of the transport processes going on in ion tracks. This paper gives an overview about the range of new possibilities accessible by these techniques, and summarizes the presently obtained understanding of ion tracks in polymers

  16. Multiple technologies applied to characterization of the porosity and permeability of the Biscayne aquifer, Florida

    Science.gov (United States)

    Cunningham, K.J.; Sukop, M.C.

    2011-01-01

    Research is needed to determine how seepage-control actions planned by the Comprehensive Everglades Restoration Plan (CERP) will affect recharge, groundwater flow, and discharge within the dual-porosity karstic Biscayne aquifer where it extends eastward from the Everglades to Biscayne Bay. A key issue is whether the plan can be accomplished without causing urban flooding in adjacent populated areas and diminishing coastal freshwater flow needed in the restoration of the ecologic systems. Predictive simulation of groundwater flow is a prudent approach to understanding hydrologic change and potential ecologic impacts. A fundamental problem to simulation of karst groundwater flow is how best to represent aquifer heterogeneity. Currently, U.S. Geological Survey (USGS) researchers and academic partners are applying multiple innovative technologies to characterize the spatial distribution of porosity and permeability within the Biscayne aquifer.

  17. Optimization and characterization of liposome formulation by mixture design.

    Science.gov (United States)

    Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel

    2012-02-07

    This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.

  18. FEEDBACK LINEARISATION APPLIED ON A HYDRAULIC

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik C.

    2005-01-01

    is on developing and applying several different feedback linearisation (FL) controllers to the individual servo actuators in a hydraulically driven servo robot to evaluate and compare their possiblities and limitations. This is done based on both simulation and experimental results.......Generally most hydraulic systems are intrensically non-linear, why applying linear control techniques typically results in conservatively dimensioned controllers to obtain stable performance. Non-linear control techniques have the potential of overcoming these problems, and in this paper the focus...

  19. Applying value stream mapping techniques to eliminate non-value-added waste for the procurement of endovascular stents

    International Nuclear Information System (INIS)

    Teichgräber, Ulf K.; Bucourt, Maximilian de

    2012-01-01

    Objectives: To eliminate non-value-adding (NVA) waste for the procurement of endovascular stents in interventional radiology services by applying value stream mapping (VSM). Materials and methods: The Lean manufacturing technique was used to analyze the process of material and information flow currently required to direct endovascular stents from external suppliers to patients. Based on a decision point analysis for the procurement of stents in the hospital, a present state VSM was drawn. After assessment of the current status VSM and progressive elimination of unnecessary NVA waste, a future state VSM was drawn. Results: The current state VSM demonstrated that out of 13 processes for the procurement of stents only 2 processes were value-adding. Out of the NVA processes 5 processes were unnecessary NVA activities, which could be eliminated. The decision point analysis demonstrated that the procurement of stents was mainly a forecast driven push system. The future state VSM applies a pull inventory control system to trigger the movement of a unit after withdrawal by using a consignment stock. Conclusion: VSM is a visualization tool for the supply chain and value stream, based on the Toyota Production System and greatly assists in successfully implementing a Lean system.

  20. RSO Characterization from Photometric Data Using Machine Learning

    Science.gov (United States)

    Howard, M.; Klem, B.; Gorman, J.

    Object characterization is the description of a resident space object (RSO), its capabilities and its behavior. While astrometric data has been used extensively for object detection, location, and characterization, photometric data has been less widely applied and remains a promising area for improving RSO characterization. RSO characteristics which may influence changes in light intensity with respect to changes in viewing angle or orientation signature include geometry, orientation, components material properties, stability and other characteristics. However, most RSO characterization is presently performed manually and on an individual basis by space analysts and there is a need for efficient and automated methods to perform characterization. This paper discusses the application of machine learning techniques to characterization of RSOs in the geosynchronous altitude regime using photometric data. We develop simulated signatures in the visible spectral band of three basic RSO types, with variations in object orientation, material characteristics, size and attitude and attempt to recover these properties through object characterization techniques. We generate observations by sampling noisy measurements from the simulated signature. Next, we extract a set of features from the observations and train machine learning algorithms to classify the signatures. We consider the effectiveness of a set of binary classifiers trained to individually recognize separate cases. The results of each classifier are combined together to produce a final output characterization of an input observation. Experiments with varying levels of noise are presented, and we evaluate models with respect to classification accuracy and other criteria. The end result of this process is a unique methodology for exploiting the use usefulness and applicability of machine learning to an important space sensing and identification process. This material is based upon work supported by the United States